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1.1 section 1

Table 1.1: Lookup table for all problems in current section

ID problem ODE

8849 1 (x2 − 1) y′′ − 2xy′ + 2y = 0

8850 2 (x2 − 1) y′′ − 6xy′ + 12y = 0

8851 3 (x2 + 3) y′′ − 7xy′ + 16y = 0

8852 4 (x2 − 1) y′′ + 8xy′ + 12y = 0

8853 5 3y′′ + xy′ − 4y = 0

8854 6 5y′′ − 2xy′ + 10y = 0

8855 7 y′′ − x2y′ − 3yx = 0

8856 8 (x2 + 1) y′′ + 2xy′ − 2y = 0

8857 9 y′′ + xy′ − 2y = 0

8858 10 (x2 − 6x+ 10) y′′ − 4(x− 3) y′ + 6y = 0

8859 11 (x2 + 6x) y′′ + (3x+ 9) y′ − 3y = 0

8860 12 ty′′ + (t2 − 1) y′ + t2y = 0

8861 13 t2y′′ − t(t+ 2) y′ + (t+ 2) y = 0

8862 14 ty′′ − (1 + t) y′ + y = 0

8863 15 (−t+ 1) y′′ + y′t− y = 0

8864 16 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

8865 17 ty′′ − (1 + t) y′ + y = 0

8866 18 (−t+ 1) y′′ + y′t− y = 0

8867 19 y′′ + xy′ + 2y = 0

8868 20 (x2 + 1) y′′ − 4xy′ + 6y = 0

8869 21 (1− x) y′′ + xy′ − y = 0

8870 22 2y′′ + xy′ + 3y = 0

8871 23 y′′ + xy′ + 2y = 0

8872 24 (1− x) y′′ + xy′ − y = 0

8873 25 y′′ + xy′ + 2y = 0

8874 26 (−x2 + 4) y′′ + xy′ + 2y = 0

8875 27 4x2y′′ − 4xy′ + (−16x2 + 3) y = 0

8876 28 (x− 1) y′′ − xy′ + y = 0

8877 29 x2y′′ − 2xy′ + (x2 + 2) y = 0

8878 31 (x2 − 2x) y′′ + (−x2 + 2) y′ + (2x− 2) y = 0

8879 32 4x2y′′ + (−8x2 + 4x) y′ + (4x2 − 4x− 1) y = 0

8880 33 y′′ + 4xy′ + (4x2 + 2) y = 0

8881 34 (2x+ 1) y′′ − 2y′ − (2x+ 3) y = 0

8882 35 xy′′ − (2x+ 2) y′ + (x+ 2) y = 0
Continued on next page
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Table 1.1 Lookup table
Continued from previous page

ID problem ODE

8883 36 x2y′′ − 2xy′ + (x2 + 2) y = 0

8884 38 4x2y′′ − 4xy′ + (−16x2 + 3) y = 0

8885 39 4x2y′′ − 4xy′ + (4x2 + 3) y = 0

8886 40 x2y′′ − 2xy′ − (x2 − 2) y = 0

8887 41 x2y′′ − 2x(1 + x) y′ + (x2 + 2x+ 2) y = 0

8888 42 x2y′′ − 2x(x+ 2) y′ + (x2 + 4x+ 6) y = 0

8889 43 x2y′′ − 4xy′ + (x2 + 6) y = 0

8890 44 (x− 1) y′′ − xy′ + y = 0

8891 45 4x2y′′ − 4x(1 + x) y′ + (2x+ 3) y = 0

8892 46 (3x− 1) y′′ − (2 + 3x) y′ − (6x− 8) y = 0

8893 47 (x+ 2) y′′ + xy′ + 3y = 0

8894 48 x2(1− x) y′′ + x(4 + x) y′ + (2− x) y = 0

8895 49 x2(1 + x) y′′ + x(2x+ 1) y′ − (4 + 6x) y = 0

8896 50 x2(2x2 + 1) y′′ + x(2x2 + 4) y′ + 2(−x2 + 1) y = 0

8897 51 x2(x2 + 2) y′′ + 2x(x2 + 5) y′ + 2(−x2 + 3) y = 0

8898 52 (x2 + 1) y′′ + 6xy′ + 6y = 0

8899 53 (x2 + 1) y′′ + 2xy′ − 2y = 0

8900 54 (x2 + 1) y′′ − 8xy′ + 20y = 0

8901 55 (−x2 + 1) y′′ − 8xy′ − 12y = 0

8902 56 (2x2 + 1) y′′ + 7xy′ + 2y = 0

8903 57 (−x2 + 1) y′′ − 5xy′ − 4y = 0

8904 58 (x2 + 1) y′′ − 10xy′ + 28y = 0

8905 59 y′′ + xy′ + 2y = 0

8906 60 (2x2 + 1) y′′ − 9xy′ − 6y = 0

8907 61 (2x2 − 8x+ 11) y′′ − 16(x− 2) y′ + 36y = 0

8908 62 y′′ + (x− 3) y′ + 3y = 0

8909 63 (x2 − 8x+ 14) y′′ − 8(x− 4) y′ + 20y = 0

8910 64 (2x2 + 4x+ 5) y′′ − 20(1 + x) y′ + 60y = 0

8911 65 (x3 + 1) y′′ + 7x2y′ + 9yx = 0

8912 66 (2x5 + 1) y′′ + 14x4y′ + 10x3y = 0

8913 67 y′′ + x6y′ + 7x5y = 0

8914 68 (x8 + 1) y′′ − 16x7y′ + 72x6y = 0

8915 69 y′′ + x5y′ + 6x4y = 0

8916 70 (1 + 3x) y′′ + xy′ + 2y = 0

8917 71 (3x2 + x+ 1) y′′ + (2 + 15x) y′ + 12y = 0
Continued on next page
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Table 1.1 Lookup table
Continued from previous page

ID problem ODE

8918 72 (x+ 2) y′′ + (1 + x) y′ + 3y = 0

8919 73 (4 + x) y′′ + (x+ 2) y′ + 2y = 0

8920 74 (2x2 + 3x) y′′ + 10(1 + x) y′ + 8y = 0

8921 75 x2y′′ − (6− 7x) y′ + 8y = 0

8922 76 (2x2 + x+ 1) y′′ + (1 + 7x) y′ + 2y = 0

8923 77 (x+ 3) y′′ + (2x+ 1) y′ − (2− x) y = 0

8924 78 y′′ + 3xy′ + (2x2 + 4) y = 0

8925 79 (2 + 4x) y′′ − 4y′ − (6 + 4x) y = 0

8926 80 y′′ − 3xy′ + (2x2 + 5) y = 0

8927 81 2y′′ + 5xy′ + (2x2 + 4) y = 0

8928 82 y′′ + 4xy′ + (4x2 + 2) y = 0

8929 83 y′′ + 4xy′ + (4x2 + 2) y = 0

8930 84 2x2(x2 + x+ 1) y′′ + x(11x2 + 11x+ 9) y′ + (7x2 + 10x+ 6) y = 0

8931 85 3x2y′′ + 2x(−2x2 + x+ 1) y′ + (−8x2 + 2x) y = 0

8932 86 12x2(1 + x) y′′ + x(3x2 + 35x+ 11) y′ − (−5x2 − 10x+ 1) y = 0

8933 87 x2(10x2 + x+ 5) y′′ + x(48x2 + 3x+ 4) y′ + (36x2 + x) y = 0

8934 88 18x2(1 + x) y′′ + 3x(x2 + 11x+ 5) y′ − (−5x2 − 2x+ 1) y = 0

8935 89 2x2y′′ + x(2x+ 3) y′ − (1− x) y = 0

8936 90 2x2y′′ + x(5 + x) y′ − (2− 3x) y = 0

8937 91 3x2y′′ + x(1 + x) y′ − y = 0

8938 92 2x2y′′ − xy′ + (1− 2x) y = 0

8939 93 3x2y′′ + x(1 + x) y′ − (1 + 3x) y = 0

8940 94 2x2(x+ 3) y′′ + x(1 + 5x) y′ + (1 + x) y = 0

8941 95 x2(4 + x) y′′ − x(1− 3x) y′ + y = 0

8942 96 2x2y′′ + 5xy′ + (1 + x) y = 0

8943 97 6x2y′′ + x(10− x) y′ − (x+ 2) y = 0

8944 98 x2(3 + 4x) y′′ + x(11 + 4x) y′ − (3 + 4x) y = 0

8945 99 2x2(2 + 3x) y′′ + x(4 + 11x) y′ − (1− x) y = 0

8946 100 x2(x+ 2) y′′ + 5x(1− x) y′ − (2− 8x) y = 0

8947 101 8x2(−x2 + 1) y′′ + 2x(−13x2 + 1) y′ + (−9x2 + 1) y = 0

8948 102 x2(x2 + 1) y′′ − 2x(−x2 + 2) y′ + 4y = 0

8949 103 x(x2 + 3) y′′ + (−x2 + 2) y′ − 8yx = 0

8950 104 4x2(−x2 + 1) y′′ + x(−19x2 + 7) y′ − (14x2 + 1) y = 0

8951 105 3x2(−x2 + 2) y′′ + x(−11x2 + 1) y′ + (−5x2 + 1) y = 0

8952 106 2x2(x2 + 2) y′′ − x(−7x2 + 12) y′ + (3x2 + 7) y = 0
Continued on next page
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Table 1.1 Lookup table
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ID problem ODE

8953 107 2x2(x2 + 2) y′′ + x(7x2 + 4) y′ − (−3x2 + 1) y = 0

8954 108 2x2(2x2 + 1) y′′ + 5x(6x2 + 1) y′ − (−40x2 + 2) y = 0

8955 109 x(x2 + 1) y′′ + (7x2 + 4) y′ + 8yx = 0

8956 110 2x2(x2 + 1) y′′ + x(8x2 + 3) y′ − (−4x2 + 3) y = 0

8957 111 9x2y′′ + 3x(x2 + 3) y′ − (−5x2 + 1) y = 0

8958 112 6x2y′′ + x(6x2 + 1) y′ + (9x2 + 1) y = 0

8959 113 9x2(x2 + 1) y′′ + 3x(13x2 + 3) y′ − (−25x2 + 1) y = 0

8960 114 4x2(x2 + 1) y′′ + 4x(6x2 + 1) y′ − (−25x2 + 1) y = 0

8961 115 8x2(2x2 + 1) y′′ + 2x(34x2 + 5) y′ − (−30x2 + 1) y = 0

8962 116 2x2(1 + x) y′′ − x(1− 3x) y′ + y = 0

8963 117 6x2(2x2 + 1) y′′ + x(50x2 + 1) y′ + (30x2 + 1) y = 0

8964 118 28x2(1− 3x) y′′ − 7x(5 + 9x) y′ + 7(2 + 9x) y = 0

8965 119 8x2(−x2 + 2) y′′ + 2x(−21x2 + 10) y′ − (35x2 + 2) y = 0

8966 120 4x2(x2 + 3x+ 1) y′′ − 4x(−3x2 − 3x+ 1) y′ + 3(x2 − x+ 1) y = 0

8967 121 3x2(1 + x)2 y′′ − x(−11x2 − 10x+ 1) y′ + (5x2 + 1) y = 0

8968 122 4x2(x2 + 2x+ 3) y′′ − x(−15x2 − 14x+ 3) y′ + (7x2 + 3) y = 0

8969 123 x2(x2 − 2x+ 1) y′′ − x(x+ 3) y′ + (4 + x) y = 0

8970 124 2x2(x+ 2) y′′ + 5x2y′ + (1 + x) y = 0

8971 125 x2(−x2 + 2) y′′ − 2x(2x2 + 1) y′ + (−2x2 + 2) y = 0

8972 126 x2y′′ − x(5− x) y′ + (9− 4x) y = 0

8973 127 4x2(x2 + x+ 1) y′′ + 12x2(1 + x) y′ + (3x2 + 3x+ 1) y = 0

8974 128 x2(x2 + x+ 1) y′′ − x(−2x2 − 4x+ 1) y′ + y = 0

8975 129 9x2y′′ + 3x(−2x2 + 3x+ 5) y′ + (−14x2 + 12x+ 1) y = 0

8976 130 x2(2x+ 1) y′′ + x(3x2 + 14x+ 5) y′ + (12x2 + 18x+ 4) y = 0

8977 131 16x2y′′ + 4x(2x2 + x+ 6) y′ + (18x2 + 5x+ 1) y = 0

8978 132 9x2(1 + x) y′′ + 3x(−x2 + 11x+ 5) y′ + (−7x2 + 16x+ 1) y = 0

8979 133 36x2(1− 2x) y′′ + 24x(1− 9x) y′ + (1− 70x) y = 0

8980 134 x2(1 + x) y′′ − x(3− x) y′ + 4y = 0

8981 135 x2(1− 2x) y′′ − x(5− 4x) y′ + (9− 4x) y = 0

8982 136 2x2(x+ 2) y′′ + x2y′ + (1− x) y = 0

8983 137 2x2(1 + x) y′′ − x(6− x) y′ + (8− x) y = 0

8984 138 x2(2x+ 1) y′′ + x(5 + 9x) y′ + (4 + 3x) y = 0

8985 139 x2(1− 2x) y′′ − x(5 + 4x) y′ + (9 + 4x) y = 0

8986 140 x2(1− x) y′′ + x(7 + x) y′ + (9− x) y = 0

8987 141 x2y′′ − x(−x2 + 1) y′ + (x2 + 1) y = 0
Continued on next page
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Table 1.1 Lookup table
Continued from previous page

ID problem ODE

8988 142 x2(x2 + 1) y′′ − 3x(−x2 + 1) y′ + 4y = 0

8989 143 4x2y′′ + 2x3y′ + (3x2 + 1) y = 0

8990 144 x2(x2 + 1) y′′ − x(−2x2 + 1) y′ + y = 0

8991 145 2x2(x2 + 2) y′′ + 7x3y′ + (3x2 + 1) y = 0

8992 146 x2(x2 + 1) y′′ − x(−4x2 + 1) y′ + (2x2 + 1) y = 0

8993 147 4x2(x2 + 4) y′′ + 3x(3x2 + 8) y′ + (−9x2 + 1) y = 0

8994 148 3x2(x2 + 3) y′′ + x(11x2 + 3) y′ + (5x2 + 1) y = 0

8995 149 9x2y′′ − 3x(−2x2 + 7) y′ + (2x2 + 25) y = 0

8996 150 x2y′′ − x(−x2 + 1) y′ + (x2 + 1) y = 0

8997 151 x2(1− 2x) y′′ + 3xy′ + (1 + 4x) y = 0

8998 152 x(1 + x) y′′ + (1− x) y′ + y = 0

8999 153 x2(1− x) y′′ − x(3− 5x) y′ + (4− 5x) y = 0

9000 154 x2(x2 + 1) y′′ − x(9x2 + 1) y′ + (25x2 + 1) y = 0

9001 155 9x2y′′ + 3x(−x2 + 1) y′ + (7x2 + 1) y = 0

9002 156 x(x2 + 1) y′′ + (−x2 + 1) y′ − 8yx = 0

9003 157 4x2y′′ + 2x(−x2 + 4) y′ + (7x2 + 1) y = 0

9004 158 4x2(1 + x) y′′ + 8x2y′ + (1 + x) y = 0

9005 159 9x2(x+ 3) y′′ + 3x(3 + 7x) y′ + (3 + 4x) y = 0

9006 160 x2(−x2 + 2) y′′ − x(3x2 + 2) y′ + (−x2 + 2) y = 0

9007 161 16x2(x2 + 1) y′′ + 8x(9x2 + 1) y′ + (49x2 + 1) y = 0

9008 162 x2(4 + 3x) y′′ − x(4− 3x) y′ + 4y = 0

9009 163 4x2(x2 + 3x+ 1) y′′ + 8x2(2x+ 3) y′ + (9x2 + 3x+ 1) y = 0

9010 164 x2(1− x)2 y′′ − x(−3x2 + 2x+ 1) y′ + (x2 + 1) y = 0

9011 165 9x2(x2 + x+ 1) y′′ + 3x(13x2 + 7x+ 1) y′ + (25x2 + 4x+ 1) y = 0

9012 166 2x2(x+ 2) y′′ − x(4− 7x) y′ − (5− 3x) y = 0

9013 167 x2(1− 2x) y′′ + x(8− 9x) y′ + (6− 3x) y = 0

9014 168 x2(x2 + 1) y′′ + x(10x2 + 3) y′ − (−14x2 + 15) y = 0

9015 169 x2(−2x2 + 1) y′′ + x(−13x2 + 7) y′ − 14x2y = 0

9016 170 4x2(1 + x) y′′ + 4x(2x+ 1) y′ − (1 + 3x) y = 0

9017 171 2x2(2 + 3x) y′′ + x(4 + 21x) y′ − (1− 9x) y = 0

9018 172 x2y′′ + x(x+ 2) y′ − (2− 3x) y = 0

9019 173 4x2(1 + x) y′′ + 4x(3 + 8x) y′ − (5− 49x) y = 0

9020 174 x2(1 + x) y′′ − x(3 + 10x) y′ + 30yx = 0

9021 175 x2y′′ + x(1 + x) y′ − 3(x+ 3) y = 0

9022 176 x2(2x+ 1) y′′ + x(9 + 13x) y′ + (7 + 5x) y = 0
Continued on next page
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9023 177 4x2(2x+ 1) y′′ − 2x(4− x) y′ − (7 + 5x) y = 0

9024 178 3x2(x+ 3) y′′ − x(15 + x) y′ − 20y = 0

9025 179 x2(1 + x) y′′ + x(1− 10x) y′ − (9− 10x) y = 0

9026 180 x2(1 + x) y′′ + 3x2y′ − (6− x) y = 0

9027 181 x2(2x+ 1) y′′ − 2x(3 + 14x) y′ + (6 + 100x) y = 0

9028 182 x2(1 + x) y′′ − x(6 + 11x) y′ + (6 + 32x) y = 0

9029 183 4x2(1 + x) y′′ + 4x(1 + 4x) y′ − (49 + 27x) y = 0

9030 184 x2(x2 + 1) y′′ − x(−2x2 + 7) y′ + 12y = 0

9031 185 x2y′′ − x(−x2 + 7) y′ + 12y = 0

9032 186 x2y′′ + x(2x2 + 1) y′ − (−10x2 + 1) y = 0

9033 187 x2y′′ + x(−2x2 + 1) y′ − 4(2x2 + 1) y = 0

9034 188 x2y′′ + x(−3x2 + 1) y′ − 4(−3x2 + 1) y = 0

9035 189 x2(x2 + 1) y′′ + x(11x2 + 5) y′ + 24x2y = 0

9036 190 4x2(x2 + 1) y′′ + 8xy′ − (−x2 + 35) y = 0

9037 191 x2(x2 + 1) y′′ − x(−x2 + 5) y′ − (25x2 + 7) y = 0

9038 192 x2(x2 + 1) y′′ + x(2x2 + 5) y′ − 21y = 0

9039 193 4x2(x2 + 1) y′′ + 4x(x2 + 2) y′ − (x2 + 15) y = 0

9040 194 y′′ − 2(1+t)y′
t2+2t−1 +

2y
t2+2t−1 = 0

9041 195 y′′ − 4y′t+ (4t2 − 2) y = 0

9042 196 (−t2 + 1) y′′ − 2y′t+ 2y = 0

9043 197 (t2 + 1) y′′ − 2y′t+ 2y = 0

9044 198 (−t2 + 1) y′′ − 2y′t+ 6y = 0

9045 199 (2t+ 1) y′′ − 4(1 + t) y′ + 4y = 0

9046 200 t2y′′ + y′t+
(
t2 − 1

4

)
y = 0

9047 201 y′′ − 2ty′
t2+1 +

2y
t2+1 = 0

9048 202 y′′ + (t2 + 2t+ 1) y′ − (4 + 4t) y = 0

9049 204 2ty′′ + (1− 2t) y′ − y = 0

9050 205 2ty′′ + (1 + t) y′ − 2y = 0

9051 206 2t2y′′ − y′t+ (1 + t) y = 0

9052 207 2t2y′′ + (t2 − t) y′ + y = 0

9053 208 t2y′′ + (−t2 + t) y′ − y = 0

9054 209 ty′′ − (t2 + 2) y′ + yt = 0

9055 210 t2y′′ + t(1 + t) y′ − y = 0

9056 211 ty′′ − (t+ 4) y′ + 2y = 0

9057 212 t2y′′ + (t2 − 3t) y′ + 3y = 0
Continued on next page
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9058 213 ty′′ + y′t+ 2y = 0

9059 214 ty′′ + (−t2 + 1) y′ + 4yt = 0

9060 215 t2y′′ − t(1 + t) y′ + y = 0

9061 216 y′′ + 4xy′ + (4x2 + 6) y = 0

9062 217 (−z2 + 1) y′′ − 3zy′ + λy = 0

9063 218 4zy′′ + 2(1− z) y′ − y = 0

9064 219 f ′′ + 2(z − 1) f ′ + 4f = 0

9065 220 zy′′ − 2y′ + yz = 0

9066 221 zy′′ + (2z − 3) y′ + 4y
z
= 0

9067 222 y′′ + 2xy′ + 4y = 0

9068 223 y′′ + xy′ + 3y = 0

9069 224 y′′ − x2y′ − 3yx = 0

9070 225 (−4x2 + 1) y′′ − 20xy′ − 16y = 0

9071 226 (x2 − 1) y′′ − 6xy′ + 12y = 0

9072 227 y′′ + xy′ + (x+ 2) y = 0

9073 228 (2x2 + 1) y′′ + 7xy′ + 2y = 0

9074 229 4y′′ + xy′ + 4y = 0

9075 230 y′′ + xy′ − 4y = 0

9076 231 4xy′′ − xy′ + 2y = 0

9077 232 6x2y′′ + x(1 + 18x) y′ + (1 + 12x) y = 0

9078 233 3x2y′′ − x(x+ 8) y′ + 6y = 0

9079 234 2x2y′′ − x(2x+ 1) y′ + 2(4x− 1) y = 0

9080 235 4x2y′′ − 4x2y′ + (2x+ 1) y = 0

9081 236 x2y′′ + x(3− 2x) y′ + (1− 2x) y = 0

9082 237 x2y′′ − x(x+ 3) y′ + (4− x) y = 0

9083 238 x2y′′ + x(3− x) y′ + y = 0

9084 239 x2y′′ −
(
2
√
5− 1

)
xy′ +

(19
4 − 3x2) y = 0

9085 240 x2y′′ + x(x− 3) y′ + (4− x) y = 0

9086 241 x2y′′ + x2y′ − (x+ 2) y = 0

9087 242 x2y′′ + 2x2y′ +
(
x− 3

4

)
y = 0

9088 243 x2(1 + x) y′′ + x2y′ − 2y = 0

9089 244 x2y′′ + x(x2 + 6) y′ + 6y = 0

9090 245 x2y′′ + x(1− x) y′ − y = 0

9091 246 x2y′′ − x(x+ 3) y′ + 4y = 0

9092 247 x2y′′ − x2y′ − 2y = 0
Continued on next page
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9093 248 x2y′′ − x2y′ − (2 + 3x) y = 0

9094 249 x2y′′ + x(5− x) y′ + 4y = 0

9095 250 4x2y′′ + 4x(1− x) y′ + (2x− 9) y = 0

9096 251 x2y′′ + 2x(x+ 2) y′ + 2(1 + x) y = 0

9097 252 x2y′′ − x(1− x) y′ + (1− x) y = 0

9098 253 4x2y′′ + 4x(2x+ 1) y′ + (4x− 1) y = 0

9099 254 x2y′′ + x(4 + x) y′ + (x+ 2) y = 0

9100 255 x2y′′ + xy′ +
(
x2 − 9

4

)
y = 0

9101 256 xy′′ + 2y′ + yx = 0

9102 257 2xy′′ + 5(1− 2x) y′ − 5y = 0

9103 258 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9104 259 xy′′ + (x+ n) y′ + (n+ 1) y = 0

9105 260 x4y′′ + xy′ + y = 0

9106 261 x2y′′ + (2x2 + x) y′ − 4y = 0

9107 262 (4x3 − 14x2 − 2x) y′′ − (6x2 − 7x+ 1) y′ + (6x− 1) y = 0

9108 263 x2y′′ + x2y′ + (x− 2) y = 0

9109 264 x2y′′ − x2y′ + (x− 2) y = 0

9110 265 x2(1− 4x) y′′ − xy′

2 − 3yx
4 = 0

9111 266 x2y′′ + (x2 + x) y′ + (x− 9) y = 0

9112 267 x2y′′ + x(1 + x) y′ + (3x− 1) y = 0

9113 268 x2y′′ − (x2 + 4x) y′ + 4y = 0

9114 269 2x2y′′ − (2 + 3x) y′ + (2x−1)y
x

= 0

9115 270 x(1− x) y′′ +
(3
2 − 2x

)
y′ − y

4 = 0

9116 271 2x(1− x) y′′ + xy′ − y = 0

9117 272 2x(1− x) y′′ + (1− 11x) y′ − 10y = 0

9118 273 x(1− x) y′′ + (1−2x)y′
3 + 20y

9 = 0

9119 274 4y′′ + 3
(
−x2+2

)
y

(−x2+1)2 = 0

9120 275 u′′ − 2u′

x
− a2u = 0

9121 276 u′′ + 2u′

x
− a2u = 0

9122 277 u′′ + 2u′

x
+ a2u = 0

9123 278 u′′ + 4u′

x
− a2u = 0

9124 279 u′′ + 4u′

x
+ a2u = 0

9125 280 y′′ − a2y = 6y
x2

9126 281 y′′ + n2y = 6y
x2

9127 282 x2y′′ + xy′ −
(
x2 + 1

4

)
y = 0
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9128 283 x2y′′ + xy′ +
(
−9a2+4x2)y

4a2 = 0

9129 284 x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0

9130 285 y′′ + qy′ = 2y
x2

9131 286 xy′′ + 3y′ + 4x3y = 0

9132 287 (x2 + 2x) y′′ − 2(1 + x) y′ + 2y = 0

9133 288 (x2 + 2x) y′′ − 2(1 + x) y′ + 2y = 0

9134 289 (x2 + 1) y′′ − 2xy′ + 2y = 0

9135 290 (x2 + 1) y′′ − 2xy′ + 2y = 0

9136 291 y′′ − 4xy′ + (4x2 − 2) y = 0

9137 292 y′′ − 4xy′ + (4x2 − 2) y = 0

9138 293 (2x− 3) y′′ − xy′ + y = 0

9139 294 y′′ − xy′ − 3y = 0

9140 295 (x2 + 1) y′′ − xy′ + y = 0

9141 296 y′′ − xy′ + 2y = 0

9142 297 (−x2 + 1) y′′ − y′ + y = 0

9143 298 x(1 + x)2 y′′ + (−x2 + 1) y′ + (x− 1) y = 0

9144 299 2xy′′ − y′ + 2y = 0

9145 300 xy′′ + xy′ − 2y = 0

9146 301 x(x− 1)2 y′′ − 2y = 0

9147 302 y′′ − 2xy′ + x2y = 0

9148 303 x(−x2 + 2) y′′ − (x2 + 4x+ 2) ((1− x) y′ + y) = 0

9149 304 x2(1 + x) y′′ − (2x+ 1) (−y + xy′) = 0

9150 305 2(2− x)x2y′′ − x(4− x) y′ + (3− x) y = 0

9151 306 x2(1− x) y′′ + (5x− 4)xy′ + (6− 9x) y = 0

9152 307 xy′′ + (4x2 + 1) y′ + 4x(x2 + 1) y = 0

9153 309 y′′ − 2xy′ + 8y = 0

9154 310 (−x2 + 1) y′′ − 2xy′ + 12y = 0

9155 311 x(x+ 2) y′′ + 2(1 + x) y′ − 2y = 0

9156 313 x(x+ 2) y′′ + (1 + x) y′ − 4y = 0

9157 314 (x− 1) y′′ − xy′ + y = 0

9158 315 (x2 + 1) y′′ − 2xy′ + 2y = 0

9159 316 (x2 − 2x+ 10) y′′ + xy′ − 4y = 0

9160 317 (x2 − 2x+ 10) y′′ + xy′ − 4y = 0

9161 318 y′′ − xy′ + 2y = 0

9162 319 (x+ 2) y′′ + xy′ − y = 0
Continued on next page
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9163 320 (x2 + 1) y′′ − 6y = 0

9164 321 (x2 + 2) y′′ + 3xy′ − y = 0

9165 322 (x− 1) y′′ − xy′ + y = 0

9166 325 x2y′′ +
(5
3x+ x2) y′ − y

3 = 0

9167 326 2xy′′ − y′ + 2y = 0

9168 327 2xy′′ − (2x+ 3) y′ + y = 0

9169 328 2x2y′′ + 3xy′ + (2x− 1) y = 0

9170 329 xy′′ + 2y′ − yx = 0

9171 330 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9172 331 xy′′ + (x− 6) y′ − 3y = 0

9173 332 x4y′′ + λy = 0

9174 333 4x2y′′ + 4xy′ + (4x2 − 25) y = 0

9175 334 x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

9176 335 x2y′′ + (x2 − 2) y = 0

9177 336 xy′′ + 3y′ + x3y = 0

9178 337 x2y′′ + 4xy′ + (x2 + 2) y = 0

9179 338 16x2y′′ + 32xy′ + (x4 − 12) y = 0

9180 339 y′′ − x2y′ + yx = 0

9181 340 xy′′ − (x+ 2) y′ + 2y = 0

9182 341 y′′ + xy′ + 2y = 0

9183 342 (−x2 + 1) y′′ − 2xy′ + 2y = 0

9184 343 y′′ − 4xy′ + (4x2 − 2) y = 0

9185 344 (−x2 + 1) y′′ − 2xy′ + 30y = 0

9186 345 xy′′ + 2y′ + yx = 0

9187 346 xy′′ + (2x+ 1) y′ + (1 + x) y = 0

9188 347 2x(x− 1) y′′ − (1 + x) y′ + y = 0

9189 348 xy′′ + 2y′ + 4yx = 0

9190 349 xy′′ + (2− 2x) y′ + (x− 2) y = 0

9191 350 x2y′′ + 6xy′ + (4x2 + 6) y = 0

9192 351 xy′′ + (1− 2x) y′ + (x− 1) y = 0

9193 352 x(1− x) y′′ +
(1
2 + 2x

)
y′ − 2y = 0

9194 353 4(t2 − 3t+ 2) y′′ − 2y′ + y = 0

9195 354 2(t2 − 5t+ 6) y′′ + (2t− 3) y′ − 8y = 0

9196 355 3t(1 + t) y′′ + y′t− y = 0

9197 356 x2y′′ +
(
x+ 3

4
)
y

4 = 0
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9198 357 x2y′′ + xy′ +
(
x2−1

)
y

4 = 0

9199 358 xy′′ + (1− 2x) y′ + (x− 1) y = 0

9200 359 xy′′ − (1 + x) y′ + y = 0

9201 360 xy′′ + 3y′ + 4x3y = 0

9202 361 x2(−x2 + 1) y′′ + 2x(−x2 + 1) y′ − 2y = 0

9203 362 2xy′′ + (x− 2) y′ − y = 0

9204 363 xy′′ + 2y′ + yx = 0

9205 364 y′′ + 2x2y′ + (x4 + 2x− 1) y = 0

9206 365 u′′ + u
x2 = 0

9207 366 u′′ − (2x+ 1)u′ + (x2 + x− 1)u = 0

9208 367 y′′ + 2y′ +
(
1 + 2

(1+3x)2

)
y = 0

9209 368 x2y′′ − 2xy′ + (x2 + 2) y = 0

9210 369 y′′ + 2y′
x
− 2y

(1+x)2 = 0

9211 370 y′′ + y
2x4 = 0

9212 371 y′′ − xy′ − yx = 0

9213 372 y′′ − xy′ − yx = 0

9214 373 y′′ − xy′ − yx = 0

9215 374 y′′ − xy′ − yx = 0

9216 375 y′′ − xy′ − yx = 0

9217 376 y′′ − xy′ − yx = 0

9218 377 y′′ − xy′ − yx = 0

9219 378 y′′ − xy′ − yx = 0

9220 379 y′′ − xy′ − yx = 0

9221 380 y′′ − xy′ − yx = 0

9222 381 y′′ − xy′ − yx = 0

9223 382 xy′′ + 2y′ + yx = 0

9224 383 2x2y′′ + 3xy′ − yx = 0

9225 384 x2y′′ + (3x2 + 2x) y′ − 2y = 0

9226 385 2x2(x2 + x+ 1) y′′ + x(11x2 + 11x+ 9) y′ + (7x2 + 10x+ 6) y = 0

9227 388 xy′′ + (1 + x) y′ + 2y = 0

9228 389 x2(x2 − 2x+ 1) y′′ − x(x+ 3) y′ + (4 + x) y = 0

9229 390 2x2(x+ 2) y′′ + 5x2y′ + (1 + x) y = 0

9230 391 x2y′′ + 4xy′ + (x2 + 2) y = 0

9231 392 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0
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9232 394 x2y′′ − xy′ −
(
x2 + 5

4

)
y = 0

9233 395 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9234 396 x2y′′ + 3xy′ + 4x4y = 0

9235 398 y′′ = (x2 + 3) y

9236 399 y′′ + 2xy′ + (x2 + 1) y = 0

9237 400 x3y′′ + y′ − y
x
= 0

9238 401 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9239 402 4x2y′′ + (−8x2 + 4x) y′ + (4x2 − 4x− 1) y = 0

9240 404 y′′ − y′ + y = 0

9241 405 (x2 − 1) y′′ − 2xy′ + 2y = 0

9242 406 x2y′′ − x(x+ 2) y′ + (x+ 2) y = 0

9243 407 (1 + x) y′′ − (x+ 2) y′ + y = 0

9244 408 (−x2 + 1) y′′ + 2xy′ − 2y = 0

9245 409 (−x2 + 1) y′′ − 2xy′ + 2y = 0

9246 410 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9247 411 (x2 − 1) y′′ − 6xy′ + 12y = 0

9248 412 (x2 + 3) y′′ − 7xy′ + 16y = 0

9249 413 (x2 − 1) y′′ + 8xy′ + 12y = 0

9250 414 3y′′ + xy′ − 4y = 0

9251 415 5y′′ − 2xy′ + 10y = 0

9252 416 y′′ − x2y′ − 3yx = 0

9253 417 (x2 + 1) y′′ + 2xy′ − 2y = 0

9254 418 y′′ + xy′ − 2y = 0

9255 419 (x2 − 6x+ 10) y′′ − 4(x− 3) y′ + 6y = 0

9256 420 (x2 + 6x) y′′ + (3x+ 9) y′ − 3y = 0

9257 421 ty′′ + (t2 − 1) y′ + t3y = 0

9258 422 t2y′′ − t(t+ 2) y′ + (t+ 2) y = 0

9259 423 (x− 1) y′′ − xy′ + y = 0

9260 424 x2y′′ −
(
x− 3

16

)
y = 0

9261 425 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9262 426 t2y′′ − t(t+ 2) y′ + (t+ 2) y = 0

9263 427 ty′′ − (1 + t) y′ + y = 0

9264 428 (−t+ 1) y′′ + y′t− y = 0

9265 429 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9266 430 ty′′ − (1 + t) y′ + y = 0
Continued on next page
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9267 431 (−t+ 1) y′′ + y′t− y = 0

9268 432 y′′ + xy′ + 2y = 0

9269 433 (x2 + 1) y′′ − 4xy′ + 6y = 0

9270 434 (1− x) y′′ + xy′ − y = 0

9271 435 2y′′ + xy′ + 3y = 0

9272 436 y′′ + xy′ + 2y = 0

9273 437 (1− x) y′′ + xy′ − y = 0

9274 438 y′′ + xy′ + 2y = 0

9275 439 (−x2 + 4) y′′ + xy′ + 2y = 0

9276 440 4x2y′′ − 4xy′ + (−16x2 + 3) y = 0

9277 441 (x− 1) y′′ − xy′ + y = 0

9278 442 x2y′′ − 2xy′ + (x2 + 2) y = 0

9279 444 (x2 − 2x) y′′ + (−x2 + 2) y′ + (2x− 2) y = 0

9280 445 (2x+ 1) y′′ − 2y′ − (2x+ 3) y = 0

9281 446 4x2y′′ + (−8x2 + 4x) y′ + (4x2 − 4x− 1) y = 0

9282 447 y′′ + 4xy′ + (4x2 + 2) y = 0

9283 448 x2y′′ + 2x(x− 1) y′ + (x2 − 2x+ 2) y = 0

9284 449 x2y′′ − x(2x− 1) y′ + (x2 − x− 1) y = 0

9285 450 (1− 2x) y′′ + 2y′ + (2x− 3) y = 0

9286 451 2xy′′ + (1 + 4x) y′ + (2x+ 1) y = 0

9287 452 xy′′ − (2x+ 1) y′ + (1 + x) y = 0

9288 453 4x2y′′ − 4x(1 + x) y′ + (2x+ 3) y = 0

9289 454 xy′′ + (2− 2x) y′ + (x− 2) y = 0

9290 455 x2y′′ − 2xy′ + 2y = 0

9291 456 xy′′ − (2x+ 2) y′ + (x+ 2) y = 0

9292 457 x2y′′ − 2xy′ + (x2 + 2) y = 0

9293 458 xy′′ − (1 + 4x) y′ + (2 + 4x) y = 0

9294 460 4x2y′′ − 4xy′ + (−16x2 + 3) y = 0

9295 461 (2x+ 1)xy′′ − 2(2x2 − 1) y′ − 4(1 + x) y = 0

9296 462 (x2 − 2x) y′′ + (−x2 + 2) y′ + (2x− 2) y = 0

9297 463 xy′′ − (1 + 4x) y′ + (2 + 4x) y = 0

9298 464 (3x− 1) y′′ − (2 + 3x) y′ − (6x− 8) y = 0

9299 465 (1 + x)2 y′′ − 2(1 + x) y′ − (x2 + 2x− 1) y = 0

9300 466 4x2y′′ + (−8x2 + 4x) y′ + (4x2 − 4x− 1) y = 0

9301 467 y′′ + 4xy′ + (4x2 + 2) y = 0
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9302 468 (2x+ 1) y′′ − 2y′ − (2x+ 3) y = 0

9303 469 xy′′ − (2x+ 2) y′ + (x+ 2) y = 0

9304 470 x2y′′ − 2xy′ + (x2 + 2) y = 0

9305 472 4x2y′′ − 4xy′ + (−16x2 + 3) y = 0

9306 473 4x2y′′ − 4xy′ + (4x2 + 3) y = 0

9307 474 x2y′′ − 2xy′ − (x2 − 2) y = 0

9308 475 x2y′′ − 2x(1 + x) y′ + (x2 + 2x+ 2) y = 0

9309 476 x2y′′ − 2x(x+ 2) y′ + (x2 + 4x+ 6) y = 0

9310 477 x2y′′ − 4xy′ + (x2 + 6) y = 0

9311 478 (x− 1) y′′ − xy′ + y = 0

9312 479 4x2y′′ − 4x(1 + x) y′ + (2x+ 3) y = 0

9313 480 (3x− 1) y′′ − (2 + 3x) y′ − (6x− 8) y = 0

9314 481 (x+ 2) y′′ + xy′ + 3y = 0

9315 482 x2(1− x) y′′ + x(4 + x) y′ + (2− x) y = 0

9316 483 x2(1 + x) y′′ + x(2x+ 1) y′ − (4 + 6x) y = 0

9317 484 x2(2x2 + 1) y′′ + x(2x2 + 4) y′ + 2(−x2 + 1) y = 0

9318 485 x2(x2 + 2) y′′ + 2x(x2 + 5) y′ + 2(−x2 + 3) y = 0

9319 486 (x2 + 1) y′′ + 6xy′ + 6y = 0

9320 487 (x2 + 1) y′′ + 2xy′ − 2y = 0

9321 488 (x2 + 1) y′′ − 8xy′ + 20y = 0

9322 489 (−x2 + 1) y′′ − 8xy′ − 12y = 0

9323 490 (2x2 + 1) y′′ + 7xy′ + 2y = 0

9324 491 (−x2 + 1) y′′ − 5xy′ − 4y = 0

9325 492 (x2 + 1) y′′ − 10xy′ + 28y = 0

9326 493 y′′ + xy′ + 2y = 0

9327 495 (2x2 − 8x+ 11) y′′ − 16(x− 2) y′ + 36y = 0

9328 496 y′′ + (x− 3) y′ + 3y = 0

9329 497 (x2 − 8x+ 14) y′′ − 8(x− 4) y′ + 20y = 0

9330 498 (2x2 + 4x+ 5) y′′ − 20(1 + x) y′ + 60y = 0

9331 499 (x3 + 1) y′′ + 7x2y′ + 9yx = 0

9332 500 (2x5 + 1) y′′ + 14x4y′ + 10x3y = 0

9333 501 y′′ + x6y′ + 7x5y = 0

9334 502 (x8 + 1) y′′ − 16x7y′ + 72x6y = 0

9335 503 y′′ + x5y′ + 6x4y = 0

9336 504 (1 + 3x) y′′ + xy′ + 2y = 0
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9337 505 (3x2 + x+ 1) y′′ + (2 + 15x) y′ + 12y = 0

9338 506 (x+ 2) y′′ + (1 + x) y′ + 3y = 0

9339 507 (4 + x) y′′ + (x+ 2) y′ + 2y = 0

9340 508 (2x2 + 3x) y′′ + 10(1 + x) y′ + 8y = 0

9341 509 x2y′′ − (6− 7x) y′ + 8y = 0

9342 510 (2x2 + x+ 1) y′′ + (1 + 7x) y′ + 2y = 0

9343 511 (x+ 3) y′′ + (2x+ 1) y′ − (2− x) y = 0

9344 512 y′′ + 3xy′ + (2x2 + 4) y = 0

9345 513 (2 + 4x) y′′ − 4y′ − (6 + 4x) y = 0

9346 514 y′′ − 3xy′ + (2x2 + 5) y = 0

9347 515 2y′′ + 5xy′ + (2x2 + 4) y = 0

9348 516 y′′ + 4xy′ + (4x2 + 2) y = 0

9349 517 y′′ + 4xy′ + (4x2 + 2) y = 0

9350 518 2x2(x2 + x+ 1) y′′ + x(11x2 + 11x+ 9) y′ + (7x2 + 10x+ 6) y = 0

9351 519 3x2y′′ + 2x(−2x2 + x+ 1) y′ + (−8x2 + 2x) y = 0

9352 520 12x2(1 + x) y′′ + x(3x2 + 35x+ 11) y′ − (−5x2 − 10x+ 1) y = 0

9353 521 y′′ + 3y′ + 4y = 0

9354 522 18x2(1 + x) y′′ + 3x(x2 + 11x+ 5) y′ − (−5x2 − 2x+ 1) y = 0

9355 523 2x2y′′ + x(2x+ 3) y′ − (1− x) y = 0

9356 524 2x2y′′ + x(5 + x) y′ − (2− 3x) y = 0

9357 525 3x2y′′ + x(1 + x) y′ − y = 0

9358 526 2x2y′′ − xy′ + (1− 2x) y = 0

9359 527 3x2y′′ + x(1 + x) y′ − (1 + 3x) y = 0

9360 528 2x2(x+ 3) y′′ + x(1 + 5x) y′ + (1 + x) y = 0

9361 529 x2(4 + x) y′′ − x(1− 3x) y′ + y = 0

9362 530 2x2y′′ + 5xy′ + (1 + x) y = 0

9363 531 6x2y′′ + x(10− x) y′ − (x+ 2) y = 0

9364 532 x2(3 + 4x) y′′ + x(11 + 4x) y′ − (3 + 4x) y = 0

9365 533 2x2(2 + 3x) y′′ + x(4 + 11x) y′ − (1− x) y = 0

9366 534 x2(x+ 2) y′′ + 5x(1− x) y′ − (2− 8x) y = 0

9367 535 8x2(−x2 + 1) y′′ + 2x(−13x2 + 1) y′ + (−9x2 + 1) y = 0

9368 536 x2(x2 + 1) y′′ − 2x(−x2 + 2) y′ + 4y = 0

9369 537 x(x2 + 3) y′′ + (−x2 + 2) y′ − 8yx = 0

9370 538 4x2(−x2 + 1) y′′ + x(−19x2 + 7) y′ − (14x2 + 1) y = 0

9371 539 3x2(−x2 + 2) y′′ + x(−11x2 + 1) y′ + (−5x2 + 1) y = 0
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9372 540 2x2(x2 + 2) y′′ − x(−7x2 + 12) y′ + (3x2 + 7) y = 0

9373 541 2x2(x2 + 2) y′′ + x(7x2 + 4) y′ − (−3x2 + 1) y = 0

9374 542 2x2(2x2 + 1) y′′ + 5x(6x2 + 1) y′ − (−40x2 + 2) y = 0

9375 543 x(x2 + 1) y′′ + (7x2 + 4) y′ + 8yx = 0

9376 544 2x2(x2 + 1) y′′ + x(8x2 + 3) y′ − (−4x2 + 3) y = 0

9377 545 9x2y′′ + 3x(x2 + 3) y′ − (−5x2 + 1) y = 0

9378 546 6x2y′′ + x(6x2 + 1) y′ + (9x2 + 1) y = 0

9379 547 9x2(x2 + 1) y′′ + 3x(13x2 + 3) y′ − (−25x2 + 1) y = 0

9380 548 4x2(x2 + 1) y′′ + 4x(6x2 + 1) y′ − (−25x2 + 1) y = 0

9381 549 8x2(2x2 + 1) y′′ + 2x(34x2 + 5) y′ − (−30x2 + 1) y = 0

9382 550 2x2(1 + x) y′′ − x(1− 3x) y′ + y = 0

9383 551 6x2(2x2 + 1) y′′ + x(50x2 + 1) y′ + (30x2 + 1) y = 0

9384 552 28x2(1− 3x) y′′ − 7x(5 + 9x) y′ + 7(2 + 9x) y = 0

9385 553 8x2(−x2 + 2) y′′ + 2x(−21x2 + 10) y′ − (35x2 + 2) y = 0

9386 554 4x2(x2 + 3x+ 1) y′′ − 4x(−3x2 − 3x+ 1) y′ + 3(x2 − x+ 1) y = 0

9387 555 3x2(1 + x)2 y′′ − x(−11x2 − 10x+ 1) y′ + (5x2 + 1) y = 0

9388 556 4x2(x2 + 2x+ 3) y′′ − x(−15x2 − 14x+ 3) y′ + (7x2 + 3) y = 0

9389 557 x2(x2 − 2x+ 1) y′′ − x(x+ 3) y′ + (4 + x) y = 0

9390 558 2x2(x+ 2) y′′ + 5x2y′ + (1 + x) y = 0

9391 559 x2(−x2 + 2) y′′ − 2x(2x2 + 1) y′ + (−2x2 + 2) y = 0

9392 560 x2y′′ − x(5− x) y′ + (9− 4x) y = 0

9393 561 4x2(x2 + x+ 1) y′′ + 12x2(1 + x) y′ + (3x2 + 3x+ 1) y = 0

9394 562 x2(x2 + x+ 1) y′′ − x(−2x2 − 4x+ 1) y′ + y = 0

9395 563 9x2y′′ + 3x(−2x2 + 3x+ 5) y′ + (−14x2 + 12x+ 1) y = 0

9396 564 x2(2x+ 1) y′′ + x(3x2 + 14x+ 5) y′ + (12x2 + 18x+ 4) y = 0

9397 565 16x2y′′ + 4x(2x2 + x+ 6) y′ + (18x2 + 5x+ 1) y = 0

9398 566 9x2(1 + x) y′′ + 3x(−x2 + 11x+ 5) y′ + (−7x2 + 16x+ 1) y = 0

9399 567 36x2(1− 2x) y′′ + 24x(1− 9x) y′ + (1− 70x) y = 0

9400 568 x2(1 + x) y′′ − x(3− x) y′ + 4y = 0

9401 569 x2(1− 2x) y′′ − x(5− 4x) y′ + (9− 4x) y = 0

9402 570 2x2(x+ 2) y′′ + x2y′ + (1− x) y = 0

9403 571 2x2(1 + x) y′′ − x(6− x) y′ + (8− x) y = 0

9404 572 x2(2x+ 1) y′′ + x(5 + 9x) y′ + (4 + 3x) y = 0

9405 573 x2(1− 2x) y′′ − x(5 + 4x) y′ + (9 + 4x) y = 0

9406 574 x2(1− x) y′′ + x(7 + x) y′ + (9− x) y = 0
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9407 575 x2y′′ − x(−x2 + 1) y′ + (x2 + 1) y = 0

9408 576 x2(x2 + 1) y′′ − 3x(−x2 + 1) y′ + 4y = 0

9409 577 4x2y′′ + 2x3y′ + (3x2 + 1) y = 0

9410 578 x2(x2 + 1) y′′ − x(−2x2 + 1) y′ + y = 0

9411 579 2x2(x2 + 2) y′′ + 7x3y′ + (3x2 + 1) y = 0

9412 580 x2(x2 + 1) y′′ − x(−4x2 + 1) y′ + (2x2 + 1) y = 0

9413 581 4x2(x2 + 4) y′′ + 3x(3x2 + 8) y′ + (−9x2 + 1) y = 0

9414 582 3x2(x2 + 3) y′′ + x(11x2 + 3) y′ + (5x2 + 1) y = 0

9415 583 9x2y′′ − 3x(−2x2 + 7) y′ + (2x2 + 25) y = 0

9416 584 x2y′′ − x(−x2 + 1) y′ + (x2 + 1) y = 0

9417 585 x2(1− 2x) y′′ + 3xy′ + (1 + 4x) y = 0

9418 586 x(1 + x) y′′ + (1− x) y′ + y = 0

9419 587 x2(1− x) y′′ − x(3− 5x) y′ + (4− 5x) y = 0

9420 588 x2(x2 + 1) y′′ − x(9x2 + 1) y′ + (25x2 + 1) y = 0

9421 589 9x2y′′ + 3x(−x2 + 1) y′ + (7x2 + 1) y = 0

9422 590 x(x2 + 1) y′′ + (−x2 + 1) y′ − 8yx = 0

9423 591 4x2y′′ + 2x(−x2 + 4) y′ + (7x2 + 1) y = 0

9424 592 4x2(1 + x) y′′ + 8x2y′ + (1 + x) y = 0

9425 593 9x2(x+ 3) y′′ + 3x(3 + 7x) y′ + (3 + 4x) y = 0

9426 594 x2(−x2 + 2) y′′ − x(3x2 + 2) y′ + (−x2 + 2) y = 0

9427 595 16x2(x2 + 1) y′′ + 8x(9x2 + 1) y′ + (49x2 + 1) y = 0

9428 596 x2(4 + 3x) y′′ − x(4− 3x) y′ + 4y = 0

9429 597 4x2(x2 + 3x+ 1) y′′ + 8x2(2x+ 3) y′ + (9x2 + 3x+ 1) y = 0

9430 598 x2(1− x)2 y′′ − x(−3x2 + 2x+ 1) y′ + (x2 + 1) y = 0

9431 599 9x2(x2 + x+ 1) y′′ + 3x(13x2 + 7x+ 1) y′ + (25x2 + 4x+ 1) y = 0

9432 600 2x2(x+ 2) y′′ − x(4− 7x) y′ − (5− 3x) y = 0

9433 601 x2(1− 2x) y′′ + x(8− 9x) y′ + (6− 3x) y = 0

9434 602 x2(x2 + 1) y′′ + x(10x2 + 3) y′ − (−14x2 + 15) y = 0

9435 603 x2(−2x2 + 1) y′′ + x(−13x2 + 7) y′ − 14x2y = 0

9436 604 4x2(1 + x) y′′ + 4x(2x+ 1) y′ − (1 + 3x) y = 0

9437 605 2x2(2 + 3x) y′′ + x(4 + 21x) y′ − (1− 9x) y = 0

9438 606 x2y′′ + x(x+ 2) y′ − (2− 3x) y = 0

9439 607 4x2(1 + x) y′′ + 4x(3 + 8x) y′ − (5− 49x) y = 0

9440 608 x2(1 + x) y′′ − x(3 + 10x) y′ + 30yx = 0

9441 609 x2y′′ + x(1 + x) y′ − 3(x+ 3) y = 0
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9442 610 x2(2x+ 1) y′′ + x(9 + 13x) y′ + (7 + 5x) y = 0

9443 611 4x2(2x+ 1) y′′ − 2x(4− x) y′ − (7 + 5x) y = 0

9444 612 3x2(x+ 3) y′′ − x(15 + x) y′ − 20y = 0

9445 613 x2(1 + x) y′′ + x(1− 10x) y′ − (9− 10x) y = 0

9446 614 x2(1 + x) y′′ + 3x2y′ − (6− x) y = 0

9447 615 x2(2x+ 1) y′′ − 2x(3 + 14x) y′ + (6 + 100x) y = 0

9448 616 x2(1 + x) y′′ − x(6 + 11x) y′ + (6 + 32x) y = 0

9449 617 4x2(1 + x) y′′ + 4x(1 + 4x) y′ − (49 + 27x) y = 0

9450 618 x2(x2 + 1) y′′ − x(−2x2 + 7) y′ + 12y = 0

9451 619 x2y′′ − x(−x2 + 7) y′ + 12y = 0

9452 620 x2y′′ + x(2x2 + 1) y′ − (−10x2 + 1) y = 0

9453 621 x2y′′ + x(−2x2 + 1) y′ − 4(2x2 + 1) y = 0

9454 622 x2y′′ + x(−3x2 + 1) y′ − 4(−3x2 + 1) y = 0

9455 623 x2(x2 + 1) y′′ + x(11x2 + 5) y′ + 24x2y = 0

9456 624 4x2(x2 + 1) y′′ + 8xy′ − (−x2 + 35) y = 0

9457 625 x2(x2 + 1) y′′ − x(−x2 + 5) y′ − (25x2 + 7) y = 0

9458 626 x2(x2 + 1) y′′ + x(2x2 + 5) y′ − 21y = 0

9459 627 4x2(x2 + 1) y′′ + 4x(x2 + 2) y′ − (x2 + 15) y = 0

9460 628 y′′ − 2(1+t)y′
t2+2t−1 +

2y
t2+2t−1 = 0

9461 629 y′′ − 4y′t+ (4t2 − 2) y = 0

9462 630 (−t2 + 1) y′′ − 2y′t+ 2y = 0

9463 631 (t2 + 1) y′′ − 2y′t+ 2y = 0

9464 632 (−t2 + 1) y′′ − 2y′t+ 6y = 0

9465 633 (2t+ 1) y′′ − 4(1 + t) y′ + 4y = 0

9466 634 t2y′′ + y′t+
(
t2 − 1

4

)
y = 0

9467 635 y′′ − 2ty′
t2+1 +

2y
t2+1 = 0

9468 636 y′′ + (t2 + 2t+ 1) y′ − (4 + 4t) y = 0

9469 638 2ty′′ + (1− 2t) y′ − y = 0

9470 639 2ty′′ + (1 + t) y′ − 2y = 0

9471 640 2t2y′′ − y′t+ (1 + t) y = 0

9472 641 2t2y′′ + (t2 − t) y′ + y = 0

9473 642 t2y′′ + (−t2 + t) y′ − y = 0

9474 643 ty′′ − (t2 + 2) y′ + yt = 0

9475 644 t2y′′ + t(1 + t) y′ − y = 0

9476 645 ty′′ − (t+ 4) y′ + 2y = 0
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9477 646 t2y′′ + (t2 − 3t) y′ + 3y = 0

9478 647 ty′′ + y′t+ 2y = 0

9479 648 ty′′ + (−t2 + 1) y′ + 4yt = 0

9480 649 t2y′′ − t(1 + t) y′ + y = 0

9481 650 y′′ + 4xy′ + (4x2 + 6) y = 0

9482 651 (−z2 + 1) y′′ − 3zy′ + y = 0

9483 652 4zy′′ + 2(1− z) y′ − y = 0

9484 653 f ′′ + 2(z − 1) f ′ + 4f = 0

9485 654 zy′′ − 2y′ + yz = 0

9486 655 zy′′ + (2z − 3) y′ + 4y
z
= 0

9487 656 xy′′ + (1− 2x) y′ + (x− 1) y = 0

9488 657 x2y′′ − 2xy′ + (x2 + 2) y = 0

9489 658 (−x2 + 1) y′′ − 2xy′ + 2y = 0

9490 659 4x2y′′ + 4xy′ + (4x2 − 1) y = 0

9491 660 xy′′ − (2x+ 1) y′ + 2y = 0

9492 661 y′′ + 2xy′ + 4y = 0

9493 662 y′′ + xy′ + 3y = 0

9494 663 y′′ − x2y′ − 3yx = 0

9495 664 (−4x2 + 1) y′′ − 20xy′ − 16y = 0

9496 665 (x2 − 1) y′′ − 6xy′ + 12y = 0

9497 666 y′′ + xy′ + (x+ 2) y = 0

9498 667 (2x2 + 1) y′′ + 7xy′ + 2y = 0

9499 668 4y′′ + xy′ + 4y = 0

9500 669 y′′ + xy′ − 4y = 0

9501 670 4xy′′ − xy′ + 2y = 0

9502 671 6x2y′′ + x(1 + 18x) y′ + (1 + 12x) y = 0

9503 672 3x2y′′ − x(x+ 8) y′ + 6y = 0

9504 673 2x2y′′ − x(2x+ 1) y′ + 2(4x− 1) y = 0

9505 674 4x2y′′ − 4x2y′ + (2x+ 1) y = 0

9506 675 x2y′′ + x(3− 2x) y′ + (1− 2x) y = 0

9507 676 x2y′′ − x(x+ 3) y′ + (4− x) y = 0

9508 677 x2y′′ + x(3− x) y′ + y = 0

9509 678 x2y′′ −
(
2
√
5− 1

)
xy′ +

(19
4 − 3x2) y = 0

9510 679 x2y′′ + x(x− 3) y′ + (4− x) y = 0

9511 680 x2y′′ + x2y′ − (x+ 2) y = 0
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9512 681 x2y′′ + 2x2y′ +
(
x− 3

4

)
y = 0

9513 682 x2(1 + x) y′′ + x2y′ − 2y = 0

9514 683 x2y′′ + x(x2 + 6) y′ + 6y = 0

9515 684 x2y′′ + x(1− x) y′ − y = 0

9516 685 x2y′′ − x(x+ 3) y′ + 4y = 0

9517 686 x2y′′ − x2y′ − 2y = 0

9518 687 x2y′′ − x2y′ − (2 + 3x) y = 0

9519 688 x2y′′ + x(5− x) y′ + 4y = 0

9520 689 4x2y′′ + 4x(1− x) y′ + (2x− 9) y = 0

9521 690 x2y′′ + 2x(x+ 2) y′ + 2(1 + x) y = 0

9522 691 x2y′′ − x(1− x) y′ + (1− x) y = 0

9523 692 4x2y′′ + 4x(2x+ 1) y′ + (4x− 1) y = 0

9524 693 x2y′′ + x(4 + x) y′ + (x+ 2) y = 0

9525 694 x2y′′ + xy′ +
(
x2 − 9

4

)
y = 0

9526 695 xy′′ + 2y′ + yx = 0

9527 696 2xy′′ + 5(1− 2x) y′ − 5y = 0

9528 697 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9529 698 xy′′ + (x+ n) y′ + (n+ 1) y = 0

9530 699 x4y′′ + xy′ + y = 0

9531 700 x2y′′ + (2x2 + x) y′ − 4y = 0

9532 701 (4x3 − 14x2 − 2x) y′′ − (6x2 − 7x+ 1) y′ + (6x− 1) y = 0

9533 702 x2y′′ + x2y′ + (x− 2) y = 0

9534 703 x2y′′ − x2y′ + (x− 2) y = 0

9535 704 x2(1− 4x) y′′ +
(
−1

4x− x2) y′ − 5yx
16 = 0

9536 705 x2y′′ + (x2 + x) y′ + (x− 9) y = 0

9537 706 x2y′′ + x(1 + x) y′ + (3x− 1) y = 0

9538 707 x2y′′ − (x2 + 4x) y′ + 4y = 0

9539 708 2x2y′′ − (2 + 3x) y′ + (2x−1)y
x

= 0

9540 709 x(1− x) y′′ +
(3
2 − 2x

)
y′ − y

4 = 0

9541 710 2x(1− x) y′′ + xy′ − y = 0

9542 711 2x(1− x) y′′ + (1− 11x) y′ − 10y = 0

9543 712 x(1− x) y′′ + (1−2x)y′
3 + 20y

9 = 0

9544 713 4y′′ + 3
(
−x2+2

)
y

(−x2+1)2 = 0

9545 714 u′′ − 2u′

x
− a2u = 0

9546 715 u′′ + 2u′

x
− a2u = 0
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9547 716 u′′ + 2u′

x
+ a2u = 0

9548 717 u′′ + 4u′

x
− a2u = 0

9549 718 u′′ + 4u′

x
+ a2u = 0

9550 719 y′′ − a2y = 6y
x2

9551 720 y′′ + n2y = 6y
x2

9552 721 x2y′′ + xy′ −
(
x2 + 1

4

)
y = 0

9553 722 x2y′′ + xy′ +
(
−9a2+4x2)y

4a2 = 0

9554 723 x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0

9555 724 y′′ + qy′ = 2y
x2

9556 725 xy′′ + 3y′ + 4x3y = 0

9557 726 x2(2− x) y′′ + 2xy′ − 2y = 0

9558 727 (x2 + 1) y′′ − 2xy′ + 2y = 0

9559 728 xy′′ − 2(1 + x) y′ + (x+ 2) y = 0

9560 729 3xy′′ − 2(3x− 1) y′ + (3x− 2) y = 0

9561 730 x(1 + x) y′′ − (x− 1) y′ + y = 0

9562 731 (x2 + 2x) y′′ − 2(1 + x) y′ + 2y = 0

9563 732 (x2 + 2x) y′′ − 2(1 + x) y′ + 2y = 0

9564 733 (x2 + 1) y′′ − 2xy′ + 2y = 0

9565 734 (x2 + 1) y′′ − 2xy′ + 2y = 0

9566 735 y′′ − 4xy′ + (4x2 − 2) y = 0

9567 736 y′′ − 4xy′ + (4x2 − 2) y = 0

9568 737 (2x− 3) y′′ − xy′ + y = 0

9569 738 y′′ − xy′ − 3y = 0

9570 739 (x2 + 1) y′′ − xy′ + y = 0

9571 740 y′′ − xy′ + 2y = 0

9572 741 (−x2 + 1) y′′ − y′ + y = 0

9573 742 x(1 + x)2 y′′ + (−x2 + 1) y′ + (x− 1) y = 0

9574 743 2xy′′ − y′ + 2y = 0

9575 744 xy′′ + xy′ − 2y = 0

9576 745 x(x− 1)2 y′′ − 2y = 0

9577 746 y′′ − 2xy′ + x2y = 0

9578 747 x(−x2 + 2) y′′ − (x2 + 4x+ 2) ((1− x) y′ + y) = 0

9579 748 x2(1 + x) y′′ − (2x+ 1) (−y + xy′) = 0

9580 749 2x2(2− x) y′′ − x(4− x) y′ + (3− x) y = 0

9581 750 x2(1− x) y′′ + (5x− 4)xy′ + (6− 9x) y = 0
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9582 751 xy′′ + (4x2 + 1) y′ + 4x(x2 + 1) y = 0

9583 754 (−x2 + 1) y′′ − 2xy′ + 12y = 0

9584 755 x(x+ 2) y′′ + 2(1 + x) y′ − 2y = 0

9585 757 x(x+ 2) y′′ + (1 + x) y′ − 4y = 0

9586 758 (x− 1) y′′ − xy′ + y = 0

9587 759 (x2 + 1) y′′ − 2xy′ + 2y = 0

9588 760 (x2 − 2x+ 10) y′′ + xy′ − 4y = 0

9589 761 (x2 − 2x+ 10) y′′ + xy′ − 4y = 0

9590 762 y′′ − xy′ + 2y = 0

9591 763 (x+ 2) y′′ + xy′ − y = 0

9592 764 (x2 + 1) y′′ − 6y = 0

9593 765 (x2 + 2) y′′ + 3xy′ − y = 0

9594 766 (x− 1) y′′ − xy′ + y = 0

9595 769 x2y′′ +
(5
3x+ x2) y′ − y

3 = 0

9596 770 2xy′′ − y′ + 2y = 0

9597 771 2xy′′ − (2x+ 3) y′ + y = 0

9598 772 2x2y′′ + 3xy′ + (2x− 1) y = 0

9599 773 xy′′ + 2y′ − yx = 0

9600 774 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9601 775 xy′′ + (x− 6) y′ − 3y = 0

9602 776 x4y′′ + λy = 0

9603 777 4x2y′′ + 4xy′ + (4x2 − 25) y = 0

9604 778 x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

9605 779 x2y′′ + (x2 − 2) y = 0

9606 780 xy′′ + 3y′ + x3y = 0

9607 781 x2y′′ + 4xy′ + (x2 + 2) y = 0

9608 782 16x2y′′ + 32xy′ + (x4 − 12) y = 0

9609 783 y′′ − x2y′ + yx = 0

9610 784 xy′′ − (x+ 2) y′ + 2y = 0

9611 785 y′′ + xy′ + 2y = 0

9612 786 (−x2 + 1) y′′ − 2xy′ + 2y = 0

9613 787 y′′ − 4xy′ + (4x2 − 2) y = 0

9614 788 (−x2 + 1) y′′ − 2xy′ + 30y = 0

9615 789 xy′′ + 2y′ + yx = 0

9616 790 xy′′ + (2x+ 1) y′ + (1 + x) y = 0
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9617 791 2x(x− 1) y′′ − (1 + x) y′ + y = 0

9618 792 xy′′ + 2y′ + 4yx = 0

9619 793 xy′′ + (2− 2x) y′ + (x− 2) y = 0

9620 794 x2y′′ + 6xy′ + (4x2 + 6) y = 0

9621 795 xy′′ + (1− 2x) y′ + (x− 1) y = 0

9622 796 x(1− x) y′′ +
(1
2 + 2x

)
y′ − 2y = 0

9623 797 4(t2 − 3t+ 2) y′′ − 2y′ + y = 0

9624 798 2(t2 − 5t+ 6) y′′ + (2t− 3) y′ − 8y = 0

9625 799 3t(1 + t) y′′ + y′t− y = 0

9626 800 x2y′′ +
(
x+ 3

4
)
y

4 = 0

9627 801 x2y′′ + xy′ +
(
x2−1

)
y

4 = 0

9628 802 xy′′ + (1− 2x) y′ + (x− 1) y = 0

9629 803 xy′′ − (1 + x) y′ + y = 0

9630 804 xy′′ + 3y′ + 4x3y = 0

9631 805 x2(−x2 + 1) y′′ + 2x(−x2 + 1) y′ − 2y = 0

9632 806 2xy′′ + (x− 2) y′ − y = 0

9633 807 xy′′ + 2y′ + yx = 0

9634 808 y′′ + 2x2y′ + (x4 + 2x− 1) y = 0

9635 809 u′′ + 2u′ + u = 0

9636 810 u′′ − (2x+ 1)u′ + (x2 + x− 1)u = 0

9637 811 y′′ + 2y′ +
(
1 + 2

(1+3x)2

)
y = 0

9638 812 x2y′′ − 2xy′ + (x2 + 2) y = 0

9639 813 y′′ + 2y′
x
− 2y

(1+x)2 = 0

9640 815 y′′ − xy′ − yx = 0

9641 816 y′′ − xy′ − yx = 0

9642 817 y′′ − xy′ − yx = 0

9643 818 y′′ − xy′ − yx = 0

9644 819 y′′ − xy′ − yx = 0

9645 820 y′′ − xy′ − yx = 0

9646 821 y′′ − xy′ − yx = 0

9647 822 y′′ − xy′ − yx = 0

9648 823 y′′ − xy′ − yx = 0

9649 824 y′′ − xy′ − yx = 0

9650 825 y′′ − xy′ − yx = 0
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9651 826 xy′′ + 2y′ + yx = 0

9652 827 2x2y′′ + 3xy′ − yx = 0

9653 828 x2y′′ + (3x2 + 2x) y′ − 2y = 0

9654 829 2x2(x2 + x+ 1) y′′ + x(11x2 + 11x+ 9) y′ + (7x2 + 10x+ 6) y = 0

9655 830 xy′′ + (1 + x) y′ + 2y = 0

9656 831 x2(x2 − 2x+ 1) y′′ − x(x+ 3) y′ + (4 + x) y = 0

9657 832 2x2(x+ 2) y′′ + 5x2y′ + (1 + x) y = 0

9658 833 x2y′′ + 4xy′ + (x2 + 2) y = 0

9659 834 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9660 835 x2y′′ − xy′ −
(
x2 + 5

4

)
y = 0

9661 836 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9662 837 x2y′′ + 3xy′ + 4x4y = 0

9663 838 y′′ = (x2 + 3) y

9664 839 y′′ + 2xy′ + (x2 + 1) y = 0

9665 840 x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

9666 841 4x2y′′ + (−8x2 + 4x) y′ + (4x2 − 4x− 1) y = 0

9667 843 y′′ = 0

9668 844 y′′ = 2y
x2

9669 845 y′′ = 6y
x2

1.2 section 2. Solution found using all possible
Kovacic cases

Table 1.2: Lookup table for all problems in current section

ID problem ODE

9670 1 y′′ =
(
− 3

16x2 − 2
9(x−1)2 +

3
16x(x−1)

)
y

9671 2 y′′ = 20y
x2

9672 3 y′′ = 12y
x2

9673 4 y′′ − y
4x2 = 0

9674 5 xy′′ − (2x+ 2) y′ + (x+ 2) y = 0

9675 6 y′′ + y
x2 = 0

9676 7 (−x2 + 1) y′′ + y′ + y = 0

9677 8 (x2 − x) y′′ − xy′ + y = 0

9678 9 x2(−x2 + 2) y′′ − x(4x2 + 3) y′ + (−2x2 + 2) y = 0
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1.3 section 3. Problems from Kovacic related papers

Table 1.3: Lookup table for all problems in current section

ID problem ODE

9679 Kovacic
1985
paper.
page 13.
section
3.2, ex-
ample
1

y′′ =
(
4x6−8x5+12x4+4x3+7x2−20x+4

)
y

4x4

9680 Kovacic
1985
paper.
page 14.
section
3.2, ex-
ample
2

y′′ =
( 6
x2 − 1

)
y

9681 Kovacic
1985
paper.
page 15.
Weber
equa-
tion

y′′ =
(

x2

4 − 11
2

)
y

9682 Kovacic
1985
paper.
page 19.
section
4.2. Ex-
ample
1

y′′ =
( 1
x
− 3

16x2

)
y

9683 Kovacic
1985
paper.
page 23.
section
5.2. Ex-
ample
1

y′′ =
(
− 3

16x2 − 2
9(x−1)2 +

3
16x(x−1)

)
y

Continued on next page
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Table 1.3 Lookup table
Continued from previous page

ID problem ODE

9684 Kovacic
1985
paper.
page 25.
section
5.2. Ex-
ample
2

y′′ = −
(
5x2+27

)
y

36(x2−1)2

9685 Kovacic
2005
paper.
Ex-
ample
2

y′′ = − y
4x2

9686 David
Saun-
ders
1981
paper.
Ex-
ample
1

y′′ = (x2 + 3) y

9687 David
Saun-
ders
1981
paper.
Ex-
ample
3

x2y′′ = 2y

9688 Carolyn
J. Smith
1984
paper.
Ap-
pendix
B exam-
ples and
tests.
Ex-
ample
1

y′′ + 4xy′ + (4x2 + 2) y = 0

Continued on next page
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Table 1.3 Lookup table
Continued from previous page

ID problem ODE

9689 Carolyn
J. Smith
1984
paper.
Ap-
pendix
B exam-
ples and
tests.
Ex-
ample
2

x2y′′ − 2xy′ + (x2 + 2) y = 0

9690 Carolyn
J. Smith
1984
paper.
Ap-
pendix
B exam-
ples and
tests.
Ex-
ample
3

(x− 2)2 y′′ − (x− 2) y′ − 3y = 0
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Internal problem ID [8849]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 1
Date solved : Thursday, December 12, 2024 at 09:53:57 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.230 (sec)

Writing the ode as (
x2 − 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x+ 1) −

3
4 (x− 1) +

3
4 (x− 1)2

+ 3
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

−1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− 1) +

3
2 (x+ 1) + (−) (0)

= − 1
2 (x− 1) +

3
2 (x+ 1)

= x− 2
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

3
2 (x+ 1)

)
(0) +

((
1

2 (x− 1)2
− 3

2 (x+ 1)2
)
+
(
− 1
2 (x− 1) +

3
2 (x+ 1)

)2

−
(

3
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

3
2(x+1)

)
dx

= (x+ 1)3/2√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2−1 dx

= z1e
ln(x−1)

2 + ln(x+1)
2

= z1
(√

x− 1
√
x+ 1

)
Which simplifies to

y1 = (x+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2−1 dx

(y1)2
dx

= y1

∫
eln(x−1)+ln(x+1)

(y1)2
dx

= y1

(
−x eln(x−1)+ln(x+1)

(x+ 1)3 (x− 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)2

)
+ c2

(
(x+ 1)2

(
−x eln(x−1)+ln(x+1)

(x+ 1)3 (x− 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x2−1 +

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)
x

x2−1 + 2y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2x
x2−1 , P3(x) = 2

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−2u+ 2)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) ((−2k − 2r − 2) ak+1 + ak(k + r − 2)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)2
4 +

(
∞∑
k=0

bk(x+ 1)k+2
)
, bk+1 = bkk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve((x^2-1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.13 (sec)
Leaf size : 39� �
DSolve[{(x^2-1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x2 − 1(c1(x− 1)2 + c2x)√

1− x2
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2.1.2 problem 2

Solved as second order ode using Kovacic algorithm . . . . . . . . . 57
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 61
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 63
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 63

Internal problem ID [8850]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 2
Date solved : Thursday, December 12, 2024 at 09:53:57 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ − 6xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.241 (sec)

Writing the ode as (
x2 − 1

)
y′′ − 6xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = −6x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 15

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

15
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.3: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4 (x+ 1)2

+ 15
4 (x− 1)2

+ 15
4 (x+ 1) −

15
4 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 5
2 −3

2

−1 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2 (x− 1) +

5
2 (x+ 1) + (−) (0)

= − 3
2 (x− 1) +

5
2 (x+ 1)

= x− 4
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)
(0) +

((
3

2 (x− 1)2
− 5

2 (x+ 1)2
)
+
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)2

−
(

15
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2(x−1)+

5
2(x+1)

)
dx

= (x+ 1)5/2

(x− 1)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x
x2−1 dx

= z1e
3 ln(x−1)

2 + 3 ln(x+1)
2

= z1
(
(x− 1)3/2 (x+ 1)3/2

)
Which simplifies to

y1 = (x+ 1)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −6x

x2−1 dx

(y1)2
dx

= y1

∫
e3 ln(x−1)+3 ln(x+1)

(y1)2
dx

= y1

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)4

)
+ c2

(
(x+ 1)4

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 +

6
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
6
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−6u+ 6)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−4 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 3) + ak(k + r − 3) (k + r − 4))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−4 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 4}
• Each term in the series must be 0, giving the recursion relation

(k + r − 3) ((−2k − 2r − 2) ak+1 + ak(k + r − 4)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−4)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 4
ak+1 = ak(k−4)

2(k+1)

• Apply recursion relation for k = 0
a1 = −2a0

• Apply recursion relation for k = 1
a2 = −3a1

4

• Express in terms of a0
a2 = 3a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

2

• Apply recursion relation for k = 3
a4 = −a3

8

• Express in terms of a0
a4 = a0

16

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 2u+ 3

2u
2 − 1

2u
3 + 1

16u
4)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)4

16

]
• Recursion relation for r = 4

ak+1 = akk
2(k+5)

• Solution for r = 4[
y(u) =

∞∑
k=0

aku
k+4, ak+1 = akk

2(k+5)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+4 , ak+1 = akk
2(k+5)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)4
16 +

(
∞∑
k=0

bk(x+ 1)4+k

)
, bk+1 = bkk

2(5+k)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 25� �
dsolve((x^2-1)*diff(diff(y(x),x),x)-6*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

4 + c1x
3 + 6c2x2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.185 (sec)
Leaf size : 45� �
DSolve[{(x^2-1)*D[y[x],{x,2}]-6*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
x2 − 1(c2x(x2 + 1) + c1(x− 1)4)√

1− x2
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2.1.3 problem 3

Solved as second order ode using Kovacic algorithm . . . . . . . . . 64
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 68
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 68
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 69

Internal problem ID [8851]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 3
Date solved : Thursday, December 12, 2024 at 09:53:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 3

)
y′′ − 7xy′ + 16y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.455 (sec)

Writing the ode as (
x2 + 3

)
y′′ − 7xy′ + 16y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 3
B = −7x (3)
C = 16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 234
4 (x2 + 3)2

(6)

Comparing the above to (5) shows that

s = −x2 − 234

t = 4
(
x2 + 3

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 234
4 (x2 + 3)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.5: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 3)2. There is a pole at x = i

√
3 of order 2. There is a pole at x = −i

√
3 of

order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 77
16
(
x− i

√
3
)2 + 77

16
(
x+ i

√
3
)2 + 79i

√
3

48
(
x− i

√
3
) − 79i

√
3

48
(
x+ i

√
3
)

For the pole at x = i
√
3 let b be the coefficient of 1(

x−i
√
3
)2 in the partial fractions decom-

position of r given above. Therefore b = 77
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

4
α−
c = 1

2 −
√
1 + 4b = −7

4
For the pole at x = −i

√
3 let b be the coefficient of 1(

x+i
√
3
)2 in the partial fractions

decomposition of r given above. Therefore b = 77
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

4
α−
c = 1

2 −
√
1 + 4b = −7

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 234

4 (x2 + 3)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 234
4 (x2 + 3)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
3 2 0 11

4 −7
4

−i
√
3 2 0 11

4 −7
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−7
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
) + (−) (0)

= − 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
)

= − 7x
2x2 + 6
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(
− 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
)) (4x3 + 3x2a3 + 2xa2 + a1

)
+

( 7
4
(
x− i

√
3
)2 + 7

4
(
x+ i

√
3
)2
)

+
(
− 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
))2

−
(
−x2 − 234
4 (x2 + 3)2

) = 0

(x2 + 3) (a3x3 + 4(9 + a2)x2 + 9(a1 + 2a3)x+ 16a0 + 6a2)(
−ix+

√
3
)2 (√3 + ix

)2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

27
8 , a1 = 0, a2 = −9, a3 = 0

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 9x2 + 27
8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 9x2 + 27

8

)
e
∫ (

− 7
4
(
x−i

√
3
)− 7

4
(
x+i

√
3
)
)
dx

=
(
x4 − 9x2 + 27

8

)
1((

i
√
3− x

) (
x+ i

√
3
))7/4

= 8x4 − 72x2 + 27
8 (−x2 − 3)7/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−7x
x2+3 dx

= z1e
7 ln

(
x2+3

)
4

= z1
((

x2 + 3
)7/4)

Which simplifies to

y1 =
(
1
2 + i

2

)√
2
(
x4 − 9x2 + 27

8

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− −7x

x2+3 dx

(y1)2
dx

= y1

∫
e

7 ln
(
x2+3

)
2

(y1)2
dx

= y1(Expression too large to display)

Therefore the solution is

y = c1y1 + c2y2

= c1

((
1
2 + i

2

)√
2
(
x4 − 9x2 + 27

8

))
+ c2

((
1
2 + i

2

)√
2
(
x4 − 9x2 + 27

8

)
(Expression too large to display)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 65� �
dsolve((x^2+3)*diff(diff(y(x),x),x)-7*diff(y(x),x)*x+16*y(x) = 0,

y(x),singsol=all)� �
y = 4c2

(
x4 − 9x2 + 27

8

)
ln
(√

x2 + 3− x
)

+ 5(10x3 − 33x) c2
√
x2 + 3

6 +
(
c1 +

25c2
3

)(
x4 − 9x2 + 27

8

)
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Mathematica DSolve solution

Solving time : 0.752 (sec)
Leaf size : 492� �
DSolve[{(x^2+3)*D[y[x],{x,2}]-7*x*D[y[x],x]+16*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

24c2
(
12960x2RootSum

[
7838208000#14 − 188281584000#12 − 241544908800#1

+18453344881&,#1 log
(
−411757211968704000#13−166063274606980800#12+10138703825167113960#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

+ 5248800x2RootSum
[
210880720572480000000#14 − 30882886815600000#12

+ 97825688064000#1
+18453344881&,#1 log

(
27353083060732502808000000#13−27238528617410025720000#12−4106175049192681153800#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 4860RootSum
[
7838208000#14 − 188281584000#12 − 241544908800#1

+18453344881&,#1 log
(
−411757211968704000#13−166063274606980800#12+10138703825167113960#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 1968300RootSum
[
210880720572480000000#14 − 30882886815600000#12

+ 97825688064000#1
+18453344881&,#1 log

(
27353083060732502808000000#13−27238528617410025720000#12−4106175049192681153800#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 1440x4RootSum
[
7838208000#14 − 188281584000#12 − 241544908800#1

+18453344881&,#1 log
(
−411757211968704000#13−166063274606980800#12+10138703825167113960#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 583200x4RootSum
[
210880720572480000000#14 − 30882886815600000#12

+ 97825688064000#1
+18453344881&,#1 log

(
27353083060732502808000000#13−27238528617410025720000#12−4106175049192681153800#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

+ 165
√
x2 + 3x+ 216x2 log

(√
x2 + 3− x

)
− 81 log

(√
x2 + 3− x

)
− 24x4 log

(√
x2 + 3− x

)
− 50

√
x2 + 3x3

)
+ c1

(
x4 − 9x2 + 27

8

)
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2.1.4 problem 4

Solved as second order ode using Kovacic algorithm . . . . . . . . . 70
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 74
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 75
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 76

Internal problem ID [8852]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 4
Date solved : Thursday, December 12, 2024 at 09:53:59 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ + 8xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.211 (sec)

Writing the ode as (
x2 − 1

)
y′′ + 8xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = 8x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 8

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

8
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.6: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− 1)2

+ 2
(x+ 1)2

+ 2
x+ 1 − 2

x− 1

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 2 −1
−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− 1 + 2

x+ 1 + (−) (0)

= − 1
x− 1 + 2

x+ 1
= x− 3

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− 1 + 2

x+ 1

)
(0) +

((
1

(x− 1)2
− 2

(x+ 1)2
)
+
(
− 1
x− 1 + 2

x+ 1

)2

−
(

8
(x2 − 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−1+

2
x+1

)
dx

= (x+ 1)2

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x

x2−1 dx

= z1e
−2 ln(x−1)−2 ln(x+1)

= z1

(
1

(x− 1)2 (x+ 1)2
)

Which simplifies to

y1 =
1

(x− 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x

x2−1 dx

(y1)2
dx

= y1

∫
e−4 ln(x−1)−4 ln(x+1)

(y1)2
dx

= y1

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x− 1)3
)
+ c2

(
1

(x− 1)3

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 −

8
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
8
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (8u− 8)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r + 4) + ak(k + r + 4) (k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 0}
• Each term in the series must be 0, giving the recursion relation

(k + r + 4) ((−2k − 2r − 2) ak+1 + ak(k + r + 3)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r+3)
2(k+1+r)

• Recursion relation for r = −3
ak+1 = akk

2(k−2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 2
ak+1 = akk

2(k−2)

• Recursion relation for r = 0
ak+1 = ak(k+3)

2(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+3)

2(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+3)
2(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 29� �
dsolve((x^2-1)*diff(diff(y(x),x),x)+8*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3 + 3c1x2 + 3c2x+ c1

(x2 − 1)3
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Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 37� �
DSolve[{(x^2-1)*D[y[x],{x,2}]+8*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1(x− 1)3 − c2(3x2 + 1)

3 (x2 − 1)3
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2.1.5 problem 5

Solved as second order ode using Kovacic algorithm . . . . . . . . . 77
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 82
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 82

Internal problem ID [8853]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 5
Date solved : Thursday, December 12, 2024 at 09:53:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.261 (sec)

Writing the ode as

3y′′ + xy′ − 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 54
36 (6)

Comparing the above to (5) shows that

s = x2 + 54
t = 36

Therefore eq. (4) becomes

z′′(x) =
(
x2

36 + 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.8: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

6 +
9
2x− 243

4x3 +
6561
4x5 − 885735

16x7 + 33480783
16x9 − 2711943423

32x11 + 115063885233
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

36
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 54
36

= Q+ R

36

=
(
x2

36 + 3
2

)
+ (0)

= x2

36 + 3
2

We see that the coefficient of the term 1
x
in the quotient is 3

2 . Now b can be found.

b =
(
3
2

)
− (0)

= 3
2

Hence

[
√
r]∞ = x

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
6
− 1
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
6
− 1
)

= −5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

36 + 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
6 4 −5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4, and since there are no poles, then

d = α+
∞

= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
6

)
= x

6
= x

6
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(x
6

) (
4x3 + 3x2a3 + 2xa2 + a1

)
+
((

1
6

)
+
(x
6

)2
−
(
x2

36 + 3
2

))
= 0

−a3x
3

3 + 2(18− a2)x2

3 + (−a1 + 6a3)x− 4a0
3 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 27, a1 = 0, a2 = 18, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 + 18x2 + 27

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 + 18x2 + 27

)
e
∫

x
6 dx

=
(
x4 + 18x2 + 27

)
ex2

12

=
(
x4 + 18x2 + 27

)
ex2

12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
3 dx

= z1e
−x2

12

= z1
(
e−x2

12

)
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Which simplifies to
y1 = x4 + 18x2 + 27

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

3 dx

(y1)2
dx

= y1

∫
e−

x2
6

(y1)2
dx

= y1

(∫ e−x2
6

(x4 + 18x2 + 27)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x4 + 18x2 + 27

)
+ c2

(
x4 + 18x2 + 27

(∫ e−x2
6

(x4 + 18x2 + 27)2
dx

))

Will add steps showing solving for IC soon.

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 47� �
dsolve(3*diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = xc1

(
x2 + 15

)√
6 e−x2

6 +
(
x4 + 18x2 + 27

)(√
π erf

(√
6x
6

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.033 (sec)
Leaf size : 43� �
DSolve[{3*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x2
6 HermiteH

(
−5, x√

6

)
+ 1

27c2
(
x4 + 18x2 + 27

)



chapter 2. book solved problems 83

2.1.6 problem 6

Solved as second order ode using Kovacic algorithm . . . . . . . . . 83
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 87
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 88
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 89

Internal problem ID [8854]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 6
Date solved : Thursday, December 12, 2024 at 09:54:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

5y′′ − 2xy′ + 10y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.297 (sec)

Writing the ode as

5y′′ − 2xy′ + 10y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 5
B = −2x (3)
C = 10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 55
25 (6)

Comparing the above to (5) shows that

s = x2 − 55
t = 25

Therefore eq. (4) becomes

z′′(x) =
(
x2

25 − 11
5

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.9: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

5−
11
2x−

605
8x3−

33275
16x5 −9150625

128x7 −704598125
256x9 −116258690625

1024x11 −10048072546875
2048x13 +. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 1
5



chapter 2. book solved problems 85

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

5 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

25
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 55
25

= Q+ R

25

=
(
x2

25 − 11
5

)
+ (0)

= x2

25 − 11
5

We see that the coefficient of the term 1
x
in the quotient is −11

5 . Now b can be found.

b =
(
−11

5

)
− (0)

= −11
5

Hence

[
√
r]∞ = x

5

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−11
5

1
5

− 1
)

= −6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−11

5
1
5

− 1
)

= 5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

25 − 11
5

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
5 −6 5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5, and since there are no poles then

d = α−
∞

= 5

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
5

)
= −x

5
= −x

5
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 5 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives(
20x3 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(
−x

5

) (
5x4 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

−1
5

)
+
(
−x

5

)2
−
(
x2

25 − 11
5

))
= 0

2a4x4

5 + 4(25 + a3)x3

5 + 6(a2 + 10a4)x2

5 + 2(4a1 + 15a3)x
5 + 2a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = 0, a1 =

375
4 , a2 = 0, a3 = −25, a4 = 0

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x5 − 25x3 + 375
4 x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x5 − 25x3 + 375

4 x

)
e
∫
−x

5 dx

=
(
x5 − 25x3 + 375

4 x

)
e−x2

10

= (4x5 − 100x3 + 375x) e−x2
10

4
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
5 dx

= z1e
x2
10

= z1
(
ex2

10

)
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Which simplifies to

y1 = x5 − 25x3 + 375
4 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

5 dx

(y1)2
dx

= y1

∫
e

x2
5

(y1)2
dx

= y1

(∫ ex2
5(

x5 − 25x3 + 375
4 x
)2dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x5 − 25x3 + 375

4 x

)
+ c2

(
x5 − 25x3 + 375

4 x

(∫ ex2
5(

x5 − 25x3 + 375
4 x
)2dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
5 d2

dx2y(x)− 2x
(

d
dx
y(x)

)
+ 10y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
2x
(

d
dx

y(x)
)

5 − 2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2x
(

d
dx

y(x)
)

5 + 2y(x) = 0
• Multiply by denominators

5 d2

dx2y(x)− 2x
(

d
dx
y(x)

)
+ 10y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(5ak+2(k + 2) (k + 1)− 2ak(k − 5))xk = 0

• Each term in the series must be 0, giving the recursion relation
5(k2 + 3k + 2) ak+2 − 2ak(k − 5) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2ak(k−5)

5(k2+3k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 31� �
dsolve(5*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+10*y(x) = 0,

y(x),singsol=all)� �
y = c2 hypergeom

([
−5
2

]
,

[
1
2

]
,
x2

5

)
+

4c1x
(
x4 − 25x2 + 375

4

)
375
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Mathematica DSolve solution

Solving time : 0.197 (sec)
Leaf size : 138� �
DSolve[{5*D[y[x],{x,2}]-2*x*D[y[x],x]+10*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → − 1

200

√
π

5 c2
√
x2
(
4x4 − 100x2 + 375

)
erfi
(√

x2
√
5

)
+ 32c1x5

25
√
5

− 32c1x3
√
5

− 9
20c2e

x2
5 x2 + c2e

x2
5 + 1

50c2e
x2
5 x4 + 24

√
5c1x
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2.1.7 problem 7

Solved as second order ode using Kovacic algorithm . . . . . . . . . 90
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 94
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 95
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 95

Internal problem ID [8855]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 7
Date solved : Thursday, December 12, 2024 at 09:54:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − x2y′ − 3xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.289 (sec)

Writing the ode as

y′′ − x2y′ − 3xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = −3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 + 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 + 8

)
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x(x3 + 8)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.11: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 + 2
x
− 4

x4 + 16
x7 − 80

x10 + 448
x13 − 2688

x16 + 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 + 8)
4

= Q+ R

4

=
(
1
4x

4 + 2x
)
+ (0)

= 1
4x

4 + 2x

We see that the coefficient of the term 1
x
in the quotient is 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 2
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 2
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x(x3 + 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 1 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(
x2

2

)
= x2

2

= x2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
x2

2

)
(1) +

(
(x) +

(
x2

2

)2

−
(
x(x3 + 8)

4

))
= 0

−xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫

x2
2 dx

= (x) ex3
6

= x ex3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)
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Which simplifies to

y1 = ex3
3 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1

(∫ e−x3
3

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex3

3 x
)
+ c2

(
ex3

3 x

(∫ e−x3
3

x2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x2( d
dx
y(x)

)
− 3xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion
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d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k + 2))xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 − ak−1 + ak+2) = 0

• Shift index using k− >k + 1
(k + 3) ((k + 1) ak+3 − ak + ak+3) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = ak

k+2 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 58� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^2-3*x*y(x) = 0,

y(x),singsol=all)� �
y =

9WhittakerM
(

1
3 ,

5
6 ,

x3

3

)
ex3

6 c2x
3 + 9c1e

x3
3 x2 + 532/3c2(x3)1/3 (x3 + 2)

9x

Mathematica DSolve solution

Solving time : 0.21 (sec)
Leaf size : 51� �
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]-3*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

9e
x3
3

(
9c1x− 32/3c2

3√
x3Γ
(
−1
3 ,

x3

3

))
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2.1.8 problem 8

Solved as second order ode using Kovacic algorithm . . . . . . . . . 96
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 100
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 100
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 100

Internal problem ID [8856]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 8
Date solved : Thursday, December 12, 2024 at 09:54:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ + 2xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.317 (sec)

Writing the ode as (
x2 + 1

)
y′′ + 2xy′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 + 3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 + 3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 + 3
(x2 + 1)2

)
z(x) (7)



chapter 2. book solved problems 97

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.13: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− i)2

− 1
4 (x+ i)2

− 5i
4 (x− i) +

5i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 + 3

(x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 + 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 1
2

1
2

−i 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2i +

1
2x+ 2i + (0)

= 1
2x− 2i +

1
2x+ 2i

= x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2i +

1
2x+ 2i

)
(1) +

((
− 1
2 (x− i)2

− 1
2 (x+ i)2

)
+
(

1
2x− 2i +

1
2x+ 2i

)2

−
(

2x2 + 3
(x2 + 1)2

))
= 0

− 2(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2i+
1

2x+2i

)
dx

= (x)
√

(−x+ i) (x+ i)
= x

√
−x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x

x2+1 dx

= z1e
−

ln
(
x2+1

)
2

= z1

(
1√

x2 + 1

)

Which simplifies to
y1 = ix

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

x2+1 dx

(y1)2
dx

= y1

∫
e− ln

(
x2+1

)
(y1)2

dx

= y1

(
1
x
+ arctan (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ix) + c2

(
ix

(
1
x
+ arctan (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 14� �
dsolve((x^2+1)*diff(diff(y(x),x),x)+2*diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = c1x+ arctan (x)xc2 + c2

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 48� �
DSolve[{(1+x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2i(2c1x− c2x log(1− ix) + c2x log(1 + ix) + 2ic2)



chapter 2. book solved problems 101

2.1.9 problem 9

Solved as second order ode using Kovacic algorithm . . . . . . . . . 101
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 105
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 106
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [8857]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 9
Date solved : Thursday, December 12, 2024 at 09:54:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.253 (sec)

Writing the ode as

y′′ + xy′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 10
4 (6)

Comparing the above to (5) shows that

s = x2 + 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.14: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 5
2x − 25

4x3 + 125
4x5 − 3125

16x7 + 21875
16x9 − 328125

32x11 + 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 10
4

= Q+ R

4

=
(
x2

4 + 5
2

)
+ (0)

= x2

4 + 5
2

We see that the coefficient of the term 1
x
in the quotient is 5

2 . Now b can be found.

b =
(
5
2

)
− (0)

= 5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
2
1
2
− 1
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
2
1
2
− 1
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 2 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2, and since there are no poles, then

d = α+
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(x
2

)
(2x+ a1) +

((
1
2

)
+
(x
2

)2
−
(
x2

4 + 5
2

))
= 0

−a1x− 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 1

)
e
∫

x
2 dx

=
(
x2 + 1

)
ex2

4

=
(
x2 + 1

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to
y1 = x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ e−x2
2

(x2 + 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 + 1

)
+ c2

(
x2 + 1

(∫ e−x2
2

(x2 + 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
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ak+2 = − ak(k−2)
k2+3k+2

• Apply recursion relation for k = 0
a2 = a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y(x) = A2x

2 + A1x+ a0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 37� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y =

√
2 e−x2

2 c1x+
(
x2 + 1

)(√
π erf

(√
2x
2

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.029 (sec)
Leaf size : 35� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x2
2 HermiteH

(
−3, x√

2

)
+ c2

(
x2 + 1

)
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2.1.10 problem 10

Solved as second order ode using Kovacic algorithm . . . . . . . . . 107
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 111
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 111
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 111

Internal problem ID [8858]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 10
Date solved : Thursday, December 12, 2024 at 09:54:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 6x+ 10

)
y′′ − 4(x− 3) y′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.323 (sec)

Writing the ode as (
x2 − 6x+ 10

)
y′′ + (−4x+ 12) y′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 6x+ 10
B = −4x+ 12 (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −8
(x2 − 6x+ 10)2

(6)

Comparing the above to (5) shows that

s = −8

t =
(
x2 − 6x+ 10

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 8
(x2 − 6x+ 10)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.16: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 6x+ 10)2. There is a pole at x = 3+ i of order 2. There is a pole at x = 3− i

of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− 3− i)2

+ 2
(x− 3 + i)2

+ 2i
x− 3− i

− 2i
x− 3 + i

For the pole at x = 3 + i let b be the coefficient of 1
(x−3−i)2 in the partial fractions decom-

position of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 3− i let b be the coefficient of 1
(x−3+i)2 in the partial fractions decom-

position of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 8
(x2 − 6x+ 10)2

pole c location pole order [
√
r]c α+

c α−
c

3 + i 2 0 2 −1
3− i 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− 3− i

+ 2
x− 3 + i

+ (−) (0)

= − 1
x− 3− i

+ 2
x− 3 + i

= x− 3− 3i
x2 − 6x+ 10

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− 3− i

+ 2
x− 3 + i

)
(0) +

((
1

(x− 3− i)2
− 2

(x− 3 + i)2
)
+
(
− 1
x− 3− i

+ 2
x− 3 + i

)2

−
(
− 8
(x2 − 6x+ 10)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−3−i

+ 2
x−3+i

)
dx

= (x2 − 6x+ 10)2

(ix− 3i+ 1)3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x+12

x2−6x+10 dx

= z1e
ln
(
x2−6x+10

)
= z1

(
x2 − 6x+ 10

)
Which simplifies to

y1 =
(x2 − 6x+ 10)3

(ix− 3i+ 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −4x+12

x2−6x+10 dx

(y1)2
dx

= y1

∫
e2 ln

(
x2−6x+10

)
(y1)2

dx

= y1

(
x2 − 6x+ 26

3

(x− 3 + i)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 6x+ 10)3

(ix− 3i+ 1)3

)
+ c2

(
(x2 − 6x+ 10)3

(ix− 3i+ 1)3
(
x2 − 6x+ 26

3

(x− 3 + i)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 31� �
dsolve((x^2-6*x+10)*diff(diff(y(x),x),x)-4*(x-3)*diff(y(x),x)+6*y(x) = 0,

y(x),singsol=all)� �
y = c1x

3 + c2x
2 + 6(−5c1 − c2)x+ 60c1 +

26c2
3

Mathematica DSolve solution

Solving time : 0.131 (sec)
Leaf size : 36� �
DSolve[{(x^2-6*x+10)*D[y[x],{x,2}]-4*(x-3)*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

3i
(
c2
(
3x2 − 18x+ 26

)
+ 3c1(x− (3 + i))3

)
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2.1.11 problem 11

Solved as second order ode using Kovacic algorithm . . . . . . . . . 112
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 116
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 118
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 118

Internal problem ID [8859]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 11
Date solved : Thursday, December 12, 2024 at 09:54:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 6x

)
y′′ + (3x+ 9) y′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as (
x2 + 6x

)
y′′ + (3x+ 9) y′ − 3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 6x
B = 3x+ 9 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 + 90x− 27
4 (x2 + 6x)2

(6)

Comparing the above to (5) shows that

s = 15x2 + 90x− 27

t = 4
(
x2 + 6x

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 + 90x− 27
4 (x2 + 6x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.17: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 6x)2. There is a pole at x = 0 of order 2. There is a pole at x = −6 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 11
16x − 11

16 (x+ 6) −
3

16x2 − 3
16 (x+ 6)2

For the pole at x = −6 let b be the coefficient of 1
(x+6)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 + 90x− 27

4 (x2 + 6x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 + 90x− 27
4 (x2 + 6x)2

pole c location pole order [
√
r]c α+

c α−
c

−6 2 0 3
4

1
4

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x+ 6) +

3
4x + (0)

= 3
4 (x+ 6) +

3
4x

=
3x
2 + 9

2
x (x+ 6)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x+ 6) +

3
4x

)
(1) +

((
− 3
4 (x+ 6)2

− 3
4x2

)
+
(

3
4 (x+ 6) +

3
4x

)2

−
(
15x2 + 90x− 27
4 (x2 + 6x)2

))
= 0

9− 3a0
x (x+ 6) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 3) e
∫ ( 3

4(x+6)+
3
4x

)
dx

= (x+ 3) (x(x+ 6))3/4

= (x+ 3) (x(x+ 6))3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x+9
x2+6x dx

= z1e
− 3 ln(x(x+6))

4

= z1

(
1

(x (x+ 6))3/4

)

Which simplifies to
y1 = x+ 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x+9

x2+6x dx

(y1)2
dx

= y1

∫
e−

3 ln(x(x+6))
2

(y1)2
dx

= y1

(
−(x+ 6)x(2x2 + 12x+ 9)

81 (x+ 3) (x (x+ 6))3/2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 3) + c2

(
x+ 3

(
−(x+ 6)x(2x2 + 12x+ 9)

81 (x+ 3) (x (x+ 6))3/2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(x2 + 6x)
(

d2

dx2y(x)
)
+ (3x+ 9)

(
d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3y(x)
x(6+x) −

3(x+3)
(

d
dx

y(x)
)

x(6+x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3(x+3)

(
d
dx

y(x)
)

x(6+x) − 3y(x)
x(6+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3(x+3)
x(6+x) , P3(x) = − 3

x(6+x)

]
◦ (6 + x) · P2(x) is analytic at x = −6

((6 + x) · P2(x))
∣∣∣∣
x=−6

= 3
2

◦ (6 + x)2 · P3(x) is analytic at x = −6(
(6 + x)2 · P3(x)

) ∣∣∣∣
x=−6

= 0

◦ x = −6is a regular singular point
Check to see if x0 is a regular singular point
x0 = −6

• Multiply by denominators

x(6 + x)
(

d2

dx2y(x)
)
+ (3x+ 9)

(
d
dx
y(x)

)
− 3y(x) = 0

• Change variables using x = u− 6 so that the regular singular point is at u = 0

(u2 − 6u)
(

d2

du2y(u)
)
+ (3u− 9)

(
d
du
y(u)

)
− 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−3a0r(1 + 2r)u−1+r +
(

∞∑
k=0

(−3ak+1(k + 1 + r) (2k + 3 + 2r) + ak(k + r + 3) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

−6(k + 1 + r)
(
k + 3

2 + r
)
ak+1 + ak(k + r + 3) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+3)(k+r−1)

3(k+1+r)(2k+3+2r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+3)(k−1)

3(k+1)(2k+3)

• Apply recursion relation for k = 0
a1 = −a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

3

)
• Revert the change of variables u = 6 + x[

y(x) = a0
(
−x

3 − 1
)]

• Recursion relation for r = −1
2

ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)

3
(
k+ 1

2
)
(2k+2)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)

3
(
k+ 1

2
)
(2k+2)

]
• Revert the change of variables u = 6 + x[

y(x) =
∞∑
k=0

ak(6 + x)k−
1
2 , ak+1 =

ak
(
k+ 5

2
)(
k− 3

2
)

3
(
k+ 1

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) = a0
(
−x

3 − 1
)
+
(

∞∑
k=0

bk(6 + x)k−
1
2

)
, bk+1 =

bk
(
k+ 5

2
)(
k− 3

2
)

3
(
k+ 1

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 30� �
dsolve((x^2+6*x)*diff(diff(y(x),x),x)+(3*x+9)*diff(y(x),x)-3*y(x) = 0,

y(x),singsol=all)� �
y = c1(x+ 3) + c2(2x2 + 12x+ 9)

√
x
√
6 + x

Mathematica DSolve solution

Solving time : 0.114 (sec)
Leaf size : 82� �
DSolve[{(x^2+6*x)*D[y[x],{x,2}]+(3*x+9)*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
9
√
πc2

4
√
−x(x+ 6)Q

1
2
3
2

(
x
3 + 1

)
+
√
6c1(2x2 + 12x+ 9)

9
√
π

4
√
−x2

√
x+ 6
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2.1.12 problem 12

Solved as second order ode using Kovacic algorithm . . . . . . . . . 119
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 124
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 126
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 126

Internal problem ID [8860]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 12
Date solved : Thursday, December 12, 2024 at 09:54:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

ty′′ +
(
t2 − 1

)
y′ + t2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.358 (sec)

Writing the ode as

ty′′ +
(
t2 − 1

)
y′ + t2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = t2 − 1 (3)
C = t2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 − 4t3 + 3
4t2 (6)

Comparing the above to (5) shows that

s = t4 − 4t3 + 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t4 − 4t3 + 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.19: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = t2

4 − t+ 3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
1∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t

2 − 1− 1
t
− 2

t2
− 17

4t3 − 25
2t4 − 75

2t5 − 117
t6

+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

ait
i

= −1 + t

2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1− t+ 1

4t
2

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 − 4t3 + 3
4t2

= Q+ R

4t2

=
(
1
4t

2 − t

)
+
(

3
4t2

)
= t2

4 − t+ 3
4t2

We see that the coefficient of the term t in the quotient is 0. Now b can be found.

b = (0)− (1)
= −1

Hence

[
√
r]∞ = −1 + t

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t4 − 4t3 + 3
4t2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 −1 + t
2 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= − 1
2t + (−)

(
−1 + t

2

)
= − 1

2t + 1− t

2

= −(t− 1)2

2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2t + 1− t

2

)
(1) +

((
1
2t2 − 1

2

)
+
(
− 1
2t + 1− t

2

)2

−
(
t4 − 4t3 + 3

4t2

))
= 0

(a0 + 1) (t− 1)
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t− 1
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

= (t− 1) e
∫ (

− 1
2t+1− t

2
)
dt

= (t− 1) e− t2
4 +t− ln(t)

2

= (t− 1) e−
t(t−4)

4
√
t

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2−1

t
dt

= z1e
− t2

4 + ln(t)
2

= z1
(√

t e− t2
4

)
Which simplifies to

y1 = (t− 1) e−
t(t−2)

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2−1

t
dt

(y1)2
dt

= y1

∫
e−

t2
2 +ln(t)

(y1)2
dt

= y1

(∫ e− t2
2 +ln(t)et(t−2)

(t− 1)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(t− 1) e−

t(t−2)
2

)
+ c2

(
(t− 1) e−

t(t−2)
2

(∫ e− t2
2 +ln(t)et(t−2)

(t− 1)2
dt

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 124

Maple step by step solution

Let’s solve

t
(

d2

dt2
y(t)

)
+ (t2 − 1)

(
d
dt
y(t)

)
+ t2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −ty(t)−

(
t2−1

)(
d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(
t2−1

)(
d
dt
y(t)

)
t

+ ty(t) = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = t2−1

t
, P3(t) = t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

t
(

d2

dt2
y(t)

)
+ (t2 − 1)

(
d
dt
y(t)

)
+ t2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t2 · y(t) to series expansion

t2 · y(t) =
∞∑
k=0

akt
k+r+2

◦ Shift index using k− >k − 2

t2 · y(t) =
∞∑
k=2

ak−2t
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions
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a0r(−2 + r) t−1+r + a1(1 + r) (−1 + r) tr + (a2(2 + r) r + a0r) t1+r +
(

∞∑
k=2

(ak+1(k + 1 + r) (k + r − 1) + ak−1(k + r − 1) + ak−2) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• The coefficients of each power of t must be 0
[a1(1 + r) (−1 + r) = 0, a2(2 + r) r + a0r = 0]

• Solve for the dependent coefficient(s){
a1 = 0, a2 = − a0

2+r

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + r − 1) + ak−1(k + r − 1) + ak−2 = 0
• Shift index using k− >k + 2

ak+3(k + 3 + r) (k + 1 + r) + ak+1(k + 1 + r) + ak = 0
• Recursion relation that defines series solution to ODE

ak+3 = −kak+1+rak+1+ak+ak+1
(k+3+r)(k+1+r)

• Recursion relation for r = 0
ak+3 = −kak+1+ak+ak+1

(k+3)(k+1)

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+3 = −kak+1+ak+ak+1

(k+3)(k+1) , a1 = 0, a2 = −a0
2

]
• Recursion relation for r = 2

ak+3 = −kak+1+ak+3ak+1
(k+5)(k+3)

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+3 = −kak+1+ak+3ak+1

(k+5)(k+3) , a1 = 0, a2 = −a0
4

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+2
)
, ak+3 = −kak+1+ak+ak+1

(k+3)(k+1) , a1 = 0, a2 = −a0
2 , bk+3 = −kbk+1+bk+3bk+1

(5+k)(k+3) , b1 = 0, b2 = − b0
4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
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-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

<- hyper3 successful: indirect Equivalence to 0F1 under \`\`^ @ Moebius\`\` is resolved
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.086 (sec)
Leaf size : 82� �
dsolve(t*diff(diff(y(t),t),t)+(t^2-1)*diff(y(t),t)+t^2*y(t) = 0,

y(t),singsol=all)� �
y =

−

(
−c2

√
π (t− 2) (t− 1) erf

(√
2
√

−(t−2)2

2

)
+
(
c2e

(t−2)2
2 − c1t+ c1

)√
2
√
− (t− 2)2

)
e−

(t−2)t
2

√
2

2
√

− (t− 2)2

Mathematica DSolve solution

Solving time : 0.721 (sec)
Leaf size : 70� �
DSolve[{t*D[y[t],{t,2}]+(t^2-1)*D[y[t],t]+t^2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
− t2

2 +t−2
(√

2πc2(t− 1)erfi
(
t− 2√

2

)
+ 2e2c1(t− 1)− 2c2e

1
2 (t−2)2

)
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2.1.13 problem 13

Solved as second order ode using Kovacic algorithm . . . . . . . . . 127
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 129
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 131
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 131

Internal problem ID [8861]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 13
Date solved : Thursday, December 12, 2024 at 09:54:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ − t(t+ 2) y′ + (t+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.109 (sec)

Writing the ode as

t2y′′ +
(
−t2 − 2t

)
y′ + (t+ 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 − 2t (3)
C = t+ 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.21: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−2t

t2 dt

= z1e
t
2+ln(t)

= z1
(
t e t

2

)
Which simplifies to

y1 = t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt
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Substituting gives

y2 = y1

∫
e
∫
−−t2−2t

t2 dt

(y1)2
dt

= y1

∫
et+2 ln(t)

(y1)2
dt

= y1

(
et+2 ln(t)

t2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(t) + c2

(
t

(
et+2 ln(t)

t2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

t2
(

d2

dt2
y(t)

)
− t(t+ 2)

(
d
dt
y(t)

)
+ (t+ 2) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = − (t+2)y(t)

t2
+

(t+2)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+2)
(

d
dt
y(t)

)
t

+ (t+2)y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+2

t
, P3(t) = t+2

t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

t2
(

d2

dt2
y(t)

)
− t(t+ 2)

(
d
dt
y(t)

)
+ (t+ 2) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑
k=0

akt
k+r+m
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◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r) tr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 2)− ak−1(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+1(k + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+r

• Recursion relation for r = 1
ak+1 = ak

k+1

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+2

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+2

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 12� �
dsolve(t^2*diff(diff(y(t),t),t)-t*(t+2)*diff(y(t),t)+(t+2)*y(t) = 0,

y(t),singsol=all)� �
y = t

(
c1 + etc2

)
Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 16� �
DSolve[{t^2*D[y[t],{t,2}]-t*(t+2)*D[y[t],t]+(t+2)*y[t] == 0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → t

(
c2e

t + c1
)
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2.1.14 problem 14

Solved as second order ode using Kovacic algorithm . . . . . . . . . 132
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 136
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 138
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 138

Internal problem ID [8862]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 14
Date solved : Thursday, December 12, 2024 at 09:54:05 AM
CAS classification : [_Laguerre]

Solve

ty′′ − (1 + t) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.254 (sec)

Writing the ode as

ty′′ + (−1− t) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −1− t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t+ 3

4t2

)
z(t) (7)



chapter 2. book solved problems 133

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.23: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2t +
3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
2t2 + 1

2t3 + 1
4t4 − 1

4t5 − 3
4t6 − 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−2t+ 3

4t2

)
= 1

4 + −2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2t +

(
1
2

)
= 1

2 − 1
2t

= t− 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2t

)
(0) +

((
1
2t2

)
+
(
1
2 − 1

2t

)2

−
(
t2 − 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2−
1
2t
)
dt

= e t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−1−t

t
dt

= z1e
t
2+

ln(t)
2

= z1
(√

t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−1−t

t
dt

(y1)2
dt

= y1

∫
et+ln(t)

(y1)2
dt

= y1

(
−(1 + t) et+ln(t)e−2t

t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−(1 + t) et+ln(t)e−2t

t

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

t
(

d2

dt2
y(t)

)
− (t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t
+

(t+1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+1)
(

d
dt
y(t)

)
t

+ y(t)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+1

t
, P3(t) = 1

t

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

t
(

d2

dt2
y(t)

)
+ (−t− 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−2 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13� �
dsolve(t*diff(diff(y(t),t),t)-(t+1)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y = etc2 + c1t+ c1

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 19� �
DSolve[{t*D[y[t],{t,2}]-(1+t)*D[y[t],t]+y[t] == 0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2(t+ 1)
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2.1.15 problem 15

Solved as second order ode using Kovacic algorithm . . . . . . . . . 139
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 144
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 145
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 146

Internal problem ID [8863]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 15
Date solved : Thursday, December 12, 2024 at 09:54:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− t) y′′ + ty′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.275 (sec)

Writing the ode as

(1− t) y′′ + ty′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− t

B = t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 4t+ 6
4 (−1 + t)2

(6)

Comparing the above to (5) shows that

s = t2 − 4t+ 6
t = 4(−1 + t)2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 4t+ 6
4 (−1 + t)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.25: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + t)2. There is a pole at t = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (−1 + t)2
− 1

2 (−1 + t)

For the pole at t = 1 let b be the coefficient of 1
(−1+t)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
t3

+ 11
4t4 + 21

4t5 + 15
2t6 + 6

t7
− 117

16t8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 4t+ 6
4t2 − 8t+ 4

= Q+ R

4t2 − 8t+ 4

=
(
1
4

)
+
(

−2t+ 5
4t2 − 8t+ 4

)
= 1

4 + −2t+ 5
4t2 − 8t+ 4

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 4t+ 6
4 (−1 + t)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + t) +

(
1
2

)
= − 1

2 (−1 + t) +
1
2

= t− 2
2t− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + t) +

1
2

)
(0) +

((
1

2 (−1 + t)2
)
+
(
− 1
2 (−1 + t) +

1
2

)2

−
(
t2 − 4t+ 6
4 (−1 + t)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(−1+t)+

1
2

)
dt

= e t
2

√
−1 + t

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t

1−t
dt

= z1e
t
2+

ln(−1+t)
2

= z1
(√

−1 + t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

1−t
dt

(y1)2
dt

= y1

∫
et+ln(−1+t)

(y1)2
dt

= y1

(
−t et+ln(−1+t)e−2t

−1 + t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−t et+ln(−1+t)e−2t

−1 + t

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(1− t)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t−1 +
t
(

d
dt
y(t)

)
t−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

t
(

d
dt
y(t)

)
t−1 + y(t)

t−1 = 0
� Check to see if t0 = 1 is a regular singular point

◦ Define functions[
P2(t) = − t

t−1 , P3(t) = 1
t−1

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= −1

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
Check to see if t0 = 1 is a regular singular point
t0 = 1

• Multiply by denominators

(t− 1)
(

d2

dt2
y(t)

)
− t
(

d
dt
y(t)

)
+ y(t) = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((1-t)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c1t+ etc2
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Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 17� �
DSolve[{(1-t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t] == 0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2t
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2.1.16 problem 16

Solved as second order ode using Kovacic algorithm . . . . . . . . . 147
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 149
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 151
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 151

Internal problem ID [8864]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 16
Date solved : Thursday, December 12, 2024 at 09:54:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.178 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.27: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.052 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-25/100)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.17 problem 17

Solved as second order ode using Kovacic algorithm . . . . . . . . . 152
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 156
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 158
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 158

Internal problem ID [8865]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 17
Date solved : Thursday, December 12, 2024 at 09:54:07 AM
CAS classification : [_Laguerre]

Solve

ty′′ − (1 + t) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as

ty′′ + (−1− t) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −1− t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.29: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2t +
3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
2t2 + 1

2t3 + 1
4t4 − 1

4t5 − 3
4t6 − 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−2t+ 3

4t2

)
= 1

4 + −2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2t +

(
1
2

)
= 1

2 − 1
2t

= t− 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2t

)
(0) +

((
1
2t2

)
+
(
1
2 − 1

2t

)2

−
(
t2 − 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2−
1
2t
)
dt

= e t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−1−t

t
dt

= z1e
t
2+

ln(t)
2

= z1
(√

t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−1−t

t
dt

(y1)2
dt

= y1

∫
et+ln(t)

(y1)2
dt

= y1

(
−(1 + t) et+ln(t)e−2t

t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−(1 + t) et+ln(t)e−2t

t

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

t
(

d2

dt2
y(t)

)
− (t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t
+

(t+1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+1)
(

d
dt
y(t)

)
t

+ y(t)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+1

t
, P3(t) = 1

t

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

t
(

d2

dt2
y(t)

)
+ (−t− 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−2 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(t*diff(diff(y(t),t),t)-(t+1)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y = etc2 + c1t+ c1

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 19� �
DSolve[{t*D[y[t],{t,2}]-(1+t)*D[y[t],t]+y[t] ==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2(t+ 1)
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2.1.18 problem 18

Solved as second order ode using Kovacic algorithm . . . . . . . . . 159
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 164
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 165
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [8866]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 18
Date solved : Thursday, December 12, 2024 at 09:54:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− t) y′′ + ty′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.308 (sec)

Writing the ode as

(1− t) y′′ + ty′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− t

B = t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 4t+ 6
4 (−1 + t)2

(6)

Comparing the above to (5) shows that

s = t2 − 4t+ 6
t = 4(−1 + t)2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 4t+ 6
4 (−1 + t)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.31: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + t)2. There is a pole at t = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (−1 + t)2
− 1

2 (−1 + t)

For the pole at t = 1 let b be the coefficient of 1
(−1+t)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
t3

+ 11
4t4 + 21

4t5 + 15
2t6 + 6

t7
− 117

16t8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 4t+ 6
4t2 − 8t+ 4

= Q+ R

4t2 − 8t+ 4

=
(
1
4

)
+
(

−2t+ 5
4t2 − 8t+ 4

)
= 1

4 + −2t+ 5
4t2 − 8t+ 4

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 4t+ 6
4 (−1 + t)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + t) +

(
1
2

)
= − 1

2 (−1 + t) +
1
2

= t− 2
−2 + 2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + t) +

1
2

)
(0) +

((
1

2 (−1 + t)2
)
+
(
− 1
2 (−1 + t) +

1
2

)2

−
(
t2 − 4t+ 6
4 (−1 + t)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(−1+t)+

1
2

)
dt

= e t
2

√
−1 + t

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t

1−t
dt

= z1e
t
2+

ln(−1+t)
2

= z1
(√

−1 + t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

1−t
dt

(y1)2
dt

= y1

∫
et+ln(−1+t)

(y1)2
dt

= y1

(
−t et+ln(−1+t)e−2t

−1 + t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−t et+ln(−1+t)e−2t

−1 + t

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(1− t)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t−1 +
t
(

d
dt
y(t)

)
t−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

t
(

d
dt
y(t)

)
t−1 + y(t)

t−1 = 0
� Check to see if t0 = 1 is a regular singular point

◦ Define functions[
P2(t) = − t

t−1 , P3(t) = 1
t−1

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= −1

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
Check to see if t0 = 1 is a regular singular point
t0 = 1

• Multiply by denominators

(t− 1)
(

d2

dt2
y(t)

)
− t
(

d
dt
y(t)

)
+ y(t) = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((1-t)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c1t+ etc2
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Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 17� �
DSolve[{(1-t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t] ==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2t
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2.1.19 problem 19

Solved as second order ode using Kovacic algorithm . . . . . . . . . 167
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 171
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 172
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 172

Internal problem ID [8867]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 19
Date solved : Thursday, December 12, 2024 at 09:54:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.33: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2



chapter 2. book solved problems 169

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 170

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.076 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.20 problem 20

Solved as second order ode using Kovacic algorithm . . . . . . . . . 173
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 177
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 177
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 177

Internal problem ID [8868]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 20
Date solved : Thursday, December 12, 2024 at 09:54:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 4xy′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 4xy′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −4x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −8
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −8

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 8
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.35: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− i)2

+ 2
(x+ i)2

+ 2i
x− i

− 2i
x+ i

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 8
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 2 −1
−i 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− i

+ 2
x+ i

+ (−) (0)

= − 1
x− i

+ 2
x+ i

= x− 3i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− i

+ 2
x+ i

)
(0) +

((
1

(x− i)2
− 2

(x+ i)2
)
+
(
− 1
x− i

+ 2
x+ i

)2

−
(
− 8
(x2 + 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−i

+ 2
x+i

)
dx

= (x2 + 1)2

(ix+ 1)3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2+1 dx

= z1e
ln
(
x2+1

)
= z1

(
x2 + 1

)
Which simplifies to

y1 =
(x2 + 1)3

(ix+ 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −4x

x2+1 dx

(y1)2
dx

= y1

∫
e2 ln

(
x2+1

)
(y1)2

dx

= y1

(
x2 − 1

3

(x+ i)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)3

(ix+ 1)3

)
+ c2

(
(x2 + 1)3

(ix+ 1)3
(

x2 − 1
3

(x+ i)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 21� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+6*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3 − 3c1x2 − 3c2x+ c1

Mathematica DSolve solution

Solving time : 0.1 (sec)
Leaf size : 33� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

3i
(
c2
(
3x2 − 1

)
+ 3c1(x− i)3

)
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2.1.21 problem 21

Solved as second order ode using Kovacic algorithm . . . . . . . . . 178
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 183
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 184
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 185

Internal problem ID [8869]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 21
Date solved : Thursday, December 12, 2024 at 09:54:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− x) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as

(1− x) y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− x

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (−1 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.36: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + x)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (−1 + x)2
− 1

2 (−1 + x)

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + x) +

(
1
2

)
= − 1

2 (−1 + x) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + x) +

1
2

)
(0) +

((
1

2 (−1 + x)2
)
+
(
− 1
2 (−1 + x) +

1
2

)2

−
(
x2 − 4x+ 6
4 (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(−1+x)+

1
2

)
dx

= ex
2

√
−1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

1−x
dx

= z1e
x
2+

ln(−1+x)
2

= z1
(√

−1 + x ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

1−x
dx

(y1)2
dx

= y1

∫
ex+ln(−1+x)

(y1)2
dx

= y1

(
−x ex+ln(−1+x)e−2x

−1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(−1+x)e−2x

−1 + x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(1− x)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 12� �
dsolve((1-x)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 17� �
DSolve[{(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.22 problem 22

Solved as second order ode using Kovacic algorithm . . . . . . . . . 186
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 190
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 191
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 192

Internal problem ID [8870]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 22
Date solved : Thursday, December 12, 2024 at 09:54:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2y′′ + xy′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.269 (sec)

Writing the ode as

2y′′ + xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2
B = x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 20
16 (6)

Comparing the above to (5) shows that

s = x2 − 20
t = 16

Therefore eq. (4) becomes

z′′(x) =
(
x2

16 − 5
4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.38: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 − 5
2x − 25

2x3 − 125
x5 − 3125

2x7 − 21875
x9 − 328125

x11 − 5156250
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

16
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 20
16

= Q+ R

16

=
(
x2

16 − 5
4

)
+ (0)

= x2

16 − 5
4

We see that the coefficient of the term 1
x
in the quotient is −5

4 . Now b can be found.

b =
(
−5
4

)
− (0)

= −5
4

Hence

[
√
r]∞ = x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
4

1
4

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

4
1
4

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

16 − 5
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
4 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
4

)
= −x

4
= −x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

4

)
(2x+ a1) +

((
−1
4

)
+
(
−x

4

)2
−
(
x2

16 − 5
4

))
= 0

2 + a1x

2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2

)
e
∫
−x

4 dx

=
(
x2 − 2

)
e−x2

8

=
(
x2 − 2

)
e−x2

8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
2 dx

= z1e
−x2

8

= z1
(
e−x2

8

)
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Which simplifies to

y1 = e−x2
4
(
x2 − 2

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

2 dx

(y1)2
dx

= y1

∫
e−

x2
4

(y1)2
dx

= y1

(∫ ex2
4

(x2 − 2)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

4
(
x2 − 2

))
+ c2

(
e−x2

4
(
x2 − 2

)(∫ ex2
4

(x2 − 2)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
2 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
x
(

d
dx

y(x)
)

2 − 3y(x)
2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

2 + 3y(x)
2 = 0

• Multiply by denominators
2 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(2ak+2(k + 2) (k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(2k2 + 6k + 4) ak+2 + ak(k + 3) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak(k+3)

2(k2+3k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.040 (sec)
Leaf size : 32� �
dsolve(2*diff(diff(y(x),x),x)+diff(y(x),x)*x+3*y(x) = 0,

y(x),singsol=all)� �
y =

(
x2 − 2

) (
c1 erfi

(x
2

)√
π + c2

)
e−x2

4 − 2c1x
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Mathematica DSolve solution

Solving time : 0.434 (sec)
Leaf size : 61� �
DSolve[{2*D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

8e
−x2

4

(√
πc2
(
x2 − 2

)
erfi
(x
2

)
+ 8c1

(
x2 − 2

)
− 2c2e

x2
4 x
)
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2.1.23 problem 23

Solved as second order ode using Kovacic algorithm . . . . . . . . . 193
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 197
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 198
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 198

Internal problem ID [8871]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 23
Date solved : Thursday, December 12, 2024 at 09:54:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.40: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 196

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.24 problem 24

Solved as second order ode using Kovacic algorithm . . . . . . . . . 199
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 204
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 205
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 206

Internal problem ID [8872]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 24
Date solved : Thursday, December 12, 2024 at 09:54:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− x) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

(1− x) y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− x

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (−1 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.42: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + x)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (−1 + x)2
− 1

2 (−1 + x)

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + x) +

(
1
2

)
= − 1

2 (−1 + x) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + x) +

1
2

)
(0) +

((
1

2 (−1 + x)2
)
+
(
− 1
2 (−1 + x) +

1
2

)2

−
(
x2 − 4x+ 6
4 (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(−1+x)+

1
2

)
dx

= ex
2

√
−1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

1−x
dx

= z1e
x
2+

ln(−1+x)
2

= z1
(√

−1 + x ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

1−x
dx

(y1)2
dx

= y1

∫
ex+ln(−1+x)

(y1)2
dx

= y1

(
−x ex+ln(−1+x)e−2x

−1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(−1+x)e−2x

−1 + x

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 204

Maple step by step solution

Let’s solve

(1− x)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation



chapter 2. book solved problems 205

r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 12� �
dsolve((1-x)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 17� �
DSolve[{(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.25 problem 25

Solved as second order ode using Kovacic algorithm . . . . . . . . . 207
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 211
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 212
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 212

Internal problem ID [8873]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 25
Date solved : Thursday, December 12, 2024 at 09:54:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.44: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.26 problem 26

Solved as second order ode using Kovacic algorithm . . . . . . . . . 213
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 217
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 219
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 219

Internal problem ID [8874]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 26
Date solved : Thursday, December 12, 2024 at 09:54:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
−x2 + 4

)
y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.041 (sec)

Writing the ode as (
−x2 + 4

)
y′′ + xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 4
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 11x2 − 24
4 (x2 − 4)2

(6)

Comparing the above to (5) shows that

s = 11x2 − 24

t = 4
(
x2 − 4

)2
Therefore eq. (4) becomes

z′′(x) =
(

11x2 − 24
4 (x2 − 4)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.46: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 4)2. There is a pole at x = 2 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x+ 2)2

+ 5
16 (x− 2)2

− 17
32 (x+ 2) +

17
32 (x− 2)

For the pole at x = 2 let b be the coefficient of 1
(x−2)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 11x2 − 24

4 (x2 − 4)2

Since the gcd(s, t) = 1. This gives b = 11
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

2 2 {−1, 2, 5}
−2 2 {−1, 2, 5}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e2 = −1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (−1 + (−1)))

= 2

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (2)) +
−1

(x− (−2))

)
= − 1

2 (x− 2) −
1

2 (x+ 2)

Now we search for a monic polynomial p(x) of degree d = 2 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 2, then letting
p = x2 + a1x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

11x2a1 + 16(6 + a0)x+ 36a1
(x2 − 4)2

= 0

And solving for p gives
p = x2 − 6
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Now that p(x) is found let

φ = θ + p′

p

= 2x
x2 − 6 − 1

2 (x− 2) −
1

2 (x+ 2)

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

2x
x2 − 6 − 1

2 (x− 2) −
1

2 (x+ 2)

)
w + −11x4 + 74x2 − 128

4x6 − 56x4 + 256x2 − 384 = 0

Solving for ω gives

ω = 2
√
3x2

√
x2 − 4 + x3 − 8

√
3
√
x2 − 4− 2x

2 (x2 − 6) (x− 2) (x+ 2)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 2

√
3 x2

√
x2−4+x3−8

√
3
√

x2−4−2x
2
(
x2−6

)
(x−2)(x+2)

dx

=
√
x2 − 6

(
x+

√
x2 − 4

)√3 e−
arctanh


(√

2
√
3 x−4

)√
2

2
√

x2−4


2 −

arctanh


(
4+

√
2
√
3 x

)√
2

2
√

x2−4


2

(x+ 2)1/4 (x− 2)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

−x2+4 dx

= z1e
ln

(
x2−4

)
4

= z1
((

x2 − 4
)1/4)

Which simplifies to

y1 =
√
x2 − 6

(
x+

√
x2 − 4

)√3
e−

arctanh
(

x
√
6−4√

2x2−8

)
2 −

arctanh
(

4+x
√
6√

2x2−8

)
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

−x2+4 dx

(y1)2
dx

= y1

∫
e

ln
(
x2−4

)
2

(y1)2
dx

= y1

∫ √
x2 − 4

(
x+

√
x2 − 4

)−2
√
3 e

arctanh
(

x
√
6−4√

2x2−8

)
+arctanh

(
4+x

√
6√

2x2−8

)
x2 − 6 dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
√
x2 − 6

(
x+

√
x2 − 4

)√3
e−

arctanh
(

x
√
6−4√

2x2−8

)
2 −

arctanh
(

4+x
√
6√

2x2−8

)
2

)
+ c2

√
x2 − 6

(
x

+
√
x2 − 4

)√3
e−

arctanh
(

x
√
6−4√

2x2−8

)
2 −

arctanh
(

4+x
√
6√

2x2−8

)
2

∫ √
x2 − 4

(
x+

√
x2 − 4

)−2
√
3 e

arctanh
(

x
√
6−4√

2x2−8

)
+arctanh

(
4+x

√
6√

2x2−8

)
x2 − 6 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 4)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2−4 +

(
d
dx

y(x)
)
x

x2−4

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x2−4 − 2y(x)
x2−4 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x
x2−4 , P3(x) = − 2

x2−4

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

(x2 − 4)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 4u)
(

d2

du2y(u)
)
+ (−u+ 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (2k − 1 + 2r) + ak(k2 + 2kr + r2 − 2k − 2r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−4
(
k + r − 1

2

)
(k + 1 + r) ak+1 + (k2 + (2r − 2) k + r2 − 2r − 2) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2−2k−2r−2

)
ak

2(2k−1+2r)(k+1+r)

• Recursion relation for r = 0

ak+1 =
(
k2−2k−2

)
ak

2(2k−1)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2−2k−2

)
ak

2(2k−1)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k , ak+1 =
(
k2−2k−2

)
ak

2(2k−1)(k+1)

]
• Recursion relation for r = 3

2

ak+1 =
(
k2+k− 11

4
)
ak

2(2k+2)
(
k+ 5

2
)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
(
k2+k− 11

4
)
ak

2(2k+2)
(
k+ 5

2
)
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k+
3
2 , ak+1 =

(
k2+k− 11

4
)
ak

2(2k+2)
(
k+ 5

2
)
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k+
3
2

)
, ak+1 =

(
k2−2k−2

)
ak

2(2k−1)(k+1) , bk+1 =
(
k2+k− 11

4
)
bk

2(2k+2)
(
k+ 5

2
)
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.018 (sec)
Leaf size : 37� �
dsolve((-x^2+4)*diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
x2 − 4

)3/4(LegendreQ(√3− 1
2 ,

3
2 ,

x

2

)
c2 + LegendreP

(√
3− 1

2 ,
3
2 ,

x

2

)
c1

)

Mathematica DSolve solution

Solving time : 0.077 (sec)
Leaf size : 58� �
DSolve[{(4-x^2)*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(
x2 − 4

)3/4 (
c1P

3
2
− 1

2+
√
3

(x
2

)
+ c2Q

3
2
− 1

2+
√
3

(x
2

))
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2.1.27 problem 27

Solved as second order ode using Kovacic algorithm . . . . . . . . . 220
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 222
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 224
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 224

Internal problem ID [8875]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 27
Date solved : Thursday, December 12, 2024 at 09:54:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.122 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.48: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−2x)+ c2

(√
x e−2x

(
e4x
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
16x2−3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
16x2−3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
k + r − 3

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 3

2 + r
) (

k + 1
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+3+2r)(2k+1+2r)

• Recursion relation for r = 1
2

ak+2 = 16ak
(2k+4)(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+4)(2k+2) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+6)(2k+4)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+6)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+4)(2k+2) , a1 = 0, bk+2 = 16bk
(2k+6)(2k+4) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 21� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(-16*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c1 sinh (2x) + c2 cosh (2x))

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 32� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(3-16*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−2x√x

(
c2e

4x + 4c1
)
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2.1.28 problem 28

Solved as second order ode using Kovacic algorithm . . . . . . . . . 225
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 230
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 231
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 232

Internal problem ID [8876]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 28
Date solved : Thursday, December 12, 2024 at 09:54:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.50: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.29 problem 29

Solved as second order ode using Kovacic algorithm . . . . . . . . . 233
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 235
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 237
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 237

Internal problem ID [8877]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 29
Date solved : Thursday, December 12, 2024 at 09:54:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.164 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.52: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k+1) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx



chapter 2. book solved problems 238

2.1.30 problem 31

Solved as second order ode using Kovacic algorithm . . . . . . . . . 238
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 243
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 244
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 245

Internal problem ID [8878]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 31
Date solved : Thursday, December 12, 2024 at 09:54:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.356 (sec)

Writing the ode as (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x
B = −x2 + 2 (3)
C = 2x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

(6)

Comparing the above to (5) shows that

s = x4 − 8x3 + 24x2 − 24x+ 12

t = 4
(
x2 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.54: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

4x − 1
4 (x− 2) +

3
4 (x− 2)2

+ 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 2 let b be the coefficient of 1

(x−2)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 2

x3 + 11
x4 + 42

x5 + 132
x6 + 348

x7 + 711
x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 − 8x3 + 24x2 − 24x+ 12
4x4 − 16x3 + 16x2

= Q+ R

4x4 − 16x3 + 16x2

=
(
1
4

)
+
(
−4x3 + 20x2 − 24x+ 12

4x4 − 16x3 + 16x2

)
= 1

4 + −4x3 + 20x2 − 24x+ 12
4x4 − 16x3 + 16x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2x − 1

2 (x− 2) +
(
1
2

)
= − 1

2x − 1
2 (x− 2) +

1
2

= − 1
2x − 1

2x− 4 + 1
2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

2 (x− 2) +
1
2

)
(0) +

((
1
2x2 + 1

2 (x− 2)2
)
+
(
− 1
2x − 1

2 (x− 2) +
1
2

)2

−
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
2(x−2)+

1
2

)
dx

= ex
2

√
x
√
x− 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+2
x2−2x dx

= z1e
x
2+

ln(x)
2 + ln(x−2)

2

= z1
(√

x
√
x− 2 ex

2
)

Which simplifies to

y1 =
√
x
√
x− 2 ex√

x (x− 2)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+2

x2−2x dx

(y1)2
dx

= y1

∫
ex+ln(x)+ln(x−2)

(y1)2
dx

= y1

(
−x ex+ln(x)+ln(x−2)e−2x

x− 2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x
√
x− 2 ex√

x (x− 2)

)
+ c2

(√
x
√
x− 2 ex√

x (x− 2)

(
−x ex+ln(x)+ln(x−2)e−2x

x− 2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 2x)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
+ (2x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(x−1)y(x)
x(x−2) +

(
x2−2

)(
d
dx

y(x)
)

x(x−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−2

)(
d
dx

y(x)
)

x(x−2) + 2(x−1)y(x)
x(x−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(x−2) , P3(x) = 2(x−1)

x(x−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x− 2)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
+ (2x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(−2ak+1(k + r + 1) (k + r − 1) + ak(k + r + 1) (k + r − 2)− ak−1(k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− 2k2ak+1 + (−4rak+1 − ak−1) k − 2r2ak+1 − ak−1r + 3ak−1 + 2ak+1 = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k + r − 1)− 2(k + 1)2 ak+2 + (−4rak+2 − ak) (k + 1)− 2r2ak+2 − rak + 3ak + 2ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = k2ak+1+2krak+1+r2ak+1−kak+kak+1−rak+rak+1+2ak−2ak+1

2(k2+2kr+r2+2k+2r)

• Recursion relation for r = 0
ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1

2(k2+2k)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Recursion relation for r = 2
ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8) ,−6a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve((x^2-2*x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)+(2*x-2)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + exc2
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Mathematica DSolve solution

Solving time : 0.151 (sec)
Leaf size : 18� �
DSolve[{(x^2-2*x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]+(2*x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

2 + c1e
x
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2.1.31 problem 32

Solved as second order ode using Kovacic algorithm . . . . . . . . . 246
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 248
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 250
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 250

Internal problem ID [8879]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 32
Date solved : Thursday, December 12, 2024 at 09:54:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.128 (sec)

Writing the ode as

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −8x2 + 4x (3)
C = 4x2 − 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.56: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x2+4x

4x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex√
x

)
+ c2

(
ex√
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ (−8x2 + 4x)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−4x−1

)
y(x)

4x2 +
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+
(
4x2−4x−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−1

x
, P3(x) = 4x2−4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(2x− 1)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + (a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−1(2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 4a0
3+2r

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 1) + (−8k − 8r + 4) ak−1 + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ (−8k − 12− 8r) ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4(2kak+1+2rak+1−ak+3ak+1)

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8 , a1 = 2a0

]
• Recursion relation for r = 1

2

ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24 , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4(2kak+1−ak+2ak+1)

4k2+12k+8 , a1 = 2a0, bk+2 = 4(2kbk+1−bk+4bk+1)
4k2+20k+24 , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 15� �
dsolve(4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2x+ c1)√

x

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 21� �
DSolve[{4*x^2*D[y[x],{x,2}]+(4*x-8*x^2)*D[y[x],x]+(4*x^2-4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)√

x
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2.1.32 problem 33

Solved as second order ode using Kovacic algorithm . . . . . . . . . 251
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 253
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 254
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 254

Internal problem ID [8880]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 33
Date solved : Thursday, December 12, 2024 at 09:54:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.094 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.58: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.1.33 problem 34

Solved as second order ode using Kovacic algorithm . . . . . . . . . 255
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 259
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 261
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 262

Internal problem ID [8881]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 34
Date solved : Thursday, December 12, 2024 at 09:54:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2x+ 1) y′′ − 2y′ − (2x+ 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

(2x+ 1) y′′ − 2y′ + (−2x− 3) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x+ 1
B = −2 (3)
C = −2x− 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(2x+ 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (2x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(2x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.60: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x+ 1)2. There is a pole at x = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 8x+ 6
(2x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
2x+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(2x+ 1)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
2x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2

2x+1 dx

= z1e
ln(2x+1)

2

= z1
(√

2x+ 1
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2

2x+1 dx

(y1)2
dx

= y1

∫
eln(2x+1)

(y1)2
dx

= y1
(
x e2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
x e2x

))
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x)− (2x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x+3)y(x)
2x+1 +

2
(

d
dx

y(x)
)

2x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2
(

d
dx

y(x)
)

2x+1 − (2x+3)y(x)
2x+1 = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

2x+1 , P3(x) = −2x+3
2x+1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x) + (−2x− 3) y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (−2u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r)− 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}
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• Each term must be 0
2a1(1 + r) (−1 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r)− 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak+1+ak

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y(x) =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 16� �
dsolve((2*x+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)-(2*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2exx
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Mathematica DSolve solution

Solving time : 0.128 (sec)
Leaf size : 29� �
DSolve[{(2*x+1)*D[y[x],{x,2}]-2*D[y[x],x]-(2*x+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2
(
c2e

2x+1x+ c1
)
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2.1.34 problem 35

Solved as second order ode using Kovacic algorithm . . . . . . . . . 263
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 266
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 268
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 268

Internal problem ID [8882]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 35
Date solved : Thursday, December 12, 2024 at 09:54:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (2x+ 2) y′ + (x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.163 (sec)

Writing the ode as

xy′′ + (−2x− 2) y′ + (x+ 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 2 (3)
C = x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.62: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2
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Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2

x
dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x
dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1

(
x e2x+2 ln(x)e−2x

3

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x e2x+2 ln(x)e−2x

3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (2x+ 2)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+2)y(x)
x

+
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear



chapter 2. book solved problems 267

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+ (x+2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x+1)
x

, P3(x) = x+2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2− 2x)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + (a1(1 + r) (−2 + r)− 2a0(−1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 2 + r)− 2ak(k + r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r)− 2a0(−1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r)− 2akk − 2akr + 2ak + ak−1 = 0
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• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− 2ak+1(k + 1)− 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2) , 4a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(x*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = ex

(
c2x

3 + c1
)

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 23� �
DSolve[{x*D[y[x],{x,2}]-(2*x+2)*D[y[x],x]+(x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3e
x
(
c2x

3 + 3c1
)
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2.1.35 problem 36

Solved as second order ode using Kovacic algorithm . . . . . . . . . 269
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 271
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 273
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 273

Internal problem ID [8883]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 36
Date solved : Thursday, December 12, 2024 at 09:54:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.166 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.64: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m



chapter 2. book solved problems 272

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k+1) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.36 problem 38

Solved as second order ode using Kovacic algorithm . . . . . . . . . 274
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 276
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 278
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 278

Internal problem ID [8884]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 38
Date solved : Thursday, December 12, 2024 at 09:54:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.122 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)



chapter 2. book solved problems 275

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.66: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−2x)+ c2

(√
x e−2x

(
e4x
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
16x2−3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
16x2−3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
k + r − 3

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 3

2 + r
) (

k + 1
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+3+2r)(2k+1+2r)

• Recursion relation for r = 1
2

ak+2 = 16ak
(2k+4)(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+4)(2k+2) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+6)(2k+4)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+6)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+4)(2k+2) , a1 = 0, bk+2 = 16bk
(2k+6)(2k+4) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(-16*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c1 sinh (2x) + c2 cosh (2x))

Mathematica DSolve solution

Solving time : 0.044 (sec)
Leaf size : 32� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(3-16*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−2x√x

(
c2e

4x + 4c1
)
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2.1.37 problem 39

Solved as second order ode using Kovacic algorithm . . . . . . . . . 279
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 281
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 283
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 283

Internal problem ID [8885]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 39
Date solved : Thursday, December 12, 2024 at 09:54:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
4x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.179 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
4x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = 4x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.68: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x cos (x)
)
+ c2

(√
x cos (x) (tan (x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (4x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2+3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

+
(
4x2+3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = 4x2+3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (4x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
k + r − 3

2

)
ak + 4ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 3

2 + r
) (

k + 1
2 + r

)
ak+2 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(2k+3+2r)(2k+1+2r)

• Recursion relation for r = 1
2

ak+2 = − 4ak
(2k+4)(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
(2k+4)(2k+2) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − 4ak
(2k+6)(2k+4)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − 4ak
(2k+6)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − 4ak

(2k+4)(2k+2) , a1 = 0, bk+2 = − 4bk
(2k+6)(2k+4) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 39� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−ix

√
x
(
2c1 − ic2e

2ix)
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2.1.38 problem 40

Solved as second order ode using Kovacic algorithm . . . . . . . . . 284
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 286
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 288
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 288

Internal problem ID [8886]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 40
Date solved : Thursday, December 12, 2024 at 09:54:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ −
(
x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.098 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
−x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = −x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.70: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x

)
+ c2

(
x e−x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
− (x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
x2−2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
−
(
x2−2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = −x2−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (−x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2)− ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2)− ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r)− ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = ak

(k+2)(k+1) , a1 = 0, bk+2 = bk
(k+3)(k+2) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x-(x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = x(c1 sinh (x) + c2 cosh (x))

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 25� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]-(x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−xx+ 1
2c2e

xx
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2.1.39 problem 41

Solved as second order ode using Kovacic algorithm . . . . . . . . . 289
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 291
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 293
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 293

Internal problem ID [8887]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 41
Date solved : Thursday, December 12, 2024 at 09:54:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2x(x+ 1) y′ +
(
x2 + 2x+ 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.102 (sec)

Writing the ode as

x2y′′ +
(
−2x2 − 2x

)
y′ +

(
x2 + 2x+ 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 − 2x (3)
C = x2 + 2x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.72: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−2x

x2 dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = x ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x2−2x

x2 dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(x ex) + c2(x ex(x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x(x+ 1)

(
d
dx
y(x)

)
+ (x2 + 2x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2x+2

)
y(x)

x2 +
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+
(
x2+2x+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2(x+1)

x
, P3(x) = x2+2x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x(x+ 1)

(
d
dx
y(x)

)
+ (x2 + 2x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + (a1r(−1 + r)− 2a0(−1 + r))x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2)− 2ak−1(k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r)− 2a0(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 2a0

r

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2)− 2ak−1k − 2ak−1r + ak−2 + 4ak−1 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r)− 2ak+1(k + 2)− 2ak+1r + ak + 4ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2ak+1r−ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1) , a1 = 2a0
]

• Recursion relation for r = 2
ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2) , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1) , a1 = 2a0, bk+2 = 2kbk+1−bk+4bk+1
(k+3)(k+2) , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(x^2*diff(diff(y(x),x),x)-2*x*(x+1)*diff(y(x),x)+(x^2+2*x+2)*y(x) = 0,

y(x),singsol=all)� �
y = exx(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 17� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*(x+1)*D[y[x],x]+(x^2+2*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → exx(c2x+ c1)



chapter 2. book solved problems 294

2.1.40 problem 42

Solved as second order ode using Kovacic algorithm . . . . . . . . . 294
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 296
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 298
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 298

Internal problem ID [8888]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 42
Date solved : Thursday, December 12, 2024 at 09:54:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2x(x+ 2) y′ +
(
x2 + 4x+ 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.107 (sec)

Writing the ode as

x2y′′ +
(
−2x2 − 4x

)
y′ +

(
x2 + 4x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 − 4x (3)
C = x2 + 4x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.74: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−4x

x2 dx

= z1e
x+2 ln(x)

= z1
(
x2ex

)
Which simplifies to

y1 = x2ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x2−4x

x2 dx

(y1)2
dx

= y1

∫
e2x+4 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

)
+ c2

(
x2ex(x)

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x(x+ 2)

(
d
dx
y(x)

)
+ (x2 + 4x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+4x+6

)
y(x)

x2 +
2(x+2)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+2)

(
d
dx

y(x)
)

x
+
(
x2+4x+6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2(x+2)

x
, P3(x) = x2+4x+6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x(x+ 2)

(
d
dx
y(x)

)
+ (x2 + 4x+ 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−3 + r)xr + (a1(−1 + r) (−2 + r)− 2a0(−2 + r))x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 3)− 2ak−1(k + r − 3) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 3}

• Each term must be 0
a1(−1 + r) (−2 + r)− 2a0(−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 2a0

−1+r

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2) (k + r − 3)− 2ak−1k − 2ak−1r + ak−2 + 6ak−1 = 0

• Shift index using k− >k + 2
ak+2(k + r) (k + r − 1)− 2ak+1(k + 2)− 2ak+1r + ak + 6ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2ak+1r−ak−2ak+1

(k+r)(k+r−1)

• Recursion relation for r = 2
ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1) , a1 = 2a0
]

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2) , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1) , a1 = 2a0, bk+2 = 2kbk+1−bk+4bk+1
(k+3)(k+2) , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*x*(x+2)*diff(y(x),x)+(x^2+4*x+6)*y(x) = 0,

y(x),singsol=all)� �
y = exx2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 19� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*(x+2)*D[y[x],x]+(x^2+4*x+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → exx2(c2x+ c1)
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2.1.41 problem 43

Solved as second order ode using Kovacic algorithm . . . . . . . . . 299
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 301
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 303
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 303

Internal problem ID [8889]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 43
Date solved : Thursday, December 12, 2024 at 09:54:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 4xy′ +
(
x2 + 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.173 (sec)

Writing the ode as

x2y′′ − 4xy′ +
(
x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −4x (3)
C = x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.76: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2 dx

= z1e
2 ln(x)

= z1
(
x2)

Which simplifies to
y1 = x2 cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 cos (x)

)
+ c2

(
x2 cos (x) (tan (x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (x2 + 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+6

)
y(x)

x2 +
4
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
4
(

d
dx

y(x)
)

x
+
(
x2+6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 4

x
, P3(x) = x2+6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (x2 + 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−3 + r)xr + a1(−1 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 3) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 3}

• Each term must be 0
a1(−1 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2) (k + r − 3) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + r) (k + r − 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+r)(k+r−1)

• Recursion relation for r = 2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = − ak

(k+2)(k+1) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(x^2+6)*y(x) = 0,

y(x),singsol=all)� �
y = x2(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(x^2+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−ixx2(2c1 − ic2e

2ix)
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2.1.42 problem 44

Solved as second order ode using Kovacic algorithm . . . . . . . . . 304
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 309
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 310
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 311

Internal problem ID [8890]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 44
Date solved : Thursday, December 12, 2024 at 09:54:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)



chapter 2. book solved problems 305

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.78: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (x− 1)2
− 1

2 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.43 problem 45

Solved as second order ode using Kovacic algorithm . . . . . . . . . 312
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 314
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 316
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 316

Internal problem ID [8891]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 45
Date solved : Thursday, December 12, 2024 at 09:54:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4x(x+ 1) y′ + (2x+ 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.130 (sec)

Writing the ode as

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 − 4x (3)
C = 2x+ 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.80: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2−4x

4x2 dx

= z1e
x
2+

ln(x)
2

= z1
(√

x ex
2
)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x2−4x

4x2 dx

(y1)2
dx

= y1

∫
ex+ln(x)

(y1)2
dx

= y1

(
ex+ln(x)

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x

(
ex+ln(x)

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x(x+ 1)

(
d
dx
y(x)

)
+ (2x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+3)y(x)
4x2 +

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

x
+ (2x+3)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+1

x
, P3(x) = 2x+3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(x+ 1)

(
d
dx
y(x)

)
+ (2x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (2k + 2r − 3)− 2ak−1(2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term in the series must be 0, giving the recursion relation

4
((
k + r − 1

2

)
ak − ak−1

) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
4
((
k + 1

2 + r
)
ak+1 − ak

) (
k + r − 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 = 2ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
2k+2

]
• Recursion relation for r = 3

2

ak+1 = 2ak
2k+4

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = 2ak
2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = 2ak

2k+2 , bk+1 = 2bk
2k+4

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*x*(x+1)*diff(y(x),x)+(2*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = (c1 + exc2)

√
x

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 20� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*(x+1)*D[y[x],x]+(2*x+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2ex + c1)
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2.1.44 problem 46

Solved as second order ode using Kovacic algorithm . . . . . . . . . 317
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 322
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 324
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 324

Internal problem ID [8892]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 46
Date solved : Thursday, December 12, 2024 at 09:54:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(3x− 1) y′′ − (3x+ 2) y′ − (6x− 8) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.281 (sec)

Writing the ode as

(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x− 1
B = −3x− 2 (3)
C = −6x+ 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 81x2 − 108x+ 54
4 (3x− 1)2

(6)

Comparing the above to (5) shows that

s = 81x2 − 108x+ 54
t = 4(3x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
81x2 − 108x+ 54

4 (3x− 1)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.82: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3x− 1)2. There is a pole at x = 1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 + 3

4
(
x− 1

3

)2 − 3
2
(
x− 1

3

)
For the pole at x = 1

3 let b be the coefficient of 1(
x− 1

3
)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 − 1
2x + 1

9x3 + 11
108x4 + 7

108x5 + 5
162x6 + 2

243x7 − 13
3888x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 81x2 − 108x+ 54
36x2 − 24x+ 4

= Q+ R

36x2 − 24x+ 4

=
(
9
4

)
+
(

−54x+ 45
36x2 − 24x+ 4

)
= 9

4 + −54x+ 45
36x2 − 24x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −54. Dividing this by leading coefficient in t which is 36 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2
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Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

3
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
3
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 81x2 − 108x+ 54
4 (3x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1
3 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2
(
x− 1

3

) + (3
2

)
= − 1

2
(
x− 1

3

) + 3
2

= 9x− 6
6x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x− 1

3

) + 3
2

)
(0) +

( 1
2
(
x− 1

3

)2
)

+
(
− 1
2
(
x− 1

3

) + 3
2

)2

−
(
81x2 − 108x+ 54

4 (3x− 1)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x− 1

3
)+ 3

2

)
dx

= e 3x
2

√
3x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x−2
3x−1 dx

= z1e
x
2+

ln(3x−1)
2

= z1
(√

3x− 1 ex
2
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x−2

3x−1 dx

(y1)2
dx

= y1

∫
ex+ln(3x−1)

(y1)2
dx

= y1

(
−x ex+ln(3x−1)e−4x

3x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
−x ex+ln(3x−1)e−4x

3x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(3x− 1)
(

d2

dx2y(x)
)
− (3x+ 2)

(
d
dx
y(x)

)
− (6x− 8) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(3x−4)y(x)
3x−1 +

(3x+2)
(

d
dx

y(x)
)

3x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(3x+2)

(
d
dx

y(x)
)

3x−1 − 2(3x−4)y(x)
3x−1 = 0

� Check to see if x0 = 1
3 is a regular singular point

◦ Define functions[
P2(x) = −3x+2

3x−1 , P3(x) = −2(3x−4)
3x−1

]
◦
(
x− 1

3

)
· P2(x) is analytic at x = 1

3((
x− 1

3

)
· P2(x)

) ∣∣∣∣
x= 1

3

= −1

◦
(
x− 1

3

)2 · P3(x) is analytic at x = 1
3((

x− 1
3

)2 · P3(x)
) ∣∣∣∣

x= 1
3

= 0

◦ x = 1
3 is a regular singular point

Check to see if x0 = 1
3 is a regular singular point

x0 = 1
3

• Multiply by denominators

(3x− 1)
(

d2

dx2y(x)
)
+ (−2− 3x)

(
d
dx
y(x)

)
+ (−6x+ 8) y(x) = 0

• Change variables using x = u+ 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+ (−3− 3u)

(
d
du
y(u)

)
+ (−6u+ 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1



chapter 2. book solved problems 323

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

3a0r(−2 + r)u−1+r + (3a1(1 + r) (−1 + r)− 3a0(−2 + r))ur +
(

∞∑
k=1

(3ak+1(k + 1 + r) (k + r − 1)− 3ak(k + r − 2)− 6ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
3a1(1 + r) (−1 + r)− 3a0(−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
3ak+1(k + 1 + r) (k + r − 1) + ak(−3k − 3r + 6)− 6ak−1 = 0

• Shift index using k− >k + 1
3ak+2(k + 2 + r) (k + r) + ak+1(−3k + 3− 3r)− 6ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = kak+1+rak+1+2ak−ak+1

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = kak+1+2ak+ak+1

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

• Revert the change of variables u = x− 1
3[

y(x) =
∞∑
k=0

ak
(
x− 1

3

)k+2
, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 18� �
dsolve((3*x-1)*diff(diff(y(x),x),x)-(2+3*x)*diff(y(x),x)-(6*x-8)*y(x) = 0,

y(x),singsol=all)� �
y = e2xc1 + c2x e−x

Mathematica DSolve solution

Solving time : 0.236 (sec)
Leaf size : 35� �
DSolve[{(3*x-1)*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]-(6*x-8)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2 (c1e3x + 2ec2x)√
2
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2.1.45 problem 47

Solved as second order ode using Kovacic algorithm . . . . . . . . . 325
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 330
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 331
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 332

Internal problem ID [8893]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 47
Date solved : Thursday, December 12, 2024 at 09:54:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2 + x) y′′ + xy′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.338 (sec)

Writing the ode as

(2 + x) y′′ + xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2 + x

B = x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 12x− 20
4 (2 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 12x− 20
t = 4(2 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 12x− 20
4 (2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.84: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2 + x)2. There is a pole at x = −2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 4

2 + x
+ 2

(2 + x)2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 4
x
− 6

x2 − 72
x3 − 556

x4 − 5440
x5 − 55088

x6 − 586688
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 12x− 20
4x2 + 16x+ 16

= Q+ R

4x2 + 16x+ 16

=
(
1
4

)
+
(

−16x− 24
4x2 + 16x+ 16

)
= 1

4 + −16x− 24
4x2 + 16x+ 16

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −16. Dividing this by leading coefficient in t which is 4 gives −4. Now b can be found.

b = (−4)− (0)
= −4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−4
1
2

− 0
)

= −4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−4

1
2

− 0
)

= 4
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 12x− 20
4 (2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −4 4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 4 then

d = α−
∞ −

(
α+
c1

)
= 4− (2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 2
2 + x

+ (−)
(
1
2

)
= 2

2 + x
− 1

2
= − x− 2

2 (2 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

2
2 + x

− 1
2

)
(2x+ a1) +

((
− 2
(2 + x)2

)
+
(

2
2 + x

− 1
2

)2

−
(
x2 − 12x− 20
4 (2 + x)2

))
= 0

(a1 + 6)x+ 2a0 + 2a1 + 4
2 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4, a1 = −6}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 6x+ 4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 6x+ 4

)
e
∫ ( 2

2+x
− 1

2

)
dx

=
(
x2 − 6x+ 4

)
e−x

2+2 ln(2+x)

=
(
x2 − 6x+ 4

)
(2 + x)2 e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

2+x
dx

= z1e
−x

2+ln(2+x)

= z1
(
(2 + x) e−x

2
)

Which simplifies to
y1 = (2 + x)3 e−x

(
x2 − 6x+ 4

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

2+x
dx

(y1)2
dx

= y1

∫
e−x+2 ln(2+x)

(y1)2
dx

= y1

(
−ex(x4 − x3 − 18x2 − 22x+ 8)

240 (x2 − 6x+ 4) (2 + x)3
− e−2 Ei1 (−2− x)

240

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x)3 e−x

(
x2 − 6x+ 4

))
+c2

(
(2+x)3 e−x

(
x2−6x+4

)(
−ex(x4 − x3 − 18x2 − 22x+ 8)

240 (x2 − 6x+ 4) (2 + x)3
− e−2 Ei1 (−2− x)

240

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3y(x)
x+2 −

(
d
dx

y(x)
)
x

x+2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
x

x+2 + 3y(x)
x+2 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x
x+2 , P3(x) = 3

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+3)
(k+1+r)(k−2+r)

• Recursion relation for r = 0
ak+1 = − ak(k+3)

(k+1)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2
ak+1 = − ak(k+3)

(k+1)(k−2)

• Recursion relation for r = 3
ak+1 = − ak(k+6)

(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+6)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+3 , ak+1 = − ak(k+6)
(k+4)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 72� �
dsolve((x+2)*diff(diff(y(x),x),x)+diff(y(x),x)*x+3*y(x) = 0,

y(x),singsol=all)� �
y = e−2−xc2

(
x2 − 6x+ 4

)
(x+ 2)3 Ei1 (−2− x)

+ c1e−x
(
x2 − 6x+ 4

)
(x+ 2)3 + c2

(
x4 − x3 − 18x2 − 22x+ 8

)
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Mathematica DSolve solution

Solving time : 1.095 (sec)
Leaf size : 81� �
DSolve[{(2+x)*D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

960e
−x−1(c2(x2 − 6x+ 4

)
(x+ 2)3 ExpIntegralEi(x+ 2)

+ 3840c1
(
x2 − 6x+ 4

)
(x+ 2)3 − c2e

x+2(x4 − x3 − 18x2 − 22x+ 8
))
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2.1.46 problem 48

Solved as second order ode using Kovacic algorithm . . . . . . . . . 333
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 337
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 337
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 337

Internal problem ID [8894]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 48
Date solved : Thursday, December 12, 2024 at 09:54:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x) y′′ + x(4 + x) y′ + (2− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as (
−x3 + x2) y′′ + (x2 + 4x

)
y′ + (2− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = x2 + 4x (3)
C = 2− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x+ 36
4x (−1 + x)2

(6)

Comparing the above to (5) shows that

s = −x+ 36
t = 4x(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

−x+ 36
4x (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.86: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(−1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
x
− 9

−1 + x
+ 35

4 (−1 + x)2

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x+ 36

4x (−1 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x+ 36
4x (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 7

2 −5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−3
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x
− 5

2 (−1 + x) + (−) (0)

= 1
x
− 5

2 (−1 + x)

= 1
x
− 5

−2 + 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
1
x
− 5

2 (−1 + x)

)
(2x+ a1) +

((
− 1
x2 + 5

2 (−1 + x)2
)
+
(
1
x
− 5

2 (−1 + x)

)2

−
(

−x+ 36
4x (−1 + x)2

))
= 0

(a1 − 6)x+ 4a0 − 2a1
x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = 6}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 6x+ 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 6x+ 3

)
e
∫ ( 1

x
− 5

2(−1+x)

)
dx

=
(
x2 + 6x+ 3

)
e−

5 ln(−1+x)
2 +ln(x)

= (x2 + 6x+ 3)x
(−1 + x)5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+4x

−x3+x2 dx

= z1e
5 ln(−1+x)

2 −2 ln(x)

= z1

(
(−1 + x)5/2

x2

)

Which simplifies to

y1 =
x2 + 6x+ 3

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2+4x

−x3+x2 dx

(y1)2
dx

= y1

∫
e5 ln(−1+x)−4 ln(x)

(y1)2
dx

= y1

(
−

4
(
−38x− 69

2

)
9 (x2 + 6x+ 3) + ln (x) + 1

9x

)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x2 + 6x+ 3

x

)
+ c2

(
x2 + 6x+ 3

x

(
−

4
(
−38x− 69

2

)
9 (x2 + 6x+ 3) + ln (x) + 1

9x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 49� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)+x*(x+4)*diff(y(x),x)+(-x+2)*y(x) = 0,

y(x),singsol=all)� �
y = 3xc2(x2 + 6x+ 3) ln (x) + c1x

3 + (6c1 + 51c2)x2 + (3c1 + 48c2)x+ c2
x2

Mathematica DSolve solution

Solving time : 0.124 (sec)
Leaf size : 53� �
DSolve[{x^2*(1-x)*D[y[x],{x,2}]+x*(4+x)*D[y[x],x]+(2-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1x(x2 + 6x+ 3)− c2(51x2 + 3(x2 + 6x+ 3)x log(x) + 48x+ 1)

3x2
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2.1.47 problem 49

Solved as second order ode using Kovacic algorithm . . . . . . . . . 338
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 342
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 343
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 344

Internal problem ID [8895]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 49
Date solved : Thursday, December 12, 2024 at 09:54:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + x(1 + 2x) y′ − (4 + 6x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.276 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
2x2 + x

)
y′ + (−6x− 4) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = 2x2 + x (3)
C = −6x− 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 24x2 + 40x+ 15
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 24x2 + 40x+ 15

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
24x2 + 40x+ 15

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.87: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
2x − 5

2 (1 + x) −
1

4 (1 + x)2
+ 15

4x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 24x2 + 40x+ 15

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 24x2 + 40x+ 15
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 1
2

1
2

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 3− (3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2 + 2x + 5

2x + (0)

= 1
2 + 2x + 5

2x
= 6x+ 5

2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 + 2x + 5

2x

)
(0) +

((
− 1
2 (1 + x)2

− 5
2x2

)
+
(

1
2 + 2x + 5

2x

)2

−
(
24x2 + 40x+ 15

4 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+2x+
5
2x

)
dx

=
√
1 + xx5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+x
x2(1+x) dx

= z1e
− ln(x(1+x))

2

= z1

(
1√

x (1 + x)

)

Which simplifies to

y1 =
√
1 + xx5/2√
x (1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+x

x2(1+x) dx

(y1)2
dx

= y1

∫
e− ln(x(1+x))

(y1)2
dx

= y1

(
− ln (1 + x)− 1

4x4 − 1
2x2 + ln (x) + 1

3x3 + 1
x

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(√
1 + xx5/2√
x (1 + x)

)
+ c2

(√
1 + xx5/2√
x (1 + x)

(
− ln (1 + x)− 1

4x4 −
1
2x2 + ln (x) + 1

3x3 + 1
x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(2x+ 1)

(
d
dx
y(x)

)
− (4 + 6x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(3x+2)y(x)
(x+1)x2 −

(2x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x(x+1) − 2(3x+2)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x(x+1) , P3(x) = − 2(3x+2)

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(2x+ 1)

(
d
dx
y(x)

)
+ (−6x− 4) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (2u2 − 3u+ 1)

(
d
du
y(u)

)
+ (−6u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r
2u−1+r +

(
a1(1 + r)2 − a0(2r2 + r − 2)

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k2 + 4kr + 2r2 + k + r − 2) + ak−1(k + 2 + r) (k − 3 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(2r2 + r − 2) = 0

• Each term in the series must be 0, giving the recursion relation
(k2 − k − 6) ak−1 + (−2k2 − k + 2) ak + ak+1(k + 1)2 = 0

• Shift index using k− >k + 1(
(k + 1)2 − k − 7

)
ak +

(
−2(k + 1)2 − k + 1

)
ak+1 + ak+2(k + 2)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2 , a1 + 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1
(k+2)2 , a1 + 2a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 46� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+x*(2*x+1)*diff(y(x),x)-(4+6*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2(12 ln (x)x4 − 12 ln (x+ 1)x4 + 12x3 − 6x2 + 4x− 3)
x2
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Mathematica DSolve solution

Solving time : 0.082 (sec)
Leaf size : 52� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+x*(1+2*x)*D[y[x],x]-(4+6*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x

2 + c2(12x4 log(x)− 12x4 log(x+ 1) + 12x3 − 6x2 + 4x− 3)
12x2
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2.1.48 problem 50

Solved as second order ode using Kovacic algorithm . . . . . . . . . 345
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 349
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 351
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 351

Internal problem ID [8896]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 50
Date solved : Thursday, December 12, 2024 at 09:54:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(2x2 + 1
)
y′′ + x

(
2x2 + 4

)
y′ + 2

(
−x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.391 (sec)

Writing the ode as (
2x4 + x2) y′′ + (2x3 + 4x

)
y′ +

(
−2x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + x2

B = 2x3 + 4x (3)
C = −2x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 9
(2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 9

t =
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 9
(2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.89: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21

16
(
x− i

√
2

2

)2 + 21

16
(
x+ i

√
2

2

)2 + 15i
√
2

16
(
x− i

√
2

2

) − 15i
√
2

16
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 9

(2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 9
(2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 7
4 −3

4

− i
√
2

2 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

) + (−) (0)

= − 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

)
= − 3x

2x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

)
 (1) +


 3

4
(
x− i

√
2

2

)2 + 3

4
(
x+ i

√
2

2

)2
+

− 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

)
2

−
(

3x2 − 9
(2x2 + 1)2

) = 0

6a0
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫− 3

4
(
x− i

√
2

2

)− 3

4
(
x+ i

√
2

2

)
dx

= (x) 1((
i
√
2− 2x

) (
2x+ i

√
2
))3/4

= x

(−4x2 − 2)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+4x
2x4+x2 dx

= z1e
3 ln

(
2x2+1

)
4 −2 ln(x)

= z1

(
(2x2 + 1)3/4

x2

)

Which simplifies to

y1 =
21/4(4x2 + 2)3/4

2x (−4x2 − 2)3/4
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+4x

2x4+x2 dx

(y1)2
dx

= y1

∫
e

3 ln
(
2x2+1

)
2 −4 ln(x)

(y1)2
dx

= y1

−
2i(2x4 − x2 − 1)

√
2x2 + 1

√
2
√

(−4x2−2)(4x2+2)
(2x2+1)2

x
√
−4x2 − 2

√
4x2 + 2

−
6i arcsinh

(√
2x
)√ (−4x2−2)(4x2+2)

(2x2+1)2 (2x2 + 1)
√
−4x2 − 2

√
4x2 + 2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
21/4(4x2 + 2)3/4

2x (−4x2 − 2)3/4

)
+c2

 21/4(4x2 + 2)3/4

2x (−4x2 − 2)3/4

−
2i(2x4 − x2 − 1)

√
2x2 + 1

√
2
√

(−4x2−2)(4x2+2)
(2x2+1)2

x
√
−4x2 − 2

√
4x2 + 2

−
6i arcsinh

(√
2x
)√ (−4x2−2)(4x2+2)

(2x2+1)2 (2x2 + 1)
√
−4x2 − 2

√
4x2 + 2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(2x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 + 4)

(
d
dx
y(x)

)
+ 2(−x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2
(
x2−1

)
y(x)

x2(2x2+1) −
2
(
x2+2

)(
d
dx

y(x)
)

x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
x2+2

)(
d
dx

y(x)
)

x(2x2+1) − 2
(
x2−1

)
y(x)

x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(
x2+2

)
x(2x2+1) , P3(x) = − 2

(
x2−1

)
x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
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Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 2x(x2 + 2)

(
d
dx
y(x)

)
+ (−2x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + 2ak−2(k + r − 1) (k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + 2ak−2(k + r − 1) (k − 3 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + 2ak(k + r + 1) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(k+r+1)(k+r−1)

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1 ; series terminates at k = 2
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ak+2 = − 2akk(k−2)
(k+3)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − 2akk(k−2)

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1) , a1 = 0, bk+2 = − 2bkk(k−2)
(k+3)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 42� �
dsolve(x^2*(2*x^2+1)*diff(diff(y(x),x),x)+x*(2*x^2+4)*diff(y(x),x)+2*(-x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2
√
2 (x− 1) (x+ 1)

√
2x2 + 1 + x

(
3c2 arcsinh

(√
2x
)
+ c1

)
x2

Mathematica DSolve solution

Solving time : 0.333 (sec)
Leaf size : 70� �
DSolve[{x^2*(1+2*x^2)*D[y[x],{x,2}]+x*(4+2*x^2)*D[y[x],x]+2*(1-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
3c2arctanh

(
x√

x2+ 1
2

)
√
2x

− c2
√
2x2 + 1
x2 + c2

√
2x2 + 1 + c1

x
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2.1.49 problem 51

Solved as second order ode using Kovacic algorithm . . . . . . . . . 352
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 356
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 358
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 358

Internal problem ID [8897]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 51
Date solved : Thursday, December 12, 2024 at 09:54:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 2
)
y′′ + 2x

(
x2 + 5

)
y′ + 2

(
−x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.505 (sec)

Writing the ode as (
x4 + 2x2) y′′ + (2x3 + 10x

)
y′ +

(
−2x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + 2x2

B = 2x3 + 10x (3)
C = −2x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x4 − 5x2 + 3
(x3 + 2x)2

(6)

Comparing the above to (5) shows that

s = 2x4 − 5x2 + 3

t =
(
x3 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
2x4 − 5x2 + 3
(x3 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.91: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x3 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2 of order

2. There is a pole at x = −i
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21
16
(
x− i

√
2
)2 + 21

16
(
x+ i

√
2
)2 + 11i

√
2

32
(
x− i

√
2
) − 11i

√
2

32
(
x+ i

√
2
) + 3

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

For the pole at x = −i
√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x4 − 5x2 + 3

(x3 + 2x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x4 − 5x2 + 3
(x3 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

i
√
2 2 0 7

4 −3
4

−i
√
2 2 0 7

4 −3
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 2− (0)
= 2
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
) + (0)

= 3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
)

= 3
x3 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
)) (2x+ a1) +

(− 3
2x2 + 3

4
(
x− i

√
2
)2 + 3

4
(
x+ i

√
2
)2
)

+
(

3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
))2

−
(
2x4 − 5x2 + 3
(x3 + 2x)2

) = 0

2(x2a1 + (a0 − 8)x− 3a1) (x2 + 2)
x
(
x+ i

√
2
)2 (√2 + ix

)2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 8

)
e
∫ ( 3

2x−
3

4
(
x−i

√
2
)− 3

4
(
x+i

√
2
)
)
dx

=
(
x2 + 8

)
e−

3 ln
(
x2+2

)
4 + 3 ln(x)

2

= (x2 + 8)x3/2

(x2 + 2)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+10x
x4+2x2 dx

= z1e
3 ln

(
x2+2

)
4 − 5 ln(x)

2

= z1

(
(x2 + 2)3/4

x5/2

)
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Which simplifies to

y1 =
x2 + 8

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+10x

x4+2x2 dx

(y1)2
dx

= y1

∫
e

3 ln
(
x2+2

)
2 −5 ln(x)

(y1)2
dx

= y1

−(x2 + 2)5/2

256x2 + (x2 + 2)3/2

384 +
√
x2 + 2
96 −

√
2 arctanh

( √
2√

x2+2

)
64 + 3

√
x2 + 2

64 (x2 + 8)

+ x2
√
x2 + 2
768


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 8

x

)
+ c2

x2 + 8
x

−(x2 + 2)5/2

256x2 + (x2 + 2)3/2

384 +
√
x2 + 2
96

−

√
2 arctanh

( √
2√

x2+2

)
64 + 3

√
x2 + 2

64 (x2 + 8) +
x2
√
x2 + 2
768



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 2)
(

d2

dx2y(x)
)
+ 2x(x2 + 5)

(
d
dx
y(x)

)
+ 2(−x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2
(
x2−3

)
y(x)

(x2+2)x2 −
2
(
x2+5

)(
d
dx

y(x)
)

x(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
x2+5

)(
d
dx

y(x)
)

x(x2+2) − 2
(
x2−3

)
y(x)

(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(
x2+5

)
x(x2+2) , P3(x) = − 2

(
x2−3

)
(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 2)
(

d2

dx2y(x)
)
+ 2x(x2 + 5)

(
d
dx
y(x)

)
+ (−2x2 + 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

2a0(3 + r) (1 + r)xr + 2a1(4 + r) (2 + r)x1+r +
(

∞∑
k=2

(2ak(k + r + 3) (k + r + 1) + ak−2(k + r) (k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(3 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−1}

• Each term must be 0
2a1(4 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
2ak(k + r + 3) (k + r + 1) + ak−2(k + r) (k − 3 + r) = 0

• Shift index using k− >k + 2
2ak+2(k + 5 + r) (k + r + 3) + ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)(k+r−1)

2(k+5+r)(k+r+3)
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• Recursion relation for r = −3 ; series terminates at k = 4
ak+2 = −ak(k−1)(k−4)

2(k+2)k

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = −ak(k−1)(k−4)

2(k+2)k , a1 = 0
]

• Recursion relation for r = −1 ; series terminates at k = 2
ak+2 = −ak(k+1)(k−2)

2(k+4)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+1)(k−2)

2(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = −ak(k−1)(−4+k)

2(k+2)k , a1 = 0, bk+2 = − bk(k+1)(k−2)
2(4+k)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 53� �
dsolve(x^2*(x^2+2)*diff(diff(y(x),x),x)+2*x*(x^2+5)*diff(y(x),x)+2*(-x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

−c2
√
x2 + 2 (x− 2) (x+ 2)

√
2 + (x2 + 8)x2

(
arctanh

( √
2√

x2+2

)
c2 + c1

)
x3

Mathematica DSolve solution

Solving time : 0.391 (sec)
Leaf size : 88� �
DSolve[{x^2*(2+x^2)*D[y[x],{x,2}]+2*x*(x^2+5)*D[y[x],x]+2*(3-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−
√
2c2(x2 + 8)x2arctanh

(√
x2+2√
2

)
+ 64c1x4 + 2x2(c2√x2 + 2 + 256c1

)
− 8c2

√
x2 + 2

64x3
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2.1.50 problem 52

Solved as second order ode using Kovacic algorithm . . . . . . . . . 359
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 363
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
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Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 363

Internal problem ID [8898]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 52
Date solved : Thursday, December 12, 2024 at 09:54:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ + 6xy′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as (
x2 + 1

)
y′′ + 6xy′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 6x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.93: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x

x2+1 dx

= z1e
−

3 ln
(
x2+1

)
2

= z1

(
1

(x2 + 1)3/2

)

Which simplifies to

y1 =
1

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6x

x2+1 dx

(y1)2
dx

= y1

∫
e−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(ix+ 1)2
)
+ c2

(
1

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 363

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 24� �
dsolve((x^2+1)*diff(diff(y(x),x),x)+6*diff(y(x),x)*x+6*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

(x2 + 1)2

Mathematica DSolve solution

Solving time : 0.073 (sec)
Leaf size : 29� �
DSolve[{(1+x^2)*D[y[x],{x,2}]+6*x*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2

(x2 + 1)2
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2.1.51 problem 53

Solved as second order ode using Kovacic algorithm . . . . . . . . . 364
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 368
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 368
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 368

Internal problem ID [8899]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 53
Date solved : Thursday, December 12, 2024 at 09:54:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ + 2xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.323 (sec)

Writing the ode as (
x2 + 1

)
y′′ + 2xy′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 + 3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 + 3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 + 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.94: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− i)2

− 1
4 (x+ i)2

− 5i
4 (x− i) +

5i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 + 3

(x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 + 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 1
2

1
2

−i 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2i +

1
2x+ 2i + (0)

= 1
2x− 2i +

1
2x+ 2i

= x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2i +

1
2x+ 2i

)
(1) +

((
− 1
2 (x− i)2

− 1
2 (x+ i)2

)
+
(

1
2x− 2i +

1
2x+ 2i

)2

−
(

2x2 + 3
(x2 + 1)2

))
= 0

− 2(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2i+
1

2x+2i

)
dx

= (x)
√

(−x+ i) (x+ i)
= x

√
−x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x

x2+1 dx

= z1e
−

ln
(
x2+1

)
2

= z1

(
1√

x2 + 1

)

Which simplifies to
y1 = ix

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

x2+1 dx

(y1)2
dx

= y1

∫
e− ln

(
x2+1

)
(y1)2

dx

= y1

(
arctan (x) + 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ix) + c2

(
ix

(
arctan (x) + 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 14� �
dsolve((x^2+1)*diff(diff(y(x),x),x)+2*diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = c1x+ arctan (x)xc2 + c2

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 48� �
DSolve[{(1+x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2i(2c1x− c2x log(1− ix) + c2x log(1 + ix) + 2ic2)
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2.1.52 problem 54

Solved as second order ode using Kovacic algorithm . . . . . . . . . 369
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 373
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 373
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 373

Internal problem ID [8900]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 54
Date solved : Thursday, December 12, 2024 at 09:54:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 8xy′ + 20y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 8xy′ + 20y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −8x (3)
C = 20

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −24
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −24

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 24
(x2 + 1)2

)
z(x) (7)



chapter 2. book solved problems 370

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.95: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
(x− i)2

+ 6
(x+ i)2

+ 6i
x− i

− 6i
x+ i

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 24
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3 −2
−i 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 2
x− i

+ 3
x+ i

+ (−) (0)

= − 2
x− i

+ 3
x+ i

= x− 5i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
x− i

+ 3
x+ i

)
(0) +

((
2

(x− i)2
− 3

(x+ i)2
)
+
(
− 2
x− i

+ 3
x+ i

)2

−
(
− 24
(x2 + 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 2
x−i

+ 3
x+i

)
dx

= (x2 + 1)3

(ix+ 1)5

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x
x2+1 dx

= z1e
2 ln
(
x2+1

)
= z1

((
x2 + 1

)2)
Which simplifies to

y1 =
(x2 + 1)5

(ix+ 1)5

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −8x

x2+1 dx

(y1)2
dx

= y1

∫
e4 ln

(
x2+1

)
(y1)2

dx

= y1

(
x4 − 2x2 + 1

5

(x+ i)5
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)5

(ix+ 1)5

)
+ c2

(
(x2 + 1)5

(ix+ 1)5
(
x4 − 2x2 + 1

5

(x+ i)5
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 33� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-8*diff(y(x),x)*x+20*y(x) = 0,

y(x),singsol=all)� �
y = c2x

5 + 5c1x4 − 10c2x3 − 10c1x2 + 5c2x+ c1

Mathematica DSolve solution

Solving time : 0.114 (sec)
Leaf size : 38� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-8*x*D[y[x],x]+20*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

5ic2
(
5x4 − 10x2 + 1

)
+ c1(1 + ix)5
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2.1.53 problem 55

Solved as second order ode using Kovacic algorithm . . . . . . . . . 374
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 378
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 379
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 380

Internal problem ID [8901]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 55
Date solved : Thursday, December 12, 2024 at 09:54:31 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 8xy′ − 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.224 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 8xy′ − 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −8x (3)
C = −12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 8

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

8
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.96: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− 1)2

− 2
x− 1 + 2

x+ 1 + 2
(x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 2 −1
−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− 1 + 2

x+ 1 + (−) (0)

= − 1
x− 1 + 2

x+ 1
= x− 3

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− 1 + 2

x+ 1

)
(0) +

((
1

(x− 1)2
− 2

(x+ 1)2
)
+
(
− 1
x− 1 + 2

x+ 1

)2

−
(

8
(x2 − 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−1+

2
x+1

)
dx

= (x+ 1)2

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x

−x2+1 dx

= z1e
−2 ln(x−1)−2 ln(x+1)

= z1

(
1

(x− 1)2 (x+ 1)2
)

Which simplifies to

y1 =
1

(x− 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −8x

−x2+1 dx

(y1)2
dx

= y1

∫
e−4 ln(x−1)−4 ln(x+1)

(y1)2
dx

= y1

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x− 1)3
)
+ c2

(
1

(x− 1)3

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 8x

(
d
dx
y(x)

)
− 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 −

8
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
8
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (8u− 8)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r + 4) + ak(k + r + 4) (k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 0}
• Each term in the series must be 0, giving the recursion relation

(k + r + 4) ((−2k − 2r − 2) ak+1 + ak(k + r + 3)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r+3)
2(k+1+r)

• Recursion relation for r = −3
ak+1 = akk

2(k−2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 2
ak+1 = akk

2(k−2)

• Recursion relation for r = 0
ak+1 = ak(k+3)

2(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+3)

2(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+3)
2(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 29� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-8*diff(y(x),x)*x-12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3 + 3c1x2 + 3c2x+ c1

(x2 − 1)3
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Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 37� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-8*x*D[y[x],x]-12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1(x− 1)3 − c2(3x2 + 1)

3 (x2 − 1)3
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2.1.54 problem 56

Solved as second order ode using Kovacic algorithm . . . . . . . . . 381
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 385
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 386
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 386

Internal problem ID [8902]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 56
Date solved : Thursday, December 12, 2024 at 09:54:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.378 (sec)

Writing the ode as (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 1
B = 7x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 6
4 (2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 5x2 + 6

t = 4
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

5x2 + 6
4 (2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.98: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7

64
(
x− i

√
2

2

)2 − 7

64
(
x+ i

√
2

2

)2 − 17i
√
2

64
(
x− i

√
2

2

) + 17i
√
2

64
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 6

4 (2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 6
4 (2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 7
8

1
8

− i
√
2

2 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 5

4 −
(
1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2
+ (0)

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

= x

4x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

)
(1) +


− 1

8
(
x− i

√
2

2

)2 − 1

8
(
x+ i

√
2

2

)2
+

(
1

8x− 4i
√
2
+ 1

8x+ 4i
√
2

)2

−
(

5x2 + 6
4 (2x2 + 1)2

) = 0

− a0
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

8x−4i
√
2+

1
8x+4i

√
2

)
dx

= (x)
((

i
√
2− 2x

)(
2x+ i

√
2
))1/8

= x
(
−4x2 − 2

)1/8
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x

2x2+1 dx

= z1e
−

7 ln
(
2x2+1

)
8

= z1

(
1

(2x2 + 1)7/8

)

Which simplifies to

y1 =
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x

2x2+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x2+1

)
4

(y1)2
dx

= y1

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

)
+c2

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.057 (sec)
Leaf size : 37� �
dsolve((2*x^2+1)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

c1 LegendreP
(1
4 ,

3
4 , i

√
2x
)
+ c2 LegendreQ

(1
4 ,

3
4 , i

√
2x
)

(2x2 + 1)3/8

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 66� �
DSolve[{(1+2*x^2)*D[y[x],{x,2}]+7*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c2Q

3
4
1
4

(
i
√
2x
)

(2x2 + 1)3/8
+ 2i 4

√
2c1x

(2x2 + 1)3/4Gamma
(1
4

)
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2.1.55 problem 57

Solved as second order ode using Kovacic algorithm . . . . . . . . . 387
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 391
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 393
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 393

Internal problem ID [8903]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 57
Date solved : Thursday, December 12, 2024 at 09:54:32 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 5xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.288 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 5xy′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −5x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −x2 + 6

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 + 6
4 (x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.99: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 7
16 (x+ 1) +

5
16 (x+ 1)2

+ 5
16 (x− 1)2

− 7
16 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4



chapter 2. book solved problems 389

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 6

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
4 (x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 5
4 −1

4

−1 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (x− 1) −

1
4 (x+ 1) + (−) (0)

= − 1
4 (x− 1) −

1
4 (x+ 1)

= − x

2x2 − 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (x− 1) −

1
4 (x+ 1)

)
(1) +

((
1

4 (x− 1)2
+ 1

4 (x+ 1)2
)
+
(
− 1
4 (x− 1) −

1
4 (x+ 1)

)2

−
(

−x2 + 6
4 (x2 − 1)2

))
= 0

a0
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4(x−1)−

1
4(x+1)

)
dx

= (x) 1
((x− 1) (x+ 1))1/4

= x

(x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−5x

−x2+1 dx

= z1e
− 5 ln(x−1)

4 − 5 ln(x+1)
4

= z1

(
1

(x− 1)5/4 (x+ 1)5/4

)

Which simplifies to

y1 =
x

(x− 1)5/4 (x+ 1)5/4 (x2 − 1)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −5x

−x2+1 dx

(y1)2
dx

= y1

∫
e−

5 ln(x−1)
2 − 5 ln(x+1)

2

(y1)2
dx

= y1

(
(x2 − 1)3/2

x
− x

√
x2 − 1 + ln

(
x+

√
x2 − 1

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x− 1)5/4 (x+ 1)5/4 (x2 − 1)1/4

)
+c2

(
x

(x− 1)5/4 (x+ 1)5/4 (x2 − 1)1/4

(
(x2 − 1)3/2

x
−x

√
x2 − 1+ln

(
x+

√
x2 − 1

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 5x

(
d
dx
y(x)

)
− 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2−1 −

5
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)
x

x2−1 + 4y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x
x2−1 , P3(x) = 4

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 5x

(
d
dx
y(x)

)
+ 4y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (5u− 5)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(3 + 2r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (2k + 5 + 2r) + ak(k + r + 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 2)2 − 2(k + 1 + r) ak+1
(
k + 5

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+2)2

(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
ak+1 = ak(k+2)2

(k+1)(2k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+2)2

(k+1)(2k+5)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+2)2
(k+1)(2k+5)

]
• Recursion relation for r = −3

2

ak+1 =
ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+1 =
ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
3
2 , ak+1 =

ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
3
2

)
, ak+1 = ak(k+2)2

(k+1)(2k+5) , bk+1 =
bk
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 39� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-5*diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y =

ln
(
x+

√
x2 − 1

)
c2x+ c1x−

√
x2 − 1 c2

(x2 − 1)3/2

Mathematica DSolve solution

Solving time : 0.164 (sec)
Leaf size : 49� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-5*x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2xarctanh
(

x√
x2−1

)
− c2

√
x2 − 1 + c1x

(x2 − 1)3/2
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2.1.56 problem 58

Solved as second order ode using Kovacic algorithm . . . . . . . . . 394
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 398
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 398
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 398

Internal problem ID [8904]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 58
Date solved : Thursday, December 12, 2024 at 09:54:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 10xy′ + 28y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.374 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 10xy′ + 28y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −10x (3)
C = 28

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 33
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 33

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
2x2 − 33
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.101: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4 (x− i)2

+ 35
4 (x+ i)2

+ 31i
4 (x− i) −

31i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 − 33

(x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 33
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 7
2 −5

2

−i 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 5
2 (x− i) +

7
2 (x+ i) + (0)

= − 5
2 (x− i) +

7
2 (x+ i)

= x− 6i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)



chapter 2. book solved problems 397

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2 (x− i) +

7
2 (x+ i)

)
(1) +

((
5

2 (x− i)2
− 7

2 (x+ i)2
)
+
(
− 5
2 (x− i) +

7
2 (x+ i)

)2

−
(
2x2 − 33
(x2 + 1)2

))
= 0

−2(6i+ a0) (x2 + 1)
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −6i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 6i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 6i) e
∫ (

− 5
2(x−i)+

7
2(x+i)

)
dx

= (x− 6i) e
ln

(
x2+1

)
2 −6i arctan(x)

= (−x+ 6i) (x2 + 1)7/2

(−x+ i)6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x
x2+1 dx

= z1e
5 ln

(
x2+1

)
2

= z1
((

x2 + 1
)5/2)

Which simplifies to

y1 =
(x2 + 1)6 (−x+ 6i)

(−x+ i)6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x

x2+1 dx

(y1)2
dx

= y1

∫
e5 ln

(
x2+1

)
(y1)2

dx

= y1

(
724i

2401 (x+ i)4
− 16i

147 (x+ i)6
− 3125i

117649 (x+ i)2
+ 496

1715 (x+ i)5
− 7432

50421 (x+ i)3

− 3125
823543 (x+ i) +

3125
823543 (x− 6i)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)6 (−x+ 6i)

(−x+ i)6

)

+ c2

(
(x2 + 1)6 (−x+ 6i)

(−x+ i)6
(

724i
2401 (x+ i)4

− 16i
147 (x+ i)6

− 3125i
117649 (x+ i)2

+ 496
1715 (x+ i)5

− 7432
50421 (x+ i)3

− 3125
823543 (x+ i) +

3125
823543 (x− 6i)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 39� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-10*diff(y(x),x)*x+28*y(x) = 0,

y(x),singsol=all)� �
y = c1 +

35
3 c1x

4 − 14c1x2 + c2x
7 + 21c2x5 − 105c2x3 + 35c2x

Mathematica DSolve solution

Solving time : 0.112 (sec)
Leaf size : 40� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-10*x*D[y[x],x]+28*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

105c2
(
35x4 − 42x2 + 3

)
− c1(x− i)6(x+ 6i)
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2.1.57 problem 59

Solved as second order ode using Kovacic algorithm . . . . . . . . . 399
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 403
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 404
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 404

Internal problem ID [8905]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 59
Date solved : Thursday, December 12, 2024 at 09:54:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.248 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.102: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2



chapter 2. book solved problems 405

2.1.58 problem 60

Solved as second order ode using Kovacic algorithm . . . . . . . . . 405
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 409
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 410
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 410

Internal problem ID [8906]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 60
Date solved : Thursday, December 12, 2024 at 09:54:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 1

)
y′′ − 9xy′ − 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.501 (sec)

Writing the ode as (
2x2 + 1

)
y′′ − 9xy′ − 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 1
B = −9x (3)
C = −6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 165x2 + 6
4 (2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 165x2 + 6

t = 4
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

165x2 + 6
4 (2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.104: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 153

64
(
x− i

√
2

2

)2 + 153

64
(
x+ i

√
2

2

)2 − 177i
√
2

64
(
x− i

√
2

2

) + 177i
√
2

64
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 153
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 17

8
α−
c = 1

2 −
√
1 + 4b = −9

8
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 153
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 17

8
α−
c = 1

2 −
√
1 + 4b = −9

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 165x2 + 6

4 (2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 165
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 15

4
α−
∞ = 1

2 −
√
1 + 4b = −11

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 165x2 + 6
4 (2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 17
8 −9

8

− i
√
2

2 2 0 17
8 −9

8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 15
4 −11

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 15

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 15

4 −
(
−9
4

)
= 6

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= − 9
8
(
x− i

√
2

2

) − 9
8
(
x+ i

√
2

2

) + (0)

= − 9
8
(
x− i

√
2

2

) − 9
8
(
x+ i

√
2

2

)
= − 9x

4x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 6 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
30x4 + 20x3a5 + 12x2a4 + 6xa3 + 2a2

)
+ 2

− 9
8
(
x− i

√
2

2

) − 9
8
(
x+ i

√
2

2

)
(6x5 + 5x4a5 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+


 9

8
(
x− i

√
2

2

)2 + 9

8
(
x+ i

√
2

2

)2
+

− 9
8
(
x− i

√
2

2

) − 9
8
(
x+ i

√
2

2

)
2

−
(

165x2 + 6
4 (2x2 + 1)2

) = 0

−11a5x5 + (−18a4 + 30)x4 + (−21a3 + 20a5)x3 + (−20a2 + 12a4)x2 + (−15a1 + 6a3)x− 6a0 + 2a2
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
3 , a1 = 0, a2 = 1, a3 = 0, a4 =

5
3 , a5 = 0

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x6 + 5
3x

4 + x2 + 1
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x6 + 5

3x
4 + x2 + 1

3

)
e
∫− 9

8
(
x− i

√
2

2

)− 9

8
(
x+ i

√
2

2

)
dx

=
(
x6 + 5

3x
4 + x2 + 1

3

)
1((

i
√
2− 2x

) (
2x+ i

√
2
))9/8

= −3x6 − 5x4 − 3x2 − 1
(−4x2 − 2)1/8 (12x2 + 6)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−9x

2x2+1 dx

= z1e
9 ln

(
2x2+1

)
8

= z1
((

2x2 + 1
)9/8)
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Which simplifies to

y1 = −27/8(4x2 + 2)1/8 (3x6 + 5x4 + 3x2 + 1)
12 (−4x2 − 2)1/8

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −9x

2x2+1 dx

(y1)2
dx

= y1

∫
e

9 ln
(
2x2+1

)
4

(y1)2
dx

= y1

(∫ 36(2x2 + 1)9/4 21/4(−4x2 − 2)1/4

(4x2 + 2)1/4 (3x6 + 5x4 + 3x2 + 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
−27/8(4x2 + 2)1/8 (3x6 + 5x4 + 3x2 + 1)

12 (−4x2 − 2)1/8

)
+c2

(
−27/8(4x2 + 2)1/8 (3x6 + 5x4 + 3x2 + 1)

12 (−4x2 − 2)1/8

(∫ 36(2x2 + 1)9/4 21/4(−4x2 − 2)1/4

(4x2 + 2)1/4 (3x6 + 5x4 + 3x2 + 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 37� �
dsolve((2*x^2+1)*diff(diff(y(x),x),x)-9*diff(y(x),x)*x-6*y(x) = 0,

y(x),singsol=all)� �
y =

(
2x2 + 1

)13/8(LegendreP(11
4 ,

13
4 , i

√
2x
)
c1 + LegendreQ

(
11
4 ,

13
4 , i

√
2x
)
c2

)

Mathematica DSolve solution

Solving time : 0.373 (sec)
Leaf size : 71� �
DSolve[{(1+2*x^2)*D[y[x],{x,2}]-9*x*D[y[x],x]-6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

(
2x2 + 1

)13/8
Q

13
4
11
4

(
i
√
2x
)
+ 64 4

√
2c1(3x6 + 5x4 + 3x2 + 1)

3Gamma
(
−9

4

)
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2.1.59 problem 61

Solved as second order ode using Kovacic algorithm . . . . . . . . . 411
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 415
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 418
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 418

Internal problem ID [8907]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 61
Date solved : Thursday, December 12, 2024 at 09:54:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 − 8x+ 11

)
y′′ − 16(x− 2) y′ + 36y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.634 (sec)

Writing the ode as (
2x2 − 8x+ 11

)
y′′ + (−16x+ 32) y′ + 36y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 − 8x+ 11
B = −16x+ 32 (3)
C = 36

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8x2 − 32x− 100
(2x2 − 8x+ 11)2

(6)

Comparing the above to (5) shows that

s = 8x2 − 32x− 100

t =
(
2x2 − 8x+ 11

)2
Therefore eq. (4) becomes

z′′(x) =
(
8x2 − 32x− 100
(2x2 − 8x+ 11)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.105: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x2 − 8x+ 11)2. There is a pole at x = 2 + i

√
6

2 of order 2. There is a pole
at x = 2− i

√
6

2 of order 2. Since there is no odd order pole larger than 2 and the order at
∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6(
x− 2− i

√
6

2

)2 + 6(
x− 2 + i

√
6

2

)2 + 5i
√
6

3
(
x− 2− i

√
6

2

) − 5i
√
6

3
(
x− 2 + i

√
6

2

)
For the pole at x = 2 + i

√
6

2 let b be the coefficient of 1(
x−2− i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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For the pole at x = 2− i
√
6

2 let b be the coefficient of 1(
x−2+ i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 8x2 − 32x− 100

(2x2 − 8x+ 11)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8x2 − 32x− 100
(2x2 − 8x+ 11)2

pole c location pole order [
√
r]c α+

c α−
c

2 + i
√
6

2 2 0 3 −2

2− i
√
6

2 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞



chapter 2. book solved problems 414

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

+ (0)

= − 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

= −5i
√
6 + 2x− 4

2x2 − 8x+ 11

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

)
(1) +


 2(

x− 2− i
√
6

2

)2 − 3(
x− 2 + i

√
6

2

)2
+

(
− 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

)2

−
(
8x2 − 32x− 100
(2x2 − 8x+ 11)2

) = 0

−10i
√
6− 4a0 − 8

2x2 − 8x+ 11 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −5i

√
6

2 − 2
}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 2− 5i
√
6

2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 2− 5i

√
6

2

)
e
∫ (

− 2
x−2− i

√
6

2
+ 3

x−2+ i
√
6

2

)
dx

=
(
x− 2− 5i

√
6

2

)
e

ln
(
4x2−16x+22

)
2 −5i arctan

(
(2x−4)

√
6

6

)

=
9
(
5
√
6 + 2ix− 4i

)
(2x2 − 8x+ 11)3

√
6

2
(
−x

√
6 + 2

√
6 + 3i

)5
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−16x+32

2x2−8x+11 dx

= z1e
2 ln
(
2x2−8x+11

)
= z1

((
2x2 − 8x+ 11

)2)
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Which simplifies to

y1 = −
9(2x2 − 8x+ 11)5

(
5
√
6 + 2ix− 4i

)√
6

2
(
x
√
6− 2

√
6− 3i

)5
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −16x+32

2x2−8x+11 dx

(y1)2
dx

= y1

∫
e4 ln

(
2x2−8x+11

)
(y1)2

dx

= y1

(
− 10i

√
6

27
(
2x− 4 + i

√
6
)4 + 8i

√
6

729
(
2x− 4 + i

√
6
)2 − 16

15
(
2x− 4 + i

√
6
)5

+ 22
81
(
2x− 4 + i

√
6
)3 + 4

2187
(
2x− 4 + i

√
6
) − 4

2187
(
−5i

√
6 + 2x− 4

))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
−
9(2x2 − 8x+ 11)5

(
5
√
6 + 2ix− 4i

)√
6

2
(
x
√
6− 2

√
6− 3i

)5
)

+ c2

(
−
9(2x2 − 8x+ 11)5

(
5
√
6 + 2ix− 4i

)√
6

2
(
x
√
6− 2

√
6− 3i

)5
(
− 10i

√
6

27
(
2x− 4 + i

√
6
)4

+ 8i
√
6

729
(
2x− 4 + i

√
6
)2 − 16

15
(
2x− 4 + i

√
6
)5 + 22

81
(
2x− 4 + i

√
6
)3

+ 4
2187

(
2x− 4 + i

√
6
) − 4

2187
(
−5i

√
6 + 2x− 4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 − 8x+ 11)
(

d2

dx2y(x)
)
− 16(x− 2)

(
d
dx
y(x)

)
+ 36y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 36y(x)
2x2−8x+11 +

16(x−2)
(

d
dx

y(x)
)

2x2−8x+11

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
16(x−2)

(
d
dx

y(x)
)

2x2−8x+11 + 36y(x)
2x2−8x+11 = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = − 16(x−2)

2x2−8x+11 , P3(x) = 36
2x2−8x+11

]
◦
(
x− 2 + I

√
6

2

)
· P2(x) is analytic at x = 2− I

√
6

2((
x− 2 + I

√
6

2

)
· P2(x)

) ∣∣∣∣
x=2− I

√
6

2

= 0

◦
(
x− 2 + I

√
6

2

)2
· P3(x) is analytic at x = 2− I

√
6

2((
x− 2 + I

√
6

2

)2
· P3(x)

) ∣∣∣∣
x=2− I

√
6

2

= 0

◦ x = 2− I
√
6

2 is a regular singular point
Check to see if x0 is a regular singular point
x0 = 2− I

√
6

2

• Multiply by denominators

(2x2 − 8x+ 11)
(

d2

dx2y(x)
)
+ (−16x+ 32)

(
d
dx
y(x)

)
+ 36y(x) = 0

• Change variables using x = u+ 2− I
√
6

2 so that the regular singular point is at u = 0(
2u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
−16u+ 8 I

√
6
) (

d
du
y(u)

)
+ 36y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2 I
√
6 r(r − 5) a0u−1+r +

(
∞∑
k=0

(
−2 I

√
6 (k + 1 + r) (k − 4 + r) ak+1 + 2ak(k + r − 3) (k + r − 6)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2 I

√
6 r(r − 5) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
−2 I

√
6 (k + 1 + r) (k − 4 + r) ak+1 + 2ak(k + r − 3) (k + r − 6) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

6ak
(
k2+2kr+r2−9k−9r+18

)√
6

k2+2kr+r2−3k−3r−4

• Recursion relation for r = 0 ; series terminates at k = 3

ak+1 =
− I

6ak
(
k2−9k+18

)√
6

k2−3k−4
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• Apply recursion relation for k = 0
a1 = 3 I

4 a0
√
6

• Apply recursion relation for k = 1
a2 = 5 I

18a1
√
6

• Express in terms of a0
a2 = −5a0

4

• Apply recursion relation for k = 2
a3 = I

9a2
√
6

• Express in terms of a0
a3 = −5 I

36a0
√
6

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1 + 3 I

√
6u

4 − 5u2

4 − 5 I
√
6u3

36

)
• Revert the change of variables u = x− 2 + I

√
6

2[
y(x) = − I

72a0
√
6 (10x3 − 60x2 + 111x− 62)

]
• Recursion relation for r = 5 ; series terminates at k = 1

ak+1 =
− I

6ak
(
k2+k−2

)√
6

k2+7k+6

• Apply recursion relation for k = 0
a1 = I

18a0
√
6

• Terminating series solution of the ODE for r = 5 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1 + I

√
6u

18

)
• Revert the change of variables u = x− 2 + I

√
6

2[
y(x) = a0

(
5
6 +

I(x−2)
√
6

18

)]
• Combine solutions and rename parameters[

y(x) = − Ia0
√
6
(
10x3−60x2+111x−62

)
72 + b0

(
5
6 +

I(x−2)
√
6

18

)]
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 55� �
dsolve((2*x^2-8*x+11)*diff(diff(y(x),x),x)-16*(x-2)*diff(y(x),x)+36*y(x) = 0,

y(x),singsol=all)� �
y = c2x

6 − 12c2x5 + 165c2x4

2 + c1x
3 + 3(−8c1 − 1815c2)x2

4
+ 3(37c1 + 10890c2)x

10 − 31c1
5 − 16577c2

8

Mathematica DSolve solution

Solving time : 1.501 (sec)
Leaf size : 91� �
DSolve[{(11-8*x+2*x^2)*D[y[x],{x,2}]-16*(x-2)*D[y[x],x]+36*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

15ic2
(
10x3 − 60x2 + 111x− 62

)
+

c1
(
2x+ 5i

√
6− 4

)
(2(x− 4)x+ 11)2

(
2ix+

√
6− 4i

)3
2
(
−2ix+

√
6 + 4i

)2
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2.1.60 problem 62

Solved as second order ode using Kovacic algorithm . . . . . . . . . 419
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 423
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 424
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 425

Internal problem ID [8908]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 62
Date solved : Thursday, December 12, 2024 at 09:54:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + (x− 3) y′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.328 (sec)

Writing the ode as

y′′ + (x− 3) y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x− 3 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6x− 1
4 (6)

Comparing the above to (5) shows that

s = x2 − 6x− 1
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
−1
4 + 1

4x
2 − 3

2x
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.107: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2 − 5

2x − 15
2x2 − 115

4x3 − 495
4x4 − 2285

4x5 − 11055
4x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 − 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 − 3

2x+ 9
4

This shows that the coefficient of 1 in the above is 9
4 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6x− 1
4

= Q+ R

4

=
(
−1
4 + 1

4x
2 − 3

2x
)
+ (0)

= −1
4 + 1

4x
2 − 3

2x

We see that the coefficient of the term 1
x
in the quotient is −1

4 . Now b can be found.

b =
(
−1
4

)
−
(
9
4

)
= −5

2
Hence

[
√
r]∞ = x

2 − 3
2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −1
4 + 1

4x
2 − 3

2x

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −

3
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x

2 − 3
2

)
= 3

2 − x

2
= 3

2 − x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
3
2 − x

2

)
(2x+ a1) +

((
−1
2

)
+
(
3
2 − x

2

)2

−
(
−1
4 + 1

4x
2 − 3

2x
))

= 0

(x+ 3) a1 + 6x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = −6}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 6x+ 8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 6x+ 8

)
e
∫ ( 3

2−
x
2
)
dx

=
(
x2 − 6x+ 8

)
e 3

2x−
1
4x

2

=
(
x2 − 6x+ 8

)
e−

x(−6+x)
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x−3
1 dx

= z1e
3
2x−

1
4x

2

= z1
(
e−

x(−6+x)
4

)
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Which simplifies to

y1 = e−
x(−6+x)

2
(
x2 − 6x+ 8

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x−3

1 dx

(y1)2
dx

= y1

∫
e−

1
2x

2+3x

(y1)2
dx

= y1

(∫ e− 1
2x

2+3xex(−6+x)

(x2 − 6x+ 8)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−

x(−6+x)
2
(
x2 − 6x+ 8

))
+ c2

(
e−

x(−6+x)
2
(
x2 − 6x+ 8

)(∫ e− 1
2x

2+3xex(−6+x)

(x2 − 6x+ 8)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + (x− 3)
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=max(0,1−m)

akk x
k−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
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∞∑
k=0

(ak+2(k + 2) (k + 1)− 3ak+1(k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (ak − 3ak+1 + 3ak+2) k + 3ak − 3ak+1 + 2ak+2 = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = −akk−3ak+1k+3ak−3ak+1

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.024 (sec)
Leaf size : 73� �
dsolve(diff(diff(y(x),x),x)+(x-3)*diff(y(x),x)+3*y(x) = 0,

y(x),singsol=all)� �
y =

erf

√
2
√

− (x− 3)2

2

− 1

 c2(x− 4) (x− 2) e−
(x−3)2

2
√
π

−
√
2
√

− (x− 3)2 c2 − c1e−
(x−3)2

2 (x− 2) (x− 4)
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Mathematica DSolve solution

Solving time : 0.974 (sec)
Leaf size : 90� �
DSolve[{D[y[x],{x,2}]+(x-3)*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
− 1

2 (x−6)x−8
(
e7/2

√
2πc2

(
x2 − 6x+ 8

)
erfi
(
x− 3√

2

)
+ 4e8c1

(
x2 − 6x+ 8

)
− 2c2e

1
2 (x−4)2+x(x− 3)

)
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2.1.61 problem 63

Solved as second order ode using Kovacic algorithm . . . . . . . . . 426
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 430
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 432
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 432

Internal problem ID [8909]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 63
Date solved : Thursday, December 12, 2024 at 09:54:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 8x+ 14

)
y′′ − 8(x− 4) y′ + 20y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.282 (sec)

Writing the ode as (
x2 − 8x+ 14

)
y′′ + (−8x+ 32) y′ + 20y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 8x+ 14
B = −8x+ 32 (3)
C = 20

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 48
(x2 − 8x+ 14)2

(6)

Comparing the above to (5) shows that

s = 48

t =
(
x2 − 8x+ 14

)2
Therefore eq. (4) becomes

z′′(x) =
(

48
(x2 − 8x+ 14)2

)
z(x) (7)



chapter 2. book solved problems 427

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.109: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (x2 − 8x+ 14)2. There is a pole at x = 4 +

√
2 of order 2. There is a pole at

x = 4−
√
2 of order 2. Since there is no odd order pole larger than 2 and the order at ∞

is 4 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6(
x− 4 +

√
2
)2 + 6(

x− 4−
√
2
)2 + 3

√
2

x− 4 +
√
2
− 3

√
2

x− 4−
√
2

For the pole at x = 4 +
√
2 let b be the coefficient of 1(

x−4−
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = 4−
√
2 let b be the coefficient of 1(

x−4+
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 48
(x2 − 8x+ 14)2

pole c location pole order [
√
r]c α+

c α−
c

4 +
√
2 2 0 3 −2

4−
√
2 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 2
x− 4−

√
2
+ 3

x− 4 +
√
2
+ (−) (0)

= − 2
x− 4−

√
2
+ 3

x− 4 +
√
2

= x− 4− 5
√
2

x2 − 8x+ 14

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
x− 4−

√
2
+ 3

x− 4 +
√
2

)
(0) +

((
2(

x− 4−
√
2
)2 − 3(

x− 4 +
√
2
)2
)

+
(
− 2
x− 4−

√
2
+ 3

x− 4 +
√
2

)2

−
(

48
(x2 − 8x+ 14)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 2
x−4−

√
2+

3
x−4+

√
2

)
dx

=
(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x+32

x2−8x+14 dx

= z1e
2 ln
(
x2−8x+14

)
= z1

((
x2 − 8x+ 14

)2)
Which simplifies to

y1 =
(x2 − 8x+ 14)2

(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −8x+32

x2−8x+14 dx

(y1)2
dx

= y1

∫
e4 ln

(
x2−8x+14

)
(y1)2

dx

= y1

(
4
√
2(

x− 4 +
√
2
)2+ 16

√
2(

x− 4 +
√
2
)4− 1

x− 4 +
√
2
− 16(

x− 4 +
√
2
)3− 64

5
(
x− 4 +

√
2
)5
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 8x+ 14)2

(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

)

+ c2

(
(x2 − 8x+ 14)2

(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

(
4
√
2(

x− 4 +
√
2
)2 + 16

√
2(

x− 4 +
√
2
)4

− 1
x− 4 +

√
2
− 16(

x− 4 +
√
2
)3 − 64

5
(
x− 4 +

√
2
)5
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 8x+ 14)
(

d2

dx2y(x)
)
− 8(−4 + x)

(
d
dx
y(x)

)
+ 20y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 20y(x)
x2−8x+14 +

8(−4+x)
(

d
dx

y(x)
)

x2−8x+14

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
8(−4+x)

(
d
dx

y(x)
)

x2−8x+14 + 20y(x)
x2−8x+14 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 8(−4+x)
x2−8x+14 , P3(x) = 20

x2−8x+14

]
◦
(
x− 4 +

√
2
)
· P2(x) is analytic at x = 4−

√
2((

x− 4 +
√
2
)
· P2(x)

) ∣∣∣∣
x=4−

√
2
= 0

◦
(
x− 4 +

√
2
)2 · P3(x) is analytic at x = 4−

√
2((

x− 4 +
√
2
)2 · P3(x)

) ∣∣∣∣
x=4−

√
2
= 0

◦ x = 4−
√
2is a regular singular point

Check to see if x0 is a regular singular point
x0 = 4−

√
2

• Multiply by denominators

(x2 − 8x+ 14)
(

d2

dx2y(x)
)
+ (−8x+ 32)

(
d
dx
y(x)

)
+ 20y(x) = 0

• Change variables using x = u+ 4−
√
2 so that the regular singular point is at u = 0(

u2 − 2u
√
2
) (

d2

du2y(u)
)
+
(
−8u+ 8

√
2
) (

d
du
y(u)

)
+ 20y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2
√
2 (r − 5) ra0u−1+r +

(
∞∑
k=0

(
−2

√
2 (k + r − 4) (k + 1 + r) ak+1 + ak(k + r − 4) (k + r − 5)

)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
−2

√
2 (r − 5) r = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation(
−2ak+1(k + 1 + r)

√
2 + ak(k + r − 5)

)
(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)

√
2

4(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 5

ak+1 = ak(k−5)
√
2

4(k+1)

• Apply recursion relation for k = 0
a1 = −5a0

√
2

4

• Apply recursion relation for k = 1
a2 = −a1

√
2

2

• Express in terms of a0
a2 = 5a0

4

• Apply recursion relation for k = 2
a3 = −a2

√
2

4

• Express in terms of a0
a3 = −5a0

√
2

16

• Apply recursion relation for k = 3
a4 = −a3

√
2

8

• Express in terms of a0
a4 = 5a0

64

• Apply recursion relation for k = 4
a5 = −a4

√
2

20

• Express in terms of a0
a5 = −a0

√
2

256

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1− 5u

√
2

4 + 5u2

4 − 5
√
2u3

16 + 5u4

64 −
√
2u5

256

)
• Revert the change of variables u = x− 4 +

√
2[

y(x) = a0
( (

−x5+20x4−180x3+880x2−2260x+2384
)√

2
256 + 5x4

128 −
5x3

8 + 125x2

32 − 45x
4 + 401

32

)]
• Recursion relation for r = 5

ak+1 = akk
√
2

4(k+6)

• Solution for r = 5[
y(u) =

∞∑
k=0

aku
k+5, ak+1 = akk

√
2

4(k+6)

]
• Revert the change of variables u = x− 4 +

√
2[

y(x) =
∞∑
k=0

ak
(
x− 4 +

√
2
)k+5

, ak+1 = akk
√
2

4(k+6)

]
• Combine solutions and rename parameters[

y(x) = a0
( (

−x5+20x4−180x3+880x2−2260x+2384
)√

2
256 + 5x4

128 −
5x3

8 + 125x2

32 − 45x
4 + 401

32

)
+
(

∞∑
k=0

bk
(
x− 4 +

√
2
)5+k

)
, bk+1 = bkk

√
2

4(k+6)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 55� �
dsolve((x^2-8*x+14)*diff(diff(y(x),x),x)-8*(x-4)*diff(y(x),x)+20*y(x) = 0,

y(x),singsol=all)� �
y= c1x

5+c2x
4+4(−35c1−4c2)x3+20(56c1+5c2)x2+4(−875c1−72c2)x+4032c1+

1604c2
5

Mathematica DSolve solution

Solving time : 0.155 (sec)
Leaf size : 77� �
DSolve[{(x^2-8*x+14)*D[y[x],{x,2}]+8*(x-4)*D[y[x],x]+20*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c1P

3
1
2 i
(
i+

√
31
)(x−4√

2

)
+ c2Q

3
1
2 i
(
i+

√
31
)(x−4√

2

)
(x2 − 8x+ 14)3/2
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2.1.62 problem 64

Solved as second order ode using Kovacic algorithm . . . . . . . . . 433
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 437
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 439
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 439

Internal problem ID [8910]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 64
Date solved : Thursday, December 12, 2024 at 09:54:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 4x+ 5

)
y′′ − 20(x+ 1) y′ + 60y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.619 (sec)

Writing the ode as (
2x2 + 4x+ 5

)
y′′ + (−20x− 20) y′ + 60y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 4x+ 5
B = −20x− 20 (3)
C = 60

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −210
(2x2 + 4x+ 5)2

(6)

Comparing the above to (5) shows that

s = −210

t =
(
2x2 + 4x+ 5

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 210
(2x2 + 4x+ 5)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.111: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x2 + 4x+ 5)2. There is a pole at x = −1 + i

√
6

2 of order 2. There is a pole at
x = −1− i

√
6

2 of order 2. Since there is no odd order pole larger than 2 and the order at
∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35

4
(
x+ 1− i

√
6

2

)2 + 35

4
(
x+ 1 + i

√
6

2

)2 + 35i
√
6

12
(
x+ 1− i

√
6

2

) − 35i
√
6

12
(
x+ 1 + i

√
6

2

)
For the pole at x = −1 + i

√
6

2 let b be the coefficient of 1(
x+1− i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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For the pole at x = −1− i
√
6

2 let b be the coefficient of 1(
x+1+ i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 210
(2x2 + 4x+ 5)2

pole c location pole order [
√
r]c α+

c α−
c

−1 + i
√
6

2 2 0 7
2 −5

2

−1− i
√
6

2 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

) + (−) (0)

= − 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

)
= −6i

√
6 + 2x+ 2

2x2 + 4x+ 5
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

)
 (0) +


 5

2
(
x+ 1− i

√
6

2

)2 − 7

2
(
x+ 1 + i

√
6

2

)2
+

− 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

)
2

−
(
− 210
(2x2 + 4x+ 5)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫− 5

2
(
x+1− i

√
6

2

)+ 7

2
(
x+1+ i

√
6

2

)
dx

= 27
√
2 (2x2 + 4x+ 5)7/2(
3 + i (x+ 1)

√
6
)6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−20x−20
2x2+4x+5 dx

= z1e
5 ln

(
2x2+4x+5

)
2

= z1
((

2x2 + 4x+ 5
)5/2)

Which simplifies to

y1 = − (2x2 + 4x+ 5)6
√
2

27
(
i− (x+1)

√
2
√
3

3

)6
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −20x−20

2x2+4x+5 dx

(y1)2
dx

= y1

∫
e5 ln

(
2x2+4x+5

)
(y1)2

dx

= y1

−
1
2x

5 + 5
2x

4 + 5
2x

3 − 5
2x

2 − 31
8 x− 7

8

2
(
x+ 1 + i

√
6

2

)6
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Therefore the solution is

y = c1y1 + c2y2

= c1

− (2x2 + 4x+ 5)6
√
2

27
(
i− (x+1)

√
2
√
3

3

)6


+ c2

− (2x2 + 4x+ 5)6
√
2

27
(
i− (x+1)

√
2
√
3

3

)6
−

1
2x

5 + 5
2x

4 + 5
2x

3 − 5
2x

2 − 31
8 x− 7

8

2
(
x+ 1 + i

√
6

2

)6



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 + 4x+ 5)
(

d2

dx2y(x)
)
− 20(x+ 1)

(
d
dx
y(x)

)
+ 60y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 60y(x)
2x2+4x+5 +

20(x+1)
(

d
dx

y(x)
)

2x2+4x+5

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
20(x+1)

(
d
dx

y(x)
)

2x2+4x+5 + 60y(x)
2x2+4x+5 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 20(x+1)
2x2+4x+5 , P3(x) = 60

2x2+4x+5

]
◦
(
x+ 1 + I

√
6

2

)
· P2(x) is analytic at x = −1− I

√
6

2((
x+ 1 + I

√
6

2

)
· P2(x)

) ∣∣∣∣
x=−1− I

√
6

2

= 0

◦
(
x+ 1 + I

√
6

2

)2
· P3(x) is analytic at x = −1− I

√
6

2((
x+ 1 + I

√
6

2

)2
· P3(x)

) ∣∣∣∣
x=−1− I

√
6

2

= 0

◦ x = −1− I
√
6

2 is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1− I

√
6

2

• Multiply by denominators

(2x2 + 4x+ 5)
(

d2

dx2y(x)
)
+ (−20x− 20)

(
d
dx
y(x)

)
+ 60y(x) = 0

• Change variables using x = u− 1− I
√
6

2 so that the regular singular point is at u = 0(
2u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
−20u+ 10 I

√
6
) (

d
du
y(u)

)
+ 60y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2 I
√
6 (r − 6) ra0u−1+r +

(
∞∑
k=0

(
−2 I

√
6 (k + r − 5) (k + 1 + r) ak+1 + 2ak(k + r − 5) (k + r − 6)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2 I

√
6 (r − 6) r = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term in the series must be 0, giving the recursion relation
−2
(
Iak+1(k + 1 + r)

√
6− ak(k + r − 6)

)
(k + r − 5) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

6ak(k+r−6)
√
6

k+1+r

• Recursion relation for r = 0 ; series terminates at k = 6

ak+1 =
− I

6ak(k−6)
√
6

k+1

• Recursion relation that defines the terminating series solution of the ODE for r = 0[
y(u) =

5∑
k=0

aku
k, ak+1 =

− I
6ak(k−6)

√
6

k+1

]
• Revert the change of variables u = x+ 1 + I

√
6

2[
y(x) =

5∑
k=0

ak
(
x+ 1 + I

√
6

2

)k
, ak+1 =

− I
6ak(k−6)

√
6

k+1

]
• Recursion relation for r = 6

ak+1 =
− I

6akk
√
6

k+7

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+1 =

− I
6akk

√
6

k+7

]
• Revert the change of variables u = x+ 1 + I

√
6

2[
y(x) =

∞∑
k=0

ak
(
x+ 1 + I

√
6

2

)k+6
, ak+1 =

− I
6akk

√
6

k+7

]
• Combine solutions and rename parameters[

y(x) =
(

5∑
k=0

ak
(
x+ 1 + I

√
6

2

)k)
+
(

∞∑
k=0

bk
(
x+ 1 + I

√
6

2

)k+6
)
, ak+1 =

− I
6ak(k−6)

√
6

k+1 , bk+1 =
− I

6 bkk
√
6

k+7

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 65� �
dsolve((2*x^2+4*x+5)*diff(diff(y(x),x),x)-20*(x+1)*diff(y(x),x)+60*y(x) = 0,

y(x),singsol=all)� �
y = c2x

6 + c1x
5 + 5(2c1 − 15c2)x4

2 + 5(c1 − 20c2)x3

+ 5(−4c1 − 45c2)x2

4 + (−31c1 + 120c2)x
4 − 7c1

4 + 155c2
8

Mathematica DSolve solution

Solving time : 1.468 (sec)
Leaf size : 83� �
DSolve[{(2*x^2+4*x+5)*D[y[x],{x,2}]-20*(x+1)*D[y[x],x]+60*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
(2x2 + 4x+ 5)5/2

(
4c2(4x5 + 20x4 + 20x3 − 20x2 − 31x− 7) + c1

(
2ix+

√
6 + 2i

)6)
(4x2 + 8x+ 10)5/2
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2.1.63 problem 65

Solved as second order ode using Kovacic algorithm . . . . . . . . . 440
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 444
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 447
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 447

Internal problem ID [8911]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 65
Date solved : Thursday, December 12, 2024 at 09:54:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x3 + 1

)
y′′ + 7x2y′ + 9xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.438 (sec)

Writing the ode as (
x3 + 1

)
y′′ + 7x2y′ + 9xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + 1
B = 7x2 (3)
C = 9x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x(x3 + 8)
4 (x3 + 1)2

(6)

Comparing the above to (5) shows that

s = −x
(
x3 + 8

)
t = 4

(
x3 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− x(x3 + 8)
4 (x3 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.113: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + 1)2. There is a pole at x = −1 of order 2. There is a pole at x = 1

2 −
i
√
3

2 of
order 2. There is a pole at x = 1

2 +
i
√
3

2 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 7

36
(
x− 1

2 −
i
√
3

2

)2 + 7

36
(
x− 1

2 +
i
√
3

2

)2 +
− 5

36 +
5i
√
3

36

x− 1
2 −

i
√
3

2

+
− 5

36 −
5i
√
3

36

x− 1
2 +

i
√
3

2

+ 5
18 (x+ 1) +

7
36 (x+ 1)2

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
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For the pole at x = 1
2 −

i
√
3

2 let b be the coefficient of 1(
x− 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
For the pole at x = 1

2 +
i
√
3

2 let b be the coefficient of 1(
x− 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − x(x3 + 8)

4 (x3 + 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − x(x3 + 8)
4 (x3 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
6 −1

6
1
2 −

i
√
3

2 2 0 7
6 −1

6
1
2 +

i
√
3

2 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
−1
2

)
= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

) + (−) (0)

= − 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

)
= − x2

2x3 + 2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

)
 (1) +


 1
6 (x+ 1)2

+ 1

6
(
x− 1

2 +
i
√
3

2

)2 + 1

6
(
x− 1

2 −
i
√
3

2

)2
+

− 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

)
2

−
(
− x(x3 + 8)
4 (x3 + 1)2

) = 0

16a0x(x2 − x+ 1)(
2x− 1 + i

√
3
)2 (

i
√
3− 2x+ 1

)2 (x+ 1)
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫− 1

6(x+1)−
1

6
(
x− 1

2+ i
√
3

2

)− 1

6
(
x− 1

2− i
√
3

2

)
dx

= (x) 1(
(x+ 1)

(
2x− 1 + i

√
3
) (

i
√
3− 2x+ 1

))1/6
= x(

(x+ 1)
(
2x− 1 + i

√
3
) (

i
√
3− 2x+ 1

))1/6
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x2
x3+1 dx

= z1e
−

7 ln
(
x3+1

)
6

= z1

(
1

(x3 + 1)7/6

)
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Which simplifies to

y1 =
x

(x3 + 1)7/6 (−4x3 − 4)1/6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x2

x3+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
x3+1

)
3

(y1)2
dx

= y1

(∫ (−4x3 − 4)1/3

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x3 + 1)7/6 (−4x3 − 4)1/6

)
+c2

(
x

(x3 + 1)7/6 (−4x3 − 4)1/6

(∫ (−4x3 − 4)1/3

x2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(x3 + 1)
(

d2

dx2y(x)
)
+ 7x2( d

dx
y(x)

)
+ 9xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −9xy(x)
x3+1 −

7x2
(

d
dx

y(x)
)

x3+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
7x2
(

d
dx

y(x)
)

x3+1 + 9xy(x)
x3+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2

x3+1 , P3(x) = 9x
x3+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1
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• Multiply by denominators

(x3 + 1)
(

d2

dx2y(x)
)
+ 7x2( d

dx
y(x)

)
+ 9xy(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 3u2 + 3u)
(

d2

du2y(u)
)
+ (7u2 − 14u+ 7)

(
d
du
y(u)

)
+ (9u− 9) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(4 + 3r)u−1+r + (a1(1 + r) (7 + 3r)− a0(3r2 + 11r + 9))ur +
(

∞∑
k=1

(
ak+1(k + 1 + r) (3k + 7 + 3r)− ak(3k2 + 6kr + 3r2 + 11k + 11r + 9) + ak−1(k + 2 + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• Each term must be 0

a1(1 + r) (7 + 3r)− a0(3r2 + 11r + 9) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (3k + 7 + 3r)− ak(3k2 + 6kr + 3r2 + 11k + 11r + 9) + ak−1(k + 2 + r)2 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (3k + 10 + 3r)− ak+1
(
3(k + 1)2 + 6(k + 1) r + 3r2 + 11k + 20 + 11r

)
+ ak(k + r + 3)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−3k2ak+1+2krak−6krak+1+r2ak−3r2ak+1+6kak−17kak+1+6rak−17rak+1+9ak−23ak+1

(k+2+r)(3k+10+3r)

• Recursion relation for r = 0
ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10) , 7a1 − 9a0 = 0
]

• Revert the change of variables u = x+ 1
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[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1
(k+2)(3k+10) , 7a1 − 9a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −k2ak−3k2ak+1+ 10
3 kak−9kak+1+ 25

9 ak− 17
3 ak+1(

k+ 2
3
)
(3k+6)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −k2ak−3k2ak+1+ 10
3 kak−9kak+1+ 25

9 ak− 17
3 ak+1(

k+ 2
3
)
(3k+6) ,−a1 + a0

3 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k−
4
3 , ak+2 = −k2ak−3k2ak+1+ 10

3 kak−9kak+1+ 25
9 ak− 17

3 ak+1(
k+ 2

3
)
(3k+6) ,−a1 + a0

3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
4
3

)
, ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10) , 7a1 − 9a0 = 0, bk+2 = −k2bk−3k2bk+1+ 10
3 kbk−9kbk+1+ 25

9 bk− 17
3 bk+1(

k+ 2
3
)
(3k+6) ,−b1 + b0

3 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.239 (sec)
Leaf size : 28� �
dsolve((x^3+1)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x^2+9*x*y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

(
[1, 1] ,

[
2
3

]
,−x3

)
+ c2x

(x3 + 1)4/3

Mathematica DSolve solution

Solving time : 1.163 (sec)
Leaf size : 118� �
DSolve[{(1+x^3)*D[y[x],{x,2}]+7*x^2*D[y[x],x]+9*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−2

√
3c2x arctan

(
√
3x

2
3
√
x3 + 1+x

)
− 6c2 3

√
x3 + 1− 2c2x log

(
3
√
x3 + 1− x

)
+ c2x log

(
3
√
x3 + 1x+ (x3 + 1)2/3 + x2

)
+ 6c1x

6 (x3 + 1)4/3
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2.1.64 problem 66

Solved as second order ode using Kovacic algorithm . . . . . . . . . 448
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 453
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 453
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 453

Internal problem ID [8912]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 66
Date solved : Thursday, December 12, 2024 at 09:54:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x5 + 1

)
y′′ + 14x4y′ + 10x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.052 (sec)

Writing the ode as (
2x5 + 1

)
y′′ + 14x4y′ + 10x3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x5 + 1
B = 14x4 (3)
C = 10x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x3(5x5 + 6)
(2x5 + 1)2

(6)

Comparing the above to (5) shows that

s = 3x3(5x5 + 6
)

t =
(
2x5 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x3(5x5 + 6)
(2x5 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.115: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 10− 8
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x5 + 1)2. There is a pole at x = 24/5

√
5

8 + 24/5
8 + i23/10

√
5−

√
5

4 of order 2. There
is a pole at x = 24/5

8 − 24/5
√
5

8 + i23/10
√

5−
√
5

8 + i23/10
√

5−
√
5
√
5

8 of order 2. There is a pole at
x = −24/5

2 of order 2. There is a pole at x = 24/5
8 − 24/5

√
5

8 − i23/10
√

5−
√
5
√
5

8 − i23/10
√

5−
√
5

8

of order 2. There is a pole at x = 24/5
√
5

8 + 24/5
8 − i23/10

√
5−

√
5

4 of order 2. Since there is no
odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = Expression too large to display

For the pole at x = 24/5
√
5

8 + 24/5
8 + i23/10

√
5−

√
5

4 let b be the coefficient of 1(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

)2

in the partial fractions decomposition of r given above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10
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For the pole at x = 24/5
8 − 24/5

√
5

8 + i23/10
√

5−
√
5

8 + i23/10
√

5−
√
5
√
5

8 let b be the coefficient of
1(

x− 24/5
8 + 24/5

√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

)2 in the partial fractions decomposition of r given

above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

For the pole at x = −24/5
2 let b be the coefficient of 1(

x+ 24/5
2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

For the pole at x = 24/5
8 − 24/5

√
5

8 − i23/10
√

5−
√
5
√
5

8 − i23/10
√

5−
√
5

8 let b be the coefficient of
1(

x− 24/5
8 + 24/5

√
5

8 + i23/10
√

5−
√
5
√
5

8 + i23/10
√

5−
√
5

8

)2 in the partial fractions decomposition of r given

above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

For the pole at x = 24/5
√
5

8 + 24/5
8 − i23/10

√
5−

√
5

4 let b be the coefficient of 1(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

)2

in the partial fractions decomposition of r given above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x3(5x5 + 6)

(2x5 + 1)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x3(5x5 + 6)
(2x5 + 1)2
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pole c location pole order [
√
r]c α+

c α−
c

24/5
√
5

8 + 24/5
8 + i23/10

√
5−

√
5

4 2 0 7
10

3
10

24/5
8 − 24/5

√
5

8 + i23/10
√

5−
√
5

8 + i23/10
√

5−
√
5
√
5

8 2 0 7
10

3
10

−24/5
2 2 0 7

10
3
10

24/5
8 − 24/5

√
5

8 − i23/10
√

5−
√
5
√
5

8 − i23/10
√

5−
√
5

8 2 0 7
10

3
10

24/5
√
5

8 + 24/5
8 − i23/10

√
5−

√
5

4 2 0 7
10

3
10

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α−
c1 + α−

c2 + α−
c3 + α−

c4 + α−
c5

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+
(
(−)[

√
r]c4 +

α−
c4

x− c4

)
+
(
(−)[

√
r]c5 +

α−
c5

x− c5

)
+ (+)[

√
r]∞

= 3
10
(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

) + 3
10
(
x+ 24/5

2

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 + i23/10
√

5−
√
5
√
5

8 + i23/10
√

5−
√
5

8

) + 3
10
(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

) + (0)

= 3
10
(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

) + 3
10
(
x+ 24/5

2

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 + i23/10
√

5−
√
5
√
5

8 + i23/10
√

5−
√
5

8

) + 3
10
(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

)
= 3x4

2x5 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) and Solving for the coefficients ai in the above using
method of undetermined coefficients gives

{a0 = 0}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e

∫ 3

10
(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

)+ 3

10
(
x− 24/5

8 +24/5
√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

)+ 3

10
(
x+24/5

2

)+ 3

10
(
x− 24/5

8 +24/5
√

5
8 + i23/10

√
5−

√
5
√
5

8 + i23/10
√

5−
√
5

8

)+ 3

10
(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

)
dx

= (x)
((

24/5
√
5 + 2i23/10

√
5−

√
5 + 24/5 − 8x

)(
−i23/10

√
5−

√
5
√
5 + 24/5

√
5− i23/10

√
5−

√
5− 24/5 + 8x

)(
24/5 + 2x

)(
i23/10

√
5−

√
5
√
5 + 24/5

√
5 + i23/10

√
5−

√
5− 24/5 + 8x

)(
24/5

√
5− 2i23/10

√
5−

√
5 + 24/5 − 8x

))3/10

= x83/10
((

x+ 24/5
2

)(
i23/10

√
5−

√
5 +

(√
5 + 1

)
24/5

2 − 4x
)(

i23/10
(√

5 + 1
)√

5−
√
5 +

(
−
√
5 + 1

)
24/5 − 8x

)(
i23/10

(√
5 + 1

)√
5−

√
5 +

(√
5− 1

)
24/5 + 8x

)(
i23/10

√
5−

√
5 +

(
−
√
5− 1

)
24/5

2 + 4x
))3/10

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
14x4
2x5+1 dx

= z1e
−

7 ln
(
2x5+1

)
10

= z1

(
1

(2x5 + 1)7/10

)

Which simplifies to

y1 =
x83/10(1024x5 + 512)3/10

(2x5 + 1)7/10

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 14x4

2x5+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x5+1

)
5

(y1)2
dx

= y1

(∫ 82/5

8x2 (1024x5 + 512)3/5
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x83/10(1024x5 + 512)3/10

(2x5 + 1)7/10

)
+c2

(
x83/10(1024x5 + 512)3/10

(2x5 + 1)7/10

(∫ 82/5

8x2 (1024x5 + 512)3/5
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.990 (sec)
Leaf size : 30� �
dsolve((2*x^5+1)*diff(diff(y(x),x),x)+14*x^4*diff(y(x),x)+10*y(x)*x^3 = 0,

y(x),singsol=all)� �
y = c1x

(2x5 + 1)2/5
+ c2 hypergeom

([
1
5 , 1
]
,

[
4
5

]
,−2x5

)

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{(1+2*x^5)*D[y[x],{x,2}]+14*x^4*D[y[x],x]+10*x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Timed out
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2.1.65 problem 67

Solved as second order ode using Kovacic algorithm . . . . . . . . . 454
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 458
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 459
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 460

Internal problem ID [8913]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 67
Date solved : Thursday, December 12, 2024 at 09:54:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + x6y′ + 7x5y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.442 (sec)

Writing the ode as

y′′ + x6y′ + 7x5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x6 (3)
C = 7x5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x5(x7 − 16)
4 (6)

Comparing the above to (5) shows that

s = x5(x7 − 16
)

t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x5(x7 − 16)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.116: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 12
= −12

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −12 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −12 then

v = −Or(∞)
2 = 12

2 = 6

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
6∑

i=0

aix
i (8)

Let a be the coefficient of xv = x6 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x6

2 − 4
x
− 16

x8 − 128
x15 − 1280

x22 − 14336
x29 − 172032

x36 − 2162688
x43 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 6 gives

[
√
r]∞ =

6∑
i=0

aix
i

= x6

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x5 = x5 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x12

4

This shows that the coefficient of x5 in the above is 0. Now we need to find the coefficient
of x5 in r. How this is done depends on if v = 0 or not. Since v = 6 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x5 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= x5(x7 − 16)
4

= Q+ R

4

=
(
1
4x

12 − 4x5
)
+ (0)

= 1
4x

12 − 4x5

We see that the coefficient of the term 1
x
in the quotient is −4. Now b can be found.

b = (−4)− (0)
= −4

Hence

[
√
r]∞ = x6

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−4
1
2

− 6
)

= −7

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−4

1
2

− 6
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x5(x7 − 16)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−12 x6

2 −7 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x6

2

)
= −x6

2

= −x6

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x6

2

)
(1) +

((
−3x5)+ (−x6

2

)2

−
(
x5(x7 − 16)

4

))
= 0

x5a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x6

2 dx

= (x) e−x7
14

= x e−x7
14

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x6
1 dx

= z1e
−x7

14

= z1
(
e−x7

14

)
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Which simplifies to

y1 = e−x7
7 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x6

1 dx

(y1)2
dx

= y1

∫
e−

x7
7

(y1)2
dx

= y1


76/7(−1)1/7

(
−7x6(−1)6/7Γ

( 6
7
)

(−x7)6/7
+ 7 71/7(−1)6/7e

x7
7

x
+

7x6(−1)6/7Γ
(

6
7 ,−

x7
7

)
(−x7)6/7

)
49


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x7

7 x
)

+ c2

e−x7
7 x


76/7(−1)1/7

(
−7x6(−1)6/7Γ

( 6
7
)

(−x7)6/7
+ 7 71/7(−1)6/7e

x7
7

x
+

7x6(−1)6/7Γ
(

6
7 ,−

x7
7

)
(−x7)6/7

)
49




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x6( d
dx
y(x)

)
+ 7x5y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x5 · y(x) to series expansion

x5 · y(x) =
∞∑
k=0

akx
k+5

◦ Shift index using k− >k − 5

x5 · y(x) =
∞∑
k=5

ak−5x
k

◦ Convert x6 ·
(

d
dx
y(x)

)
to series expansion

x6 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+5
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◦ Shift index using k− >k − 5

x6 ·
(

d
dx
y(x)

)
=

∞∑
k=5

ak−5(k − 5)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

30a6x4 + 20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=5

(ak+2(k + 2) (k + 1) + ak−5(k + 2))xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0, 30a6 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0}

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak−5 + ak+2) = 0

• Shift index using k− >k + 5
(k + 7) ((k + 5) ak+7 + ak + ak+7) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+7 = − ak

k+6 , a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 63� �
dsolve(diff(diff(y(x),x),x)+x^6*diff(y(x),x)+7*x^5*y(x) = 0,

y(x),singsol=all)� �
y = c2e−

x7
7
(
−x7)1/7 76/7Γ(6

7

)
− c2e−

x7
7
(
−x7)1/7 76/7Γ(6

7 ,−
x7

7

)
+ c1e−

x7
7 x+ 7c2
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Mathematica DSolve solution

Solving time : 0.391 (sec)
Leaf size : 53� �
DSolve[{D[y[x],{x,2}]+x^6*D[y[x],x]+7*x^5*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

49e
−x7

7

(
49c1x− 76/7c2 7

√
−x7Γ

(
−1
7 ,−

x7

7

))
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2.1.66 problem 68

Solved as second order ode using Kovacic algorithm . . . . . . . . . 461
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 466
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 467
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 467

Internal problem ID [8914]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 68
Date solved : Friday, December 13, 2024 at 05:31:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x8 + 1

)
y′′ − 16x7y′ + 72x6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 438.586 (sec)

Writing the ode as (
x8 + 1

)
y′′ − 16x7y′ + 72x6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x8 + 1
B = −16x7 (3)
C = 72x6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −128x6

(x8 + 1)2
(6)

Comparing the above to (5) shows that

s = −128x6

t =
(
x8 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 128x6

(x8 + 1)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.118: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 16− 6
= 10

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (x8 + 1)2. There is a pole at x =

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2 of order 2.
There is a pole at x =

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 of order 2. There is a pole at x =
−
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 of order 2. There is a pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2

of order 2. There is a pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2 of order 2. There
is a pole at x = −

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 of order 2. There is a pole at x =√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 of order 2. There is a pole at x =
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 10 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 10 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.
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Looking at poles of order 2. The partial fractions decomposition of r is

r = 2(
x−

√
2+

√
2

2 − i
√

2−
√
2

2

)2 + 2(
x−

√
2−

√
2

2 − i
√

2+
√
2

2

)2 + 2(
x+

√
2−

√
2

2 − i
√

2+
√
2

2

)2
+ 2(

x+
√

2+
√
2

2 − i
√

2−
√
2

2

)2 + 2(
x+

√
2+

√
2

2 + i
√

2−
√
2

2

)2
+ 2(

x+
√

2−
√
2

2 + i
√

2+
√
2

2

)2 + 2(
x−

√
2−

√
2

2 + i
√

2+
√
2

2

)2
+ 2(

x−
√

2+
√
2

2 + i
√

2−
√
2

2

)2 +
2
(√

2+
√
2

2 + i
√

2−
√
2

2

)7
x−

√
2+

√
2

2 − i
√

2−
√
2

2

+
2
(√

2−
√
2

2 + i
√

2+
√
2

2

)7
x−

√
2−

√
2

2 − i
√

2+
√
2

2

+
2
(
−
√

2−
√
2

2 + i
√

2+
√
2

2

)7
x+

√
2−

√
2

2 − i
√

2+
√
2

2

+
2
(
−
√

2+
√
2

2 + i
√

2−
√
2

2

)7
x+

√
2+

√
2

2 − i
√

2−
√
2

2

+
2
(
−
√

2+
√
2

2 − i
√

2−
√
2

2

)7
x+

√
2+

√
2

2 + i
√

2−
√
2

2

+
2
(
−
√

2−
√
2

2 − i
√

2+
√
2

2

)7
x+

√
2−

√
2

2 + i
√

2+
√
2

2

+
2
(√

2−
√
2

2 − i
√

2+
√
2

2

)7
x−

√
2−

√
2

2 + i
√

2+
√
2

2

+
2
(√

2+
√
2

2 − i
√

2−
√
2

2

)7
x−

√
2+

√
2

2 + i
√

2−
√
2

2

For the pole at x =
√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2
√

2−
√

2
2 −

√
2−

√
2

2 − i
√

2−
√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x =
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2−

√
2

2 − i
√

2−
√

2
√
2

2 − i
√

2−
√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2−

√
2

2 − i
√

2−
√
2
√

2
2 − i

√
2−

√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√

2
2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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For the pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√

2
2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −
√

2−
√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2−

√
2

2 + i
√

2−
√
2
√

2
2 + i

√
2−

√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x =
√

2−
√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x =
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√

2
2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 10 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 128x6

(x8 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2 2 0 2 −1√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 2 0 2 −1

−
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 2 0 2 −1

−
√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2 2 0 2 −1

−
√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2 2 0 2 −1

−
√

2−
√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 2 0 2 −1√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 2 0 2 −1
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2 2 0 2 −1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

10 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3 + α−

c4 + α−
c5 + α−

c6 + α−
c7 + α+

c8

)
= 1− (−5)
= 6

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+
(
(−)[

√
r]c4 +

α−
c4

x− c4

)
+
(
(−)[

√
r]c5 +

α−
c5

x− c5

)
+
(
(−)[

√
r]c6 +

α−
c6

x− c6

)
+
(
(−)[

√
r]c7 +

α−
c7

x− c7

)
+
(
(+)[

√
r]c8 +

α+
c8

x− c8

)
+ (−)[

√
r]∞

= − 1
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

+ 2
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2

+ (−) (0)

= − 1
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

+ 2
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2

=

(
(3x6 − 3ix4 − 3ix2 − 3)

√
2− 3((−1 + i)x4 + 1 + i) (x2 + 1)

)√
2−

√
2− 3x

(
((−1 + i)x4 + 1 + i)

√
2 + 2x2

(
5x4

3 + i
))

2
(
x
(
1 +

√
2
)√

2−
√
2 + x2 + 1

)(
x
√
2−

√
2 + x2 + 1

)(
x2 − x

√
2−

√
2 + 1

)(
−x
(
1 +

√
2
)√

2−
√
2 + x2 + 1

)
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 6 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x6 + x5a5 + x4a4 + x3a3 + x2a2 + xa1 + a0 (2A)

Substituting the above in eq. (1A) and Solving for the coefficients ai in the above using
method of undetermined coefficients gives{
a0 = −i

√
2− 1 + i

i
√
2 + 1 + i

, a1 =
(12

7 − 12i
7

)√
2(

i
√
2 + 1 + i

)√
2−

√
2
, a2 = −

15
(
−
√
2− 1 + i

)
7
(
i
√
2 + 1 + i

) , a3 =
32

7
(
i
√
2 + 1 + i

)√
2−

√
2
, a4 =

15
√
2

7 + 15
7 + 15i

7

i
√
2 + 1 + i

, a5 =
(12

7 + 12i
7

)√
2(

i
√
2 + 1 + i

)√
2−

√
2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x6 +
(12

7 + 12i
7

)
x5√2(

i
√
2 + 1 + i

)√
2−

√
2
+

15x4(√2 + 1 + i
)

7
(
i
√
2 + 1 + i

) + 32x3

7
(
i
√
2 + 1 + i

)√
2−

√
2
−

15x2(−√
2− 1 + i

)
7
(
i
√
2 + 1 + i

) +
(12

7 − 12i
7

)
x
√
2(

i
√
2 + 1 + i

)√
2−

√
2
− i

√
2− 1 + i

i
√
2 + 1 + i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x6 +

(12
7 + 12i

7

)
x5√2(

i
√
2 + 1 + i

)√
2−

√
2
+

15x4(√2 + 1 + i
)

7
(
i
√
2 + 1 + i

) + 32x3

7
(
i
√
2 + 1 + i

)√
2−

√
2
−

15x2(−√
2− 1 + i

)
7
(
i
√
2 + 1 + i

) +
(12

7 − 12i
7

)
x
√
2(

i
√
2 + 1 + i

)√
2−

√
2
− i

√
2− 1 + i

i
√
2 + 1 + i

)
e
∫ (

− 1

x−
√
2
√

2−
√

2
2 −

√
2−

√
2

2 − i
√

2−
√
2

2

− 1

x−
√

2−
√
2

2 − i
√

2−
√
2
√

2
2 − i

√
2−

√
2

2

− 1

x+
√

2−
√
2

2 − i
√

2−
√

2
√

2
2 − i

√
2−

√
2

2

− 1

x+
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2

− 1

x+
√
2
√

2−
√
2

2 +
√

2−
√

2
2 + i

√
2−

√
2

2

− 1

x+
√

2−
√

2
2 + i

√
2−

√
2
√

2
2 + i

√
2−

√
2

2

− 1

x−
√

2−
√
2

2 + i
√

2−
√
2
√

2
2 + i

√
2−

√
2

2

+ 2

x−
√
2
√

2−
√
2

2 −
√

2−
√

2
2 + i

√
2−

√
2

2

)
dx

=
(
x6 +

(12
7 + 12i

7

)
x5√2(

i
√
2 + 1 + i

)√
2−

√
2
+

15x4(√2 + 1 + i
)

7
(
i
√
2 + 1 + i

) + 32x3

7
(
i
√
2 + 1 + i

)√
2−

√
2
−

15x2(−√
2− 1 + i

)
7
(
i
√
2 + 1 + i

) +
(12

7 − 12i
7

)
x
√
2(

i
√
2 + 1 + i

)√
2−

√
2
− i

√
2− 1 + i

i
√
2 + 1 + i

)
Expression too large to display

= Expression too large to display
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−16x7
x8+1 dx

= z1e
ln
(
x8+1

)
= z1

(
x8 + 1

)
Which simplifies to

y1 = Expression too large to display

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−16x7

x8+1 dx

(y1)2
dx

= y1

∫
e2 ln

(
x8+1

)
(y1)2

dx

= y1(Expression too large to display)

Therefore the solution is

y = c1y1 + c2y2

= c1(Expression too large to display)
+ c2(Expression too large to display(Expression too large to display))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 22� �
dsolve((x^8+1)*diff(diff(y(x),x),x)-16*x^7*diff(y(x),x)+72*x^6*y(x) = 0,

y(x),singsol=all)� �
y = −7

9c1 + c1x
8 + c2x

9 − 9
7c2x

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{(1+x^8)*D[y[x],{x,2}]-16*x^7*D[y[x],x]+72*x^6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Timed out
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2.1.67 problem 69

Solved as second order ode using Kovacic algorithm . . . . . . . . . 468
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 472
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 473
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 474

Internal problem ID [8915]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 69
Date solved : Thursday, December 12, 2024 at 09:57:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + x5y′ + 6x4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.467 (sec)

Writing the ode as

y′′ + x5y′ + 6x4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x5 (3)
C = 6x4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4(x6 − 14)
4 (6)

Comparing the above to (5) shows that

s = x4(x6 − 14
)

t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x4(x6 − 14)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.119: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 10
= −10

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −10 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −10 then

v = −Or(∞)
2 = 10

2 = 5

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
5∑

i=0

aix
i (8)

Let a be the coefficient of xv = x5 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x5

2 − 7
2x − 49

4x7 − 343
4x13 − 12005

16x19 − 117649
16x25 − 2470629

32x31 − 27176919
32x37 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 5 gives

[
√
r]∞ =

5∑
i=0

aix
i

= x5

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x4 = x4 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x10

4
This shows that the coefficient of x4 in the above is 0. Now we need to find the coefficient
of x4 in r. How this is done depends on if v = 0 or not. Since v = 5 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x4 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= x4(x6 − 14)
4

= Q+ R

4

=
(
1
4x

10 − 7
2x

4
)
+ (0)

= 1
4x

10 − 7
2x

4

We see that the coefficient of the term 1
x
in the quotient is −7

2 . Now b can be found.

b =
(
−7
2

)
− (0)

= −7
2

Hence

[
√
r]∞ = x5

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
2

1
2

− 5
)

= −6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

2
1
2

− 5
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4(x6 − 14)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−10 x5

2 −6 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x5

2

)
= −x5

2

= −x5

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x5

2

)
(1) +

((
−5x4

2

)
+
(
−x5

2

)2

−
(
x4(x6 − 14)

4

))
= 0

x4a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x5

2 dx

= (x) e−x6
12

= x e−x6
12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x5
1 dx

= z1e
−x6

12

= z1
(
e−x6

12

)
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Which simplifies to

y1 = e−x6
6 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x5

1 dx

(y1)2
dx

= y1

∫
e−

x6
6

(y1)2
dx

= y1


65/6(−1)1/6

(
−6x5(−1)5/6Γ

( 5
6
)

(−x6)5/6
+ 6 61/6(−1)5/6e

x6
6

x
+

6x5(−1)5/6Γ
(

5
6 ,−

x6
6

)
(−x6)5/6

)
36


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x6

6 x
)

+ c2

e−x6
6 x


65/6(−1)1/6

(
−6x5(−1)5/6Γ

( 5
6
)

(−x6)5/6
+ 6 61/6(−1)5/6e

x6
6

x
+

6x5(−1)5/6Γ
(

5
6 ,−

x6
6

)
(−x6)5/6

)
36




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x5( d
dx
y(x)

)
+ 6x4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x4 · y(x) to series expansion

x4 · y(x) =
∞∑
k=0

akx
k+4

◦ Shift index using k− >k − 4

x4 · y(x) =
∞∑
k=4

ak−4x
k

◦ Convert x5 ·
(

d
dx
y(x)

)
to series expansion

x5 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+4



chapter 2. book solved problems 473

◦ Shift index using k− >k − 4

x5 ·
(

d
dx
y(x)

)
=

∞∑
k=4

ak−4(k − 4)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1) + ak−4(k + 2))xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0}

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak−4 + ak+2) = 0

• Shift index using k− >k + 4
(k + 6) ((k + 4) ak+6 + ak + ak+6) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+6 = − ak

k+5 , a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 62� �
dsolve(diff(diff(y(x),x),x)+x^5*diff(y(x),x)+6*y(x)*x^4 = 0,

y(x),singsol=all)� �
y = −

(
−c1e−

x6
6 x− c261/6

)
(−x6)5/6 + x6c2e−

x6
6

(
Γ
(5
6

)
− Γ

(
5
6 ,−

x6

6

))
(−x6)5/6
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Mathematica DSolve solution

Solving time : 0.353 (sec)
Leaf size : 53� �
DSolve[{D[y[x],{x,2}]+x^5*D[y[x],x]+6*x^4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

36e
−x6

6

(
36c1x− 65/6c2 6

√
−x6Γ

(
−1
6 ,−

x6

6

))
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2.1.68 problem 70

Solved as second order ode using Kovacic algorithm . . . . . . . . . 475
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 480
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 482
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 482

Internal problem ID [8916]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 70
Date solved : Thursday, December 12, 2024 at 09:57:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1 + 3x) y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 30.143 (sec)

Writing the ode as

(1 + 3x) y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1 + 3x
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 24x− 6
4 (1 + 3x)2

(6)

Comparing the above to (5) shows that

s = x2 − 24x− 6
t = 4(1 + 3x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 24x− 6
4 (1 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.121: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(1 + 3x)2. There is a pole at x = −1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 19

324
(
x+ 1

3

)2 − 37
54
(
x+ 1

3

)
For the pole at x = −1

3 let b be the coefficient of 1(
x+ 1

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 19
324 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 19

18
α−
c = 1

2 −
√
1 + 4b = − 1

18

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6−
37
18x− 319

27x2 −
11831
81x3 − 2157901

972x4 − 110035199
2916x5 − 1501983319

2187x6 − 85889060456
6561x7 + . . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

36

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 24x− 6
36x2 + 24x+ 4

= Q+ R

36x2 + 24x+ 4

=
(

1
36

)
+
( −74x

3 − 55
9

36x2 + 24x+ 4

)
= 1

36 +
−74x

3 − 55
9

36x2 + 24x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −74

3 . Dividing this by leading coefficient in t which is 36 gives −37
54 . Now b can be

found.

b =
(
−37
54

)
− (0)

= −37
54
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Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−37
54
1
6

− 0
)

= −37
18

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−37

54
1
6

− 0
)

= 37
18

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 24x− 6
4 (1 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
3 2 0 19

18 − 1
18

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6 −37

18
37
18

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 37

18 then

d = α−
∞ −

(
α+
c1

)
= 37

18 −
(
19
18

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 19
18
(
x+ 1

3

) + (−)
(
1
6

)
= 19

18
(
x+ 1

3

) − 1
6

= − −6 + x

2 (1 + 3x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

19
18
(
x+ 1

3

) − 1
6

)
(1) +

(− 19
18
(
x+ 1

3

)2
)

+
(

19
18
(
x+ 1

3

) − 1
6

)2

−
(
x2 − 24x− 6
4 (1 + 3x)2

) = 0

a0 + 6
1 + 3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −6}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −6 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−6 + x) e
∫ ( 19

18
(
x+1

3
)− 1

6

)
dx

= (−6 + x) e−x
6+

19 ln(1+3x)
18

= (−6 + x) (1 + 3x)19/18 e−x
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

1+3x dx

= z1e
−x

6+
ln(1+3x)

18

= z1
(
(1 + 3x)1/18 e−x

6

)
Which simplifies to

y1 = (1 + 3x)10/9 e−x
3 (−6 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

1+3x dx

(y1)2
dx

= y1

∫
e−

x
3+

ln(1+3x)
9

(y1)2
dx

= y1

(∫ e−x
3+

ln(1+3x)
9 e 2x

3

(1 + 3x)20/9 (−6 + x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(1 + 3x)10/9 e−x

3 (−6 + x)
)

+ c2

(
(1 + 3x)10/9 e−x

3 (−6 + x)
(∫ e−x

3+
ln(1+3x)

9 e 2x
3

(1 + 3x)20/9 (−6 + x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(3x+ 1)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
3x+1 −

x
(

d
dx

y(x)
)

3x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

3x+1 + 2y(x)
3x+1 = 0

� Check to see if x0 = −1
3 is a regular singular point

◦ Define functions[
P2(x) = x

3x+1 , P3(x) = 2
3x+1

]
◦
(
x+ 1

3

)
· P2(x) is analytic at x = −1

3((
x+ 1

3

)
· P2(x)

) ∣∣∣∣
x=− 1

3

= −1
9

◦
(
x+ 1

3

)2 · P3(x) is analytic at x = −1
3((

x+ 1
3

)2 · P3(x)
) ∣∣∣∣

x=− 1
3

= 0

◦ x = −1
3 is a regular singular point

Check to see if x0 = −1
3 is a regular singular point

x0 = −1
3

• Multiply by denominators

(3x+ 1)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+
(
u− 1

3

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
a0r(−10+9r)u−1+r

3 +
(

∞∑
k=0

(
ak+1(k+1+r)(9k−1+9r)

3 + ak(k + r + 2)
)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(−10+9r)

3 = 0
• Values of r that satisfy the indicial equation

r ∈
{
0, 109

}
• Each term in the series must be 0, giving the recursion relation

3(k + 1 + r)
(
k − 1

9 + r
)
ak+1 + ak(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak(k+r+2)

(k+1+r)(9k−1+9r)

• Recursion relation for r = 0
ak+1 = − 3ak(k+2)

(k+1)(9k−1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = − 3ak(k+2)

(k+1)(9k−1)

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k
, ak+1 = − 3ak(k+2)

(k+1)(9k−1)

]
• Recursion relation for r = 10

9

ak+1 = − 3ak
(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

• Solution for r = 10
9[

y(u) =
∞∑
k=0

aku
k+ 10

9 , ak+1 = − 3ak
(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k+ 10
9 , ak+1 = − 3ak

(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(
x+ 1

3

)k)+
(

∞∑
k=0

bk
(
x+ 1

3

)k+ 10
9

)
, ak+1 = − 3ak(k+2)

(k+1)(9k−1) , bk+1 = − 3bk
(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
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<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.043 (sec)
Leaf size : 62� �
dsolve((3*x+1)*diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

c1e−
x
3

(
Γ
(
−1

9

)
+ 10Γ

(
− 10

9 ,−x
3−

1
9
)

9

)
(x− 6)

(
x+ 1

3

) (
−x

3 −
1
9

)1/9
9

+ 3c2(x− 6)
(
x+ 1

3

)
e−x

3

(
x

3 + 1
9

)1/9

− 10c1e
1
9

9

Mathematica DSolve solution

Solving time : 4.083 (sec)
Leaf size : 124� �
DSolve[{(1+3*x)*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
e−

x
3−

1
9

(
1520c1 9

√
3x+ 1(3x2 − 17x− 6)− 28/9c2e

x
3+

1
9 (9x2 − 48x− 26) + 28/937/9c2 9

√
−3x− 1(3x2 − 17x− 6) Γ

(8
9 ,

1
9(−3x− 1)

))
380 217/18
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2.1.69 problem 71

Solved as second order ode using Kovacic algorithm . . . . . . . . . 483
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 487
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 490
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 490

Internal problem ID [8917]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 71
Date solved : Thursday, December 12, 2024 at 09:58:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
3x2 + x+ 1

)
y′′ + (2 + 15x) y′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.796 (sec)

Writing the ode as (
3x2 + x+ 1

)
y′′ + (2 + 15x) y′ + 12y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2 + x+ 1
B = 2 + 15x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −9x2 − 12x− 18
4 (3x2 + x+ 1)2

(6)

Comparing the above to (5) shows that

s = −9x2 − 12x− 18

t = 4
(
3x2 + x+ 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
−9x2 − 12x− 18
4 (3x2 + x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.123: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3x2 + x+ 1)2. There is a pole at x = −1

6 +
i
√
11
6 of order 2. There is a pole at

x = −1
6 −

i
√
11
6 of order 2. Since there is no odd order pole larger than 2 and the order at

∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
27
88 +

3i
√
11

88(
x+ 1

6 −
i
√
11
6

)2 +
27
88 −

3i
√
11

88(
x+ 1

6 +
i
√
11
6

)2 + 57i
√
11

242
(
x+ 1

6 −
i
√
11
6

) − 57i
√
11

242
(
x+ 1

6 +
i
√
11
6

)
For the pole at x = −1

6 +
i
√
11
6 let b be the coefficient of 1(

x+ 1
6−

i
√

11
6

)2 in the partial fractions

decomposition of r given above. Therefore b = 27
88 +

3i
√
11

88 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
1078 + 66i

√
11

44

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
1078 + 66i

√
11

44
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For the pole at x = −1
6 −

i
√
11
6 let b be the coefficient of 1(

x+ 1
6+

i
√
11
6

)2 in the partial fractions

decomposition of r given above. Therefore b = 27
88 −

3i
√
11

88 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
1078− 66i

√
11

44

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

1078− 66i
√
11

44

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −9x2 − 12x− 18

4 (3x2 + x+ 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −9x2 − 12x− 18
4 (3x2 + x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
6 +

i
√
11
6 2 0 1

2 +
√

1078+66i
√
11

44
1
2 −

√
1078+66i

√
11

44

−1
6 −

i
√
11
6 2 0 1

2 +
√

1078−66i
√
11

44
1
2 −

√
1078−66i

√
11

44

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

=
1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

+ (−) (0)

=
1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

= − 3x
6x2 + 2x+ 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

)
(1) +


−

1
2 −

√
1078+66i

√
11

44(
x+ 1

6 −
i
√
11
6

)2 −
1
2 −

√
1078−66i

√
11

44(
x+ 1

6 +
i
√
11
6

)2
+

(
1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

)2

−
(
−9x2 − 12x− 18
4 (3x2 + x+ 1)2

) = 0

3a0
3x2 + x+ 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2−
√

1078+66i
√
11

44
x+1

6− i
√
11
6

+
1
2−

√
1078−66i

√
11

44
x+1

6+ i
√
11
6

)
dx

= (x) e−
ln

(
36x2+12x+12

)
4 +

√
11 arctan

(
(6x+1)

√
11

11

)
22

= x
√
2 33/4e

√
11 arctan

(
(6x+1)

√
11

11

)
22

6 (3x2 + x+ 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2+15x

3x2+x+1 dx

= z1e
−

5 ln
(
3x2+x+1

)
4 +

√
11 arctan

(
(6x+1)

√
11

11

)
22

= z1

e
√
11 arctan

(
(6x+1)

√
11

11

)
22

(3x2 + x+ 1)5/4
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Which simplifies to

y1 =
e

√
11 arctan

(
(6x+1)

√
11

11

)
11 x

√
2 33/4

6 (3x2 + x+ 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2+15x

3x2+x+1 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
3x2+x+1

)
2 +

√
11 arctan

(
(6x+1)

√
11

11

)
11

(y1)2
dx

= y1

∫ 2 e−
5 ln

(
3x2+x+1

)
2 +

√
11 arctan

(
(6x+1)

√
11

11

)
11 (3x2 + x+ 1)3 e−

2
√
11 arctan

(
(6x+1)

√
11

11

)
11

√
3

x2 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

e
√
11 arctan

(
(6x+1)

√
11

11

)
11 x

√
2 33/4

6 (3x2 + x+ 1)3/2


+c2

e
√
11 arctan

(
(6x+1)

√
11

11

)
11 x

√
2 33/4

6 (3x2 + x+ 1)3/2

∫ 2 e−
5 ln

(
3x2+x+1

)
2 +

√
11 arctan

(
(6x+1)

√
11

11

)
11 (3x2 + x+ 1)3 e−

2
√
11 arctan

(
(6x+1)

√
11

11

)
11

√
3

x2 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(3x2 + x+ 1)
(

d2

dx2y(x)
)
+ (2 + 15x)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 12y(x)
3x2+x+1 −

(2+15x)
(

d
dx

y(x)
)

3x2+x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2+15x)

(
d
dx

y(x)
)

3x2+x+1 + 12y(x)
3x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2+15x
3x2+x+1 , P3(x) = 12

3x2+x+1

]
◦
(

I
√
11
6 + x+ 1

6

)
· P2(x) is analytic at x = −1

6 −
I
√
11
6
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((
I
√
11
6 + x+ 1

6

)
· P2(x)

) ∣∣∣∣
x=− 1

6−
I
√

11
6

= 0

◦
(

I
√
11
6 + x+ 1

6

)2
· P3(x) is analytic at x = −1

6 −
I
√
11
6((

I
√
11
6 + x+ 1

6

)2
· P3(x)

) ∣∣∣∣
x=− 1

6−
I
√
11
6

= 0

◦ x = −1
6 −

I
√
11
6 is a regular singular point

Check to see if x0 is a regular singular point
x0 = −1

6 −
I
√
11
6

• Multiply by denominators

(3x2 + x+ 1)
(

d2

dx2y(x)
)
+ (2 + 15x)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1
6 −

I
√
11
6 so that the regular singular point is at u = 0(

3u2 − Iu
√
11
) (

d2

du2y(u)
)
+
(
−1

2 + 15u− 5 I
√
11

2

) (
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
I
√
11 r

(
I
√
11−33−22r

)
a0u−1+r

22 +
(

∞∑
k=0

(
I
√
11 (k+1+r)

(
I
√
11−22k−55−22r

)
ak+1

22 + 3ak(k + r + 2)2
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
I
22

√
11 r

(
I
√
11− 33− 22r

)
= 0

• Values of r that satisfy the indicial equation

r ∈
{
0,−3

2 +
I
√
11

22

}
• Each term in the series must be 0, giving the recursion relation

3ak(k + r + 2)2 − (k + 1 + r) ak+1
(1
2 + I

(
k + r + 5

2

)√
11
)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = 6ak
(
k2+2kr+r2+4k+4r+4

)
2 I

√
11 k2+4 Ikr

√
11+2 I

√
11 r2+7 Ik

√
11+7 Ir

√
11+5 I

√
11+k+r+1

• Recursion relation for r = 0

ak+1 = 6ak
(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

]
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• Revert the change of variables u = I
√
11
6 + x+ 1

6[
y(x) =

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k
, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

]
• Recursion relation for r = −3

2 +
I
√
11

22

ak+1 =
6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

• Solution for r = −3
2 +

I
√
11

22[
y(u) =

∞∑
k=0

aku
k− 3

2+
I
√
11

22 , ak+1 =
6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]
• Revert the change of variables u = I

√
11
6 + x+ 1

6[
y(x) =

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k− 3
2+

I
√
11

22
, ak+1 =

6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√

11
22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√

11
22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k)
+
(

∞∑
k=0

bk
(

I
√
11
6 + x+ 1

6

)k− 3
2+

I
√
11

22

)
, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

, bk+1 =
6bk
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√

11
22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√

11
22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.312 (sec)
Leaf size : 163� �
dsolve((3*x^2+x+1)*diff(diff(y(x),x),x)+(2+15*x)*diff(y(x),x)+12*y(x) = 0,

y(x),singsol=all)� �
y

=
e

√
11 arctan

(
(6x+1)

√
11

11

)
22

(
c1(−36x2 − 12x− 12)−

1
4+

i
√
11

44
(
i
√
11− 6x− 1

)3/2 hypergeom([12 + i
√
11

22 , 12 +
i
√
11

22

]
,
[
−1

2 +
i
√
11

22

]
, 12 +

i(−6x−1)
√
11

22

)
+
(
i
√
11 + 6x+ 1

) 5
4−

i
√
11

44
(
i
√
11− 6x− 1

) 5
4+

i
√
11

44 hypergeom
(
[2, 2] ,

[
5
2 −

i
√
11

22

]
, 12 +

i(−6x−1)
√
11

22

)
c2

)
(3x2 + x+ 1)5/4

Mathematica DSolve solution

Solving time : 5.481 (sec)
Leaf size : 93� �
DSolve[{(1+x+3*x^2)*D[y[x],{x,2}]+(2+15*x)*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

xe
arctan

(
6x+1√

11

)
√
11

c2
∫ x

1
e
−

arctan
(

6K[1]+1√
11

)
√
11

√
3K[1]2+K[1]+1

K[1]2 dK[1] + c1


(3x2 + x+ 1)3/2
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2.1.70 problem 72

Solved as second order ode using Kovacic algorithm . . . . . . . . . 491
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 496
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 497
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 498

Internal problem ID [8918]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 72
Date solved : Thursday, December 12, 2024 at 09:58:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2 + x) y′′ + (1 + x) y′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.342 (sec)

Writing the ode as

(2 + x) y′′ + (1 + x) y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2 + x

B = 1 + x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10x− 21
4 (2 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 10x− 21
t = 4(2 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 10x− 21
4 (2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.125: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2 + x)2. There is a pole at x = −2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (2 + x)2
− 7

2 (2 + x)

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 7
2x − 9

2x2 − 97
2x3 − 1291

4x4 − 11103
4x5 − 98061

4x6 − 913053
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 10x− 21
4x2 + 16x+ 16

= Q+ R

4x2 + 16x+ 16

=
(
1
4

)
+
(

−14x− 25
4x2 + 16x+ 16

)
= 1

4 + −14x− 25
4x2 + 16x+ 16

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −14. Dividing this by leading coefficient in t which is 4 gives −7

2 . Now b can be found.

b =
(
−7
2

)
− (0)

= −7
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
2

1
2

− 0
)

= −7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

2
1
2

− 0
)

= 7
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 10x− 21
4 (2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −7

2
7
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

2 then

d = α−
∞ −

(
α+
c1

)
= 7

2 −
(
3
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
2 (2 + x) + (−)

(
1
2

)
= 3

2 (2 + x) −
1
2

= − −1 + x

2 (2 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(2) + 2
(

3
2 (2 + x) −

1
2

)
(2x+ a1) +

((
− 3
2 (2 + x)2

)
+
(

3
2 (2 + x) −

1
2

)2

−
(
x2 − 10x− 21
4 (2 + x)2

))
= 0

(a1 + 4)x+ 2a0 + a1 + 4
2 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = −4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 4x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 4x

)
e
∫ ( 3

2(2+x)−
1
2

)
dx

=
(
x2 − 4x

)
e−x

2+
3 ln(2+x)

2

= x(x− 4) (2 + x)3/2 e−x
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+x
2+x

dx

= z1e
−x

2+
ln(2+x)

2

= z1
(√

2 + x e−x
2

)
Which simplifies to

y1 = (2 + x)2 e−xx(x− 4)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+x

2+x
dx

(y1)2
dx

= y1

∫
e−x+ln(2+x)

(y1)2
dx

= y1

(
−e−2 Ei1 (−2− x)

48 − ex

288 (2 + x)2
− 11 ex

864 (2 + x) −
ex

3456 (x− 4) −
ex

128x

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x)2 e−xx(x− 4)

)
+ c2

(
(2 + x)2 e−xx(x− 4)

(
−e−2 Ei1 (−2− x)

48 − ex

288 (2 + x)2

− 11 ex
864 (2 + x) −

ex
3456 (x− 4) −

ex
128x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3y(x)
x+2 −

(x+1)
(

d
dx

y(x)
)

x+2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x+2 + 3y(x)
x+2 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x+1
x+2 , P3(x) = 3

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators

(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
+ 3y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1) + ak(k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + r − 1) + ak(k + r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+3)
(k+1+r)(k+r−1)

• Recursion relation for r = 0
ak+1 = − ak(k+3)

(k+1)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+1 = − ak(k+3)

(k+1)(k−1)

• Recursion relation for r = 2
ak+1 = − ak(k+5)

(k+3)(k+1)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = − ak(k+5)

(k+3)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+2 , ak+1 = − ak(k+5)
(k+3)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 59� �
dsolve((x+2)*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)+3*y(x) = 0,

y(x),singsol=all)� �
y = xc2e−2−x(x− 4) (x+ 2)2 Ei1 (−2− x) + c1e−xx(x− 4) (x+ 2)2 + c2

(
x3 − x2 − 10x− 6

)
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Mathematica DSolve solution

Solving time : 0.618 (sec)
Leaf size : 99� �
DSolve[{(2+x)*D[y[x],{x,2}]+(1+x)*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ e−x−1(c2(x− 4)(x+ 2)2xExpIntegralEi(x+ 2) + 384c1x4 − c2e
x+2x3 + x2(c2ex+2 − 4608c1) + x(10c2ex+2 − 6144c1) + 6c2ex+2)

96
√
2
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2.1.71 problem 73

Solved as second order ode using Kovacic algorithm . . . . . . . . . 499
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 504
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 505
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 506

Internal problem ID [8919]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 73
Date solved : Thursday, December 12, 2024 at 09:58:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(4 + x) y′′ + (2 + x) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.325 (sec)

Writing the ode as

(4 + x) y′′ + (2 + x) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4 + x

B = 2 + x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x− 24
4 (4 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x− 24
t = 4(4 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x− 24
4 (4 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.127: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(4 + x)2. There is a pole at x = −4 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

(4 + x)2
− 3

4 + x

For the pole at x = −4 let b be the coefficient of 1
(4+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
x
+ 5

x2 − 34
x3 + 59

x4 − 586
x5 + 370

x6 − 12484
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x− 24
4x2 + 32x+ 64

= Q+ R

4x2 + 32x+ 64

=
(
1
4

)
+
(

−12x− 40
4x2 + 32x+ 64

)
= 1

4 + −12x− 40
4x2 + 32x+ 64

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −12. Dividing this by leading coefficient in t which is 4 gives −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1
2

− 0
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1
2

− 0
)

= 3
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x− 24
4 (4 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−4 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3 3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3 then

d = α−
∞ −

(
α+
c1

)
= 3− (2)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 2
4 + x

+ (−)
(
1
2

)
= 2

4 + x
− 1

2
= − x

2 (4 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

2
4 + x

− 1
2

)
(1) +

((
− 2
(4 + x)2

)
+
(

2
4 + x

− 1
2

)2

−
(
x2 − 4x− 24
4 (4 + x)2

))
= 0

a0
4 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 2

4+x
− 1

2

)
dx

= (x) e−x
2+2 ln(4+x)

= x(4 + x)2 e−x
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2+x
4+x

dx

= z1e
−x

2+ln(4+x)

= z1
(
(4 + x) e−x

2
)

Which simplifies to
y1 = (4 + x)3 e−xx

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2+x

4+x
dx

(y1)2
dx

= y1

∫
e−x+2 ln(4+x)

(y1)2
dx

= y1

(
−e−4 Ei1 (−4− x)

24 − ex

48 (4 + x)3
− 5 ex

192 (4 + x)2
− 29 ex

768 (4 + x) −
ex

256x

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(4 + x)3 e−xx

)
+ c2

(
(4 + x)3 e−xx

(
−e−4 Ei1 (−4− x)

24 − ex

48 (4 + x)3
− 5 ex

192 (4 + x)2

− 29 ex
768 (4 + x) −

ex
256x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 4)
(

d2

dx2y(x)
)
+ (x+ 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x+4 −

(x+2)
(

d
dx

y(x)
)

x+4

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+2)

(
d
dx

y(x)
)

x+4 + 2y(x)
x+4 = 0

� Check to see if x0 = −4 is a regular singular point
◦ Define functions[

P2(x) = x+2
x+4 , P3(x) = 2

x+4

]
◦ (x+ 4) · P2(x) is analytic at x = −4

((x+ 4) · P2(x))
∣∣∣∣
x=−4

= −2

◦ (x+ 4)2 · P3(x) is analytic at x = −4(
(x+ 4)2 · P3(x)

) ∣∣∣∣
x=−4

= 0

◦ x = −4is a regular singular point
Check to see if x0 = −4 is a regular singular point
x0 = −4

• Multiply by denominators

(x+ 4)
(

d2

dx2y(x)
)
+ (x+ 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 4 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 2) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+2)
(k+1+r)(k−2+r)

• Recursion relation for r = 0
ak+1 = − ak(k+2)

(k+1)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2
ak+1 = − ak(k+2)

(k+1)(k−2)

• Recursion relation for r = 3
ak+1 = − ak(k+5)

(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+5)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 4[

y(x) =
∞∑
k=0

ak(x+ 4)k+3 , ak+1 = − ak(k+5)
(k+4)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 53� �
dsolve((x+4)*diff(diff(y(x),x),x)+(x+2)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = xc2e−x−4(x+ 4)3 Ei1 (−x− 4) + c1e−xx(x+ 4)3 + c2

(
x3 + 9x2 + 22x+ 6

)
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Mathematica DSolve solution

Solving time : 0.317 (sec)
Leaf size : 97� �
DSolve[{(4+x)*D[y[x],{x,2}]+(2+x)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

24e
−x−4(c2x(x+ 4)3 ExpIntegralEi(x+ 4)

+ e4
(
24c1x4 + x3(288c1 − c2e

x) + 9x2(128c1 − c2e
x) + 2x(768c1 − 11c2ex)− 6c2ex

))



chapter 2. book solved problems 507

2.1.72 problem 74

Solved as second order ode using Kovacic algorithm . . . . . . . . . 507
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 511
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 513
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 513

Internal problem ID [8920]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 74
Date solved : Thursday, December 12, 2024 at 09:58:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 3x

)
y′′ + 10(1 + x) y′ + 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.332 (sec)

Writing the ode as (
2x2 + 3x

)
y′′ + (10x+ 10) y′ + 8y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 3x
B = 10x+ 10 (3)
C = 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6x+ 10
(2x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 6x+ 10

t =
(
2x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6x+ 10
(2x2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.129: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36
(
x+ 3

2

)2 + 22
27
(
x+ 3

2

) − 22
27x + 10

9x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 10
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

3
α−
c = 1

2 −
√
1 + 4b = −2

3
For the pole at x = −3

2 let b be the coefficient of 1(
x+ 3

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 6x+ 10

(2x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6x+ 10
(2x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
3 −2

3

−3
2 2 0 5

6
1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 2
3x + 1

6x+ 9 + (−) (0)

= − 2
3x + 1

6x+ 9
= − x+ 2

x (2x+ 3)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
3x + 1

6x+ 9

)
(1) +

((
2
3x2 − 1

6
(
x+ 3

2

)2
)

+
(
− 2
3x + 1

6x+ 9

)2

−
(
−x2 + 6x+ 10
(2x2 + 3x)2

))
= 0

−4 + 2a0
x (2x+ 3) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 2) e
∫ (

− 2
3x+

1
6x+9

)
dx

= (x+ 2) e−
2 ln(x)

3 + ln(2x+3)
6

= (x+ 2) (2x+ 3)1/6

x2/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
10x+10
2x2+3x dx

= z1e
− 5 ln(x)

3 − 5 ln(2x+3)
6

= z1

(
1

x5/3 (2x+ 3)5/6

)

Which simplifies to

y1 =
x+ 2

x7/3 (2x+ 3)2/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 10x+10

2x2+3x dx

(y1)2
dx

= y1

∫
e−

10 ln(x)
3 − 5 ln(2x+3)

3

(y1)2
dx

= y1

(∫ e−
10 ln(x)

3 − 5 ln(2x+3)
3 x14/3(2x+ 3)4/3

(x+ 2)2
dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 2

x7/3 (2x+ 3)2/3

)
+ c2

(
x+ 2

x7/3 (2x+ 3)2/3

(∫ e−
10 ln(x)

3 − 5 ln(2x+3)
3 x14/3(2x+ 3)4/3

(x+ 2)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 + 3x)
(

d2

dx2y(x)
)
+ 10(x+ 1)

(
d
dx
y(x)

)
+ 8y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 8y(x)
x(2x+3) −

10(x+1)
(

d
dx

y(x)
)

x(2x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
10(x+1)

(
d
dx

y(x)
)

x(2x+3) + 8y(x)
x(2x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 10(x+1)
x(2x+3) , P3(x) = 8

x(2x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 10
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(2x+ 3)
(

d2

dx2y(x)
)
+ (10x+ 10)

(
d
dx
y(x)

)
+ 8y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(7 + 3r)x−1+r +
(

∞∑
k=0

(
ak+1(k + 1 + r) (3k + 10 + 3r) + 2ak(k + r + 2)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(7 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

3

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (3k + 10 + 3r) + 2ak(k + r + 2)2 = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r+2)2
(k+1+r)(3k+10+3r)

• Recursion relation for r = 0
ak+1 = − 2ak(k+2)2

(k+1)(3k+10)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − 2ak(k+2)2

(k+1)(3k+10)

]
• Recursion relation for r = −7

3

ak+1 = − 2ak
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

• Solution for r = −7
3[

y(x) =
∞∑
k=0

akx
k− 7

3 , ak+1 = − 2ak
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 7

3

)
, ak+1 = − 2ak(k+2)2

(k+1)(3k+10) , bk+1 = − 2bk
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
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<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.205 (sec)
Leaf size : 31� �
dsolve((2*x^2+3*x)*diff(diff(y(x),x),x)+10*(x+1)*diff(y(x),x)+8*y(x) = 0,

y(x),singsol=all)� �
y = c1(x+ 2)(

1 + 2x
3

)2/3
x7/3

+ c2 hypergeom
(
[2, 2] ,

[
10
3

]
,−2x

3

)

Mathematica DSolve solution

Solving time : 0.967 (sec)
Leaf size : 245� �
DSolve[{(3*x+2*x^2)*D[y[x],{x,2}]+10*(1+x)*D[y[x],x]+8*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−2 22/3

√
3c2(x+ 2) arctan

( √
3

3
√
2x+ 3

2
3
√
2 3
√
x+

3
√
2x+ 3

)
+ 22/3c2x log

(
22/3x2/3 + 3

√
2 3
√
2x+ 3 3

√
x+ (2x+ 3)2/3

)
+ 2 22/3c2 log

(
22/3x2/3 + 3

√
2 3
√
2x+ 3 3

√
x+ (2x+ 3)2/3

)
+ 4c1x− 8c2 3

√
x(2x+ 3)2/3 − 2 22/3c2(x+ 2) log

(
3
√
2x+ 3− 3

√
2 3
√
x
)
+ 8c1

4x7/3(2x+ 3)2/3
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2.1.73 problem 75

Solved as second order ode using Kovacic algorithm . . . . . . . . . 514
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 518
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 519
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 519

Internal problem ID [8921]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 75
Date solved : Thursday, December 12, 2024 at 09:58:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − (6− 7x) y′ + 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.308 (sec)

Writing the ode as

x2y′′ + (−6 + 7x) y′ + 8y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −6 + 7x (3)
C = 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 60x+ 36
4x4 (6)

Comparing the above to (5) shows that

s = 3x2 − 60x+ 36
t = 4x4

Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 60x+ 36

4x4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.131: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x4. There is a pole at x = 0 of order 4. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = −15
x3 + 9

x4 + 3
4x2

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

3
x2 − 5

2x − 11
12 − 55x

72 − 671x2

864 − 4565x3

5184 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

3
x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = 3

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be −15. Therefore

b = (−15)− (0)
= −15

Hence

[
√
r]c =

3
x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−15
3 + 2

)
= −3

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−15

3 + 2
)

= 7
2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 60x+ 36

4x4

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 60x+ 36
4x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 3
x2 −3

2
7
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α+
c1

)
= −1

2 −
(
−3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
x2 − 3

2x + (−) (0)

= 3
x2 − 3

2x

= −3(−2 + x)
2x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
x2 − 3

2x

)
(1) +

((
− 6
x3 + 3

2x2

)
+
(

3
x2 − 3

2x

)2

−
(
3x2 − 60x+ 36

4x4

))
= 0

6 + 3a0
x2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−2 + x) e
∫ ( 3

x2−
3
2x

)
dx

= (−2 + x) e− 3
x
− 3 ln(x)

2

= (−2 + x) e− 3
x

x3/2



chapter 2. book solved problems 518

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6+7x

x2 dx

= z1e
− 3

x
− 7 ln(x)

2

= z1

(
e− 3

x

x7/2

)

Which simplifies to

y1 =
e− 6

x (−2 + x)
x5

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6+7x

x2 dx

(y1)2
dx

= y1

∫
e−

6
x
−7 ln(x)

(y1)2
dx

= y1

(
7x e 6

x + 54 Ei1
(
−6
x

)
+ 12 e 6

x

6
x
− 3

+ x2e 6
x

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− 6

x (−2 + x)
x5

)
+ c2

(
e− 6

x (−2 + x)
x5

(
7x e 6

x + 54 Ei1
(
−6
x

)
+ 12 e 6

x

6
x
− 3

+ x2e 6
x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 50� �
dsolve(x^2*diff(diff(y(x),x),x)-(6-7*x)*diff(y(x),x)+8*y(x) = 0,

y(x),singsol=all)� �
y =

108c2e−
6
x (x− 2) Ei1

(
− 6

x

)
+ c1e−

6
x (x− 2) + xc2(x2 + 12x− 36)

x5

Mathematica DSolve solution

Solving time : 0.265 (sec)
Leaf size : 59� �
DSolve[{x^2*D[y[x],{x,2}]-(6-7*x)*D[y[x],x]+8*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−6/x(−108c2(x− 2) ExpIntegralEi
( 6
x

)
+ c2e

6/xx(x2 + 12x− 36) + 2c1(x− 2)
)

2x5
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2.1.74 problem 76

Solved as second order ode using Kovacic algorithm . . . . . . . . . 520
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 524
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 527
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 527

Internal problem ID [8922]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 76
Date solved : Thursday, December 12, 2024 at 09:58:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + x+ 1

)
y′′ + (1 + 7x) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.019 (sec)

Writing the ode as (
2x2 + x+ 1

)
y′′ + (1 + 7x) y′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + x+ 1
B = 1 + 7x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 − 2x+ 5
4 (2x2 + x+ 1)2

(6)

Comparing the above to (5) shows that

s = 5x2 − 2x+ 5

t = 4
(
2x2 + x+ 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

5x2 − 2x+ 5
4 (2x2 + x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.132: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + x+ 1)2. There is a pole at x = −1

4 + i
√
7

4 of order 2. There is a pole at
x = −1

4 −
i
√
7

4 of order 2. Since there is no odd order pole larger than 2 and the order at
∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 29

224 +
9i
√
7

224(
x+ 1

4 −
i
√
7

4

)2 +
− 29

224 −
9i
√
7

224(
x+ 1

4 +
i
√
7

4

)2 − 8i
√
7

49
(
x+ 1

4 −
i
√
7

4

) + 8i
√
7

49
(
x+ 1

4 +
i
√
7

4

)
For the pole at x = −1

4 +
i
√
7

4 let b be the coefficient of 1(
x+ 1

4−
i
√
7

4

)2 in the partial fractions

decomposition of r given above. Therefore b = − 29
224 +

9i
√
7

224 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + 3
√

42 + 14i
√
7

56

α−
c = 1

2 −
√
1 + 4b = 1

2 − 3
√

42 + 14i
√
7

56
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For the pole at x = −1
4 −

i
√
7

4 let b be the coefficient of 1(
x+ 1

4+
i
√
7

4

)2 in the partial fractions

decomposition of r given above. Therefore b = − 29
224 −

9i
√
7

224 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + 3
√
42− 14i

√
7

56

α−
c = 1

2 −
√
1 + 4b = 1

2 − 3
√
42− 14i

√
7

56

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 − 2x+ 5

4 (2x2 + x+ 1)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 − 2x+ 5
4 (2x2 + x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
4 +

i
√
7

4 2 0 1
2 +

3
√

42+14i
√
7

56
1
2 −

3
√

42+14i
√
7

56

−1
4 −

i
√
7

4 2 0 1
2 +

3
√

42−14i
√
7

56
1
2 −

3
√

42−14i
√
7

56

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 5

4 −
(
1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

=
1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

+ (0)

=
1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

= x+ 1
4x2 + 2x+ 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

)
(1) +


−

1
2 −

3
√

42+14i
√
7

56(
x+ 1

4 −
i
√
7

4

)2 −
1
2 −

3
√

42−14i
√
7

56(
x+ 1

4 +
i
√
7

4

)2
+

(
1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

)2

−
(

5x2 − 2x+ 5
4 (2x2 + x+ 1)2

) = 0

−a0 + 1
2x2 + x+ 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 1

2− 3
√

42+14i
√
7

56
x+1

4− i
√

7
4

+
1
2− 3

√
42−14i

√
7

56
x+1

4+ i
√
7

4

)
dx

= (x+ 1) e
ln

(
16x2+8x+8

)
8 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
28

= (x+ 1) 23/8
(
2x2 + x+ 1

)1/8 e 3
√
7 arctan

(
(4x+1)

√
7

7

)
28

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+7x

2x2+x+1 dx

= z1e
−

7 ln
(
2x2+x+1

)
8 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
28

= z1

e
3
√
7 arctan

(
(4x+1)

√
7

7

)
28

(2x2 + x+ 1)7/8
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Which simplifies to

y1 =
e

3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (x+ 1) 23/8

(2x2 + x+ 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+7x

2x2+x+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x2+x+1

)
4 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
14

(y1)2
dx

= y1

∫ e−
7 ln

(
2x2+x+1

)
4 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (2x2 + x+ 1)3/2 e−

3
√
7 arctan

(
(4x+1)

√
7

7

)
7 21/4

2 (x+ 1)2
dx


Therefore the solution is

y = c1y1 + c2y2

= c1

e
3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (x+ 1) 23/8

(2x2 + x+ 1)3/4


+c2

e
3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (x+ 1) 23/8

(2x2 + x+ 1)3/4

∫ e−
7 ln

(
2x2+x+1

)
4 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (2x2 + x+ 1)3/2 e−

3
√
7 arctan

(
(4x+1)

√
7

7

)
7 21/4

2 (x+ 1)2
dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 + x+ 1)
(

d2

dx2y(x)
)
+ (1 + 7x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
2x2+x+1 −

(1+7x)
(

d
dx

y(x)
)

2x2+x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(1+7x)

(
d
dx

y(x)
)

2x2+x+1 + 2y(x)
2x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+7x
2x2+x+1 , P3(x) = 2

2x2+x+1

]
◦
(

I
√
7

4 + x+ 1
4

)
· P2(x) is analytic at x = −1

4 −
I
√
7

4
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((
I
√
7

4 + x+ 1
4

)
· P2(x)

) ∣∣∣∣
x=− 1

4−
I
√
7

4

= 0

◦
(

I
√
7

4 + x+ 1
4

)2
· P3(x) is analytic at x = −1

4 −
I
√
7

4((
I
√
7

4 + x+ 1
4

)2
· P3(x)

) ∣∣∣∣
x=− 1

4−
I
√
7

4

= 0

◦ x = −1
4 −

I
√
7

4 is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

4 −
I
√
7

4

• Multiply by denominators

(2x2 + x+ 1)
(

d2

dx2y(x)
)
+ (1 + 7x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1
4 −

I
√
7

4 so that the regular singular point is at u = 0(
2u2 − Iu

√
7
) (

d2

du2y(u)
)
+
(
−3

4 + 7u− 7 I
√
7

4

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
I
√
7
(
3 I

√
7−21−28r

)
ra0u−1+r

28 +
(

∞∑
k=0

(
I
√
7
(
3 I

√
7−28k−49−28r

)
(k+1+r)ak+1

28 + ak(k + r + 2) (2k + 2r + 1)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
I
28

√
7
(
3 I

√
7− 21− 28r

)
r = 0

• Values of r that satisfy the indicial equation

r ∈
{
0, 3 I

√
7

28 − 3
4

}
• Each term in the series must be 0, giving the recursion relation

−Iak+1(k + 1 + r)
(
k + r + 7

4

)√
7 + (−3k−3r−3)ak+1

4 + 2(k + r + 2) ak
(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = 4ak
(
2k2+4kr+2r2+5k+5r+2

)
3+4 I

√
7 k2+8 I

√
7 kr+4 I

√
7 r2+11 I

√
7 k+11 I

√
7 r+7 I

√
7+3k+3r

• Recursion relation for r = 0

ak+1 = 4ak
(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

]
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• Revert the change of variables u = I
√
7

4 + x+ 1
4[

y(x) =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k
, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

]
• Recursion relation for r = 3 I

√
7

28 − 3
4

ak+1 =
4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√

7
28 − 3

4

)
+ 205 I

√
7

28 +3k

• Solution for r = 3 I
√
7

28 − 3
4[

y(u) =
∞∑
k=0

aku
k+ 3 I

√
7

28 − 3
4 , ak+1 =

4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√

7
28 − 3

4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
• Revert the change of variables u = I

√
7

4 + x+ 1
4[

y(x) =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k+ 3 I
√
7

28 − 3
4
, ak+1 =

4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k)
+
(

∞∑
k=0

bk
(

I
√
7

4 + x+ 1
4

)k+ 3 I
√
7

28 − 3
4

)
, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k , bk+1 =

4bk
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√

7
28 − 3

4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.094 (sec)
Leaf size : 77� �
dsolve((2*x^2+x+1)*diff(diff(y(x),x),x)+(1+7*x)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

([
1
2 , 2
]
,

[(
7
√
7− 3i

)√
7

28

]
,
1
2 + i(−4x− 1)

√
7

14

)

+ c2
(
i
√
7 + 4x+ 1

)− 3
4+

3i
√
7

28
(
i
√
7− 4x− 1

)− 3
4−

3i
√
7

28 (x+ 1)

Mathematica DSolve solution

Solving time : 3.707 (sec)
Leaf size : 102� �
DSolve[{(1+x+2*x^2)*D[y[x],{x,2}]+(1+7*x)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

(x+ 1)e
3 arctan

(
4x+1√

7

)
2
√
7

c2
∫ x

1
e
−

3 arctan
(

4K[1]+1√
7

)
2
√
7

(K[1]+1)2 4
√

2K[1]2 +K[1] + 1
dK[1] + c1


(2x2 + x+ 1)3/4
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2.1.75 problem 77

Solved as second order ode using Kovacic algorithm . . . . . . . . . 528
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 532
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 534
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 534

Internal problem ID [8923]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 77
Date solved : Thursday, December 12, 2024 at 09:58:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(3 + x) y′′ + (1 + 2x) y′ − (2− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.206 (sec)

Writing the ode as

(3 + x) y′′ + (1 + 2x) y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3 + x

B = 1 + 2x (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35
4 (3 + x)2

(6)

Comparing the above to (5) shows that

s = 35
t = 4(3 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

35
4 (3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.134: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3 + x)2. There is a pole at x = −3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4 (3 + x)2

For the pole at x = −3 let b be the coefficient of 1
(3+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35

4 (3 + x)2
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Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35
4 (3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−3 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −5

2 then

d = α−
∞ −

(
α−
c1

)
= −5

2 −
(
−5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 5
2 (3 + x) + (−) (0)

= − 5
2 (3 + x)

= − 5
2 (3 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2 (3 + x)

)
(0) +

((
5

2 (3 + x)2
)
+
(
− 5
2 (3 + x)

)2

−
(

35
4 (3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 5

2(3+x)dx

= 1
(3 + x)5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+2x
3+x

dx

= z1e
−x+ 5 ln(3+x)

2

= z1
(
(3 + x)5/2 e−x

)
Which simplifies to

y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+2x

3+x
dx

(y1)2
dx

= y1

∫
e−2x+5 ln(3+x)

(y1)2
dx

= y1

(
x(x5 + 18x4 + 135x3 + 540x2 + 1215x+ 1458) e−2x+5 ln(3+x)e2x

6 (3 + x)5
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
x(x5 + 18x4 + 135x3 + 540x2 + 1215x+ 1458) e−2x+5 ln(3+x)e2x

6 (3 + x)5
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 3)
(

d2

dx2y(x)
)
+ (2x+ 1)

(
d
dx
y(x)

)
− (−x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x+3 −

(2x+1)
(

d
dx

y(x)
)

x+3

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x+3 + (x−2)y(x)
x+3 = 0

� Check to see if x0 = −3 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x+3 , P3(x) = x−2

x+3

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= −5

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 = −3 is a regular singular point
x0 = −3

• Multiply by denominators

(x+ 3)
(

d2

dx2y(x)
)
+ (2x+ 1)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (2u− 5)

(
d
du
y(u)

)
+ (u− 5) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1



chapter 2. book solved problems 533

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−6 + r)u−1+r + (a1(1 + r) (−5 + r) + a0(−5 + 2r))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 5 + r) + ak(2k + 2r − 5) + ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term must be 0
a1(1 + r) (−5 + r) + a0(−5 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 5 + r) + 2akk + 2akr − 5ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k − 4 + r) + 2ak+1(k + 1) + 2rak+1 − 5ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2rak+1+ak−3ak+1

(k+2+r)(k−4+r)

• Recursion relation for r = 0
ak+2 = −2kak+1+ak−3ak+1

(k+2)(k−4)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4
ak+2 = −2kak+1+ak−3ak+1

(k+2)(k−4)

• Recursion relation for r = 6
ak+2 = −2kak+1+ak+9ak+1

(k+8)(k+2)

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −2kak+1+ak+9ak+1

(k+8)(k+2) , 7a1 + 7a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k+6 , ak+2 = −2kak+1+ak+9ak+1
(k+8)(k+2) , 7a1 + 7a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 534

Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 33� �
dsolve((x+3)*diff(diff(y(x),x),x)+(2*x+1)*diff(y(x),x)-(-x+2)*y(x) = 0,

y(x),singsol=all)� �
y =

((
x2 + 3x+ 9

) (
x2 + 9x+ 27

)
(6 + x) c2x+ c1

)
e−x

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 29� �
DSolve[{(3+x)*D[y[x],{x,2}]+(1+2*x)*D[y[x],x]-(2-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

6e
−x−3(c2(x+ 3)6 + 6c1

)
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2.1.76 problem 78

Solved as second order ode using Kovacic algorithm . . . . . . . . . 535
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 539
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 540
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 541

Internal problem ID [8924]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 78
Date solved : Thursday, December 12, 2024 at 09:58:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 3xy′ +
(
2x2 + 4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.282 (sec)

Writing the ode as

y′′ + 3xy′ +
(
2x2 + 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 3x (3)
C = 2x2 + 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.136: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
1 dx

= z1e
− 3x2

4

= z1
(
e− 3x2

4

)
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Which simplifies to

y1 =
(
x2 − 1

)
e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

1 dx

(y1)2
dx

= y1

∫
e−

3x2
2

(y1)2
dx

= y1

(∫ e− 3x2
2 e2x2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 − 1
)
e−x2

)
+ c2

((
x2 − 1

)
e−x2

(∫ e− 3x2
2 e2x2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 3x
(

d
dx
y(x)

)
+ (2x2 + 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 4a0 + (6a3 + 7a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(3k + 4) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 4a0 = 0, 6a3 + 7a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −2a0, a3 = −7a1

6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 3akk + 4ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + 3ak+2(k + 2) + 4ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −3kak+2+2ak+10ak+2

k2+7k+12 , a2 = −2a0, a3 = −7a1
6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.042 (sec)
Leaf size : 45� �
dsolve(diff(diff(y(x),x),x)+3*diff(y(x),x)*x+(2*x^2+4)*y(x) = 0,

y(x),singsol=all)� �
y = −2 e−x2

2 c1x+ e−x2(x− 1) (x+ 1)
(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)
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Mathematica DSolve solution

Solving time : 0.499 (sec)
Leaf size : 63� �
DSolve[{D[y[x],{x,2}]+3*x*D[y[x],x]+(4+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x2
(√

2πc2
(
x2 − 1

)
erfi
(

x√
2

)
+ 4c1

(
x2 − 1

)
− 2c2e

x2
2 x

)
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2.1.77 problem 79

Solved as second order ode using Kovacic algorithm . . . . . . . . . 542
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 546
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 548
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 549

Internal problem ID [8925]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 79
Date solved : Thursday, December 12, 2024 at 09:58:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2 + 4x) y′′ − 4y′ − (6 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

(2 + 4x) y′′ − 4y′ + (−4x− 6) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2 + 4x
B = −4 (3)
C = −4x− 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(1 + 2x)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (1 + 2x)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(1 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.138: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (1 + 2x)2. There is a pole at x = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 8x+ 6
(1 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
1 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(1 + 2x)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
1 + 2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4

2+4x dx

= z1e
ln(1+2x)

2

= z1
(√

1 + 2x
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −4

2+4x dx

(y1)2
dx

= y1

∫
eln(1+2x)

(y1)2
dx

= y1
(
x e2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
x e2x

))
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2 + 4x)
(

d2

dx2y(x)
)
− 4 d

dx
y(x)− (6 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x+3)y(x)
2x+1 +

2
(

d
dx

y(x)
)

2x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2
(

d
dx

y(x)
)

2x+1 − (2x+3)y(x)
2x+1 = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

2x+1 , P3(x) = −2x+3
2x+1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x) + (−2x− 3) y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (−2u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r)− 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}
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• Each term must be 0
2a1(1 + r) (−1 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r)− 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak+1+ak

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y(x) =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 16� �
dsolve((4*x+2)*diff(diff(y(x),x),x)-4*diff(y(x),x)-(4*x+6)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2exx
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Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 29� �
DSolve[{(2+4*x)*D[y[x],{x,2}]-4*D[y[x],x]-(6+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2
(
c2e

2x+1x+ c1
)
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2.1.78 problem 80

Solved as second order ode using Kovacic algorithm . . . . . . . . . 550
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 554
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 555
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 556

Internal problem ID [8926]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 80
Date solved : Thursday, December 12, 2024 at 09:58:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 3xy′ +
(
2x2 + 5

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.281 (sec)

Writing the ode as

y′′ − 3xy′ +
(
2x2 + 5

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −3x (3)
C = 2x2 + 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 26
4 (6)

Comparing the above to (5) shows that

s = x2 − 26
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 13
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.140: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 13
2x − 169

4x3 − 2197
4x5 − 142805

16x7 − 2599051
16x9 − 101362989

32x11 − 2070701061
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 26
4

= Q+ R

4

=
(
x2

4 − 13
2

)
+ (0)

= x2

4 − 13
2

We see that the coefficient of the term 1
x
in the quotient is −13

2 . Now b can be found.

b =
(
−13

2

)
− (0)

= −13
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−13
2

1
2

− 1
)

= −7

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−13

2
1
2

− 1
)

= 6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 13
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −7 6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 553

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 6, and since there are no poles then

d = α−
∞

= 6

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 6 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
30x4 + 20x3a5 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(
−x

2

) (
6x5 + 5x4a5 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 13
2

))
= 0

a5x
5 + 2(15 + a4)x4 + (3a3 + 20a5)x3 + 4(a2 + 3a4)x2 + (5a1 + 6a3)x+ 6a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −15, a1 = 0, a2 = 45, a3 = 0, a4 = −15, a5 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x6 − 15x4 + 45x2 − 15

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x6 − 15x4 + 45x2 − 15

)
e
∫
−x

2 dx

=
(
x6 − 15x4 + 45x2 − 15

)
e−x2

4

=
(
x6 − 15x4 + 45x2 − 15

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x
1 dx

= z1e
3x2
4

= z1
(
e 3x2

4

)
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Which simplifies to

y1 = ex2
2
(
x6 − 15x4 + 45x2 − 15

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x

1 dx

(y1)2
dx

= y1

∫
e

3x2
2

(y1)2
dx

= y1

(∫ e 3x2
2 e−x2

(x6 − 15x4 + 45x2 − 15)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2

2
(
x6 − 15x4 + 45x2 − 15

))
+ c2

(
ex2

2
(
x6 − 15x4 + 45x2 − 15

)(∫ e 3x2
2 e−x2

(x6 − 15x4 + 45x2 − 15)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 3x
(

d
dx
y(x)

)
+ (2x2 + 5) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2
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◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 5a0 + (6a3 + 2a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak(3k − 5) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 5a0 = 0, 6a3 + 2a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −5a0

2 , a3 = −a1
3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − 3akk + 5ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 − 3ak+2(k + 2) + 5ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 3kak+2−2ak+ak+2

k2+7k+12 , a2 = −5a0
2 , a3 = −a1

3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 62� �
dsolve(diff(diff(y(x),x),x)-3*diff(y(x),x)*x+(2*x^2+5)*y(x) = 0,

y(x),singsol=all)� �
y =

(
x6−15x4+45x2−15

)(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)
ex2

2 −2 ex2
c1x
(
x2−11

) (
x2−3

)
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Mathematica DSolve solution

Solving time : 1.324 (sec)
Leaf size : 95� �
DSolve[{D[y[x],{x,2}]-3*x*D[y[x],x]+(5+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
e

x2
2

(√
2πc2(x6 − 15x4 + 45x2 − 15) erfi

(
x√
2

)
− 2c2e

x2
2 x(x4 − 14x2 + 33) + 1440c1(x6 − 15x4 + 45x2 − 15)

)
1440
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2.1.79 problem 81

Solved as second order ode using Kovacic algorithm . . . . . . . . . 557
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 561
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 562
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 563

Internal problem ID [8927]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 81
Date solved : Thursday, December 12, 2024 at 09:58:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2y′′ + 5xy′ +
(
2x2 + 4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.224 (sec)

Writing the ode as

2y′′ + 5xy′ +
(
2x2 + 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2
B = 5x (3)
C = 2x2 + 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x2 − 12
16 (6)

Comparing the above to (5) shows that

s = 9x2 − 12
t = 16

Therefore eq. (4) becomes

z′′(x) =
(
9x2

16 − 3
4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.142: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3x

4 − 1
2x − 1

6x3 − 1
9x5 − 5

54x7 − 7
81x9 − 7

81x11 − 22
243x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
4
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 3x
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9x2

16
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 9x2 − 12
16

= Q+ R

16

=
(
9x2

16 − 3
4

)
+ (0)

= 9x2

16 − 3
4

We see that the coefficient of the term 1
x
in the quotient is −3

4 . Now b can be found.

b =
(
−3
4

)
− (0)

= −3
4

Hence

[
√
r]∞ = 3x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
4

3
4

− 1
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

4
3
4

− 1
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x2

16 − 3
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 3x
4 −1 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0, and since there are no poles then

d = α−
∞

= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
3x
4

)
= −3x

4
= −3x

4

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−3x

4

)
(0) +

((
−3
4

)
+
(
−3x

4

)2

−
(
9x2

16 − 3
4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3x

4 dx

= e− 3x2
8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x
2 dx

= z1e
− 5x2

8

= z1
(
e− 5x2

8

)
Which simplifies to

y1 = e−x2
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x

2 dx

(y1)2
dx

= y1

∫
e−

5x2
4

(y1)2
dx

= y1

−
i
√
π
√
3 erf

(
i
√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

e−x2

−
i
√
π
√
3 erf

(
i
√
3x
2

)
3



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
2 d2

dx2y(x) + 5x
(

d
dx
y(x)

)
+ (2x2 + 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−x2 − 2) y(x)−
5x
(

d
dx

y(x)
)

2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5x
(

d
dx

y(x)
)

2 + (x2 + 2) y(x) = 0
• Multiply by denominators

2 d2

dx2y(x) + 5x
(

d
dx
y(x)

)
+ (2x2 + 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k
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◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

4a2 + 4a0 + (12a3 + 9a1)x+
(

∞∑
k=2

(2ak+2(k + 2) (k + 1) + ak(5k + 4) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[4a2 + 4a0 = 0, 12a3 + 9a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0, a3 = −3a1

4

}
• Each term in the series must be 0, giving the recursion relation

(2k2 + 6k + 4) ak+2 + 5akk + 4ak + 2ak−2 = 0
• Shift index using k− >k + 2(

2(k + 2)2 + 6k + 16
)
ak+4 + 5ak+2(k + 2) + 4ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −5kak+2+2ak+14ak+2

2(k2+7k+12) , a2 = −a0, a3 = −3a1
4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 22� �
dsolve(2*diff(diff(y(x),x),x)+5*diff(y(x),x)*x+(2*x^2+4)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2

(
c1 + erf

(
i
√
3x
2

)
c2

)
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Mathematica DSolve solution

Solving time : 0.146 (sec)
Leaf size : 42� �
DSolve[{2*D[y[x],{x,2}]+5*x*D[y[x],x]+(4+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3e
−x2

(
√
3πc2erfi

(√
3x
2

)
+ 3c1

)
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2.1.80 problem 82

Solved as second order ode using Kovacic algorithm . . . . . . . . . 564
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 566
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 567
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 567

Internal problem ID [8928]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 82
Date solved : Thursday, December 12, 2024 at 09:58:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.131 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.144: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.036 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(2+4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.1.81 problem 83

Solved as second order ode using Kovacic algorithm . . . . . . . . . 568
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 570
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 571
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 571

Internal problem ID [8929]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 83
Date solved : Thursday, December 12, 2024 at 09:58:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.098 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.146: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(2+4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.1.82 problem 84

Solved as second order ode using Kovacic algorithm . . . . . . . . . 572
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 576
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 579
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 579

Internal problem ID [8930]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 84
Date solved : Thursday, December 12, 2024 at 09:58:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + x+ 1
)
y′′ + x

(
11x2 + 11x+ 9

)
y′ +

(
7x2 + 10x+ 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.075 (sec)

Writing the ode as(
2x4 + 2x3 + 2x2) y′′ + (11x3 + 11x2 + 9x

)
y′ +

(
7x2 + 10x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 2x3 + 2x2

B = 11x3 + 11x2 + 9x (3)
C = 7x2 + 10x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 21x4 + 18x3 + 27x2 − 2x− 3

t = 16
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.148: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at
x = −1

2 +
i
√
3

2 of order 2. There is a pole at x = −1
2 −

i
√
3

2 of order 2. Since there is no
odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 + 1

4x +
− 5

24 +
i
√
3

24(
x+ 1

2 −
i
√
3

2

)2 +
− 5

24 −
i
√
3

24(
x+ 1

2 +
i
√
3

2

)2 +
−1

8 −
43i

√
3

72

x+ 1
2 −

i
√
3

2

+
−1

8 +
43i

√
3

72

x+ 1
2 +

i
√
3

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 +

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

6 + 6i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

6 + 6i
√
3

12

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 −

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
6− 6i

√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
6− 6i

√
3

12

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

−1
2 +

i
√
3

2 2 0 1
2 +

√
6+6i

√
3

12
1
2 −

√
6+6i

√
3

12

−1
2 −

i
√
3

2 2 0 1
2 +

√
6−6i

√
3

12
1
2 −

√
6−6i

√
3

12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
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α+
∞ = 7

4 then

d = α+
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

+ (0)

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

= 7x2 + 3x+ 1
4x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

4x2 −
1
2 +

√
6+6i

√
3

12(
x+ 1

2 −
i
√
3

2

)2 −
1
2 +

√
6−6i

√
3

12(
x+ 1

2 +
i
√
3

2

)2
+

(
1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)2

−
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x+
1
2+

√
6+6i

√
3

12
x+1

2− i
√
3

2
+

1
2+

√
6−6i

√
3

12
x+1

2+ i
√
3

2

)
dx

= 2
(
x2 + x+ 1

)3/4√2x1/4e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+11x2+9x
2x4+2x3+2x2 dx

= z1e
− 9 ln(x)

4 −
ln

(
x2+x+1

)
4 −

√
3 arctan

(
(2x+1)

√
3

3

)
6

= z1

 e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

x9/4 (x2 + x+ 1)1/4





chapter 2. book solved problems 576

Which simplifies to

y1 =
2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+11x2+9x

2x4+2x3+2x2 dx

(y1)2
dx

= y1

∫
e−

9 ln(x)
2 −

ln
(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3

(y1)2
dx

= y1

∫ e−
9 ln(x)

2 −
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 x4e

2
√
3 arctan

(
(2x+1)

√
3

3

)
3

8x2 + 8x+ 8 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2


+c2

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

∫ e−
9 ln(x)

2 −
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 x4e

2
√

3 arctan
(

(2x+1)
√
3

3

)
3

8x2 + 8x+ 8 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) −
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1) +
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2+11x+9

2x(x2+x+1) , P3(x) = 7x2+10x+6
2x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 9
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (3 + 2r)xr + (a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r))x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r + 3) + ak−1(2k + 2r + 3) (k + r + 1) + ak−2(2k + 2r + 3) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2,−3

2

}
• Each term must be 0

a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (2+r)a0
3+r

• Each term in the series must be 0, giving the recursion relation
2((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r + 2ak − ak−2 + ak−1)

(
k + r + 3

2

)
= 0

• Shift index using k− >k + 2
2((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r + 2ak+2 − ak + ak+1)

(
k + 7

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
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ak+2 = −kak+kak+1+rak+rak+1+ak+3ak+1
k+4+r

• Recursion relation for r = −2
ak+2 = −kak+kak+1−ak+ak+1

k+2

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

, a1 = −a0
3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0, bk+2 = −kbk+kbk+1− 1
2 bk+

3
2 bk+1

k+ 5
2

, b1 = − b0
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.864 (sec)
Leaf size : 231� �
dsolve(2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(11*x^2+11*x+9)*diff(y(x),x)+(7*x^2+10*x+6)*y(x) = 0,

y(x),singsol=all)� �
y

=

(
2x+ i

√
3 + 1

) 5
√
3+3i

6
√
3+6i

(
i
√
3− 2x− 1

) 64i
√
3+2368(√

3+i
)3(

i−
√
3
)4(

13
√
3+9i

)
e−

√
3 arctan

(
(2x+1)

√
3

3

)
6

(
HeunG

(√
3+i

i−
√
3 , 0, 0,

5
2 ,

1
2 ,

5
√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c1
√
x+HeunG

(
√
3+i

i−
√
3 ,−

64(
i
√
3−1

)3(
i−

√
3
)4 , 12 , 3, 32 , 5

√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c2x

)
x5/2 (x2 + x+ 1)1/4

Mathematica DSolve solution

Solving time : 1.879 (sec)
Leaf size : 93� �
DSolve[{2*x^2*(1+x+x^2)*D[y[x],{x,2}]+x*(9+11*x+11*x^2)*D[y[x],x]+(6+10*x+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
x2 + x+ 1e−

arctan
(

2x+1√
3

)
√
3

c2
∫ x

1
e

arctan
(

2K[1]+1√
3

)
√
3√

K[1](K[1]2+K[1]+1)3/2
dK[1] + c1


x2
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2.1.83 problem 85

Solved as second order ode using Kovacic algorithm . . . . . . . . . 580
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 585
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 587
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 587

Internal problem ID [8931]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 85
Date solved : Thursday, December 12, 2024 at 09:58:40 AM
CAS classification :
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

3x2y′′ + 2x
(
−2x2 + x+ 1

)
y′ +

(
−8x2 + 2x

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.446 (sec)

Writing the ode as

3x2y′′ +
(
−4x3 + 2x2 + 2x

)
y′ +

(
−8x2 + 2x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = −4x3 + 2x2 + 2x (3)
C = −8x2 + 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 4x3 + 15x2 − 4x− 2
9x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 4x3 + 15x2 − 4x− 2
t = 9x2
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Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 4x3 + 15x2 − 4x− 2

9x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.150: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 9x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 4x2

9 − 4x
9 + 5

3 − 2
9x2 − 4

9x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2x

3 − 1
3 + 7

6x + 1
4x2 − 17

16x3 − 31
32x4 + 85

64x5 + 353
128x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 2
3

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= −1
3 + 2x

3 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

9 − 4
9x+ 4

9x
2

This shows that the coefficient of 1 in the above is 1
9 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 4x3 + 15x2 − 4x− 2
9x2

= Q+ R

9x2

=
(
4
9x

2 − 4
9x+ 5

3

)
+
(
−4x− 2

9x2

)
= 4x2

9 − 4x
9 + 5

3 + −4x− 2
9x2

We see that the coefficient of the term x in the quotient is 5
3 . Now b can be found.

b =
(
5
3

)
−
(
1
9

)
= 14

9
Hence

[
√
r]∞ = −1

3 + 2x
3

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 14
9
2
3
− 1
)

= 2
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

14
9
2
3
− 1
)

= −5
3
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 4x3 + 15x2 − 4x− 2
9x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2
3

1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 −1
3 +

2x
3

2
3 −5

3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2

3 then

d = α+
∞ −

(
α+
c1

)
= 2

3 −
(
2
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 2
3x +

(
−1
3 + 2x

3

)
= 2

3x − 1
3 + 2x

3
= 2

3x − 1
3 + 2x

3

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

2
3x − 1

3 + 2x
3

)
(0) +

((
− 2
3x2 + 2

3

)
+
(

2
3x − 1

3 + 2x
3

)2

−
(
4x4 − 4x3 + 15x2 − 4x− 2

9x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

3x−
1
3+

2x
3
)
dx

= x2/3e
x(x−1)

3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x3+2x2+2x

3x2 dx

= z1e
x2
3 −x

3−
ln(x)

3

= z1

(
e

x(x−1)
3

x1/3

)

Which simplifies to

y1 = x1/3e
2x(x−1)

3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x3+2x2+2x

3x2 dx

(y1)2
dx

= y1

∫
e

2x2
3 − 2x

3 − 2 ln(x)
3

(y1)2
dx

= y1

(∫ e 2x2
3 − 2x

3 − 2 ln(x)
3 e−

4x(x−1)
3

x2/3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3e

2x(x−1)
3

)
+ c2

(
x1/3e

2x(x−1)
3

(∫ e 2x2
3 − 2x

3 − 2 ln(x)
3 e−

4x(x−1)
3

x2/3 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
+ 2x(−2x2 + x+ 1)

(
d
dx
y(x)

)
+ (−8x2 + 2x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(4x−1)y(x)
3x +

2
(
2x2−x−1

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(
2x2−x−1

)(
d
dx

y(x)
)

3x − 2(4x−1)y(x)
3x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2
(
2x2−x−1

)
3x , P3(x) = −2(4x−1)

3x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3
(

d2

dx2y(x)
)
x+ (−4x2 + 2x+ 2)

(
d
dx
y(x)

)
+ (2− 8x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−1 + 3r)x−1+r + (a1(1 + r) (2 + 3r) + 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (3k + 2 + 3r) + 2ak(k + 1 + r)− 4ak−1(k + 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r) + 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1 + r) (3kak+1 + 3rak+1 + 2ak − 4ak−1 + 2ak+1) = 0

• Shift index using k− >k + 1
(k + r + 2) (3(k + 1) ak+2 + 3rak+2 + 2ak+1 − 4ak + 2ak+2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2(−ak+1+2ak)

3k+5+3r

• Recursion relation for r = 0
ak+2 = 2(−ak+1+2ak)

3k+5

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2(−ak+1+2ak)

3k+5 , 2a1 + 2a0 = 0
]

• Recursion relation for r = 1
3

ak+2 = 2(−ak+1+2ak)
3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = 2(−ak+1+2ak)
3k+6 , 4a1 + 8a0

3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = 2(−ak+1+2ak)

3k+5 , 2a1 + 2a0 = 0, bk+2 = 2(−bk+1+2bk)
3k+6 , 4b1 + 8b0

3 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
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-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.959 (sec)
Leaf size : 38� �
dsolve(3*x^2*diff(diff(y(x),x),x)+2*x*(-2*x^2+x+1)*diff(y(x),x)+(-8*x^2+2*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

1/3e
2x(x−1)

3 + c2HeunB
(
−1
3 ,

√
6
3 ,−7

3 ,
4
√
6

9 ,−
√
6x
3

)

Mathematica DSolve solution

Solving time : 4.768 (sec)
Leaf size : 53� �
DSolve[{3*x^2*D[y[x],{x,2}]+2*x*(1+x-2*x^2)*D[y[x],x]+(2*x-8*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e

2
3 (x−1)x 3

√
x

(
c2

∫ x

1

e−
2
3 (K[1]−1)K[1]

K[1]4/3 dK[1] + c1

)
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2.1.84 problem 86

Solved as second order ode using Kovacic algorithm . . . . . . . . . 588
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 593
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 595
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 595

Internal problem ID [8932]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 86
Date solved : Thursday, December 12, 2024 at 09:58:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

12x2(1 + x) y′′ + x
(
3x2 + 35x+ 11

)
y′ −

(
−5x2 − 10x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.432 (sec)

Writing the ode as(
12x3 + 12x2) y′′ + (3x3 + 35x2 + 11x

)
y′ +

(
5x2 + 10x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 12x3 + 12x2

B = 3x3 + 35x2 + 11x (3)
C = 5x2 + 10x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x4 − 30x3 − 197x2 − 190x− 95
576 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 9x4 − 30x3 − 197x2 − 190x− 95

t = 576
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
9x4 − 30x3 − 197x2 − 190x− 95

576 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.152: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 576(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
64 − 95

576x2 − 7
64 (1 + x)2

− 1
12 (1 + x)

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 95

576 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 19

24
α−
c = 1

2 −
√
1 + 4b = 5

24
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

8 − 1
3x − 29

24x2 − 193
72x3 − 3017

216x4 − 40009
648x5 − 642029

1944x6 − 10350493
5832x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
8

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
8 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

64
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x4 − 30x3 − 197x2 − 190x− 95
576x4 + 1152x3 + 576x2

= Q+ R

576x4 + 1152x3 + 576x2

=
(

1
64

)
+
(
−48x3 − 206x2 − 190x− 95
576x4 + 1152x3 + 576x2

)
= 1

64 + −48x3 − 206x2 − 190x− 95
576x4 + 1152x3 + 576x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −48. Dividing this by leading coefficient in t which is 576 gives − 1

12 . Now b can be
found.

b =
(
− 1
12

)
− (0)

= − 1
12
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Hence

[
√
r]∞ = 1

8

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(− 1
12
1
8

− 0
)

= −1
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
− 1

12
1
8

− 0
)

= 1
3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x4 − 30x3 − 197x2 − 190x− 95
576 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
8

1
8

0 2 0 19
24

5
24

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
8 −1

3
1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
8 + 8x + 5

24x + (−)
(
1
8

)
= 1

8 + 8x + 5
24x − 1

8
= 1

8 + 8x + 5
24x − 1

8
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
8 + 8x + 5

24x − 1
8

)
(0) +

((
− 1
8 (1 + x)2

− 5
24x2

)
+
(

1
8 + 8x + 5

24x − 1
8

)2

−
(
9x4 − 30x3 − 197x2 − 190x− 95

576 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

8+8x+
5

24x−
1
8

)
dx

= x5/24(1 + x)1/8 e−x
8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+35x2+11x

12x3+12x2 dx

= z1e
−x

8−
11 ln(x)

24 − 7 ln(1+x)
8

= z1

(
e−x

8

x11/24 (1 + x)7/8

)

Which simplifies to

y1 =
e−x

4

x1/4 (1 + x)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+35x2+11x

12x3+12x2 dx

(y1)2
dx

= y1

∫
e−

x
4−

11 ln(x)
12 − 7 ln(1+x)

4

(y1)2
dx

= y1

(∫
e−x

4−
11 ln(x)

12 − 7 ln(1+x)
4

√
x (1 + x)3/2 ex

2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

4

x1/4 (1 + x)3/4

)
+ c2

(
e−x

4

x1/4 (1 + x)3/4

(∫
e−x

4−
11 ln(x)

12 − 7 ln(1+x)
4

√
x (1 + x)3/2 ex

2 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

12x2(x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 35x+ 11)

(
d
dx
y(x)

)
− (−5x2 − 10x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+10x−1

)
y(x)

12(x+1)x2 −
(
3x2+35x+11

)(
d
dx

y(x)
)

12x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+35x+11

)(
d
dx

y(x)
)

12x(x+1) +
(
5x2+10x−1

)
y(x)

12(x+1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3x2+35x+11

12x(x+1) , P3(x) = 5x2+10x−1
12(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

12x2(x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 35x+ 11)

(
d
dx
y(x)

)
+ (5x2 + 10x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(12u3 − 24u2 + 12u)
(

d2

du2y(u)
)
+ (3u3 + 26u2 − 50u+ 21)

(
d
du
y(u)

)
+ (5u2 − 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(3 + 4r)u−1+r + (3a1(1 + r) (7 + 4r)− 2a0(3 + 4r) (1 + 3r))ur + (3a2(2 + r) (11 + 4r)− 2a1(7 + 4r) (4 + 3r) + 2a0r(7 + 6r))u1+r +
(

∞∑
k=2

(3ak+1(k + 1 + r) (4k + 7 + 4r)− 2ak(4k + 4r + 3) (3k + 3r + 1) + 2ak−1(k + r − 1) (6k + 1 + 6r) + ak−2(3k − 1 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

4

}
• The coefficients of each power of u must be 0

[3a1(1 + r) (7 + 4r)− 2a0(3 + 4r) (1 + 3r) = 0, 3a2(2 + r) (11 + 4r)− 2a1(7 + 4r) (4 + 3r) + 2a0r(7 + 6r) = 0]
• Solve for the dependent coefficient(s){

a1 = 2a0
(
12r2+13r+3

)
3(4r2+11r+7) , a2 = 2a0

(
54r3+135r2+101r+24

)
9(4r3+23r2+41r+22)

}
• Each term in the series must be 0, giving the recursion relation

12(−2ak + ak−1 + ak+1) k2 + (24(−2ak + ak−1 + ak+1) r − 26ak + 3ak−2 − 10ak−1 + 33ak+1) k + 12(−2ak + ak−1 + ak+1) r2 + (−26ak + 3ak−2 − 10ak−1 + 33ak+1) r − 6ak − ak−2 − 2ak−1 + 21ak+1 = 0
• Shift index using k− >k + 2

12(−2ak+2 + ak+1 + ak+3) (k + 2)2 + (24(−2ak+2 + ak+1 + ak+3) r − 26ak+2 + 3ak − 10ak+1 + 33ak+3) (k + 2) + 12(−2ak+2 + ak+1 + ak+3) r2 + (−26ak+2 + 3ak − 10ak+1 + 33ak+3) r − 6ak+2 − ak − 2ak+1 + 21ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −12k2ak+1−24k2ak+2+24krak+1−48krak+2+12r2ak+1−24r2ak+2+3kak+38kak+1−122kak+2+3rak+38rak+1−122rak+2+5ak+26ak+1−154ak+2
3(4k2+8kr+4r2+27k+27r+45)

• Recursion relation for r = 0
ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45) , a1 = 2a0
7 , a2 = 8a0

33

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2
3(4k2+27k+45) , a1 = 2a0

7 , a2 = 8a0
33

]
• Recursion relation for r = −3

4

ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11
4 ak+ 17

4 ak+1−76ak+2
3(4k2+21k+27)

• Solution for r = −3
4[

y(u) =
∞∑
k=0

aku
k− 3

4 , ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11
4 ak+ 17

4 ak+1−76ak+2
3(4k2+21k+27) , a1 = 0, a2 = a0

8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
3
4 , ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11

4 ak+ 17
4 ak+1−76ak+2

3(4k2+21k+27) , a1 = 0, a2 = a0
8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
3
4

)
, ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45) , a1 = 2a0
7 , a2 = 8a0

33 , bk+3 = −12k2bk+1−24k2bk+2+3kbk+20kbk+1−86kbk+2+ 11
4 bk+ 17

4 bk+1−76bk+2
3(4k2+21k+27) , b1 = 0, b2 = b0

8

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.519 (sec)
Leaf size : 43� �
dsolve(12*x^2*(x+1)*diff(diff(y(x),x),x)+x*(3*x^2+35*x+11)*diff(y(x),x)-(-5*x^2-10*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x
4
(
HeunC

(1
4 ,

7
12 ,−

3
4 ,−

1
12 ,

1
2 ,−x

)
x7/12c2 +HeunC

(1
4 ,−

7
12 ,−

3
4 ,−

1
12 ,

1
2 ,−x

)
c1
)

(x+ 1)3/4 x1/4

Mathematica DSolve solution

Solving time : 21.072 (sec)
Leaf size : 61� �
DSolve[{12*x^2*(1+x)*D[y[x],{x,2}]+x*(11+35*x+3*x^2)*D[y[x],x]-(1-10*x-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−x/4

(
c2
∫ x

1
e
K[1]
4

K[1]5/12 4
√

K[1] + 1
dK[1] + c1

)
4
√
x(x+ 1)3/4
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2.1.85 problem 87

Solved as second order ode using Kovacic algorithm . . . . . . . . . 596
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 600
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 603
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 603

Internal problem ID [8933]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 87
Date solved : Thursday, December 12, 2024 at 09:58:42 AM
CAS classification :
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

x2(10x2 + x+ 5
)
y′′ + x

(
48x2 + 3x+ 4

)
y′ +

(
36x2 + x

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.046 (sec)

Writing the ode as(
10x4 + x3 + 5x2) y′′ + (48x3 + 3x2 + 4x

)
y′ +

(
36x2 + x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 10x4 + x3 + 5x2

B = 48x3 + 3x2 + 4x (3)
C = 36x2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −96x4 − 16x3 − 97x2 − 12x− 24
4 (10x3 + x2 + 5x)2

(6)

Comparing the above to (5) shows that

s = −96x4 − 16x3 − 97x2 − 12x− 24

t = 4
(
10x3 + x2 + 5x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−96x4 − 16x3 − 97x2 − 12x− 24

4 (10x3 + x2 + 5x)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.154: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(10x3 + x2 + 5x)2. There is a pole at x = 0 of order 2. There is a pole at
x = − 1

20 +
i
√
199
20 of order 2. There is a pole at x = − 1

20 −
i
√
199
20 of order 2. Since there is

no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r=
− 1

19900 −
i
√
199

1990(
x+ 1

20 −
i
√
199
20

)2+ − 1
19900 +

i
√
199

1990(
x+ 1

20 +
i
√
199
20

)2+ 3
250 −

647i
√
199

9900250

x+ 1
20 −

i
√
199
20

+
3

250 +
647i

√
199

9900250

x+ 1
20 +

i
√
199
20

− 6
25x2−

3
125x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 6
25 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

5
α−
c = 1

2 −
√
1 + 4b = 2

5
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For the pole at x = − 1
20 +

i
√
199
20 let b be the coefficient of 1(

x+ 1
20−

i
√
199
20

)2 in the partial

fractions decomposition of r given above. Therefore b = − 1
19900 −

i
√
199

1990 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

989826− 1990i
√
199

1990

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

989826− 1990i
√
199

1990

For the pole at x = − 1
20 −

i
√
199
20 let b be the coefficient of 1(

x+ 1
20+

i
√
199
20

)2 in the partial

fractions decomposition of r given above. Therefore b = − 1
19900 +

i
√
199

1990 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
989826 + 1990i

√
199

1990

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
989826 + 1990i

√
199

1990

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −96x4 − 16x3 − 97x2 − 12x− 24

4 (10x3 + x2 + 5x)2

Since the gcd(s, t) = 1. This gives b = − 6
25 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

5
α−
∞ = 1

2 −
√
1 + 4b = 2

5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −96x4 − 16x3 − 97x2 − 12x− 24
4 (10x3 + x2 + 5x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
5

2
5

− 1
20 +

i
√
199
20 2 0 1

2 +
√

989826−1990i
√
199

1990
1
2 −

√
989826−1990i

√
199

1990

− 1
20 −

i
√
199
20 2 0 1

2 +
√

989826+1990i
√
199

1990
1
2 −

√
989826+1990i

√
199

1990

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
5

2
5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
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α+
∞ = 3

5 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3

5 −
(
3
5

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
5x +

1
2 −

√
989826−1990i

√
199

1990

x+ 1
20 −

i
√
199
20

+
1
2 −

√
989826+1990i

√
199

1990

x+ 1
20 +

i
√
199
20

+ (0)

= 3
5x +

1
2 −

√
989826−1990i

√
199

1990

x+ 1
20 −

i
√
199
20

+
1
2 −

√
989826+1990i

√
199

1990

x+ 1
20 +

i
√
199
20

= 12x2 + x+ 6
20x3 + 2x2 + 10x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
5x +

1
2 −

√
989826−1990i

√
199

1990

x+ 1
20 −

i
√
199
20

+
1
2 −

√
989826+1990i

√
199

1990

x+ 1
20 +

i
√
199
20

)
(0) +


− 3

5x2 −
1
2 −

√
989826−1990i

√
199

1990(
x+ 1

20 −
i
√
199
20

)2 −
1
2 −

√
989826+1990i

√
199

1990(
x+ 1

20 +
i
√
199
20

)2
+

(
3
5x +

1
2 −

√
989826−1990i

√
199

1990

x+ 1
20 −

i
√
199
20

+
1
2 −

√
989826+1990i

√
199

1990

x+ 1
20 +

i
√
199
20

)2

−
(
−96x4 − 16x3 − 97x2 − 12x− 24

4 (10x3 + x2 + 5x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

5x+
1
2−

√
989826−1990i

√
199

1990
x+ 1

20− i
√
199
20

+
1
2−

√
989826+1990i

√
199

1990
x+ 1

20+ i
√
199
20

)
dx

= x3/5e−
√
199 arctan

(
(20x+1)

√
199

199

)
995

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
48x3+3x2+4x
10x4+x3+5x2 dx

= z1e
− 2 ln(x)

5 −ln
(
10x2+x+5

)
−

√
199 arctan

(
(20x+1)

√
199

199

)
995

= z1

e−
√
199 arctan

(
(20x+1)

√
199

199

)
995

x2/5 (10x2 + x+ 5)
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Which simplifies to

y1 =
x1/5e−

2
√
199 arctan

(
(20x+1)

√
199

199

)
995

10x2 + x+ 5

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 48x3+3x2+4x

10x4+x3+5x2 dx

(y1)2
dx

= y1

∫
e−

4 ln(x)
5 −2 ln

(
10x2+x+5

)
−

2
√
199 arctan

(
(20x+1)

√
199

199

)
995

(y1)2
dx

= y1

∫ e−
4 ln(x)

5 −2 ln
(
10x2+x+5

)
−

2
√
199 arctan

(
(20x+1)

√
199

199

)
995 (10x2 + x+ 5)2 e

4
√

199 arctan
(

(20x+1)
√
199

199

)
995

x2/5 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

x1/5e−
2
√
199 arctan

(
(20x+1)

√
199

199

)
995

10x2 + x+ 5


+c2

x1/5e−
2
√
199 arctan

(
(20x+1)

√
199

199

)
995

10x2 + x+ 5

∫ e−
4 ln(x)

5 −2 ln
(
10x2+x+5

)
−

2
√
199 arctan

(
(20x+1)

√
199

199

)
995 (10x2 + x+ 5)2 e

4
√
199 arctan

(
(20x+1)

√
199

199

)
995

x2/5 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(10x2 + x+ 5)
(

d2

dx2y(x)
)
+ x(48x2 + 3x+ 4)

(
d
dx
y(x)

)
+ (36x2 + x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (36x+1)y(x)
x(10x2+x+5) −

(
48x2+3x+4

)(
d
dx

y(x)
)

x(10x2+x+5)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
48x2+3x+4

)(
d
dx

y(x)
)

x(10x2+x+5) + (36x+1)y(x)
x(10x2+x+5) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 48x2+3x+4
x(10x2+x+5) , P3(x) = 36x+1

x(10x2+x+5)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 4
5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(10x2 + x+ 5)
(

d2

dx2y(x)
)
+ (48x2 + 3x+ 4)

(
d
dx
y(x)

)
+ (36x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 5r)x−1+r +
(
a1(1 + r) (4 + 5r) + a0(1 + r)2

)
xr +

(
∞∑
k=1

(
ak+1(k + r + 1) (5k + 4 + 5r) + ak(k + r + 1)2 + 2ak−1(k + r + 1) (5k + 4 + 5r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 5r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 15
}

• Each term must be 0
a1(1 + r) (4 + 5r) + a0(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) ((ak + 10ak−1 + 5ak+1) k + (ak + 10ak−1 + 5ak+1) r + ak + 8ak−1 + 4ak+1) = 0

• Shift index using k− >k + 1
(k + r + 2) ((ak+1 + 10ak + 5ak+2) (k + 1) + (ak+1 + 10ak + 5ak+2) r + ak+1 + 8ak + 4ak+2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −10kak+kak+1+10rak+rak+1+18ak+2ak+1

5k+5r+9

• Recursion relation for r = 0
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ak+2 = −10kak+kak+1+18ak+2ak+1
5k+9

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −10kak+kak+1+18ak+2ak+1

5k+9 , 4a1 + a0 = 0
]

• Recursion relation for r = 1
5

ak+2 = −10kak+kak+1+20ak+ 11
5 ak+1

5k+10

• Solution for r = 1
5[

y(x) =
∞∑
k=0

akx
k+ 1

5 , ak+2 = −10kak+kak+1+20ak+ 11
5 ak+1

5k+10 , 6a1 + 36a0
25 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

5

)
, ak+2 = −10kak+kak+1+18ak+2ak+1

5k+9 , 4a1 + a0 = 0, bk+2 = −10kbk+kbk+1+20bk+ 11
5 bk+1

5k+10 , 6b1 + 36b0
25 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 1.026 (sec)
Leaf size : 162� �
dsolve(x^2*(10*x^2+x+5)*diff(diff(y(x),x),x)+x*(48*x^2+3*x+4)*diff(y(x),x)+(36*x^2+x)*y(x) = 0,

y(x),singsol=all)� �
y

=
e−

√
199 arctan

(
(20x+1)

√
199

199

)
995

(
i
√
199 + 20x+ 1

)− i
√
199

1990
(
i
√
199− 20x− 1

) i
√
199

1990
(
HeunG

(√
199+i

i−
√
199 , 0, 0,

1
5 ,

6
5 ,−

i
√
199

995 ,− 20x
1+i

√
199

)
x1/5c2 +HeunG

(√
199+i

i−
√
199 ,

15721−179i
√
199

194275i
√
199+641775 ,−

1
5 , 0,

4
5 ,−

i
√
199

995 ,− 20x
1+i

√
199

)
c1
)

10x2 + x+ 5

Mathematica DSolve solution

Solving time : 3.597 (sec)
Leaf size : 88� �
DSolve[{x^2*(5+x+10*x^2)*D[y[x],{x,2}]+x*(4+3*x+48*x^2)*D[y[x],x]+(x+36*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

5
√
xe

−
2 arctan

(
20x+1√

199

)
5
√

199

c2
∫ x

1
e

2 arctan
(

20K[1]+1√
199

)
5
√
199

K[1]6/5 dK[1] + c1


10x2 + x+ 5
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2.1.86 problem 88

Solved as second order ode using Kovacic algorithm . . . . . . . . . 604
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 609
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 611
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 611

Internal problem ID [8934]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 88
Date solved : Thursday, December 12, 2024 at 09:58:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

18x2(1 + x) y′′ + 3x
(
x2 + 11x+ 5

)
y′ −

(
−5x2 − 2x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.370 (sec)

Writing the ode as(
18x3 + 18x2) y′′ + (3x3 + 33x2 + 15x

)
y′ +

(
5x2 + 2x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 18x3 + 18x2

B = 3x3 + 33x2 + 15x (3)
C = 5x2 + 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 18x3 − 45x2 − 18x− 27
144 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = x4 − 18x3 − 45x2 − 18x− 27

t = 144
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 − 18x3 − 45x2 − 18x− 27

144 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.156: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
144 − 35

144 (1 + x)2
− 7

18 (1 + x) +
1
4x − 3

16x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

12 − 5
6x − 53

12x2 − 523
12x3 − 6659

12x4 − 94267
12x5 − 1432421

12x6 − 22802941
12x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
12

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
12 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

144
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 − 18x3 − 45x2 − 18x− 27
144x4 + 288x3 + 144x2

= Q+ R

144x4 + 288x3 + 144x2

=
(

1
144

)
+
(
−20x3 − 46x2 − 18x− 27
144x4 + 288x3 + 144x2

)
= 1

144 + −20x3 − 46x2 − 18x− 27
144x4 + 288x3 + 144x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −20. Dividing this by leading coefficient in t which is 144 gives − 5

36 . Now b can be
found.

b =
(
− 5
36

)
− (0)

= − 5
36
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Hence

[
√
r]∞ = 1

12

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(− 5
36
1
12

− 0
)

= −5
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
− 5

36
1
12

− 0
)

= 5
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 18x3 − 45x2 − 18x− 27
144 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
12

5
12

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
12 −5

6
5
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

6 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 5

6 −
(
5
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 7
12 (1 + x) +

1
4x + (−)

(
1
12

)
= 7

12 (1 + x) +
1
4x − 1

12

= 7
12 + 12x + 1

4x − 1
12

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

7
12 (1 + x) +

1
4x − 1

12

)
(0) +

((
− 7
12 (1 + x)2

− 1
4x2

)
+
(

7
12 (1 + x) +

1
4x − 1

12

)2

−
(
x4 − 18x3 − 45x2 − 18x− 27

144 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

12(1+x)+
1
4x−

1
12

)
dx

= (1 + x)7/12 x1/4e− x
12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+33x2+15x

18x3+18x2 dx

= z1e
− x

12−
5 ln(1+x)

12 − 5 ln(x)
12

= z1

(
e− x

12

(1 + x)5/12 x5/12

)

Which simplifies to

y1 =
(1 + x)1/6 e−x

6

x1/6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+33x2+15x

18x3+18x2 dx

(y1)2
dx

= y1

∫
e−

x
6−

5 ln(1+x)
6 − 5 ln(x)

6

(y1)2
dx

= y1

(∫ e−x
6−

5 ln(1+x)
6 − 5 ln(x)

6 x1/3ex
3

(1 + x)1/3
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x)1/6 e−x

6

x1/6

)
+ c2

(
(1 + x)1/6 e−x

6

x1/6

(∫ e−x
6−

5 ln(1+x)
6 − 5 ln(x)

6 x1/3ex
3

(1 + x)1/3
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

18x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x(x2 + 11x+ 5)

(
d
dx
y(x)

)
− (−5x2 − 2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+2x−1

)
y(x)

18(x+1)x2 −
(
x2+11x+5

)(
d
dx

y(x)
)

6x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+11x+5

)(
d
dx

y(x)
)

6x(x+1) +
(
5x2+2x−1

)
y(x)

18(x+1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = x2+11x+5

6x(x+1) , P3(x) = 5x2+2x−1
18(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5
6

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

18x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x(x2 + 11x+ 5)

(
d
dx
y(x)

)
+ (5x2 + 2x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(18u3 − 36u2 + 18u)
(

d2

du2y(u)
)
+ (3u3 + 24u2 − 42u+ 15)

(
d
du
y(u)

)
+ (5u2 − 8u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(−1 + 6r)u−1+r + (3a1(1 + r) (5 + 6r)− 2a0(1 + 3r) (−1 + 6r))ur + (3a2(2 + r) (11 + 6r)− 2a1(4 + 3r) (5 + 6r) + 2a0(9r2 + 3r − 4))u1+r +
(

∞∑
k=2

(
3ak+1(k + 1 + r) (6k + 5 + 6r)− 2ak(3k + 3r + 1) (6k + 6r − 1) + 2ak−1

(
9(k − 1)2 + 18(k − 1) r + 9r2 + 3k − 7 + 3r

)
+ ak−2(3k − 1 + 3r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−1 + 6r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 16
}

• The coefficients of each power of u must be 0
[3a1(1 + r) (5 + 6r)− 2a0(1 + 3r) (−1 + 6r) = 0, 3a2(2 + r) (11 + 6r)− 2a1(4 + 3r) (5 + 6r) + 2a0(9r2 + 3r − 4) = 0]

• Solve for the dependent coefficient(s){
a1 = 2a0

(
18r2+3r−1

)
3(6r2+11r+5) , a2 = 2a0

(
81r3+126r2+21r+4

)
9(6r3+29r2+45r+22)

}
• Each term in the series must be 0, giving the recursion relation

18(−2ak + ak−1 + ak+1) k2 + 3(12(−2ak + ak−1 + ak+1) r − 2ak + ak−2 − 10ak−1 + 11ak+1) k + 18(−2ak + ak−1 + ak+1) r2 + 3(−2ak + ak−2 − 10ak−1 + 11ak+1) r + 2ak − ak−2 + 4ak−1 + 15ak+1 = 0
• Shift index using k− >k + 2

18(−2ak+2 + ak+1 + ak+3) (k + 2)2 + 3(12(−2ak+2 + ak+1 + ak+3) r − 2ak+2 + ak − 10ak+1 + 11ak+3) (k + 2) + 18(−2ak+2 + ak+1 + ak+3) r2 + 3(−2ak+2 + ak − 10ak+1 + 11ak+3) r + 2ak+2 − ak + 4ak+1 + 15ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −18k2ak+1−36k2ak+2+36krak+1−72krak+2+18r2ak+1−36r2ak+2+3kak+42kak+1−150kak+2+3rak+42rak+1−150rak+2+5ak+16ak+1−154ak+2
3(6k2+12kr+6r2+35k+35r+51)

• Recursion relation for r = 0
ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51) , a1 = −2a0
15 , a2 =

4a0
99

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2
3(6k2+35k+51) , a1 = −2a0

15 , a2 =
4a0
99

]
• Recursion relation for r = 1

6

ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11
2 ak+ 47

2 ak+1−180ak+2
3(6k2+37k+57)

• Solution for r = 1
6[

y(u) =
∞∑
k=0

aku
k+ 1

6 , ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11
2 ak+ 47

2 ak+1−180ak+2
3(6k2+37k+57) , a1 = 0, a2 = a0

12

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
1
6 , ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11

2 ak+ 47
2 ak+1−180ak+2

3(6k2+37k+57) , a1 = 0, a2 = a0
12

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+
1
6

)
, ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51) , a1 = −2a0
15 , a2 =

4a0
99 , bk+3 = −18k2bk+1−36k2bk+2+3kbk+48kbk+1−162kbk+2+ 11

2 bk+ 47
2 bk+1−180bk+2

3(6k2+37k+57) , b1 = 0, b2 = b0
12

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.495 (sec)
Leaf size : 38� �
dsolve(18*x^2*(x+1)*diff(diff(y(x),x),x)+3*x*(x^2+11*x+5)*diff(y(x),x)-(-5*x^2-2*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x
6
(√

x HeunC
(1
6 ,

1
2 ,−

1
6 ,−

5
36 ,

1
4 ,−x

)
c2 +HeunC

(1
6 ,−

1
2 ,−

1
6 ,−

5
36 ,

1
4 ,−x

)
c1
)

x1/6

Mathematica DSolve solution

Solving time : 6.388 (sec)
Leaf size : 73� �
DSolve[{18*x^2*(1+x)*D[y[x],{x,2}]+3*x*(5+11*x+x^2)*D[y[x],x]-(1-2*x-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

e−x/6

c2
∫ x

1

e
K[1]
6

3

√
K[1]

K[1] + 1
K[1]5/6(K[1]+1)5/6 dK[1] + c1


6

√
x

x+ 1
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2.1.87 problem 89

Solved as second order ode using Kovacic algorithm . . . . . . . . . 612
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 616
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 618
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 619

Internal problem ID [8935]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 89
Date solved : Thursday, December 12, 2024 at 09:58:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + x(3 + 2x) y′ − (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.284 (sec)

Writing the ode as

2x2y′′ +
(
2x2 + 3x

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 2x2 + 3x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x+ 5
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 + 4x+ 5
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x+ 5

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.158: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 5

16x2 + 1
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
4x + 1

4x2 − 1
8x3 + 1

16x5 − 3
64x6 − 1

128x7 + 11
256x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 4x+ 5
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
4x+ 5
16x2

)
= 1

4 + 4x+ 5
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
2
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
2
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 4x+ 5
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1

)
= −1

4 −
(
−1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
4x + (−)

(
1
2

)
= − 1

4x − 1
2

= − 1
4x − 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4x − 1

2

)
(0) +

((
1
4x2

)
+
(
− 1
4x − 1

2

)2

−
(
4x2 + 4x+ 5

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
4x−

1
2
)
dx

= e−x
2

x1/4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+3x

2x2 dx

= z1e
−x

2−
3 ln(x)

4

= z1

(
e−x

2

x3/4

)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+3x

2x2 dx

(y1)2
dx

= y1

∫
e−x− 3 ln(x)

2

(y1)2
dx

= y1

(
√
x ex −

√
π erfi

(√
x
)

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

(
√
x ex −

√
π erfi

(√
x
)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ x(2x+ 3)

(
d
dx
y(x)

)
− (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
2x2 −

(2x+3)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+3)

(
d
dx

y(x)
)

2x + (x−1)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x+3
2x , P3(x) = x−1

2x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ x(2x+ 3)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r − 1) + ak−1(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r − 1

2

)
(ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − ak

k+1

]
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• Recursion relation for r = 1
2

ak+1 = − ak
k+ 5

2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
k+ 5

2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − ak

k+1 , bk+1 = − bk
k+ 5

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.508 (sec)
Leaf size : 52� �
dsolve(2*x^2*diff(diff(y(x),x),x)+x*(2*x+3)*diff(y(x),x)-(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = −

3
(
2c1(−x)3/2 + e−x

(
xc1

√
π erf

(√
−x
)
− 4c2

√
x
√
−x

3

))
4
√
−xx3/2
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Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 33� �
DSolve[{2*x^2*D[y[x],{x,2}]+x*(3+2*x)*D[y[x],x]-(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−x
(
c2x

3/2L
3
2
− 3

2
(x) + c1

)
x
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2.1.88 problem 90

Solved as second order ode using Kovacic algorithm . . . . . . . . . 620
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 624
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 626
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 627

Internal problem ID [8936]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 90
Date solved : Thursday, December 12, 2024 at 09:58:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + x(5 + x) y′ − (2− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.310 (sec)

Writing the ode as

2x2y′′ +
(
x2 + 5x

)
y′ + (3x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = x2 + 5x (3)
C = 3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 14x+ 21
16x2 (6)

Comparing the above to (5) shows that

s = x2 − 14x+ 21
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 14x+ 21

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.160: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 − 7

8x + 21
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 − 7
4x − 7

2x2 − 49
2x3 − 196

x4 − 1715
x5 − 31899

2x6 − 309729
2x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 14x+ 21
16x2

= Q+ R

16x2

=
(

1
16

)
+
(
−14x+ 21

16x2

)
= 1

16 + −14x+ 21
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −14. Dividing this by leading coefficient in t which is 16 gives −7

8 . Now b can be found.

b =
(
−7
8

)
− (0)

= −7
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
8

1
4

− 0
)

= −7
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

8
1
4

− 0
)

= 7
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 14x+ 21
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4 −7

4
7
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

4 then

d = α−
∞ −

(
α+
c1

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 7
4x + (−)

(
1
4

)
= 7

4x − 1
4

= −x− 7
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
4x − 1

4

)
(0) +

((
− 7
4x2

)
+
(

7
4x − 1

4

)2

−
(
x2 − 14x+ 21

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

4x−
1
4
)
dx

= x7/4e−x
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+5x
2x2 dx

= z1e
−x

4−
5 ln(x)

4

= z1

(
e−x

4

x5/4

)

Which simplifies to
y1 =

√
x e−x

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+5x

2x2 dx

(y1)2
dx

= y1

∫
e−

x
2−

5 ln(x)
2

(y1)2
dx

= y1

− 2 ex
2

5x5/2 − 2 ex
2

15x3/2 − 2 ex
2

15
√
x
−

i
√
π
√
2 erf

(
i
√
2
√
x

2

)
15


Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−x
2
)
+ c2

√
x e−x

2

− 2 ex
2

5x5/2 − 2 ex
2

15x3/2 − 2 ex
2

15
√
x
−

i
√
π
√
2 erf

(
i
√
2
√
x

2

)
15



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ x(5 + x)

(
d
dx
y(x)

)
− (−3x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−2)y(x)
2x2 −

(5+x)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+x)

(
d
dx

y(x)
)

2x + (3x−2)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = 5+x

2x , P3(x) = 3x−2
2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ x(5 + x)

(
d
dx
y(x)

)
+ (3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 2) (2k + 2r − 1) + ak−1(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2, 12

}
• Each term in the series must be 0, giving the recursion relation

2
((
k + r − 1

2

)
ak + ak−1

2

)
(k + r + 2) = 0

• Shift index using k− >k + 1
2
((
k + 1

2 + r
)
ak+1 + ak

2

)
(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2k+1+2r

• Recursion relation for r = −2
ak+1 = − ak

2k−3

• Solution for r = −2
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[
y(x) =

∞∑
k=0

akx
k−2, ak+1 = − ak

2k−3

]
• Recursion relation for r = 1

2

ak+1 = − ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
2k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − ak

2k−3 , bk+1 = − bk
2k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 52� �
dsolve(2*x^2*diff(diff(y(x),x),x)+x*(x+5)*diff(y(x),x)-(2-3*x)*y(x) = 0,

y(x),singsol=all)� �
y =

ie−x
2 erf

(
i
√
x
√
2

2

)√
2x5/2√π c2 + c1x

5/2e−x
2 + 2c2(x2 + x+ 3)

x2
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Mathematica DSolve solution

Solving time : 0.505 (sec)
Leaf size : 70� �
DSolve[{2*x^2*D[y[x],{x,2}]+x*(5+x)*D[y[x],x]-(2-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

15

(
−2c2(x2 + x+ 3)

x2 + 15c1e−x/2√x+
√
2c2e−x/2√−xΓ

(
1
2 ,−

x

2

))
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2.1.89 problem 91

Solved as second order ode using Kovacic algorithm . . . . . . . . . 628
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 632
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 634
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 634

Internal problem ID [8937]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 91
Date solved : Thursday, December 12, 2024 at 09:58:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2y′′ + x(1 + x) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.456 (sec)

Writing the ode as

3x2y′′ +
(
x2 + x

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = x2 + x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2x+ 7
36x2 (6)

Comparing the above to (5) shows that

s = x2 + 2x+ 7
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2x+ 7

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.162: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 1

18x + 7
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 1
6x + 1

2x2 − 1
2x3 − 1

4x4 + 7
4x5 − 7

4x6 − 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2x+ 7
36x2

= Q+ R

36x2

=
(

1
36

)
+
(
2x+ 7
36x2

)
= 1

36 + 2x+ 7
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 2. Dividing this by leading coefficient in t which is 36 gives 1

18 . Now b can be found.

b =
(

1
18

)
− (0)

= 1
18

Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
18
1
6
− 0
)

= 1
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
18
1
6
− 0
)

= −1
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2x+ 7
36x2



chapter 2. book solved problems 631

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

1
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

6 then

d = α−
∞ −

(
α−
c1

)
= −1

6 −
(
−1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
6x + (−)

(
1
6

)
= − 1

6x − 1
6

= −1 + x

6x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6x − 1

6

)
(0) +

((
1
6x2

)
+
(
− 1
6x − 1

6

)2

−
(
x2 + 2x+ 7

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6x−

1
6
)
dx

= e−x
6

x1/6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
3x2 dx

= z1e
−x

6−
ln(x)

6

= z1

(
e−x

6

x1/6

)

Which simplifies to

y1 =
e−x

3

x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

3x2 dx

(y1)2
dx

= y1

∫
e−

x
3−

ln(x)
3

(y1)2
dx

= y1

(∫
e−x

3−
ln(x)

3 x2/3e 2x
3 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

3

x1/3

)
+ c2

(
e−x

3

x1/3

(∫
e−x

3−
ln(x)

3 x2/3e 2x
3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
3x2 −

(x+1)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

3x − y(x)
3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
3x , P3(x) = − 1

3x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (k + r − 1) + ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−1

3

}
• Each term in the series must be 0, giving the recursion relation

3
((
k + r + 1

3

)
ak + ak−1

3

)
(k + r − 1) = 0

• Shift index using k− >k + 1
3
((
k + 4

3 + r
)
ak+1 + ak

3

)
(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

3k+4+3r

• Recursion relation for r = 1
ak+1 = − ak

3k+7

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − ak

3k+7

]
• Recursion relation for r = −1

3

ak+1 = − ak
3k+3

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+1 = − ak
3k+3

]
• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k− 1

3

)
, ak+1 = − ak

3k+7 , bk+1 = − bk
3k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.107 (sec)
Leaf size : 30� �
dsolve(3*x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)-y(x) = 0,

y(x),singsol=all)� �
y =

e−x
6
(
x1/6WhittakerM

(
−1

6 ,
2
3 ,

x
3

)
c1 + e−x

6 c2
)

x1/3

Mathematica DSolve solution

Solving time : 0.034 (sec)
Leaf size : 50� �
DSolve[{3*x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−x/3
(
c2x

2/3 − 3 3
√
3c1(−x)2/3Γ

(4
3 ,−

x
3

))
x
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Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 640
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Internal problem ID [8938]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 92
Date solved : Thursday, December 12, 2024 at 09:58:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ − xy′ + (1− 2x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.198 (sec)

Writing the ode as

2x2y′′ − xy′ + (1− 2x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = −x (3)
C = 1− 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3 + 16x
16x2 (6)

Comparing the above to (5) shows that

s = −3 + 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−3 + 16x

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.164: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 + 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1− 16x
16x2 = 0

Solving for ω gives

ω = 1 + 4
√
x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+4

√
x

4x dx

= x1/4e2
√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
2x2 dx

= z1e
ln(x)

4

= z1
(
x1/4)

Which simplifies to

y1 =
√
x e2

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

2x2 dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(
−e−4

√
x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e2
√
x
)
+ c2

(√
x e2

√
x

(
−e−4

√
x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x−1)y(x)
2x2 +

d
dx

y(x)
2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
2x − (2x−1)y(x)

2x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

2x , P3(x) = −2x−1
2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1)− 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 1

2

)
(k + r − 1) ak − 2ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r) ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

(2k+1+2r)(k+r)

• Recursion relation for r = 1
ak+1 = 2ak

(2k+3)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = 2ak

(2k+3)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = 2ak
(2k+2)

(
k+ 1

2
)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
(2k+2)

(
k+ 1

2
)
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = 2ak

(2k+3)(k+1) , bk+1 = 2bk
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(2*x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x+(1-2*x)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x
(
c1 sinh

(
2
√
x
)
+ c2 cosh

(
2
√
x
))

Mathematica DSolve solution

Solving time : 0.076 (sec)
Leaf size : 41� �
DSolve[{2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+(1-2*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−2

√
x
√
x
(
2c1e4

√
x − c2

)
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2.1.91 problem 93

Solved as second order ode using Kovacic algorithm . . . . . . . . . 641
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 646
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 648
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 648

Internal problem ID [8939]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 93
Date solved : Thursday, December 12, 2024 at 09:58:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2y′′ + x(1 + x) y′ − (1 + 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.588 (sec)

Writing the ode as

3x2y′′ +
(
x2 + x

)
y′ + (−3x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = x2 + x (3)
C = −3x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 38x+ 7
36x2 (6)

Comparing the above to (5) shows that

s = x2 + 38x+ 7
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 38x+ 7

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.166: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 19

18x + 7
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 19
6x − 59

2x2 + 1121
2x3 − 53041

4x4 + 1404613
4x5 − 39845827

4x6 + 1184064097
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 38x+ 7
36x2

= Q+ R

36x2

=
(

1
36

)
+
(
38x+ 7
36x2

)
= 1

36 + 38x+ 7
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 38. Dividing this by leading coefficient in t which is 36 gives 19

18 . Now b can be found.

b =
(
19
18

)
− (0)

= 19
18

Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 19
18
1
6
− 0
)

= 19
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

19
18
1
6
− 0
)

= −19
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 38x+ 7
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

19
6 −19

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 19

6 then

d = α+
∞ −

(
α+
c1

)
= 19

6 −
(
7
6

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 7
6x +

(
1
6

)
= 7

6x + 1
6

= 7 + x

6x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

7
6x + 1

6

)
(2x+ a1) +

((
− 7
6x2

)
+
(

7
6x + 1

6

)2

−
(
x2 + 38x+ 7

36x2

))
= 0

(−a1 + 20)x− 2a0 + 7a1
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 70, a1 = 20}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 20x+ 70
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 20x+ 70

)
e
∫ ( 7

6x+
1
6
)
dx

=
(
x2 + 20x+ 70

)
ex

6+
7 ln(x)

6

=
(
x2 + 20x+ 70

)
x7/6ex

6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
3x2 dx

= z1e
−x

6−
ln(x)

6

= z1

(
e−x

6

x1/6

)

Which simplifies to
y1 =

(
x2 + 20x+ 70

)
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

3x2 dx

(y1)2
dx

= y1

∫
e−

x
3−

ln(x)
3

(y1)2
dx

= y1

(∫ e−x
3−

ln(x)
3

(x2 + 20x+ 70)2 x2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((
x2 + 20x+ 70

)
x
)
+ c2

((
x2 + 20x+ 70

)
x

(∫ e−x
3−

ln(x)
3

(x2 + 20x+ 70)2 x2
dx

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 646

Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− (3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (3x+1)y(x)
3x2 −

(x+1)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

3x − (3x+1)y(x)
3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
3x , P3(x) = −3x+1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (−3x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (k + r − 1) + ak−1(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 3r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
1,−1

3

}
• Each term in the series must be 0, giving the recursion relation

3
(
k + r + 1

3

)
(k + r − 1) ak + ak−1(k − 4 + r) = 0

• Shift index using k− >k + 1
3
(
k + 4

3 + r
)
(k + r) ak+1 + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(3k+4+3r)(k+r)

• Recursion relation for r = 1 ; series terminates at k = 2
ak+1 = − ak(k−2)

(3k+7)(k+1)

• Apply recursion relation for k = 0
a1 = 2a0

7

• Apply recursion relation for k = 1
a2 = a1

20

• Express in terms of a0
a2 = a0

70

• Terminating series solution of the ODE for r = 1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1 + 2

7x+ 1
70x

2)
• Recursion relation for r = −1

3

ak+1 = − ak
(
k− 10

3
)

(3k+3)
(
k− 1

3
)

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+1 = − ak
(
k− 10

3
)

(3k+3)
(
k− 1

3
)
]

• Combine solutions and rename parameters[
y(x) = a0 ·

(
1 + 2

7x+ 1
70x

2)+ ( ∞∑
k=0

bkx
k− 1

3

)
, bk+1 = − bk

(
k− 10

3
)

(3k+3)
(
k− 1

3
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
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<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.066 (sec)
Leaf size : 41� �
dsolve(3*x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)-(3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−
x
3 hypergeom

(
[3] ,

[
−1

3

]
, x3
)
+ 70c1

(
x4/3 + 2x7/3

7 + x10/3

70

)
x1/3

Mathematica DSolve solution

Solving time : 2.468 (sec)
Leaf size : 78� �
DSolve[{3*x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-(1+3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)→ c1x

(
x2 +20x+70

)
−

c2x(x2 + 20x+ 70) Γ
(2
3 ,

x
3

)
1680 3

√
3

+ c2e
−x/3(x3 + 19x2 + 54x− 18)

1680 3
√
x
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2.1.92 problem 94

Solved as second order ode using Kovacic algorithm . . . . . . . . . 649
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 653
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 655
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 655

Internal problem ID [8940]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 94
Date solved : Thursday, December 12, 2024 at 09:58:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(3 + x) y′′ + x(1 + 5x) y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as (
2x3 + 6x2) y′′ + (5x2 + x

)
y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 6x2

B = 5x2 + x (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 30x− 35
16 (x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 30x− 35

t = 16
(
x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 30x− 35
16 (x2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.168: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 7
36 (3 + x)2

− 5
108x + 5

108 (3 + x) −
35

144x2

For the pole at x = −3 let b be the coefficient of 1
(3+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 35

144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 30x− 35

16 (x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 30x− 35
16 (x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−3 2 0 7
6 −1

6

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
6 (3 + x) +

5
12x + (−) (0)

= − 1
6 (3 + x) +

5
12x

= x+ 5
4x (3 + x)



chapter 2. book solved problems 652

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6 (3 + x) +

5
12x

)
(0) +

((
1

6 (3 + x)2
− 5

12x2

)
+
(
− 1
6 (3 + x) +

5
12x

)2

−
(
−3x2 − 30x− 35
16 (x2 + 3x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6(3+x)+

5
12x

)
dx

= x5/12

(3 + x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2+x

2x3+6x2 dx

= z1e
− 7 ln(3+x)

6 − ln(x)
12

= z1

(
1

(3 + x)7/6 x1/12

)

Which simplifies to

y1 =
x1/3

(3 + x)4/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2+x

2x3+6x2 dx

(y1)2
dx

= y1

∫
e−

7 ln(3+x)
3 − ln(x)

6

(y1)2
dx

= y1

(∫ e−
7 ln(3+x)

3 − ln(x)
6 (3 + x)8/3

x2/3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

(3 + x)4/3

)
+ c2

(
x1/3

(3 + x)4/3

(∫ e−
7 ln(3+x)

3 − ln(x)
6 (3 + x)8/3

x2/3 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 3)
(

d2

dx2y(x)
)
+ x(5x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2x2(x+3) −

(5x+1)
(

d
dx

y(x)
)

2x(x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5x+1)

(
d
dx

y(x)
)

2x(x+3) + (x+1)y(x)
2x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x+1
2x(x+3) , P3(x) = x+1

2x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 7
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators

2x2(x+ 3)
(

d2

dx2y(x)
)
+ x(5x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(2u3 − 12u2 + 18u)
(

d2

du2y(u)
)
+ (5u2 − 29u+ 42)

(
d
du
y(u)

)
+ (u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

6a0r(4 + 3r)u−1+r + (6a1(1 + r) (7 + 3r)− a0(12r2 + 17r + 2))ur +
(

∞∑
k=1

(6ak+1(k + r + 1) (3k + 7 + 3r)− ak(12k2 + 24kr + 12r2 + 17k + 17r + 2) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
6r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• Each term must be 0

6a1(1 + r) (7 + 3r)− a0(12r2 + 17r + 2) = 0
• Each term in the series must be 0, giving the recursion relation

2(−6ak + ak−1 + 9ak+1) k2 + (4(−6ak + ak−1 + 9ak+1) r − 17ak − ak−1 + 60ak+1) k + 2(−6ak + ak−1 + 9ak+1) r2 + (−17ak − ak−1 + 60ak+1) r − 2ak + 42ak+1 = 0
• Shift index using k− >k + 1

2(−6ak+1 + ak + 9ak+2) (k + 1)2 + (4(−6ak+1 + ak + 9ak+2) r − 17ak+1 − ak + 60ak+2) (k + 1) + 2(−6ak+1 + ak + 9ak+2) r2 + (−17ak+1 − ak + 60ak+2) r − 2ak+1 + 42ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−12k2ak+1+4krak−24krak+1+2r2ak−12r2ak+1+3kak−41kak+1+3rak−41rak+1+ak−31ak+1
6(3k2+6kr+3r2+16k+16r+20)

• Recursion relation for r = 0
ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20) , 42a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k , ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1
6(3k2+16k+20) , 42a1 − 2a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −2k2ak−12k2ak+1− 7
3kak−9kak+1+ 5

9ak+
7
3ak+1

6(3k2+8k+4)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −2k2ak−12k2ak+1− 7
3kak−9kak+1+ 5

9ak+
7
3ak+1

6(3k2+8k+4) ,−6a1 − 2a0
3 = 0

]
• Revert the change of variables u = x+ 3[

y(x) =
∞∑
k=0

ak(x+ 3)k−
4
3 , ak+2 = −2k2ak−12k2ak+1− 7

3kak−9kak+1+ 5
9ak+

7
3ak+1

6(3k2+8k+4) ,−6a1 − 2a0
3 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
4
3

)
, ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20) , 42a1 − 2a0 = 0, bk+2 = −2k2bk−12k2bk+1− 7
3kbk−9kbk+1+ 5

9 bk+
7
3 bk+1

6(3k2+8k+4) ,−6b1 − 2b0
3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.099 (sec)
Leaf size : 36� �
dsolve(2*x^2*(x+3)*diff(diff(y(x),x),x)+x*(5*x+1)*diff(y(x),x)+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = c1

√
x hypergeom

([
1, 32

]
,

[
7
6

]
,−x

3

)
+ c2x

1/3

(x+ 3)
(
1 + x

3

)1/3
Mathematica DSolve solution

Solving time : 1.195 (sec)
Leaf size : 50� �
DSolve[{2*x^2*(3+x)*D[y[x],{x,2}]+x*(1+5*x)*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x
(
6 3
√
3c2 6

√
xHypergeometric2F1

(
−1

3 ,
1
6 ,

7
6 ,−

x
3

)
+ c1

)
(x+ 3)4/3
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2.1.93 problem 95

Solved as second order ode using Kovacic algorithm . . . . . . . . . 656
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 660
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 662
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 662

Internal problem ID [8941]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 95
Date solved : Thursday, December 12, 2024 at 09:58:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(4 + x) y′′ − x(1− 3x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.533 (sec)

Writing the ode as

x2(4 + x) y′′ +
(
3x2 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(4 + x)
B = 3x2 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 6x− 7
4 (x2 + 4x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 6x− 7

t = 4
(
x2 + 4x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 6x− 7
4 (x2 + 4x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.170: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 4x)2. There is a pole at x = 0 of order 2. There is a pole at x = −4 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
128 (4 + x) −

5
128x + 65

64 (4 + x)2
− 7

64x2

For the pole at x = −4 let b be the coefficient of 1
(4+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 65
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

8
α−
c = 1

2 −
√
1 + 4b = −5

8
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 7

64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 6x− 7

4 (x2 + 4x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 6x− 7
4 (x2 + 4x)2

pole c location pole order [
√
r]c α+

c α−
c

−4 2 0 13
8 −5

8

0 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 5
8 (4 + x) +

1
8x + (−) (0)

= − 5
8 (4 + x) +

1
8x

= − x− 1
2x (4 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
8 (4 + x) +

1
8x

)
(0) +

((
5

8 (4 + x)2
− 1

8x2

)
+
(
− 5
8 (4 + x) +

1
8x

)2

−
(
3x2 − 6x− 7
4 (x2 + 4x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 5
8(4+x)+

1
8x

)
dx

= x1/8

(4 + x)5/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2−x
x2(4+x) dx

= z1e
− 13 ln(4+x)

8 + ln(x)
8

= z1

(
x1/8

(4 + x)13/8

)

Which simplifies to

y1 =
x1/4

(4 + x)9/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2−x

x2(4+x) dx

(y1)2
dx

= y1

∫
e−

13 ln(4+x)
4 + ln(x)

4

(y1)2
dx

= y1

(∫ e−
13 ln(4+x)

4 + ln(x)
4 (4 + x)9/2√
x

dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

(4 + x)9/4

)
+ c2

(
x1/4

(4 + x)9/4

(∫ e−
13 ln(4+x)

4 + ln(x)
4 (4 + x)9/2√
x

dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x+ 4)
(

d2

dx2y(x)
)
− x(1− 3x)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x2(x+4) −

(3x−1)
(

d
dx

y(x)
)

x(x+4)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x−1)

(
d
dx

y(x)
)

x(x+4) + y(x)
x2(x+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−1
x(x+4) , P3(x) = 1

x2(x+4)

]
◦ (x+ 4) · P2(x) is analytic at x = −4

((x+ 4) · P2(x))
∣∣∣∣
x=−4

= 13
4

◦ (x+ 4)2 · P3(x) is analytic at x = −4(
(x+ 4)2 · P3(x)

) ∣∣∣∣
x=−4

= 0

◦ x = −4is a regular singular point
Check to see if x0 is a regular singular point
x0 = −4

• Multiply by denominators

x2(x+ 4)
(

d2

dx2y(x)
)
+ x(3x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 4 so that the regular singular point is at u = 0

(u3 − 8u2 + 16u)
(

d2

du2y(u)
)
+ (3u2 − 25u+ 52)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(9 + 4r)u−1+r + (4a1(1 + r) (13 + 4r)− a0(8r2 + 17r − 1))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (4k + 13 + 4r)− ak(8k2 + 16kr + 8r2 + 17k + 17r − 1) + ak−1(k + r − 1) (k + 1 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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4r(9 + 4r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0,−9

4

}
• Each term must be 0

4a1(1 + r) (13 + 4r)− a0(8r2 + 17r − 1) = 0
• Each term in the series must be 0, giving the recursion relation

(−8ak + ak−1 + 16ak+1) k2 + (2(−8ak + ak−1 + 16ak+1) r − 17ak + 68ak+1) k + (−8ak + ak−1 + 16ak+1) r2 + 17(−ak + 4ak+1) r + ak − ak−1 + 52ak+1 = 0
• Shift index using k− >k + 1

(−8ak+1 + ak + 16ak+2) (k + 1)2 + (2(−8ak+1 + ak + 16ak+2) r − 17ak+1 + 68ak+2) (k + 1) + (−8ak+1 + ak + 16ak+2) r2 + 17(−ak+1 + 4ak+2) r + ak+1 − ak + 52ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−8k2ak+1+2krak−16krak+1+r2ak−8r2ak+1+2kak−33kak+1+2rak−33rak+1−24ak+1
4(4k2+8kr+4r2+25k+25r+34)

• Recursion relation for r = 0
ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34) , 52a1 + a0 = 0
]

• Revert the change of variables u = x+ 4[
y(x) =

∞∑
k=0

ak(x+ 4)k , ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1
4(4k2+25k+34) , 52a1 + a0 = 0

]
• Recursion relation for r = −9

4

ak+2 = −k2ak−8k2ak+1− 5
2kak+3kak+1+ 9

16ak+
39
4 ak+1

4(4k2+7k−2)

• Solution for r = −9
4[

y(u) =
∞∑
k=0

aku
k− 9

4 , ak+2 = −k2ak−8k2ak+1− 5
2kak+3kak+1+ 9

16ak+
39
4 ak+1

4(4k2+7k−2) ,−20a1 − 5a0
4 = 0

]
• Revert the change of variables u = x+ 4[

y(x) =
∞∑
k=0

ak(x+ 4)k−
9
4 , ak+2 = −k2ak−8k2ak+1− 5

2kak+3kak+1+ 9
16ak+

39
4 ak+1

4(4k2+7k−2) ,−20a1 − 5a0
4 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 4)k
)
+
(

∞∑
k=0

bk(x+ 4)k−
9
4

)
, ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34) , 52a1 + a0 = 0, bk+2 = −k2bk−8k2bk+1− 5
2kbk+3kbk+1+ 9

16 bk+
39
4 bk+1

4(4k2+7k−2) ,−20b1 − 5b0
4 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer



chapter 2. book solved problems 662

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.156 (sec)
Leaf size : 27� �
dsolve(x^2*(x+4)*diff(diff(y(x),x),x)-x*(-3*x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1x

1/4

(x+ 4)9/4
+ c2 hypergeom

(
[1, 3] ,

[
7
4

]
,−x

4

)
x

Mathematica DSolve solution

Solving time : 0.36 (sec)
Leaf size : 89� �
DSolve[{x^2*(4+x)*D[y[x],{x,2}]-x*(1-3*x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→

4
√
x

(
−10c2 arctan

(
4

√
x

x+ 4

)
+ 10c2arctanh

(
4

√
x

x+ 4

)
+ c2

4
√
x+ 4x7/4 + 9c2 4

√
x+ 4x3/4 + 2c1

)
2(x+ 4)9/4
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2.1.94 problem 96

Solved as second order ode using Kovacic algorithm . . . . . . . . . 663
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 666
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 668
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 668

Internal problem ID [8942]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 96
Date solved : Thursday, December 12, 2024 at 09:58:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + 5xy′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.261 (sec)

Writing the ode as

2x2y′′ + 5xy′ + (1 + x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 5x (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3− 8x
16x2 (6)

Comparing the above to (5) shows that

s = −3− 8x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−3− 8x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.172: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 − 1

2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1 + 8x
16x2 = 0

Solving for ω gives

ω = 1 + 2
√
2
√
−x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+2

√
2
√
−x

4x dx

= x1/4e
√
2
√
−x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x
2x2 dx

= z1e
− 5 ln(x)

4

= z1

(
1

x5/4

)

Which simplifies to

y1 =
e
√
2
√
−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x

2x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(x)
2

(y1)2
dx

= y1

−

√
2
√
−x
(
1− e−2

√
2
√
−x
)

2
√
x


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
2
√
−x

x

)
+ c2

e
√
2
√
−x

x

−

√
2
√
−x
(
1− e−2

√
2
√
−x
)

2
√
x



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ 5x

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2x2 −

5
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)

2x + (x+1)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = 5

2x , P3(x) = x+1
2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ 5x

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r + 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
(
k + r + 1

2

)
ak + ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 3

2 + r
)
ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+2+r)(2k+3+2r)

• Recursion relation for r = −1
ak+1 = − ak

(k+1)(2k+1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − ak

(k+1)(2k+1)

]
• Recursion relation for r = −1

2

ak+1 = − ak(
k+ 3

2
)
(2k+2)
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• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = − ak(
k+ 3

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = − ak

(k+1)(2k+1) , bk+1 = − bk(
k+ 3

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 29� �
dsolve(2*x^2*diff(diff(y(x),x),x)+5*diff(y(x),x)*x+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

c1 sin
(√

x
√
2
)
+ c2 cos

(√
x
√
2
)

x

Mathematica DSolve solution

Solving time : 0.133 (sec)
Leaf size : 60� �
DSolve[{2*x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1ei

√
2
√
x + i

√
2c2e−i

√
2
√
x

2x
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2.1.95 problem 97

Solved as second order ode using Kovacic algorithm . . . . . . . . . 669
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 673
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 675
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 676

Internal problem ID [8943]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 97
Date solved : Thursday, December 12, 2024 at 09:58:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2y′′ + x(10− x) y′ − (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.352 (sec)

Writing the ode as

6x2y′′ +
(
−x2 + 10x

)
y′ + (−x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x2

B = −x2 + 10x (3)
C = −x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 28
144x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 28
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 28

144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.174: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
144 + 7

36x2 + 1
36x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

12 + 1
6x + 1

x2 − 2
x3 − 2

x4 + 28
x5 − 56

x6 − 272
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
12

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
12 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

144
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 28
144x2

= Q+ R

144x2

=
(

1
144

)
+
(
4x+ 28
144x2

)
= 1

144 + 4x+ 28
144x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 144 gives 1

36 . Now b can be found.

b =
(

1
36

)
− (0)

= 1
36

Hence

[
√
r]∞ = 1

12

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
36
1
12

− 0
)

= 1
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
36
1
12

− 0
)

= −1
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 28
144x2



chapter 2. book solved problems 672

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
12

1
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

6 then

d = α−
∞ −

(
α−
c1

)
= −1

6 −
(
−1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
6x + (−)

(
1
12

)
= − 1

6x − 1
12

= −2 + x

12x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6x − 1

12

)
(0) +

((
1
6x2

)
+
(
− 1
6x − 1

12

)2

−
(
x2 + 4x+ 28

144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6x−

1
12
)
dx

= e− x
12

x1/6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+10x

6x2 dx

= z1e
x
12−

5 ln(x)
6

= z1

(
e x

12

x5/6

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+10x

6x2 dx

(y1)2
dx

= y1

∫
e

x
6−

5 ln(x)
3

(y1)2
dx

= y1

(∫
ex

6−
5 ln(x)

3 x2dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(∫
ex

6−
5 ln(x)

3 x2dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

6x2
(

d2

dx2y(x)
)
+ x(10− x)

(
d
dx
y(x)

)
− (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x+2)y(x)
6x2 +

(−10+x)
(

d
dx

y(x)
)

6x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−10+x)

(
d
dx

y(x)
)

6x − (x+2)y(x)
6x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −−10+x
6x , P3(x) = −x+2

6x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2
(

d2

dx2y(x)
)
− x(−10 + x)

(
d
dx
y(x)

)
+ (−x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

2a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(2ak(k + r + 1) (3k + 3r − 1)− ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

6(k + r + 1)
(
k − 1

3 + r
)
ak − ak−1(k + r) = 0

• Shift index using k− >k + 1
6(k + 2 + r)

(
k + 2

3 + r
)
ak+1 − ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

2(k+2+r)(3k+2+3r)

• Recursion relation for r = −1
ak+1 = akk

2(k+1)(3k−1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = akk

2(k+1)(3k−1)

]
• Recursion relation for r = 1

3



chapter 2. book solved problems 675

ak+1 =
ak
(
k+ 4

3
)

2
(
k+ 7

3
)
(3k+3)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 =
ak
(
k+ 4

3
)

2
(
k+ 7

3
)
(3k+3)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+1 = akk

2(k+1)(3k−1) , bk+1 =
bk
(
k+ 4

3
)

2
(
k+ 7

3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.091 (sec)
Leaf size : 27� �
dsolve(6*x^2*diff(diff(y(x),x),x)+x*(10-x)*diff(y(x),x)-(x+2)*y(x) = 0,

y(x),singsol=all)� �
y =

c2x
5/6 + c1WhittakerM

(
−1

6 ,
2
3 ,

x
6

)
e x

12x

x11/6
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Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 38� �
DSolve[{6*x^2*D[y[x],{x,2}]+x*(10-x)*D[y[x],x]-(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

3
√
xL

4
3
− 4

3

(x
6

)
+ 6 3

√
6c1
x



chapter 2. book solved problems 677

2.1.96 problem 98

Solved as second order ode using Kovacic algorithm . . . . . . . . . 677
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 681
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 683
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 684

Internal problem ID [8944]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 98
Date solved : Thursday, December 12, 2024 at 09:58:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(3 + 4x) y′′ + x(11 + 4x) y′ − (3 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.339 (sec)

Writing the ode as (
4x3 + 3x2) y′′ + (4x2 + 11x

)
y′ + (−3− 4x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 3x2

B = 4x2 + 11x (3)
C = −3− 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 48x2 + 8x+ 91
4 (4x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = 48x2 + 8x+ 91

t = 4
(
4x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
48x2 + 8x+ 91
4 (4x2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.176: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(4x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3

4 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 28
9
(
x+ 3

4

)2 + 176
27
(
x+ 3

4

) − 176
27x + 91

36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 91
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

6
α−
c = 1

2 −
√
1 + 4b = −7

6
For the pole at x = −3

4 let b be the coefficient of 1(
x+ 3

4
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 28
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

3
α−
c = 1

2 −
√
1 + 4b = −4

3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 48x2 + 8x+ 91

4 (4x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 48x2 + 8x+ 91
4 (4x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 13
6 −7

6

−3
4 2 0 7

3 −4
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−5
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 7
6x − 4

3
(
x+ 3

4

) + (−) (0)

= − 7
6x − 4

3
(
x+ 3

4

)
= −7− 20x

8x2 + 6x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 7
6x − 4

3
(
x+ 3

4

)) (2x+ a1) +

( 7
6x2 + 4

3
(
x+ 3

4

)2
)

+
(
− 7
6x − 4

3
(
x+ 3

4

))2

−
(
48x2 + 8x+ 91
4 (4x2 + 3x)2

) = 0

12a1x− 8x+ 32a0 − 7a1
x (3 + 4x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

7
48 , a1 =

2
3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 2
3x+ 7

48

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 2

3x+ 7
48

)
e
∫ (

− 7
6x−

4
3
(
x+3

4
)
)
dx

=
(
x2 + 2

3x+ 7
48

)
e−

7 ln(x)
6 − 4 ln(3+4x)

3

=
x2 + 2

3x+ 7
48

x7/6 (3 + 4x)4/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x2+11x
4x3+3x2 dx

= z1e
− 11 ln(x)

6 + 4 ln(3+4x)
3

= z1

(
(3 + 4x)4/3

x11/6

)

Which simplifies to

y1 =
x2 + 2

3x+ 7
48

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx



chapter 2. book solved problems 681

Substituting gives

y2 = y1

∫
e
∫
− 4x2+11x

4x3+3x2 dx

(y1)2
dx

= y1

∫
e−

11 ln(x)
3 + 8 ln(3+4x)

3

(y1)2
dx

= y1

(∫ e−
11 ln(x)

3 + 8 ln(3+4x)
3 x6(

x2 + 2
3x+ 7

48

)2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 2

3x+ 7
48

x3

)
+ c2

(
x2 + 2

3x+ 7
48

x3

(∫ e−
11 ln(x)

3 + 8 ln(3+4x)
3 x6(

x2 + 2
3x+ 7

48

)2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(3 + 4x)
(

d2

dx2y(x)
)
+ x(11 + 4x)

(
d
dx
y(x)

)
− (3 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2 −

(11+4x)
(

d
dx

y(x)
)

x(3+4x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(11+4x)

(
d
dx

y(x)
)

x(3+4x) − y(x)
x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11+4x
x(3+4x) , P3(x) = − 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 11
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(3 + 4x)
(

d2

dx2y(x)
)
+ x(11 + 4x)

(
d
dx
y(x)

)
+ (−3− 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 3) (3k + 3r − 1) + 4ak−1(k + r) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3, 13

}
• Each term in the series must be 0, giving the recursion relation

3
(
k − 1

3 + r
)
(k + r + 3) ak + 4ak−1(k + r) (k − 2 + r) = 0

• Shift index using k− >k + 1
3
(
k + 2

3 + r
)
(k + 4 + r) ak+1 + 4ak(k + r + 1) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −4ak(k+r+1)(k+r−1)

(3k+2+3r)(k+4+r)

• Recursion relation for r = −3 ; series terminates at k = 2
ak+1 = −4ak(k−2)(k−4)

(3k−7)(k+1)

• Apply recursion relation for k = 0
a1 = 32a0

7

• Apply recursion relation for k = 1
a2 = 3a1

2

• Express in terms of a0
a2 = 48a0

7

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(48
7 x

2 + 32
7 x+ 1

)
• Recursion relation for r = 1

3

ak+1 = −4ak
(
k+ 4

3
)(
k− 2

3
)

(3k+3)
(
k+ 13

3
)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 = −4ak
(
k+ 4

3
)(
k− 2

3
)

(3k+3)
(
k+ 13

3
)
]

• Combine solutions and rename parameters
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[
y(x) = a0 ·

(48
7 x

2 + 32
7 x+ 1

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, bk+1 = −4bk

(
k+ 4

3
)(
k− 2

3
)

(3k+3)
(
k+ 13

3
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.160 (sec)
Leaf size : 41� �
dsolve(x^2*(4*x+3)*diff(diff(y(x),x),x)+x*(11+4*x)*diff(y(x),x)-(4*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1(48x2 + 32x+ 7)

x3 + c2 hypergeom
(
[3, 5] ,

[
13
3

]
,−4x

3

)
(4x+ 3)11/3 x1/3
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Mathematica DSolve solution

Solving time : 1.955 (sec)
Leaf size : 367� �
DSolve[{x^2*(3+4*x)*D[y[x],{x,2}]+x*(11+4*x)*D[y[x],x]-(3+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
12 3

√
2
√
3c2(48x2 + 32x+ 7) arctan

( √
3

3
√
4x+ 3

2 22/3 3
√
x+

3
√
4x+ 3

)
+ 384c2(4x+ 3)2/3x10/3 + 576c2(4x+ 3)2/3x7/3 + 600c2(4x+ 3)2/3x4/3 − 192 3

√
2c2x log

(
2 3
√
2x2/3 + 22/3 3

√
4x+ 3 3

√
x+ (4x+ 3)2/3

)
− 42 3

√
2c2 log

(
2 3
√
2x2/3 + 22/3 3

√
4x+ 3 3

√
x+ (4x+ 3)2/3

)
+ 48c1x2 + 12 3

√
2c2(48x2 + 32x+ 7) log

(
3
√
4x+ 3− 22/3 3

√
x
)
− 288 3

√
2c2x2 log

(
2 3
√
2x2/3 + 22/3 3

√
4x+ 3 3

√
x+ (4x+ 3)2/3

)
+ 32c1x+ 168c2(4x+ 3)2/3 3

√
x+ 7c1

48x3
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2.1.97 problem 99

Solved as second order ode using Kovacic algorithm . . . . . . . . . 685
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 689
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 691
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 691

Internal problem ID [8945]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 99
Date solved : Thursday, December 12, 2024 at 09:58:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + 3x) y′′ + x(4 + 11x) y′ − (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.210 (sec)

Writing the ode as (
6x3 + 4x2) y′′ + (11x2 + 4x

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x3 + 4x2

B = 11x2 + 4x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −35
16 (2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −35
t = 16(2 + 3x)2

Therefore eq. (4) becomes

z′′(x) =
(
− 35
16 (2 + 3x)2

)
z(x) (7)



chapter 2. book solved problems 686

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.178: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(2 + 3x)2. There is a pole at x = −2

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144

(
x+ 2

3

)2
For the pole at x = −2

3 let b be the coefficient of 1(
x+ 2

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 35

16 (2 + 3x)2
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Since the gcd(s, t) = 1. This gives b = − 35
144 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

12
α−
∞ = 1

2 −
√
1 + 4b = 5

12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 35
16 (2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−2
3 2 0 7

12
5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
12

5
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

12 then

d = α−
∞ −

(
α−
c1

)
= 5

12 −
(

5
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 5
12
(
x+ 2

3

) + (−) (0)

= 5
12
(
x+ 2

3

)
= 5

8 + 12x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

5
12
(
x+ 2

3

)) (0) +

(− 5
12
(
x+ 2

3

)2
)

+
(

5
12
(
x+ 2

3

))2

−
(
− 35
16 (2 + 3x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 5

12
(
x+2

3
)dx

= (2 + 3x)5/12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x2+4x
6x3+4x2 dx

= z1e
− ln(x)

2 − 5 ln(2+3x)
12

= z1

(
1

√
x (2 + 3x)5/12

)

Which simplifies to

y1 =
1√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x2+4x

6x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)− 5 ln(2+3x)

6

(y1)2
dx

= y1
(
2 e− ln(x)− 5 ln(2+3x)

6 x(2 + 3x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√
x

)
+ c2

(
1√
x

(
2 e− ln(x)− 5 ln(2+3x)

6 x(2 + 3x)
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 11x)

(
d
dx
y(x)

)
− (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
2(3x+2)x2 −

(4+11x)
(

d
dx

y(x)
)

2x(3x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4+11x)

(
d
dx

y(x)
)

2x(3x+2) + (x−1)y(x)
2(3x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4+11x
2x(3x+2) , P3(x) = x−1

2(3x+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 11x)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−1(2k + 2r − 1) (3k − 2 + 3r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) ((3k
2 + 3r

2 − 1
)
ak−1 + ak

(
k + r + 1

2

))
= 0

• Shift index using k− >k + 1
4
(
k + r + 1

2

) ((3k
2 + 1

2 +
3r
2

)
ak + ak+1

(
k + 3

2 + r
))

= 0
• Recursion relation that defines series solution to ODE

ak+1 = − (3k+3r+1)ak
2k+3+2r

• Recursion relation for r = −1
2

ak+1 = −
(
3k− 1

2
)
ak

2k+2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = −
(
3k− 1

2
)
ak

2k+2

]
• Recursion relation for r = 1

2

ak+1 = −
(
3k+ 5

2
)
ak

2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = −
(
3k+ 5

2
)
ak

2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = −

(
3k− 1

2
)
ak

2k+2 , bk+1 = −
(
3k+ 5

2
)
bk

2k+4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 19� �
dsolve(2*x^2*(2+3*x)*diff(diff(y(x),x),x)+x*(4+11*x)*diff(y(x),x)-(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = c2(2 + 3x)1/6 + c1√

x

Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 32� �
DSolve[{2*x^2*(2+3*x)*D[y[x],{x,2}]+x*(4+11*x)*D[y[x],x]-(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

6
√
6x+ 4 + 25/6c1√

x
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2.1.98 problem 100

Solved as second order ode using Kovacic algorithm . . . . . . . . . 692
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 696
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 698
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 699

Internal problem ID [8946]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 100
Date solved : Thursday, December 12, 2024 at 09:58:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(2 + x) y′′ + 5x(1− x) y′ − (2− 8x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.842 (sec)

Writing the ode as

x2(2 + x) y′′ +
(
−5x2 + 5x

)
y′ + (8x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(2 + x)
B = −5x2 + 5x (3)
C = 8x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 126x+ 21
4 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 126x+ 21

t = 4
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 126x+ 21
4 (x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.180: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 285
16 (2 + x)2

+ 147
16 (2 + x) −

147
16x + 21

16x2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 285
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 19

4
α−
c = 1

2 −
√
1 + 4b = −15

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4



chapter 2. book solved problems 694

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 126x+ 21

4 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 126x+ 21
4 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 19
4 −15

4

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−9
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 15
4 (2 + x) −

3
4x + (−) (0)

= − 15
4 (2 + x) −

3
4x

= − 3(3x+ 1)
2x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(
− 15
4 (2 + x) −

3
4x

)(
4x3 + 3x2a3 + 2a2x+ a1

)
+
((

15
4 (2 + x)2

+ 3
4x2

)
+
(
− 15
4 (2 + x) −

3
4x

)2

−
(
3x2 − 126x+ 21
4 (x2 + 2x)2

))
= 0

3(4 + a3)x3 + (8a2 + 3a3)x2 + (15a1 − 2a2)x+ 24a0 − 3a1
x (2 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
40 , a1 =

1
5 , a2 =

3
2 , a3 = −4

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 4x3 + 3
2x

2 + 1
5x+ 1

40

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 4x3 + 3

2x
2 + 1

5x+ 1
40

)
e
∫ (

− 15
4(2+x)−

3
4x

)
dx

=
(
x4 − 4x3 + 3

2x
2 + 1

5x+ 1
40

)
e−

15 ln(2+x)
4 − 3 ln(x)

4

= 40x4 − 160x3 + 60x2 + 8x+ 1
40 (2 + x)15/4 x3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−5x2+5x
x2(2+x) dx

= z1e
15 ln(2+x)

4 − 5 ln(x)
4

= z1

(
(2 + x)15/4

x5/4

)

Which simplifies to

y1 =
40x4 − 160x3 + 60x2 + 8x+ 1

40x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−5x2+5x

x2(2+x) dx

(y1)2
dx

= y1

∫
e

15 ln(2+x)
2 − 5 ln(x)

2

(y1)2
dx

= y1

10x5/2√2 + x
(
8x5
√

x (2 + x) + 4200 ln
(

x+
√

x(2+x)
x

)
x4 − 4200 ln

(√
x(2+x)−x

x

)
x4 + 328x4

√
x (2 + x)− 16800 ln

(
x+
√

x(2+x)
x

)
x3 + 16800 ln

(√
x(2+x)−x

x

)
x3 − 13974

√
x (2 + x)x3 + 6300 ln

(
x+
√

x(2+x)
x

)
x2 − 6300 ln

(√
x(2+x)−x

x

)
x2 + 26734x2

√
x (2 + x) + 840 ln

(
x+
√

x(2+x)
x

)
x− 840 ln

(√
x(2+x)−x

x

)
x− 805x

√
x (2 + x) + 105 ln

(
x+
√

x(2+x)
x

)
− 105 ln

(√
x(2+x)−x

x

)
− 105

√
x (2 + x)

)
√

x (2 + x)
(
x+

√
x (2 + x)

)2 (
−
√
x (2 + x) + x

)2
(40x4 − 160x3 + 60x2 + 8x+ 1)


Therefore the solution is

y = c1y1 + c2y2

= c1

(
40x4 − 160x3 + 60x2 + 8x+ 1

40x2

)

+c2

40x4 − 160x3 + 60x2 + 8x+ 1
40x2

10x5/2√2 + x
(
8x5
√
x (2 + x) + 4200 ln

(
x+
√

x(2+x)
x

)
x4 − 4200 ln

(√
x(2+x)−x

x

)
x4 + 328x4

√
x (2 + x)− 16800 ln

(
x+
√

x(2+x)
x

)
x3 + 16800 ln

(√
x(2+x)−x

x

)
x3 − 13974

√
x (2 + x)x3 + 6300 ln

(
x+
√

x(2+x)
x

)
x2 − 6300 ln

(√
x(2+x)−x

x

)
x2 + 26734x2

√
x (2 + x) + 840 ln

(
x+
√

x(2+x)
x

)
x− 840 ln

(√
x(2+x)−x

x

)
x− 805x

√
x (2 + x) + 105 ln

(
x+
√

x(2+x)
x

)
− 105 ln

(√
x(2+x)−x

x

)
− 105

√
x (2 + x)

)
√
x (2 + x)

(
x+

√
x (2 + x)

)2 (
−
√
x (2 + x) + x

)2
(40x4 − 160x3 + 60x2 + 8x+ 1)




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x(1− x)

(
d
dx
y(x)

)
− (2− 8x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(4x−1)y(x)
(x+2)x2 +

5(x−1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
5(x−1)

(
d
dx

y(x)
)

x(x+2) + 2(4x−1)y(x)
(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 5(x−1)
x(x+2) , P3(x) = 2(4x−1)

(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −15
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x2(x+ 2)
(

d2

dx2y(x)
)
− 5x(x− 1)

(
d
dx
y(x)

)
+ (8x− 2) y(x) = 0
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• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u3 − 4u2 + 4u)
(

d2

du2y(u)
)
+ (−5u2 + 25u− 30)

(
d
du
y(u)

)
+ (8u− 18) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(−17 + 2r)u−1+r + (2a1(1 + r) (−15 + 2r)− a0(4r2 − 29r + 18))ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (2k − 15 + 2r)− ak(4k2 + 8kr + 4r2 − 29k − 29r + 18) + ak−1(k − 3 + r) (k − 5 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−17 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 172

}
• Each term must be 0

2a1(1 + r) (−15 + 2r)− a0(4r2 − 29r + 18) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + ak−1 + 4ak+1) k2 + ((−8ak + 2ak−1 + 8ak+1) r + 29ak − 8ak−1 − 26ak+1) k + (−4ak + ak−1 + 4ak+1) r2 + (29ak − 8ak−1 − 26ak+1) r − 18ak + 15ak−1 − 30ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + ak + 4ak+2) (k + 1)2 + ((−8ak+1 + 2ak + 8ak+2) r + 29ak+1 − 8ak − 26ak+2) (k + 1) + (−4ak+1 + ak + 4ak+2) r2 + (29ak+1 − 8ak − 26ak+2) r − 18ak+1 + 15ak − 30ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−4k2ak+1+2krak−8krak+1+r2ak−4r2ak+1−6kak+21kak+1−6rak+21rak+1+8ak+7ak+1
2(2k2+4kr+2r2−9k−9r−26)

• Recursion relation for r = 0
ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26) ,−30a1 − 18a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1
2(2k2−9k−26) ,−30a1 − 18a0 = 0

]
• Recursion relation for r = 17

2
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ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117
4 ak− 207

2 ak+1
2(2k2+25k+42)

• Solution for r = 17
2[

y(u) =
∞∑
k=0

aku
k+ 17

2 , ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117
4 ak− 207

2 ak+1
2(2k2+25k+42) , 38a1 − 121a0

2 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k+
17
2 , ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117

4 ak− 207
2 ak+1

2(2k2+25k+42) , 38a1 − 121a0
2 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k+
17
2

)
, ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26) ,−30a1 − 18a0 = 0, bk+2 = −k2bk−4k2bk+1+11kbk−47kbk+1+ 117
4 bk− 207

2 bk+1
2(2k2+25k+42) , 38b1 − 121b0

2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.161 (sec)
Leaf size : 113� �
dsolve(x^2*(x+2)*diff(diff(y(x),x),x)+5*x*(1-x)*diff(y(x),x)-(2-8*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1(40x4 − 160x3 + 60x2 + 8x+ 1)

x2

+
4c2
(
1050

(
x4 − 4x3 + 3

2x
2 + 1

5x+ 1
40

)
x3/2 arcsinh

(√
x
√
2

2

)
+
√
x+ 2x2(x5 + 41x4 − 6987

4 x3 + 13367
4 x2 − 805

8 x− 105
8

))
(−2− x)3/4

x7/2 (x+ 2)3/4
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Mathematica DSolve solution

Solving time : 3.612 (sec)
Leaf size : 114� �
DSolve[{x^2*(2+x)*D[y[x],{x,2}]+5*x*(1-x)*D[y[x],x]-(2-8*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
1050c2(40x4 − 160x3 + 60x2 + 8x+ 1) arctanh

(
1√
x

x+2

)
+ 2c1(40x4 − 160x3 + 60x2 + 8x+ 1) + 5c2

√
x
√
x+ 2(8x5 + 328x4 − 13974x3 + 26734x2 − 805x− 105)

80x2
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2.1.99 problem 101

Solved as second order ode using Kovacic algorithm . . . . . . . . . 700
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 704
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 706
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 706

Internal problem ID [8947]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 101
Date solved : Thursday, December 12, 2024 at 09:58:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

8x2(−x2 + 1
)
y′′ + 2x

(
−13x2 + 1

)
y′ +

(
−9x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.370 (sec)

Writing the ode as(
−8x4 + 8x2) y′′ + (−26x3 + 2x

)
y′ +

(
−9x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −8x4 + 8x2

B = −26x3 + 2x (3)
C = −9x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7x4 − 26x2 − 15
64 (x3 − x)2

(6)

Comparing the above to (5) shows that

s = −7x4 − 26x2 − 15

t = 64
(
x3 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−7x4 − 26x2 − 15

64 (x3 − x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.182: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(x3 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order
2. There is a pole at x = −1 of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
64x2 − 1

4 (x+ 1) −
3

16 (x+ 1)2
− 3

16 (x− 1)2
+ 1

4x− 4

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
For the pole at x = 1 let b be the coefficient of 1

(x−1)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −7x4 − 26x2 − 15

64 (x3 − x)2

Since the gcd(s, t) = 1. This gives b = − 7
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

8
α−
∞ = 1

2 −
√
1 + 4b = 1

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −7x4 − 26x2 − 15
64 (x3 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
8

3
8

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
8

1
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

8 then

d = α+
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 7

8 −
(
7
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
8x + 1

4x− 4 + 1
4x+ 4 + (0)

= 3
8x + 1

4x− 4 + 1
4x+ 4

= 7x2 − 3
8x3 − 8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
8x + 1

4x− 4 + 1
4x+ 4

)
(0) +

((
− 3
8x2 − 1

4 (x− 1)2
− 1

4 (x+ 1)2
)
+
(

3
8x + 1

4x− 4 + 1
4x+ 4

)2

−
(
−7x4 − 26x2 − 15

64 (x3 − x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

8x+
1

4x−4+
1

4x+4

)
dx

= (x+ 1)1/4 x3/8(x− 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−26x3+2x
−8x4+8x2 dx

= z1e
− 3 ln(x+1)

4 − ln(x)
8 − 3 ln(x−1)

4

= z1

(
1

(x+ 1)3/4 x1/8 (x− 1)3/4

)

Which simplifies to

y1 =
x1/4(x2 − 1)1/4

(x+ 1)3/4 (x− 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−26x3+2x

−8x4+8x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x+1)
2 − ln(x)

4 − 3 ln(x−1)
2

(y1)2
dx

= y1

(∫ e−
3 ln(x+1)

2 − ln(x)
4 − 3 ln(x−1)

2 (x+ 1)3/2 (x− 1)3/2
√
x
√
x2 − 1

dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4(x2 − 1)1/4

(x+ 1)3/4 (x− 1)3/4

)
+c2

(
x1/4(x2 − 1)1/4

(x+ 1)3/4 (x− 1)3/4

(∫ e−
3 ln(x+1)

2 − ln(x)
4 − 3 ln(x−1)

2 (x+ 1)3/2 (x− 1)3/2
√
x
√
x2 − 1

dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

8x2(−x2 + 1)
(

d2

dx2y(x)
)
+ 2x(−13x2 + 1)

(
d
dx
y(x)

)
+ (−9x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
9x2−1

)
y(x)

8(x2−1)x2 −
(
13x2−1

)(
d
dx

y(x)
)

4x(x2−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2−1

)(
d
dx

y(x)
)

4x(x2−1) +
(
9x2−1

)
y(x)

8(x2−1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 13x2−1

4x(x2−1) , P3(x) = 9x2−1
8(x2−1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

8(x2 − 1)x2
(

d2

dx2y(x)
)
+ 2x(13x2 − 1)

(
d
dx
y(x)

)
+ (9x2 − 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(8u4 − 32u3 + 40u2 − 16u)
(

d2

du2y(u)
)
+ (26u3 − 78u2 + 76u− 24)

(
d
du
y(u)

)
+ (9u2 − 18u+ 8) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−8a0r(1 + 2r)u−1+r + (−8a1(1 + r) (3 + 2r) + 4a0(1 + 2r) (2 + 5r))ur + (−8a2(2 + r) (5 + 2r) + 4a1(3 + 2r) (7 + 5r)− 2a0(16r2 + 23r + 9))u1+r +
(

∞∑
k=2

(
−8ak+1(k + 1 + r) (2k + 2r + 3) + 4ak(2k + 2r + 1) (5k + 5r + 2)− 2ak−1

(
16(k − 1)2 + 32(k − 1) r + 16r2 + 23k − 14 + 23r

)
+ ak−2(2k − 1 + 2r) (4k − 5 + 4r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−8r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• The coefficients of each power of u must be 0

[−8a1(1 + r) (3 + 2r) + 4a0(1 + 2r) (2 + 5r) = 0,−8a2(2 + r) (5 + 2r) + 4a1(3 + 2r) (7 + 5r)− 2a0(16r2 + 23r + 9) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
10r2+9r+2

)
2(2r2+5r+3) , a2 = a0

(
34r3+76r2+41r+5

)
4(2r3+11r2+19r+10)

}
• Each term in the series must be 0, giving the recursion relation

8(5ak + ak−2 − 4ak−1 − 2ak+1) k2 + 2(8(5ak + ak−2 − 4ak−1 − 2ak+1) r + 18ak − 7ak−2 + 9ak−1 − 20ak+1) k + 8(5ak + ak−2 − 4ak−1 − 2ak+1) r2 + 2(18ak − 7ak−2 + 9ak−1 − 20ak+1) r + 8ak + 5ak−2 − 4ak−1 − 24ak+1 = 0
• Shift index using k− >k + 2

8(5ak+2 + ak − 4ak+1 − 2ak+3) (k + 2)2 + 2(8(5ak+2 + ak − 4ak+1 − 2ak+3) r + 18ak+2 − 7ak + 9ak+1 − 20ak+3) (k + 2) + 8(5ak+2 + ak − 4ak+1 − 2ak+3) r2 + 2(18ak+2 − 7ak + 9ak+1 − 20ak+3) r + 8ak+2 + 5ak − 4ak+1 − 24ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+16krak−64krak+1+80krak+2+8r2ak−32r2ak+1+40r2ak+2+18kak−110kak+1+196kak+2+18rak−110rak+1+196rak+2+9ak−96ak+1+240ak+2
8(2k2+4kr+2r2+13k+13r+21)

• Recursion relation for r = 0
ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21) , a1 = a0
3 , a2 =

a0
8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2
8(2k2+13k+21) , a1 = a0

3 , a2 =
a0
8

]
• Recursion relation for r = −1

2

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2
8(2k2+11k+15)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2
8(2k2+11k+15) , a1 = 0, a2 = −a0

16

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
1
2 , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2

8(2k2+11k+15) , a1 = 0, a2 = −a0
16

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
1
2

)
, ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21) , a1 = a0
3 , a2 =

a0
8 , bk+3 = 8k2bk−32k2bk+1+40k2bk+2+10kbk−78kbk+1+156kbk+2+2bk−49bk+1+152bk+2

8(2k2+11k+15) , b1 = 0, b2 = − b0
16

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.890 (sec)
Leaf size : 34� �
dsolve(8*x^2*(-x^2+1)*diff(diff(y(x),x),x)+2*x*(-13*x^2+1)*diff(y(x),x)+(-9*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

x1/4(LegendreQ (−1
8 ,

1
8 ,
√
−x2 + 1

)
c2x

1/8 + c1
)

√
x2 − 1

Mathematica DSolve solution

Solving time : 0.144 (sec)
Leaf size : 47� �
DSolve[{8*x^2*(1-x^2)*D[y[x],{x,2}]+2*x*(1-13*x^2)*D[y[x],x]+(1-9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x
(
4c2 4

√
xHypergeometric2F1

(1
8 ,

1
2 ,

9
8 , x

2)+ c1
)

√
1− x2
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2.1.100 problem 102

Solved as second order ode using Kovacic algorithm . . . . . . . . . 707
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 711
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 712
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 713

Internal problem ID [8948]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 102
Date solved : Thursday, December 12, 2024 at 09:58:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − 2x

(
−x2 + 2

)
y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.372 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 − 4x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 − 4x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 2
(x3 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 2

t =
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 + 2
(x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.184: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
+ 7i

4 (x− i) −
7i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 2
(x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
i 2 0 3

2 −1
2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 2
x
− 1

2 (x− i) −
1

2 (x+ i) + (−) (0)

= 2
x
− 1

2 (x− i) −
1

2 (x+ i)

= x2 + 2
x3 + x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 1

2 (x− i) −
1

2 (x+ i)

)
(0) +

((
− 2
x2 + 1

2 (x− i)2
+ 1

2 (x+ i)2
)
+
(
2
x
− 1

2 (x− i) −
1

2 (x+ i)

)2

−
(

−x2 + 2
(x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 1

2(x−i)−
1

2(x+i)

)
dx

= x2
√
x2 + 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3−4x
x4+x2 dx

= z1e
2 ln(x)−

3 ln
(
x2+1

)
2

= z1

(
x2

(x2 + 1)3/2

)

Which simplifies to

y1 =
x4

(x2 + 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3−4x

x4+x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
−(3x2 + 1) (x2 + 1)3 e4 ln(x)−3 ln

(
x2+1

)
3x7

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4

(x2 + 1)2
)
+ c2

(
x4

(x2 + 1)2

(
−(3x2 + 1) (x2 + 1)3 e4 ln(x)−3 ln

(
x2+1

)
3x7

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− 2x(−x2 + 2)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
x2(x2+1) −

2
(
x2−2

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
x2−2

)(
d
dx

y(x)
)

x(x2+1) + 4y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
(
x2−2

)
x(x2+1) , P3(x) = 4

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ 2x(x2 − 2)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−4 + r)xr + a1r(−3 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 4) + ak−2(k − 2 + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 4}
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• Each term must be 0
a1r(−3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 4) + ak−2(k − 2 + r)) = 0

• Shift index using k− >k + 2
(k + r + 1) (ak+2(k − 2 + r) + ak(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r)

k−2+r

• Recursion relation for r = 1
ak+2 = −ak(k+1)

k−1

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+1)

k−1 , a1 = 0
]

• Recursion relation for r = 4
ak+2 = −ak(k+4)

k+2

• Solution for r = 4[
y(x) =

∞∑
k=0

akx
k+4, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
4+k

)
, ak+2 = −ak(k+1)

k−1 , a1 = 0, bk+2 = − bk(4+k)
k+2 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 26� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-2*x*(-x^2+2)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = x(c1x3 + 3c2x2 + c2)

(x2 + 1)2
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Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 35� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-2*x*(2-x^2)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −−3c1x4 + 3c2x3 + c2x

3 (x2 + 1)2
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2.1.101 problem 103

Solved as second order ode using Kovacic algorithm . . . . . . . . . 714
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 718
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 720
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 720

Internal problem ID [8949]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 103
Date solved : Thursday, December 12, 2024 at 09:58:55 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x
(
x2 + 3

)
y′′ +

(
−x2 + 2

)
y′ − 8xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.316 (sec)

Writing the ode as (
x3 + 3x

)
y′′ +

(
−x2 + 2

)
y′ − 8xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + 3x
B = −x2 + 2 (3)
C = −8x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35x4 + 74x2 − 8
4 (x3 + 3x)2

(6)

Comparing the above to (5) shows that

s = 35x4 + 74x2 − 8

t = 4
(
x3 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
35x4 + 74x2 − 8
4 (x3 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.186: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
3 of order

2. There is a pole at x = −i
√
3 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 85
144

(
x− i

√
3
)2 + 85

144
(
x+ i

√
3
)2 − 187i

√
3

144
(
x− i

√
3
) + 187i

√
3

144
(
x+ i

√
3
) − 2

9x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
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For the pole at x = i
√
3 let b be the coefficient of 1(

x−i
√
3
)2 in the partial fractions decom-

position of r given above. Therefore b = 85
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 17

12
α−
c = 1

2 −
√
1 + 4b = − 5

12
For the pole at x = −i

√
3 let b be the coefficient of 1(

x+i
√
3
)2 in the partial fractions

decomposition of r given above. Therefore b = 85
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 17

12
α−
c = 1

2 −
√
1 + 4b = − 5

12
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35x4 + 74x2 − 8

4 (x3 + 3x)2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35x4 + 74x2 − 8
4 (x3 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2
3

1
3

i
√
3 2 0 17

12 − 5
12

−i
√
3 2 0 17

12 − 5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α+
c1 + α+

c2 + α+
c3

)
= 7

2 −
(
7
2

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
) + (0)

= 2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
)

= 2
3x + 17x

6x2 + 18

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
)) (0) +

(− 2
3x2 − 17

12
(
x− i

√
3
)2 − 17

12
(
x+ i

√
3
)2
)

+
(

2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
))2

−
(
35x4 + 74x2 − 8
4 (x3 + 3x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

3x+
17

12
(
x−i

√
3
)+ 17

12
(
x+i

√
3
)
)
dx

= x2/3(x2 + 3
)17/12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+2
x3+3x dx

= z1e
5 ln

(
x2+3

)
12 − ln(x)

3

= z1

(
(x2 + 3)5/12

x1/3

)

Which simplifies to

y1 =
(
x2 + 3

)11/6
x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x2+2

x3+3x dx

(y1)2
dx

= y1

∫
e

5 ln
(
x2+3

)
6 − 2 ln(x)

3

(y1)2
dx

= y1

−x1/3(8x4 + 44x2 + 55) e
5 ln

(
x2+3

)
6 − 2 ln(x)

3

55 (x2 + 3)8/3


Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2+3
)11/6

x1/3
)
+c2

(x2+3
)11/6

x1/3

−x1/3(8x4 + 44x2 + 55) e
5 ln

(
x2+3

)
6 − 2 ln(x)

3

55 (x2 + 3)8/3



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x2 + 3)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 8y(x)
x2+3 +

(
x2−2

)(
d
dx

y(x)
)

x(x2+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−2

)(
d
dx

y(x)
)

x(x2+3) − 8y(x)
x2+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(x2+3) , P3(x) = − 8

x2+3

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 + 3)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 3r)x−1+r + a1(1 + r) (2 + 3r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (3k + 2 + 3r) + ak−1(k + r + 1) (k − 5 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1)

(
ak−1(k − 5 + r) + 3

(
k + r + 2

3

)
ak+1

)
= 0

• Shift index using k− >k + 1
(k + r + 2)

(
ak(k + r − 4) + 3

(
k + 5

3 + r
)
ak+2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r−4)

3k+5+3r

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = −ak(k−4)

3k+5

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k−4)

3k+5 , 2a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −ak
(
k− 11

3
)

3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak
(
k− 11

3
)

3k+6 , 4a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −ak(−4+k)

3k+5 , 2a1 = 0, bk+2 = − bk
(
k− 11

3
)

3k+6 , 4b1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 32� �
dsolve(x*(x^2+3)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)-8*x*y(x) = 0,

y(x),singsol=all)� �
y = c1x

1/3(x2 + 3
)11/6 + c2(8x4 + 44x2 + 55)

8

Mathematica DSolve solution

Solving time : 0.196 (sec)
Leaf size : 41� �
DSolve[{x*(3+x^2)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]-8*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

3
√
x
(
x2 + 3

)11/6 − 1
55c2

(
8x4 + 44x2 + 55

)
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2.1.102 problem 104

Solved as second order ode using Kovacic algorithm . . . . . . . . . 721
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 725
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 727
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 727

Internal problem ID [8950]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 104
Date solved : Thursday, December 12, 2024 at 09:58:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(−x2 + 1
)
y′′ + x

(
−19x2 + 7

)
y′ −

(
14x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.362 (sec)

Writing the ode as(
−4x4 + 4x2) y′′ + (−19x3 + 7x

)
y′ +

(
−14x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −4x4 + 4x2

B = −19x3 + 7x (3)
C = −14x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −15x4 − 42x2 + 9
64 (x3 − x)2

(6)

Comparing the above to (5) shows that

s = −15x4 − 42x2 + 9

t = 64
(
x3 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−15x4 − 42x2 + 9

64 (x3 − x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.188: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(x3 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order
2. There is a pole at x = −1 of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
64x2 − 3

16 (x+ 1)2
− 3

16 (x− 1)2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
For the pole at x = 1 let b be the coefficient of 1

(x−1)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −15x4 − 42x2 + 9

64 (x3 − x)2

Since the gcd(s, t) = 1. This gives b = −15
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

8
α−
∞ = 1

2 −
√
1 + 4b = 3

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −15x4 − 42x2 + 9
64 (x3 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 9
8 −1

8

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
8

3
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

8 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 3

8 −
(
3
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 1
8x + 1

4x− 4 + 1
4x+ 4 + (−) (0)

= − 1
8x + 1

4x− 4 + 1
4x+ 4

= 3x2 + 1
8x3 − 8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
8x + 1

4x− 4 + 1
4x+ 4

)
(0) +

((
1
8x2 − 1

4 (x− 1)2
− 1

4 (x+ 1)2
)
+
(
− 1
8x + 1

4x− 4 + 1
4x+ 4

)2

−
(
−15x4 − 42x2 + 9

64 (x3 − x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
8x+

1
4x−4+

1
4x+4

)
dx

= (x− 1)1/4 (x+ 1)1/4

x1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−19x3+7x
−4x4+4x2 dx

= z1e
− 3 ln(x−1)

4 − 7 ln(x)
8 − 3 ln(x+1)

4

= z1

(
1

(x− 1)3/4 x7/8 (x+ 1)3/4

)

Which simplifies to

y1 =
(x2 − 1)1/4

(x− 1)3/4 x (x+ 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−19x3+7x

−4x4+4x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x−1)
2 − 7 ln(x)

4 − 3 ln(x+1)
2

(y1)2
dx

= y1

(∫ e−
3 ln(x−1)

2 − 7 ln(x)
4 − 3 ln(x+1)

2 (x− 1)3/2 x2(x+ 1)3/2√
x2 − 1

dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 1)1/4

(x− 1)3/4 x (x+ 1)3/4

)
+c2

(
(x2 − 1)1/4

(x− 1)3/4 x (x+ 1)3/4

(∫ e−
3 ln(x−1)

2 − 7 ln(x)
4 − 3 ln(x+1)

2 (x− 1)3/2 x2(x+ 1)3/2√
x2 − 1

dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(−x2 + 1)
(

d2

dx2y(x)
)
+ x(−19x2 + 7)

(
d
dx
y(x)

)
− (14x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
14x2+1

)
y(x)

4(x2−1)x2 −
(
19x2−7

)(
d
dx

y(x)
)

4x(x2−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
19x2−7

)(
d
dx

y(x)
)

4x(x2−1) +
(
14x2+1

)
y(x)

4(x2−1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 19x2−7

4x(x2−1) , P3(x) = 14x2+1
4(x2−1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4(x2 − 1)x2
(

d2

dx2y(x)
)
+ x(19x2 − 7)

(
d
dx
y(x)

)
+ (14x2 + 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u4 − 16u3 + 20u2 − 8u)
(

d2

du2y(u)
)
+ (19u3 − 57u2 + 50u− 12)

(
d
du
y(u)

)
+ (14u2 − 28u+ 15) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−4a0r(1 + 2r)u−1+r + (−4a1(1 + r) (3 + 2r) + 5a0(4r2 + 6r + 3))ur + (−4a2(2 + r) (5 + 2r) + 5a1(4r2 + 14r + 13)− a0(16r2 + 41r + 28))u1+r +
(

∞∑
k=2

(
−4ak+1(k + 1 + r) (2k + 3 + 2r) + 5ak(4k2 + 8kr + 4r2 + 6k + 6r + 3)− ak−1

(
16(k − 1)2 + 32(k − 1) r + 16r2 + 41k − 13 + 41r

)
+ ak−2(k + r) (4k − 1 + 4r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• The coefficients of each power of u must be 0

[−4a1(1 + r) (3 + 2r) + 5a0(4r2 + 6r + 3) = 0,−4a2(2 + r) (5 + 2r) + 5a1(4r2 + 14r + 13)− a0(16r2 + 41r + 28) = 0]
• Solve for the dependent coefficient(s){

a1 = 5a0
(
4r2+6r+3

)
4(2r2+5r+3) , a2 = a0

(
272r4+1352r3+2464r2+1948r+639

)
16(4r4+28r3+71r2+77r+30)

}
• Each term in the series must be 0, giving the recursion relation

4(5ak + ak−2 − 4ak−1 − 2ak+1) k2 + (8(5ak + ak−2 − 4ak−1 − 2ak+1) r + 30ak − ak−2 − 9ak−1 − 20ak+1) k + 4(5ak + ak−2 − 4ak−1 − 2ak+1) r2 + (30ak − ak−2 − 9ak−1 − 20ak+1) r + 15ak − 3ak−1 − 12ak+1 = 0
• Shift index using k− >k + 2

4(5ak+2 + ak − 4ak+1 − 2ak+3) (k + 2)2 + (8(5ak+2 + ak − 4ak+1 − 2ak+3) r + 30ak+2 − ak − 9ak+1 − 20ak+3) (k + 2) + 4(5ak+2 + ak − 4ak+1 − 2ak+3) r2 + (30ak+2 − ak − 9ak+1 − 20ak+3) r + 15ak+2 − 3ak+1 − 12ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = 4k2ak−16k2ak+1+20k2ak+2+8krak−32krak+1+40krak+2+4r2ak−16r2ak+1+20r2ak+2+15kak−73kak+1+110kak+2+15rak−73rak+1+110rak+2+14ak−85ak+1+155ak+2
4(2k2+4kr+2r2+13k+13r+21)

• Recursion relation for r = 0
ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21) , a1 = 5a0
4 , a2 = 213a0

160

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2
4(2k2+13k+21) , a1 = 5a0

4 , a2 = 213a0
160

]
• Recursion relation for r = −1

2

ak+3 =
4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15

2 ak− 105
2 ak+1+105ak+2

4(2k2+11k+15)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+3 =
4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15

2 ak− 105
2 ak+1+105ak+2

4(2k2+11k+15) , a1 = 5a0
4 , a2 = 43a0

32

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
1
2 , ak+3 =

4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15
2 ak− 105

2 ak+1+105ak+2
4(2k2+11k+15) , a1 = 5a0

4 , a2 = 43a0
32

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
1
2

)
, ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21) , a1 = 5a0
4 , a2 = 213a0

160 , bk+3 =
4k2bk−16k2bk+1+20k2bk+2+11kbk−57kbk+1+90kbk+2+ 15

2 bk− 105
2 bk+1+105bk+2

4(2k2+11k+15) , b1 = 5b0
4 , b2 = 43b0

32

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.141 (sec)
Leaf size : 44� �
dsolve(4*x^2*(-x^2+1)*diff(diff(y(x),x),x)+x*(-19*x^2+7)*diff(y(x),x)-(14*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2 LegendreQ
(
−3

8 ,
5
8 ,
√
−x2 + 1

)
+ c1 LegendreP

(
−3

8 ,
5
8 ,
√
−x2 + 1

)
x3/8

√
x2 − 1

Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 50� �
DSolve[{4*x^2*(1-x^2)*D[y[x],{x,2}]+x*(7-19*x^2)*D[y[x],x]-(1+14*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4c2x5/4Hypergeometric2F1
(1
2 ,

5
8 ,

13
8 , x

2)+ 5c1
5x

√
1− x2
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2.1.103 problem 105

Solved as second order ode using Kovacic algorithm . . . . . . . . . 728
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 732
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 734
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 734

Internal problem ID [8951]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 105
Date solved : Thursday, December 12, 2024 at 09:58:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(−x2 + 2
)
y′′ + x

(
−11x2 + 1

)
y′ +

(
−5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.393 (sec)

Writing the ode as(
−3x4 + 6x2) y′′ + (−11x3 + x

)
y′ +

(
−5x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −3x4 + 6x2

B = −11x3 + x (3)
C = −5x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x4 − 4x2 − 35
36 (x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = −5x4 − 4x2 − 35

t = 36
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−5x4 − 4x2 − 35
36 (x3 − 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.190: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of

order 2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144x2 − 7

64
(
x−

√
2
)2 − 7

64
(
x+

√
2
)2 + 31

√
2

384
(
x−

√
2
) − 31

√
2

384
(
x+

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
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For the pole at x =
√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
For the pole at x = −

√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −5x4 − 4x2 − 35

36 (x3 − 2x)2

Since the gcd(s, t) = 1. This gives b = − 5
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

6
α−
∞ = 1

2 −
√
1 + 4b = 1

6
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −5x4 − 4x2 − 35
36 (x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12√

2 2 0 7
8

1
8

−
√
2 2 0 7

8
1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
6

1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

6 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 5

6 −
(
5
6

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2
+ (0)

= 7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2

= 5x2 − 7
6x3 − 12x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2

)
(0) +

((
− 7
12x2 − 1

8
(
x−

√
2
)2 − 1

8
(
x+

√
2
)2
)

+
(

7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2

)2

−
(
−5x4 − 4x2 − 35
36 (x3 − 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

12x+
1

8x−8
√
2+

1
8x+8

√
2

)
dx

= x7/12
(
x+

√
2
)1/8 (

x−
√
2
)1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−11x3+x
−3x4+6x2 dx

= z1e
−

7 ln
(
x2−2

)
8 − ln(x)

12

= z1

(
1

(x2 − 2)7/8 x1/12

)

Which simplifies to

y1 =
√
x

(x2 − 2)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− −11x3+x

−3x4+6x2 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
x2−2

)
4 − ln(x)

6

(y1)2
dx

= y1

∫ e−
7 ln

(
x2−2

)
4 − ln(x)

6 (x2 − 2)3/2

x
dx


Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(x2 − 2)3/4

)
+ c2

 √
x

(x2 − 2)3/4

∫ e−
7 ln

(
x2−2

)
4 − ln(x)

6 (x2 − 2)3/2

x
dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2(−x2 + 2)
(

d2

dx2y(x)
)
+ x(−11x2 + 1)

(
d
dx
y(x)

)
+ (−5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2−1

)
y(x)

3x2(x2−2) −
(
11x2−1

)(
d
dx

y(x)
)

3x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2−1

)(
d
dx

y(x)
)

3x(x2−2) +
(
5x2−1

)
y(x)

3x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2−1

3x(x2−2) , P3(x) = 5x2−1
3x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2(x2 − 2)
(

d2

dx2y(x)
)
+ x(11x2 − 1)

(
d
dx
y(x)

)
+ (5x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 3r) (−1 + 2r)xr − a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(−ak(3k + 3r − 1) (2k + 2r − 1) + ak−2(3k + 3r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

−a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

−6
(

(−k−r+1)ak−2
2 +

(
k + r − 1

2

)
ak
) (

k − 1
3 + r

)
= 0

• Shift index using k− >k + 2

−6
(

(−k−1−r)ak
2 +

(
k + 3

2 + r
)
ak+2

) (
k + 5

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = (k+r+1)ak

2k+3+2r

• Recursion relation for r = 1
2

ak+2 =
(
k+ 3

2
)
ak

2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 =
(
k+ 3

2
)
ak

2k+4 , a1 = 0
]

• Recursion relation for r = 1
3

ak+2 =
(
k+ 4

3
)
ak

2k+ 11
3

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 =
(
k+ 4

3
)
ak

2k+ 11
3

, a1 = 0
]

• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 =

(
k+ 3

2
)
ak

2k+4 , a1 = 0, bk+2 =
(
k+ 4

3
)
bk

2k+ 11
3
, b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.118 (sec)
Leaf size : 35� �
dsolve(3*x^2*(-x^2+2)*diff(diff(y(x),x),x)+x*(-11*x^2+1)*diff(y(x),x)+(-5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x

(−2x2 + 4)3/4
+ c2x

1/3 hypergeom
([

2
3 , 1
]
,

[
11
12

]
,
x2

2

)

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 57� �
DSolve[{3*x^2*(2-x^2)*D[y[x],{x,2}]+x*(1-11*x^2)*D[y[x],x]+(1-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c1
√
x− 3 23/4c2 3

√
xHypergeometric2F1

(
− 1

12 ,
1
4 ,

11
12 ,

x2

2

)
(2− x2)3/4
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2.1.104 problem 106

Solved as second order ode using Kovacic algorithm . . . . . . . . . 735
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 739
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 741
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 741

Internal problem ID [8952]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 106
Date solved : Thursday, December 12, 2024 at 09:58:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 2
)
y′′ − x

(
−7x2 + 12

)
y′ +

(
3x2 + 7

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as (
2x4 + 4x2) y′′ + (7x3 − 12x

)
y′ +

(
3x2 + 7

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 4x2

B = 7x3 − 12x (3)
C = 3x2 + 7

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x4 − 72x2 + 128
16 (x3 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x4 − 72x2 + 128

t = 16
(
x3 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x4 − 72x2 + 128

16 (x3 + 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.192: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x3 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2 of

order 2. There is a pole at x = −i
√
2 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 65

64
(
x− i

√
2
)2 + 65

64
(
x+ i

√
2
)2 + 135i

√
2

128
(
x− i

√
2
) − 135i

√
2

128
(
x+ i

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 65
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

8
α−
c = 1

2 −
√
1 + 4b = −5

8
For the pole at x = −i

√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 65
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

8
α−
c = 1

2 −
√
1 + 4b = −5

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x4 − 72x2 + 128

16 (x3 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x4 − 72x2 + 128
16 (x3 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
i
√
2 2 0 13

8 −5
8

−i
√
2 2 0 13

8 −5
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3

4 −
(
3
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
) + (0)

= 2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
)

= 2
x
− 5x

4x2 + 8

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
)) (0) +

(− 2
x2 + 5

8
(
x− i

√
2
)2 + 5

8
(
x+ i

√
2
)2
)

+
(
2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
))2

−
(
−3x4 − 72x2 + 128

16 (x3 + 2x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 5

8
(
x−i

√
2
)− 5

8
(
x+i

√
2
)
)
dx

= x2

(x2 + 2)5/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x3−12x
2x4+4x2 dx

= z1e
−

13 ln
(
x2+2

)
8 + 3 ln(x)

2

= z1

(
x3/2

(x2 + 2)13/8

)

Which simplifies to

y1 =
x7/2

(x2 + 2)9/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 7x3−12x

2x4+4x2 dx

(y1)2
dx

= y1

∫
e−

13 ln
(
x2+2

)
4 +3 ln(x)

(y1)2
dx

= y1

∫ e−
13 ln

(
x2+2

)
4 +3 ln(x)(x2 + 2)9/2

x7 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x7/2

(x2 + 2)9/4

)
+ c2

 x7/2

(x2 + 2)9/4

∫ e−
13 ln

(
x2+2

)
4 +3 ln(x)(x2 + 2)9/2

x7 dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + 2)
(

d2

dx2y(x)
)
− x(−7x2 + 12)

(
d
dx
y(x)

)
+ (3x2 + 7) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+7

)
y(x)

2(x2+2)x2 −
(
7x2−12

)(
d
dx

y(x)
)

2x(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
7x2−12

)(
d
dx

y(x)
)

2x(x2+2) +
(
3x2+7

)
y(x)

2(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 7x2−12

2x(x2+2) , P3(x) = 3x2+7
2(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 7
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ x(7x2 − 12)

(
d
dx
y(x)

)
+ (3x2 + 7) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−7 + 2r)xr + a1(1 + 2r) (−5 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 7) + ak−2(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

7
2

}
• Each term must be 0

a1(1 + 2r) (−5 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (ak−2(k+r−1)
2 + ak

(
k + r − 7

2

))
= 0

• Shift index using k− >k + 2

4
(
k + 3

2 + r
) (ak(k+r+1)

2 + ak+2
(
k − 3

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k−3+2r

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k−2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k−2 , a1 = 0
]

• Recursion relation for r = 7
2

ak+2 = −ak
(
k+ 9

2
)

2k+4

• Solution for r = 7
2[

y(x) =
∞∑
k=0

akx
k+ 7

2 , ak+2 = −ak
(
k+ 9

2
)

2k+4 , a1 = 0
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 7

2

)
, ak+2 = −ak

(
k+ 3

2
)

2k−2 , a1 = 0, bk+2 = − bk
(
k+ 9

2
)

2k+4 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.119 (sec)
Leaf size : 35� �
dsolve(2*x^2*(x^2+2)*diff(diff(y(x),x),x)-x*(-7*x^2+12)*diff(y(x),x)+(3*x^2+7)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

7/2

(2x2 + 4)9/4
+ c2

√
x hypergeom

([
3
4 , 1
]
,

[
−1
2

]
,−x2

2

)

Mathematica DSolve solution

Solving time : 0.166 (sec)
Leaf size : 57� �
DSolve[{2*x^2*(2+x^2)*D[y[x],{x,2}]-x*(12-7*x^2)*D[y[x],x]+(7+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
3c1x3 − 2 4

√
2c2Hypergeometric2F1

(
−3

2 ,−
5
4 ,−

1
2 ,−

x2

2

))
3 (x2 + 2)9/4
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2.1.105 problem 107

Solved as second order ode using Kovacic algorithm . . . . . . . . . 742
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 746
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 748
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 748

Internal problem ID [8953]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 107
Date solved : Thursday, December 12, 2024 at 09:58:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 2
)
y′′ + x

(
7x2 + 4

)
y′ −

(
−3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.347 (sec)

Writing the ode as (
2x4 + 4x2) y′′ + (7x3 + 4x

)
y′ +

(
3x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 4x2

B = 7x3 + 4x (3)
C = 3x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 + 24
16 (x2 + 2)2

(6)

Comparing the above to (5) shows that

s = −3x2 + 24

t = 16
(
x2 + 2

)2
Therefore eq. (4) becomes

z′′(x) =
(

−3x2 + 24
16 (x2 + 2)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.194: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2)2. There is a pole at x = i

√
2 of order 2. There is a pole at x = −i

√
2 of

order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
64
(
x− i

√
2
)2 − 15

64
(
x+ i

√
2
)2 − 9i

√
2

128
(
x− i

√
2
) + 9i

√
2

128
(
x+ i

√
2
)

For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
For the pole at x = −i

√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 + 24

16 (x2 + 2)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 + 24
16 (x2 + 2)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2 2 0 5

8
3
8

−i
√
2 2 0 5

8
3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
) + (0)

= 3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
)

= 3x
4x2 + 8
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
)) (0) +

(− 3
8
(
x− i

√
2
)2 − 3

8
(
x+ i

√
2
)2
)

+
(

3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
))2

−
(

−3x2 + 24
16 (x2 + 2)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

8
(
x−i

√
2
)+ 3

8
(
x+i

√
2
)
)
dx

=
(
−x2 − 2

)3/8
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x3+4x
2x4+4x2 dx

= z1e
−

5 ln
(
x2+2

)
8 − ln(x)

2

= z1

(
1

(x2 + 2)5/8
√
x

)

Which simplifies to

y1 =
(−1)3/8

(x2 + 2)1/4
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x3+4x

2x4+4x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+2

)
4 −ln(x)

(y1)2
dx

= y1

(∫
−e−

5 ln
(
x2+2

)
4 −ln(x)

√
x2 + 2 x(−1)1/4 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−1)3/8

(x2 + 2)1/4
√
x

)
+c2

(
(−1)3/8

(x2 + 2)1/4
√
x

(∫
−e−

5 ln
(
x2+2

)
4 −ln(x)

√
x2 + 2x(−1)1/4 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ x(7x2 + 4)

(
d
dx
y(x)

)
− (−3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2−1

)
y(x)

2(x2+2)x2 −
(
7x2+4

)(
d
dx

y(x)
)

2x(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
7x2+4

)(
d
dx

y(x)
)

2x(x2+2) +
(
3x2−1

)
y(x)

2(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 7x2+4

2x(x2+2) , P3(x) = 3x2−1
2(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ x(7x2 + 4)

(
d
dx
y(x)

)
+ (3x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(

ak−2(k+r−1)
2 + ak

(
k + r + 1

2

)) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2

4
(

ak(k+r+1)
2 + ak+2

(
k + 5

2 + r
)) (

k + 3
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k+5+2r

• Recursion relation for r = −1
2

ak+2 = −ak
(
k+ 1

2
)

2k+4

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = −ak
(
k+ 1

2
)

2k+4 , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k+6

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k+6 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −ak

(
k+ 1

2
)

2k+4 , a1 = 0, bk+2 = − bk
(
k+ 3

2
)

2k+6 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
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<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.086 (sec)
Leaf size : 35� �
dsolve(2*x^2*(x^2+2)*diff(diff(y(x),x),x)+x*(7*x^2+4)*diff(y(x),x)-(-3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2 LegendreQ
(
−1

4 ,
1
4 ,

i
√
2x
2

)
(x2 + 2)1/8 + c1

(x2 + 2)1/4
√
x

Mathematica DSolve solution

Solving time : 0.108 (sec)
Leaf size : 68� �
DSolve[{2*x^2*(2+x^2)*D[y[x],{x,2}]+x*(4+7*x^2)*D[y[x],x]-(1-3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c2

8
√
x2 + 2Gamma

(3
4

)
Q

1
4
− 1

4

(
ix√
2

)
+ 23/8c1

√
x

4
√
x2 + 2Gamma

(3
4

)
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2.1.106 problem 108

Solved as second order ode using Kovacic algorithm . . . . . . . . . 749
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 753
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 755
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 755

Internal problem ID [8954]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 108
Date solved : Thursday, December 12, 2024 at 09:58:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2x2 + 1
)
y′′ + 5x

(
6x2 + 1

)
y′ −

(
−40x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.561 (sec)

Writing the ode as (
4x4 + 2x2) y′′ + (30x3 + 5x

)
y′ +

(
40x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 2x2

B = 30x3 + 5x (3)
C = 40x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 20x4 + 12x2 + 21
16 (2x3 + x)2

(6)

Comparing the above to (5) shows that

s = 20x4 + 12x2 + 21

t = 16
(
2x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
20x4 + 12x2 + 21
16 (2x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.196: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(2x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2

2 of
order 2. There is a pole at x = − i

√
2

2 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21
16x2 + 5

16
(
x− i

√
2

2

)2 + 5

16
(
x+ i

√
2

2

)2 + 13i
√
2

16
(
x− i

√
2

2

) − 13i
√
2

16
(
x+ i

√
2

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = i
√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = − i

√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 20x4 + 12x2 + 21

16 (2x3 + x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 20x4 + 12x2 + 21
16 (2x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4
i
√
2

2 2 0 5
4 −1

4

− i
√
2

2 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 5

4 −
(
5
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

) + (0)

= 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

)
= 10x2 + 7

8x3 + 4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

)
 (0) +


− 7

4x2 + 1

4
(
x− i

√
2

2

)2 + 1

4
(
x+ i

√
2

2

)2
+

 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

)
2

−
(
20x4 + 12x2 + 21
16 (2x3 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 7

4x−
1

4
(
x− i

√
2

2

)− 1

4
(
x+ i

√
2

2

)
dx

= 23/4x7/4

2 (2x2 + 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
30x3+5x
4x4+2x2 dx

= z1e
−

5 ln
(
x
(
2x2+1

))
4

= z1

(
1

(2x3 + x)5/4

)

Which simplifies to

y1 =
23/4x3/4

2 (2x2 + 1)5/4 (2x3 + x)1/4
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 30x3+5x

4x4+2x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
2x3+x

)
2

(y1)2
dx

= y1

(∫ (2x2 + 1)5/2
√
2

(2x3 + x)2 x3/2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
23/4x3/4

2 (2x2 + 1)5/4 (2x3 + x)1/4

)
+c2

(
23/4x3/4

2 (2x2 + 1)5/4 (2x3 + x)1/4

(∫ (2x2 + 1)5/2
√
2

(2x3 + x)2 x3/2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 5x(6x2 + 1)

(
d
dx
y(x)

)
− (−40x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
20x2−1

)
y(x)

x2(2x2+1) −
5
(
6x2+1

)(
d
dx

y(x)
)

2x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(
6x2+1

)(
d
dx

y(x)
)

2x(2x2+1) +
(
20x2−1

)
y(x)

x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 5

(
6x2+1

)
2x(2x2+1) , P3(x) = 20x2−1

x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 5x(6x2 + 1)

(
d
dx
y(x)

)
+ (40x2 − 2) y(x) = 0

• Assume series solution for y(x)
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y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + 2r)xr + a1(3 + r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r − 1) + 2ak−2(k + r + 2) (2k + 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2, 12

}
• Each term must be 0

a1(3 + r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

2(k + r + 2)
(
ak−2(2k + 1 + 2r) +

(
k + r − 1

2

)
ak
)
= 0

• Shift index using k− >k + 2
2(k + r + 4)

(
ak(2k + 2r + 5) +

(
k + 3

2 + r
)
ak+2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(2k+2r+5)

2k+3+2r

• Recursion relation for r = −2
ak+2 = −2ak(2k+1)

2k−1

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −2ak(2k+1)

2k−1 , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = −2ak(2k+6)
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −2ak(2k+6)
2k+4 , a1 = 0

]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −2ak(2k+1)

2k−1 , a1 = 0, bk+2 = −2bk(2k+6)
2k+4 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.123 (sec)
Leaf size : 35� �
dsolve(2*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+5*x*(6*x^2+1)*diff(y(x),x)-(-40*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x

(2x2 + 1)3/2
+

c2 hypergeom
([1

4 , 1
]
,
[
−1

4

]
,−2x2)

x2

Mathematica DSolve solution

Solving time : 0.175 (sec)
Leaf size : 52� �
DSolve[{2*x^2*(1+2*x^2)*D[y[x],{x,2}]+5*x*(1+6*x^2)*D[y[x],x]-(2-40*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

5c1x5/2 − 2c2Hypergeometric2F1
(
−5

4 ,−
1
2 ,−

1
4 ,−2x2)

5x2 (2x2 + 1)3/2
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2.1.107 problem 109

Solved as second order ode using Kovacic algorithm . . . . . . . . . 756
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 760
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 762
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 762

Internal problem ID [8955]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 109
Date solved : Thursday, December 12, 2024 at 09:59:00 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x
(
x2 + 1

)
y′′ +

(
7x2 + 4

)
y′ + 8xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.315 (sec)

Writing the ode as (
x3 + x

)
y′′ +

(
7x2 + 4

)
y′ + 8xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + x

B = 7x2 + 4 (3)
C = 8x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x4 + 14x2 + 8
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 3x4 + 14x2 + 8

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x4 + 14x2 + 8
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.198: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− i)2

− 3
16 (x+ i)2

+ 7i
16 (x− i) −

7i
16 (x+ i) +

2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x4 + 14x2 + 8

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x4 + 14x2 + 8
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
i 2 0 3

4
1
4

−i 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= −1
x
+ 1

4x− 4i +
1

4x+ 4i + (−) (0)

= −1
x
+ 1

4x− 4i +
1

4x+ 4i
= −1

x
+ x

2x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
+ 1

4x− 4i +
1

4x+ 4i

)
(0) +

((
1
x2 − 1

4 (x− i)2
− 1

4 (x+ i)2
)
+
(
−1
x
+ 1

4x− 4i +
1

4x+ 4i

)2

−
(
3x4 + 14x2 + 8
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x
+ 1

4x−4i+
1

4x+4i

)
dx

= (x2 + 1)1/4

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x2+4
x3+x

dx

= z1e
−2 ln(x)−

3 ln
(
x2+1

)
4

= z1

(
1

x2 (x2 + 1)3/4

)

Which simplifies to

y1 =
1

x3
√
x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 7x2+4

x3+x
dx

(y1)2
dx

= y1

∫
e−4 ln(x)−

3 ln
(
x2+1

)
2

(y1)2
dx

= y1

(
x5

√
x2 + 1

− x3

3
√
x2 + 1

+ 4x7
√
x2 + 1

+ 8x9

3
√
x2 + 1

+ x
√
x2 + 1
2 − arcsinh (x)

2

+ x3
√
x2 + 1
3 − 4x5

√
x2 + 1
3 − 8x7

√
x2 + 1
3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x3
√
x2 + 1

)
+ c2

(
1

x3
√
x2 + 1

(
x5

√
x2 + 1

− x3

3
√
x2 + 1

+ 4x7
√
x2 + 1

+ 8x9

3
√
x2 + 1

+ x
√
x2 + 1
2 − arcsinh (x)

2 + x3
√
x2 + 1
3 − 4x5

√
x2 + 1
3 − 8x7

√
x2 + 1
3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x2 + 1)
(

d2

dx2y(x)
)
+ (7x2 + 4)

(
d
dx
y(x)

)
+ 8xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −8y(x)
x2+1 −

(
7x2+4

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
7x2+4

)(
d
dx

y(x)
)

x(x2+1) + 8y(x)
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+4
x(x2+1) , P3(x) = 8

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x(x2 + 1)
(

d2

dx2y(x)
)
+ (7x2 + 4)

(
d
dx
y(x)

)
+ 8xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + r + 4) + ak−1(k + r + 3) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) (ak+1(k + r + 4) + ak−1(k + r + 3)) = 0

• Shift index using k− >k + 1
(k + r + 2) (ak+2(k + 5 + r) + ak(k + r + 4)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+4)

k+5+r

• Recursion relation for r = −3
ak+2 = −ak(k+1)

k+2

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = −ak(k+1)

k+2 ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = −ak(k+4)

k+5

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k+4)

k+5 , 4a1 = 0
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = −ak(k+1)

k+2 ,−2a1 = 0, bk+2 = − bk(4+k)
5+k

, 4b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.050 (sec)
Leaf size : 32� �
dsolve(x*(x^2+1)*diff(diff(y(x),x),x)+(7*x^2+4)*diff(y(x),x)+8*x*y(x) = 0,

y(x),singsol=all)� �
y =

√
x2 + 1 c2x− arcsinh (x) c2 + c1√

x2 + 1x3

Mathematica DSolve solution

Solving time : 0.199 (sec)
Leaf size : 55� �
DSolve[{x*(1+x^2)*D[y[x],{x,2}]+(4+7*x^2)*D[y[x],x]+8*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−c2arctanh
(

x√
x2+1

)
+ c2x

√
x2 + 1 + 2c1

2x3
√
x2 + 1
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2.1.108 problem 110

Solved as second order ode using Kovacic algorithm . . . . . . . . . 763
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 767
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 769
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 769

Internal problem ID [8956]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 110
Date solved : Thursday, December 12, 2024 at 09:59:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 1
)
y′′ + x

(
8x2 + 3

)
y′ −

(
−4x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.362 (sec)

Writing the ode as (
2x4 + 2x2) y′′ + (8x3 + 3x

)
y′ +

(
4x2 − 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 2x2

B = 8x3 + 3x (3)
C = 4x2 − 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 36x2 + 21
16 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 36x2 + 21

t = 16
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

36x2 + 21
16 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.200: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order
2. There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
64 (x− i)2

− 15
64 (x+ i)2

+ 27i
64 (x− i) −

27i
64 (x+ i) +

21
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = −15

64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 36x2 + 21
16 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

i 2 0 5
8

3
8

−i 2 0 5
8

3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= − 3
4x + 3

8 (x− i) +
3

8 (x+ i) + (0)

= − 3
4x + 3

8 (x− i) +
3

8 (x+ i)

= − 3
4x (x2 + 1)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
4x + 3

8 (x− i) +
3

8 (x+ i)

)
(0) +

((
3
4x2 − 3

8 (x− i)2
− 3

8 (x+ i)2
)
+
(
− 3
4x + 3

8 (x− i) +
3

8 (x+ i)

)2

−
(

36x2 + 21
16 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
4x+

3
8(x−i)+

3
8(x+i)

)
dx

= (x2 + 1)3/8

x3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x3+3x
2x4+2x2 dx

= z1e
− 3 ln(x)

4 −
5 ln

(
x2+1

)
8

= z1

(
1

x3/4 (x2 + 1)5/8

)

Which simplifies to

y1 =
1

x3/2 (x2 + 1)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x3+3x

2x4+2x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2 −

5 ln
(
x2+1

)
4

(y1)2
dx

= y1

(∫
e−

3 ln(x)
2 −

5 ln
(
x2+1

)
4 x3

√
x2 + 1dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x3/2 (x2 + 1)1/4

)
+ c2

(
1

x3/2 (x2 + 1)1/4

(∫
e−

3 ln(x)
2 −

5 ln
(
x2+1

)
4 x3

√
x2 + 1dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(8x2 + 3)

(
d
dx
y(x)

)
− (−4x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−3

)
y(x)

2x2(x2+1) −
(
8x2+3

)(
d
dx

y(x)
)

2x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
8x2+3

)(
d
dx

y(x)
)

2x(x2+1) +
(
4x2−3

)
y(x)

2x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 8x2+3

2x(x2+1) , P3(x) = 4x2−3
2x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(8x2 + 3)

(
d
dx
y(x)

)
+ (4x2 − 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(2r + 3) (−1 + r)xr + a1(5 + 2r) r x1+r +
(

∞∑
k=2

(ak(2k + 2r + 3) (k + r − 1) + 2ak−2(k + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2r + 3) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−3

2

}
• Each term must be 0

a1(5 + 2r) r = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

2
((
k + r + 3

2

)
ak + ak−2(k + r)

)
(k + r − 1) = 0

• Shift index using k− >k + 2
2
((
k + 7

2 + r
)
ak+2 + ak(k + r + 2)

)
(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(k+r+2)

2k+7+2r

• Recursion relation for r = 1
ak+2 = −2ak(k+3)

2k+9

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −2ak(k+3)

2k+9 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −2ak
(
k+ 1

2
)

2k+4

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = −2ak
(
k+ 1

2
)

2k+4 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −2ak(k+3)

2k+9 , a1 = 0, bk+2 = −2bk
(
k+ 1

2
)

2k+4 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
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-> hypergeometric
-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.153 (sec)
Leaf size : 31� �
dsolve(2*x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(8*x^2+3)*diff(y(x),x)-(-4*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1x hypergeom

([
1, 32

]
,

[
9
4

]
,−x2

)
+ c2

(x2 + 1)1/4 x3/2

Mathematica DSolve solution

Solving time : 0.144 (sec)
Leaf size : 60� �
DSolve[{2*x^2*(1+x^2)*D[y[x],{x,2}]+x*(3+8*x^2)*D[y[x],x]-(3-4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

c2Hypergeometric2F1
(1
4 ,

3
4 ,

5
4 ,−x2)

x
4
√
x2 + 1

+ c1

x3/2 4
√
x2 + 1

+ c2
x
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2.1.109 problem 111

Solved as second order ode using Kovacic algorithm . . . . . . . . . 770
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 774
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 776
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 777

Internal problem ID [8957]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 111
Date solved : Thursday, December 12, 2024 at 09:59:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ + 3x
(
x2 + 3

)
y′ −

(
−5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.328 (sec)

Writing the ode as

9x2y′′ +
(
3x3 + 9x

)
y′ +

(
5x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = 3x3 + 9x (3)
C = 5x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x2 − 5
36x2 (6)

Comparing the above to (5) shows that

s = x4 − 8x2 − 5
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x2 − 5

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.202: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

36 − 2
9 − 5

36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

6 − 2
3x − 7

4x3 − 7
x5 − 595

16x7 − 889
4x9 − 45647

32x11 − 76811
8x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

36

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 8x2 − 5
36x2

= Q+ R

36x2

=
(
x2

36 − 2
9

)
+
(
− 5
36x2

)
= x2

36 − 2
9 − 5

36x2

We see that the coefficient of the term x in the quotient is −2
9 . Now b can be found.

b =
(
−2
9

)
− (0)

= −2
9

Hence

[
√
r]∞ = x

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−2
9

1
6

− 1
)

= −7
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−2

9
1
6

− 1
)

= 1
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x2 − 5
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
6 −7

6
1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

6 then

d = α−
∞ −

(
α−
c1

)
= 1

6 −
(
1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
6x + (−)

(x
6

)
= 1

6x − x

6
= 1

6x − x

6
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x − x

6

)
(0) +

((
− 1
6x2 − 1

6

)
+
(

1
6x − x

6

)2

−
(
x4 − 8x2 − 5

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

6x−
x
6
)
dx

= x1/6e−x2
12
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+9x

9x2 dx

= z1e
−x2

12−
ln(x)

2

= z1

(
e−x2

12
√
x

)

Which simplifies to

y1 =
e−x2

6

x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+9x

9x2 dx

(y1)2
dx

= y1

∫
e−

x2
6 −ln(x)

(y1)2
dx

= y1

(∫
e−x2

6 −ln(x)x2/3ex2
3 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x2

6

x1/3

)
+ c2

(
e−x2

6

x1/3

(∫
e−x2

6 −ln(x)x2/3ex2
3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
+ 3x(x2 + 3)

(
d
dx
y(x)

)
− (−5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2−1

)
y(x)

9x2 −
(
x2+3

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+3

)(
d
dx

y(x)
)

3x +
(
5x2−1

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2+3

3x , P3(x) = 5x2−1
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
+ 3x(x2 + 3)

(
d
dx
y(x)

)
+ (5x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(ak(3k + 3r + 1) (3k + 3r − 1) + ak−2(3k + 3r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(3k + 3r − 1) (3akk + 3akr + ak + ak−2) = 0
• Shift index using k− >k + 2

(3k + 3r + 5) (3ak+2(k + 2) + 3ak+2r + ak+2 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
3k+7+3r
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• Recursion relation for r = −1
3

ak+2 = − ak
3k+6

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+2 = − ak
3k+6 , a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − ak
3k+8

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − ak
3k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − ak

3k+6 , a1 = 0, bk+2 = − bk
3k+8 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 37� �
dsolve(9*x^2*diff(diff(y(x),x),x)+3*x*(x^2+3)*diff(y(x),x)-(-5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x2
12

(
x1/3WhittakerM

(
1
3 ,

1
6 ,

x2

6

)
c1 + e−x2

12 c2x
)

x4/3
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Mathematica DSolve solution

Solving time : 0.394 (sec)
Leaf size : 61� �
DSolve[{9*x^2*D[y[x],{x,2}]+3*x*(3+x^2)*D[y[x],x]-(1-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

x2
6

(
2c1x4/3 + 3

√
6c2(−x2)2/3 Γ

(
1
3 ,−

x2

6

))
2x5/3
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2.1.110 problem 112

Solved as second order ode using Kovacic algorithm . . . . . . . . . 778
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 782
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 784
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 785

Internal problem ID [8958]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 112
Date solved : Thursday, December 12, 2024 at 09:59:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2y′′ + x
(
6x2 + 1

)
y′ +

(
9x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.381 (sec)

Writing the ode as

6x2y′′ +
(
6x3 + x

)
y′ +

(
9x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x2

B = 6x3 + x (3)
C = 9x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 36x4 − 132x2 − 35
144x2 (6)

Comparing the above to (5) shows that

s = 36x4 − 132x2 − 35
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
36x4 − 132x2 − 35

144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.204: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 11
12 − 35

144x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 11
12x − 13

12x3 − 143
72x5 − 130

27x7 − 17017
1296x9 − 597961

15552x11 − 11016863
93312x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 36x4 − 132x2 − 35
144x2

= Q+ R

144x2

=
(
x2

4 − 11
12

)
+
(
− 35
144x2

)
= x2

4 − 11
12 − 35

144x2

We see that the coefficient of the term x in the quotient is −11
12 . Now b can be found.

b =
(
−11
12

)
− (0)

= −11
12

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−11
12
1
2

− 1
)

= −17
12

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−11

12
1
2

− 1
)

= 5
12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 36x4 − 132x2 − 35
144x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −17

12
5
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

12 then

d = α−
∞ −

(
α−
c1

)
= 5

12 −
(

5
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 5
12x + (−)

(x
2

)
= 5

12x − x

2
= 5

12x − x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
12x − x

2

)
(0) +

((
− 5
12x2 − 1

2

)
+
(

5
12x − x

2

)2

−
(
36x4 − 132x2 − 35

144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

12x−
x
2
)
dx

= x5/12e−x2
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x3+x
6x2 dx

= z1e
−x2

4 − ln(x)
12

= z1

(
e−x2

4

x1/12

)

Which simplifies to

y1 = x1/3e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6x3+x

6x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 − ln(x)

6

(y1)2
dx

= y1

(∫ e−x2
2 − ln(x)

6 ex2

x2/3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3e−x2

2

)
+ c2

(
x1/3e−x2

2

(∫ e−x2
2 − ln(x)

6 ex2

x2/3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

6x2
(

d2

dx2y(x)
)
+ x(6x2 + 1)

(
d
dx
y(x)

)
+ (9x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
9x2+1

)
y(x)

6x2 −
(
6x2+1

)(
d
dx

y(x)
)

6x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
6x2+1

)(
d
dx

y(x)
)

6x +
(
9x2+1

)
y(x)

6x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = 6x2+1

6x , P3(x) = 9x2+1
6x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2
(

d2

dx2y(x)
)
+ x(6x2 + 1)

(
d
dx
y(x)

)
+ (9x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−1 + 2r)xr + a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (2k + 2r − 1) + 3ak−2(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

6
((
k − 1

3 + r
)
ak + ak−2

) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2
6
((
k + 5

3 + r
)
ak+2 + ak

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − 3ak

3k+5+3r
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• Recursion relation for r = 1
2

ak+2 = − 3ak
3k+ 13

2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 3ak
3k+ 13

2
, a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − 3ak
3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − 3ak
3k+6 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − 3ak

3k+ 13
2
, a1 = 0, bk+2 = − 3bk

3k+6 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.110 (sec)
Leaf size : 36� �
dsolve(6*x^2*diff(diff(y(x),x),x)+x*(6*x^2+1)*diff(y(x),x)+(9*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x2
4

(
x11/12e−x2

4 c2 +WhittakerM
(

11
24 ,

1
24 ,

x2

2

)
c1
)

x7/12
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Mathematica DSolve solution

Solving time : 0.658 (sec)
Leaf size : 61� �
DSolve[{6*x^2*D[y[x],{x,2}]+x*(1+6*x^2)*D[y[x],x]+(1+9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

x2
2

(
2c1x11/6 + 12

√
2c2(−x2)11/12 Γ

(
1
12 ,−

x2

2

))
2x3/2
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2.1.111 problem 113

Solved as second order ode using Kovacic algorithm . . . . . . . . . 786
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 790
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 792
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 792

Internal problem ID [8959]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 113
Date solved : Thursday, December 12, 2024 at 09:59:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(x2 + 1
)
y′′ + 3x

(
13x2 + 3

)
y′ −

(
−25x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.364 (sec)

Writing the ode as (
9x4 + 9x2) y′′ + (39x3 + 9x

)
y′ +

(
25x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x4 + 9x2

B = 39x3 + 9x (3)
C = 25x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −9x4 + 6x2 − 5
36 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −9x4 + 6x2 − 5

t = 36
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−9x4 + 6x2 − 5
36 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.206: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order
2. There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36x2 − 5

36 (x− i)2
− 5

36 (x+ i)2
− i

12 (x− i) +
i

12x+ 12i

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = − 5

36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6



chapter 2. book solved problems 788

For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −9x4 + 6x2 − 5

36 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −9x4 + 6x2 − 5
36 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

i 2 0 5
6

1
6

−i 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
6x + 1

6x− 6i +
1

6x+ 6i + (−) (0)

= 1
6x + 1

6x− 6i +
1

6x+ 6i
= 1

6x + x

3x2 + 3
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x + 1

6x− 6i +
1

6x+ 6i

)
(0) +

((
− 1
6x2 − 1

6 (x− i)2
− 1

6 (x+ i)2
)
+
(

1
6x + 1

6x− 6i +
1

6x+ 6i

)2

−
(
−9x4 + 6x2 − 5
36 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

6x+
1

6x−6i+
1

6x+6i

)
dx

=
(
x2 + 1

)1/6 (−x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
39x3+9x
9x4+9x2 dx

= z1e
−

5 ln
(
x2+1

)
6 − ln(x)

2

= z1

(
1

(x2 + 1)5/6
√
x

)

Which simplifies to

y1 =
(−x)1/6

(x2 + 1)2/3
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 39x3+9x

9x4+9x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+1

)
3 −ln(x)

(y1)2
dx

= y1

∫ e−
5 ln

(
x2+1

)
3 −ln(x)(x2 + 1)4/3 x

(−x)1/3
dx





chapter 2. book solved problems 790

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−x)1/6

(x2 + 1)2/3
√
x

)
+ c2

 (−x)1/6

(x2 + 1)2/3
√
x

∫ e−
5 ln

(
x2+1

)
3 −ln(x)(x2 + 1)4/3 x

(−x)1/3
dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2(x2 + 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 3)

(
d
dx
y(x)

)
− (−25x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2−1

)
y(x)

9x2(x2+1) −
(
13x2+3

)(
d
dx

y(x)
)

3x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2+3

)(
d
dx

y(x)
)

3x(x2+1) +
(
25x2−1

)
y(x)

9x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 13x2+3

3x(x2+1) , P3(x) = 25x2−1
9x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2(x2 + 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 3)

(
d
dx
y(x)

)
+ (25x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(
ak(3k + 3r + 1) (3k + 3r − 1) + ak−2(3k + 3r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

9
((
k − 1

3 + r
)
ak−2 +

(
k + r + 1

3

)
ak
) (

k − 1
3 + r

)
= 0

• Shift index using k− >k + 2
9
((
k + 5

3 + r
)
ak +

(
k + 7

3 + r
)
ak+2

) (
k + 5

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (3k+3r+5)ak

3k+7+3r

• Recursion relation for r = −1
3

ak+2 = − (3k+4)ak
3k+6

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+2 = − (3k+4)ak
3k+6 , a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − (3k+6)ak
3k+8

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − (3k+6)ak
3k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − (3k+4)ak

3k+6 , a1 = 0, bk+2 = − (3k+6)bk
3k+8 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.753 (sec)
Leaf size : 33� �
dsolve(9*x^2*(x^2+1)*diff(diff(y(x),x),x)+3*x*(13*x^2+3)*diff(y(x),x)-(-25*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = c1

(x2 + 1)2/3 x1/3
+ c2x

1/3 hypergeom
(
[1, 1] ,

[
4
3

]
,−x2

)

Mathematica DSolve solution

Solving time : 0.342 (sec)
Leaf size : 124� �
DSolve[{9*x^2*(1+x^2)*D[y[x],{x,2}]+3*x*(3+13*x^2)*D[y[x],x]-(1-25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
2
√
3c2 arctan

(
√
3x2/3

x2/3+2
3
√
x2 + 1

)
− 2c2 log

(
3
√
x2 + 1− x2/3

)
+ c2 log

(
x4/3 + (x2 + 1)2/3 + 3

√
x2 + 1x2/3

)
+ 4c1

4 3
√
x (x2 + 1)2/3
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2.1.112 problem 114

Solved as second order ode using Kovacic algorithm . . . . . . . . . 793
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 797
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 799
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 799

Internal problem ID [8960]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 114
Date solved : Thursday, December 12, 2024 at 09:59:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 1
)
y′′ + 4x

(
6x2 + 1

)
y′ −

(
−25x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.316 (sec)

Writing the ode as (
4x4 + 4x2) y′′ + (24x3 + 4x

)
y′ +

(
25x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x2

B = 24x3 + 4x (3)
C = 25x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 6
4 (x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −x2 − 6

t = 4
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 − 6
4 (x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.208: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x− i)2

+ 5
16 (x+ i)2

+ 7i
16 (x− i) −

7i
16 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 6

4 (x2 + 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 6
4 (x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (x− i) −

1
4 (x+ i) + (−) (0)

= − 1
4 (x− i) −

1
4 (x+ i)

= − x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (x− i) −

1
4 (x+ i)

)
(1) +

((
1

4 (x− i)2
+ 1

4 (x+ i)2
)
+
(
− 1
4 (x− i) −

1
4 (x+ i)

)2

−
(

−x2 − 6
4 (x2 + 1)2

))
= 0

(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4(x−i)−

1
4(x+i)

)
dx

= (x) 1
((−x+ i) (x+ i))1/4

= x

(−x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
24x3+4x
4x4+4x2 dx

= z1e
− ln(x)

2 −
5 ln

(
x2+1

)
4

= z1

(
1

√
x (x2 + 1)5/4

)

Which simplifies to

y1 =
(1
2 −

i
2

)√
x
√
2

(x2 + 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 24x3+4x

4x4+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)−

5 ln
(
x2+1

)
2

(y1)2
dx

= y1

(
i

(
−(x2 + 1)3/2

x
+ x

√
x2 + 1 + arcsinh (x)

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

((1
2 −

i
2

)√
x
√
2

(x2 + 1)3/2

)

+ c2

((1
2 −

i
2

)√
x
√
2

(x2 + 1)3/2

(
i

(
−(x2 + 1)3/2

x
+ x

√
x2 + 1 + arcsinh (x)

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(6x2 + 1)

(
d
dx
y(x)

)
− (−25x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2−1

)
y(x)

4x2(x2+1) −
(
6x2+1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
6x2+1

)(
d
dx

y(x)
)

x(x2+1) +
(
25x2−1

)
y(x)

4x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 6x2+1

x(x2+1) , P3(x) = 25x2−1
4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(6x2 + 1)

(
d
dx
y(x)

)
+ (25x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r + 1

2

) ((
k + r + 1

2

)
ak−2 +

(
k + r − 1

2

)
ak
)
= 0

• Shift index using k− >k + 2
4
(
k + 5

2 + r
) ((

k + 5
2 + r

)
ak +

(
k + 3

2 + r
)
ak+2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r+5)ak

2k+3+2r

• Recursion relation for r = −1
2

ak+2 = − (2k+4)ak
2k+2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − (2k+4)ak
2k+2 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − (2k+6)ak
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − (2k+6)ak
2k+4 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − (2k+4)ak

2k+2 , a1 = 0, bk+2 = − bk(2k+6)
2k+4 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.066 (sec)
Leaf size : 34� �
dsolve(4*x^2*(x^2+1)*diff(diff(y(x),x),x)+4*x*(6*x^2+1)*diff(y(x),x)-(-25*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −

√
x2 + 1 c2 + x(arcsinh (x) c2 + c1)√

x (x2 + 1)3/2

Mathematica DSolve solution

Solving time : 0.19 (sec)
Leaf size : 54� �
DSolve[{4*x^2*(1+x^2)*D[y[x],{x,2}]+4*x*(1+6*x^2)*D[y[x],x]-(1-25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2xarctanh
(

x√
x2+1

)
− c2

√
x2 + 1 + c1x

√
x (x2 + 1)3/2
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2.1.113 problem 115

Solved as second order ode using Kovacic algorithm . . . . . . . . . 800
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 804
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 806
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 806

Internal problem ID [8961]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 115
Date solved : Thursday, December 12, 2024 at 09:59:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

8x2(2x2 + 1
)
y′′ + 2x

(
34x2 + 5

)
y′ −

(
−30x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.465 (sec)

Writing the ode as(
16x4 + 8x2) y′′ + (68x3 + 10x

)
y′ +

(
30x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x4 + 8x2

B = 68x3 + 10x (3)
C = 30x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 132x4 + 148x2 − 7
64 (2x3 + x)2

(6)

Comparing the above to (5) shows that

s = 132x4 + 148x2 − 7

t = 64
(
2x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
132x4 + 148x2 − 7

64 (2x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.210: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(2x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2

2 of
order 2. There is a pole at x = − i

√
2

2 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
64x2 − 3

16
(
x− i

√
2

2

)2 − 3

16
(
x+ i

√
2

2

)2 − i
√
2

2
(
x− i

√
2

2

) + i
√
2

2x+ i
√
2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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For the pole at x = i
√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = − i

√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 132x4 + 148x2 − 7

64 (2x3 + x)2

Since the gcd(s, t) = 1. This gives b = 33
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

8
α−
∞ = 1

2 −
√
1 + 4b = −3

8
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 132x4 + 148x2 − 7
64 (2x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
8

1
8

i
√
2

2 2 0 3
4

1
4

− i
√
2

2 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
8 −3

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 11

8 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 11

8 −
(
11
8

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2
+ (0)

= 7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2

= 22x2 + 7
16x3 + 8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2

)
(0) +


− 7

8x2 − 1

4
(
x− i

√
2

2

)2 − 1

4
(
x+ i

√
2

2

)2
+

(
7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2

)2

−
(
132x4 + 148x2 − 7

64 (2x3 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

8x+
1

4x−2i
√
2+

1
4x+2i

√
2

)
dx

= 21/4
(
2x2 + 1

)1/4
x7/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
68x3+10x
16x4+8x2 dx

= z1e
−

3 ln
(
2x2+1

)
4 − 5 ln(x)

8

= z1

(
1

(2x2 + 1)3/4 x5/8

)

Which simplifies to

y1 =
x1/421/4√
2x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 68x3+10x

16x4+8x2 dx

(y1)2
dx

= y1

∫
e−

3 ln
(
2x2+1

)
2 − 5 ln(x)

4

(y1)2
dx

= y1

∫ e−
3 ln

(
2x2+1

)
2 − 5 ln(x)

4 (2x2 + 1)
√
2

2
√
x

dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/421/4√
2x2 + 1

)
+ c2

 x1/421/4√
2x2 + 1

∫ e−
3 ln

(
2x2+1

)
2 − 5 ln(x)

4 (2x2 + 1)
√
2

2
√
x

dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

8x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 2x(34x2 + 5)

(
d
dx
y(x)

)
− (−30x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
30x2−1

)
y(x)

8x2(2x2+1) −
(
34x2+5

)(
d
dx

y(x)
)

4x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
34x2+5

)(
d
dx

y(x)
)

4x(2x2+1) +
(
30x2−1

)
y(x)

8x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 34x2+5

4x(2x2+1) , P3(x) = 30x2−1
8x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
8

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

8x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 2x(34x2 + 5)

(
d
dx
y(x)

)
+ (30x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 4r)xr + a1(3 + 2r) (3 + 4r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (4k + 4r − 1) + 2ak−2(2k + 2r + 1) (4k − 5 + 4r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
4

}
• Each term must be 0

a1(3 + 2r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

8
((
2k + 2r − 5

2

)
ak−2 + ak

(
k + r − 1

4

)) (
k + r + 1

2

)
= 0

• Shift index using k− >k + 2
8
((
2k + 3

2 + 2r
)
ak + ak+2

(
k + 7

4 + r
)) (

k + 5
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2(4k+4r+3)ak

4k+7+4r

• Recursion relation for r = −1
2

ak+2 = −2(4k+1)ak
4k+5

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = −2(4k+1)ak
4k+5 , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = −2(4k+4)ak
4k+8

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2(4k+4)ak
4k+8 , a1 = 0

]
• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −2(4k+1)ak

4k+5 , a1 = 0, bk+2 = −2(4k+4)bk
4k+8 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.145 (sec)
Leaf size : 46� �
dsolve(8*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+2*x*(34*x^2+5)*diff(y(x),x)-(-30*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 LegendreP
(3
8 ,

3
8 ,
√
2x2 + 1

)
+ c2 LegendreQ

(3
8 ,

3
8 ,
√
2x2 + 1

)
x1/8

√
2x2 + 1

Mathematica DSolve solution

Solving time : 0.164 (sec)
Leaf size : 54� �
DSolve[{8*x^2*(1+2*x^2)*D[y[x],{x,2}]+2*x*(5+34*x^2)*D[y[x],x]-(1-30*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3c1x3/4 − 4c2Hypergeometric2F1
(
−3

8 ,
1
2 ,

5
8 ,−2x2)

3
√
x
√
2x2 + 1
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Internal problem ID [8962]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 116
Date solved : Thursday, December 12, 2024 at 09:59:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(1 + x) y′′ − x(1− 3x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.197 (sec)

Writing the ode as (
2x3 + 2x2) y′′ + (3x2 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 2x2

B = 3x2 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
16x2 (6)

Comparing the above to (5) shows that

s = −3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
− 3
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.212: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 3

16x2
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Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
16x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
4x + (−) (0)

= 1
4x

= 1
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x

)
(0) +

((
− 1
4x2

)
+
(

1
4x

)2

−
(
− 3
16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

4xdx

= x1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2−x

2x3+2x2 dx

= z1e
ln(x)

4 −ln(1+x)

= z1

(
x1/4

1 + x

)

Which simplifies to

y1 =
√
x

1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2−x

2x3+2x2 dx

(y1)2
dx

= y1

∫
e

ln(x)
2 −2 ln(1+x)

(y1)2
dx

= y1
(
2 e

ln(x)
2 −2 ln(1+x)(1 + x)2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

1 + x

)
+ c2

( √
x

1 + x

(
2 e

ln(x)
2 −2 ln(1+x)(1 + x)2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 1)
(

d2

dx2y(x)
)
− x(1− 3x)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
2(x+1)x2 −

(3x−1)
(

d
dx

y(x)
)

2x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x−1)

(
d
dx

y(x)
)

2x(x+1) + y(x)
2(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−1
2x(x+1) , P3(x) = 1

2(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

2x2(x+ 1)
(

d2

dx2y(x)
)
+ x(3x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u3 − 4u2 + 2u)
(

d2

du2y(u)
)
+ (3u2 − 7u+ 4)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(1 + r)u−1+r + (2a1(1 + r) (2 + r)− a0(1 + r) (−1 + 4r))ur +
(

∞∑
k=1

(2ak+1(k + r + 1) (k + 2 + r)− ak(k + r + 1) (4k + 4r − 1) + ak−1(k + r − 1) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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2r(1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 0}
• Each term must be 0

2a1(1 + r) (2 + r)− a0(1 + r) (−1 + 4r) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + 2ak−1 + 2ak+1) k2 + ((−8ak + 4ak−1 + 4ak+1) r − 3ak − 3ak−1 + 6ak+1) k + (−4ak + 2ak−1 + 2ak+1) r2 + (−3ak − 3ak−1 + 6ak+1) r + ak + ak−1 + 4ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + 2ak + 2ak+2) (k + 1)2 + ((−8ak+1 + 4ak + 4ak+2) r − 3ak+1 − 3ak + 6ak+2) (k + 1) + (−4ak+1 + 2ak + 2ak+2) r2 + (−3ak+1 − 3ak + 6ak+2) r + ak+1 + ak + 4ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−4k2ak+1+4krak−8krak+1+2r2ak−4r2ak+1+kak−11kak+1+rak−11rak+1−6ak+1
2(k2+2kr+r2+5k+5r+6)

• Recursion relation for r = −1
ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2) , 0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1
2(k2+3k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1
2(k2+5k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1

2(k2+5k+6) , 4a1 + a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1
2(k2+5k+6) , 4a1 + a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2) , 0 = 0, bk+2 = −2k2bk−4k2bk+1+kbk−11kbk+1−6bk+1
2(k2+5k+6) , 4b1 + b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 19� �
dsolve(2*x^2*(x+1)*diff(diff(y(x),x),x)-x*(-3*x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2

√
x+ c1x

x+ 1

Mathematica DSolve solution

Solving time : 0.055 (sec)
Leaf size : 25� �
DSolve[{2*x^2*(1+x)*D[y[x],{x,2}]-x*(1-3*x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

√
x+ 2c2x
x+ 1
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Internal problem ID [8963]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 117
Date solved : Thursday, December 12, 2024 at 09:59:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2(2x2 + 1
)
y′′ + x

(
50x2 + 1

)
y′ +

(
30x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.204 (sec)

Writing the ode as (
12x4 + 6x2) y′′ + (50x3 + x

)
y′ +

(
30x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 12x4 + 6x2

B = 50x3 + x (3)
C = 30x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −35
144x2 (6)

Comparing the above to (5) shows that

s = −35
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
− 35
144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.214: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 35

144x2
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Since the gcd(s, t) = 1. This gives b = − 35
144 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

12
α−
∞ = 1

2 −
√
1 + 4b = 5

12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 35
144x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
12

5
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

12 then

d = α−
∞ −

(
α−
c1

)
= 5

12 −
(

5
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 5
12x + (−) (0)

= 5
12x

= 5
12x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

5
12x

)
(0) +

((
− 5
12x2

)
+
(

5
12x

)2

−
(
− 35
144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 5

12xdx

= x5/12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
50x3+x

12x4+6x2 dx

= z1e
− ln(x)

12 −ln
(
2x2+1

)

= z1

(
1

x1/12 (2x2 + 1)

)

Which simplifies to

y1 =
x1/3

2x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 50x3+x

12x4+6x2 dx

(y1)2
dx

= y1

∫
e−

ln(x)
6 −2 ln

(
2x2+1

)
(y1)2

dx

= y1
(
6x1/3e−

ln(x)
6 −2 ln

(
2x2+1

)(
2x2 + 1

)2)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

2x2 + 1

)
+ c2

(
x1/3

2x2 + 1

(
6x1/3e−

ln(x)
6 −2 ln

(
2x2+1

)(
2x2 + 1

)2))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

6x2(2x2 + 1)
(

d2

dx2y(x)
)
+ x(50x2 + 1)

(
d
dx
y(x)

)
+ (30x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
30x2+1

)
y(x)

6x2(2x2+1) −
(
50x2+1

)(
d
dx

y(x)
)

6x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
50x2+1

)(
d
dx

y(x)
)

6x(2x2+1) +
(
30x2+1

)
y(x)

6x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 50x2+1

6x(2x2+1) , P3(x) = 30x2+1
6x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2(2x2 + 1)
(

d2

dx2y(x)
)
+ x(50x2 + 1)

(
d
dx
y(x)

)
+ (30x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 3r) (−1 + 2r)xr + a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (2k + 2r − 1) + 2ak−2(3k + 3r − 1) (2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(3k + 3r − 1) (2k + 2r − 1) (ak + 2ak−2) = 0
• Shift index using k− >k + 2

(3k + 3r + 5) (2k + 2r + 3) (ak+2 + 2ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2ak
• Recursion relation for r = 1

2

ak+2 = −2ak
• Solution for r = 1

2[
y(x) =

∞∑
k=0

akx
k+ 1

2 , ak+2 = −2ak, a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −2ak
• Solution for r = 1

3[
y(x) =

∞∑
k=0

akx
k+ 1

3 , ak+2 = −2ak, a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −2ak, a1 = 0, bk+2 = −2bk, b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 820

Maple dsolve solution

Solving time : 0.051 (sec)
Leaf size : 24� �
dsolve(6*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+x*(50*x^2+1)*diff(y(x),x)+(30*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

x1/3(c1x1/6 + c2
)

2x2 + 1

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 32� �
DSolve[{6*x^2*(1+2*x^2)*D[y[x],{x,2}]+x*(1+50*x^2)*D[y[x],x]+(1+30*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x
(
6c2 6

√
x+ c1

)
2x2 + 1
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2.1.116 problem 118

Solved as second order ode using Kovacic algorithm . . . . . . . . . 821
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 825
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 826
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 827

Internal problem ID [8964]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 118
Date solved : Thursday, December 12, 2024 at 09:59:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

28x2(1− 3x) y′′ − 7x(5 + 9x) y′ + 7(2 + 9x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.202 (sec)

Writing the ode as(
−84x3 + 28x2) y′′ + (−63x2 − 35x

)
y′ + (63x+ 14) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −84x3 + 28x2

B = −63x2 − 35x (3)
C = 63x+ 14

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 33
64x2 (6)

Comparing the above to (5) shows that

s = 33
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(

33
64x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.216: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 33
64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 33
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

8
α−
c = 1

2 −
√
1 + 4b = −3

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 33

64x2
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Since the gcd(s, t) = 1. This gives b = 33
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

8
α−
∞ = 1

2 −
√
1 + 4b = −3

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 33
64x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 11
8 −3

8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
8 −3

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −3

8 then

d = α−
∞ −

(
α−
c1

)
= −3

8 −
(
−3
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
8x + (−) (0)

= − 3
8x

= − 3
8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
8x

)
(0) +

((
3
8x2

)
+
(
− 3
8x

)2

−
(

33
64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3

8xdx

= 1
x3/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−63x2−35x
−84x3+28x2 dx

= z1e
5 ln(x)

8 −ln(−1+3x)

= z1

(
x5/8

−1 + 3x

)

Which simplifies to

y1 =
x1/4

−1 + 3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −63x2−35x

−84x3+28x2 dx

(y1)2
dx

= y1

∫
e

5 ln(x)
4 −2 ln(−1+3x)

(y1)2
dx

= y1

(
4
√
x e

5 ln(x)
4 −2 ln(−1+3x)(−1 + 3x)2

7

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

−1 + 3x

)
+ c2

(
x1/4

−1 + 3x

(
4
√
x e

5 ln(x)
4 −2 ln(−1+3x)(−1 + 3x)2

7

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

28x2(1− 3x)
(

d2

dx2y(x)
)
− 7x(5 + 9x)

(
d
dx
y(x)

)
+ 7(2 + 9x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2+9x)y(x)
4(3x−1)x2 −

(5+9x)
(

d
dx

y(x)
)

4x(3x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+9x)

(
d
dx

y(x)
)

4x(3x−1) − (2+9x)y(x)
4(3x−1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+9x
4x(3x−1) , P3(x) = − 2+9x

4(3x−1)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4(3x− 1)x2
(

d2

dx2y(x)
)
+ x(5 + 9x)

(
d
dx
y(x)

)
+ (−9x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions



chapter 2. book solved problems 826

−a0(−1 + 4r) (−2 + r)xr +
(

∞∑
k=1

(−ak(4k + 4r − 1) (k + r − 2) + 3ak−1(4k + 4r − 1) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 4r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
2, 14
}

• Each term in the series must be 0, giving the recursion relation
−4(ak − 3ak−1)

(
k + r − 1

4

)
(k + r − 2) = 0

• Shift index using k− >k + 1
−4(ak+1 − 3ak)

(
k + 3

4 + r
)
(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 3ak

• Recursion relation for r = 2
ak+1 = 3ak

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = 3ak

]
• Recursion relation for r = 1

4

ak+1 = 3ak
• Solution for r = 1

4[
y(x) =

∞∑
k=0

akx
k+ 1

4 , ak+1 = 3ak
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+1 = 3ak, bk+1 = 3bk

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 23� �
dsolve(28*x^2*(-3*x+1)*diff(diff(y(x),x),x)-7*x*(5+9*x)*diff(y(x),x)+7*(2+9*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2x
1/4

3x− 1
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Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 30� �
DSolve[{28*x^2*(1-3*x)*D[y[x],{x,2}]-7*x*(5+9*x)*D[y[x],x]+7*(2+9*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c2x2 + 7c1 4

√
x

7− 21x
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2.1.117 problem 119

Solved as second order ode using Kovacic algorithm . . . . . . . . . 828
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 832
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 834
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 834

Internal problem ID [8965]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 119
Date solved : Thursday, December 12, 2024 at 09:59:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

8x2(−x2 + 2
)
y′′ + 2x

(
−21x2 + 10

)
y′ −

(
35x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.201 (sec)

Writing the ode as(
−8x4 + 16x2) y′′ + (−42x3 + 20x

)
y′ +

(
−35x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −8x4 + 16x2

B = −42x3 + 20x (3)
C = −35x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7
64x2 (6)

Comparing the above to (5) shows that

s = −7
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(
− 7
64x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.218: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 7

64x2
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Since the gcd(s, t) = 1. This gives b = − 7
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

8
α−
∞ = 1

2 −
√
1 + 4b = 1

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 7
64x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
8

1
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

8 then

d = α−
∞ −

(
α−
c1

)
= 1

8 −
(
1
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
8x + (−) (0)

= 1
8x

= 1
8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x

)
(0) +

((
− 1
8x2

)
+
(

1
8x

)2

−
(
− 7
64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

8xdx

= x1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−42x3+20x
−8x4+16x2 dx

= z1e
− ln

(
x2−2

)
− 5 ln(x)

8

= z1

(
1

(x2 − 2)x5/8

)

Which simplifies to

y1 =
1

(x2 − 2)
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−42x3+20x

−8x4+16x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2−2

)
− 5 ln(x)

4

(y1)2
dx

= y1

(
4x2e−2 ln

(
x2−2

)
− 5 ln(x)

4 (x2 − 2)2

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x2 − 2)
√
x

)
+ c2

(
1

(x2 − 2)
√
x

(
4x2e−2 ln

(
x2−2

)
− 5 ln(x)

4 (x2 − 2)2

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

8x2(−x2 + 2)
(

d2

dx2y(x)
)
+ 2x(−21x2 + 10)

(
d
dx
y(x)

)
− (35x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
35x2+2

)
y(x)

8x2(x2−2) −
(
21x2−10

)(
d
dx

y(x)
)

4x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
21x2−10

)(
d
dx

y(x)
)

4x(x2−2) +
(
35x2+2

)
y(x)

8x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 21x2−10

4x(x2−2) , P3(x) = 35x2+2
8x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
8

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

8x2(x2 − 2)
(

d2

dx2y(x)
)
+ 2x(21x2 − 10)

(
d
dx
y(x)

)
+ (35x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0(1 + 2r) (−1 + 4r)xr − 2a1(3 + 2r) (3 + 4r)x1+r +
(

∞∑
k=2

(−2ak(2k + 2r + 1) (4k + 4r − 1) + ak−2(2k + 2r + 1) (4k + 4r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(1 + 2r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
4

}
• Each term must be 0

−2a1(3 + 2r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

−(2k + 2r + 1) (4k + 4r − 1) (2ak − ak−2) = 0
• Shift index using k− >k + 2

−(2k + 2r + 5) (4k + 4r + 7) (2ak+2 − ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak
2

• Recursion relation for r = −1
2

ak+2 = ak
2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = ak
2 , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = ak
2

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = ak
2 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = ak

2 , a1 = 0, bk+2 = bk
2 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.060 (sec)
Leaf size : 22� �
dsolve(8*x^2*(-x^2+2)*diff(diff(y(x),x),x)+2*x*(-21*x^2+10)*diff(y(x),x)-(35*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3/4 + c1
(x2 − 2)

√
x

Mathematica DSolve solution

Solving time : 0.083 (sec)
Leaf size : 34� �
DSolve[{8*x^2*(2-x^2)*D[y[x],{x,2}]+2*x*(10-21*x^2)*D[y[x],x]-(2+35*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3c1√
x
+ 4c2 4

√
x

6− 3x2
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2.1.118 problem 120

Solved as second order ode using Kovacic algorithm . . . . . . . . . 835
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 837
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 839
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 839

Internal problem ID [8966]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 120
Date solved : Thursday, December 12, 2024 at 09:59:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 3x+ 1
)
y′′ − 4x

(
−3x2 − 3x+ 1

)
y′ + 3

(
x2 − x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.138 (sec)

Writing the ode as(
4x4 + 12x3 + 4x2) y′′ + (12x3 + 12x2 − 4x

)
y′ +

(
3x2 − 3x+ 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 12x3 + 4x2

B = 12x3 + 12x2 − 4x (3)
C = 3x2 − 3x+ 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.220: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
12x3+12x2−4x
4x4+12x3+4x2 dx

= z1e
− ln

(
x2+3x+1

)
+ ln(x)

2

= z1

( √
x

x2 + 3x+ 1

)

Which simplifies to

y1 =
√
x

x2 + 3x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 12x3+12x2−4x

4x4+12x3+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2+3x+1

)
+ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

x2 + 3x+ 1

)
+ c2

( √
x

x2 + 3x+ 1(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
− 4x(−3x2 − 3x+ 1)

(
d
dx
y(x)

)
+ 3(x2 − x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3
(
x2−x+1

)
y(x)

4x2(x2+3x+1) −
(
3x2+3x−1

)(
d
dx

y(x)
)

x(x2+3x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+3x−1

)(
d
dx

y(x)
)

x(x2+3x+1) + 3
(
x2−x+1

)
y(x)

4x2(x2+3x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3x2+3x−1

x(x2+3x+1) , P3(x) = 3
(
x2−x+1

)
4x2(x2+3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
+ 4x(3x2 + 3x− 1)

(
d
dx
y(x)

)
+ (3x2 − 3x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + (a1(1 + 2r) (−1 + 2r) + 3a0(1 + 2r) (−1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3) + 3ak−1(2k + 2r − 1) (2k + 2r − 3) + ak−2(2k + 2r − 1) (2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) + 3a0(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = −3a0
• Each term in the series must be 0, giving the recursion relation

(2k + 2r − 1) (2k + 2r − 3) (ak + 3ak−1 + ak−2) = 0
• Shift index using k− >k + 2

(2k + 2r + 3) (2k + 2r + 1) (ak+2 + 3ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −3ak+1 − ak

• Recursion relation for r = 1
2

ak+2 = −3ak+1 − ak

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

• Recursion relation for r = 3
2

ak+2 = −3ak+1 − ak

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = −3ak+1 − ak, a1 = −3a0, bk+2 = −3bk+1 − bk, b1 = −3b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 23� �
dsolve(4*x^2*(x^2+3*x+1)*diff(diff(y(x),x),x)-4*x*(-3*x^2-3*x+1)*diff(y(x),x)+3*(x^2-x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c2x+ c1)
x2 + 3x+ 1

Mathematica DSolve solution

Solving time : 0.086 (sec)
Leaf size : 28� �
DSolve[{4*x^2*(1+3*x+x^2)*D[y[x],{x,2}]-4*x*(1-3*x-3*x^2)*D[y[x],x]+3*(1-x+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2x+ c1)

x2 + 3x+ 1
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2.1.119 problem 121

Solved as second order ode using Kovacic algorithm . . . . . . . . . 840
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 844
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 846
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 846

Internal problem ID [8967]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 121
Date solved : Thursday, December 12, 2024 at 09:59:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(1 + x)2 y′′ − x
(
−11x2 − 10x+ 1

)
y′ +

(
5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.196 (sec)

Writing the ode as

3x2(1 + x)2 y′′ +
(
11x3 + 10x2 − x

)
y′ +

(
5x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2(1 + x)2

B = 11x3 + 10x2 − x (3)
C = 5x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5
36x2 (6)

Comparing the above to (5) shows that

s = −5
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
− 5
36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.222: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 5

36x2
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Since the gcd(s, t) = 1. This gives b = − 5
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

6
α−
∞ = 1

2 −
√
1 + 4b = 1

6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 5
36x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
6

1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

6 then

d = α−
∞ −

(
α−
c1

)
= 1

6 −
(
1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
6x + (−) (0)

= 1
6x

= 1
6x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x

)
(0) +

((
− 1
6x2

)
+
(

1
6x

)2

−
(
− 5
36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

6xdx

= x1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+10x2−x

3x2(1+x)2
dx

= z1e
ln(x)

6 −2 ln(1+x)

= z1

(
x1/6

(1 + x)2
)

Which simplifies to

y1 =
x1/3

(1 + x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+10x2−x

3x2(1+x)2
dx

(y1)2
dx

= y1

∫
e

ln(x)
3 −4 ln(1+x)

(y1)2
dx

= y1

(
3x1/3e

ln(x)
3 −4 ln(1+x)(1 + x)4

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

(1 + x)2
)
+ c2

(
x1/3

(1 + x)2

(
3x1/3e

ln(x)
3 −4 ln(1+x)(1 + x)4

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2(x+ 1)2
(

d2

dx2y(x)
)
− x(−11x2 − 10x+ 1)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+1

)
y(x)

3x2(x+1)2 −
(

d
dx

y(x)
)
(11x−1)

3x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
(11x−1)

3x(x+1) +
(
5x2+1

)
y(x)

3x2(x+1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x−1
3x(x+1) , P3(x) = 5x2+1

3x2(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

3x2(x+ 1)2
(

d2

dx2y(x)
)
+ x(x+ 1) (11x− 1)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(3u4 − 6u3 + 3u2)
(

d2

du2y(u)
)
+ (11u3 − 23u2 + 12u)

(
d
du
y(u)

)
+ (5u2 − 10u+ 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0(2 + r) (1 + r)ur + (3a1(3 + r) (2 + r)− a0(2 + r) (5 + 6r))u1+r +
(

∞∑
k=2

(3ak(k + r + 2) (k + r + 1)− ak−1(k + r + 1) (6k − 1 + 6r) + ak−2(3k − 1 + 3r) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
3a1(3 + r) (2 + r)− a0(2 + r) (5 + 6r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(5+6r)

3(3+r)

• Each term in the series must be 0, giving the recursion relation
3(ak + ak−2 − 2ak−1) k2 + (6(ak + ak−2 − 2ak−1) r + 9ak − 4ak−2 − 5ak−1) k + 3(ak + ak−2 − 2ak−1) r2 + (9ak − 4ak−2 − 5ak−1) r + 6ak + ak−2 + ak−1 = 0

• Shift index using k− >k + 2
3(ak+2 + ak − 2ak+1) (k + 2)2 + (6(ak+2 + ak − 2ak+1) r + 9ak+2 − 4ak − 5ak+1) (k + 2) + 3(ak+2 + ak − 2ak+1) r2 + (9ak+2 − 4ak − 5ak+1) r + 6ak+2 + ak + ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3k2ak−6k2ak+1+6krak−12krak+1+3r2ak−6r2ak+1+8kak−29kak+1+8rak−29rak+1+5ak−33ak+1

3(k2+2kr+r2+7k+7r+12)

• Recursion relation for r = −2
ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k2+3k+2)

• Solution for r = −2[
y(u) =

∞∑
k=0

aku
k−2, ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k2+3k+2) , a1 = −7a0
3

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−2 , ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1
3(k2+3k+2) , a1 = −7a0

3

]
• Recursion relation for r = −1

ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1
3(k2+5k+6)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1

3(k2+5k+6) , a1 = −a0
6

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1
3(k2+5k+6) , a1 = −a0

6

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−2
)
+
(

∞∑
k=0

bk(x+ 1)k−1
)
, ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k2+3k+2) , a1 = −7a0
3 , bk+2 = −3k2bk−6k2bk+1+2kbk−17kbk+1−10bk+1

3(k2+5k+6) , b1 = − b0
6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.027 (sec)
Leaf size : 19� �
dsolve(3*x^2*(x+1)^2*diff(diff(y(x),x),x)-x*(-11*x^2-10*x+1)*diff(y(x),x)+(5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = c2x

1/3 + c1x

(x+ 1)2

Mathematica DSolve solution

Solving time : 0.062 (sec)
Leaf size : 29� �
DSolve[{3*x^2*(1+x)^2*D[y[x],{x,2}]-x*(1-10*x-11*x^2)*D[y[x],x]+(1+5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1 3

√
x+ 3c2x

2(x+ 1)2
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2.1.120 problem 122

Solved as second order ode using Kovacic algorithm . . . . . . . . . 847
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 851
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 853
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 853

Internal problem ID [8968]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 122
Date solved : Thursday, December 12, 2024 at 09:59:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 2x+ 3
)
y′′ − x

(
−15x2 − 14x+ 3

)
y′ +

(
7x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.208 (sec)

Writing the ode as(
4x4 + 8x3 + 12x2) y′′ + (15x3 + 14x2 − 3x

)
y′ +

(
7x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 8x3 + 12x2

B = 15x3 + 14x2 − 3x (3)
C = 7x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7
64x2 (6)

Comparing the above to (5) shows that

s = −7
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(
− 7
64x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.224: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 7

64x2



chapter 2. book solved problems 849

Since the gcd(s, t) = 1. This gives b = − 7
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

8
α−
∞ = 1

2 −
√
1 + 4b = 1

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 7
64x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
8

1
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

8 then

d = α−
∞ −

(
α−
c1

)
= 1

8 −
(
1
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
8x + (−) (0)

= 1
8x

= 1
8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x

)
(0) +

((
− 1
8x2

)
+
(

1
8x

)2

−
(
− 7
64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

8xdx

= x1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
15x3+14x2−3x
4x4+8x3+12x2 dx

= z1e
ln(x)

8 −ln
(
x2+2x+3

)

= z1

(
x1/8

x2 + 2x+ 3

)

Which simplifies to

y1 =
x1/4

x2 + 2x+ 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 15x3+14x2−3x

4x4+8x3+12x2 dx

(y1)2
dx

= y1

∫
e

ln(x)
4 −2 ln

(
x2+2x+3

)
(y1)2

dx

= y1

(
4
√
x e

ln(x)
4 −2 ln

(
x2+2x+3

)
(x2 + 2x+ 3)2

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

x2 + 2x+ 3

)
+ c2

(
x1/4

x2 + 2x+ 3

(
4
√
x e

ln(x)
4 −2 ln

(
x2+2x+3

)
(x2 + 2x+ 3)2

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x2 + 2x+ 3)
(

d2

dx2y(x)
)
− x(−15x2 − 14x+ 3)

(
d
dx
y(x)

)
+ (7x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+3

)
y(x)

4x2(x2+2x+3) −
(
15x2+14x−3

)(
d
dx

y(x)
)

4x(x2+2x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
15x2+14x−3

)(
d
dx

y(x)
)

4x(x2+2x+3) +
(
7x2+3

)
y(x)

4x2(x2+2x+3) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 15x2+14x−3

4x(x2+2x+3) , P3(x) = 7x2+3
4x2(x2+2x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 2x+ 3)
(

d2

dx2y(x)
)
+ x(15x2 + 14x− 3)

(
d
dx
y(x)

)
+ (7x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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3a0(−1 + 4r) (−1 + r)xr + (3a1(3 + 4r) r + 2a0r(3 + 4r))x1+r +
(

∞∑
k=2

(3ak(4k + 4r − 1) (k + r − 1) + 2ak−1(k + r − 1) (4k + 4r − 1) + ak−2(4k + 4r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3(−1 + 4r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 14
}

• Each term must be 0
3a1(3 + 4r) r + 2a0r(3 + 4r) = 0

• Solve for the dependent coefficient(s)
a1 = −2a0

3

• Each term in the series must be 0, giving the recursion relation
(4k + 4r − 1) (k + r − 1) (3ak + 2ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(4k + 4r + 7) (k + r + 1) (3ak+2 + 2ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak+1

3 − ak
3

• Recursion relation for r = 1
ak+2 = −2ak+1

3 − ak
3

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −2ak+1

3 − ak
3 , a1 = −2a0

3

]
• Recursion relation for r = 1

4

ak+2 = −2ak+1
3 − ak

3

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2ak+1
3 − ak

3 , a1 = −2a0
3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −2ak+1

3 − ak
3 , a1 = −2a0

3 , bk+2 = −2bk+1
3 − bk

3 , b1 = −2b0
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 24� �
dsolve(4*x^2*(x^2+2*x+3)*diff(diff(y(x),x),x)-x*(-15*x^2-14*x+3)*diff(y(x),x)+(7*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y = c2x

1/4 + c1x

x2 + 2x+ 3

Mathematica DSolve solution

Solving time : 0.09 (sec)
Leaf size : 33� �
DSolve[{4*x^2*(3+2*x+x^2)*D[y[x],{x,2}]-x*(3-14*x-15*x^2)*D[y[x],x]+(3+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1 4

√
x+ 4c2x

3x2 + 6x+ 9
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2.1.121 problem 123

Solved as second order ode using Kovacic algorithm . . . . . . . . . 854
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 858
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 860
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 860

Internal problem ID [8969]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 123
Date solved : Thursday, December 12, 2024 at 09:59:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 − 2x+ 1
)
y′′ − x(3 + x) y′ + (4 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.342 (sec)

Writing the ode as

x2(x− 1)2 y′′ +
(
−x2 − 3x

)
y′ + (4 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(x− 1)2

B = −x2 − 3x (3)
C = 4 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 10x− 1
4x2 (x− 1)4

(6)

Comparing the above to (5) shows that

s = 7x2 + 10x− 1
t = 4x2(x− 1)4

Therefore eq. (4) becomes

z′′(x) =
(
7x2 + 10x− 1
4x2 (x− 1)4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.226: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2(x− 1)4. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 4.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 7

4 (x− 1)2
+ 4

(x− 1)4
− 2

(x− 1)3
+ 3

2x − 3
2 (x− 1)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)
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Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − 1
4x2 + 7

4 (x− 1)2
+ 4

(x− 1)4
− 2

(x− 1)3
+ 3

2x − 3
2 (x− 1)

There is pole in r at x = 1 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 1 gives

[
√
r]c ≈

2
(x− 1)2

− 1
2 (x− 1) +

21
32 − 9x

32 + 53(x− 1)2

256 − 149(x− 1)3

1024 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

2
(x− 1)2

(3B)

The above shows that the coefficient of 1
(x−1)2 is

a = 2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 1. This term becomes 1
(x−1)3 . The coefficient of this term in the sum [

√
r]c is seen to

be 0 and the coefficient of this term r is found from the partial fraction decomposition
from above to be −2. Therefore

b = (−2)− (0)
= −2

Hence

[
√
r]c =

2
(x− 1)2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−2
2 + 2

)
= 1

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−2

2 + 2
)

= 3
2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7x2 + 10x− 1
4x2 (x− 1)4

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 4 2
(x−1)2

1
2

3
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x + 2

(x− 1)2
+ 1

2x− 2 + (−) (0)

= 1
2x + 2

(x− 1)2
+ 1

2x− 2

= 2x2 + x+ 1
2x (x− 1)2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)
(0) +

((
− 1
2x2 − 4

(x− 1)3
− 1

2 (x− 1)2
)
+
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)2

−
(
7x2 + 10x− 1
4x2 (x− 1)4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
2

(x−1)2
+ 1

2x−2

)
dx

=
√
x
√
x− 1 e−

2
x−1
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x
x2(x−1)2

dx

= z1e
3 ln(x)

2 − 2
x−1−

3 ln(x−1)
2

= z1

(
x3/2e−

2
x−1

(x− 1)3/2

)

Which simplifies to

y1 =
x3/2e−

4
x−1
√
x (x− 1)

(x− 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x2−3x

x2(x−1)2
dx

(y1)2
dx

= y1

∫
e3 ln(x)−

4
x−1−3 ln(x−1)

(y1)2
dx

= y1

(
e−4 Ei1

(
− 4
x− 1 − 4

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

)
+ c2

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

(
e−4 Ei1

(
− 4
x− 1 − 4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+4)y(x)
x2(x2−2x+1) +

(x+3)
(

d
dx

y(x)
)

x(x2−2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x(x2−2x+1) + (x+4)y(x)
x2(x2−2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − x+3

x(x2−2x+1) , P3(x) = x+4
x2(x2−2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(
a1(−1 + r)2 − a0(1 + 2r) (−1 + r)

)
x1+r +

(
∞∑
k=2

(
ak(k + r − 2)2 − ak−1(2k − 1 + 2r) (k + r − 2) + ak−2(k + r − 2) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 − a0(1 + 2r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(1+2r)

−1+r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 − 2ak−1) k + (ak + ak−2 − 2ak−1) r − 2ak − 3ak−2 + ak−1) (k + r − 2) = 0

• Shift index using k− >k + 2



chapter 2. book solved problems 860

((ak+2 + ak − 2ak+1) (k + 2) + (ak+2 + ak − 2ak+1) r − 2ak+2 − 3ak + ak+1) (k + r) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −kak−2kak+1+rak−2rak+1−ak−3ak+1
k+r

• Recursion relation for r = 2
ak+2 = −kak−2kak+1+ak−7ak+1

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −kak−2kak+1+ak−7ak+1

k+2 , a1 = 5a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 45� �
dsolve(x^2*(x^2-2*x+1)*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(x+4)*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
Ei1
(
− 4x

x−1

)
e−

4x
x−1 c2 + e−

4
x−1 c1

)
x− 1

Mathematica DSolve solution

Solving time : 0.368 (sec)
Leaf size : 54� �
DSolve[{x^2*(1-2*x+x^2)*D[y[x],{x,2}]-x*(3+x)*D[y[x],x]+(4+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−
4x
x−1

√
1− xx2(c2 ExpIntegralEi ( 4x

x−1

)
+ e4c1

)
(x− 1)3/2
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2.1.122 problem 124

Solved as second order ode using Kovacic algorithm . . . . . . . . . 861
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 865
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 867
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 867

Internal problem ID [8970]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 124
Date solved : Thursday, December 12, 2024 at 09:59:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ + 5x2y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.243 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + 5x2y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = 5x2 (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 24x− 16
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 24x− 16

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 24x− 16
16 (x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.228: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 8x − 1

4x2 − 1
8x + 5

16 (2 + x)2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 24x− 16

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 24x− 16
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 5
4 −1

4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (2 + x) +

1
2x + (−) (0)

= − 1
4 (2 + x) +

1
2x

= x+ 4
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (2 + x) +

1
2x

)
(0) +

((
1

4 (2 + x)2
− 1

2x2

)
+
(
− 1
4 (2 + x) +

1
2x

)2

−
(
−3x2 − 24x− 16
16 (x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
4(2+x)+

1
2x

)
dx

=
√
x

(2 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2

2x3+4x2 dx

= z1e
− 5 ln(2+x)

4

= z1

(
1

(2 + x)5/4

)

Which simplifies to

y1 =
√
x

(2 + x)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2

2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(2+x)
2

(y1)2
dx

= y1

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(2 + x)3/2

)
+ c2

( √
x

(2 + x)3/2

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2(x+2)x2 −

5
(

d
dx

y(x)
)

2(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)

2(x+2) + (x+1)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
2(x+2) , P3(x) = x+1

2(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 5
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (5u2 − 20u+ 20)

(
d
du
y(u)

)
+ (u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(3 + 2r)u−1+r + (4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 5 + 2r)− ak(8k2 + 16kr + 8r2 + 12k + 12r + 1) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term must be 0

4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 12ak − ak−1 + 28ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−12ak − ak−1 + 28ak+1) r − ak + 20ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 12ak+1 − ak + 28ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−12ak+1 − ak + 28ak+2) r − ak+1 + 20ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+3kak−28kak+1+3rak−28rak+1+ak−21ak+1
4(2k2+4kr+2r2+11k+11r+14)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1
4(2k2+11k+14) , 20a1 − a0 = 0

]
• Recursion relation for r = −3

2

ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2) ,−4a1 − a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k−
3
2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1

4(2k2+5k+2) ,−4a1 − a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k−
3
2

)
, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0, bk+2 = −2k2bk−8k2bk+1−3kbk−4kbk+1+bk+3bk+1
4(2k2+5k+2) ,−4b1 − b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 39� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+5*diff(y(x),x)*x^2+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

(√
x+ 2

√
2 c2 − 2 arctanh

(√
2
√
x+2

2

)
c2 + c1

)√
x

(x+ 2)3/2

Mathematica DSolve solution

Solving time : 0.162 (sec)
Leaf size : 55� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}]+5*x^2*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
−2

√
2c2arctanh

(√
x+2√
2

)
+ 2c2

√
x+ 2 + c1

)
(x+ 2)3/2
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2.1.123 problem 125

Solved as second order ode using Kovacic algorithm . . . . . . . . . 868
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 872
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 874
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 874

Internal problem ID [8971]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 125
Date solved : Thursday, December 12, 2024 at 09:59:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 2
)
y′′ − 2x

(
2x2 + 1

)
y′ +

(
−2x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.414 (sec)

Writing the ode as(
−x4 + 2x2) y′′ + (−4x3 − 2x

)
y′ +

(
−2x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + 2x2

B = −4x3 − 2x (3)
C = −2x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 1
(x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 1

t =
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 1
(x3 − 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.230: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of order

2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 5

16
(
x−

√
2
)2 + 5

16
(
x+

√
2
)2 − 3

√
2

32
(
x−

√
2
) + 3

√
2

32
(
x+

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x =
√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

For the pole at x = −
√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 1
(x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2√

2 2 0 5
4 −1

4

−
√
2 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
) + (0)

= 1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
)

= − 1
x3 − 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
)) (0) +

(− 1
2x2 + 1

4
(
x−

√
2
)2 + 1

4
(
x+

√
2
)2
)

+
(

1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
))2

−
(

3x2 − 1
(x3 − 2x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

4
(
x−

√
2
)− 1

4
(
x+

√
2
)
)
dx

=
√
x(

x−
√
2
)1/4 (

x+
√
2
)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x3−2x
−x4+2x2 dx

= z1e
ln(x)

2 −
5 ln

(
x2−2

)
4

= z1

( √
x

(x2 − 2)5/4

)

Which simplifies to

y1 =
x

(x2 − 2)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x3−2x

−x4+2x2 dx

(y1)2
dx

= y1

∫
eln(x)−

5 ln
(
x2−2

)
2

(y1)2
dx

= y1

(
√
x2 − 2 +

√
2 arctan

( √
2√

x2 − 2

))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x2 − 2)3/2

)
+ c2

(
x

(x2 − 2)3/2

(
√
x2 − 2 +

√
2 arctan

( √
2√

x2 − 2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−x2 + 2)
(

d2

dx2y(x)
)
− 2x(2x2 + 1)

(
d
dx
y(x)

)
+ (−2x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
x2−1

)
y(x)

x2(x2−2) −
2
(
2x2+1

)(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
2x2+1

)(
d
dx

y(x)
)

x(x2−2) + 2
(
x2−1

)
y(x)

x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(
2x2+1

)
x(x2−2) , P3(x) = 2

(
x2−1

)
x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2)
(

d2

dx2y(x)
)
+ 2x(2x2 + 1)

(
d
dx
y(x)

)
+ (2x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0(−1 + r)2 xr − 2a1r2x1+r +
(

∞∑
k=2

(
−2ak(k + r − 1)2 + ak−2(k + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a1r2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2ak(k + r − 1)2 + ak−2(k + r) (k + r − 1) = 0

• Shift index using k− >k + 2
−2ak+2(k + r + 1)2 + ak(k + r + 2) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(k+r+2)

2(k+r+1)

• Recursion relation for r = 1
ak+2 = ak(k+3)

2(k+2)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = ak(k+3)

2(k+2) , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.050 (sec)
Leaf size : 42� �
dsolve(x^2*(-x^2+2)*diff(diff(y(x),x),x)-2*x*(2*x^2+1)*diff(y(x),x)+(-2*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y =

x
(√

2 c2
√
x2 − 2 + 2 arctan

( √
2√

x2−2

)
c2 + c1

)
(x2 − 2)3/2

Mathematica DSolve solution

Solving time : 0.208 (sec)
Leaf size : 58� �
DSolve[{x^2*(2-x^2)*D[y[x],{x,2}]-2*x*(1+2*x^2)*D[y[x],x]+(2-2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
x

(
−
√
2c2arctanh

(√
1− x2

2

)
+ c2

√
2− x2 + c1

)
(2− x2)3/2
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2.1.124 problem 126

Solved as second order ode using Kovacic algorithm . . . . . . . . . 875
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 879
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 881
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 881

Internal problem ID [8972]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 126
Date solved : Thursday, December 12, 2024 at 09:59:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(5− x) y′ + (9− 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.465 (sec)

Writing the ode as

x2y′′ +
(
x2 − 5x

)
y′ + (9− 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − 5x (3)
C = 9− 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.232: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 3
2x − 5

2x2 + 15
2x3 − 115

4x4 + 495
4x5 − 2285

4x6 + 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
6x− 1
4x2

)
= 1

4 + 6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 6. Dividing this by leading coefficient in t which is 4 gives 3

2 . Now b can be found.

b =
(
3
2

)
− (0)

= 3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
2
− 0
)

= 3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
2
− 0
)

= −3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

3
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2x + 1
2

= 1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x + 1

2

)2

−
(
x2 + 6x− 1

4x2

))
= 0

1− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x



chapter 2. book solved problems 879

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ ( 1

2x+
1
2
)
dx

= (1 + x) ex
2+

ln(x)
2

= (1 + x)
√
x ex

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−5x

x2 dx

= z1e
−x

2+
5 ln(x)

2

= z1
(
x5/2e−x

2
)

Which simplifies to
y1 = x3(1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2−5x

x2 dx

(y1)2
dx

= y1

∫
e−x+5 ln(x)

(y1)2
dx

= y1

(
− e−x

−1− x
− Ei1 (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x3(1 + x)

)
+ c2

(
x3(1 + x)

(
− e−x

−1− x
− Ei1 (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(5− x)

(
d
dx
y(x)

)
+ (9− 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−9+4x)y(x)
x2 −

(x−5)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x) +
(x−5)

(
d
dx

y(x)
)

x
− (−9+4x)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x−5

x
, P3(x) = −−9+4x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x− 5)

(
d
dx
y(x)

)
+ (9− 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−3 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 3)2 + ak−1(k − 5 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 3)2 + ak−1(k − 5 + r) = 0

• Shift index using k− >k + 1
ak+1(k − 2 + r)2 + ak(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+r−4)

(k−2+r)2

• Recursion relation for r = 3 ; series terminates at k = 1
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ak+1 = −ak(k−1)
(k+1)2

• Apply recursion relation for k = 0
a1 = a0

• Terminating series solution of the ODE for r = 3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (x+ 1)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x+5)*diff(y(x),x)+(9-4*x)*y(x) = 0,

y(x),singsol=all)� �
y = x3(−e−xc2 + (Ei1 (x) c2 + c1) (x+ 1)

)
Mathematica DSolve solution

Solving time : 0.415 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]-x*(5-x)*D[y[x],x]+(9-4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−xx3(c2ex(x+ 1)ExpIntegralEi(−x) + c1e

x(x+ 1) + c2)
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2.1.125 problem 127

Solved as second order ode using Kovacic algorithm . . . . . . . . . 882
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 886
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 888
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 888

Internal problem ID [8973]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 127
Date solved : Thursday, December 12, 2024 at 09:59:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + x+ 1
)
y′′ + 12x2(1 + x) y′ +

(
3x2 + 3x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.800 (sec)

Writing the ode as(
4x4 + 4x3 + 4x2) y′′ + (12x3 + 12x2) y′ + (3x2 + 3x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x3 + 4x2

B = 12x3 + 12x2 (3)
C = 3x2 + 3x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 4x− 1
4 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 4x− 1

t = 4
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 4x− 1
4 (x3 + x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.234: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 +
i
√
3

2
of order 2. There is a pole at x = −1

2 −
i
√
3

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
2x − 1

4x2 +
−3

8 −
i
√
3

8(
x+ 1

2 −
i
√
3

2

)2 +
−3

8 +
i
√
3

8(
x+ 1

2 +
i
√
3

2

)2 +
1
4 −

5i
√
3

12

x+ 1
2 −

i
√
3

2

+
1
4 +

5i
√
3

12

x+ 1
2 +

i
√
3

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −3
8 −

i
√
3

8 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

−2− 2i
√
3

4

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

−2− 2i
√
3

4

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −3
8 +

i
√
3

8 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
−2 + 2i

√
3

4

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
−2 + 2i

√
3

4
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 4x− 1
4 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 +

i
√
3

2 2 0 1
2 +

√
−2−2i

√
3

4
1
2 −

√
−2−2i

√
3

4

−1
2 −

i
√
3

2 2 0 1
2 +

√
−2+2i

√
3

4
1
2 −

√
−2+2i

√
3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

+ (−) (0)

= 1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

= 2x2 + 1
2x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

2x2 −
1
2 −

√
−2−2i

√
3

4(
x+ 1

2 −
i
√
3

2

)2 −
1
2 −

√
−2+2i

√
3

4(
x+ 1

2 +
i
√
3

2

)2
+

(
1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

)2

−
(

2x2 − 4x− 1
4 (x3 + x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1
2−

√
−2−2i

√
3

4
x+1

2− i
√
3

2
+

1
2−

√
−2+2i

√
3

4
x+1

2+ i
√
3

2

)
dx

=
(
x2 + x+ 1

)1/4√
x
√
2 e−

√
3 arctan

(
(2x+1)

√
3

3

)
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
12x3+12x2

4x4+4x3+4x2 dx

= z1e
−

3 ln
(
x2+x+1

)
4 −

√
3 arctan

(
(2x+1)

√
3

3

)
2

= z1

e−
√
3 arctan

(
(2x+1)

√
3

3

)
2

(x2 + x+ 1)3/4


Which simplifies to

y1 =
e−

√
3 arctan

(
(2x+1)

√
3

3

)√
x
√
2√

x2 + x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 12x3+12x2

4x4+4x3+4x2 dx

(y1)2
dx

= y1

∫
e
−

3 ln
(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
(y1)2

dx

= y1

∫ e−
3 ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
(x2 + x+ 1) e2

√
3 arctan

(
(2x+1)

√
3

3

)
2x dx


Therefore the solution is

y = c1y1 + c2y2

= c1

e−
√
3 arctan

(
(2x+1)

√
3

3

)√
x
√
2√

x2 + x+ 1


+c2

e−
√
3 arctan

(
(2x+1)

√
3

3

)√
x
√
2√

x2 + x+ 1

∫ e−
3 ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
(x2 + x+ 1) e2

√
3 arctan

(
(2x+1)

√
3

3

)
2x dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 12x2(x+ 1)

(
d
dx
y(x)

)
+ (3x2 + 3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+3x+1

)
y(x)

4x2(x2+x+1) −
3(x+1)

(
d
dx

y(x)
)

x2+x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3(x+1)

(
d
dx

y(x)
)

x2+x+1 +
(
3x2+3x+1

)
y(x)

4x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3(x+1)

x2+x+1 , P3(x) = 3x2+3x+1
4x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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4x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 12x2(x+ 1)

(
d
dx
y(x)

)
+ (3x2 + 3x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 2..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(
a1(1 + 2r)2 + a0(3 + 2r) (1 + 2r)

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−1(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r − 1) (2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 + a0(3 + 2r) (1 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = − (3+2r)a0

1+2r

• Each term in the series must be 0, giving the recursion relation

4
(
(ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r − ak

2 − 3ak−2
2 + ak−1

2

) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2
4
(
(ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r − ak+2

2 − 3ak
2 + ak+1

2

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+2kak+1+2rak+2rak+1+ak+5ak+1

2k+2r+3

• Recursion relation for r = 1
2

ak+2 = −2kak+2kak+1+2ak+6ak+1
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −2kak+2kak+1+2ak+6ak+1
2k+4 , a1 = −2a0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 1.020 (sec)
Leaf size : 181� �
dsolve(4*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+12*x^2*(x+1)*diff(y(x),x)+(3*x^2+3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y

=

√
i
√
3− 2x− 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
2

√
x
(

−2ix+
√
3−i√

3+2ix+i

)1/4(
hypergeom

([
1, 12 +

i
√
3

2

]
,
[
i
√
3

2 + 3
2

]
, −i

√
3x+x+2

i
√
3x+x+2

)(
−2ix+

√
3−i√

3+2ix+i

) i
√
3

4
√

−2ix+
√
3−i√

3+2ix+i
c2 +

(
−2ix+

√
3−i√

3+2ix+i

)− i
√
3

4
c1

)
(x2 + x+ 1)3/4

Mathematica DSolve solution

Solving time : 1.496 (sec)
Leaf size : 93� �
DSolve[{4*x^2*(1+x+x^2)*D[y[x],{x,2}]+12*x^2*(1+x)*D[y[x],x]+(1+3*x+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
xe

−
√
3 arctan

(
2x+1√

3

)(
c2
∫ x

1
e

√
3 arctan

(
2K[1]+1√

3

)
K[1]

√
K[1]2+K[1]+1dK[1] + c1

)
√
x2 + x+ 1
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2.1.126 problem 128

Solved as second order ode using Kovacic algorithm . . . . . . . . . 889
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 893
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 895
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 896

Internal problem ID [8974]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 128
Date solved : Thursday, December 12, 2024 at 09:59:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + x+ 1
)
y′′ − x

(
−2x2 − 4x+ 1

)
y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.852 (sec)

Writing the ode as

x2(x2 + x+ 1
)
y′′ +

(
2x3 + 4x2 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(x2 + x+ 1
)

B = 2x3 + 4x2 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 10x2 − 8x− 1
4 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 10x2 − 8x− 1

t = 4
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

10x2 − 8x− 1
4 (x3 + x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.236: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 +
i
√
3

2
of order 2. There is a pole at x = −1

2 −
i
√
3

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
−29

24 −
7i
√
3

24(
x+ 1

2 −
i
√
3

2

)2 +
−29

24 +
7i
√
3

24(
x+ 1

2 +
i
√
3

2

)2 +
3
4 −

41i
√
3

36

x+ 1
2 −

i
√
3

2

+
3
4 +

41i
√
3

36

x+ 1
2 +

i
√
3

2

− 3
2x − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −29
24 −

7i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

−138− 42i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
−138− 42i

√
3

12

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −29
24 +

7i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

−138 + 42i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
−138 + 42i

√
3

12
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 10x2 − 8x− 1
4 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 +

i
√
3

2 2 0 1
2 +

√
−138−42i

√
3

12
1
2 −

√
−138−42i

√
3

12

−1
2 −

i
√
3

2 2 0 1
2 +

√
−138+42i

√
3

12
1
2 −

√
−138+42i

√
3

12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

+ (−) (0)

= 1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

= 2x2 − 2x+ 1
2x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

2x2 −
1
2 −

√
−138−42i

√
3

12(
x+ 1

2 −
i
√
3

2

)2 −
1
2 −

√
−138+42i

√
3

12(
x+ 1

2 +
i
√
3

2

)2
+

(
1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

)2

−
(

10x2 − 8x− 1
4 (x3 + x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1
2−

√
−138−42i

√
3

12
x+1

2− i
√
3

2
+

1
2−

√
−138+42i

√
3

12
x+1

2+ i
√
3

2

)
dx

=
(
x2 + x+ 1

)1/4√
x
√
2 e−

7
√
3 arctan

(
(2x+1)

√
3

3

)
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+4x2−x

x2
(
x2+x+1

) dx

= z1e
ln(x)

2 −
3 ln

(
x2+x+1

)
4 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
6

= z1

√
x e−

7
√
3 arctan

(
(2x+1)

√
3

3

)
6

(x2 + x+ 1)3/4


Which simplifies to

y1 =
x e−

7
√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2√

x2 + x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e

∫
− 2x3+4x2−x

x2
(
x2+x+1

) dx

(y1)2
dx

= y1

∫
eln(x)−

3 ln
(
x2+x+1

)
2 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
3

(y1)2
dx

= y1

∫ eln(x)−
3 ln

(
x2+x+1

)
2 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
3 (x2 + x+ 1) e

14
√
3 arctan

(
(2x+1)

√
3

3

)
3

2x2 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

x e−
7
√

3 arctan
(

(2x+1)
√
3

3

)
3

√
2√

x2 + x+ 1


+c2

x e−
7
√

3 arctan
(

(2x+1)
√
3

3

)
3

√
2√

x2 + x+ 1

∫ eln(x)−
3 ln

(
x2+x+1

)
2 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
3 (x2 + x+ 1) e

14
√
3 arctan

(
(2x+1)

√
3

3

)
3

2x2 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + x+ 1)
(

d2

dx2y(x)
)
− x(−2x2 − 4x+ 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x2(x2+x+1) −

(
2x2+4x−1

)(
d
dx

y(x)
)

x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+4x−1

)(
d
dx

y(x)
)

x(x2+x+1) + y(x)
x2(x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+4x−1
x(x2+x+1) , P3(x) = 1

x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(2x2 + 4x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + (a1r2 + a0r(3 + r))x1+r +
(

∞∑
k=2

(
ak(k + r − 1)2 + ak−1(k + r − 1) (k + 2 + r) + ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 + a0r(3 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (3+r)a0
r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r − ak − 2ak−2 + 2ak−1) (k + r − 1) = 0

• Shift index using k− >k + 2
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r − ak+2 − 2ak + 2ak+1) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak+kak+1+rak+rak+1+4ak+1

k+r+1

• Recursion relation for r = 1
ak+2 = −kak+kak+1+ak+5ak+1

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −kak+kak+1+ak+5ak+1

k+2 , a1 = −4a0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.621 (sec)
Leaf size : 147� �
dsolve(x^2*(x^2+x+1)*diff(diff(y(x),x),x)-x*(-2*x^2-4*x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y

=
e−

7
√

3 arctan
(

(2x+1)
√
3

3

)
6 x

(
c2
(
2x+ i

√
3 + 1

) 3
4+

7i
√
3

12
(
i
√
3− 2x− 1

)− 1
4−

7i
√
3

12 hypergeom
([

1, 12 +
7i
√
3

6

]
,
[
3
2 +

7i
√
3

6

]
, −i

√
3x+x+2

i
√
3x+x+2

)
+
(
i
√
3− 2x− 1

) 1
4+

7i
√
3

12
(
2x+ i

√
3 + 1

) 1
4−

7i
√
3

12 c1

)
(x2 + x+ 1)3/4
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Mathematica DSolve solution

Solving time : 1.535 (sec)
Leaf size : 90� �
DSolve[{x^2*(1+x+x^2)*D[y[x],{x,2}]-x*(1-4*x-2*x^2)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

xe
−

7 arctan
(

2x+1√
3

)
√

3

c2
∫ x

1
e

7 arctan
(

2K[1]+1√
3

)
√
3

K[1]
√

K[1]2+K[1]+1dK[1] + c1


√
x2 + x+ 1
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2.1.127 problem 129

Solved as second order ode using Kovacic algorithm . . . . . . . . . 897
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 901
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 903
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 904

Internal problem ID [8975]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 129
Date solved : Thursday, December 12, 2024 at 09:59:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ + 3x
(
−2x2 + 3x+ 5

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.516 (sec)

Writing the ode as

9x2y′′ +
(
−6x3 + 9x2 + 15x

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = −6x3 + 9x2 + 15x (3)
C = −14x2 + 12x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 12x3 + 33x2 − 18x− 9
36x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 12x3 + 33x2 − 18x− 9
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 12x3 + 33x2 − 18x− 9

36x2

)
z(x) (7)



chapter 2. book solved problems 898

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.238: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

9 − x

3 + 11
12 − 1

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

3 − 1
2 + 1

x
+ 3

4x2 − 3
4x3 − 27

8x4 − 117
32x5 + 405

64x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
3

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= −1
2 + x

3 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4 − 1
3x+ 1

9x
2

This shows that the coefficient of 1 in the above is 1
4 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 12x3 + 33x2 − 18x− 9
36x2

= Q+ R

36x2

=
(
1
9x

2 − 1
3x+ 11

12

)
+
(
−18x− 9

36x2

)
= x2

9 − x

3 + 11
12 + −18x− 9

36x2

We see that the coefficient of the term x in the quotient is 11
12 . Now b can be found.

b =
(
11
12

)
−
(
1
4

)
= 2

3

Hence

[
√
r]∞ = −1

2 + x

3

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 2
3
1
3
− 1
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

2
3
1
3
− 1
)

= −3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 12x3 + 33x2 − 18x− 9
36x2



chapter 2. book solved problems 900

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 −1
2 +

x
3

1
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
−1
2 + x

3

)
= 1

2x − 1
2 + x

3
= 1

2x − 1
2 + x

3
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2 + x

3

)
(0) +

((
− 1
2x2 + 1

3

)
+
(

1
2x − 1

2 + x

3

)2

−
(
4x4 − 12x3 + 33x2 − 18x− 9

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
2+

x
3
)
dx

=
√
x e

x(x−3)
6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x3+9x2+15x

9x2 dx

= z1e
x2
6 −x

2−
5 ln(x)

6

= z1

(
e

x(x−3)
6

x5/6

)

Which simplifies to

y1 =
e

x(x−3)
3

x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6x3+9x2+15x

9x2 dx

(y1)2
dx

= y1

∫
e

x2
3 −x− 5 ln(x)

3

(y1)2
dx

= y1

(∫
ex2

3 −x− 5 ln(x)
3 x2/3e−

2x(x−3)
3 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e

x(x−3)
3

x1/3

)
+ c2

(
e

x(x−3)
3

x1/3

(∫
ex2

3 −x− 5 ln(x)
3 x2/3e−

2x(x−3)
3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
+ 3x(−2x2 + 3x+ 5)

(
d
dx
y(x)

)
+ (−14x2 + 12x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
14x2−12x−1

)
y(x)

9x2 +
(
2x2−3x−5

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
2x2−3x−5

)(
d
dx

y(x)
)

3x −
(
14x2−12x−1

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = −2x2−3x−5

3x , P3(x) = −14x2−12x−1
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
− 3x(2x2 − 3x− 5)

(
d
dx
y(x)

)
+ (−14x2 + 12x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r)2 xr +
(
a1(4 + 3r)2 + 3a0(4 + 3r)

)
x1+r +

(
∞∑
k=2

(
ak(3k + 3r + 1)2 + 3ak−1(3k + 3r + 1)− 2ak−2(3k + 3r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

3

• Each term must be 0
a1(4 + 3r)2 + 3a0(4 + 3r) = 0

• Solve for the dependent coefficient(s)
a1 = − 3a0

4+3r

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r + 1)2 + (3k + 3r + 1) (−2ak−2 + 3ak−1) = 0

• Shift index using k− >k + 2
ak+2(3k + 3r + 7)2 + (3k + 3r + 7) (−2ak + 3ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = 2ak−3ak+1
3k+3r+7

• Recursion relation for r = −1
3

ak+2 = 2ak−3ak+1
3k+6

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+2 = 2ak−3ak+1
3k+6 , a1 = −a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.509 (sec)
Leaf size : 32� �
dsolve(9*x^2*diff(diff(y(x),x),x)+3*x*(-2*x^2+3*x+5)*diff(y(x),x)+(-14*x^2+12*x+1)*y(x) = 0,

y(x),singsol=all)� �

y =
e

x(x−3)
3

((∫ e−
x(x−3)

3
x

dx

)
c2 + c1

)
x1/3
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Mathematica DSolve solution

Solving time : 0.816 (sec)
Leaf size : 52� �
DSolve[{9*x^2*D[y[x],{x,2}]+3*x*(5+3*x-2*x^2)*D[y[x],x]+(1+12*x-14*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e

1
3 (x−3)x

(
c2
∫ x

1
eK[1]−K[1]2

3
K[1] dK[1] + c1

)
3
√
x
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2.1.128 problem 130

Solved as second order ode using Kovacic algorithm . . . . . . . . . 905
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 910
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 912
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 912

Internal problem ID [8976]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 130
Date solved : Thursday, December 12, 2024 at 09:59:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ + x
(
3x2 + 14x+ 5

)
y′ +

(
12x2 + 18x+ 4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.584 (sec)

Writing the ode as(
2x3 + x2) y′′ + (3x3 + 14x2 + 5x

)
y′ +

(
12x2 + 18x+ 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = 3x3 + 14x2 + 5x (3)
C = 12x2 + 18x+ 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x4 − 12x3 − 16x2 − 4x− 1
4 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 9x4 − 12x3 − 16x2 − 4x− 1

t = 4
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
9x4 − 12x3 − 16x2 − 4x− 1

4 (2x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.240: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
16 − 15

64
(
x+ 1

2

)2 − 21
16
(
x+ 1

2

) − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

4 − 7
8x − 19

48x2 − 151
288x3 − 139

192x4 − 11383
10368x5 − 38729

20736x6 − 1212655
373248x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 9

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x4 − 12x3 − 16x2 − 4x− 1
16x4 + 16x3 + 4x2

= Q+ R

16x4 + 16x3 + 4x2

=
(

9
16

)
+
(−21x3 − 73

4 x
2 − 4x− 1

16x4 + 16x3 + 4x2

)
= 9

16 +
−21x3 − 73

4 x
2 − 4x− 1

16x4 + 16x3 + 4x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −21. Dividing this by leading coefficient in t which is 16 gives −21

16 . Now b can be
found.

b =
(
−21
16

)
− (0)

= −21
16
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Hence

[
√
r]∞ = 3

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−21
16
3
4

− 0
)

= −7
8

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−21

16
3
4

− 0
)

= 7
8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x4 − 12x3 − 16x2 − 4x− 1
4 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 2 0 5

8
3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
4 −7

8
7
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

8 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 7

8 −
(
7
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x + 3

8
(
x+ 1

2

) + (−)
(
3
4

)
= 1

2x + 3
8
(
x+ 1

2

) − 3
4

= −3x2 + 2x+ 1
4x2 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 3

8
(
x+ 1

2

) − 3
4

)
(0) +

(− 1
2x2 − 3

8
(
x+ 1

2

)2
)

+
(

1
2x + 3

8
(
x+ 1

2

) − 3
4

)2

−
(
9x4 − 12x3 − 16x2 − 4x− 1

4 (2x2 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
3

8
(
x+1

2
)− 3

4

)
dx

=
√
x (1 + 2x)3/8 e− 3x

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+14x2+5x

2x3+x2 dx

= z1e
− 3x

4 − 5 ln(x)
2 − 5 ln(1+2x)

8

= z1

(
e− 3x

4

x5/2 (1 + 2x)5/8

)

Which simplifies to

y1 =
e− 3x

2

x2 (1 + 2x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+14x2+5x

2x3+x2 dx

(y1)2
dx

= y1

∫
e−

3x
2 −5 ln(x)− 5 ln(1+2x)

4

(y1)2
dx

= y1

(∫
e− 3x

2 −5 ln(x)− 5 ln(1+2x)
4 x4√1 + 2x e3xdx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− 3x

2

x2 (1 + 2x)1/4

)
+ c2

(
e− 3x

2

x2 (1 + 2x)1/4

(∫
e− 3x

2 −5 ln(x)− 5 ln(1+2x)
4 x4√1 + 2x e3xdx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 14x+ 5)

(
d
dx
y(x)

)
+ (12x2 + 18x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
6x2+9x+2

)
y(x)

x2(2x+1) −
(
3x2+14x+5

)(
d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+14x+5

)(
d
dx

y(x)
)

x(2x+1) + 2
(
6x2+9x+2

)
y(x)

x2(2x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3x2+14x+5

x(2x+1) , P3(x) = 2
(
6x2+9x+2

)
x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 14x+ 5)

(
d
dx
y(x)

)
+ (12x2 + 18x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions



chapter 2. book solved problems 911

a0(2 + r)2 xr +
(
a1(3 + r)2 + 2a0(3 + r)2

)
x1+r +

(
∞∑
k=2

(
ak(k + r + 2)2 + 2ak−1(k + r + 2)2 + 3ak−2(k + r + 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term must be 0
a1(3 + r)2 + 2a0(3 + r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −2a0

• Each term in the series must be 0, giving the recursion relation
((2k + 2r + 4) ak−1 + ak(k + r + 2) + 3ak−2) (k + r + 2) = 0

• Shift index using k− >k + 2
((2k + 8 + 2r) ak+1 + ak+2(k + r + 4) + 3ak) (k + r + 4) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2rak+1+3ak+8ak+1

k+r+4

• Recursion relation for r = −2
ak+2 = −2kak+1+3ak+4ak+1

k+2

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −2kak+1+3ak+4ak+1

k+2 , a1 = −2a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.513 (sec)
Leaf size : 53� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(3*x^2+14*x+5)*diff(y(x),x)+(12*x^2+18*x+4)*y(x) = 0,

y(x),singsol=all)� �
y

=
e− 3x

2

(
(2x+ 1)1/4HeunC

(
−3

4 ,
1
4 , 0,

21
32 ,−

5
32 , 2x+ 1

)
c2 +HeunC

(
−3

4 ,−
1
4 , 0,

21
32 ,−

5
32 , 2x+ 1

)
c1
)

(2x+ 1)1/4 x2

Mathematica DSolve solution

Solving time : 12.879 (sec)
Leaf size : 61� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]+x*(5+14*x+3*x^2)*D[y[x],x]+(4+18*x+12*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−3x/2

(
c2
∫ x

1
e
3K[1]

2
K[1](2K[1]+1)3/4dK[1] + c1

)
x2 4
√
2x+ 1
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2.1.129 problem 131

Solved as second order ode using Kovacic algorithm . . . . . . . . . 913
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 917
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 919
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 920

Internal problem ID [8977]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 131
Date solved : Thursday, December 12, 2024 at 09:59:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

16x2y′′ + 4x
(
2x2 + x+ 6

)
y′ +

(
18x2 + 5x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.502 (sec)

Writing the ode as

16x2y′′ +
(
8x3 + 4x2 + 24x

)
y′ +

(
18x2 + 5x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x2

B = 8x3 + 4x2 + 24x (3)
C = 18x2 + 5x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 + 4x3 − 31x2 − 8x− 16
64x2 (6)

Comparing the above to (5) shows that

s = 4x4 + 4x3 − 31x2 − 8x− 16
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 + 4x3 − 31x2 − 8x− 16

64x2

)
z(x) (7)



chapter 2. book solved problems 914

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.242: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

16 + x

16 − 31
64 − 1

8x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 + 1
8 − 1

x
+ 1

4x2 − 21
8x3 + 37

16x4 − 377
32x5 + 1137

64x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 1
8 + x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

64 + 1
16x+ 1

16x
2

This shows that the coefficient of 1 in the above is 1
64 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 + 4x3 − 31x2 − 8x− 16
64x2

= Q+ R

64x2

=
(

1
16x

2 + 1
16x− 31

64

)
+
(
−8x− 16

64x2

)
= x2

16 + x

16 − 31
64 + −8x− 16

64x2

We see that the coefficient of the term x in the quotient is −31
64 . Now b can be found.

b =
(
−31
64

)
−
(

1
64

)
= −1

2

Hence

[
√
r]∞ = 1

8 + x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
4

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
4

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 + 4x3 − 31x2 − 8x− 16
64x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 1
8 +

x
4 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
8 + x

4

)
= 1

2x − 1
8 − x

4
= 1

2x − 1
8 − x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

8 − x

4

)
(0) +

((
− 1
2x2 − 1

4

)
+
(

1
2x − 1

8 − x

4

)2

−
(
4x4 + 4x3 − 31x2 − 8x− 16

64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
8−

x
4
)
dx

=
√
x e−

x(x+1)
8



chapter 2. book solved problems 917

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x3+4x2+24x

16x2 dx

= z1e
−x2

8 −x
8−

3 ln(x)
4

= z1

(
e−

x(x+1)
8

x3/4

)

Which simplifies to

y1 =
e−

x(x+1)
4

x1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x3+4x2+24x

16x2 dx

(y1)2
dx

= y1

∫
e−

x2
4 −x

4−
3 ln(x)

2

(y1)2
dx

= y1

(∫
e−x2

4 −x
4−

3 ln(x)
2

√
x e

x(x+1)
2 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−

x(x+1)
4

x1/4

)
+ c2

(
e−

x(x+1)
4

x1/4

(∫
e−x2

4 −x
4−

3 ln(x)
2

√
x e

x(x+1)
2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

16x2
(

d2

dx2y(x)
)
+ 4x(2x2 + x+ 6)

(
d
dx
y(x)

)
+ (18x2 + 5x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
18x2+5x+1

)
y(x)

16x2 −
(
2x2+x+6

)(
d
dx

y(x)
)

4x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+x+6

)(
d
dx

y(x)
)

4x +
(
18x2+5x+1

)
y(x)

16x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = 2x2+x+6

4x , P3(x) = 18x2+5x+1
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ 4x(2x2 + x+ 6)

(
d
dx
y(x)

)
+ (18x2 + 5x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 4r)2 xr +
(
a1(5 + 4r)2 + a0(5 + 4r)

)
x1+r +

(
∞∑
k=2

(
ak(4k + 4r + 1)2 + ak−1(4k + 4r + 1) + 2ak−2(4k + 4r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

4

• Each term must be 0
a1(5 + 4r)2 + a0(5 + 4r) = 0

• Solve for the dependent coefficient(s)
a1 = − a0

5+4r

• Each term in the series must be 0, giving the recursion relation
ak(4k + 4r + 1)2 + (4k + 4r + 1) (2ak−2 + ak−1) = 0

• Shift index using k− >k + 2
ak+2(4k + 4r + 9)2 + (4k + 4r + 9) (2ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −2ak+ak+1
4k+4r+9

• Recursion relation for r = −1
4

ak+2 = −2ak+ak+1
4k+8

• Solution for r = −1
4[

y(x) =
∞∑
k=0

akx
k− 1

4 , ak+2 = −2ak+ak+1
4k+8 , a1 = −a0

4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.993 (sec)
Leaf size : 32� �
dsolve(16*x^2*diff(diff(y(x),x),x)+4*x*(2*x^2+x+6)*diff(y(x),x)+(18*x^2+5*x+1)*y(x) = 0,

y(x),singsol=all)� �

y =
e−

x(x+1)
4

((∫ e
x(x+1)

4
x

dx

)
c2 + c1

)
x1/4
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Mathematica DSolve solution

Solving time : 0.645 (sec)
Leaf size : 51� �
DSolve[{16*x^2*D[y[x],{x,2}]+4*x*(6+x+2*x^2)*D[y[x],x]+(1+5*x+18*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

1
4x(x+1)

(
c2
∫ x

1
e
1
4K[1](K[1]+1)

K[1] dK[1] + c1
)

4
√
x
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2.1.130 problem 132

Solved as second order ode using Kovacic algorithm . . . . . . . . . 921
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 926
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 928
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 928

Internal problem ID [8978]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 132
Date solved : Thursday, December 12, 2024 at 09:59:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(1 + x) y′′ + 3x
(
−x2 + 11x+ 5

)
y′ +

(
−7x2 + 16x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.377 (sec)

Writing the ode as(
9x3 + 9x2) y′′ + (−3x3 + 33x2 + 15x

)
y′ +

(
−7x2 + 16x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x3 + 9x2

B = −3x3 + 33x2 + 15x (3)
C = −7x2 + 16x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 + 6x3 + 3x2 − 18x− 9
36 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = x4 + 6x3 + 3x2 − 18x− 9

t = 36
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 + 6x3 + 3x2 − 18x− 9

36 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.244: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 36(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 1

9 + 9x − 1
4x2 + 7

36 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 1
3x − 5

6x2 + 5
6x3 − 7

3x4 + 41
6x5 − 149

6x6 + 277
3x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 + 6x3 + 3x2 − 18x− 9
36x4 + 72x3 + 36x2

= Q+ R

36x4 + 72x3 + 36x2

=
(

1
36

)
+
(
4x3 + 2x2 − 18x− 9
36x4 + 72x3 + 36x2

)
= 1

36 + 4x3 + 2x2 − 18x− 9
36x4 + 72x3 + 36x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is 4. Dividing this by leading coefficient in t which is 36 gives 1

9 . Now b can be found.

b =
(
1
9

)
− (0)

= 1
9
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Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
9
1
6
− 0
)

= 1
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
9
1
6
− 0
)

= −1
3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 + 6x3 + 3x2 − 18x− 9
36 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
6 −1

6

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

1
3 −1

3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

3 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
6 (1 + x) +

1
2x +

(
1
6

)
= − 1

6 (1 + x) +
1
2x + 1

6

= − 1
6 + 6x + 1

2x + 1
6

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6 (1 + x) +

1
2x + 1

6

)
(0) +

((
1

6 (1 + x)2
− 1

2x2

)
+
(
− 1
6 (1 + x) +

1
2x + 1

6

)2

−
(
x4 + 6x3 + 3x2 − 18x− 9

36 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6(1+x)+

1
2x+

1
6

)
dx

=
√
x ex

6

(1 + x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3+33x2+15x

9x3+9x2 dx

= z1e
x
6−

7 ln(1+x)
6 − 5 ln(x)

6

= z1

(
ex

6

(1 + x)7/6 x5/6

)

Which simplifies to

y1 =
ex

3

(1 + x)4/3 x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3+33x2+15x

9x3+9x2 dx

(y1)2
dx

= y1

∫
e

x
3−

7 ln(1+x)
3 − 5 ln(x)

3

(y1)2
dx

= y1

(∫
ex

3−
7 ln(1+x)

3 − 5 ln(x)
3 (1 + x)8/3 x2/3e− 2x

3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex

3

(1 + x)4/3 x1/3

)
+ c2

(
ex

3

(1 + x)4/3 x1/3

(∫
ex

3−
7 ln(1+x)

3 − 5 ln(x)
3 (1 + x)8/3 x2/3e− 2x

3 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x(−x2 + 11x+ 5)

(
d
dx
y(x)

)
+ (−7x2 + 16x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
7x2−16x−1

)
y(x)

9x2(x+1) +
(
x2−11x−5

)(
d
dx

y(x)
)

3x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−11x−5

)(
d
dx

y(x)
)

3x(x+1) −
(
7x2−16x−1

)
y(x)

9x2(x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = −x2−11x−5

3x(x+1) , P3(x) = −7x2−16x−1
9x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

9x2(x+ 1)
(

d2

dx2y(x)
)
− 3(x2 − 11x− 5)x

(
d
dx
y(x)

)
+ (−7x2 + 16x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(9u3 − 18u2 + 9u)
(

d2

du2y(u)
)
+ (−3u3 + 42u2 − 60u+ 21)

(
d
du
y(u)

)
+ (−7u2 + 30u− 22) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m



chapter 2. book solved problems 927

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(4 + 3r)u−1+r + (3a1(1 + r) (7 + 3r)− 2a0(9r2 + 21r + 11))ur + (3a2(2 + r) (10 + 3r)− 2a1(9r2 + 39r + 41) + 3a0(2 + r) (5 + 3r))u1+r +
(

∞∑
k=2

(3ak+1(k + 1 + r) (3k + 3r + 7)− 2ak(9k2 + 18kr + 9r2 + 21k + 21r + 11) + 3ak−1(k + 1 + r) (3k + 2 + 3r)− ak−2(3k + 1 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• The coefficients of each power of u must be 0

[3a1(1 + r) (7 + 3r)− 2a0(9r2 + 21r + 11) = 0, 3a2(2 + r) (10 + 3r)− 2a1(9r2 + 39r + 41) + 3a0(2 + r) (5 + 3r) = 0]
• Solve for the dependent coefficient(s){

a1 = 2a0
(
9r2+21r+11

)
3(3r2+10r+7) , a2 = a0

(
243r4+1593r3+3699r2+3567r+1174

)
9(9r4+78r3+241r2+312r+140)

}
• Each term in the series must be 0, giving the recursion relation

9(−2ak + ak−1 + ak+1) k2 + 3(6(−2ak + ak−1 + ak+1) r − 14ak − ak−2 + 5ak−1 + 10ak+1) k + 9(−2ak + ak−1 + ak+1) r2 + 3(−14ak − ak−2 + 5ak−1 + 10ak+1) r − 22ak − ak−2 + 6ak−1 + 21ak+1 = 0
• Shift index using k− >k + 2

9(−2ak+2 + ak+1 + ak+3) (k + 2)2 + 3(6(−2ak+2 + ak+1 + ak+3) r − 14ak+2 − ak + 5ak+1 + 10ak+3) (k + 2) + 9(−2ak+2 + ak+1 + ak+3) r2 + 3(−14ak+2 − ak + 5ak+1 + 10ak+3) r − 22ak+2 − ak + 6ak+1 + 21ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −9k2ak+1−18k2ak+2+18krak+1−36krak+2+9r2ak+1−18r2ak+2−3kak+51kak+1−114kak+2−3rak+51rak+1−114rak+2−7ak+72ak+1−178ak+2
3(3k2+6kr+3r2+22k+22r+39)

• Recursion relation for r = 0
ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39) , a1 = 22a0
21 , a2 = 587a0

630

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2
3(3k2+22k+39) , a1 = 22a0

21 , a2 = 587a0
630

]
• Recursion relation for r = −4

3

ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2
3(3k2+14k+15)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2
3(3k2+14k+15) , a1 = 2a0

3 , a2 = 7a0
18

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
4
3 , ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2

3(3k2+14k+15) , a1 = 2a0
3 , a2 = 7a0

18

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
4
3

)
, ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39) , a1 = 22a0
21 , a2 = 587a0

630 , bk+3 = −9k2bk+1−18k2bk+2−3kbk+27kbk+1−66kbk+2−3bk+20bk+1−58bk+2
3(3k2+14k+15) , b1 = 2b0

3 , b2 = 7b0
18

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.539 (sec)
Leaf size : 36� �
dsolve(9*x^2*(x+1)*diff(diff(y(x),x),x)+3*x*(-x^2+11*x+5)*diff(y(x),x)+(-7*x^2+16*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 HeunC
(
− 1

3 ,−
4
3 ,0,−

1
9 ,

11
18 ,x+1

)
(x+1)4/3

+ c2HeunC
(
−1

3 ,
4
3 , 0,−

1
9 ,

11
18 , x+ 1

)
x1/3

Mathematica DSolve solution

Solving time : 4.456 (sec)
Leaf size : 50� �
DSolve[{9*x^2*(1+x)*D[y[x],{x,2}]+3*x*(5+11*x-x^2)*D[y[x],x]+(1+16*x-7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

ex/3
(
c1 − 3

√
3ec2Γ

(1
3 ,

x+1
3

))
3
√
x(x+ 1)4/3
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2.1.131 problem 133

Solved as second order ode using Kovacic algorithm . . . . . . . . . 929
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 933
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 935
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 935

Internal problem ID [8979]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 133
Date solved : Thursday, December 12, 2024 at 09:59:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

36x2(1− 2x) y′′ + 24x(1− 9x) y′ + (1− 70x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.355 (sec)

Writing the ode as(
−72x3 + 36x2) y′′ + (−216x2 + 24x

)
y′ + (1− 70x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −72x3 + 36x2

B = −216x2 + 24x (3)
C = 1− 70x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −32x2 + 48x− 9
36 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = −32x2 + 48x− 9

t = 36
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−32x2 + 48x− 9
36 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.246: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 36(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 7
36
(
x− 1

2

)2 − 1
3
(
x− 1

2

) − 1
4x2 + 1

3x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −32x2 + 48x− 9

36 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −32x2 + 48x− 9
36 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 7

6 −1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 1

6
(
x− 1

2

) + (−) (0)

= 1
2x − 1

6
(
x− 1

2

)
= −3 + 4x

12x2 − 6x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

6
(
x− 1

2

)) (0) +

(− 1
2x2 + 1

6
(
x− 1

2

)2
)

+
(

1
2x − 1

6
(
x− 1

2

))2

−
(
−32x2 + 48x− 9
36 (2x2 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

6
(
x− 1

2
)
)
dx

=
√
x

(−1 + 2x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−216x2+24x
−72x3+36x2 dx

= z1e
− ln(x)

3 − 7 ln(−1+2x)
6

= z1

(
1

x1/3 (−1 + 2x)7/6

)

Which simplifies to

y1 =
x1/6

(−1 + 2x)4/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−216x2+24x

−72x3+36x2 dx

(y1)2
dx

= y1

∫
e−

2 ln(x)
3 − 7 ln(−1+2x)

3

(y1)2
dx

= y1

3(−1 + 2x)1/3

−ln
(
(−1+2x)1/3+1

)
+
ln
(
(−1 + 2x)2/3 − (−1 + 2x)1/3 + 1

)
2 −

√
3 arctan


(
−1 + 2(−1 + 2x)1/3

)√
3

3
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/6

(−1 + 2x)4/3

)

+c2

 x1/6

(−1 + 2x)4/3

3(−1+2x)1/3−ln
(
(−1+2x)1/3+1

)
+
ln
(
(−1 + 2x)2/3 − (−1 + 2x)1/3 + 1

)
2 −

√
3 arctan


(
−1 + 2(−1 + 2x)1/3

)√
3

3



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

36x2(−2x+ 1)
(

d2

dx2y(x)
)
+ 24x(1− 9x)

(
d
dx
y(x)

)
+ (1− 70x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−1+70x)y(x)
36x2(2x−1) −

2(−1+9x)
(

d
dx

y(x)
)

3x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2(−1+9x)

(
d
dx

y(x)
)

3x(2x−1) + (−1+70x)y(x)
36x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(−1+9x)
3x(2x−1) , P3(x) = −1+70x

36x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
36

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

36x2(2x− 1)
(

d2

dx2y(x)
)
+ 24x(−1 + 9x)

(
d
dx
y(x)

)
+ (−1 + 70x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 6r)2 xr +
(

∞∑
k=1

(
−ak(6k + 6r − 1)2 + 2ak−1(6k + 1 + 6r) (6k + 6r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 6r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

6

• Each term in the series must be 0, giving the recursion relation
−36

((
−2k − 2r − 1

3

)
ak−1 + ak

(
k + r − 1

6

)) (
k + r − 1

6

)
= 0

• Shift index using k− >k + 1
−36

((
−2k − 7

3 − 2r
)
ak + ak+1

(
k + 5

6 + r
)) (

k + 5
6 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2(6k+6r+7)ak

6k+6r+5

• Recursion relation for r = 1
6

ak+1 = 2(6k+8)ak
6k+6

• Solution for r = 1
6[

y(x) =
∞∑
k=0

akx
k+ 1

6 , ak+1 = 2(6k+8)ak
6k+6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
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-> hypergeometric
-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.212 (sec)
Leaf size : 93� �
dsolve(36*x^2*(1-2*x)*diff(diff(y(x),x),x)+24*x*(1-9*x)*diff(y(x),x)+(1-70*x)*y(x) = 0,

y(x),singsol=all)� �
y

=
x1/6

(
2
√
3 arctan

( √
3 (2x−1)1/3

−2+(2x−1)1/3

)
c2 − 2 ln

(
1 + (2x− 1)1/3

)
c2 + ln

(
1− (2x− 1)1/3 + (2x− 1)2/3

)
c2 + 6c2(2x− 1)1/3 + 3c1

)
3 (2x− 1)4/3

Mathematica DSolve solution

Solving time : 0.263 (sec)
Leaf size : 111� �
DSolve[{36*x^2*(1-2*x)*D[y[x],{x,2}]+24*x*(1-9*x)*D[y[x],x]+(1-70*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→

6
√
x

(
−2

√
3c2 arctan

(
2

3
√
1− 2x+1√

3

)
+ 6c2 3

√
1− 2x+ 2c2 log

( 3
√
1− 2x− 1

)
− c2 log

(
(1− 2x)2/3 + 3

√
1− 2x+ 1

)
+ 2c1

)
2(1− 2x)4/3
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2.1.132 problem 134

Solved as second order ode using Kovacic algorithm . . . . . . . . . 936
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 940
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 942
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 942

Internal problem ID [8980]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 134
Date solved : Thursday, December 12, 2024 at 09:59:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − x(3− x) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
x2 − 3x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = x2 − 3x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 10x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 10x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 10x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.248: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 2

(1 + x)2
− 2

x
+ 2

1 + x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 10x− 1

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 10x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1
0 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
1 + x

+ 1
2x + (−) (0)

= − 1
1 + x

+ 1
2x

= − x− 1
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

+ 1
2x

)
(1) +

((
1

(1 + x)2
− 1

2x2

)
+
(
− 1
1 + x

+ 1
2x

)2

−
(
−x2 − 10x− 1
4 (x2 + x)2

))
= 0

1 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ (

− 1
1+x

+ 1
2x

)
dx

= (x− 1) e
ln(x)

2 −ln(1+x)

= (x− 1)
√
x

1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−3x
x2(1+x) dx

= z1e
3 ln(x)

2 −2 ln(1+x)

= z1

(
x3/2

(1 + x)2
)

Which simplifies to

y1 =
x2(x− 1)
(1 + x)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2−3x

x2(1+x) dx

(y1)2
dx

= y1

∫
e3 ln(x)−4 ln(1+x)

(y1)2
dx

= y1

(
ln (x)− 4

x− 1

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2(x− 1)
(1 + x)3

)
+ c2

(
x2(x− 1)
(1 + x)3

(
ln (x)− 4

x− 1

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− x(−x+ 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
(x+1)x2 −

(x−3)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x−3)

(
d
dx

y(x)
)

x(x+1) + 4y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−3
x(x+1) , P3(x) = 4

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(x− 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (u2 − 5u+ 4)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(3 + r)u−1+r + (a1(1 + r) (4 + r)− a0(2r2 + 3r − 4))ur +
(

∞∑
k=1

(
ak+1(k + 1 + r) (k + 4 + r)− ak(2k2 + 4kr + 2r2 + 3k + 3r − 4) + ak−1(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r)− a0(2r2 + 3r − 4) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 4 + r)− ak(2k2 + 4kr + 2r2 + 3k + 3r − 4) + ak−1(k + r − 1)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 5 + r)− ak+1

(
2(k + 1)2 + 4(k + 1) r + 2r2 + 3k − 1 + 3r

)
+ ak(k + r)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−7kak+1−7rak+1−ak+1

(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = −k2ak−2k2ak+1−6kak+5kak+1+9ak+2ak+1

(k−1)(k+2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 1

ak+2 = −k2ak−2k2ak+1−6kak+5kak+1+9ak+2ak+1
(k−1)(k+2)

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1

(k+2)(k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1

(k+2)(k+5) , 4a1 + 4a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1
(k+2)(k+5) , 4a1 + 4a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 30� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-x*(3-x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = (c2(x− 1) ln (x) + c1x− c1 − 4c2)x2

(x+ 1)3

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 33� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-x*(3-x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c1(x− 1) + c2(x− 1) log(x)− 4c2)

(x+ 1)3
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2.1.133 problem 135

Solved as second order ode using Kovacic algorithm . . . . . . . . . 943
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 947
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 948
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 949

Internal problem ID [8981]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 135
Date solved : Thursday, December 12, 2024 at 09:59:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ − x(5− 4x) y′ + (9− 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.256 (sec)

Writing the ode as (
−2x3 + x2) y′′ + (4x2 − 5x

)
y′ + (9− 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = 4x2 − 5x (3)
C = 9− 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8x− 1
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 8x− 1

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(

8x− 1
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.250: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
x
− 1

4x2 + 3
4
(
x− 1

2

)2 − 1
x− 1

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8x− 1
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x − 1

2
(
x− 1

2

) + (0)

= 1
2x − 1

2
(
x− 1

2

)
= − 1

2x (−1 + 2x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2
(
x− 1

2

)) (0) +

(− 1
2x2 + 1

2
(
x− 1

2

)2
)

+
(

1
2x − 1

2
(
x− 1

2

))2

−
(

8x− 1
4 (2x2 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

2
(
x− 1

2
)
)
dx

=
√
x√

−1 + 2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x2−5x

−2x3+x2 dx

= z1e
− 3 ln(−1+2x)

2 + 5 ln(x)
2

= z1

(
x5/2

(−1 + 2x)3/2

)

Which simplifies to

y1 =
x3

(−1 + 2x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x2−5x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e−3 ln(−1+2x)+5 ln(x)

(y1)2
dx

= y1(2x− ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3

(−1 + 2x)2
)
+ c2

(
x3

(−1 + 2x)2
(2x− ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
− x(5− 4x)

(
d
dx
y(x)

)
+ (9− 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−9+4x)y(x)
x2(2x−1) +

(−5+4x)
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−5+4x)

(
d
dx

y(x)
)

x(2x−1) + (−9+4x)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − −5+4x
x(2x−1) , P3(x) = −9+4x

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
− x(−5 + 4x)

(
d
dx
y(x)

)
+ (−9 + 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 3)2 + 2ak−1(k + r − 2) (k + r − 3)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 3)2 + 2ak−1(k + r − 2) (k + r − 3) = 0

• Shift index using k− >k + 1
−ak+1(k + r − 2)2 + 2ak(k + r − 1) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)

k+r−2

• Recursion relation for r = 3
ak+1 = 2ak(k+2)

k+1

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = 2ak(k+2)

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 26� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)-x*(5-4*x)*diff(y(x),x)+(9-4*x)*y(x) = 0,

y(x),singsol=all)� �
y = x3(2c2x− c2 ln (x) + c1)

(2x− 1)2
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Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 29� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]-x*(5-4*x)*D[y[x],x]+(9-4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x3(−2c2x+ c2 log(x) + c1)

(1− 2x)2
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2.1.134 problem 136

Solved as second order ode using Kovacic algorithm . . . . . . . . . 950
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 954
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 956
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 956

Internal problem ID [8982]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 136
Date solved : Thursday, December 12, 2024 at 09:59:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ + x2y′ + (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.244 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + x2y′ + (1− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = x2 (3)
C = 1− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 8x− 16
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 5x2 + 8x− 16

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
5x2 + 8x− 16
16 (x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.252: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
8 (2 + x) −

3
16 (2 + x)2

− 1
4x2 + 3

8x

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 8x− 16

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 8x− 16
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
4

1
4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

4 −
(
5
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (2 + x) +

1
2x + (0)

= 3
4 (2 + x) +

1
2x

= 5x+ 4
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (2 + x) +

1
2x

)
(0) +

((
− 3
4 (2 + x)2

− 1
2x2

)
+
(

3
4 (2 + x) +

1
2x

)2

−
(
5x2 + 8x− 16
16 (x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4(2+x)+
1
2x

)
dx

=
√
x (2 + x)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2

2x3+4x2 dx

= z1e
− ln(2+x)

4

= z1

(
1

(2 + x)1/4

)

Which simplifies to
y1 =

√
2 + x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2

2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

ln(2+x)
2

(y1)2
dx

= y1

 1√
2 + x

−

√
2 arctanh

(√
2+x

√
2

2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(√

2 + x
√
x
)
+ c2

√
2 + x

√
x

 1√
2 + x

−

√
2 arctanh

(√
2+x

√
2

2

)
2


Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x−1)y(x)
2(x+2)x2 −

d
dx

y(x)
2(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
2(x+2) −

(x−1)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
2(x+2) , P3(x) = − x−1

2(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (1− x) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (u2 − 4u+ 4)

(
d
du
y(u)

)
+ (3− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(−1 + 2r)u−1+r + (4a1(1 + r) (1 + 2r)− a0(8r2 − 4r − 3))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (2k + 2r + 1)− ak(8k2 + 16kr + 8r2 − 4k − 4r − 3) + ak−1(2k + 2r − 1) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
4a1(1 + r) (1 + 2r)− a0(8r2 − 4r − 3) = 0

• Each term in the series must be 0, giving the recursion relation
2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r + 4ak − 5ak−1 + 12ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (4ak − 5ak−1 + 12ak+1) r + 3ak + 2ak−1 + 4ak+1 = 0

• Shift index using k− >k + 1
2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r + 4ak+1 − 5ak + 12ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (4ak+1 − 5ak + 12ak+2) r + 3ak+1 + 2ak + 4ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1−kak−12kak+1−rak−12rak+1−ak−ak+1

4(2k2+4kr+2r2+7k+7r+6)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6) , 4a1 + 3a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1
4(2k2+7k+6) , 4a1 + 3a0 = 0

]
• Recursion relation for r = 1

2

ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1
4(2k2+9k+10)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1
4(2k2+9k+10) , 12a1 + 3a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+
1
2 , ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1

4(2k2+9k+10) , 12a1 + 3a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k+
1
2

)
, ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6) , 4a1 + 3a0 = 0, bk+2 = −2k2bk−8k2bk+1+kbk−20kbk+1−bk−9bk+1
4(2k2+9k+10) , 12b1 + 3b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.037 (sec)
Leaf size : 50� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+diff(y(x),x)*x^2+(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x (x+ 2) +

c2
(
(x+ 2) arctanh

(√
2
√
x+2

2

)
−
√
2
√
x+ 2

)√
x

√
x+ 2

Mathematica DSolve solution

Solving time : 0.206 (sec)
Leaf size : 65� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}]+x^2*D[y[x],x]+(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
2
(
c1
√
x+ 2 + c2

)
−

√
2c2

√
x+ 2arctanh

(√
x+2√
2

))
2 4
√
2
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2.1.135 problem 137

Solved as second order ode using Kovacic algorithm . . . . . . . . . 957
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 961
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 963
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 963

Internal problem ID [8983]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 137
Date solved : Thursday, December 12, 2024 at 09:59:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(1 + x) y′′ − x(6− x) y′ + (8− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.249 (sec)

Writing the ode as (
2x3 + 2x2) y′′ + (x2 − 6x

)
y′ + (8− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 2x2

B = x2 − 6x (3)
C = 8− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 − 20x− 4
16 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 5x2 − 20x− 4

t = 16
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
5x2 − 20x− 4
16 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.254: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 3

4x + 3
4 (1 + x) +

21
16 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 − 20x− 4

16 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 − 20x− 4
16 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
4 −3

4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= −1

4 −
(
−1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
4 (1 + x) +

1
2x + (−) (0)

= − 3
4 (1 + x) +

1
2x

= − x− 2
4x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
4 (1 + x) +

1
2x

)
(0) +

((
3

4 (1 + x)2
− 1

2x2

)
+
(
− 3
4 (1 + x) +

1
2x

)2

−
(
5x2 − 20x− 4
16 (x2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
4(1+x)+

1
2x

)
dx

=
√
x

(1 + x)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−6x

2x3+2x2 dx

= z1e
3 ln(x)

2 − 7 ln(1+x)
4

= z1

(
x3/2

(1 + x)7/4

)

Which simplifies to

y1 =
x2

(1 + x)5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2−6x

2x3+2x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)−

7 ln(1+x)
2

(y1)2
dx

= y1

(
2(1 + x)3/2

3 + 2
√
1 + x+ ln

(√
1 + x− 1

)
− ln

(
1 +

√
1 + x

))

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x2

(1 + x)5/2

)

+ c2

(
x2

(1 + x)5/2

(
2(1 + x)3/2

3 + 2
√
1 + x+ ln

(√
1 + x− 1

)
− ln

(
1 +

√
1 + x

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x+ 1)
(

d2

dx2y(x)
)
− x(−x+ 6)

(
d
dx
y(x)

)
+ (8− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−8+x)y(x)
2x2(x+1) −

(−6+x)
(

d
dx

y(x)
)

2x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−6+x)

(
d
dx

y(x)
)

2x(x+1) − (−8+x)y(x)
2x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −6+x
2x(x+1) , P3(x) = − −8+x

2x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

2x2(x+ 1)
(

d2

dx2y(x)
)
+ x(−6 + x)

(
d
dx
y(x)

)
+ (8− x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u3 − 4u2 + 2u)
(

d2

du2y(u)
)
+ (u2 − 8u+ 7)

(
d
du
y(u)

)
+ (9− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(5 + 2r)u−1+r + (a1(1 + r) (7 + 2r)− a0(4r2 + 4r − 9))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (2k + 7 + 2r)− ak(4k2 + 8kr + 4r2 + 4k + 4r − 9) + ak−1(2k − 1 + 2r) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−5

2

}
• Each term must be 0

a1(1 + r) (7 + 2r)− a0(4r2 + 4r − 9) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + 2ak−1 + 2ak+1) k2 + ((−8ak + 4ak−1 + 4ak+1) r − 4ak − 5ak−1 + 9ak+1) k + (−4ak + 2ak−1 + 2ak+1) r2 + (−4ak − 5ak−1 + 9ak+1) r + 9ak + 2ak−1 + 7ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + 2ak + 2ak+2) (k + 1)2 + ((−8ak+1 + 4ak + 4ak+2) r − 4ak+1 − 5ak + 9ak+2) (k + 1) + (−4ak+1 + 2ak + 2ak+2) r2 + (−4ak+1 − 5ak + 9ak+2) r + 9ak+1 + 2ak + 7ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−4k2ak+1+4krak−8krak+1+2r2ak−4r2ak+1−kak−12kak+1−rak−12rak+1−ak+ak+1
2k2+4kr+2r2+13k+13r+18

• Recursion relation for r = 0
ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18 , 7a1 + 9a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1
2k2+13k+18 , 7a1 + 9a0 = 0

]
• Recursion relation for r = −5

2

ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1
2k2+3k−2

• Solution for r = −5
2[

y(u) =
∞∑
k=0

aku
k− 5

2 , ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1
2k2+3k−2 ,−3a1 − 6a0 = 0

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
5
2 , ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1

2k2+3k−2 ,−3a1 − 6a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
5
2

)
, ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18 , 7a1 + 9a0 = 0, bk+2 = −2k2bk−4k2bk+1−11kbk+8kbk+1+14bk+6bk+1
2k2+3k−2 ,−3b1 − 6b0 = 0

]



chapter 2. book solved problems 963

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 50� �
dsolve(2*x^2*(x+1)*diff(diff(y(x),x),x)-x*(-x+6)*diff(y(x),x)+(8-x)*y(x) = 0,

y(x),singsol=all)� �
y =

2
(

3 ln
(√

x+1−1
)
c2

2 − 3 ln
(√

x+1+1
)
c2

2 + (x+ 4) c2
√
x+ 1 + 3c1

2

)
x2

3 (x+ 1)5/2

Mathematica DSolve solution

Solving time : 0.141 (sec)
Leaf size : 50� �
DSolve[{2*x^2*(1+x)*D[y[x],{x,2}]-x*(6-x)*D[y[x],x]+(8-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

x2(−6c2arctanh
(√

x+ 1
)
+ 2c2

√
x+ 1(x+ 4) + 3c1

)
3(x+ 1)5/2
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2.1.136 problem 138

Solved as second order ode using Kovacic algorithm . . . . . . . . . 964
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 968
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 970
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 970

Internal problem ID [8984]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 138
Date solved : Thursday, December 12, 2024 at 09:59:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ + x(5 + 9x) y′ + (4 + 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as (
2x3 + x2) y′′ + (9x2 + 5x

)
y′ + (4 + 3x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = 9x2 + 5x (3)
C = 4 + 3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x2 + 6x− 1
4 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 21x2 + 6x− 1

t = 4
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x2 + 6x− 1
4 (2x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.256: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 5

2x + 5
16
(
x+ 1

2

)2 − 5
2
(
x+ 1

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x2 + 6x− 1

4 (2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x2 + 6x− 1
4 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

4 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x + 5

4
(
x+ 1

2

) + (0)

= 1
2x + 5

4
(
x+ 1

2

)
= 1 + 7x

4x2 + 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 5

4
(
x+ 1

2

)) (0) +

(− 1
2x2 − 5

4
(
x+ 1

2

)2
)

+
(

1
2x + 5

4
(
x+ 1

2

))2

−
(
21x2 + 6x− 1
4 (2x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
5

4
(
x+1

2
)
)
dx

= (1 + 2x)5/4
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
9x2+5x
2x3+x2 dx

= z1e
ln(1+2x)

4 − 5 ln(x)
2

= z1

(
(1 + 2x)1/4

x5/2

)

Which simplifies to

y1 =
(1 + 2x)3/2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 9x2+5x

2x3+x2 dx

(y1)2
dx

= y1

∫
e

ln(1+2x)
2 −5 ln(x)

(y1)2
dx

= y1

(
ln
(√

1 + 2x− 1
)
− ln

(√
1 + 2x+ 1

)
+ 2

3 (1 + 2x)3/2
+ 2√

1 + 2x

)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
(1 + 2x)3/2

x2

)

+c2

(
(1 + 2x)3/2

x2

(
ln
(√

1 + 2x−1
)
− ln

(√
1 + 2x+1

)
+ 2
3 (1 + 2x)3/2

+ 2√
1 + 2x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(5 + 9x)

(
d
dx
y(x)

)
+ (3x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x+4)y(x)
x2(2x+1) −

(5+9x)
(

d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+9x)

(
d
dx

y(x)
)

x(2x+1) + (3x+4)y(x)
x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+9x
x(2x+1) , P3(x) = 3x+4

x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(5 + 9x)

(
d
dx
y(x)

)
+ (3x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 2)2 + ak−1(k + r + 2) (2k − 1 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r + 2) + ak−1(2k − 1 + 2r)) = 0

• Shift index using k− >k + 1
(k + r + 3) (ak+1(k + r + 3) + ak(2k + 2r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(2k+2r+1)

k+r+3

• Recursion relation for r = −2
ak+1 = −ak(2k−3)

k+1

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+1 = −ak(2k−3)

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 73� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(5+9*x)*diff(y(x),x)+(3*x+4)*y(x) = 0,

y(x),singsol=all)� �
y

=
c2
(
x+ 1

2

)2 ln (√2x+ 1− 1
)
− c2

(
x+ 1

2

)2 ln (√2x+ 1 + 1
)
+ c2

(
x+ 2

3

)√
2x+ 1 + 4c1

(
x+ 1

2

)2
x2
√
2x+ 1

Mathematica DSolve solution

Solving time : 0.181 (sec)
Leaf size : 56� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]+x*(5+9*x)*D[y[x],x]+(4+3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

2c2
(
−3(2x+ 1)3/2arctanh

(√
2x+ 1

)
+ 6x+ 4

)
+ 3c1(2x+ 1)3/2

3x2
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2.1.137 problem 139

Solved as second order ode using Kovacic algorithm . . . . . . . . . 971
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 975
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 977
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 977

Internal problem ID [8985]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 139
Date solved : Thursday, December 12, 2024 at 09:59:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ − x(5 + 4x) y′ + (9 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.299 (sec)

Writing the ode as (
−2x3 + x2) y′′ + (−4x2 − 5x

)
y′ + (9 + 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = −4x2 − 5x (3)
C = 9 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 32x2 + 56x− 1
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 32x2 + 56x− 1

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
32x2 + 56x− 1
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.258: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4
(
x− 1

2

)2 − 13
x− 1

2
+ 13

x
− 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 32x2 + 56x− 1

4 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 32x2 + 56x− 1
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 7

2 −5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= −1− (−2)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 5

2
(
x− 1

2

) + (−) (0)

= 1
2x − 5

2
(
x− 1

2

)
= −1− 8x

4x2 − 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 5

2
(
x− 1

2

)) (1) +

(− 1
2x2 + 5

2
(
x− 1

2

)2
)

+
(

1
2x − 5

2
(
x− 1

2

))2

−
(
32x2 + 56x− 1
4 (2x2 − x)2

) = 0

−1 + 8a0
x (−1 + 2x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
8

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

8

)
e
∫ ( 1

2x−
5

2
(
x− 1

2
)
)
dx

=
(
x+ 1

8

)
e−

5 ln(−1+2x)
2 + ln(x)

2

=
(
x+ 1

8

)√
x

(−1 + 2x)5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2−5x
−2x3+x2 dx

= z1e
− 7 ln(−1+2x)

2 + 5 ln(x)
2

= z1

(
x5/2

(−1 + 2x)7/2

)

Which simplifies to

y1 =
x3(x+ 1

8

)
(−1 + 2x)6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2−5x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e−7 ln(−1+2x)+5 ln(x)

(y1)2
dx

= y1

(
32x3

3 − 44x2 + 203x
2 − 64 ln (x)− 3125

16 (1 + 8x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3(x+ 1

8

)
(−1 + 2x)6

)
+ c2

(
x3(x+ 1

8

)
(−1 + 2x)6

(
32x3

3 − 44x2 + 203x
2 − 64 ln (x)− 3125

16 (1 + 8x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
− x(5 + 4x)

(
d
dx
y(x)

)
+ (4x+ 9) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (4x+9)y(x)
x2(2x−1) −

(5+4x)
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+4x)

(
d
dx

y(x)
)

x(2x−1) − (4x+9)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+4x
x(2x−1) , P3(x) = − 4x+9

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
+ x(5 + 4x)

(
d
dx
y(x)

)
+ (−4x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 3)2 + 2ak−1(k + 1 + r) (k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 3)2 + 2ak−1(k + 1 + r) (k − 2 + r) = 0

• Shift index using k− >k + 1
−ak+1(k − 2 + r)2 + 2ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)(k+r−1)

(k−2+r)2

• Recursion relation for r = 3
ak+1 = 2ak(k+5)(k+2)

(k+1)2

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = 2ak(k+5)(k+2)

(k+1)2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 54� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)-x*(5+4*x)*diff(y(x),x)+(4*x+9)*y(x) = 0,

y(x),singsol=all)� �
y =

x3(−6c2
(
x+ 1

8

)
ln (x) + c2x

4 − 4c2x3 + 9c2x2 +
(
8c1 + 609c2

512

)
x+ c1 − 9375c2

4096

)
(2x− 1)6

Mathematica DSolve solution

Solving time : 0.144 (sec)
Leaf size : 63� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]-x*(5+4*x)*D[y[x],x]+(9+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−x3(c2(4096x4 − 16384x3 + 36864x2 + 4872x− 9375)− 48c1(8x+ 1)− 3072c2(8x+ 1) log(x))
384(1− 2x)6
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2.1.138 problem 140

Solved as second order ode using Kovacic algorithm . . . . . . . . . 978
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 982
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 984
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 984

Internal problem ID [8986]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 140
Date solved : Thursday, December 12, 2024 at 09:59:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x) y′′ + x(7 + x) y′ + (9− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.307 (sec)

Writing the ode as (
−x3 + x2) y′′ + (x2 + 7x

)
y′ + (9− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = x2 + 7x (3)
C = 9− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 82x− 1
4 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 82x− 1

t = 4
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 82x− 1
4 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.260: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 20
−1 + x

− 1
4x2 + 20

x
+ 20

(−1 + x)2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1 let b be the coefficient of 1

(−1+x)2 in the partial fractions decomposition
of r given above. Therefore b = 20. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

α−
c = 1

2 −
√
1 + 4b = −4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 82x− 1

4 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 82x− 1
4 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 2 0 5 −4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
(
−7
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 4

−1 + x
+ (−) (0)

= 1
2x − 4

−1 + x

= − 1 + 7x
2x (−1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(

1
2x − 4

−1 + x

)(
4x3 + 3x2a3 + 2a2x+ a1

)
+
((

− 1
2x2 + 4

(−1 + x)2
)
+
(

1
2x − 4

−1 + x

)2

−
(
−x2 + 82x− 1
4 (x2 − x)2

))
= 0

(a3 − 16)x3 + (4a2 − 9a3)x2 + (9a1 − 4a2)x+ 16a0 − a1
x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 16, a2 = 36, a3 = 16}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 + 16x3 + 36x2 + 16x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 + 16x3 + 36x2 + 16x+ 1

)
e
∫ ( 1

2x−
4

−1+x

)
dx

=
(
x4 + 16x3 + 36x2 + 16x+ 1

)
e

ln(x)
2 −4 ln(−1+x)

= (x4 + 16x3 + 36x2 + 16x+ 1)
√
x

(−1 + x)4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+7x

−x3+x2 dx

= z1e
− 7 ln(x)

2 +4 ln(−1+x)

= z1

(
(−1 + x)4

x7/2

)

Which simplifies to

y1 =
x4 + 16x3 + 36x2 + 16x+ 1

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2+7x

−x3+x2 dx

(y1)2
dx

= y1

∫
e−7 ln(x)+8 ln(−1+x)

(y1)2
dx

= y1

(
−
20
(
−2x3 − 15

2 x
2 − 14

3 x− 5
12

)
x4 + 16x3 + 36x2 + 16x+ 1 + ln (x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 + 16x3 + 36x2 + 16x+ 1

x3

)
+ c2

(
x4 + 16x3 + 36x2 + 16x+ 1

x3

(
−
20
(
−2x3 − 15

2 x
2 − 14

3 x− 5
12

)
x4 + 16x3 + 36x2 + 16x+ 1 + ln (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(1− x)
(

d2

dx2y(x)
)
+ x(7 + x)

(
d
dx
y(x)

)
+ (9− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−9)y(x)
x2(x−1) +

(7+x)
(

d
dx

y(x)
)

x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(7+x)

(
d
dx

y(x)
)

x(x−1) + (x−9)y(x)
x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 7+x
x(x−1) , P3(x) = x−9

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 1)
(

d2

dx2y(x)
)
− x(7 + x)

(
d
dx
y(x)

)
+ (x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 3)2 + ak−1(k − 2 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r + 3)2 + ak−1(k − 2 + r)2 = 0

• Shift index using k− >k + 1
−ak+1(k + 4 + r)2 + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)2

(k+4+r)2

• Recursion relation for r = −3 ; series terminates at k = 4

ak+1 = ak(k−4)2

(k+1)2

• Apply recursion relation for k = 0
a1 = 16a0

• Apply recursion relation for k = 1
a2 = 9a1

4

• Express in terms of a0
a2 = 36a0

• Apply recursion relation for k = 2
a3 = 4a2

9

• Express in terms of a0
a3 = 16a0

• Apply recursion relation for k = 3
a4 = a3

16

• Express in terms of a0
a4 = a0

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (x4 + 16x3 + 36x2 + 16x+ 1)
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 72� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)+x*(7+x)*diff(y(x),x)+(9-x)*y(x) = 0,

y(x),singsol=all)� �
y

= 3c2(x4 + 16x3 + 36x2 + 16x+ 1) ln (x) + c1x
4 + (16c1 + 120c2)x3 + (36c1 + 450c2)x2 + (16c1 + 280c2)x+ c1 + 25c2

x3

Mathematica DSolve solution

Solving time : 0.155 (sec)
Leaf size : 78� �
DSolve[{x^2*(1-x)*D[y[x],{x,2}]+x*(7+x)*D[y[x],x]+(9-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ 5c2(24x3 + 90x2 + 56x+ 5) + 3c1(x4 + 16x3 + 36x2 + 16x+ 1) + 3c2(x4 + 16x3 + 36x2 + 16x+ 1) log(x)
3x3
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2.1.139 problem 141

Solved as second order ode using Kovacic algorithm . . . . . . . . . 985
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 989
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 991
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 991

Internal problem ID [8987]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 141
Date solved : Thursday, December 12, 2024 at 09:59:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x
(
−x2 + 1

)
y′ +

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.296 (sec)

Writing the ode as

x2y′′ +
(
x3 − x

)
y′ +

(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 − x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 4x2 − 1
4x2 (6)

Comparing the above to (5) shows that

s = x4 − 4x2 − 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 4x2 − 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.262: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 1− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1
x
− 5

4x3 − 5
2x5 − 105

16x7 − 155
8x9 − 1965

32x11 − 3265
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 4x2 − 1
4x2

= Q+ R

4x2

=
(
x2

4 − 1
)
+
(
− 1
4x2

)
= x2

4 − 1− 1
4x2

We see that the coefficient of the term x in the quotient is −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 4x2 − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
2

)
= 1

2x − x

2
= 1

2x − x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

2

)
(0) +

((
− 1
2x2 − 1

2

)
+
(

1
2x − x

2

)2

−
(
x4 − 4x2 − 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
2
)
dx

=
√
x e−x2

4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−x
x2 dx

= z1e
−x2

4 + ln(x)
2

= z1
(√

x e−x2
4

)
Which simplifies to

y1 = x e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3−x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 +ln(x)

(y1)2
dx

= y1

−
Ei1
(
−x2

2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x2

2

)
+ c2

x e−x2
2

−
Ei1
(
−x2

2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(−x2 + 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+1

)
y(x)

x2 −
(
x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−1

)(
d
dx

y(x)
)

x
+
(
x2+1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2−1

x
, P3(x) = x2+1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 − 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
k+r+1
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• Recursion relation for r = 1
ak+2 = − ak

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x^2+1)*diff(y(x),x)+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x e−x2

2

(
c1 + c2 Ei1

(
−x2

2

))

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 35� �
DSolve[{x^2*D[y[x],{x,2}]-x*(1-x^2)*D[y[x],x]+(1+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

2 x

(
c1 ExpIntegralEi

(
x2

2

)
+ 2c2

)
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2.1.140 problem 142

Solved as second order ode using Kovacic algorithm . . . . . . . . . 992
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . . 996
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . . 997
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . . 998

Internal problem ID [8988]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 142
Date solved : Thursday, December 12, 2024 at 09:59:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − 3x

(
−x2 + 1

)
y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.382 (sec)

Writing the ode as (
x4 + x2) y′′ + (3x3 − 3x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 3x3 − 3x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x4 − 10x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 3x4 − 10x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x4 − 10x2 − 1
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.264: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ i

4x− 4i −
i

4 (x+ i) −
1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x4 − 10x2 − 1

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x4 − 10x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x − 1

2 (x− i) −
1

2 (x+ i) + (−) (0)

= 1
2x − 1

2 (x− i) −
1

2 (x+ i)

= 1
2x − x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2 (x− i) −
1

2 (x+ i)

)
(0) +

((
− 1
2x2 + 1

2 (x− i)2
+ 1

2 (x+ i)2
)
+
(

1
2x − 1

2 (x− i) −
1

2 (x+ i)

)2

−
(
3x4 − 10x2 − 1
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

2(x−i)−
1

2(x+i)

)
dx

=
√
x√

x2 + 1
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3−3x
x4+x2 dx

= z1e
3 ln(x)

2 −
3 ln

(
x2+1

)
2

= z1

(
x3/2

(x2 + 1)3/2

)

Which simplifies to

y1 =
x2

(x2 + 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3−3x

x4+x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
x2

2 + ln (x)
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2

(x2 + 1)2
)
+ c2

(
x2

(x2 + 1)2
(
x2

2 + ln (x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− 3x(−x2 + 1)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
x2(x2+1) −

3
(
x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(
x2−1

)(
d
dx

y(x)
)

x(x2+1) + 4y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
(
x2−1

)
x(x2+1) , P3(x) = 4

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ 3x(x2 − 1)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr + a1(−1 + r)2 x1+r +
(

∞∑
k=2

(
ak(k + r − 2)2 + ak−2(k + r − 2) (k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 2) + ak−2(k + r)) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k + r) + ak(k + r + 2)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)

k+r

• Recursion relation for r = 2
ak+2 = −ak(k+4)

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 27� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-3*x*(-x^2+1)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
c1 + c2

(
x2

2 + ln (x)
))

(x2 + 1)2
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Mathematica DSolve solution

Solving time : 0.086 (sec)
Leaf size : 36� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-3*x*(1-x^2)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c2x2 + 2c2 log(x) + 2c1)

2 (x2 + 1)2
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2.1.141 problem 143

Solved as second order ode using Kovacic algorithm . . . . . . . . . 999
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1003
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1005
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1005
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1005

Internal problem ID [8989]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 143
Date solved : Thursday, December 12, 2024 at 09:59:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.288 (sec)

Writing the ode as

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 2x3 (3)
C = 3x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x2 − 4
16x2 (6)

Comparing the above to (5) shows that

s = x4 − 8x2 − 4
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x2 − 4

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.266: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

16 − 1
2 − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 − 1
x
− 5

2x3 − 10
x5 − 105

2x7 − 310
x9 − 1965

x11 − 13060
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

16

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 8x2 − 4
16x2

= Q+ R

16x2

=
(
x2

16 − 1
2

)
+
(
− 1
4x2

)
= x2

16 − 1
2 − 1

4x2

We see that the coefficient of the term x in the quotient is −1
2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
4

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
4

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x2 − 4
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
4 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
4

)
= 1

2x − x

4
= 1

2x − x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

4

)
(0) +

((
− 1
2x2 − 1

4

)
+
(

1
2x − x

4

)2

−
(
x4 − 8x2 − 4

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
4
)
dx

=
√
x e−x2

8
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3
4x2 dx

= z1e
−x2

8

= z1
(
e−x2

8

)
Which simplifies to

y1 = e−x2
4
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3

4x2 dx

(y1)2
dx

= y1

∫
e−

x2
4

(y1)2
dx

= y1

−
Ei1
(
−x2

4

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

4
√
x
)
+ c2

e−x2
4
√
x

−
Ei1
(
−x2

4

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 2
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+1

)
y(x)

4x2 −
x
(

d
dx

y(x)
)

2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

2 +
(
3x2+1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions



chapter 2. book solved problems 1004

[
P2(x) = x

2 , P3(x) = 3x2+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 2
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 ·
(

d
dx
y(x)

)
to series expansion

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1) = 0

• Shift index using k− >k + 2
ak+2(2k + 2r + 3)2 + ak(2k + 2r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

2k+2r+3
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• Recursion relation for r = 1
2

ak+2 = − ak
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
2k+4 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(4*x^2*diff(diff(y(x),x),x)+2*diff(y(x),x)*x^3+(3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x e−x2

4

(
c1 + c2 Ei1

(
−x2

4

))

Mathematica DSolve solution

Solving time : 0.191 (sec)
Leaf size : 39� �
DSolve[{4*x^2*D[y[x],{x,2}]+2*x^3*D[y[x],x]+(1+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

4
√
x

(
c2 ExpIntegralEi

(
x2

4

)
+ 2c1

)
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2.1.142 problem 144

Solved as second order ode using Kovacic algorithm . . . . . . . . .1006
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1010
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1011
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1011
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1011

Internal problem ID [8990]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 144
Date solved : Thursday, December 12, 2024 at 09:59:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−2x2 + 1

)
y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.288 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 1
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.268: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 3

16 (x− i)2
− 3

16 (x+ i)2
− 5i

16 (x− i) +
5i

16 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3
4

1
4

−i 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x + 1

4x− 4i +
1

4x+ 4i + (−) (0)

= 1
2x + 1

4x− 4i +
1

4x+ 4i
= 1

2x + x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

4x− 4i +
1

4x+ 4i

)
(0) +

((
− 1
2x2 − 1

4 (x− i)2
− 1

4 (x+ i)2
)
+
(

1
2x + 1

4x− 4i +
1

4x+ 4i

)2

−
(

2x2 − 1
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1

4x−4i+
1

4x+4i

)
dx

=
√
x
(
x2 + 1

)1/4
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3−x
x4+x2 dx

= z1e
ln(x)

2 −
3 ln

(
x2+1

)
4

= z1

( √
x

(x2 + 1)3/4

)

Which simplifies to

y1 =
x√

x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3−x

x4+x2 dx

(y1)2
dx

= y1

∫
eln(x)−

3 ln
(
x2+1

)
2

(y1)2
dx

= y1

(
− arctanh

(
1√

x2 + 1

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x√

x2 + 1

)
+ c2

(
x√

x2 + 1

(
− arctanh

(
1√

x2 + 1

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−2x2 + 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x2(x2+1) −

(
2x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2−1

)(
d
dx

y(x)
)

x(x2+1) + y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2−1
x(x2+1) , P3(x) = 1

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 − 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 1
• Each term must be 0

a1r
2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 1) + ak−2(k − 2 + r)) = 0

• Shift index using k− >k + 2
(k + r + 1) (ak+2(k + r + 1) + ak(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r)

k+r+1

• Recursion relation for r = 1
ak+2 = −ak(k+1)

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+1)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 25� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-2*x^2+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y =

x
(
arctanh

(
1√

x2+1

)
c2 + c1

)
√
x2 + 1

Mathematica DSolve solution

Solving time : 0.102 (sec)
Leaf size : 33� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(1-2*x^2)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

x
(
c1 − c2arctanh

(√
x2 + 1

))
√
x2 + 1
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2.1.143 problem 145

Solved as second order ode using Kovacic algorithm . . . . . . . . .1012
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1016
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1018
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1018
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1019

Internal problem ID [8991]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 145
Date solved : Thursday, December 12, 2024 at 09:59:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 2
)
y′′ + 7x3y′ +

(
3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.358 (sec)

Writing the ode as (
2x4 + 4x2) y′′ + 7x3y′ +

(
3x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 4x2

B = 7x3 (3)
C = 3x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x4 − 16
16 (x3 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x4 − 16

t = 16
(
x3 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−3x4 − 16
16 (x3 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.270: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x3 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2 of

order 2. There is a pole at x = −i
√
2 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 7

64
(
x− i

√
2
)2 − 7

64
(
x+ i

√
2
)2 − 9i

√
2

128
(
x− i

√
2
) + 9i

√
2

128
(
x+ i

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
For the pole at x = −i

√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x4 − 16

16 (x3 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x4 − 16
16 (x3 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i
√
2 2 0 7

8
1
8

−i
√
2 2 0 7

8
1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3

4 −
(
3
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2
+ (0)

= 1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2

= 1
2x + x

4x2 + 8

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2

)
(0) +

((
− 1
2x2 − 1

8
(
x− i

√
2
)2 − 1

8
(
x+ i

√
2
)2
)

+
(

1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2

)2

−
(

−3x4 − 16
16 (x3 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1

8x−8i
√
2+

1
8x+8i

√
2

)
dx

=
(
x2 + 2

)1/8√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x3

2x4+4x2 dx

= z1e
−

7 ln
(
x2+2

)
8

= z1

(
1

(x2 + 2)7/8

)

Which simplifies to

y1 =
√
x

(x2 + 2)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 7x3

2x4+4x2 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
x2+2

)
4

(y1)2
dx

= y1

(∫ 1
(x2 + 2)1/4 x

dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(x2 + 2)3/4

)
+ c2

( √
x

(x2 + 2)3/4

(∫ 1
(x2 + 2)1/4 x

dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ 7
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+1

)
y(x)

2(x2+2)x2 −
7
(

d
dx

y(x)
)
x

2(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
7
(

d
dx

y(x)
)
x

2(x2+2) +
(
3x2+1

)
y(x)

2(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 7x

2(x2+2) , P3(x) = 3x2+1
2(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ 7
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 ·
(

d
dx
y(x)

)
to series expansion

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (ak−2(k+r−1)
2 +

(
k + r − 1

2

)
ak
)
= 0

• Shift index using k− >k + 2

4
(
k + 3

2 + r
) (ak(k+r+1)

2 +
(
k + 3

2 + r
)
ak+2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k+2r+3

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k+4 , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.313 (sec)
Leaf size : 81� �
dsolve(2*x^2*(x^2+2)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x^3+(3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y

=

√
x

(
23/4c1 + ln

(
−
√
2 (2x2 + 4)1/4 + 2

)
c2 − ln

(√
2 (2x2 + 4)1/4 + 2

)
c2 + 2arctan

(√
2
(
2x2+4

)1/4
2

)
c2

)
21/4

2 (x2 + 2)3/4
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Mathematica DSolve solution

Solving time : 0.289 (sec)
Leaf size : 77� �
DSolve[{2*x^2*(2+x^2)*D[y[x],{x,2}]+7*x^3*D[y[x],x]+(1+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
x

(
23/4c2 arctan

(
4
√
x2 + 2
4
√
2

)
− 23/4c2arctanh

(
4
√
x2 + 2
4
√
2

)
+ 2c1

)
2 (x2 + 2)3/4
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2.1.144 problem 146

Solved as second order ode using Kovacic algorithm . . . . . . . . .1020
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1024
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1025
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1025
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1026

Internal problem ID [8992]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 146
Date solved : Thursday, December 12, 2024 at 09:59:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−4x2 + 1

)
y′ +

(
2x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.308 (sec)

Writing the ode as (
x4 + x2) y′′ + (4x3 − x

)
y′ +

(
2x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 4x3 − x (3)
C = 2x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −6x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −6x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−6x2 − 1
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.272: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x− i)2

+ 5
16 (x+ i)2

+ 3i
16 (x− i) −

3i
16 (x+ i) −

1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −6x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x − 1

4 (x− i) −
1

4 (x+ i) + (0)

= 1
2x − 1

4 (x− i) −
1

4 (x+ i)

= 1
2x3 + 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

4 (x− i) −
1

4 (x+ i)

)
(0) +

((
− 1
2x2 + 1

4 (x− i)2
+ 1

4 (x+ i)2
)
+
(

1
2x − 1

4 (x− i) −
1

4 (x+ i)

)2

−
(

−6x2 − 1
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

4(x−i)−
1

4(x+i)

)
dx

=
√
x

(x2 + 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x3−x
x4+x2 dx

= z1e
−

5 ln
(
x2+1

)
4 + ln(x)

2

= z1

( √
x

(x2 + 1)5/4

)

Which simplifies to

y1 =
x

(x2 + 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x3−x

x4+x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+1

)
2 +ln(x)

(y1)2
dx

= y1

(√
x2 + 1− arctanh

(
1√

x2 + 1

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x2 + 1)3/2

)
+ c2

(
x

(x2 + 1)3/2

(√
x2 + 1− arctanh

(
1√

x2 + 1

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−4x2 + 1)

(
d
dx
y(x)

)
+ (2x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
2x2+1

)
y(x)

x2(x2+1) −
(
4x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
4x2−1

)(
d
dx

y(x)
)

x(x2+1) +
(
2x2+1

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 4x2−1

x(x2+1) , P3(x) = 2x2+1
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(4x2 − 1)

(
d
dx
y(x)

)
+ (2x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2(k + r)) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak(k + r + 2)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+2)
k+r+1

• Recursion relation for r = 1
ak+2 = −ak(k+3)

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+3)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.050 (sec)
Leaf size : 35� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-4*x^2+1)*diff(y(x),x)+(2*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

(
− arctanh

(
1√

x2+1

)
c2 +

√
x2 + 1 c2 + c1

)
x

(x2 + 1)3/2
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Mathematica DSolve solution

Solving time : 0.156 (sec)
Leaf size : 45� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(1-4*x^2)*D[y[x],x]+(1+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

x
(
−c2arctanh

(√
x2 + 1

)
+ c2

√
x2 + 1 + c1

)
(x2 + 1)3/2
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2.1.145 problem 147

Solved as second order ode using Kovacic algorithm . . . . . . . . .1027
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1031
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1032
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1033
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1033

Internal problem ID [8993]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 147
Date solved : Thursday, December 12, 2024 at 09:59:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 4
)
y′′ + 3x

(
3x2 + 8

)
y′ +

(
−9x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.384 (sec)

Writing the ode as(
4x4 + 16x2) y′′ + (9x3 + 24x

)
y′ +

(
−9x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 16x2

B = 9x3 + 24x (3)
C = −9x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 153x4 + 704x2 − 256
64 (x3 + 4x)2

(6)

Comparing the above to (5) shows that

s = 153x4 + 704x2 − 256

t = 64
(
x3 + 4x

)2
Therefore eq. (4) becomes

z′′(x) =
(
153x4 + 704x2 − 256

64 (x3 + 4x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.274: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(x3 + 4x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2i of order
2. There is a pole at x = −2i of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 39

256 (x− 2i)2
− 39

256 (x+ 2i)2
− 377i

512 (x− 2i) +
377i

512 (x+ 2i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 2i let b be the coefficient of 1

(x−2i)2 in the partial fractions decomposition
of r given above. Therefore b = − 39

256 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

16
α−
c = 1

2 −
√
1 + 4b = 3

16



chapter 2. book solved problems 1029

For the pole at x = −2i let b be the coefficient of 1
(x+2i)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 39
256 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

16
α−
c = 1

2 −
√
1 + 4b = 3

16

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 153x4 + 704x2 − 256

64 (x3 + 4x)2

Since the gcd(s, t) = 1. This gives b = 153
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 17

8
α−
∞ = 1

2 −
√
1 + 4b = −9

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 153x4 + 704x2 − 256
64 (x3 + 4x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

2i 2 0 13
16

3
16

−2i 2 0 13
16

3
16

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 17
8 −9

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 17

8 then

d = α+
∞ −

(
α+
c1 + α+

c2 + α+
c3

)
= 17

8 −
(
17
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i) + (0)

= 1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i)

= 1
2x + 13x

8x2 + 32
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i)

)
(0) +

((
− 1
2x2 − 13

16 (x− 2i)2
− 13

16 (x+ 2i)2
)
+
(

1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i)

)2

−
(
153x4 + 704x2 − 256

64 (x3 + 4x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
13

16(x−2i)+
13

16(x+2i)

)
dx

=
(
x2 + 4

)13/16√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
9x3+24x
4x4+16x2 dx

= z1e
−

3 ln
(
x2+4

)
16 − 3 ln(x)

4

= z1

(
1

(x2 + 4)3/16 x3/4

)

Which simplifies to

y1 =
(x2 + 4)5/8

x1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 9x3+24x

4x4+16x2 dx

(y1)2
dx

= y1

∫
e−

3 ln
(
x2+4

)
8 − 3 ln(x)

2

(y1)2
dx

= y1

∫ e−
3 ln

(
x2+4

)
8 − 3 ln(x)

2
√
x

(x2 + 4)5/4
dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 4)5/8

x1/4

)
+ c2

(x2 + 4)5/8

x1/4

∫ e−
3 ln

(
x2+4

)
8 − 3 ln(x)

2
√
x

(x2 + 4)5/4
dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 4)
(

d2

dx2y(x)
)
+ 3x(3x2 + 8)

(
d
dx
y(x)

)
+ (−9x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
9x2−1

)
y(x)

4x2(x2+4) −
3
(
3x2+8

)(
d
dx

y(x)
)

4x(x2+4)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(
3x2+8

)(
d
dx

y(x)
)

4x(x2+4) −
(
9x2−1

)
y(x)

4x2(x2+4) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3

(
3x2+8

)
4x(x2+4) , P3(x) = − 9x2−1

4x2(x2+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 4)
(

d2

dx2y(x)
)
+ 3x(3x2 + 8)

(
d
dx
y(x)

)
+ (−9x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 4r)2 xr + a1(5 + 4r)2 x1+r +
(

∞∑
k=2

(
ak(4k + 4r + 1)2 + ak−2(4k + 4r + 1) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

4

• Each term must be 0
a1(5 + 4r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

16
(

ak−2(k−3+r)
4 + ak

(
k + r + 1

4

)) (
k + r + 1

4

)
= 0

• Shift index using k− >k + 2

16
(

ak(k+r−1)
4 + ak+2

(
k + 9

4 + r
)) (

k + 9
4 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r−1)

4k+4r+9

• Recursion relation for r = −1
4

ak+2 = −ak
(
k− 5

4
)

4k+8

• Solution for r = −1
4[

y(x) =
∞∑
k=0

akx
k− 1

4 , ak+2 = −ak
(
k− 5

4
)

4k+8 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
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-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius

-> hypergeometric
-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.165 (sec)
Leaf size : 66� �
dsolve(4*x^2*(x^2+4)*diff(diff(y(x),x),x)+3*x*(3*x^2+8)*diff(y(x),x)+(-9*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y

=
c2
(
x2 hypergeom

([
1, 1, 138

]
, [2, 2] ,−x2

4

)
− 32γ

5 + 64 ln(2)
5 − 64 ln(x)

5 − 32Ψ
( 5
8
)

5

)
(x2 + 4)5/8 23/4 + c1(x2 + 4)5/8 − 1024c2

25

x1/4

Mathematica DSolve solution

Solving time : 0.86 (sec)
Leaf size : 198� �
DSolve[{4*x^2*(4+x^2)*D[y[x],{x,2}]+3*x*(8+3*x^2)*D[y[x],x]+(1-9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c2

(
5 23/4(x2 + 4)5/8 arctan

(
8
√
x2 + 4
4
√
2

)
+ 5 4

√
2(x2 + 4)5/8 arctan

(
√
2−

4
√
x2 + 4

23/4
8
√
x2 + 4

)
− 5 23/4(x2 + 4)5/8 arctanh

(
8
√
x2 + 4
4
√
2

)
+ 5 4

√
2(x2 + 4)5/8 arctanh

(
2

4
√
2 8
√
x2 + 4

√
2

4
√
x2 + 4+2

)
+ 16

)
+ 80c1(x2 + 4)5/8

80 4
√
x
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2.1.146 problem 148

Solved as second order ode using Kovacic algorithm . . . . . . . . .1034
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1038
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1040
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1040
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1041

Internal problem ID [8994]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 148
Date solved : Thursday, December 12, 2024 at 09:59:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(x2 + 3
)
y′′ + x

(
11x2 + 3

)
y′ +

(
5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.364 (sec)

Writing the ode as (
3x4 + 9x2) y′′ + (11x3 + 3x

)
y′ +

(
5x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x4 + 9x2

B = 11x3 + 3x (3)
C = 5x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x4 + 18x2 − 81
36 (x3 + 3x)2

(6)

Comparing the above to (5) shows that

s = −5x4 + 18x2 − 81

t = 36
(
x3 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−5x4 + 18x2 − 81

36 (x3 + 3x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.276: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x3 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
3 of

order 2. There is a pole at x = −i
√
3 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 5

36
(
x− i

√
3
)2 − 5

36
(
x+ i

√
3
)2 − 7i

√
3

108
(
x− i

√
3
) + 7i

√
3

108
(
x+ i

√
3
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = i
√
3 let b be the coefficient of 1(

x−i
√
3
)2 in the partial fractions decom-

position of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
For the pole at x = −i

√
3 let b be the coefficient of 1(

x+i
√
3
)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −5x4 + 18x2 − 81

36 (x3 + 3x)2

Since the gcd(s, t) = 1. This gives b = − 5
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

6
α−
∞ = 1

2 −
√
1 + 4b = 1

6
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −5x4 + 18x2 − 81
36 (x3 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i
√
3 2 0 5

6
1
6

−i
√
3 2 0 5

6
1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
6

1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

6 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 5

6 −
(
5
6

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3
+ (0)

= 1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3

= 1
2x + x

3x2 + 9

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3

)
(0) +

((
− 1
2x2 − 1

6
(
x− i

√
3
)2 − 1

6
(
x+ i

√
3
)2
)

+
(

1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3

)2

−
(
−5x4 + 18x2 − 81

36 (x3 + 3x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1

6x−6i
√
3+

1
6x+6i

√
3

)
dx

=
√
x
(
x2 + 3

)1/6
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+3x
3x4+9x2 dx

= z1e
− ln(x)

6 −
5 ln

(
x2+3

)
6

= z1

(
1

x1/6 (x2 + 3)5/6

)

Which simplifies to

y1 =
x1/3

(x2 + 3)2/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 11x3+3x

3x4+9x2 dx

(y1)2
dx

= y1

∫
e−

ln(x)
3 −

5 ln
(
x2+3

)
3

(y1)2
dx

= y1

∫ e−
ln(x)

3 −
5 ln

(
x2+3

)
3 (x2 + 3)4/3

x2/3 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

(x2 + 3)2/3

)
+ c2

 x1/3

(x2 + 3)2/3

∫ e−
ln(x)

3 −
5 ln

(
x2+3

)
3 (x2 + 3)4/3

x2/3 dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2(x2 + 3)
(

d2

dx2y(x)
)
+ x(11x2 + 3)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+1

)
y(x)

3x2(x2+3) −
(
11x2+3

)(
d
dx

y(x)
)

3x(x2+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+3

)(
d
dx

y(x)
)

3x(x2+3) +
(
5x2+1

)
y(x)

3x2(x2+3) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2+3

3x(x2+3) , P3(x) = 5x2+1
3x2(x2+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2(x2 + 3)
(

d2

dx2y(x)
)
+ x(11x2 + 3)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr + a1(2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 1)2 + ak−2(3k + 3r − 1) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

9
(

ak−2(k+r−1)
3 +

(
k − 1

3 + r
)
ak
) (

k − 1
3 + r

)
= 0

• Shift index using k− >k + 2

9
(

ak(k+r+1)
3 +

(
k + 5

3 + r
)
ak+2

) (
k + 5

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

3k+3r+5

• Recursion relation for r = 1
3

ak+2 = −ak
(
k+ 4

3
)

3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak
(
k+ 4

3
)

3k+6 , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.323 (sec)
Leaf size : 102� �
dsolve(3*x^2*(x^2+3)*diff(diff(y(x),x),x)+x*(11*x^2+3)*diff(y(x),x)+(5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y

=
x1/3

(
2 arctan

( (
9x2+27

)1/3√3
6+(9x2+27)1/3

)√
3 c2 + 331/3c1 − ln

(
(9x2 + 27)2/3 + 3(9x2 + 27)1/3 + 9

)
c2 + 2 ln

(
3− (9x2 + 27)1/3

)
c2

)
32/3

9 (x2 + 3)2/3
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Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 94� �
DSolve[{3*x^2*(3+x^2)*D[y[x],x]+x*(3+11*x^2)*D[y[x],x]+(1+5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c1 exp

(
1
3RootSum

[
3#13 + 11#12 + 9#1+ 3&, 3#12

log(x−#1)−4#1 log(x−#1)+9 log(x−#1)
9#12

+22#1+9
&
])

3
√
x

y(x) → 0
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2.1.147 problem 149

Solved as second order ode using Kovacic algorithm . . . . . . . . .1042
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1046
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1048
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1048
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1048

Internal problem ID [8995]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 149
Date solved : Thursday, December 12, 2024 at 09:59:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ − 3x
(
−2x2 + 7

)
y′ +

(
2x2 + 25

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.320 (sec)

Writing the ode as

9x2y′′ +
(
6x3 − 21x

)
y′ +

(
2x2 + 25

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = 6x3 − 21x (3)
C = 2x2 + 25

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 24x2 − 9
36x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 24x2 − 9
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 24x2 − 9

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.278: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

9 − 2
3 − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

3 − 1
x
− 15

8x3 − 45
8x5 − 2835

128x7 − 12555
128x9 − 477495

1024x11 − 2380185
1024x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
3

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

3 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

9

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 24x2 − 9
36x2

= Q+ R

36x2

=
(
x2

9 − 2
3

)
+
(
− 1
4x2

)
= x2

9 − 2
3 − 1

4x2

We see that the coefficient of the term x in the quotient is −2
3 . Now b can be found.

b =
(
−2
3

)
− (0)

= −2
3

Hence

[
√
r]∞ = x

3

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−2
3

1
3

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−2

3
1
3

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 24x2 − 9
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
3 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
3

)
= 1

2x − x

3
= 1

2x − x

3
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

3

)
(0) +

((
− 1
2x2 − 1

3

)
+
(

1
2x − x

3

)2

−
(
4x4 − 24x2 − 9

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
3
)
dx

=
√
x e−x2

6



chapter 2. book solved problems 1046

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x3−21x

9x2 dx

= z1e
−x2

6 + 7 ln(x)
6

= z1
(
x7/6e−x2

6

)
Which simplifies to

y1 = x5/3e−x2
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6x3−21x

9x2 dx

(y1)2
dx

= y1

∫
e−

x2
3 + 7 ln(x)

3

(y1)2
dx

= y1

−
Ei1
(
−x2

3

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x5/3e−x2

3

)
+ c2

x5/3e−x2
3

−
Ei1
(
−x2

3

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
− 3x(−2x2 + 7)

(
d
dx
y(x)

)
+ (2x2 + 25) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
2x2+25

)
y(x)

9x2 −
(
2x2−7

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2−7

)(
d
dx

y(x)
)

3x +
(
2x2+25

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = 2x2−7

3x , P3(x) = 2x2+25
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 25
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
+ 3x(2x2 − 7)

(
d
dx
y(x)

)
+ (2x2 + 25) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−5 + 3r)2 xr + a1(−2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 5)2 + 2ak−2(3k + 3r − 5)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−5 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 5

3

• Each term must be 0
a1(−2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 5)2 + 2ak−2(3k + 3r − 5) = 0

• Shift index using k− >k + 2
ak+2(3k + 3r + 1)2 + 2ak(3k + 3r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 2ak

3k+3r+1
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• Recursion relation for r = 5
3

ak+2 = − 2ak
3k+6

• Solution for r = 5
3[

y(x) =
∞∑
k=0

akx
k+ 5

3 , ak+2 = − 2ak
3k+6 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(9*x^2*diff(diff(y(x),x),x)-3*x*(-2*x^2+7)*diff(y(x),x)+(2*x^2+25)*y(x) = 0,

y(x),singsol=all)� �
y = x5/3e−x2

3

(
c1 + c2 Ei1

(
−x2

3

))

Mathematica DSolve solution

Solving time : 0.188 (sec)
Leaf size : 39� �
DSolve[{9*x^2*D[y[x],{x,2}]-3*x*(7-2*x^2)*D[y[x],x]+(25+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

3 x5/3
(
c2 ExpIntegralEi

(
x2

3

)
+ 2c1

)
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2.1.148 problem 150

Solved as second order ode using Kovacic algorithm . . . . . . . . .1049
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1053
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1055
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1055
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1055

Internal problem ID [8996]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 150
Date solved : Thursday, December 12, 2024 at 09:59:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x
(
−x2 + 1

)
y′ +

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.294 (sec)

Writing the ode as

x2y′′ +
(
x3 − x

)
y′ +

(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 − x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 4x2 − 1
4x2 (6)

Comparing the above to (5) shows that

s = x4 − 4x2 − 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 4x2 − 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.280: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 1− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1
x
− 5

4x3 − 5
2x5 − 105

16x7 − 155
8x9 − 1965

32x11 − 3265
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 4x2 − 1
4x2

= Q+ R

4x2

=
(
x2

4 − 1
)
+
(
− 1
4x2

)
= x2

4 − 1− 1
4x2

We see that the coefficient of the term x in the quotient is −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 4x2 − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
2

)
= 1

2x − x

2
= 1

2x − x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

2

)
(0) +

((
− 1
2x2 − 1

2

)
+
(

1
2x − x

2

)2

−
(
x4 − 4x2 − 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
2
)
dx

=
√
x e−x2

4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−x
x2 dx

= z1e
−x2

4 + ln(x)
2

= z1
(√

x e−x2
4

)
Which simplifies to

y1 = x e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3−x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 +ln(x)

(y1)2
dx

= y1

−
Ei1
(
−x2

2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x2

2

)
+ c2

x e−x2
2

−
Ei1
(
−x2

2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(−x2 + 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+1

)
y(x)

x2 −
(
x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−1

)(
d
dx

y(x)
)

x
+
(
x2+1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2−1

x
, P3(x) = x2+1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 − 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
k+r+1
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• Recursion relation for r = 1
ak+2 = − ak

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x^2+1)*diff(y(x),x)+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x e−x2

2

(
c1 + c2 Ei1

(
−x2

2

))

Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 35� �
DSolve[{x^2*D[y[x],{x,2}]-x*(1-x^2)*D[y[x],x]+(1+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

2 x

(
c1 ExpIntegralEi

(
x2

2

)
+ 2c2

)
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2.1.149 problem 151

Solved as second order ode using Kovacic algorithm . . . . . . . . .1056
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1060
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1061
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1061
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1062

Internal problem ID [8997]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 151
Date solved : Thursday, December 12, 2024 at 09:59:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ + 3xy′ + (1 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as (
−2x3 + x2) y′′ + 3xy′ + (1 + 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = 3x (3)
C = 1 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 32x2 + 16x− 1
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 32x2 + 16x− 1

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
32x2 + 16x− 1
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.282: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4
(
x− 1

2

)2 − 3
x− 1

2
+ 3

x
− 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 32x2 + 16x− 1

4 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 32x2 + 16x− 1
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 5

2 −3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 3

2
(
x− 1

2

) + (−) (0)

= 1
2x − 3

2
(
x− 1

2

)
= −1− 4x

4x2 − 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 3

2
(
x− 1

2

)) (0) +

(− 1
2x2 + 3

2
(
x− 1

2

)2
)

+
(

1
2x − 3

2
(
x− 1

2

))2

−
(
32x2 + 16x− 1
4 (2x2 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
3

2
(
x− 1

2
)
)
dx

=
√
x

(−1 + 2x)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x

−2x3+x2 dx

= z1e
− 3 ln(x)

2 + 3 ln(−1+2x)
2

= z1

(
(−1 + 2x)3/2

x3/2

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)+3 ln(−1+2x)

(y1)2
dx

= y1

(
8x3

3 + 6x+ 1
2 − 6x2 − ln (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
8x3

3 + 6x+ 1
2 − 6x2 − ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ (4x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (4x+1)y(x)
x2(2x−1) +

3
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
3
(

d
dx

y(x)
)

x(2x−1) − (4x+1)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 3
x(2x−1) , P3(x) = − 4x+1

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
− 3x

(
d
dx
y(x)

)
+ (−4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(1 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 1)2 + 2ak−1(k + r) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−(1 + r)2 = 0
• Values of r that satisfy the indicial equation

r = −1
• Each term in the series must be 0, giving the recursion relation

−ak(k + r + 1)2 + 2ak−1(k + r) (k − 3 + r) = 0
• Shift index using k− >k + 1

−ak+1(k + 2 + r)2 + 2ak(k + r + 1) (k + r − 2) = 0
• Recursion relation that defines series solution to ODE

ak+1 = 2ak(k+r+1)(k+r−2)
(k+2+r)2

• Recursion relation for r = −1 ; series terminates at k = 3
ak+1 = 2akk(k−3)

(k+1)2

• Apply recursion relation for k = 0
a1 = 0

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = 0

• Apply recursion relation for k = 2
a3 = −4a2

9

• Express in terms of a0
a3 = 0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · 0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 31� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)+3*diff(y(x),x)*x+(4*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = 3c2 ln (x) + (−8x3 + 18x2 − 18x) c2 + c1

x
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Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 36� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]+3*x*D[y[x],x]+(1+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −2

3c2
(
4x2 − 9x+ 9

)
+ c1

x
+ c2 log(x)

x
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2.1.150 problem 152

Solved as second order ode using Kovacic algorithm . . . . . . . . .1063
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1067
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1068
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1069
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1069

Internal problem ID [8998]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 152
Date solved : Thursday, December 12, 2024 at 09:59:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(1 + x) y′′ + (1− x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.261 (sec)

Writing the ode as (
x2 + x

)
y′′ + (1− x) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + x

B = 1− x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 10x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 10x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 10x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.284: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −2
x
+ 2

(1 + x)2
+ 2

1 + x
− 1

4x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 10x− 1

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 10x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1
0 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
1 + x

+ 1
2x + (−) (0)

= − 1
1 + x

+ 1
2x

= − x− 1
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

+ 1
2x

)
(1) +

((
1

(1 + x)2
− 1

2x2

)
+
(
− 1
1 + x

+ 1
2x

)2

−
(
−x2 − 10x− 1
4 (x2 + x)2

))
= 0

1 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ (

− 1
1+x

+ 1
2x

)
dx

= (x− 1) e− ln(1+x)+ ln(x)
2

= (x− 1)
√
x

1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−x
x2+x

dx

= z1e
ln(1+x)− ln(x)

2

= z1

(
1 + x√

x

)

Which simplifies to
y1 = x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−x

x2+x
dx

(y1)2
dx

= y1

∫
e2 ln(1+x)−ln(x)

(y1)2
dx

= y1

(
− 4
x− 1 + ln (x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x− 1) + c2

(
x− 1

(
− 4
x− 1 + ln (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x+ 1)
(

d2

dx2y(x)
)
+ (1− x)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x(x+1) +

(x−1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−1)

(
d
dx

y(x)
)

x(x+1) + y(x)
x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x−1
x(x+1) , P3(x) = 1

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)
(

d2

dx2y(x)
)
+ (1− x)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (2− u)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)2

(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1

ak+1 = ak(k−1)2
(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 1[

y(x) = a0
(
−x

2 +
1
2

)]
• Recursion relation for r = 3

ak+1 = ak(k+2)2
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = ak(k+2)2

(k+4)(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+3 , ak+1 = ak(k+2)2
(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0
(
−x

2 +
1
2

)
+
(

∞∑
k=0

bk(x+ 1)k+3
)
, bk+1 = bk(k+2)2

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 20� �
dsolve(x*(x+1)*diff(diff(y(x),x),x)+(1-x)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2(x− 1) ln (x)− 4c2 + c1(x− 1)

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 23� �
DSolve[{x*(1+x)*D[y[x],{x,2}]+(1-x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 1) + c2((x− 1) log(x)− 4)
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2.1.151 problem 153

Solved as second order ode using Kovacic algorithm . . . . . . . . .1070
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1074
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1075
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1075
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1076

Internal problem ID [8999]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 153
Date solved : Thursday, December 12, 2024 at 09:59:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x) y′′ − x(3− 5x) y′ + (4− 5x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as (
−x3 + x2) y′′ + (5x2 − 3x

)
y′ + (4− 5x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = 5x2 − 3x (3)
C = 4− 5x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 − 6x− 1
4 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = 15x2 − 6x− 1

t = 4
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 − 6x− 1
4 (x2 − x)2

)
z(x) (7)



chapter 2. book solved problems 1071

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.286: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
−1 + x

− 1
4x2 + 2

(−1 + x)2
− 2

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1 let b be the coefficient of 1

(−1+x)2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 − 6x− 1

4 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 − 6x− 1
4 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x + 2

−1 + x
+ (0)

= 1
2x + 2

−1 + x

= −1 + 5x
2x (−1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 2

−1 + x

)
(0) +

((
− 1
2x2 − 2

(−1 + x)2
)
+
(

1
2x + 2

−1 + x

)2

−
(
15x2 − 6x− 1
4 (x2 − x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
2

−1+x

)
dx

=
√
x (−1 + x)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2−3x
−x3+x2 dx

= z1e
3 ln(x)

2 +ln(−1+x)

= z1
(
x3/2(−1 + x)

)
Which simplifies to

y1 = x2(−1 + x)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2−3x

−x3+x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)+2 ln(−1+x)

(y1)2
dx

= y1

(
ln (x)− 1

3 (−1 + x)3
− 1

−1 + x
+ 1

2 (−1 + x)2
− ln (−1 + x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2(−1 + x)3

)
+ c2

(
x2(−1 + x)3

(
ln (x)− 1

3 (−1 + x)3
− 1

−1 + x
+ 1

2 (−1 + x)2
− ln (−1 + x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(1− x)
(

d2

dx2y(x)
)
− x(3− 5x)

(
d
dx
y(x)

)
+ (4− 5x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−4+5x)y(x)
x2(x−1) +

(−3+5x)
(

d
dx

y(x)
)

x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−3+5x)

(
d
dx

y(x)
)

x(x−1) + (−4+5x)y(x)
x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −−3+5x
x(x−1) , P3(x) = −4+5x

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 1)
(

d2

dx2y(x)
)
− x(−3 + 5x)

(
d
dx
y(x)

)
+ (−4 + 5x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−2 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 2)2 + ak−1(k + r − 2) (k − 6 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 2)2 + ak−1(k + r − 2) (k − 6 + r) = 0

• Shift index using k− >k + 1
−ak+1(k + r − 1)2 + ak(k + r − 1) (k + r − 5) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)

k+r−1

• Recursion relation for r = 2 ; series terminates at k = 3
ak+1 = ak(k−3)

k+1

• Apply recursion relation for k = 0
a1 = −3a0

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = 3a0

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

• Terminating series solution of the ODE for r = 2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (−x3 + 3x2 − 3x+ 1)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 47� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)-x*(3-5*x)*diff(y(x),x)+(4-5*x)*y(x) = 0,

y(x),singsol=all)� �
y = x2

(
c1(x− 1)3 + c2

(
−(x− 1)3 ln (x− 1) + (x− 1)3 ln (x)− x2 + 5x

2 − 11
6

))
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Mathematica DSolve solution

Solving time : 0.121 (sec)
Leaf size : 76� �
DSolve[{x^2*(1-x)*D[y[x],{x,2}]-x*(3-5*x)*D[y[x],x]+(4-5*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

6x
2(6c1x3 − 18c1x2 − 6c2x2 + 18c1x+ 15c2x− 6c2(x− 1)3 log(x− 1)

+ 6c2(x− 1)3 log(x)− 6c1 − 11c2
)
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2.1.152 problem 154

Solved as second order ode using Kovacic algorithm . . . . . . . . .1077
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1081
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1083
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1083
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1083

Internal problem ID [9000]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 154
Date solved : Thursday, December 12, 2024 at 09:59:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
9x2 + 1

)
y′ +

(
25x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.355 (sec)

Writing the ode as (
x4 + x2) y′′ + (−9x3 − x

)
y′ +

(
25x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = −9x3 − x (3)
C = 25x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x4 − 98x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −x4 − 98x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x4 − 98x2 − 1

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.288: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 6

(x− i)2
+ 6

(x+ i)2
+ 6i

x− i
− 6i

x+ i

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x4 − 98x2 − 1

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x4 − 98x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3 −2
−i 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
−7
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞



chapter 2. book solved problems 1080

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x − 2

x− i
− 2

x+ i
+ (−) (0)

= 1
2x − 2

x− i
− 2

x+ i

= 1
2x − 4x

x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(

1
2x − 2

x− i
− 2

x+ i

)(
4x3 + 3x2a3 + 2a2x+ a1

)
+
((

− 1
2x2 + 2

(x− i)2
+ 2

(x+ i)2
)
+
(

1
2x − 2

x− i
− 2

x+ i

)2

−
(
−x4 − 98x2 − 1

4 (x3 + x)2
))

= 0

(x4a3 + 4(4 + a2)x3 + 9(a1 + a3)x2 + 4(4a0 + a2)x+ a1) (x2 + 1)
x (x+ i)2 (−x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0, a2 = −4, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 4x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 4x2 + 1

)
e
∫ ( 1

2x−
2

x−i
− 2

x+i

)
dx

=
(
x4 − 4x2 + 1

)
e

ln(x)
2 −2 ln

(
x2+1

)

= (x4 − 4x2 + 1)
√
x

(x2 + 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−9x3−x
x4+x2 dx

= z1e
ln(x)

2 +2 ln
(
x2+1

)
= z1

(√
x
(
x2 + 1

)2)
Which simplifies to

y1 = x5 − 4x3 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−9x3−x

x4+x2 dx

(y1)2
dx

= y1

∫
eln(x)+4 ln

(
x2+1

)
(y1)2

dx

= y1

(
ln (x) + −6x2 + 3

x4 − 4x2 + 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x5 − 4x3 + x

)
+ c2

(
x5 − 4x3 + x

(
ln (x) + −6x2 + 3

x4 − 4x2 + 1

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(9x2 + 1)

(
d
dx
y(x)

)
+ (25x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2+1

)
y(x)

x2(x2+1) +
(
9x2+1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
9x2+1

)(
d
dx

y(x)
)

x(x2+1) +
(
25x2+1

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − 9x2+1

x(x2+1) , P3(x) = 25x2+1
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(9x2 + 1)

(
d
dx
y(x)

)
+ (25x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k − 7 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r − 1)2 + ak−2(k − 7 + r)2 = 0
• Shift index using k− >k + 2

ak+2(k + 1 + r)2 + ak(k + r − 5)2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r−5)2

(k+1+r)2

• Recursion relation for r = 1 ; series terminates at k = 4

ak+2 = −ak(k−4)2

(k+2)2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k−4)2

(k+2)2 , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 41� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(9*x^2+1)*diff(y(x),x)+(25*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

(
c2
(
x4 − 4x2 + 1

)
ln (x) + c1x

4 + (−4c1 − 6c2)x2 + c1 + 3c2
)
x

Mathematica DSolve solution

Solving time : 0.135 (sec)
Leaf size : 43� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(1+9*x^2)*D[y[x],x]+(1+25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x5 − 4x3 + x

)
+ c2x

(
−6x2 +

(
x4 − 4x2 + 1

)
log(x) + 3

)



chapter 2. book solved problems 1084

2.1.153 problem 155

Solved as second order ode using Kovacic algorithm . . . . . . . . .1084
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1089
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1090
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1091
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1091

Internal problem ID [9001]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 155
Date solved : Thursday, December 12, 2024 at 09:59:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ + 3x
(
−x2 + 1

)
y′ +

(
7x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.154 (sec)

Writing the ode as

9x2y′′ +
(
−3x3 + 3x

)
y′ +

(
7x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = −3x3 + 3x (3)
C = 7x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 36x2 − 9
36x2 (6)

Comparing the above to (5) shows that

s = x4 − 36x2 − 9
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 36x2 − 9

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.290: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

36 − 1− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

6 − 3
x
− 111

4x3 − 999
2x5 − 180819

16x7 − 2292705
8x9 − 249239511

32x11 − 3548540907
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

36
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 36x2 − 9
36x2

= Q+ R

36x2

=
(
x2

36 − 1
)
+
(
− 1
4x2

)
= x2

36 − 1− 1
4x2

We see that the coefficient of the term x in the quotient is −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = x

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
6

− 1
)

= −7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
6

− 1
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 36x2 − 9
36x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2



chapter 2. book solved problems 1087

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
6 −7

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
1
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
6

)
= 1

2x − x

6
= 1

2x − x

6

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x − x

6

)
(2x+ a1) +

((
− 1
2x2 − 1

6

)
+
(

1
2x − x

6

)2

−
(
x4 − 36x2 − 9

36x2

))
= 0

x2a1 + 2(6 + a0)x+ 3a1
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −6, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 6
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 6

)
e
∫ ( 1

2x−
x
6
)
dx

=
(
x2 − 6

)
e−x2

12+
ln(x)

2

=
(
x2 − 6

)√
x e−x2

12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3+3x

9x2 dx

= z1e
x2
12−

ln(x)
6

= z1

(
ex2

12

x1/6

)

Which simplifies to
y1 = x1/3(x2 − 6

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3+3x

9x2 dx

(y1)2
dx

= y1

∫
e

x2
6 − ln(x)

3

(y1)2
dx

= y1

(∫ ex2
6 − ln(x)

3

x2/3 (x2 − 6)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3(x2 − 6

))
+ c2

(
x1/3(x2 − 6

)(∫ ex2
6 − ln(x)

3

x2/3 (x2 − 6)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
+ 3x(−x2 + 1)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+1

)
y(x)

9x2 +
(
x2−1

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−1

)(
d
dx

y(x)
)

3x +
(
7x2+1

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x2−1

3x , P3(x) = 7x2+1
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
− 3x(x2 − 1)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr + a1(2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 1)2 − ak−2(3k − 13 + 3r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(−1 + 3r)2 = 0
• Values of r that satisfy the indicial equation

r = 1
3

• Each term must be 0
a1(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 1)2 + (−3k + 13− 3r) ak−2 = 0

• Shift index using k− >k + 2
ak+2(3k + 5 + 3r)2 + ak(−3k − 3r + 7) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(3k+3r−7)

(3k+5+3r)2

• Recursion relation for r = 1
3 ; series terminates at k = 2

ak+2 = ak(3k−6)
(3k+6)2

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = ak(3k−6)
(3k+6)2 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 19� �
dsolve(9*x^2*diff(diff(y(x),x),x)+3*x*(-x^2+1)*diff(y(x),x)+(7*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −x1/3(x2 − 6) (c1 − c2)

6

Mathematica DSolve solution

Solving time : 4.83 (sec)
Leaf size : 53� �
DSolve[{9*x^2*D[y[x],{x,2}]+3*x*(1-x^2)*D[y[x],x]+(1+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

72
3
√
x

(
c2
(
x2 − 6

)
ExpIntegralEi

(
x2

6

)
+ 72c1

(
x2 − 6

)
− 6c2e

x2
6

)
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2.1.154 problem 156

Solved as second order ode using Kovacic algorithm . . . . . . . . .1092
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1096
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1097
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1098
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1098

Internal problem ID [9002]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 156
Date solved : Thursday, December 12, 2024 at 09:59:36 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x
(
x2 + 1

)
y′′ +

(
−x2 + 1

)
y′ − 8xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.400 (sec)

Writing the ode as (
x3 + x

)
y′′ +

(
−x2 + 1

)
y′ − 8xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + x

B = −x2 + 1 (3)
C = −8x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35x4 + 22x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 35x4 + 22x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
35x4 + 22x2 − 1

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.292: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

− 15i
4 (x− i) +

15i
4 (x+ i) −

1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35x4 + 22x2 − 1

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35x4 + 22x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α+
c1 + α+

c2 + α+
c3

)
= 7

2 −
(
7
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 3

2 (x− i) +
3

2 (x+ i) + (0)

= 1
2x + 3

2 (x− i) +
3

2 (x+ i)

= 1
2x + 3x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 3

2 (x− i) +
3

2 (x+ i)

)
(0) +

((
− 1
2x2 − 3

2 (x− i)2
− 3

2 (x+ i)2
)
+
(

1
2x + 3

2 (x− i) +
3

2 (x+ i)

)2

−
(
35x4 + 22x2 − 1

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
3

2(x−i)+
3

2(x+i)

)
dx

=
√
x
(
x2 + 1

)3/2
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+1
x3+x

dx

= z1e
− ln(x)

2 +
ln

(
x2+1

)
2

= z1

(√
x2 + 1√

x

)

Which simplifies to

y1 =
(
x2 + 1

)2
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+1

x3+x
dx

(y1)2
dx

= y1

∫
e− ln(x)+ln

(
x2+1

)
(y1)2

dx

= y1

(
ln (x) + 1

4 (x2 + 1)2
+ 1

2x2 + 2 − ln (x2 + 1)
2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 + 1
)2)+ c2

((
x2 + 1

)2(ln (x) + 1
4 (x2 + 1)2

+ 1
2x2 + 2 − ln (x2 + 1)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x2 + 1)
(

d2

dx2y(x)
)
+ (−x2 + 1)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 8y(x)
x2+1 +

(
x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−1

)(
d
dx

y(x)
)

x(x2+1) − 8y(x)
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−1
x(x2+1) , P3(x) = − 8

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 + 1)
(

d2

dx2y(x)
)
+ (−x2 + 1)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + ak−1(k + r + 1) (k − 5 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
((ak−1 + ak+1) k − 5ak−1 + ak+1) (k + 1) = 0

• Shift index using k− >k + 1
((ak + ak+2) (k + 1)− 5ak + ak+2) (k + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k−4)

k+2

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = −ak(k−4)

k+2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k−4)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 48� �
dsolve(x*(x^2+1)*diff(diff(y(x),x),x)+(-x^2+1)*diff(y(x),x)-8*x*y(x) = 0,

y(x),singsol=all)� �
y = c1

(
x2 + 1

)2 + c2

(
−(x2 + 1)2 ln (x2 + 1)

2 +
(
x2 + 1

)2 ln (x) + x2

2 + 3
4

)

Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 55� �
DSolve[{x*(1+x^2)*D[y[x],{x,2}]+(1-x^2)*D[y[x],x]-8*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x2 + 1

)2 + 1
4c2
(
2x2 + 4

(
x2 + 1

)2 log(x)− 2
(
x2 + 1

)2 log (x2 + 1
)
+ 3
)
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2.1.155 problem 157

Solved as second order ode using Kovacic algorithm . . . . . . . . .1099
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1104
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1105
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1106
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1106

Internal problem ID [9003]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 157
Date solved : Thursday, December 12, 2024 at 09:59:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 2x
(
−x2 + 4

)
y′ +

(
7x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.716 (sec)

Writing the ode as

4x2y′′ +
(
−2x3 + 8x

)
y′ +

(
7x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −2x3 + 8x (3)
C = 7x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 40x2 − 4
16x2 (6)

Comparing the above to (5) shows that

s = x4 − 40x2 − 4
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 40x2 − 4

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.294: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

16 − 5
2 − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 − 5
x
− 101

2x3 − 1010
x5 − 50601

2x7 − 710030
x9 − 21351501

x11 − 672670100
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

16

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 40x2 − 4
16x2

= Q+ R

16x2

=
(
x2

16 − 5
2

)
+
(
− 1
4x2

)
= x2

16 − 5
2 − 1

4x2

We see that the coefficient of the term x in the quotient is −5
2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
4

− 1
)

= −11
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
4

− 1
)

= 9
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 40x2 − 4
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
4 −11

2
9
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 9

2 then

d = α−
∞ −

(
α+
c1

)
= 9

2 −
(
1
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
4

)
= 1

2x − x

4
= 1

2x − x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(

1
2x − x

4

)(
4x3 + 3a3x2 + 2a2x+ a1

)
+
((

− 1
2x2 − 1

4

)
+
(

1
2x − x

4

)2

−
(
x4 − 40x2 − 4

16x2

))
= 0

x4a3 + 2(16 + a2)x3 + 3(a1 + 6a3)x2 + 4(a0 + 2a2)x+ 2a1
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 32, a1 = 0, a2 = −16, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 16x2 + 32
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 16x2 + 32

)
e
∫ ( 1

2x−
x
4
)
dx

=
(
x4 − 16x2 + 32

)
e−x2

8 + ln(x)
2

=
(
x4 − 16x2 + 32

)√
x e−x2

8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+8x

4x2 dx

= z1e
x2
8 −ln(x)

= z1

(
ex2

8

x

)

Which simplifies to

y1 =
x4 − 16x2 + 32√

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+8x

4x2 dx

(y1)2
dx

= y1

∫
e

x2
4 −2 ln(x)

(y1)2
dx

= y1

(∫ ex2
4 −2 ln(x)x

(x4 − 16x2 + 32)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 − 16x2 + 32√

x

)
+ c2

(
x4 − 16x2 + 32√

x

(∫ ex2
4 −2 ln(x)x

(x4 − 16x2 + 32)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 2x(−x2 + 4)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+1

)
y(x)

4x2 +
(
x2−4

)(
d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−4

)(
d
dx

y(x)
)

2x +
(
7x2+1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x2−4

2x , P3(x) = 7x2+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 2x(x2 − 4)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r)2 xr + a1(3 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 1)2 − ak−2(2k − 11 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r)2 = 0
• Values of r that satisfy the indicial equation

r = −1
2

• Each term must be 0
a1(3 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 1)2 + (−2k + 11− 2r) ak−2 = 0

• Shift index using k− >k + 2
ak+2(2k + 5 + 2r)2 + ak(−2k − 2r + 7) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(2k+2r−7)

(2k+5+2r)2

• Recursion relation for r = −1
2 ; series terminates at k = 4

ak+2 = ak(2k−8)
(2k+4)2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = ak(2k−8)
(2k+4)2 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.138 (sec)
Leaf size : 24� �
dsolve(4*x^2*diff(diff(y(x),x),x)+2*x*(-x^2+4)*diff(y(x),x)+(7*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = (x4 − 16x2 + 32) (c1 + 2c2)

32
√
x

Mathematica DSolve solution

Solving time : 0.683 (sec)
Leaf size : 68� �
DSolve[{4*x^2*D[y[x],{x,2}]+2*x*(4-x^2)*D[y[x],x]+(1+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c2(x4 − 16x2 + 32)ExpIntegralEi

(
x2

4

)
− 4c2e

x2
4 (x2 − 12) + 2048c1(x4 − 16x2 + 32)

2048
√
x
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2.1.156 problem 158

Solved as second order ode using Kovacic algorithm . . . . . . . . .1107
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1111
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1112
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1113
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1113

Internal problem ID [9004]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 158
Date solved : Thursday, December 12, 2024 at 09:59:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 8x2y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.191 (sec)

Writing the ode as (
4x3 + 4x2) y′′ + 8x2y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 8x2 (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.296: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x2

4x3+4x2 dx

= z1e
− ln(1+x)

= z1

(
1

1 + x

)

Which simplifies to

y1 =
√
x

1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x2

4x3+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln(1+x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

1 + x

)
+ c2

( √
x

1 + x
(ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 8x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
4x2 −

2
(

d
dx

y(x)
)

x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x+1 + y(x)
4x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
x+1 , P3(x) = 1

4x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 8x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (8u2 − 16u+ 8)

(
d
du
y(u)

)
+ uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert u · y(u) to series expansion

u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(1 + r)u−1+r + (4a1(1 + r) (2 + r)− 8a0r(1 + r))ur +
(

∞∑
k=1

(
4ak+1(k + r + 1) (k + 2 + r)− 8ak(k + r) (k + r + 1) + ak−1(2k − 1 + 2r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
4a1(1 + r) (2 + r)− 8a0r(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(2k − 1 + 2r)2 − 8(k + r + 1)

((
−k

2 −
r
2 − 1

)
ak+1 + ak(k + r)

)
= 0

• Shift index using k− >k + 1
ak(2k + 2r + 1)2 − 8(k + 2 + r)

((
−k

2 −
3
2 −

r
2

)
ak+2 + ak+1(k + r + 1)

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+4kak−24kak+1+4rak−24rak+1+ak−16ak+1

4(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+1)(k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+1)(k+2) , 0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak
4(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1
4(k+2)(k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1

4(k+2)(k+3) , 8a1 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1
4(k+2)(k+3) , 8a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+1)(k+2) , 0 = 0, bk+2 = −4k2bk−8k2bk+1+4kbk−24kbk+1+bk−16bk+1
4(k+2)(k+3) , 8b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 19� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+8*diff(y(x),x)*x^2+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

√
x (c2 ln (x) + c1)

x+ 1

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 24� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+8*x^2*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2 log(x) + c1)

x+ 1
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2.1.157 problem 159

Solved as second order ode using Kovacic algorithm . . . . . . . . .1114
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1118
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1119
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1120
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1120

Internal problem ID [9005]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 159
Date solved : Thursday, December 12, 2024 at 09:59:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(3 + x) y′′ + 3x(3 + 7x) y′ + (3 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.258 (sec)

Writing the ode as (
9x3 + 27x2) y′′ + (21x2 + 9x

)
y′ + (3 + 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x3 + 27x2

B = 21x2 + 9x (3)
C = 3 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.298: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
21x2+9x
9x3+27x2 dx

= z1e
− ln(3+x)− ln(x)

6

= z1

(
1

(3 + x)x1/6

)

Which simplifies to

y1 =
x1/3

3 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 21x2+9x

9x3+27x2 dx

(y1)2
dx

= y1

∫
e−2 ln(3+x)− ln(x)

3

(y1)2
dx

= y1

(
−2 ln (3 + x)x

3 − 2 ln (3 + x) + x2

9 + 3x + 2x
3 + x

+ 3
3 + x

+ ln (x)

+ 2 ln (3 + x) (3 + x)
3 − x

3 − 2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

3 + x

)
+c2

(
x1/3

3 + x

(
−2 ln (3 + x)x

3 −2 ln (3+x)+ x2

9 + 3x+
2x

3 + x
+ 3
3 + x

+ln (x)+2 ln (3 + x) (3 + x)
3 −x

3−2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2(x+ 3)
(

d2

dx2y(x)
)
+ 3x(7x+ 3)

(
d
dx
y(x)

)
+ (3 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3+4x)y(x)
9x2(x+3) −

(7x+3)
(

d
dx

y(x)
)

3x(x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(7x+3)

(
d
dx

y(x)
)

3x(x+3) + (3+4x)y(x)
9x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x+3
3x(x+3) , P3(x) = 3+4x

9x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 2

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators

9x2(x+ 3)
(

d2

dx2y(x)
)
+ 3x(7x+ 3)

(
d
dx
y(x)

)
+ (3 + 4x) y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(9u3 − 54u2 + 81u)
(

d2

du2y(u)
)
+ (21u2 − 117u+ 162)

(
d
du
y(u)

)
+ (−9 + 4u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

81a0r(1 + r)u−1+r + (81a1(1 + r) (2 + r)− 9a0(1 + r) (1 + 6r))ur +
(

∞∑
k=1

(
81ak+1(k + r + 1) (k + 2 + r)− 9ak(k + r + 1) (6k + 6r + 1) + ak−1(3k − 1 + 3r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
81r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
81a1(1 + r) (2 + r)− 9a0(1 + r) (1 + 6r) = 0

• Each term in the series must be 0, giving the recursion relation
81ak+1(k + r + 1) (k + 2 + r)− 54(k + r + 1) ak

(
k + r + 1

6

)
+ ak−1(3k − 1 + 3r)2 = 0

• Shift index using k− >k + 1
81ak+2(k + 2 + r) (k + 3 + r)− 54(k + 2 + r) ak+1

(
k + 7

6 + r
)
+ ak(3k + 3r + 2)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −9k2ak−54k2ak+1+18krak−108krak+1+9r2ak−54r2ak+1+12kak−171kak+1+12rak−171rak+1+4ak−126ak+1

81(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2) , 0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k−1 , ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1
81(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1
81(k+2)(k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1

81(k+2)(k+3) , 162a1 − 9a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k , ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1
81(k+2)(k+3) , 162a1 − 9a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 3)k−1
)
+
(

∞∑
k=0

bk(x+ 3)k
)
, ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2) , 0 = 0, bk+2 = −9k2bk−54k2bk+1+12kbk−171kbk+1+4bk−126bk+1
81(k+2)(k+3) , 162b1 − 9b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.054 (sec)
Leaf size : 19� �
dsolve(9*x^2*(x+3)*diff(diff(y(x),x),x)+3*x*(3+7*x)*diff(y(x),x)+(4*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = x1/3(c2 ln (x) + c1)

x+ 3

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 24� �
DSolve[{9*x^2*(3+x)*D[y[x],{x,2}]+3*x*(3+7*x)*D[y[x],x]+(3+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x(c2 log(x) + c1)

x+ 3
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2.1.158 problem 160

Solved as second order ode using Kovacic algorithm . . . . . . . . .1121
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1125
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1126
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1126
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1127

Internal problem ID [9006]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 160
Date solved : Thursday, December 12, 2024 at 09:59:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 2
)
y′′ − x

(
3x2 + 2

)
y′ +

(
−x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.210 (sec)

Writing the ode as(
−x4 + 2x2) y′′ + (−3x3 − 2x

)
y′ +

(
−x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + 2x2

B = −3x3 − 2x (3)
C = −x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.300: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3−2x
−x4+2x2 dx

= z1e
ln(x)

2 −ln
(
x2−2

)

= z1

( √
x

x2 − 2

)

Which simplifies to

y1 =
x

x2 − 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3−2x

−x4+2x2 dx

(y1)2
dx

= y1

∫
eln(x)−2 ln

(
x2−2

)
(y1)2

dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

x2 − 2

)
+ c2

(
x

x2 − 2(ln (x))
)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−x2 + 2)
(

d2

dx2y(x)
)
− x(3x2 + 2)

(
d
dx
y(x)

)
+ (−x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x2 −

(
3x2+2

)(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+2

)(
d
dx

y(x)
)

x(x2−2) + y(x)
x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x2+2
x(x2−2) , P3(x) = 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2)
(

d2

dx2y(x)
)
+ x(3x2 + 2)

(
d
dx
y(x)

)
+ (x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0(−1 + r)2 xr − 2a1r2x1+r +
(

∞∑
k=2

(
−2ak(k + r − 1)2 + ak−2(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a1r2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2
(
ak − ak−2

2

)
(k + r − 1)2 = 0

• Shift index using k− >k + 2
−2
(
ak+2 − ak

2

)
(k + r + 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

2

• Recursion relation for r = 1
ak+2 = ak

2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = ak

2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 19� �
dsolve(x^2*(-x^2+2)*diff(diff(y(x),x),x)-x*(3*x^2+2)*diff(y(x),x)+(-x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c1)

x2 − 2
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Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 23� �
DSolve[{x^2*(2-x^2)*D[y[x],{x,2}]-x*(2+3*x^2)*D[y[x],x]+(2-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −x(c2 log(x) + c1)

x2 − 2
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2.1.159 problem 161

Solved as second order ode using Kovacic algorithm . . . . . . . . .1128
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1132
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1133
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1133
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1134

Internal problem ID [9007]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 161
Date solved : Thursday, December 12, 2024 at 09:59:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

16x2(x2 + 1
)
y′′ + 8x

(
9x2 + 1

)
y′ +

(
49x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.258 (sec)

Writing the ode as(
16x4 + 16x2) y′′ + (72x3 + 8x

)
y′ +

(
49x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x4 + 16x2

B = 72x3 + 8x (3)
C = 49x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.302: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
72x3+8x

16x4+16x2 dx

= z1e
− ln

(
x2+1

)
− ln(x)

4

= z1

(
1

(x2 + 1)x1/4

)

Which simplifies to

y1 =
x1/4

x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 72x3+8x

16x4+16x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2+1

)
− ln(x)

2

(y1)2
dx

= y1

(
x4

2x2 + 2 + x2

x2 + 1 + 1
2x2 + 2 − ln

(
x2 + 1

)
x2 − ln

(
x2 + 1

)
+ ln (x)

+ ln
(
x2 + 1

) (
x2 + 1

)
− x2

2 − 1
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

x2 + 1

)
+c2

(
x1/4

x2 + 1

(
x4

2x2 + 2+
x2

x2 + 1+
1

2x2 + 2−ln
(
x2+1

)
x2−ln

(
x2+1

)
+ln (x)+ln

(
x2+1

) (
x2+1

)
−x2

2 −1
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

16x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x(9x2 + 1)

(
d
dx
y(x)

)
+ (49x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
49x2+1

)
y(x)

16x2(x2+1) −
(
9x2+1

)(
d
dx

y(x)
)

2x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
9x2+1

)(
d
dx

y(x)
)

2x(x2+1) +
(
49x2+1

)
y(x)

16x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 9x2+1

2x(x2+1) , P3(x) = 49x2+1
16x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x(9x2 + 1)

(
d
dx
y(x)

)
+ (49x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 4r)2 xr + a1(3 + 4r)2 x1+r +
(

∞∑
k=2

(
ak(4k + 4r − 1)2 + ak−2(4k + 4r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

4

• Each term must be 0
a1(3 + 4r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(4k + 4r − 1)2 (ak + ak−2) = 0

• Shift index using k− >k + 2
(4k + 4r + 7)2 (ak+2 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak

• Recursion relation for r = 1
4

ak+2 = −ak

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −ak, a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 21� �
dsolve(16*x^2*(x^2+1)*diff(diff(y(x),x),x)+8*x*(9*x^2+1)*diff(y(x),x)+(49*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x1/4(c2 ln (x) + c1)

x2 + 1
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Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 26� �
DSolve[{16*x^2*(1+x^2)*D[y[x],{x,2}]+8*x*(1+9*x^2)*D[y[x],x]+(1+49*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x(c2 log(x) + c1)

x2 + 1
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2.1.160 problem 162

Solved as second order ode using Kovacic algorithm . . . . . . . . .1135
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1139
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1140
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1140
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1140

Internal problem ID [9008]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 162
Date solved : Thursday, December 12, 2024 at 09:59:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(4 + 3x) y′′ − x(4− 3x) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.207 (sec)

Writing the ode as (
3x3 + 4x2) y′′ + (3x2 − 4x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x3 + 4x2

B = 3x2 − 4x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.304: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2−4x
3x3+4x2 dx

= z1e
ln(x)

2 −ln(4+3x)

= z1

( √
x

4 + 3x

)

Which simplifies to

y1 =
x

4 + 3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2−4x

3x3+4x2 dx

(y1)2
dx

= y1

∫
eln(x)−2 ln(4+3x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

4 + 3x

)
+ c2

(
x

4 + 3x(ln (x))
)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(3x+ 4)
(

d2

dx2y(x)
)
− x(4− 3x)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
x2(3x+4) −

(3x−4)
(

d
dx

y(x)
)

x(3x+4)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x−4)

(
d
dx

y(x)
)

x(3x+4) + 4y(x)
x2(3x+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−4
x(3x+4) , P3(x) = 4

x2(3x+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(3x+ 4)
(

d2

dx2y(x)
)
+ x(3x− 4)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

4a0(−1 + r)2 xr +
(

∞∑
k=1

(
4ak(k + r − 1)2 + 3ak−1(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 1
• Each term in the series must be 0, giving the recursion relation

(k + r − 1)2 (4ak + 3ak−1) = 0
• Shift index using k− >k + 1

(k + r)2 (4ak+1 + 3ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = −3ak
4

• Recursion relation for r = 1
ak+1 = −3ak

4

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = −3ak

4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 19� �
dsolve(x^2*(3*x+4)*diff(diff(y(x),x),x)-x*(4-3*x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c1)

3x+ 4

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 22� �
DSolve[{x^2*(4+3*x)*D[y[x],{x,2}]-x*(4-3*x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2 log(x) + c1)

3x+ 4
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2.1.161 problem 163

Solved as second order ode using Kovacic algorithm . . . . . . . . .1141
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1145
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1146
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1146
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1147

Internal problem ID [9009]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 163
Date solved : Thursday, December 12, 2024 at 09:59:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 3x+ 1
)
y′′ + 8x2(3 + 2x) y′ +

(
9x2 + 3x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.200 (sec)

Writing the ode as(
4x4 + 12x3 + 4x2) y′′ + (16x3 + 24x2) y′ + (9x2 + 3x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 12x3 + 4x2

B = 16x3 + 24x2 (3)
C = 9x2 + 3x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.306: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2



chapter 2. book solved problems 1143

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
16x3+24x2

4x4+12x3+4x2 dx

= z1e
− ln

(
x2+3x+1

)

= z1

(
1

x2 + 3x+ 1

)

Which simplifies to

y1 =
√
x

x2 + 3x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 16x3+24x2

4x4+12x3+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2+3x+1

)
(y1)2

dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

x2 + 3x+ 1

)
+ c2

( √
x

x2 + 3x+ 1(ln (x))
)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
+ 8x2(2x+ 3)

(
d
dx
y(x)

)
+ (9x2 + 3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
9x2+3x+1

)
y(x)

4x2(x2+3x+1) −
2(2x+3)

(
d
dx

y(x)
)

x2+3x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2(2x+3)

(
d
dx

y(x)
)

x2+3x+1 +
(
9x2+3x+1

)
y(x)

4x2(x2+3x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2(2x+3)

x2+3x+1 , P3(x) = 9x2+3x+1
4x2(x2+3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
+ 8x2(2x+ 3)

(
d
dx
y(x)

)
+ (9x2 + 3x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 2..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 2r)2 xr +
(
a1(1 + 2r)2 + 3a0(1 + 2r)2

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r − 1)2 + 3ak−1(2k + 2r − 1)2 + ak−2(2k + 2r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 + 3a0(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −3a0

• Each term in the series must be 0, giving the recursion relation
(2k + 2r − 1)2 (ak + 3ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(2k + 2r + 3)2 (ak+2 + 3ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3ak+1 − ak

• Recursion relation for r = 1
2

ak+2 = −3ak+1 − ak

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 24� �
dsolve(4*x^2*(x^2+3*x+1)*diff(diff(y(x),x),x)+8*x^2*(2*x+3)*diff(y(x),x)+(9*x^2+3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c2 ln (x) + c1)
x2 + 3x+ 1
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Mathematica DSolve solution

Solving time : 0.083 (sec)
Leaf size : 29� �
DSolve[{4*x^2*(1+3*x+x^2)*D[y[x],{x,2}]+8*x^2*(3+2*x)*D[y[x],x]+(1+3*x+9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2 log(x) + c1)
x2 + 3x+ 1
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2.1.162 problem 164

Solved as second order ode using Kovacic algorithm . . . . . . . . .1148
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1152
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1153
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1153
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1154

Internal problem ID [9010]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 164
Date solved : Thursday, December 12, 2024 at 09:59:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x)2 y′′ − x
(
−3x2 + 2x+ 1

)
y′ +

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.208 (sec)

Writing the ode as

x2(−1 + x)2 y′′ +
(
3x3 − 2x2 − x

)
y′ +

(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(−1 + x)2

B = 3x3 − 2x2 − x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.308: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3−2x2−x

x2(−1+x)2
dx

= z1e
−2 ln(−1+x)+ ln(x)

2

= z1

( √
x

(−1 + x)2
)

Which simplifies to

y1 =
x

(−1 + x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3−2x2−x

x2(−1+x)2
dx

(y1)2
dx

= y1

∫
e−4 ln(−1+x)+ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(−1 + x)2
)
+ c2

(
x

(−1 + x)2
(ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(1− x)2
(

d2

dx2y(x)
)
− x(−3x2 + 2x+ 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+1

)
y(x)

x2(x−1)2 −
(

d
dx

y(x)
)
(3x+1)

x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
(3x+1)

x(x−1) +
(
x2+1

)
y(x)

x2(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x+1
x(x−1) , P3(x) = x2+1

x2(x−1)2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 1)2
(

d2

dx2y(x)
)
+ x(x− 1) (3x+ 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r
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Rewrite ODE with series expansions

a0(−1 + r)2 xr + (−2a0r2 + a1r
2)x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 − 2ak−1(k + r − 1)2 + ak−2(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a0r2 + a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 2a0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1)2 (ak − 2ak−1 + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1)2 (ak+2 − 2ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = 2ak+1 − ak
• Recursion relation for r = 1

ak+2 = 2ak+1 − ak
• Solution for r = 1[

y(x) =
∞∑
k=0

akx
k+1, ak+2 = 2ak+1 − ak, a1 = 2a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x^2*(1-x)^2*diff(diff(y(x),x),x)-x*(-3*x^2+2*x+1)*diff(y(x),x)+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c1)

(x− 1)2
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Mathematica DSolve solution

Solving time : 0.055 (sec)
Leaf size : 20� �
DSolve[{x^2*(1-x)^2*D[y[x],{x,2}]-x*(1+2*x-3*x^2)*D[y[x],x]+(1+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2 log(x) + c1)

(x− 1)2
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2.1.163 problem 165

Solved as second order ode using Kovacic algorithm . . . . . . . . .1155
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1159
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1160
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1160
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1161

Internal problem ID [9011]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 165
Date solved : Thursday, December 12, 2024 at 09:59:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(x2 + x+ 1
)
y′′ + 3x

(
13x2 + 7x+ 1

)
y′ +

(
25x2 + 4x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.306 (sec)

Writing the ode as(
9x4 + 9x3 + 9x2) y′′ + (39x3 + 21x2 + 3x

)
y′ +

(
25x2 + 4x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x4 + 9x3 + 9x2

B = 39x3 + 21x2 + 3x (3)
C = 25x2 + 4x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.310: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
39x3+21x2+3x
9x4+9x3+9x2 dx

= z1e
− ln

(
x2+x+1

)
− ln(x)

6

= z1

(
1

(x2 + x+ 1)x1/6

)

Which simplifies to

y1 =
x1/3

x2 + x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 39x3+21x2+3x

9x4+9x3+9x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2+x+1

)
− ln(x)

3

(y1)2
dx

= y1

(
2x− 19

24 + (x− 1)2 − x5

3 (x2 + x+ 1) −
x4

3 (x2 + x+ 1) −
x3

3 (x2 + x+ 1)

+ x2

3x2 + 3x+ 3 + x

3x2 + 3x+ 3 + 1
3x2 + 3x+ 3 + x3

3 − x2 + ln (x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

x2 + x+ 1

)
+c2

(
x1/3

x2 + x+ 1

(
2x− 19

24+(x−1)2− x5

3 (x2 + x+ 1)−
x4

3 (x2 + x+ 1)−
x3

3 (x2 + x+ 1)+
x2

3x2 + 3x+ 3+
x

3x2 + 3x+ 3+
1

3x2 + 3x+ 3+
x3

3 −x2+ln (x)
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 7x+ 1)

(
d
dx
y(x)

)
+ (25x2 + 4x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2+4x+1

)
y(x)

9x2(x2+x+1) −
(
13x2+7x+1

)(
d
dx

y(x)
)

3x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2+7x+1

)(
d
dx

y(x)
)

3x(x2+x+1) +
(
25x2+4x+1

)
y(x)

9x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 13x2+7x+1

3x(x2+x+1) , P3(x) = 25x2+4x+1
9x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 7x+ 1)

(
d
dx
y(x)

)
+ (25x2 + 4x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 3r)2 xr +
(
a1(2 + 3r)2 + a0(2 + 3r)2

)
x1+r +

(
∞∑
k=2

(
ak(3k + 3r − 1)2 + ak−1(3k + 3r − 1)2 + ak−2(3k + 3r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 + a0(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −a0

• Each term in the series must be 0, giving the recursion relation
(3k + 3r − 1)2 (ak + ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(3k + 3r + 5)2 (ak+2 + ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak+1 − ak

• Recursion relation for r = 1
3

ak+2 = −ak+1 − ak

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak+1 − ak, a1 = −a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.043 (sec)
Leaf size : 22� �
dsolve(9*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+3*x*(13*x^2+7*x+1)*diff(y(x),x)+(25*x^2+4*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = x1/3(c2 ln (x) + c1)

x2 + x+ 1
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Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 27� �
DSolve[{9*x^2*(1+x+x^2)*D[y[x],{x,2}]+3*x*(1+7*x+13*x^2)*D[y[x],x]+(1+4*x+25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x(c2 log(x) + c1)
x2 + x+ 1
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2.1.164 problem 166

Solved as second order ode using Kovacic algorithm . . . . . . . . .1162
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1166
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1168
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1168
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1168

Internal problem ID [9012]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 166
Date solved : Thursday, December 12, 2024 at 09:59:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ − x(4− 7x) y′ − (5− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + (7x2 − 4x

)
y′ + (3x− 5) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = 7x2 − 4x (3)
C = 3x− 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 32x+ 128
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 32x+ 128

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 32x+ 128

16 (x2 + 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.312: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 45
16 (2 + x)2

+ 2
x2 − 5

2x + 5
2 (2 + x)

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 32x+ 128

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 32x+ 128
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 9
4 −5

4

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 5
4 (2 + x) +

2
x
+ (0)

= − 5
4 (2 + x) +

2
x

= 3x+ 16
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
4 (2 + x) +

2
x

)
(0) +

((
5

4 (2 + x)2
− 2

x2

)
+
(
− 5
4 (2 + x) +

2
x

)2

−
(
−3x2 − 32x+ 128

16 (x2 + 2x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 5
4(2+x)+

2
x

)
dx

= x2

(2 + x)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x2−4x
2x3+4x2 dx

= z1e
ln(x)

2 − 9 ln(2+x)
4

= z1

( √
x

(2 + x)9/4

)

Which simplifies to

y1 =
x5/2

(2 + x)7/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x2−4x

2x3+4x2 dx

(y1)2
dx

= y1

∫
eln(x)−

9 ln(2+x)
2

(y1)2
dx

= y1

−11(2+x)5/2
8 + 10(2+x)3/2

3 − 5
√
2+x
2

x3 −
5
√
2 arctanh

(√
2+x

√
2

2

)
16


Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x5/2

(2 + x)7/2

)

+ c2

 x5/2

(2 + x)7/2

−11(2+x)5/2
8 + 10(2+x)3/2

3 − 5
√
2+x
2

x3 −
5
√
2 arctanh

(√
2+x

√
2

2

)
16



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
− x(4− 7x)

(
d
dx
y(x)

)
− (5− 3x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−5)y(x)
2(x+2)x2 −

(−4+7x)
(

d
dx

y(x)
)

2x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−4+7x)

(
d
dx

y(x)
)

2x(x+2) + (3x−5)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −4+7x
2x(x+2) , P3(x) = 3x−5

2(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 9
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ x(−4 + 7x)

(
d
dx
y(x)

)
+ (3x− 5) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (7u2 − 32u+ 36)

(
d
du
y(u)

)
+ (3u− 11) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(7 + 2r)u−1+r + (4a1(1 + r) (9 + 2r)− a0(8r2 + 24r + 11))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 9 + 2r)− ak(8k2 + 16kr + 8r2 + 24k + 24r + 11) + ak−1(2k + 1 + 2r) (k + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

2

}
• Each term must be 0

4a1(1 + r) (9 + 2r)− a0(8r2 + 24r + 11) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 24ak + ak−1 + 44ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−24ak + ak−1 + 44ak+1) r − 11ak + 36ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 24ak+1 + ak + 44ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−24ak+1 + ak + 44ak+2) r − 11ak+1 + 36ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+5kak−40kak+1+5rak−40rak+1+3ak−43ak+1
4(2k2+4kr+2r2+15k+15r+22)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22) , 36a1 − 11a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1
4(2k2+15k+22) , 36a1 − 11a0 = 0

]
• Recursion relation for r = −7

2

ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1
4(2k2+k−6)

• Solution for r = −7
2[

y(u) =
∞∑
k=0

aku
k− 7

2 , ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1
4(2k2+k−6) ,−20a1 − 25a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k−
7
2 , ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1

4(2k2+k−6) ,−20a1 − 25a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k−
7
2

)
, ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22) , 36a1 − 11a0 = 0, bk+2 = −2k2bk−8k2bk+1−9kbk+16kbk+1+10bk−bk+1
4(2k2+k−6) ,−20b1 − 25b0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.060 (sec)
Leaf size : 55� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)-x*(4-7*x)*diff(y(x),x)-(5-3*x)*y(x) = 0,

y(x),singsol=all)� �
y =

15 arctanh
(√

2
√
x+2

2

)
c2x

3 + 33c2
√
2
(
x2 + 52

33x+ 32
33

)√
x+ 2 + c1x

3

(x+ 2)7/2
√
x

Mathematica DSolve solution

Solving time : 0.36 (sec)
Leaf size : 92� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}]-x*(4-7*x)*D[y[x],x]-(5-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ −
15
√
2c2x3arctanh

(√
x+2√
2

)
− 48c1x3 + 66c2

√
x+ 2x2 + 104c2

√
x+ 2x+ 64c2

√
x+ 2

48
√
x(x+ 2)7/2
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2.1.165 problem 167

Solved as second order ode using Kovacic algorithm . . . . . . . . .1169
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1173
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1175
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1175
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1175

Internal problem ID [9013]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 167
Date solved : Thursday, December 12, 2024 at 09:59:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ + x(8− 9x) y′ + (6− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as (
−2x3 + x2) y′′ + (−9x2 + 8x

)
y′ + (6− 3x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = −9x2 + 8x (3)
C = 6− 3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x2 − 20x+ 24
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 21x2 − 20x+ 24

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x2 − 20x+ 24
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.314: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
x2 + 19

x
+ 77

16
(
x− 1

2

)2 − 19
x− 1

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = 1
2 let b be the coefficient of 1(

x− 1
2
)2 in the partial fractions decomposition

of r given above. Therefore b = 77
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

4
α−
c = 1

2 −
√
1 + 4b = −7

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x2 − 20x+ 24

4 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x2 − 20x+ 24
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2
1
2 2 0 11

4 −7
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

4 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 7

4 −
(
3
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= −2
x
+ 11

4
(
x− 1

2

) + (0)

= −2
x
+ 11

4
(
x− 1

2

)
= 4 + 3x

4x2 − 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−2
x
+ 11

4
(
x− 1

2

)) (1) +

( 2
x2 − 11

4
(
x− 1

2

)2
)

+
(
−2
x
+ 11

4
(
x− 1

2

))2

−
(
21x2 − 20x+ 24
4 (2x2 − x)2

) = 0

4− 3a0
x (−1 + 2x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

4
3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 4

3

)
e
∫ (

− 2
x
+ 11

4
(
x− 1

2
)
)
dx

=
(
x+ 4

3

)
e

11 ln(−1+2x)
4 −2 ln(x)

=
(
x+ 4

3

)
(−1 + 2x)11/4

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−9x2+8x
−2x3+x2 dx

= z1e
7 ln(−1+2x)

4 −4 ln(x)

= z1

(
(−1 + 2x)7/4

x4

)

Which simplifies to

y1 =
(−1 + 2x)9/2 (4 + 3x)

3x6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−9x2+8x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e

7 ln(−1+2x)
2 −8 ln(x)

(y1)2
dx

= y1

(
−(231x3 − 198x2 + 66x− 8)x8e

7 ln(−1+2x)
2 −8 ln(x)

385 (4 + 3x) (−1 + 2x)8

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−1 + 2x)9/2 (4 + 3x)

3x6

)

+ c2

(
(−1 + 2x)9/2 (4 + 3x)

3x6

(
−(231x3 − 198x2 + 66x− 8)x8e

7 ln(−1+2x)
2 −8 ln(x)

385 (4 + 3x) (−1 + 2x)8

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
+ x(8− 9x)

(
d
dx
y(x)

)
+ (6− 3x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3(x−2)y(x)
x2(2x−1) −

(−8+9x)
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−8+9x)

(
d
dx

y(x)
)

x(2x−1) + 3(x−2)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −8+9x
x(2x−1) , P3(x) = 3(x−2)

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 8

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
+ x(−8 + 9x)

(
d
dx
y(x)

)
+ (3x− 6) y(x) = 0

• Assume series solution for y(x)
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y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(6 + r) (1 + r)xr +
(

∞∑
k=1

(−ak(k + r + 6) (k + r + 1) + ak−1(k + 2 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(6 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−6,−1}

• Each term in the series must be 0, giving the recursion relation
2(k + 2 + r)

(
k + r − 1

2

)
ak−1 − ak(k + r + 6) (k + r + 1) = 0

• Shift index using k− >k + 1
2(k + r + 3)

(
k + 1

2 + r
)
ak − ak+1(k + 7 + r) (k + 2 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r+3)(2k+2r+1)ak

(k+7+r)(k+2+r)

• Recursion relation for r = −6 ; series terminates at k = 3
ak+1 = (k−3)(2k−11)ak

(k+1)(k−4)

• Apply recursion relation for k = 0
a1 = −33a0

4

• Apply recursion relation for k = 1
a2 = −3a1

• Express in terms of a0
a2 = 99a0

4

• Apply recursion relation for k = 2
a3 = −7a2

6

• Express in terms of a0
a3 = −231a0

8

• Terminating series solution of the ODE for r = −6 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
−231

8 x3 + 99
4 x

2 − 33
4 x+ 1

)
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• Recursion relation for r = −1
ak+1 = (k+2)(2k−1)ak

(k+6)(k+1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = (k+2)(2k−1)ak

(k+6)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
−231

8 x3 + 99
4 x

2 − 33
4 x+ 1

)
+
(

∞∑
k=0

bkx
k−1
)
, bk+1 = (k+2)(2k−1)bk

(k+6)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 43� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)+x*(8-9*x)*diff(y(x),x)+(6-3*x)*y(x) = 0,

y(x),singsol=all)� �
y =

48c1
(
x− 1

2

)4 (
x+ 4

3

)√
2x− 1 + 231c2

(
x3 − 6

7x
2 + 2

7x− 8
231

)
x6

Mathematica DSolve solution

Solving time : 0.277 (sec)
Leaf size : 49� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]+x*(8-9*x)*D[y[x],x]+(6-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(231x3 − 198x2 + 66x− 8) + 385c1(3x+ 4)(1− 2x)9/2

1155x6
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2.1.166 problem 168

Solved as second order ode using Kovacic algorithm . . . . . . . . .1176
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1180
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1182
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1182
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1182

Internal problem ID [9014]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 168
Date solved : Thursday, December 12, 2024 at 09:59:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ + x

(
10x2 + 3

)
y′ −

(
−14x2 + 15

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.372 (sec)

Writing the ode as (
x4 + x2) y′′ + (10x3 + 3x

)
y′ +

(
14x2 − 15

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 10x3 + 3x (3)
C = 14x2 − 15

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 24x4 + 66x2 + 63
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 24x4 + 66x2 + 63

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
24x4 + 66x2 + 63

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.316: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 63
4x2 + 21

16 (x− i)2
+ 21

16 (x+ i)2
+ 99i

16 (x− i) −
99i

16 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 63
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

2
α−
c = 1

2 −
√
1 + 4b = −7

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 24x4 + 66x2 + 63

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 24x4 + 66x2 + 63
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 9
2 −7

2

i 2 0 7
4 −3

4

−i 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3− (3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 9
2x − 3

4 (x− i) −
3

4 (x+ i) + (0)

= 9
2x − 3

4 (x− i) −
3

4 (x+ i)

= 9
2x − 3x

2x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

9
2x − 3

4 (x− i) −
3

4 (x+ i)

)
(0) +

((
− 9
2x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
)
+
(

9
2x − 3

4 (x− i) −
3

4 (x+ i)

)2

−
(
24x4 + 66x2 + 63

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 9

2x−
3

4(x−i)−
3

4(x+i)

)
dx

= x9/2

(x2 + 1)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
10x3+3x
x4+x2 dx

= z1e
− 3 ln(x)

2 −
7 ln

(
x2+1

)
4

= z1

(
1

x3/2 (x2 + 1)7/4

)

Which simplifies to

y1 =
x3

(x2 + 1)5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 10x3+3x

x4+x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)−

7 ln
(
x2+1

)
2

(y1)2
dx

= y1

−(x2 + 1)5/2

8x8 + (x2 + 1)5/2

16x6 − (x2 + 1)5/2

64x4 − (x2 + 1)5/2

128x2 + (x2 + 1)3/2

128 + 3
√
x2 + 1
128

−
3 arctanh

(
1√

x2+1

)
128


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3

(x2 + 1)5/2

)

+c2

 x3

(x2 + 1)5/2

−(x2 + 1)5/2

8x8 +(x2 + 1)5/2

16x6 − (x2 + 1)5/2

64x4 − (x2 + 1)5/2

128x2 +(x2 + 1)3/2

128 +3
√
x2 + 1
128 −

3 arctanh
(

1√
x2+1

)
128



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(10x2 + 3)

(
d
dx
y(x)

)
− (−14x2 + 15) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
14x2−15

)
y(x)

x2(x2+1) −
(
10x2+3

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
10x2+3

)(
d
dx

y(x)
)

x(x2+1) +
(
14x2−15

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 10x2+3

x(x2+1) , P3(x) = 14x2−15
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −15

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0



chapter 2. book solved problems 1181

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(10x2 + 3)

(
d
dx
y(x)

)
+ (14x2 − 15) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(5 + r) (−3 + r)xr + a1(6 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 5) (k + r − 3) + ak−2(k + r + 5) (k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−5, 3}

• Each term must be 0
a1(6 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 5) (ak(k + r − 3) + ak−2(k + r)) = 0

• Shift index using k− >k + 2
(k + r + 7) (ak+2(k + r − 1) + ak(k + r + 2)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)

k+r−1

• Recursion relation for r = −5
ak+2 = −ak(k−3)

k−6

• Series not valid for r = −5 , division by 0 in the recursion relation at k = 6
ak+2 = −ak(k−3)

k−6

• Recursion relation for r = 3
ak+2 = −ak(k+5)

k+2

• Solution for r = 3



chapter 2. book solved problems 1182

[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = −ak(k+5)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 61� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(10*x^2+3)*diff(y(x),x)-(-14*x^2+15)*y(x) = 0,

y(x),singsol=all)� �
y =

3 arctanh
(

1√
x2+1

)
c2x

8 + c2(−3x6 + 2x4 + 24x2 + 16)
√
x2 + 1 + c1x

8

(x2 + 1)5/2 x5

Mathematica DSolve solution

Solving time : 0.26 (sec)
Leaf size : 75� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]+x*(3+10*x^2)*D[y[x],x]-(15-14*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2
(√

x2 + 1(3x6 − 2x4 − 24x2 − 16)− 3x8arctanh
(√

x2 + 1
))

+ 128c1x8

128x5 (x2 + 1)5/2
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2.1.167 problem 169

Solved as second order ode using Kovacic algorithm . . . . . . . . .1183
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1187
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1189
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1189
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1189

Internal problem ID [9015]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 169
Date solved : Thursday, December 12, 2024 at 09:59:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−2x2 + 1
)
y′′ + x

(
−13x2 + 7

)
y′ − 14x2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.345 (sec)

Writing the ode as (
−2x4 + x2) y′′ + (−13x3 + 7x

)
y′ − 14x2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x4 + x2

B = −13x3 + 7x (3)
C = −14x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x4 − 68x2 + 35
4 (2x3 − x)2

(6)

Comparing the above to (5) shows that

s = 5x4 − 68x2 + 35

t = 4
(
2x3 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
5x4 − 68x2 + 35
4 (2x3 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.318: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x3 − x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2
2 of order

2. There is a pole at x = −
√
2
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9

64
(
x−

√
2
2

)2 + 9

64
(
x+

√
2
2

)2 − 279
√
2

64
(
x−

√
2
2

) + 279
√
2

64
(
x+

√
2
2

) + 35
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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For the pole at x =
√
2
2 let b be the coefficient of 1(

x−
√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
For the pole at x = −

√
2
2 let b be the coefficient of 1(

x+
√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x4 − 68x2 + 35

4 (2x3 − x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x4 − 68x2 + 35
4 (2x3 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2
√
2
2 2 0 9

8 −1
8

−
√
2
2 2 0 9

8 −1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= −1

4 −
(
−1
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

) + (−) (0)

= − 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

)
= −x2 + 5

4x3 − 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

)
 (0) +


 5
2x2 − 9

8
(
x−

√
2
2

)2 − 9

8
(
x+

√
2
2

)2
+

− 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

)
2

−
(
5x4 − 68x2 + 35
4 (2x3 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫− 5

2x+
9

8
(
x−

√
2
2

)+ 9

8
(
x+

√
2

2

)
dx

=
(
2x−

√
2
)9/8 (2x+

√
2
)9/8

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−13x3+7x
−2x4+x2 dx

= z1e
− 7 ln(x)

2 +
ln

(
2x2−1

)
8

= z1

(
(2x2 − 1)1/8

x7/2

)

Which simplifies to

y1 =
2(2x2 − 1)5/4 21/8

x6
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−13x3+7x

−2x4+x2 dx

(y1)2
dx

= y1

∫
e−7 ln(x)+

ln
(
2x2−1

)
4

(y1)2
dx

= y1

(5x4 − 20x2 + 8)x7e−7 ln(x)+
ln

(
2x2−1

)
4 23/4

120 (2x2 − 1)3/2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
2(2x2 − 1)5/4 21/8

x6

)

+ c2

2(2x2 − 1)5/4 21/8
x6

(5x4 − 20x2 + 8)x7e−7 ln(x)+
ln

(
2x2−1

)
4 23/4

120 (2x2 − 1)3/2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−2x2 + 1)
(

d2

dx2y(x)
)
+ x(−13x2 + 7)

(
d
dx
y(x)

)
− 14x2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −14y(x)
2x2−1 −

(
13x2−7

)(
d
dx

y(x)
)

x(2x2−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2−7

)(
d
dx

y(x)
)

x(2x2−1) + 14y(x)
2x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 13x2−7
x(2x2−1) , P3(x) = 14

2x2−1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
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x0 = 0
• Multiply by denominators

x(2x2 − 1)
(

d2

dx2y(x)
)
+ (13x2 − 7)

(
d
dx
y(x)

)
+ 14xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(6 + r)x−1+r − a1(1 + r) (7 + r)xr +
(

∞∑
k=1

(−ak+1(k + r + 1) (k + 7 + r) + ak−1(2k + 5 + 2r) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−6, 0}

• Each term must be 0
−a1(1 + r) (7 + r) = 0

• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
((

k + r + 5
2

)
ak−1 − ak+1(k+7+r)

2

)
= 0

• Shift index using k− >k + 1

2(k + r + 2)
((

k + 7
2 + r

)
ak − ak+2(k+8+r)

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = (2k+2r+7)ak

k+8+r

• Recursion relation for r = −6
ak+2 = (2k−5)ak

k+2

• Solution for r = −6[
y(x) =

∞∑
k=0

akx
k−6, ak+2 = (2k−5)ak

k+2 , 5a1 = 0
]

• Recursion relation for r = 0
ak+2 = (2k+7)ak

k+8
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• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = (2k+7)ak

k+8 ,−7a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−6
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = (2k−5)ak

k+2 , 5a1 = 0, bk+2 = (2k+7)bk
k+8 ,−7b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 35� �
dsolve(x^2*(-2*x^2+1)*diff(diff(y(x),x),x)+x*(-13*x^2+7)*diff(y(x),x)-14*x^2*y(x) = 0,

y(x),singsol=all)� �
y = c1(2x2 − 1)5/4 + 5c2x4 − 20c2x2 + 8c2

x6

Mathematica DSolve solution

Solving time : 0.2 (sec)
Leaf size : 43� �
DSolve[{x^2*(1-2*x^2)*D[y[x],{x,2}]+x*(7-13*x^2)*D[y[x],x]-14*x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 15c1(1− 2x2)5/4 + c2(−5x4 + 20x2 − 8)

15x6
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2.1.168 problem 170

Solved as second order ode using Kovacic algorithm . . . . . . . . .1190
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1194
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1195
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1195
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1196

Internal problem ID [9016]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 170
Date solved : Thursday, December 12, 2024 at 09:59:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 4x(1 + 2x) y′ − (1 + 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.246 (sec)

Writing the ode as (
4x3 + 4x2) y′′ + (8x2 + 4x

)
y′ + (−3x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 8x2 + 4x (3)
C = −3x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x+ 4
4x (1 + x)2

(6)

Comparing the above to (5) shows that

s = 3x+ 4
t = 4x(1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

3x+ 4
4x (1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.320: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (1 + x)2

+ 1
x
− 1

1 + x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x+ 4

4x (1 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x+ 4
4x (1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
−1 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
+ 1

2 + 2x + (0)

= 1
x
+ 1

2 + 2x
= 1

x
+ 1

2 + 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
+ 1

2 + 2x

)
(0) +

((
− 1
x2 − 1

2 (1 + x)2
)
+
(
1
x
+ 1

2 + 2x

)2

−
(

3x+ 4
4x (1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
+ 1

2+2x

)
dx

= x
√
1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x2+4x
4x3+4x2 dx

= z1e
− ln(x(1+x))

2

= z1

(
1√

x (1 + x)

)

Which simplifies to

y1 =
x
√
1 + x√

x (1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x2+4x

4x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x(1+x))

(y1)2
dx

= y1

(
−1
x
− ln (x) + ln (1 + x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x
√
1 + x√

x (1 + x)

)
+ c2

(
x
√
1 + x√

x (1 + x)

(
−1
x
− ln (x) + ln (1 + x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
− (3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (3x+1)y(x)
4x2(x+1) −

(2x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x(x+1) − (3x+1)y(x)
4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x(x+1) , P3(x) = − 3x+1

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
+ (−3x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (8u2 − 12u+ 4)

(
d
du
y(u)

)
+ (−3u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r2u−1+r +
(
4a1(1 + r)2 − 2a0(4r2 + 2r − 1)

)
ur +

(
∞∑
k=1

(
4ak+1(k + 1 + r)2 − 2ak(4k2 + 8kr + 4r2 + 2k + 2r − 1) + ak−1(2k + 1 + 2r) (2k − 3 + 2r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
4a1(1 + r)2 − 2a0(4r2 + 2r − 1) = 0

• Each term in the series must be 0, giving the recursion relation
(4k2 − 4k − 3) ak−1 + (−8k2 − 4k + 2) ak + 4ak+1(k + 1)2 = 0

• Shift index using k− >k + 1(
4(k + 1)2 − 4k − 7

)
ak +

(
−8(k + 1)2 − 4k − 2

)
ak+1 + 4ak+2(k + 2)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2

• Recursion relation for r = 0
ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2 , 4a1 + 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1
4(k+2)2 , 4a1 + 2a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 26� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+4*x*(2*x+1)*diff(y(x),x)-(3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = c2x ln (x) + c1x− ln (x+ 1) c2x+ c2√

x
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Mathematica DSolve solution

Solving time : 0.076 (sec)
Leaf size : 32� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(1+2*x)*D[y[x],x]-(1+3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x+ c2(−x log(x) + x log(x+ 1)− 1)√

x
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2.1.169 problem 171

Solved as second order ode using Kovacic algorithm . . . . . . . . .1197
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1201
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1202
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1203
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1203

Internal problem ID [9017]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 171
Date solved : Thursday, December 12, 2024 at 09:59:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + 3x) y′′ + x(4 + 21x) y′ − (1− 9x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.249 (sec)

Writing the ode as (
6x3 + 4x2) y′′ + (21x2 + 4x

)
y′ + (9x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x3 + 4x2

B = 21x2 + 4x (3)
C = 9x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −27x− 48
16x (2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −27x− 48
t = 16x(2 + 3x)2

Therefore eq. (4) becomes

z′′(x) =
(

−27x− 48
16x (2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.322: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x(2 + 3x)2. There is a pole at x = 0 of order 1. There is a pole at x = −2

3 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16
(
x+ 2

3

)2 + 3
4
(
x+ 2

3

) − 3
4x

For the pole at x = −2
3 let b be the coefficient of 1(

x+ 2
3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −27x− 48

16x (2 + 3x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −27x− 48
16x (2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
−2

3 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

4
(
x+ 2

3

) + (0)

= 1
x
− 1

4
(
x+ 2

3

)
= 8 + 9x

12x2 + 8x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

4
(
x+ 2

3

)) (0) +

(− 1
x2 + 1

4
(
x+ 2

3

)2
)

+
(
1
x
− 1

4
(
x+ 2

3

))2

−
(

−27x− 48
16x (2 + 3x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

4
(
x+2

3
)
)
dx

= x

(2 + 3x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
21x2+4x
6x3+4x2 dx

= z1e
− ln(x)

2 − 5 ln(2+3x)
4

= z1

(
1

√
x (2 + 3x)5/4

)

Which simplifies to

y1 =
√
x

(2 + 3x)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 21x2+4x

6x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)− 5 ln(2+3x)

2

(y1)2
dx

= y1

−
√
2 + 3x
x

−
3
√
2 arctanh

(√
2+3x

√
2

2

)
2


Therefore the solution is
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y = c1y1 + c2y2

= c1

( √
x

(2 + 3x)3/2

)
+ c2

 √
x

(2 + 3x)3/2

−
√
2 + 3x
x

−
3
√
2 arctanh

(√
2+3x

√
2

2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 21x)

(
d
dx
y(x)

)
− (1− 9x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−1+9x)y(x)
2(3x+2)x2 −

(4+21x)
(

d
dx

y(x)
)

2x(3x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4+21x)

(
d
dx

y(x)
)

2x(3x+2) + (−1+9x)y(x)
2(3x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4+21x
2x(3x+2) , P3(x) = −1+9x

2(3x+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 21x)

(
d
dx
y(x)

)
+ (−1 + 9x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + 3ak−1(2k + 2r + 1) (k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
((

k + r − 1
2

)
ak + 3ak−1(k+r)

2

) (
k + r + 1

2

)
= 0

• Shift index using k− >k + 1

4
((

k + r + 1
2

)
ak+1 + 3ak(k+r+1)

2

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = −3ak(k+r+1)

2k+2r+1

• Recursion relation for r = −1
2

ak+1 = −3ak
(
k+ 1

2
)

2k

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = −3ak
(
k+ 1

2
)

2k

]
• Recursion relation for r = 1

2

ak+1 = −3ak
(
k+ 3

2
)

2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = −3ak
(
k+ 3

2
)

2k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = −3ak

(
k+ 1

2
)

2k , bk+1 = −3bk
(
k+ 3

2
)

2k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 48� �
dsolve(2*x^2*(2+3*x)*diff(diff(y(x),x),x)+x*(4+21*x)*diff(y(x),x)-(1-9*x)*y(x) = 0,

y(x),singsol=all)� �
y =

√
2
√
2 + 3x c2 + c1x+ 3 arctanh

(√
2
√
2+3x
2

)
c2x

(2 + 3x)3/2
√
x

Mathematica DSolve solution

Solving time : 0.228 (sec)
Leaf size : 64� �
DSolve[{2*x^2*(2+3*x)*D[y[x],{x,2}]+x*(4+21*x)*D[y[x],x]-(1-9*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −
3
√
2c2xarctanh

(√
3x
2 + 1

)
− 2c1x+ 2c2

√
3x+ 2

2
√
x(3x+ 2)3/2
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2.1.170 problem 172

Solved as second order ode using Kovacic algorithm . . . . . . . . .1204
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1208
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1210
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1210
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1210

Internal problem ID [9018]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 172
Date solved : Thursday, December 12, 2024 at 09:59:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(2 + x) y′ − (2− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.280 (sec)

Writing the ode as

x2y′′ +
(
x2 + 2x

)
y′ + (3x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + 2x (3)
C = 3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 8x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 8x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 8x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.324: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 2
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 2
x
− 2

x2 − 8
x3 − 36

x4 − 176
x5 − 912

x6 − 4928
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 8x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−8x+ 8

4x2

)
= 1

4 + −8x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −8. Dividing this by leading coefficient in t which is 4 gives −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 0
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 0
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 8x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −2 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2 then

d = α−
∞ −

(
α+
c1

)
= 2− (2)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 2
x
+ (−)

(
1
2

)
= 2

x
− 1

2
= −x− 4

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 1

2

)
(0) +

((
− 2
x2

)
+
(
2
x
− 1

2

)2

−
(
x2 − 8x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 1

2
)
dx

= x2e−x
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+2x

x2 dx

= z1e
−x

2−ln(x)

= z1

(
e−x

2

x

)

Which simplifies to
y1 = x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+2x

x2 dx

(y1)2
dx

= y1

∫
e−x−2 ln(x)

(y1)2
dx

= y1

(
− ex
3x3 − ex

6x2 − ex
6x − Ei1 (−x)

6

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x

)
+ c2

(
x e−x

(
− ex
3x3 − ex

6x2 − ex
6x − Ei1 (−x)

6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x+ 2)

(
d
dx
y(x)

)
− (−3x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−2)y(x)
x2 −

(x+2)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+2)

(
d
dx

y(x)
)

x
+ (3x−2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+2

x
, P3(x) = 3x−2

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 2)

(
d
dx
y(x)

)
+ (3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 1) + ak−1(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r − 1) + ak−1) = 0

• Shift index using k− >k + 1
(k + r + 3) (ak+1(k + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+r

• Recursion relation for r = −2
ak+1 = − ak

k−2

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+1 = − ak

k−2

• Recursion relation for r = 1
ak+1 = − ak

k+1

• Solution for r = 1
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[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 40� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+2)*diff(y(x),x)-(2-3*x)*y(x) = 0,

y(x),singsol=all)� �
y = Ei1 (−x) e−xc2x

3 + e−xc1x
3 + c2(x2 + x+ 2)

x2

Mathematica DSolve solution

Solving time : 0.158 (sec)
Leaf size : 46� �
DSolve[{x^2*D[y[x],{x,2}]+x*(2+x)*D[y[x],x]-(2-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2(x3 ExpIntegralEi(x)− ex(x2 + x+ 2)) + 6c1x3)

6x2
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2.1.171 problem 173

Solved as second order ode using Kovacic algorithm . . . . . . . . .1211
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1215
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1216
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1217
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1217

Internal problem ID [9019]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 173
Date solved : Thursday, December 12, 2024 at 09:59:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 4x(3 + 8x) y′ − (5− 49x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as (
4x3 + 4x2) y′′ + (32x2 + 12x

)
y′ + (49x− 5) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 32x2 + 12x (3)
C = 49x− 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 8x+ 8
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 8x+ 8

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 8x+ 8
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.326: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −6
x
+ 6

1 + x
+ 15

4 (1 + x)2
+ 2

x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 8x+ 8

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 8x+ 8
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 5
2 −3

2

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2 (1 + x) +

2
x
+ (−) (0)

= − 3
2 (1 + x) +

2
x

= x+ 4
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (1 + x) +

2
x

)
(0) +

((
3

2 (1 + x)2
− 2

x2

)
+
(
− 3
2 (1 + x) +

2
x

)2

−
(
−x2 − 8x+ 8
4 (x2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2(1+x)+

2
x

)
dx

= x2

(1 + x)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
32x2+12x
4x3+4x2 dx

= z1e
− 3 ln(x)

2 − 5 ln(1+x)
2

= z1

(
1

x3/2 (1 + x)5/2

)

Which simplifies to

y1 =
√
x

(1 + x)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 32x2+12x

4x3+4x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)−5 ln(1+x)

(y1)2
dx

= y1

(
− 3
2x2 − 1

3x3 − 3
x
+ ln (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(1 + x)4
)
+ c2

( √
x

(1 + x)4
(
− 3
2x2 − 1

3x3 − 3
x
+ ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(3 + 8x)

(
d
dx
y(x)

)
− (5− 49x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−5+49x)y(x)
4(x+1)x2 −

(3+8x)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3+8x)

(
d
dx

y(x)
)

x(x+1) + (−5+49x)y(x)
4(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3+8x
x(x+1) , P3(x) = −5+49x

4(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(3 + 8x)

(
d
dx
y(x)

)
+ (−5 + 49x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (32u2 − 52u+ 20)

(
d
du
y(u)

)
+ (−54 + 49u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(4 + r)u−1+r + (4a1(1 + r) (5 + r)− 2a0(4r2 + 22r + 27))ur +
(

∞∑
k=1

(
4ak+1(k + 1 + r) (k + 5 + r)− 2ak(4k2 + 8kr + 4r2 + 22k + 22r + 27) + ak−1(2k + 5 + 2r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−4, 0}

• Each term must be 0
4a1(1 + r) (5 + r)− 2a0(4r2 + 22r + 27) = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + 5 + r)− 2ak(4k2 + 8kr + 4r2 + 22k + 22r + 27) + ak−1(2k + 5 + 2r)2 = 0

• Shift index using k− >k + 1
4ak+2(k + 2 + r) (k + 6 + r)− 2ak+1

(
4(k + 1)2 + 8(k + 1) r + 4r2 + 22k + 49 + 22r

)
+ ak(2k + 2r + 7)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+28kak−60kak+1+28rak−60rak+1+49ak−106ak+1

4(k+2+r)(k+6+r)

• Recursion relation for r = −4
ak+2 = −4k2ak−8k2ak+1−4kak+4kak+1+ak+6ak+1

4(k−2)(k+2)

• Series not valid for r = −4 , division by 0 in the recursion relation at k = 2

ak+2 = −4k2ak−8k2ak+1−4kak+4kak+1+ak+6ak+1
4(k−2)(k+2)

• Recursion relation for r = 0
ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1

4(k+2)(k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1

4(k+2)(k+6) , 20a1 − 54a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1
4(k+2)(k+6) , 20a1 − 54a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 40� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+4*x*(3+8*x)*diff(y(x),x)-(5-49*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

3 + 6 ln (x) c2x3 − 18c2x2 − 9c2x− 2c2
(x+ 1)4 x5/2

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 52� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(3+8*x)*D[y[x],x]-(5-49*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 6c1x3 + 6c2x3 log(x)− 18c2x2 − 9c2x− 2c2

6x5/2(x+ 1)4
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2.1.172 problem 174

Solved as second order ode using Kovacic algorithm . . . . . . . . .1218
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1222
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1224
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1224
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1224

Internal problem ID [9020]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 174
Date solved : Thursday, December 12, 2024 at 09:59:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − x(3 + 10x) y′ + 30xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.291 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−10x2 − 3x

)
y′ + 30xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −10x2 − 3x (3)
C = 30x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −48x+ 15
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −48x+ 15

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−48x+ 15
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.328: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x2 + 39

2 (1 + x) −
39
2x + 63

4 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 63
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

2
α−
c = 1

2 −
√
1 + 4b = −7

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −48x+ 15
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 9
2 −7

2

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 7
2 (1 + x) +

5
2x + (0)

= − 7
2 (1 + x) +

5
2x

= − 2x− 5
2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 7
2 (1 + x) +

5
2x

)
(1) +

((
7

2 (1 + x)2
− 5

2x2

)
+
(
− 7
2 (1 + x) +

5
2x

)2

−
(
−48x+ 15
4 (x2 + x)2

))
= 0

5 + 2a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −5

2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 5
2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 5

2

)
e
∫ (

− 7
2(1+x)+

5
2x

)
dx

=
(
x− 5

2

)
e

5 ln(x)
2 − 7 ln(1+x)

2

=
(
x− 5

2

)
x5/2

(1 + x)7/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x2−3x
x2(1+x) dx

= z1e
3 ln(x)

2 + 7 ln(1+x)
2

= z1
(
x3/2(1 + x)7/2

)
Which simplifies to

y1 = x5 − 5
2x

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x2−3x

x2(1+x) dx

(y1)2
dx

= y1

∫
e3 ln(x)+7 ln(1+x)

(y1)2
dx

= y1

(
x− 1

25x4 − 52
125x3 − 1354

625x2 − 27708
3125x + 12 ln (x)− 823543

6250 (2x− 5)

)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x5 − 5

2x
4
)

+ c2

(
x5 − 5

2x
4
(
x− 1

25x4 − 52
125x3 − 1354

625x2 − 27708
3125x + 12 ln (x)− 823543

6250 (2x− 5)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− x(10x+ 3)

(
d
dx
y(x)

)
+ 30xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 30y(x)
x(x+1) +

(10x+3)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(10x+3)

(
d
dx

y(x)
)

x(x+1) + 30y(x)
x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 10x+3
x(x+1) , P3(x) = 30

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −7

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)
(

d2

dx2y(x)
)
+ (−10x− 3)

(
d
dx
y(x)

)
+ 30y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (−10u+ 7)

(
d
du
y(u)

)
+ 30y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−8 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k − 7 + r) + ak(k + r − 5) (k + r − 6))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−8 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 8}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 7 + r) + ak(k + r − 5) (k + r − 6) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)(k+r−6)

(k+1+r)(k−7+r)

• Recursion relation for r = 0 ; series terminates at k = 5
ak+1 = ak(k−5)(k−6)

(k+1)(k−7)

• Apply recursion relation for k = 0
a1 = −30a0

7

• Apply recursion relation for k = 1
a2 = −5a1

3

• Express in terms of a0
a2 = 50a0

7

• Apply recursion relation for k = 2
a3 = −4a2

5

• Express in terms of a0
a3 = −40a0

7

• Apply recursion relation for k = 3
a4 = −3a3

8

• Express in terms of a0
a4 = 15a0

7

• Apply recursion relation for k = 4
a5 = −2a4

15

• Express in terms of a0
a5 = −2a0

7

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 30

7 u+ 50
7 u

2 − 40
7 u

3 + 15
7 u

4 − 2
7u

5)
• Revert the change of variables u = x+ 1[

y(x) = a0
(5
7x

4 − 2
7x

5)]
• Recursion relation for r = 8

ak+1 = ak(k+3)(k+2)
(k+9)(k+1)

• Solution for r = 8[
y(u) =

∞∑
k=0

aku
k+8, ak+1 = ak(k+3)(k+2)

(k+9)(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+8 , ak+1 = ak(k+3)(k+2)
(k+9)(k+1)

]
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• Combine solutions and rename parameters[
y(x) = a0

(5
7x

4 − 2
7x

5)+ ( ∞∑
k=0

bk(x+ 1)k+8
)
, bk+1 = bk(k+3)(k+2)

(k+9)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 65� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-x*(10*x+3)*diff(y(x),x)+30*x*y(x) = 0,

y(x),singsol=all)� �
y = 3c2x4

(
x− 5

2

)
ln (x) + c2x

6

4 + (16c1 − 5c2)x5

8

+ (−80c1 − 299c2)x4

16 + 5c2x3 + 5c2x2

4 + c2x

4 + c2
40

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 68� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-x*(3+10*x)*D[y[x],x]+30*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x5 − 5x4

2

)
+ 1

20c2
(
20x6 − 50x5 − 1495x4 + 120(2x− 5)x4 log(x) + 400x3 + 100x2 + 20x+ 2

)
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2.1.173 problem 175

Solved as second order ode using Kovacic algorithm . . . . . . . . .1225
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1229
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1231
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1231
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1231

Internal problem ID [9021]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 175
Date solved : Thursday, December 12, 2024 at 09:59:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(1 + x) y′ − 3(3 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.327 (sec)

Writing the ode as

x2y′′ +
(
x2 + x

)
y′ + (−3x− 9) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = −3x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 14x+ 35
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 14x+ 35
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 14x+ 35

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.330: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 35

4x2 + 7
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 7
2x − 7

2x2 + 49
2x3 − 735

4x4 + 5831
4x5 − 48363

4x6 + 415373
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 14x+ 35
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
14x+ 35

4x2

)
= 1

4 + 14x+ 35
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 14. Dividing this by leading coefficient in t which is 4 gives 7

2 . Now b can be found.

b =
(
7
2

)
− (0)

= 7
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 7
2
1
2
− 0
)

= 7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

7
2
1
2
− 0
)

= −7
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 14x+ 35
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

7
2 −7

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α+
c1

)
= 7

2 −
(
7
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 7
2x +

(
1
2

)
= 1

2 + 7
2x

= x+ 7
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 7

2x

)
(0) +

((
− 7
2x2

)
+
(
1
2 + 7

2x

)2

−
(
x2 + 14x+ 35

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
7
2x
)
dx

= x7/2ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to
y1 = x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
−e−x

6x6 + e−x

30x5 − e−x

120x4 + e−x

360x3 − e−x

720x2 + e−x

720x − Ei1 (x)
720

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x3)+ c2

(
x3
(
−e−x

6x6 + e−x

30x5 − e−x

120x4 + e−x

360x3 − e−x

720x2 + e−x

720x − Ei1 (x)
720

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− 3(x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3(x+3)y(x)
x2 −

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
− 3(x+3)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+1

x
, P3(x) = −3(x+3)

x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (−3x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r + 3) (k + r − 3) + ak−1(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 3}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r − 3) + ak−1(k − 4 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 4 + r) (k − 2 + r) + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(k+4+r)(k−2+r)

• Recursion relation for r = −3 ; series terminates at k = 6
ak+1 = − ak(k−6)

(k+1)(k−5)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 5
ak+1 = − ak(k−6)

(k+1)(k−5)

• Recursion relation for r = 3
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ak+1 = − akk
(k+7)(k+1)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = − akk

(k+7)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 50� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)-3*(x+3)*y(x) = 0,

y(x),singsol=all)� �
y = (x5 − x4 + 2x3 − 6x2 + 24x− 120) c2e−x + x6(−Ei1 (x) c2 + c1)

x3

Mathematica DSolve solution

Solving time : 0.222 (sec)
Leaf size : 60� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-3*(3+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

−x(exx6 ExpIntegralEi(−x) + x5 − x4 + 2x3 − 6x2 + 24x− 120)
720x3 + c1x

3



chapter 2. book solved problems 1232

2.1.174 problem 176

Solved as second order ode using Kovacic algorithm . . . . . . . . .1232
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1236
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1238
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1238
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1238

Internal problem ID [9022]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 176
Date solved : Thursday, December 12, 2024 at 09:59:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ + x(9 + 13x) y′ + (7 + 5x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as (
2x3 + x2) y′′ + (13x2 + 9x

)
y′ + (7 + 5x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = 13x2 + 9x (3)
C = 7 + 5x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 77x2 + 86x+ 35
4 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 77x2 + 86x+ 35

t = 4
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
77x2 + 86x+ 35
4 (2x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.332: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −27
2x + 35

4x2 + 45
16
(
x+ 1

2

)2 + 27
2
(
x+ 1

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 77x2 + 86x+ 35

4 (2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 77
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

4
α−
∞ = 1

2 −
√
1 + 4b = −7

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 77x2 + 86x+ 35
4 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

−1
2 2 0 9

4 −5
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
4 −7

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −7

4 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −7

4 −
(
−15

4

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 5
2x − 5

4
(
x+ 1

2

) + (−) (0)

= − 5
2x − 5

4
(
x+ 1

2

)
= −5− 15x

4x2 + 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 5
2x − 5

4
(
x+ 1

2

)) (2x+ a1) +

( 5
2x2 + 5

4
(
x+ 1

2

)2
)

+
(
− 5
2x − 5

4
(
x+ 1

2

))2

−
(
77x2 + 86x+ 35
4 (2x2 + x)2

) = 0

(11a1 − 8)x+ 26a0 − 5a1
2x2 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

20
143 , a1 =

8
11

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 8
11x+ 20

143

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 8

11x+ 20
143

)
e
∫ (

− 5
2x−

5
4
(
x+1

2
)
)
dx

=
(
x2 + 8

11x+ 20
143

)
e−

5 ln(x)
2 − 5 ln(1+2x)

4

=
x2 + 8

11x+ 20
143

x5/2 (1 + 2x)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
13x2+9x
2x3+x2 dx

= z1e
− 9 ln(x)

2 + 5 ln(1+2x)
4

= z1

(
(1 + 2x)5/4

x9/2

)

Which simplifies to

y1 =
x2 + 8

11x+ 20
143

x7

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 13x2+9x

2x3+x2 dx

(y1)2
dx

= y1

∫
e−9 ln(x)+ 5 ln(1+2x)

2

(y1)2
dx

= y1

(
143(1 + 2x) (35x3 − 45x2 + 36x− 20)x9e−9 ln(x)+ 5 ln(1+2x)

2

315 (143x2 + 104x+ 20)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 8

11x+ 20
143

x7

)
+ c2

(
x2 + 8

11x+ 20
143

x7

(
143(1 + 2x) (35x3 − 45x2 + 36x− 20)x9e−9 ln(x)+ 5 ln(1+2x)

2

315 (143x2 + 104x+ 20)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(9 + 13x)

(
d
dx
y(x)

)
+ (7 + 5x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (7+5x)y(x)
x2(2x+1) −

(9+13x)
(

d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(9+13x)

(
d
dx

y(x)
)

x(2x+1) + (7+5x)y(x)
x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 9+13x
x(2x+1) , P3(x) = 7+5x

x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 9

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 7

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(9 + 13x)

(
d
dx
y(x)

)
+ (7 + 5x) y(x) = 0

• Assume series solution for y(x)
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y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + r) (1 + r)xr +
(

∞∑
k=1

(ak(k + r + 7) (k + r + 1) + ak−1(k + 4 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7,−1}

• Each term in the series must be 0, giving the recursion relation
2(k + 4 + r)

(
k + r − 1

2

)
ak−1 + ak(k + r + 7) (k + r + 1) = 0

• Shift index using k− >k + 1
2(k + r + 5)

(
k + 1

2 + r
)
ak + ak+1(k + 8 + r) (k + 2 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − (k+r+5)(2k+2r+1)ak

(k+8+r)(k+2+r)

• Recursion relation for r = −7 ; series terminates at k = 2
ak+1 = − (k−2)(2k−13)ak

(k+1)(k−5)

• Apply recursion relation for k = 0
a1 = 26a0

5

• Apply recursion relation for k = 1
a2 = 11a1

8

• Express in terms of a0
a2 = 143a0

20

• Terminating series solution of the ODE for r = −7 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(143
20 x

2 + 26
5 x+ 1

)
• Recursion relation for r = −1

ak+1 = − (k+4)(2k−1)ak
(k+7)(k+1)

• Solution for r = −1
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[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − (k+4)(2k−1)ak

(k+7)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(143

20 x
2 + 26

5 x+ 1
)
+
(

∞∑
k=0

bkx
k−1
)
, bk+1 = − (4+k)(2k−1)bk

(k+7)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 50� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(9+13*x)*diff(y(x),x)+(5*x+7)*y(x) = 0,

y(x),singsol=all)� �
y =

280c2
(
x+ 1

2

)3 (
x3 − 9

7x
2 + 36

35x− 4
7

)√
2x+ 1 + 143c1x2 + 104c1x+ 20c1

x7

Mathematica DSolve solution

Solving time : 1.643 (sec)
Leaf size : 58� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]+x*(9+13*x)*D[y[x],x]+(7+5*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(13x(11x+ 8) + 20)

143x7 + c2(35x3 − 45x2 + 36x− 20) (2x+ 1)7/2
315x7
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2.1.175 problem 177

Solved as second order ode using Kovacic algorithm . . . . . . . . .1239
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1243
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1244
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1244
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1245

Internal problem ID [9023]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 177
Date solved : Thursday, December 12, 2024 at 09:59:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + 2x) y′′ − 2x(4− x) y′ − (7 + 5x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.239 (sec)

Writing the ode as (
8x3 + 4x2) y′′ + (2x2 − 8x

)
y′ + (−5x− 7) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 8x3 + 4x2

B = 2x2 − 8x (3)
C = −5x− 7

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 33x2 + 132x+ 60
16 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 33x2 + 132x+ 60

t = 16
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
33x2 + 132x+ 60
16 (2x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.334: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
64
(
x+ 1

2

)2 + 27
4
(
x+ 1

2

) − 27
4x + 15

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 33x2 + 132x+ 60

16 (2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 33
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

8
α−
∞ = 1

2 −
√
1 + 4b = −3

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 33x2 + 132x+ 60
16 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

−1
2 2 0 9

8 −1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
8 −3

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −3

8 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= −3

8 −
(
−3
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2x + 9

8
(
x+ 1

2

) + (−) (0)

= − 3
2x + 9

8
(
x+ 1

2

)
= − 3(x+ 2)

4x (1 + 2x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x + 9

8
(
x+ 1

2

)) (0) +

( 3
2x2 − 9

8
(
x+ 1

2

)2
)

+
(
− 3
2x + 9

8
(
x+ 1

2

))2

−
(
33x2 + 132x+ 60
16 (2x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2x+

9
8
(
x+1

2
)
)
dx

= (1 + 2x)9/8

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2−8x
8x3+4x2 dx

= z1e
ln(x)− 9 ln(1+2x)

8

= z1

(
x

(1 + 2x)9/8

)

Which simplifies to

y1 =
1√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2−8x

8x3+4x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)−

9 ln(1+2x)
4

(y1)2
dx

= y1

(
2(1 + 2x) (5x3 − 10x2 − 40x− 16) e2 ln(x)−

9 ln(1+2x)
4

35x2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√
x

)
+ c2

(
1√
x

(
2(1 + 2x) (5x3 − 10x2 − 40x− 16) e2 ln(x)−

9 ln(1+2x)
4

35x2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(2x+ 1)
(

d2

dx2y(x)
)
− 2x(4− x)

(
d
dx
y(x)

)
− (7 + 5x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (7+5x)y(x)
4x2(2x+1) −

(−4+x)
(

d
dx

y(x)
)

2(2x+1)x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−4+x)

(
d
dx

y(x)
)

2(2x+1)x − (7+5x)y(x)
4x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −4+x
2(2x+1)x , P3(x) = − 7+5x

4x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −7
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(2x+ 1)
(

d2

dx2y(x)
)
+ 2x(−4 + x)

(
d
dx
y(x)

)
+ (−5x− 7) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(1 + 2r) (−7 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 7) + ak−1(2k − 1 + 2r) (4k − 9 + 4r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
7
2

}
• Each term in the series must be 0, giving the recursion relation

8
(
k − 9

4 + r
) (

k + r − 1
2

)
ak−1 + 4ak

(
k + r + 1

2

) (
k + r − 7

2

)
= 0

• Shift index using k− >k + 1
8
(
k − 5

4 + r
) (

k + r + 1
2

)
ak + 4ak+1

(
k + 3

2 + r
) (

k − 5
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − (4k+4r−5)(2k+2r+1)ak

(2k+3+2r)(2k−5+2r)

• Recursion relation for r = −1
2

ak+1 = − 2(4k−7)kak
(2k+2)(2k−6)

• Series not valid for r = −1
2 , division by 0 in the recursion relation at k = 3

ak+1 = − 2(4k−7)kak
(2k+2)(2k−6)

• Recursion relation for r = 7
2

ak+1 = − (4k+9)(2k+8)ak
(2k+10)(2k+2)

• Solution for r = 7
2[

y(x) =
∞∑
k=0

akx
k+ 7

2 , ak+1 = − (4k+9)(2k+8)ak
(2k+10)(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 34� �
dsolve(4*x^2*(2*x+1)*diff(diff(y(x),x),x)-2*x*(-x+4)*diff(y(x),x)-(5*x+7)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 + c2
(
5x3−10x2−40x−16

)
(2x+1)5/4√
x
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Mathematica DSolve solution

Solving time : 0.132 (sec)
Leaf size : 47� �
DSolve[{4*x^2*(1+2*x)*D[y[x],{x,2}]-2*x*(4-x)*D[y[x],x]-(7+5*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

2c2
(
5x3−10x2−40x−16

)
(2x+1)5/4 + 35c1

35
√
x
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2.1.176 problem 178

Solved as second order ode using Kovacic algorithm . . . . . . . . .1246
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1250
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1252
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1252
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1252

Internal problem ID [9024]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 178
Date solved : Thursday, December 12, 2024 at 09:59:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(3 + x) y′′ − x(15 + x) y′ − 20y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.265 (sec)

Writing the ode as (
3x3 + 9x2) y′′ + (−x2 − 15x

)
y′ − 20y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x3 + 9x2

B = −x2 − 15x (3)
C = −20

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 450x+ 1215
36 (x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = 7x2 + 450x+ 1215

t = 36
(
x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
7x2 + 450x+ 1215

36 (x2 + 3x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.336: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 10
9 (3 + x) −

10
9x − 2

9 (3 + x)2
+ 15

4x2

For the pole at x = −3 let b be the coefficient of 1
(3+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 7x2 + 450x+ 1215

36 (x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = 7
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

6
α−
∞ = 1

2 −
√
1 + 4b = −1

6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7x2 + 450x+ 1215
36 (x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−3 2 0 2
3

1
3

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

6 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

6 −
(
−7
6

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
9 + 3x − 3

2x + (−) (0)

= 1
9 + 3x − 3

2x
= − 7x+ 27

6x (3 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
9 + 3x − 3

2x

)
(1) +

((
− 1
3 (3 + x)2

+ 3
2x2

)
+
(

1
9 + 3x − 3

2x

)2

−
(
7x2 + 450x+ 1215

36 (x2 + 3x)2
))

= 0

−27 + 7a0
3x (3 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

27
7

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 27
7

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 27

7

)
e
∫ ( 1

9+3x−
3
2x

)
dx

=
(
x+ 27

7

)
e

ln(3+x)
3 − 3 ln(x)

2

=
(
x+ 27

7

)
(3 + x)1/3

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−15x
3x3+9x2 dx

= z1e
− 2 ln(3+x)

3 + 5 ln(x)
6

= z1

(
x5/6

(3 + x)2/3

)

Which simplifies to

y1 =
7x+ 27

7 (3 + x)1/3 x2/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−15x

3x3+9x2 dx

(y1)2
dx

= y1

∫
e−

4 ln(3+x)
3 + 5 ln(x)

3

(y1)2
dx

= y1

(
21(3 + x)5/3 (x2 − 36x− 243) e−

4 ln(3+x)
3 + 5 ln(x)

3

4 (7x+ 27)x5/3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
7x+ 27

7 (3 + x)1/3 x2/3

)

+ c2

(
7x+ 27

7 (3 + x)1/3 x2/3

(
21(3 + x)5/3 (x2 − 36x− 243) e−

4 ln(3+x)
3 + 5 ln(x)

3

4 (7x+ 27)x5/3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2(x+ 3)
(

d2

dx2y(x)
)
− x(15 + x)

(
d
dx
y(x)

)
− 20y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 20y(x)
3x2(x+3) +

(15+x)
(

d
dx

y(x)
)

3x(x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(15+x)

(
d
dx

y(x)
)

3x(x+3) − 20y(x)
3x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 15+x
3x(x+3) , P3(x) = − 20

3x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 4
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators

3x2(x+ 3)
(

d2

dx2y(x)
)
− x(15 + x)

(
d
dx
y(x)

)
− 20y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(3u3 − 18u2 + 27u)
(

d2

du2y(u)
)
+ (−u2 − 9u+ 36)

(
d
du
y(u)

)
− 20y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

9a0r(1 + 3r)u−1+r + (9a1(1 + r) (4 + 3r)− a0(18r2 − 9r + 20))ur +
(

∞∑
k=1

(9ak+1(k + 1 + r) (3k + 4 + 3r)− ak(18k2 + 36kr + 18r2 − 9k − 9r + 20) + ak−1(k + r − 1) (3k − 7 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
9r(1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

3

}
• Each term must be 0

9a1(1 + r) (4 + 3r)− a0(18r2 − 9r + 20) = 0
• Each term in the series must be 0, giving the recursion relation

3(−6ak + ak−1 + 9ak+1) k2 + (6(−6ak + ak−1 + 9ak+1) r + 9ak − 10ak−1 + 63ak+1) k + 3(−6ak + ak−1 + 9ak+1) r2 + (9ak − 10ak−1 + 63ak+1) r − 20ak + 7ak−1 + 36ak+1 = 0
• Shift index using k− >k + 1

3(−6ak+1 + ak + 9ak+2) (k + 1)2 + (6(−6ak+1 + ak + 9ak+2) r + 9ak+1 − 10ak + 63ak+2) (k + 1) + 3(−6ak+1 + ak + 9ak+2) r2 + (9ak+1 − 10ak + 63ak+2) r − 20ak+1 + 7ak + 36ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −3k2ak−18k2ak+1+6krak−36krak+1+3r2ak−18r2ak+1−4kak−27kak+1−4rak−27rak+1−29ak+1
9(3k2+6kr+3r2+13k+13r+14)

• Recursion relation for r = 0
ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14) , 36a1 − 20a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k , ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1
9(3k2+13k+14) , 36a1 − 20a0 = 0

]
• Recursion relation for r = −1

3

ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5
3ak−22ak+1

9(3k2+11k+10)

• Solution for r = −1
3[

y(u) =
∞∑
k=0

aku
k− 1

3 , ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5
3ak−22ak+1

9(3k2+11k+10) , 18a1 − 25a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k−
1
3 , ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5

3ak−22ak+1
9(3k2+11k+10) , 18a1 − 25a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
1
3

)
, ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14) , 36a1 − 20a0 = 0, bk+2 = −3k2bk−18k2bk+1−6kbk−15kbk+1+ 5
3 bk−22bk+1

9(3k2+11k+10) , 18b1 − 25b0 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 31� �
dsolve(3*x^2*(x+3)*diff(diff(y(x),x),x)-x*(15+x)*diff(y(x),x)-20*y(x) = 0,

y(x),singsol=all)� �
y =

c1(x2 − 36x− 243) + c2(7x+27)
(x+3)1/3

x2/3

Mathematica DSolve solution

Solving time : 0.287 (sec)
Leaf size : 43� �
DSolve[{3*x^2*(3+x)*D[y[x],{x,2}]-x*(15+x)*D[y[x],x]-20*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
21c2(x2 − 36x− 243) + 4c1(7x+27)

3
√
x+ 3

28x2/3
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2.1.177 problem 179

Solved as second order ode using Kovacic algorithm . . . . . . . . .1253
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1257
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1259
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1259
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1259

Internal problem ID [9025]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 179
Date solved : Thursday, December 12, 2024 at 09:59:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + x(1− 10x) y′ − (9− 10x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.288 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−10x2 + x

)
y′ + (10x− 9) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −10x2 + x (3)
C = 10x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 80x2 − 28x+ 35
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 80x2 − 28x+ 35

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
80x2 − 28x+ 35

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.338: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −49
2x + 49

2 (1 + x) +
143

4 (1 + x)2
+ 35

4x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 143
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

2
α−
c = 1

2 −
√
1 + 4b = −11

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 80x2 − 28x+ 35

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 20. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

α−
∞ = 1

2 −
√
1 + 4b = −4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 80x2 − 28x+ 35
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 13
2 −11

2

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5 −4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 5− (4)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 13
2 (1 + x) −

5
2x + (0)

= 13
2 (1 + x) −

5
2x

= 8x− 5
2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

13
2 (1 + x) −

5
2x

)
(1) +

((
− 13
2 (1 + x)2

+ 5
2x2

)
+
(

13
2 (1 + x) −

5
2x

)2

−
(
80x2 − 28x+ 35

4 (x2 + x)2
))

= 0

−5− 8a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −5

8

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 5
8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 5

8

)
e
∫ ( 13

2(1+x)−
5
2x

)
dx

=
(
x− 5

8

)
e

13 ln(1+x)
2 − 5 ln(x)

2

=
(
x− 5

8

)
(1 + x)13/2

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x2+x
x2(1+x) dx

= z1e
11 ln(1+x)

2 − ln(x)
2

= z1

(
(1 + x)11/2√

x

)

Which simplifies to

y1 =
(1 + x)12

(
x− 5

8

)
x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x2+x

x2(1+x) dx

(y1)2
dx

= y1

∫
e11 ln(1+x)−ln(x)

(y1)2
dx

= y1

(
−8 e11 ln(1+x)−ln(x)x(715x4 + 572x3 + 234x2 + 52x+ 5)

6435 (8x− 5) (1 + x)23
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x)12

(
x− 5

8

)
x3

)

+ c2

(
(1 + x)12

(
x− 5

8

)
x3

(
−8 e11 ln(1+x)−ln(x)x(715x4 + 572x3 + 234x2 + 52x+ 5)

6435 (8x− 5) (1 + x)23
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(1− 10x)

(
d
dx
y(x)

)
− (9− 10x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−9+10x)y(x)
(x+1)x2 +

(−1+10x)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−1+10x)

(
d
dx

y(x)
)

x(x+1) + (−9+10x)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −−1+10x
x(x+1) , P3(x) = −9+10x

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −11

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
− x(−1 + 10x)

(
d
dx
y(x)

)
+ (−9 + 10x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−10u2 + 21u− 11)

(
d
du
y(u)

)
+ (−19 + 10u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−12 + r)u−1+r + (a1(1 + r) (−11 + r)− a0(2r2 − 23r + 19))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 11 + r)− ak(2k2 + 4kr + 2r2 − 23k − 23r + 19) + ak−1(k − 2 + r) (k − 11 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−12 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 12}

• Each term must be 0
a1(1 + r) (−11 + r)− a0(2r2 − 23r + 19) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 23ak − 13ak−1 − 10ak+1) k + (−2ak + ak−1 + ak+1) r2 + (23ak − 13ak−1 − 10ak+1) r − 19ak + 22ak−1 − 11ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 23ak+1 − 13ak − 10ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (23ak+1 − 13ak − 10ak+2) r − 19ak+1 + 22ak − 11ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−11kak+19kak+1−11rak+19rak+1+10ak+2ak+1

k2+2kr+r2−8k−8r−20

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−11kak+19kak+1+10ak+2ak+1

k2−8k−20

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 10

ak+2 = −k2ak−2k2ak+1−11kak+19kak+1+10ak+2ak+1
k2−8k−20

• Recursion relation for r = 12
ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1

k2+16k+28

• Solution for r = 12[
y(u) =

∞∑
k=0

aku
k+12, ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1

k2+16k+28 , 13a1 − 31a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+12 , ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1
k2+16k+28 , 13a1 − 31a0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 82� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+x*(1-10*x)*diff(y(x),x)-(9-10*x)*y(x) = 0,

y(x),singsol=all)� �
y

= 8c2x13 + 91c2x12 + 468c2x11 + 1430c2x10 + 2860c2x9 + 3861c2x8 + 3432c2x7 + 1716c2x6 + 715c1x4 + 572c1x3 + 234c1x2 + 52c1x+ 5c1
x3

Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 51� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+x*(1-10*x)*D[y[x],x]-(9-10*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 6435c1(x+ 1)12(8x− 5)− 8c2(715x4 + 572x3 + 234x2 + 52x+ 5)

51480x3
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2.1.178 problem 180

Solved as second order ode using Kovacic algorithm . . . . . . . . .1260
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1264
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1266
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1266
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1266

Internal problem ID [9026]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 180
Date solved : Thursday, December 12, 2024 at 09:59:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + 3x2y′ − (6− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as

x2(1 + x) y′′ + 3x2y′ + (x− 6) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = 3x2 (3)
C = x− 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 20x+ 24
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 20x+ 24

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 20x+ 24

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.340: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (1 + x)2

+ 7
1 + x

− 7
x
+ 6

x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 20x+ 24

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 20x+ 24
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 3
2 (1 + x) −

2
x
+ (−) (0)

= 3
2 (1 + x) −

2
x

= − x+ 4
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2 (1 + x) −

2
x

)
(1) +

((
− 3
2 (1 + x)2

+ 2
x2

)
+
(

3
2 (1 + x) −

2
x

)2

−
(
−x2 + 20x+ 24

4 (x2 + x)2
))

= 0

−4 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 4) e
∫ ( 3

2(1+x)−
2
x

)
dx

= (x+ 4) e−2 ln(x)+ 3 ln(1+x)
2

= (x+ 4) (1 + x)3/2

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2

x2(1+x) dx

= z1e
− 3 ln(1+x)

2

= z1

(
1

(1 + x)3/2

)

Which simplifies to

y1 =
x+ 4
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2

x2(1+x) dx

(y1)2
dx

= y1

∫
e−3 ln(1+x)

(y1)2
dx

= y1

(
256

27 (x+ 4) + ln (1 + x)− 1
18 (1 + x)2

+ 14
27 (1 + x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 4
x2

)
+ c2

(
x+ 4
x2

(
256

27 (x+ 4) + ln (1 + x)− 1
18 (1 + x)2

+ 14
27 (1 + x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x2( d

dx
y(x)

)
− (−x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−6+x)y(x)
(x+1)x2 −

3
(

d
dx

y(x)
)

x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x+1 + (−6+x)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x+1 , P3(x) = −6+x

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x2( d

dx
y(x)

)
+ (−6 + x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (3u2 − 6u+ 3)

(
d
du
y(u)

)
+ (−7 + u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(2 + r)u−1+r + (a1(1 + r) (3 + r)− a0(2r2 + 4r + 7))ur +
(

∞∑
k=1

(
ak+1(k + r + 1) (k + 3 + r)− ak(2k2 + 4kr + 2r2 + 4k + 4r + 7) + ak−1(k + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• Each term must be 0
a1(1 + r) (3 + r)− a0(2r2 + 4r + 7) = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(k + r)2 + ak+1(k + r + 1) (k + 3 + r)− 2

(
k2 + (2r + 2) k + r2 + 2r + 7

2

)
ak = 0

• Shift index using k− >k + 1
ak(k + r + 1)2 + ak+2(k + r + 2) (k + 4 + r)− 2

(
(k + 1)2 + (2r + 2) (k + 1) + r2 + 2r + 7

2

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1+2kak−8kak+1+2rak−8rak+1+ak−13ak+1

(k+r+2)(k+4+r)

• Recursion relation for r = −2
ak+2 = −k2ak−2k2ak+1−2kak+ak−5ak+1

k(k+2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 0

ak+2 = −k2ak−2k2ak+1−2kak+ak−5ak+1
k(k+2)

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1

(k+2)(k+4)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1

(k+2)(k+4) , 3a1 − 7a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1
(k+2)(k+4) , 3a1 − 7a0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 45� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+3*diff(y(x),x)*x^2-(-x+6)*y(x) = 0,

y(x),singsol=all)� �
y =

c1(x+ 4) +
c2
(
6(x+4)(x+1)2 ln(x+1)+60x2+129x+68

)
(x+1)2

x2

Mathematica DSolve solution

Solving time : 0.118 (sec)
Leaf size : 49� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+3*x^2*D[y[x],x]-(6-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2
(
60x2+129x+68

)
(x+1)2 + 6c1(x+ 4) + 6c2(x+ 4) log(x+ 1)

6x2
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2.1.179 problem 181

Solved as second order ode using Kovacic algorithm . . . . . . . . .1267
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1271
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1273
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1273
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1273

Internal problem ID [9027]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 181
Date solved : Thursday, December 12, 2024 at 09:59:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ − 2x(3 + 14x) y′ + (6 + 100x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.240 (sec)

Writing the ode as (
2x3 + x2) y′′ + (−28x2 − 6x

)
y′ + (6 + 100x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = −28x2 − 6x (3)
C = 6 + 100x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 24x2 − 16x+ 6
(2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 24x2 − 16x+ 6

t =
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
24x2 − 16x+ 6

(2x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.342: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 20(
x+ 1

2

)2 + 40
x+ 1

2
− 40

x
+ 6

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 20. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

α−
c = 1

2 −
√
1 + 4b = −4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 24x2 − 16x+ 6

(2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 24x2 − 16x+ 6
(2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2
−1

2 2 0 5 −4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 3− (3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= −2
x
+ 5

x+ 1
2
+ (0)

= −2
x
+ 5

x+ 1
2

= −2 + 6x
2x2 + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−2
x
+ 5

x+ 1
2

)
(0) +

((
2
x2 − 5(

x+ 1
2

)2
)

+
(
−2
x
+ 5

x+ 1
2

)2

−
(
24x2 − 16x+ 6

(2x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 2
x
+ 5

x+1
2

)
dx

= (1 + 2x)5

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−28x2−6x
2x3+x2 dx

= z1e
3 ln(x)+4 ln(1+2x)

= z1
(
x3(1 + 2x)4

)
Which simplifies to

y1 = x(1 + 2x)9

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−28x2−6x

2x3+x2 dx

(y1)2
dx

= y1

∫
e6 ln(x)+8 ln(1+2x)

(y1)2
dx

= y1

(
−(2016x4 + 672x3 + 144x2 + 18x+ 1) e6 ln(x)+8 ln(1+2x)

20160 (1 + 2x)17 x6

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x(1+2x)9

)
+c2

(
x(1+2x)9

(
−(2016x4 + 672x3 + 144x2 + 18x+ 1) e6 ln(x)+8 ln(1+2x)

20160 (1 + 2x)17 x6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
− 2x(3 + 14x)

(
d
dx
y(x)

)
+ (6 + 100x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(3+50x)y(x)
x2(2x+1) +

2(3+14x)
(

d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(3+14x)

(
d
dx

y(x)
)

x(2x+1) + 2(3+50x)y(x)
x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −2(3+14x)
x(2x+1) , P3(x) = 2(3+50x)

x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
− 2x(3 + 14x)

(
d
dx
y(x)

)
+ (6 + 100x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + r) (−6 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 6) + 2ak−1(k + r − 6) (k − 11 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 6}

• Each term in the series must be 0, giving the recursion relation
(k + r − 6) ((2k + 2r − 22) ak−1 + ak(k + r − 1)) = 0

• Shift index using k− >k + 1
(k + r − 5) ((2k + 2r − 20) ak + ak+1(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −2(k+r−10)ak

k+r

• Recursion relation for r = 1 ; series terminates at k = 9
ak+1 = −2(k−9)ak

k+1

• Recursion relation that defines the terminating series solution of the ODE for r = 1[
y(x) =

8∑
k=0

akx
k+1, ak+1 = −2(k−9)ak

k+1

]
• Recursion relation for r = 6 ; series terminates at k = 4

ak+1 = −2(k−4)ak
k+6

• Apply recursion relation for k = 0
a1 = 4a0

3

• Apply recursion relation for k = 1
a2 = 6a1

7

• Express in terms of a0
a2 = 8a0

7

• Apply recursion relation for k = 2
a3 = a2

2

• Express in terms of a0
a3 = 4a0

7

• Apply recursion relation for k = 3
a4 = 2a3

9

• Express in terms of a0
a4 = 8a0

63

• Terminating series solution of the ODE for r = 6 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4)
• Combine solutions and rename parameters[

y(x) =
(

8∑
k=0

akx
k+1
)
+ b0 ·

(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4) , ak+1 = −2(k−9)ak
k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 62� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)-2*x*(3+14*x)*diff(y(x),x)+(6+100*x)*y(x) = 0,

y(x),singsol=all)� �
y = 8c2x10+36c2x9+72c2x8+84c2x7+63c2x6+2016c1x5+672c1x4+144c1x3+18c1x2+c1x

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 44� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]-2*x*(3+14*x)*D[y[x],x]+(6+100*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x(2x+ 1)9 − c2x(2016x4 + 672x3 + 144x2 + 18x+ 1)

20160
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2.1.180 problem 182

Solved as second order ode using Kovacic algorithm . . . . . . . . .1274
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1278
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1280
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1280
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1280

Internal problem ID [9028]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 182
Date solved : Thursday, December 12, 2024 at 09:59:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − x(6 + 11x) y′ + (6 + 32x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−11x2 − 6x

)
y′ + (6 + 32x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −11x2 − 6x (3)
C = 6 + 32x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 + 4x+ 24
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 15x2 + 4x+ 24

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 + 4x+ 24
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.344: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 11
1 + x

− 11
x

+ 6
x2 + 35

4 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 + 4x+ 24

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 + 4x+ 24
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
2 −5

2

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 7
2 (1 + x) −

2
x
+ (0)

= 7
2 (1 + x) −

2
x

= 3x− 4
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
2 (1 + x) −

2
x

)
(1) +

((
− 7
2 (1 + x)2

+ 2
x2

)
+
(

7
2 (1 + x) −

2
x

)2

−
(
15x2 + 4x+ 24
4 (x2 + x)2

))
= 0

−4− 3a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −4

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 4

3

)
e
∫ ( 7

2(1+x)−
2
x

)
dx

=
(
x− 4

3

)
e

7 ln(1+x)
2 −2 ln(x)

=
(
x− 4

3

)
(1 + x)7/2

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−11x2−6x
x2(1+x) dx

= z1e
5 ln(1+x)

2 +3 ln(x)

= z1
(
(1 + x)5/2 x3

)
Which simplifies to

y1 = (1 + x)6 x
(
x− 4

3

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−11x2−6x

x2(1+x) dx

(y1)2
dx

= y1

∫
e5 ln(1+x)+6 ln(x)

(y1)2
dx

= y1

(
−3 e5 ln(1+x)+6 ln(x)(35x3 + 42x2 + 21x+ 4)

140 (3x− 4)x6 (1 + x)11
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x)6 x

(
x− 4

3

))
+ c2

(
(1 + x)6 x

(
x− 4

3

)(
−3 e5 ln(1+x)+6 ln(x)(35x3 + 42x2 + 21x+ 4)

140 (3x− 4)x6 (1 + x)11
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− x(6 + 11x)

(
d
dx
y(x)

)
+ (6 + 32x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(3+16x)y(x)
(x+1)x2 +

(6+11x)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(6+11x)

(
d
dx

y(x)
)

x(x+1) + 2(3+16x)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6+11x
x(x+1) , P3(x) = 2(3+16x)

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −5

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
− x(6 + 11x)

(
d
dx
y(x)

)
+ (6 + 32x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−11u2 + 16u− 5)

(
d
du
y(u)

)
+ (−26 + 32u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−6 + r)u−1+r + (a1(1 + r) (−5 + r)− 2a0(r2 − 9r + 13))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 5 + r)− 2ak(k2 + 2kr + r2 − 9k − 9r + 13) + ak−1(k − 5 + r) (k − 9 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term must be 0
a1(1 + r) (−5 + r)− 2a0(r2 − 9r + 13) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + 2((−2ak + ak−1 + ak+1) r + 9ak − 7ak−1 − 2ak+1) k + (−2ak + ak−1 + ak+1) r2 + 2(9ak − 7ak−1 − 2ak+1) r − 26ak + 45ak−1 − 5ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + 2((−2ak+1 + ak + ak+2) r + 9ak+1 − 7ak − 2ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + 2(9ak+1 − 7ak − 2ak+2) r − 26ak+1 + 45ak − 5ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−12kak+14kak+1−12rak+14rak+1+32ak−10ak+1

k2+2kr+r2−2k−2r−8

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−12kak+14kak+1+32ak−10ak+1

k2−2k−8

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4

ak+2 = −k2ak−2k2ak+1−12kak+14kak+1+32ak−10ak+1
k2−2k−8

• Recursion relation for r = 6
ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1

k2+10k+16

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1

k2+10k+16 , 7a1 + 10a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+6 , ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1
k2+10k+16 , 7a1 + 10a0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 45� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-x*(6+11*x)*diff(y(x),x)+(6+32*x)*y(x) = 0,

y(x),singsol=all)� �
y = 3c1x8 + 14c1x7 + 21c1x6 + 35c2x4 + 42c2x3 + 21c2x2 + 4c2x

Mathematica DSolve solution

Solving time : 0.118 (sec)
Leaf size : 45� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-x*(6+11*x)*D[y[x],x]+(6+32*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3c1x(x+ 1)6(3x− 4)− 1
140c2x

(
35x3 + 42x2 + 21x+ 4

)
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2.1.181 problem 183

Solved as second order ode using Kovacic algorithm . . . . . . . . .1281
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1285
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1286
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1287
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1287

Internal problem ID [9029]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 183
Date solved : Thursday, December 12, 2024 at 09:59:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 4x(1 + 4x) y′ − (49 + 27x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.265 (sec)

Writing the ode as(
4x3 + 4x2) y′′ + (16x2 + 4x

)
y′ + (−27x− 49) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 16x2 + 4x (3)
C = −27x− 49

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35x2 + 80x+ 48
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 35x2 + 80x+ 48

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
35x2 + 80x+ 48

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.346: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (1 + x)2

− 4
x
+ 4

1 + x
+ 12

x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 12. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 4

α−
c = 1

2 −
√
1 + 4b = −3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35x2 + 80x+ 48

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35x2 + 80x+ 48
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

0 2 0 4 −3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 7

2 −
(
7
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2 (1 + x) +

4
x
+ (0)

= − 1
2 (1 + x) +

4
x

= 7x+ 8
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (1 + x) +

4
x

)
(0) +

((
1

2 (1 + x)2
− 4

x2

)
+
(
− 1
2 (1 + x) +

4
x

)2

−
(
35x2 + 80x+ 48

4 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(1+x)+

4
x

)
dx

= x4
√
1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
16x2+4x
4x3+4x2 dx

= z1e
− 3 ln(1+x)

2 − ln(x)
2

= z1

(
1

(1 + x)3/2
√
x

)

Which simplifies to

y1 =
x7/2

(1 + x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 16x2+4x

4x3+4x2 dx

(y1)2
dx

= y1

∫
e−3 ln(1+x)−ln(x)

(y1)2
dx

= y1

(
−(7x+ 6) (1 + x)3 e−3 ln(1+x)−ln(x)

42x6

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x7/2

(1 + x)2
)
+ c2

(
x7/2

(1 + x)2

(
−(7x+ 6) (1 + x)3 e−3 ln(1+x)−ln(x)

42x6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(4x+ 1)

(
d
dx
y(x)

)
− (49 + 27x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (49+27x)y(x)
4x2(x+1) −

(4x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4x+1)

(
d
dx

y(x)
)

x(x+1) − (49+27x)y(x)
4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x+1
x(x+1) , P3(x) = − 49+27x

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(4x+ 1)

(
d
dx
y(x)

)
+ (−27x− 49) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (16u2 − 28u+ 12)

(
d
du
y(u)

)
+ (−27u− 22) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(2 + r)u−1+r + (4a1(1 + r) (3 + r)− 2a0(4r2 + 10r + 11))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (k + 3 + r)− 2ak(4k2 + 8kr + 4r2 + 10k + 10r + 11) + ak−1(2k + 7 + 2r) (2k − 5 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• Each term must be 0
4a1(1 + r) (3 + r)− 2a0(4r2 + 10r + 11) = 0

• Each term in the series must be 0, giving the recursion relation
4(−2ak + ak−1 + ak+1) k2 + 4(2(−2ak + ak−1 + ak+1) r − 5ak + ak−1 + 4ak+1) k + 4(−2ak + ak−1 + ak+1) r2 + 4(−5ak + ak−1 + 4ak+1) r − 22ak − 35ak−1 + 12ak+1 = 0

• Shift index using k− >k + 1
4(−2ak+1 + ak + ak+2) (k + 1)2 + 4(2(−2ak+1 + ak + ak+2) r − 5ak+1 + ak + 4ak+2) (k + 1) + 4(−2ak+1 + ak + ak+2) r2 + 4(−5ak+1 + ak + 4ak+2) r − 22ak+1 − 35ak + 12ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+12kak−36kak+1+12rak−36rak+1−27ak−50ak+1

4(k2+2kr+r2+6k+6r+8)

• Recursion relation for r = −2
ak+2 = −4k2ak−8k2ak+1−4kak−4kak+1−35ak−10ak+1

4(k2+2k)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 0

ak+2 = −4k2ak−8k2ak+1−4kak−4kak+1−35ak−10ak+1
4(k2+2k)

• Recursion relation for r = 0
ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1

4(k2+6k+8)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1

4(k2+6k+8) , 12a1 − 22a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1
4(k2+6k+8) , 12a1 − 22a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 26� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+4*x*(4*x+1)*diff(y(x),x)-(49+27*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

7 + 7c2x+ 6c2
(x+ 1)2 x7/2

Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 36� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(1+4*x)*D[y[x],x]-(49+27*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 42c1x7 − 7c2x− 6c2

42x7/2(x+ 1)2
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2.1.182 problem 184

Solved as second order ode using Kovacic algorithm . . . . . . . . .1288
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1292
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1293
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1294
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1294

Internal problem ID [9030]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 184
Date solved : Thursday, December 12, 2024 at 09:59:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−2x2 + 7

)
y′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.334 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 − 7x

)
y′ + 12y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 − 7x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −30x2 + 15
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −30x2 + 15

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−30x2 + 15
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.348: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 45
16 (x− i)2

+ 45
16 (x+ i)2

+ 75i
16 (x− i) −

75i
16 (x+ i) +

15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 45

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −30x2 + 15
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

i 2 0 9
4 −5

4

−i 2 0 9
4 −5

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 5
2x − 5

4 (x− i) −
5

4 (x+ i) + (0)

= 5
2x − 5

4 (x− i) −
5

4 (x+ i)

= 5
2x (x2 + 1)



chapter 2. book solved problems 1291

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
2x − 5

4 (x− i) −
5

4 (x+ i)

)
(0) +

((
− 5
2x2 + 5

4 (x− i)2
+ 5

4 (x+ i)2
)
+
(

5
2x − 5

4 (x− i) −
5

4 (x+ i)

)2

−
(
−30x2 + 15
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

2x−
5

4(x−i)−
5

4(x+i)

)
dx

= x5/2

(x2 + 1)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3−7x
x4+x2 dx

= z1e
7 ln(x)

2 −
9 ln

(
x2+1

)
4

= z1

(
x7/2

(x2 + 1)9/4

)

Which simplifies to

y1 =
x6

(x2 + 1)7/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3−7x

x4+x2 dx

(y1)2
dx

= y1

∫
e7 ln(x)−

9 ln
(
x2+1

)
2

(y1)2
dx

= y1

−(x2 + 1)7/2

4x4 − 3(x2 + 1)7/2

8x2 + 3(x2 + 1)5/2

8 + 5(x2 + 1)3/2

8 + 15
√
x2 + 1
8

−
15 arctanh

(
1√

x2+1

)
8
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x6

(x2 + 1)7/2

)

+c2

 x6

(x2 + 1)7/2

−(x2 + 1)7/2

4x4 − 3(x2 + 1)7/2

8x2 +3(x2 + 1)5/2

8 +5(x2 + 1)3/2

8 +15
√
x2 + 1
8 −

15 arctanh
(

1√
x2+1

)
8



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−2x2 + 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 12y(x)
x2(x2+1) −

(
2x2−7

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2−7

)(
d
dx

y(x)
)

x(x2+1) + 12y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2−7
x(x2+1) , P3(x) = 12

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 12

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 − 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−6 + r)xr + a1(−1 + r) (−5 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 6) + ak−2(k + r − 2) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 6}

• Each term must be 0
a1(−1 + r) (−5 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 6) + ak−2(k + r − 1)) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k − 4 + r) + ak(k + r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

k−4+r

• Recursion relation for r = 2
ak+2 = −ak(k+3)

k−2

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+2 = −ak(k+3)

k−2

• Recursion relation for r = 6
ak+2 = −ak(k+7)

k+2

• Solution for r = 6[
y(x) =

∞∑
k=0

akx
k+6, ak+2 = −ak(k+7)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 1294

Maple dsolve solution

Solving time : 0.052 (sec)
Leaf size : 56� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-2*x^2+7)*diff(y(x),x)+12*y(x) = 0,

y(x),singsol=all)� �
y =

(
−15 arctanh

(
1√

x2+1

)
c2x

4 + c2(8x4 − 9x2 − 2)
√
x2 + 1 + c1x

4
)
x2

(x2 + 1)7/2

Mathematica DSolve solution

Solving time : 0.224 (sec)
Leaf size : 88� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(7-2*x^2)*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−15c2x6arctanh

(√
x2 + 1

)
− 2c2

√
x2 + 1x2 + 8x6(c2√x2 + 1 + c1

)
− 9c2

√
x2 + 1x4

8 (x2 + 1)7/2
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2.1.183 problem 185

Solved as second order ode using Kovacic algorithm . . . . . . . . .1295
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1299
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1301
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1301
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1301

Internal problem ID [9031]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 185
Date solved : Thursday, December 12, 2024 at 09:59:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x
(
−x2 + 7

)
y′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as

x2y′′ +
(
x3 − 7x

)
y′ + 12y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 − 7x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 12x2 + 15
4x2 (6)

Comparing the above to (5) shows that

s = x4 − 12x2 + 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 12x2 + 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.350: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 3 + 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
x
− 21

4x3 − 63
2x5 − 3465

16x7 − 13041
8x9 − 417501

32x11 − 1744659
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 12x2 + 15
4x2

= Q+ R

4x2

=
(
x2

4 − 3
)
+
(

15
4x2

)
= x2

4 − 3 + 15
4x2

We see that the coefficient of the term x in the quotient is −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1
2

− 1
)

= −7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1
2

− 1
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 12x2 + 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −7

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 5
2x + (−)

(x
2

)
= 5

2x − x

2
= 5

2x − x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
2x − x

2

)
(0) +

((
− 5
2x2 − 1

2

)
+
(

5
2x − x

2

)2

−
(
x4 − 12x2 + 15

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

2x−
x
2
)
dx

= x5/2e−x2
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−7x

x2 dx

= z1e
−x2

4 + 7 ln(x)
2

= z1
(
x7/2e−x2

4

)
Which simplifies to

y1 = x6e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3−7x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 +7 ln(x)

(y1)2
dx

= y1

− ex2
2

4x4 − ex2
2

8x2 −
Ei1
(
−x2

2

)
16


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x6e−x2

2

)
+ c2

x6e−x2
2

− ex2
2

4x4 − ex2
2

8x2 −
Ei1
(
−x2

2

)
16



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(−x2 + 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2 −

(
x2−7

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−7

)(
d
dx

y(x)
)

x
+ 12y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2−7

x
, P3(x) = 12

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 12

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 − 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−6 + r)xr + a1(−1 + r) (−5 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 6) + ak−2(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 6}

• Each term must be 0
a1(−1 + r) (−5 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 6) + ak−2) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k − 4 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k−4+r

• Recursion relation for r = 2
ak+2 = − ak

k−2

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+2 = − ak

k−2

• Recursion relation for r = 6
ak+2 = − ak

k+2
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• Solution for r = 6[
y(x) =

∞∑
k=0

akx
k+6, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 47� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x^2+7)*diff(y(x),x)+12*y(x) = 0,

y(x),singsol=all)� �
y = x2

(
Ei1
(
−x2

2

)
e−x2

2 c2x
4 + e−x2

2 c1x
4 + 2c2x2 + 4c2

)

Mathematica DSolve solution

Solving time : 0.244 (sec)
Leaf size : 61� �
DSolve[{x^2*D[y[x],{x,2}]-x*(7-x^2)*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

16c2e
−x2

2 x6 ExpIntegralEi
(
x2

2

)
− 1

8c2
(
x2 + 2

)
x2 + c1e

−x2
2 x6
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2.1.184 problem 186

Solved as second order ode using Kovacic algorithm . . . . . . . . .1302
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1307
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1308
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1309
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1309

Internal problem ID [9032]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 186
Date solved : Thursday, December 12, 2024 at 09:59:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
2x2 + 1

)
y′ −

(
−10x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.381 (sec)

Writing the ode as

x2y′′ +
(
2x3 + x

)
y′ +

(
10x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x3 + x (3)
C = 10x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 32x2 + 3
4x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 32x2 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 32x2 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.352: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2 − 8 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x− 4

x
− 61

8x3 − 61
2x5 − 19337

128x7 − 26779
32x9 − 5083557

1024x11 − 7896633
256x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 32x2 + 3
4x2

= Q+ R

4x2

=
(
x2 − 8

)
+
(

3
4x2

)
= x2 − 8 + 3

4x2

We see that the coefficient of the term x in the quotient is −8. Now b can be found.

b = (−8)− (0)
= −8

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−8
1 − 1

)
= −9

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−8

1 − 1
)

= 7
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 32x2 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x −9
2

7
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

2 then

d = α−
∞ −

(
α+
c1

)
= 7

2 −
(
3
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
2x + (−) (x)

= 3
2x − x

= 3
2x − x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

3
2x − x

)
(2x+ a1) +

((
− 3
2x2 − 1

)
+
(

3
2x − x

)2

−
(
4x4 − 32x2 + 3

4x2

))
= 0

2x2a1 + (4a0 + 8)x+ 3a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2

)
e
∫ ( 3

2x−x
)
dx

=
(
x2 − 2

)
e−x2

2 + 3 ln(x)
2

=
(
x2 − 2

)
x3/2e−x2

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+x

x2 dx

= z1e
−x2

2 − ln(x)
2

= z1

(
e−x2

2
√
x

)

Which simplifies to

y1 = x e−x2(
x2 − 2

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+x

x2 dx

(y1)2
dx

= y1

∫
e−x2−ln(x)

(y1)2
dx

= y1

(∫ e−x2−ln(x)e2x2

x2 (x2 − 2)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x2(

x2 − 2
))

+ c2

(
x e−x2(

x2 − 2
)(∫ e−x2−ln(x)e2x2

x2 (x2 − 2)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(2x2 + 1)

(
d
dx
y(x)

)
− (−10x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
10x2−1

)
y(x)

x2 −
(
2x2+1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+1

)(
d
dx

y(x)
)

x
+
(
10x2−1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2x2+1

x
, P3(x) = 10x2−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(2x2 + 1)

(
d
dx
y(x)

)
+ (10x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr + a1(2 + r) r x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 1) + 2ak−2(k + 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 1}
• Each term must be 0

a1(2 + r) r = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 1) (k + r − 1) + 2ak−2(k + 3 + r) = 0
• Shift index using k− >k + 2

ak+2(k + 3 + r) (k + r + 1) + 2ak(k + r + 5) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 2ak(k+r+5)
(k+3+r)(k+r+1)

• Recursion relation for r = −1
ak+2 = −2ak(k+4)

(k+2)k

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −2ak(k+4)

(k+2)k , a1 = 0
]

• Recursion relation for r = 1
ak+2 = − 2ak(k+6)

(k+4)(k+2)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − 2ak(k+6)

(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −2ak(4+k)

(k+2)k , a1 = 0, bk+2 = − 2bk(k+6)
(4+k)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...



chapter 2. book solved problems 1309

<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed
<- Kovacics algorithm successful`� �

Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(2*x^2+1)*diff(y(x),x)-(-10*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −e−x2

x(x2 − 2) (c1 − 2c2)
2

Mathematica DSolve solution

Solving time : 0.362 (sec)
Leaf size : 68� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1+2*x^2)*D[y[x],x]-(1-10*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−x2
(
c2(x2 − 2)x2 ExpIntegralEi (x2) + 4c1x4 − x2

(
c2e

x2 + 8c1
)
+ c2e

x2
)

4x
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2.1.185 problem 187

Solved as second order ode using Kovacic algorithm . . . . . . . . .1310
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1314
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1316
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1316
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1316

Internal problem ID [9033]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 187
Date solved : Thursday, December 12, 2024 at 09:59:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
−2x2 + 1

)
y′ − 4

(
2x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.304 (sec)

Writing the ode as

x2y′′ +
(
−2x3 + x

)
y′ +

(
−8x2 − 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x3 + x (3)
C = −8x2 − 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 + 24x2 + 15
4x2 (6)

Comparing the above to (5) shows that

s = 4x4 + 24x2 + 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 + 24x2 + 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.354: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2 + 6 + 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x+ 3

x
− 21

8x3 + 63
8x5 − 3465

128x7 + 13041
128x9 − 417501

1024x11 + 1744659
1024x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 + 24x2 + 15
4x2

= Q+ R

4x2

=
(
x2 + 6

)
+
(

15
4x2

)
= x2 + 6 + 15

4x2

We see that the coefficient of the term x in the quotient is 6. Now b can be found.

b = (6)− (0)
= 6

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
6
1 − 1

)
= 5

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−6
1 − 1

)
= −7

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 + 24x2 + 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x 5
2 −7

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1

)
= 5

2 −
(
5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 5
2x + (x)

= 5
2x + x

= 5
2x + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
2x + x

)
(0) +

((
− 5
2x2 + 1

)
+
(

5
2x + x

)2

−
(
4x4 + 24x2 + 15

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

2x+x
)
dx

= x5/2ex2
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+x

x2 dx

= z1e
x2
2 − ln(x)

2

= z1

(
ex2

2
√
x

)

Which simplifies to

y1 = x2ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+x

x2 dx

(y1)2
dx

= y1

∫
ex

2−ln(x)

(y1)2
dx

= y1

(
−e−x2

4x4 + e−x2

4x2 − Ei1 (x2)
4

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex2

)
+ c2

(
x2ex2

(
−e−x2

4x4 + e−x2

4x2 − Ei1 (x2)
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(−2x2 + 1)

(
d
dx
y(x)

)
− 4(2x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4
(
2x2+1

)
y(x)

x2 +
(
2x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
2x2−1

)(
d
dx

y(x)
)

x
− 4

(
2x2+1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x2−1

x
, P3(x) = −4

(
2x2+1

)
x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(2x2 − 1)

(
d
dx
y(x)

)
+ (−8x2 − 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 2ak−2(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term must be 0
a1(3 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r − 2)− 2ak−2) = 0

• Shift index using k− >k + 2
(k + r + 4) (ak+2(k + r)− 2ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2ak

k+r

• Recursion relation for r = −2
ak+2 = 2ak

k−2
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• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 2ak

k−2

• Recursion relation for r = 2
ak+2 = 2ak

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 41� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-2*x^2+1)*diff(y(x),x)-4*(2*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −ex2 Ei1 (x2) c2x4 + c1x

4ex2 + c2x
2 − c2

x2

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 46� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1-2*x^2)*D[y[x],x]-4*(1+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2
(
ex

2
x4 ExpIntegralEi (−x2) + x2 − 1

)
4x2 + c1e

x2
x2
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2.1.186 problem 188

Solved as second order ode using Kovacic algorithm . . . . . . . . .1317
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1322
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1323
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1324
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1324

Internal problem ID [9034]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 188
Date solved : Thursday, December 12, 2024 at 09:59:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
−3x2 + 1

)
y′ − 4

(
−3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.617 (sec)

Writing the ode as

x2y′′ +
(
−3x3 + x

)
y′ +

(
12x2 − 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −3x3 + x (3)
C = 12x2 − 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x4 − 60x2 + 15
4x2 (6)

Comparing the above to (5) shows that

s = 9x4 − 60x2 + 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
9x4 − 60x2 + 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.356: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9x2

4 − 15 + 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3x

2 − 5
x
− 85

12x3 − 425
18x5 − 41225

432x7 − 278375
648x9 − 1787125

864x11 − 40534375
3888x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 3x
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 9x4 − 60x2 + 15
4x2

= Q+ R

4x2

=
(
9x2

4 − 15
)
+
(

15
4x2

)
= 9x2

4 − 15 + 15
4x2

We see that the coefficient of the term x in the quotient is −15. Now b can be found.

b = (−15)− (0)
= −15

Hence

[
√
r]∞ = 3x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−15

3
2

− 1
)

= −11
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−15

3
2

− 1
)

= 9
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x4 − 60x2 + 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 3x
2 −11

2
9
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 9

2 then

d = α−
∞ −

(
α+
c1

)
= 9

2 −
(
5
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 5
2x + (−)

(
3x
2

)
= 5

2x − 3x
2

= 5
2x − 3x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

5
2x − 3x

2

)
(2x+ a1) +

((
− 5
2x2 − 3

2

)
+
(

5
2x − 3x

2

)2

−
(
9x4 − 60x2 + 15

4x2

))
= 0

3x2a1 + 6(2 + a0)x+ 5a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2

)
e
∫ ( 5

2x−
3x
2
)
dx

=
(
x2 − 2

)
e− 3x2

4 + 5 ln(x)
2

=
(
x2 − 2

)
x5/2e− 3x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3+x

x2 dx

= z1e
3x2
4 − ln(x)

2

= z1

(
e 3x2

4
√
x

)

Which simplifies to
y1 =

(
x2 − 2

)
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3+x

x2 dx

(y1)2
dx

= y1

∫
e

3x2
2 −ln(x)

(y1)2
dx

= y1

(∫ e 3x2
2 −ln(x)

(x2 − 2)2 x4
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((
x2 − 2

)
x2)+ c2

((
x2 − 2

)
x2

(∫ e 3x2
2 −ln(x)

(x2 − 2)2 x4
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(−3x2 + 1)

(
d
dx
y(x)

)
− 4(−3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4
(
3x2−1

)
y(x)

x2 +
(
3x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
3x2−1

)(
d
dx

y(x)
)

x
+ 4

(
3x2−1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −3x2−1

x
, P3(x) = 4

(
3x2−1

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− (3x2 − 1)x

(
d
dx
y(x)

)
+ (12x2 − 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 3ak−2(k − 6 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(2 + r) (−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−2, 2}
• Each term must be 0

a1(3 + r) (−1 + r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 2) (k + r − 2)− 3ak−2(k − 6 + r) = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r)− 3ak(k + r − 4) = 0
• Recursion relation that defines series solution to ODE

ak+2 = 3ak(k+r−4)
(k+4+r)(k+r)

• Recursion relation for r = −2 ; series terminates at k = 6
ak+2 = 3ak(k−6)

(k+2)(k−2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 3ak(k−6)

(k+2)(k−2)

• Recursion relation for r = 2 ; series terminates at k = 2
ak+2 = 3ak(k−2)

(k+6)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 3ak(k−2)

(k+6)(k+2) , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 19� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-3*x^2+1)*diff(y(x),x)-4*(-3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −x2(x2 − 2) (c1 − c2)

2

Mathematica DSolve solution

Solving time : 0.406 (sec)
Leaf size : 89� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1-3*x^2)*D[y[x],x]-4*(1-3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

64

(
27c2

(
x2 − 2

)
x2 ExpIntegralEi

(
3x2

2

)
+ 64c1x4 − 2x2

(
9c2e

3x2
2 + 64c1

)
+ 24c2e

3x2
2 + 8c2e

3x2
2

x2

)
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2.1.187 problem 189

Solved as second order ode using Kovacic algorithm . . . . . . . . .1325
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1329
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1330
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1331
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1331

Internal problem ID [9035]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 189
Date solved : Thursday, December 12, 2024 at 09:59:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ + x

(
11x2 + 5

)
y′ + 24x2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.431 (sec)

Writing the ode as (
x4 + x2) y′′ + (11x3 + 5x

)
y′ + 24x2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 11x3 + 5x (3)
C = 24x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x4 + 6x2 + 15
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 3x4 + 6x2 + 15

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x4 + 6x2 + 15
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.358: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 9i
4 (x− i) −

9i
4 (x+ i) +

15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x4 + 6x2 + 15

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x4 + 6x2 + 15
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= − 3
2x + 3

2 (x− i) +
3

2 (x+ i) + (0)

= − 3
2x + 3

2 (x− i) +
3

2 (x+ i)

= − 3
2x + 3x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x + 3

2 (x− i) +
3

2 (x+ i)

)
(0) +

((
3
2x2 − 3

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 3
2x + 3

2 (x− i) +
3

2 (x+ i)

)2

−
(
3x4 + 6x2 + 15
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2x+

3
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+5x
x4+x2 dx

= z1e
−

3 ln
(
x2+1

)
2 − 5 ln(x)

2

= z1

(
1

(x2 + 1)3/2 x5/2

)

Which simplifies to

y1 =
1
x4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+5x

x4+x2 dx

(y1)2
dx

= y1

∫
e−3 ln

(
x2+1

)
−5 ln(x)

(y1)2
dx

= y1

(
−(x2 + 1) (2x2 + 1)x5e−3 ln

(
x2+1

)
−5 ln(x)

4

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x4

)
+ c2

(
1
x4

(
−(x2 + 1) (2x2 + 1)x5e−3 ln

(
x2+1

)
−5 ln(x)

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(11x2 + 5)

(
d
dx
y(x)

)
+ 24x2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −24y(x)
x2+1 −

(
11x2+5

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+5

)(
d
dx

y(x)
)

x(x2+1) + 24y(x)
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x2+5
x(x2+1) , P3(x) = 24

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 + 1)
(

d2

dx2y(x)
)
+ (11x2 + 5)

(
d
dx
y(x)

)
+ 24xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(4 + r)x−1+r + a1(1 + r) (5 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 5 + r) + ak−1(k + 5 + r) (k + 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−4, 0}

• Each term must be 0
a1(1 + r) (5 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 5 + r) (ak+1(k + r + 1) + ak−1(k + 3 + r)) = 0

• Shift index using k− >k + 1
(k + r + 6) (ak+2(k + 2 + r) + ak(k + r + 4)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+4)

k+2+r

• Recursion relation for r = −4
ak+2 = − akk

k−2

• Series not valid for r = −4 , division by 0 in the recursion relation at k = 2
ak+2 = − akk

k−2

• Recursion relation for r = 0
ak+2 = −ak(k+4)

k+2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k+4)

k+2 , 5a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 1331

Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 28� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(11*x^2+5)*diff(y(x),x)+24*x^2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

4 + 2c2x2 + c2

x4 (x2 + 1)2

Mathematica DSolve solution

Solving time : 0.082 (sec)
Leaf size : 36� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]+x*(5+11*x^2)*D[y[x],x]+24*x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −−4c1x4 + 2c2x2 + c2

4x4 (x2 + 1)2
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2.1.188 problem 190

Solved as second order ode using Kovacic algorithm . . . . . . . . .1332
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1336
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1337
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1338
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1338

Internal problem ID [9036]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 190
Date solved : Thursday, December 12, 2024 at 09:59:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 1
)
y′′ + 8xy′ −

(
−x2 + 35

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.385 (sec)

Writing the ode as (
4x4 + 4x2) y′′ + 8xy′ +

(
x2 − 35

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x2

B = 8x (3)
C = x2 − 35

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x4 + 22x2 + 35
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −x4 + 22x2 + 35

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x4 + 22x2 + 35

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.360: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
+ 21i

4 (x− i) −
21i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x4 + 22x2 + 35

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x4 + 22x2 + 35
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 5
2x + 3

2 (x− i) +
3

2 (x+ i) + (−) (0)

= − 5
2x + 3

2 (x− i) +
3

2 (x+ i)

= − 5
2x + 3x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2x + 3

2 (x− i) +
3

2 (x+ i)

)
(0) +

((
5
2x2 − 3

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 5
2x + 3

2 (x− i) +
3

2 (x+ i)

)2

−
(
−x4 + 22x2 + 35

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 5
2x+

3
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x

4x4+4x2 dx

= z1e
ln

(
x2+1

)
2 −ln(x)

= z1

(√
x2 + 1
x

)

Which simplifies to

y1 =
(x2 + 1)2

x7/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x

4x4+4x2 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
−2 ln(x)

(y1)2
dx

= y1

(
ln (x2 + 1)

2 + 1
x2 + 1 − 1

4 (x2 + 1)2
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

x7/2

)
+ c2

(
(x2 + 1)2

x7/2

(
ln (x2 + 1)

2 + 1
x2 + 1 − 1

4 (x2 + 1)2
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
− (−x2 + 35) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−35

)
y(x)

4x2(x2+1) −
2
(

d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x(x2+1) +
(
x2−35

)
y(x)

4x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(x2+1)x , P3(x) = x2−35
4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −35
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ (x2 − 35) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + 2r) (−5 + 2r)xr + a1(9 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 7) (2k + 2r − 5) + ak−2(2k + 2r − 5)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−7

2 ,
5
2

}
• Each term must be 0

a1(9 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k − 5

2 + r
) ((

k − 5
2 + r

)
ak−2 + ak

(
k + r + 7

2

))
= 0

• Shift index using k− >k + 2
4
(
k − 1

2 + r
) ((

k − 1
2 + r

)
ak + ak+2

(
k + 11

2 + r
))

= 0
• Recursion relation that defines series solution to ODE

ak+2 = − (2k+2r−1)ak
2k+11+2r

• Recursion relation for r = −7
2 ; series terminates at k = 4

ak+2 = − (2k−8)ak
2k+4

• Solution for r = −7
2[

y(x) =
∞∑
k=0

akx
k− 7

2 , ak+2 = − (2k−8)ak
2k+4 , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − (2k+4)ak
2k+16

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − (2k+4)ak
2k+16 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 7

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − (2k−8)ak

2k+4 , a1 = 0, bk+2 = − (2k+4)bk
2k+16 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.061 (sec)
Leaf size : 42� �
dsolve(4*x^2*(x^2+1)*diff(diff(y(x),x),x)+8*diff(y(x),x)*x-(-x^2+35)*y(x) = 0,

y(x),singsol=all)� �
y =

(x2 + 1)2 c2 ln (x2 + 1) +
(
2x2 + 3

2

)
c2 + c1(x2 + 1)2

x7/2

Mathematica DSolve solution

Solving time : 0.117 (sec)
Leaf size : 53� �
DSolve[{4*x^2*(1+x^2)*D[y[x],{x,2}]+8*x*D[y[x],x]-(35-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1(x2 + 1)2 + c2(4x2 + 3) + 2c2(x2 + 1)2 log (x2 + 1)

4x7/2
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2.1.189 problem 191

Solved as second order ode using Kovacic algorithm . . . . . . . . .1339
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1343
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1344
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1345
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1345

Internal problem ID [9037]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 191
Date solved : Thursday, December 12, 2024 at 10:00:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−x2 + 5

)
y′ −

(
25x2 + 7

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.394 (sec)

Writing the ode as (
x4 + x2) y′′ + (x3 − 5x

)
y′ +

(
−25x2 − 7

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = x3 − 5x (3)
C = −25x2 − 7

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 99x4 + 150x2 + 63
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 99x4 + 150x2 + 63

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
99x4 + 150x2 + 63

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.362: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 63
4x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
− 15i

4 (x− i) +
15i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 63
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

2
α−
c = 1

2 −
√
1 + 4b = −7

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 99x4 + 150x2 + 63

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 99
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

2
α−
∞ = 1

2 −
√
1 + 4b = −9

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 99x4 + 150x2 + 63
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 9
2 −7

2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
2 −9

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −9

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= −9

2 −
(
−9
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 7
2x − 1

2 (x− i) −
1

2 (x+ i) + (−) (0)

= − 7
2x − 1

2 (x− i) −
1

2 (x+ i)

= − 7
2x − x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 7
2x − 1

2 (x− i) −
1

2 (x+ i)

)
(0) +

((
7
2x2 + 1

2 (x− i)2
+ 1

2 (x+ i)2
)
+
(
− 7
2x − 1

2 (x− i) −
1

2 (x+ i)

)2

−
(
99x4 + 150x2 + 63

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 7
2x−

1
2(x−i)−

1
2(x+i)

)
dx

= 1
x7/2

√
x2 + 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−5x
x4+x2 dx

= z1e
5 ln(x)

2 −
3 ln

(
x2+1

)
2

= z1

(
x5/2

(x2 + 1)3/2

)

Which simplifies to

y1 =
1

x (x2 + 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x3−5x

x4+x2 dx

(y1)2
dx

= y1

∫
e5 ln(x)−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
x3(4x2 + 5) (x2 + 1)3 e5 ln(x)−3 ln

(
x2+1

)
40

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x (x2 + 1)2
)
+ c2

(
1

x (x2 + 1)2

(
x3(4x2 + 5) (x2 + 1)3 e5 ln(x)−3 ln

(
x2+1

)
40

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−x2 + 5)

(
d
dx
y(x)

)
− (25x2 + 7) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
25x2+7

)
y(x)

x2(x2+1) −
(
x2−5

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−5

)(
d
dx

y(x)
)

x(x2+1) −
(
25x2+7

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = x2−5

x(x2+1) , P3(x) = − 25x2+7
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −7

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(x2 − 5)

(
d
dx
y(x)

)
+ (−25x2 − 7) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−7 + r)xr + a1(2 + r) (−6 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 7) + ak−2(k + 3 + r) (k + r − 7))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 7}

• Each term must be 0
a1(2 + r) (−6 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 7) (ak(k + r + 1) + ak−2(k + 3 + r)) = 0

• Shift index using k− >k + 2
(k + r − 5) (ak+2(k + 3 + r) + ak(k + r + 5)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+5)

k+3+r

• Recursion relation for r = −1
ak+2 = −ak(k+4)

k+2

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

• Recursion relation for r = 7
ak+2 = −ak(k+12)

k+10

• Solution for r = 7[
y(x) =

∞∑
k=0

akx
k+7, ak+2 = −ak(k+12)

k+10 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+7
)
, ak+2 = −ak(4+k)

k+2 , a1 = 0, bk+2 = − bk(k+12)
k+10 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.094 (sec)
Leaf size : 29� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-x^2+5)*diff(y(x),x)-(25*x^2+7)*y(x) = 0,

y(x),singsol=all)� �
y = 4c2x10 + 5c2x8 + c1

x (x2 + 1)2

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 37� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(5-x^2)*D[y[x],x]-(7+25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(4x2 + 5)x8 + 40c1

40x (x2 + 1)2
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2.1.190 problem 192

Solved as second order ode using Kovacic algorithm . . . . . . . . .1346
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1350
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1351
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1352
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1352

Internal problem ID [9038]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 192
Date solved : Thursday, December 12, 2024 at 10:00:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ + x

(
2x2 + 5

)
y′ − 21y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.365 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 + 5x

)
y′ − 21y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 + 5x (3)
C = −21

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 78x2 + 99
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 78x2 + 99

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

78x2 + 99
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.364: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21
16 (x− i)2

+ 21
16 (x+ i)2

+ 219i
16 (x− i) −

219i
16 (x+ i) +

99
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 99
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

2
α−
c = 1

2 −
√
1 + 4b = −9

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 78x2 + 99
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 11
2 −9

2

i 2 0 7
4 −3

4

−i 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 1− (−1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 9
2x + 7

4 (x− i) +
7

4 (x+ i) + (−) (0)

= − 9
2x + 7

4 (x− i) +
7

4 (x+ i)

= − 9
2x + 7x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 9
2x + 7

4 (x− i) +
7

4 (x+ i)

)
(2x+ a1) +

((
9
2x2 − 7

4 (x− i)2
− 7

4 (x+ i)2
)
+
(
− 9
2x + 7

4 (x− i) +
7

4 (x+ i)

)2

−
(

78x2 + 99
4 (x3 + x)2

))
= 0

(2xa0 − 16x− 9a1) (x2 + 1)
(x+ i)2 (−x+ i)2 x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 8

)
e
∫ (

− 9
2x+

7
4(x−i)+

7
4(x+i)

)
dx

=
(
x2 + 8

)
e

7 ln
(
x2+1

)
4 − 9 ln(x)

2

= (x2 + 8) (x2 + 1)7/4

x9/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+5x
x4+x2 dx

= z1e
3 ln

(
x2+1

)
4 − 5 ln(x)

2

= z1

(
(x2 + 1)3/4

x5/2

)

Which simplifies to

y1 =
(x2 + 1)5/2 (x2 + 8)

x7

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+5x

x4+x2 dx

(y1)2
dx

= y1

∫
e

3 ln
(
x2+1

)
2 −5 ln(x)

(y1)2
dx

= y1

−(35x6 + 140x4 + 168x2 + 64)x5e
3 ln

(
x2+1

)
2 −5 ln(x)

35 (x2 + 1)4 (x2 + 8)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)5/2 (x2 + 8)

x7

)

+ c2

(x2 + 1)5/2 (x2 + 8)
x7

−(35x6 + 140x4 + 168x2 + 64)x5e
3 ln

(
x2+1

)
2 −5 ln(x)

35 (x2 + 1)4 (x2 + 8)



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 + 5)

(
d
dx
y(x)

)
− 21y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 21y(x)
x2(x2+1) −

(
2x2+5

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+5

)(
d
dx

y(x)
)

x(x2+1) − 21y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+5
x(x2+1) , P3(x) = − 21

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −21

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 + 5)

(
d
dx
y(x)

)
− 21y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + r) (−3 + r)xr + a1(8 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 7) (k + r − 3) + ak−2(k − 2 + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7, 3}

• Each term must be 0
a1(8 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 7) (k + r − 3) + ak−2(k − 2 + r) (k + r − 1) = 0

• Shift index using k− >k + 2
ak+2(k + 9 + r) (k + r − 1) + ak(k + r) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r)(k+r+1)

(k+9+r)(k+r−1)

• Recursion relation for r = −7 ; series terminates at k = 6
ak+2 = −ak(k−7)(k−6)

(k+2)(k−8)

• Solution for r = −7[
y(x) =

∞∑
k=0

akx
k−7, ak+2 = −ak(k−7)(k−6)

(k+2)(k−8) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = −ak(k+3)(k+4)

(k+12)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = −ak(k+3)(k+4)

(k+12)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−7
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = −ak(k−7)(k−6)

(k+2)(k−8) , a1 = 0, bk+2 = − bk(k+3)(4+k)
(k+12)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 41� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(2*x^2+5)*diff(y(x),x)-21*y(x) = 0,

y(x),singsol=all)� �
y =

c1(x2 + 1)5/2 (x2 + 8) + 35c2
(
x6 + 4x4 + 24

5 x
2 + 64

35

)
x7

Mathematica DSolve solution

Solving time : 0.255 (sec)
Leaf size : 52� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]+x*(5+2*x^2)*D[y[x],x]-21*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 35c1(x2 + 1)5/2 (x2 + 8)− c2(35x6 + 140x4 + 168x2 + 64)

35x7
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2.1.191 problem 193

Solved as second order ode using Kovacic algorithm . . . . . . . . .1353
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1357
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1358
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1359
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1359

Internal problem ID [9039]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 193
Date solved : Thursday, December 12, 2024 at 10:00:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 1
)
y′′ + 4x

(
x2 + 2

)
y′ −

(
x2 + 15

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.302 (sec)

Writing the ode as (
4x4 + 4x2) y′′ + (4x3 + 8x

)
y′ +

(
−x2 − 15

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x2

B = 4x3 + 8x (3)
C = −x2 − 15

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 10x2 + 15
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 10x2 + 15

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

10x2 + 15
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.366: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x2 + 5

16 (x− i)2
+ 5

16 (x+ i)2
+ 35i

16 (x− i) −
35i

16 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 10x2 + 15
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 3
2x + 5

4 (x− i) +
5

4 (x+ i) + (−) (0)

= − 3
2x + 5

4 (x− i) +
5

4 (x+ i)

= − 3
2x + 5x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x + 5

4 (x− i) +
5

4 (x+ i)

)
(0) +

((
3
2x2 − 5

4 (x− i)2
− 5

4 (x+ i)2
)
+
(
− 3
2x + 5

4 (x− i) +
5

4 (x+ i)

)2

−
(

10x2 + 15
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2x+

5
4(x−i)+

5
4(x+i)

)
dx

= (x2 + 1)5/4

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x3+8x
4x4+4x2 dx

= z1e
ln

(
x2+1

)
4 −ln(x)

= z1

(
(x2 + 1)1/4

x

)

Which simplifies to

y1 =
(x2 + 1)3/2

x5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x3+8x

4x4+4x2 dx

(y1)2
dx

= y1

∫
e

ln
(
x2+1

)
2 −2 ln(x)

(y1)2
dx

= y1

−(3x2 + 2)x2e
ln

(
x2+1

)
2 −2 ln(x)

3 (x2 + 1)2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)3/2

x5/2

)
+ c2

(x2 + 1)3/2

x5/2

−(3x2 + 2)x2e
ln

(
x2+1

)
2 −2 ln(x)

3 (x2 + 1)2


Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(x2 + 2)

(
d
dx
y(x)

)
− (x2 + 15) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
x2+15

)
y(x)

4x2(x2+1) −
(
x2+2

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+2

)(
d
dx

y(x)
)

x(x2+1) −
(
x2+15

)
y(x)

4x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = x2+2

x(x2+1) , P3(x) = − x2+15
4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −15
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(x2 + 2)

(
d
dx
y(x)

)
+ (−x2 − 15) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(5 + 2r) (−3 + 2r)xr + a1(7 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 3) + ak−2(2k + 2r − 3) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
3
2

}
• Each term must be 0

a1(7 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
((
k − 5

2 + r
)
ak−2 +

(
k + r + 5

2

)
ak
) (

k + r − 3
2

)
= 0

• Shift index using k− >k + 2
4
((
k − 1

2 + r
)
ak +

(
k + 9

2 + r
)
ak+2

) (
k + 1

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r−1)ak

2k+9+2r

• Recursion relation for r = −5
2

ak+2 = − (2k−6)ak
2k+4

• Solution for r = −5
2[

y(x) =
∞∑
k=0

akx
k− 5

2 , ak+2 = − (2k−6)ak
2k+4 , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − (2k+2)ak
2k+12

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − (2k+2)ak
2k+12 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − (2k−6)ak

2k+4 , a1 = 0, bk+2 = − (2k+2)bk
2k+12 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.065 (sec)
Leaf size : 27� �
dsolve(4*x^2*(x^2+1)*diff(diff(y(x),x),x)+4*x*(x^2+2)*diff(y(x),x)-(x^2+15)*y(x) = 0,

y(x),singsol=all)� �
y = c2(x2 + 1)3/2 + 3c1x2 + 2c1

x5/2

Mathematica DSolve solution

Solving time : 0.145 (sec)
Leaf size : 39� �
DSolve[{4*x^2*(1+x^2)*D[y[x],{x,2}]+4*x*(2+x^2)*D[y[x],x]-(15+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1(x2 + 1)3/2 − c2(3x2 + 2)

3x5/2
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2.1.192 problem 194

Solved as second order ode using Kovacic algorithm . . . . . . . . .1360
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1364
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1365
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1366
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1366

Internal problem ID [9040]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 194
Date solved : Thursday, December 12, 2024 at 10:00:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2(t+ 1) y′
t2 + 2t− 1 + 2y

t2 + 2t− 1 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as

y′′ + (−2t− 2) y′
t2 + 2t− 1 + 2y

t2 + 2t− 1 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = −2t− 2
t2 + 2t− 1 (3)

C = 2
t2 + 2t− 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6
(t2 + 2t− 1)2

(6)

Comparing the above to (5) shows that

s = 6

t =
(
t2 + 2t− 1

)2
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Therefore eq. (4) becomes

z′′(t) =
(

6
(t2 + 2t− 1)2

)
z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.368: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (t2 + 2t− 1)2. There is a pole at t =

√
2 − 1 of order 2. There is a pole at

t = −1−
√
2 of order 2. Since there is no odd order pole larger than 2 and the order at

∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4
(
t−

√
2 + 1

)2 + 3
4
(
t+ 1 +

√
2
)2 − 3

√
2

8
(
t−

√
2 + 1

) + 3
√
2

8
(
t+ 1 +

√
2
)

For the pole at t =
√
2− 1 let b be the coefficient of 1(

t−
√
2+1

)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2



chapter 2. book solved problems 1362

For the pole at t = −1−
√
2 let b be the coefficient of 1(

t+1+
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6
(t2 + 2t− 1)2

pole c location pole order [
√
r]c α+

c α−
c√

2− 1 2 0 3
2 −1

2

−1−
√
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
) + (−) (0)

= − 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
)

= t+ 1− 2
√
2

t2 + 2t− 1
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
)) (0) +

( 1
2
(
t−

√
2 + 1

)2 − 3
2
(
t+ 1 +

√
2
)2
)

+
(
− 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
))2

−
(

6
(t2 + 2t− 1)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2
(
t−

√
2+1

)+ 3
2
(
t+1+

√
2
)
)
dt

=
(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2

−2t−2
t2+2t−1

1 dt

= z1e
ln

(
t2+2t−1

)
2

= z1
(√

t2 + 2t− 1
)

Which simplifies to

y1 =
√
t2 + 2t− 1

(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−

−2t−2
t2+2t−1

1 dt

(y1)2
dt

= y1

∫
eln
(
t2+2t−1

)
(y1)2

dt

= y1

(
− 1
t+ 1 +

√
2
+

√
2(

t+ 1 +
√
2
)2
)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(√
t2 + 2t− 1

(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

)

+ c2

(√
t2 + 2t− 1

(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

(
− 1
t+ 1 +

√
2
+

√
2(

t+ 1 +
√
2
)2
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

d2

dt2
y(t)−

2(t+1)
(

d
dt
y(t)

)
t2+2t−1 + 2y(t)

t2+2t−1 = 0
• Highest derivative means the order of the ODE is 2

d2

dt2
y(t)

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = − 2(t+1)
t2+2t−1 , P3(t) = 2

t2+2t−1

]
◦
(
t+

√
2 + 1

)
· P2(t) is analytic at t = −

√
2− 1((

t+
√
2 + 1

)
· P2(t)

) ∣∣∣∣
t=−

√
2−1

= 0

◦
(
t+

√
2 + 1

)2 · P3(t) is analytic at t = −
√
2− 1((

t+
√
2 + 1

)2 · P3(t)
) ∣∣∣∣

t=−
√
2−1

= 0

◦ t = −
√
2− 1is a regular singular point

Check to see if t0 is a regular singular point
t0 = −

√
2− 1

• Multiply by denominators

(t2 + 2t− 1)
(

d2

dt2
y(t)

)
+ (−2t− 2)

(
d
dt
y(t)

)
+ 2y(t) = 0

• Change variables using t = u−
√
2− 1 so that the regular singular point is at u = 0(

u2 − 2u
√
2
) (

d2

du2y(u)
)
+
(
−2u+ 2

√
2
) (

d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2
√
2 r(r − 2) a0ur−1 +

(
∞∑
k=0

(
−2

√
2 (k + 1 + r) (k + r − 1) ak+1 + ak(k + r − 1) (k + r − 2)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2

√
2 r(r − 2) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation(
−2ak+1(k + 1 + r)

√
2 + ak(k + r − 2)

)
(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−2)

√
2

4(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2

ak+1 = ak(k−2)
√
2

4(k+1)

• Apply recursion relation for k = 0
a1 = −a0

√
2

2

• Apply recursion relation for k = 1
a2 = −a1

√
2

8

• Express in terms of a0
a2 = a0

8

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1− u

√
2

2 + u2

8

)
• Revert the change of variables u = t+

√
2 + 1[

y(t) = a0
(

(−2t−2)
√
2

8 + t2

8 + t
4 +

3
8

)]
• Recursion relation for r = 2

ak+1 = akk
√
2

4(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

√
2

4(k+3)

]
• Revert the change of variables u = t+

√
2 + 1[

y(t) =
∞∑
k=0

ak
(
t+

√
2 + 1

)k+2
, ak+1 = akk

√
2

4(k+3)

]
• Combine solutions and rename parameters[

y(t) = a0
(

(−2t−2)
√
2

8 + t2

8 + t
4 +

3
8

)
+
(

∞∑
k=0

bk
(
t+

√
2 + 1

)k+2
)
, bk+1 = bkk

√
2

4(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve(diff(diff(y(t),t),t)-2*(t+1)/(t^2+2*t-1)*diff(y(t),t)+2/(t^2+2*t-1)*y(t) = 0,

y(t),singsol=all)� �
y = c2t

2 + c1t+ c1 + c2

Mathematica DSolve solution

Solving time : 0.31 (sec)
Leaf size : 64� �
DSolve[{D[y[t],{t,2}]-2*(t+1)/(t^2+2*t-1)*D[y[t],t]+2/(t^2+2*t-1)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

√
t2 + 2t− 1

(
c1
(
t2 − 2

(√
2− 1

)
t− 2

√
2 + 3

)
+ c2(t+ 1)

)
√
−t2 − 2t+ 1
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2.1.193 problem 195

Solved as second order ode using Kovacic algorithm . . . . . . . . .1367
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1369
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1370
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1370
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1370

Internal problem ID [9041]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 195
Date solved : Thursday, December 12, 2024 at 10:00:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4ty′ +
(
4t2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.099 (sec)

Writing the ode as

y′′ − 4ty′ +
(
4t2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4t (3)
C = 4t2 − 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.370: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain a
solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4t
1 dt

= z1e
t2

= z1
(
et2
)

Which simplifies to

y1 = et2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt
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Substituting gives

y2 = y1

∫
e
∫
−−4t

1 dt

(y1)2
dt

= y1

∫
e2t

2

(y1)2
dt

= y1(t)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
et2
)
+ c2

(
et2(t)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dt2
y(t)− 4t

(
d
dt
y(t)

)
+ (4t2 − 2) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..2

tm · y(t) =
∞∑

k=max(0,−m)
akt

k+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=max(0,−m)+m

ak−mt
k

◦ Convert t ·
(

d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

akk t
k

◦ Convert d2

dt2
y(t) to series expansion

d2

dt2
y(t) =

∞∑
k=2

akk(k − 1) tk−2

◦ Shift index using k− >k + 2
d2

dt2
y(t) =

∞∑
k=0

ak+2(k + 2) (k + 1) tk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1) t+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2) tk
)

= 0

• The coefficients of each power of t must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(t) =

∞∑
k=0

akt
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(t),t),t)-4*t*diff(y(t),t)+(4*t^2-2)*y(t) = 0,

y(t),singsol=all)� �
y = et2(c2t+ c1)

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 18� �
DSolve[{D[y[t],{t,2}]-4*t*D[y[t],t]+(4*t^2-2)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → et

2(c2t+ c1)
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2.1.194 problem 196

Solved as second order ode using Kovacic algorithm . . . . . . . . .1371
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1375
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1376
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1376
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1376

Internal problem ID [9042]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 196
Date solved : Thursday, December 12, 2024 at 10:00:04 AM
CAS classification : [_Gegenbauer]

Solve (
−t2 + 1

)
y′′ − 2ty′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as (
−t2 + 1

)
y′′ − 2ty′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −t2 + 1
B = −2t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2t2 − 3
(t2 − 1)2

(6)

Comparing the above to (5) shows that

s = 2t2 − 3

t =
(
t2 − 1

)2
Therefore eq. (4) becomes

z′′(t) =
(

2t2 − 3
(t2 − 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.372: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 − 1)2. There is a pole at t = 1 of order 2. There is a pole at t = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
4 (t− 1) −

1
4 (t+ 1)2

− 5
4 (t+ 1) −

1
4 (t− 1)2

For the pole at t = 1 let b be the coefficient of 1
(t−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at t = −1 let b be the coefficient of 1

(t+1)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2t2 − 3

(t2 − 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2t2 − 3
(t2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

t− c2

)
+ (+)[

√
r]∞

= 1
2t− 2 + 1

2t+ 2 + (0)

= 1
2t− 2 + 1

2t+ 2
= t

t2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2t− 2 + 1

2t+ 2

)
(1) +

((
− 1
2 (t− 1)2

− 1
2 (t+ 1)2

)
+
(

1
2t− 2 + 1

2t+ 2

)2

−
(

2t2 − 3
(t2 − 1)2

))
= 0

− 2a0
t2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

= (t) e
∫ ( 1

2t−2+
1

2t+2

)
dt

= (t)
√

(t− 1) (t+ 1)
= t

√
t2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t

−t2+1 dt

= z1e
− ln(t−1)

2 − ln(t+1)
2

= z1

(
1√

t− 1
√
t+ 1

)
Which simplifies to

y1 =
t
√
t2 − 1√

t− 1
√
t+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2t

−t2+1 dt

(y1)2
dt

= y1

∫
e− ln(t−1)−ln(t+1)

(y1)2
dt

= y1

(
ln (t− 1)

2 + 1
t
− ln (t+ 1)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
t
√
t2 − 1√

t− 1
√
t+ 1

)
+ c2

(
t
√
t2 − 1√

t− 1
√
t+ 1

(
ln (t− 1)

2 + 1
t
− ln (t+ 1)

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−t2 + 1)
(

d2

dt2
y(t)

)
− 2t

(
d
dt
y(t)

)
+ 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = 2y(t)

t2−1 −
2
(

d
dt
y(t)

)
t

t2−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

2
(

d
dt
y(t)

)
t

t2−1 − 2y(t)
t2−1 = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = 2t
t2−1 , P3(t) = − 2

t2−1

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1

• Multiply by denominators

(t2 − 1)
(

d2

dt2
y(t)

)
+ 2t

(
d
dt
y(t)

)
− 2y(t) = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = t+ 1
[y(t) = −a0t]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve((-t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = −c2 ln (t+ 1) t

2 + c2 ln (t− 1) t
2 + c1t+ c2

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 33� �
DSolve[{(1-t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1t−

1
2c2(t log(1− t)− t log(t+ 1) + 2)
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2.1.195 problem 197

Solved as second order ode using Kovacic algorithm . . . . . . . . .1377
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1381
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1381
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1381
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1381

Internal problem ID [9043]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 197
Date solved : Thursday, December 12, 2024 at 10:00:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
t2 + 1

)
y′′ − 2ty′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as (
t2 + 1

)
y′′ − 2ty′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2 + 1
B = −2t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(t2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
t2 + 1

)2
Therefore eq. (4) becomes

z′′(t) =
(
− 3
(t2 + 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.374: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 + 1)2. There is a pole at t = i of order 2. There is a pole at t = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (t− i)2

+ 3
4 (t+ i)2

+ 3i
4 (t− i) −

3i
4 (t+ i)

For the pole at t = i let b be the coefficient of 1
(t−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at t = −i let b be the coefficient of 1

(t+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2



chapter 2. book solved problems 1379

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(t2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
2 (t− i) +

3
2 (t+ i) + (−) (0)

= − 1
2 (t− i) +

3
2 (t+ i)

= t− 2i
t2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (t− i) +

3
2 (t+ i)

)
(0) +

((
1

2 (t− i)2
− 3

2 (t+ i)2
)
+
(
− 1
2 (t− i) +

3
2 (t+ i)

)2

−
(
− 3
(t2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(t−i)+

3
2(t+i)

)
dt

= (t2 + 1)3/2

(it+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t
t2+1 dt

= z1e
ln

(
t2+1

)
2

= z1
(√

t2 + 1
)

Which simplifies to

y1 =
(t2 + 1)2

(it+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2t

t2+1 dt

(y1)2
dt

= y1

∫
eln
(
t2+1

)
(y1)2

dt

= y1

(
− t

(t+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(t2 + 1)2

(it+ 1)2

)
+ c2

(
(t2 + 1)2

(it+ 1)2
(
− t

(t+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve((t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = c2t

2 + c1t− c2

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 21� �
DSolve[{(1+t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c2t− c1(t− i)2
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2.1.196 problem 198

Solved as second order ode using Kovacic algorithm . . . . . . . . .1382
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1386
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1387
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1388
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1388

Internal problem ID [9044]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 198
Date solved : Thursday, December 12, 2024 at 10:00:05 AM
CAS classification : [_Gegenbauer]

Solve (
−t2 + 1

)
y′′ − 2ty′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as (
−t2 + 1

)
y′′ − 2ty′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −t2 + 1
B = −2t (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6t2 − 7
(t2 − 1)2

(6)

Comparing the above to (5) shows that

s = 6t2 − 7

t =
(
t2 − 1

)2
Therefore eq. (4) becomes

z′′(t) =
(

6t2 − 7
(t2 − 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.375: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 − 1)2. There is a pole at t = 1 of order 2. There is a pole at t = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (t− 1)2

− 1
4 (t+ 1)2

− 13
4 (t+ 1) +

13
4 (t− 1)

For the pole at t = 1 let b be the coefficient of 1
(t−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at t = −1 let b be the coefficient of 1

(t+1)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 6t2 − 7

(t2 − 1)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6t2 − 7
(t2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3− (1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

t− c2

)
+ (+)[

√
r]∞

= 1
2t− 2 + 1

2t+ 2 + (0)

= 1
2t− 2 + 1

2t+ 2
= t

t2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 2 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = t2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2t− 2 + 1

2t+ 2

)
(2t+ a1) +

((
− 1
2 (t− 1)2

− 1
2 (t+ 1)2

)
+
(

1
2t− 2 + 1

2t+ 2

)2

−
(

6t2 − 7
(t2 − 1)2

))
= 0

−4a1t− 6a0 − 2
t2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

3 , a1 = 0
}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t2 − 1
3

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t2 − 1

3

)
e
∫ ( 1

2t−2+
1

2t+2

)
dt

=
(
t2 − 1

3

)√
(t− 1) (t+ 1)

= (3t2 − 1)
√
t2 − 1

3
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t

−t2+1 dt

= z1e
− ln(t−1)

2 − ln(t+1)
2

= z1

(
1√

t− 1
√
t+ 1

)

Which simplifies to

y1 =
(3t2 − 1)

√
t2 − 1

3
√
t− 1

√
t+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2t

−t2+1 dt

(y1)2
dt

= y1

∫
e− ln(t−1)−ln(t+1)

(y1)2
dt

= y1

(
9t

4
(
t2 − 1

3

) + 9 ln (t− 1)
8 − 9 ln (t+ 1)

8

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(3t2 − 1)

√
t2 − 1

3
√
t− 1

√
t+ 1

)
+c2

(
(3t2 − 1)

√
t2 − 1

3
√
t− 1

√
t+ 1

(
9t

4
(
t2 − 1

3

)+9 ln (t− 1)
8 − 9 ln (t+ 1)

8

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−t2 + 1)
(

d2

dt2
y(t)

)
− 2t

(
d
dt
y(t)

)
+ 6y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = 6y(t)

t2−1 −
2
(

d
dt
y(t)

)
t

t2−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

2
(

d
dt
y(t)

)
t

t2−1 − 6y(t)
t2−1 = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = 2t
t2−1 , P3(t) = − 6

t2−1

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1

• Multiply by denominators

(t2 − 1)
(

d2

dt2
y(t)

)
+ 2t

(
d
dt
y(t)

)
− 6y(t) = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 6y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 3) (k + r − 2)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 3) (k − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+3)(k−2)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k+3)(k−2)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −3a0

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 3a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 3u+ 3

2u
2)

• Revert the change of variables u = t+ 1[
y(t) = a0

(
3t2
2 − 1

2

)]
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 1388

Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 44� �
dsolve((-t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+6*y(t) = 0,

y(t),singsol=all)� �
y = c2(3t2 − 1) ln (t− 1)

2 + (−3t2 + 1) c2 ln (t+ 1)
2 − 3c1t2 + 3c2t+ c1

Mathematica DSolve solution

Solving time : 0.035 (sec)
Leaf size : 55� �
DSolve[{(1-t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+6*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2c1
(
3t2 − 1

)
− 1

4c2
((
3t2 − 1

)
log(1− t) +

(
1− 3t2

)
log(t+ 1) + 6t

)
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2.1.197 problem 199

Solved as second order ode using Kovacic algorithm . . . . . . . . .1389
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1394
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1395
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1395
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1396

Internal problem ID [9045]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 199
Date solved : Thursday, December 12, 2024 at 10:00:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2t+ 1) y′′ − 4(t+ 1) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

(2t+ 1) y′′ + (−4t− 4) y′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t+ 1
B = −4t− 4 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4t2 + 2
(2t+ 1)2

(6)

Comparing the above to (5) shows that

s = 4t2 + 2
t = (2t+ 1)2

Therefore eq. (4) becomes

z′′(t) =
(

4t2 + 2
(2t+ 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.377: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2t+ 1)2. There is a pole at t = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
t+ 1

2

)2 − 1
t+ 1

2

For the pole at t = −1
2 let b be the coefficient of 1(

t+ 1
2
)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2t +
1
2t2 − 1

4t3 + 3
32t4 − 3

64t5 + 1
32t6 − 1

64t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4t2 + 2
4t2 + 4t+ 1

= Q+ R

4t2 + 4t+ 1

= (1) +
(

−4t+ 1
4t2 + 4t+ 1

)
= 1 + −4t+ 1

4t2 + 4t+ 1
Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4t2 + 2
(2t+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2
(
t+ 1

2

) + (1)

= − 1
2
(
t+ 1

2

) + 1

= 2t
2t+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
t+ 1

2

) + 1
)
(0) +

( 1
2
(
t+ 1

2

)2
)

+
(
− 1
2
(
t+ 1

2

) + 1
)2

−
(

4t2 + 2
(2t+ 1)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2
(
t+1

2
)+1

)
dt

= et√
2t+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4t−4
2t+1 dt

= z1e
t+ ln(2t+1)

2

= z1
(√

2t+ 1 et
)

Which simplifies to
y1 = e2t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−4t−4

2t+1 dt

(y1)2
dt

= y1

∫
e2t+ln(2t+1)

(y1)2
dt

= y1

(
−(t+ 1) e2t+ln(2t+1)e−4t

2t+ 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2t
)
+ c2

(
e2t
(
−(t+ 1) e2t+ln(2t+1)e−4t

2t+ 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(2t+ 1)
(

d2

dt2
y(t)

)
− 4(t+ 1)

(
d
dt
y(t)

)
+ 4y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −4y(t)

2t+1 +
4(t+1)

(
d
dt
y(t)

)
2t+1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

4(t+1)
(

d
dt
y(t)

)
2t+1 + 4y(t)

2t+1 = 0
� Check to see if t0 = −1

2 is a regular singular point
◦ Define functions[

P2(t) = −4(t+1)
2t+1 , P3(t) = 4

2t+1

]
◦
(
t+ 1

2

)
· P2(t) is analytic at t = −1

2((
t+ 1

2

)
· P2(t)

) ∣∣∣∣
t=− 1

2

= −1

◦
(
t+ 1

2

)2 · P3(t) is analytic at t = −1
2((

t+ 1
2

)2 · P3(t)
) ∣∣∣∣

t=− 1
2

= 0

◦ t = −1
2 is a regular singular point

Check to see if t0 = −1
2 is a regular singular point

t0 = −1
2

• Multiply by denominators

(2t+ 1)
(

d2

dt2
y(t)

)
+ (−4t− 4)

(
d
dt
y(t)

)
+ 4y(t) = 0

• Change variables using t = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+ (−4u− 2)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (k + r − 1)− 4ak(k + r − 1))uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
2(ak+1(k + 1 + r)− 2ak) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

k+1+r

• Recursion relation for r = 0
ak+1 = 2ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 2ak

k+1

]
• Revert the change of variables u = t+ 1

2[
y(t) =

∞∑
k=0

ak
(
t+ 1

2

)k
, ak+1 = 2ak

k+1

]
• Recursion relation for r = 2

ak+1 = 2ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = 2ak

k+3

]
• Revert the change of variables u = t+ 1

2[
y(t) =

∞∑
k=0

ak
(
t+ 1

2

)k+2
, ak+1 = 2ak

k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak
(
t+ 1

2

)k)+
(

∞∑
k=0

bk
(
t+ 1

2

)k+2
)
, ak+1 = 2ak

k+1 , bk+1 = 2bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 15� �
dsolve((2*t+1)*diff(diff(y(t),t),t)-4*(t+1)*diff(y(t),t)+4*y(t) = 0,

y(t),singsol=all)� �
y = c2e2t + c1t+ c1
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Mathematica DSolve solution

Solving time : 0.21 (sec)
Leaf size : 23� �
DSolve[{(2*t+1)*D[y[t],{t,2}]-4*(t+1)*D[y[t],t]+4*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

2t+1 − c2(t+ 1)
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2.1.198 problem 200

Solved as second order ode using Kovacic algorithm . . . . . . . . .1397
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1399
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1401
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1401
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1401

Internal problem ID [9046]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 200
Date solved : Thursday, December 12, 2024 at 10:00:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ + ty′ +
(
t2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.179 (sec)

Writing the ode as

t2y′′ + ty′ +
(
t2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = t (3)

C = t2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.379: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t
t2 dt

= z1e
− ln(t)

2

= z1

(
1√
t

)

Which simplifies to

y1 =
cos (t)√

t
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

t2 dt

(y1)2
dt

= y1

∫
e− ln(t)

(y1)2
dt

= y1(tan (t))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (t)√

t

)
+ c2

(
cos (t)√

t
(tan (t))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + t

(
d
dt
y(t)

)
+
(
t2 − 1

4

)
y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = −

(
4t2−1

)
y(t)

4t2 −
d
dt
y(t)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) +

d
dt
y(t)
t

+
(
4t2−1

)
y(t)

4t2 = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = 1

t
, P3(t) = 4t2−1

4t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= −1
4

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

4
(

d2

dt2
y(t)

)
t2 + 4t

(
d
dt
y(t)

)
+ (4t2 − 1) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions



chapter 2. book solved problems 1400

◦ Convert tm · y(t) to series expansion form = 0..2

tm · y(t) =
∞∑
k=0

akt
k+r+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert t ·
(

d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r) tr + a1(3 + 2r) (1 + 2r) t1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(t) =
∞∑
k=0

akt
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k− 1

2

)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.057 (sec)
Leaf size : 17� �
dsolve(t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+(t^2-1/4)*y(t) = 0,

y(t),singsol=all)� �
y = sin (t) c1 + c2 cos (t)√

t

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 39� �
DSolve[{t^2*D[y[t],{t,2}]+t*D[y[t],t]+(t^2-1/4)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−it(2c1 − ic2e

2it)
2
√
t
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2.1.199 problem 201

Solved as second order ode using Kovacic algorithm . . . . . . . . .1402
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1406
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1406
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1406
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1406

Internal problem ID [9047]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 201
Date solved : Thursday, December 12, 2024 at 10:00:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2ty′
t2 + 1 + 2y

t2 + 1 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.302 (sec)

Writing the ode as

y′′ − 2ty′
t2 + 1 + 2y

t2 + 1 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = − 2t
t2 + 1 (3)

C = 2
t2 + 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(t2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
t2 + 1

)2
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Therefore eq. (4) becomes

z′′(t) =
(
− 3
(t2 + 1)2

)
z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.381: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 + 1)2. There is a pole at t = i of order 2. There is a pole at t = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (t− i)2

+ 3
4 (t+ i)2

+ 3i
4 (t− i) −

3i
4 (t+ i)

For the pole at t = i let b be the coefficient of 1
(t−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at t = −i let b be the coefficient of 1
(t+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(t2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
2 (t− i) +

3
2 (t+ i) + (−) (0)

= − 1
2 (t− i) +

3
2 (t+ i)

= t− 2i
t2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (t− i) +

3
2 (t+ i)

)
(0) +

((
1

2 (t− i)2
− 3

2 (t+ i)2
)
+
(
− 1
2 (t− i) +

3
2 (t+ i)

)2

−
(
− 3
(t2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(t−i)+

3
2(t+i)

)
dt

= (t2 + 1)3/2

(it+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2

− 2t
t2+1
1 dt

= z1e
ln

(
t2+1

)
2

= z1
(√

t2 + 1
)

Which simplifies to

y1 =
(t2 + 1)2

(it+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−

− 2t
t2+1
1 dt

(y1)2
dt

= y1

∫
eln
(
t2+1

)
(y1)2

dt

= y1

(
− t

(t+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(t2 + 1)2

(it+ 1)2

)
+ c2

(
(t2 + 1)2

(it+ 1)2
(
− t

(t+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(t),t),t)-2*t/(t^2+1)*diff(y(t),t)+2/(t^2+1)*y(t) = 0,

y(t),singsol=all)� �
y = c2t

2 + c1t− c2

Mathematica DSolve solution

Solving time : 0.057 (sec)
Leaf size : 21� �
DSolve[{D[y[t],{t,2}]-2*t/(1+t^2)*D[y[t],t]+2/(1+t^2)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c2t− c1(t− i)2
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2.1.200 problem 202

Solved as second order ode using Kovacic algorithm . . . . . . . . .1407
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1411
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1412
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1413
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1413

Internal problem ID [9048]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 202
Date solved : Thursday, December 12, 2024 at 10:00:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ +
(
t2 + 2t+ 1

)
y′ − (4 + 4t) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.295 (sec)

Writing the ode as

y′′ + (1 + t)2 y′ + (−4− 4t) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = (1 + t)2 (3)
C = −4− 4t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 + 4t3 + 6t2 + 24t+ 21
4 (6)

Comparing the above to (5) shows that

s = t4 + 4t3 + 6t2 + 24t+ 21
t = 4

Therefore eq. (4) becomes

z′′(t) =
(
21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2
)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.382: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
2∑

i=0

ait
i (8)

Let a be the coefficient of tv = t2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t2

2 + t+ 1
2 + 5

t
− 5

t2
+ 5

t3
− 30

t4
+ 105

t5
+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2



chapter 2. book solved problems 1409

From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

ait
i

= 1
2t

2 + t+ 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t1 = t in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4t
4 + t3 + 3

2t
2 + t+ 1

4

This shows that the coefficient of t in the above is 1. Now we need to find the coefficient
of t in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of t in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 + 4t3 + 6t2 + 24t+ 21
4

= Q+ R

4

=
(
21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2
)
+ (0)

= 21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2

We see that the coefficient of the term 1
t
in the quotient is 6. Now b can be found.

b = (6)− (1)
= 5

Hence

[
√
r]∞ = 1

2t
2 + t+ 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
5
1
2
− 2
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−5

1
2
− 2
)

= −6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 1
2t

2 + t+ 1
2 4 −6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4, and since there are no poles, then

d = α+
∞

= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(
1
2t

2 + t+ 1
2

)
= 1

2t
2 + t+ 1

2

= (1 + t)2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 4 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t4 + a3t
3 + a2t

2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12t2 + 6ta3 + 2a2

)
+ 2
(
1
2t

2 + t+ 1
2

)(
4t3 + 3t2a3 + 2ta2 + a1

)
+
(
(1 + t) +

(
1
2t

2 + t+ 1
2

)2

−
(
21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2
))

= 0

(−a3 + 4) t4 + 2(2− a2 + a3) t3 + 3(4− a1 + a3) t2 + 2(−2a0 − a1 + a2 + 3a3) t− 4a0 + a1 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 5, a1 = 8, a2 = 6, a3 = 4}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t4 + 4t3 + 6t2 + 8t+ 5

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t4 + 4t3 + 6t2 + 8t+ 5

)
e
∫ ( 1

2 t
2+t+ 1

2
)
dt

=
(
t4 + 4t3 + 6t2 + 8t+ 5

)
e

(1+t)3
6

= (1 + t)
(
t3 + 3t2 + 3t+ 5

)
e

(1+t)3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
(1+t)2

1 dt

= z1e
− (1+t)3

6

= z1

(
e−

(1+t)3
6

)
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Which simplifies to
y1 = (1 + t)

(
t3 + 3t2 + 3t+ 5

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− (1+t)2

1 dt

(y1)2
dt

= y1

∫
e−

(1+t)3
3

(y1)2
dt

= y1

(∫ e−
(1+t)3

3

(1 + t)2 (t3 + 3t2 + 3t+ 5)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(1 + t)

(
t3 + 3t2 + 3t+ 5

))
+ c2

(
(1 + t)

(
t3 + 3t2 + 3t+ 5

)(∫ e−
(1+t)3

3

(1 + t)2 (t3 + 3t2 + 3t+ 5)2
dt

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dt2
y(t) + (t2 + 2t+ 1)

(
d
dt
y(t)

)
− (4t+ 4) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = −(t2 + 2t+ 1)

(
d
dt
y(t)

)
+ (4t+ 4) y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) + (t2 + 2t+ 1)

(
d
dt
y(t)

)
+ (−4t− 4) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑

k=max(0,−m)
akt

k+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=max(0,−m)+m

ak−mt
k

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2
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tm ·
(

d
dt
y(t)

)
=

∞∑
k=max(0,1−m)

akk t
k−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m) tk

◦ Convert d2

dt2
y(t) to series expansion

d2

dt2
y(t) =

∞∑
k=2

akk(k − 1) tk−2

◦ Shift index using k− >k + 2
d2

dt2
y(t) =

∞∑
k=0

ak+2(k + 2) (k + 1) tk

Rewrite ODE with series expansions

2a2 + a1 − 4a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak+1(k + 1) + 2ak(k − 2) + ak−1(k − 5)) tk
)

= 0

• Each term must be 0
2a2 + a1 − 4a0 = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (2ak + ak−1 + ak+1 + 3ak+2) k − 4ak − 5ak−1 + ak+1 + 2ak+2 = 0

• Shift index using k− >k + 1
(k + 1)2 ak+3 + (2ak+1 + ak + ak+2 + 3ak+3) (k + 1)− 4ak+1 − 5ak + ak+2 + 2ak+3 = 0

• Recursion relation that defines the series solution to the ODE[
y(t) =

∞∑
k=0

akt
k, ak+3 = −akk+2ak+1k+kak+2−4ak−2ak+1+2ak+2

k2+5k+6 , 2a2 + a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.



chapter 2. book solved problems 1413

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.383 (sec)
Leaf size : 60� �
dsolve(diff(diff(y(t),t),t)+(t^2+2*t+1)*diff(y(t),t)-(4*t+4)*y(t) = 0,

y(t),singsol=all)� �
y = (t+ 1)

(
t3 + 3t2 + 3t+ 5

)c2

∫ e−
t
(
t2+3t+3

)
3

(t+ 1)2 (t3 + 3t2 + 3t+ 5)2
dt

+ c1


Mathematica DSolve solution

Solving time : 2.655 (sec)
Leaf size : 132� �
DSolve[{D[y[t],{t,2}]+(t^2+2*t+1)*D[y[t],t]-(4+4*t)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

36e
− 1

3 t
(
t2+3t+3

)(
−3c2

(
t3 + 3t2 + 3t+ 4

)
+ 32/3c2e

1
3 (t+1)3 3

√
(t+ 1)3

(
t3 + 3t2 + 3t+ 5

)
Γ
(
2
3 ,

1
3(t+ 1)3

)
+ 36c1e

t3
3 +t2+t

(
t4 + 4t3 + 6t2 + 8t+ 5

))
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2.1.201 problem 204

Solved as second order ode using Kovacic algorithm . . . . . . . . .1414
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1418
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1420
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1420
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1420

Internal problem ID [9049]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 204
Date solved : Thursday, December 12, 2024 at 10:00:08 AM
CAS classification : [_Laguerre]

Solve

2ty′′ + (1− 2t) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

2ty′′ + (1− 2t) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t
B = 1− 2t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4t2 + 4t− 3
16t2 (6)

Comparing the above to (5) shows that

s = 4t2 + 4t− 3
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
4t2 + 4t− 3

16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.384: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

16t2 + 1
4t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
4t −

1
4t2 + 1

8t3 − 1
8t4 + 1

8t5 − 9
64t6 + 21

128t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4t2 + 4t− 3
16t2

= Q+ R

16t2

=
(
1
4

)
+
(
4t− 3
16t2

)
= 1

4 + 4t− 3
16t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
2
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
2
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4t2 + 4t− 3
16t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

4 then

d = α+
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= 1
4t +

(
1
2

)
= 1

2 + 1
4t

= 1
2 + 1

4t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

4t

)
(0) +

((
− 1
4t2

)
+
(
1
2 + 1

4t

)2

−
(
4t2 + 4t− 3

16t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2+
1
4t
)
dt

= t1/4e t
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
1−2t
2t dt

= z1e
t
2−

ln(t)
4

= z1

(
e t

2

t1/4

)

Which simplifies to
y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 1−2t

2t dt

(y1)2
dt

= y1

∫
et−

ln(t)
2

(y1)2
dt

= y1
(√

π erf
(√

t
))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(√

π erf
(√

t
)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t+ (1− 2t)

(
d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

2t +
(2t−1)

(
d
dt
y(t)

)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(2t−1)
(

d
dt
y(t)

)
2t − y(t)

2t = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = −2t−1

2t , P3(t) = − 1
2t

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= 1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t+ (1− 2t)

(
d
dt
y(t)

)
− y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−1 + 2r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 2r + 1)− ak(2k + 2r + 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2(ak+1(k + 1 + r)− ak)

(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = ak

k+1

]
• Recursion relation for r = 1

2

ak+1 = ak
k+ 3

2

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+1 = ak
k+ 3

2

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+1 = ak

k+1 , bk+1 = bk
k+ 3

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.047 (sec)
Leaf size : 15� �
dsolve(2*t*diff(diff(y(t),t),t)+(-2*t+1)*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = et

(
erf
(√

t
)
c1 + c2

)
Mathematica DSolve solution

Solving time : 0.179 (sec)
Leaf size : 21� �
DSolve[{2*t*D[y[t],{t,2}]+(1-2*t)*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → et

(
c1 − c2Γ

(
1
2 , t
))
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2.1.202 problem 205

Solved as second order ode using Kovacic algorithm . . . . . . . . .1421
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1426
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1427
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1428
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1428

Internal problem ID [9050]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 205
Date solved : Thursday, December 12, 2024 at 10:00:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2ty′′ + (1 + t) y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.500 (sec)

Writing the ode as

2ty′′ + (1 + t) y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t
B = 1 + t (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 18t− 3
16t2 (6)

Comparing the above to (5) shows that

s = t2 + 18t− 3
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 18t− 3

16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.386: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 − 3

16t2 + 9
8t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 9
4t −

21
2t2 + 189

2t3 − 1071
t4

+ 13608
t5

− 370629
2t6 + 5288409

2t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 18t− 3
16t2

= Q+ R

16t2

=
(

1
16

)
+
(
18t− 3
16t2

)
= 1

16 + 18t− 3
16t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 18. Dividing this by leading coefficient in t which is 16 gives 9

8 . Now b can be found.

b =
(
9
8

)
− (0)

= 9
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 9
8
1
4
− 0
)

= 9
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

9
8
1
4
− 0
)

= −9
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 18t− 3
16t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

9
4 −9

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 9

4 then

d = α+
∞ −

(
α−
c1

)
= 9

4 −
(
1
4

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= 1
4t +

(
1
4

)
= 1

4t +
1
4

= 1 + t

4t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 2 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
4t +

1
4

)
(2t+ a1) +

((
− 1
4t2

)
+
(

1
4t +

1
4

)2

−
(
t2 + 18t− 3

16t2

))
= 0

(−a1 + 6) t− 2a0 + a1
2t = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = 6}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t2 + 6t+ 3
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t2 + 6t+ 3

)
e
∫ ( 1

4t+
1
4
)
dt

=
(
t2 + 6t+ 3

)
e t

4+
ln(t)
4

=
(
t2 + 6t+ 3

)
t1/4e t

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
1+t
2t dt

= z1e
− t

4−
ln(t)
4

= z1

(
e− t

4

t1/4

)

Which simplifies to
y1 = t2 + 6t+ 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 1+t

2t dt

(y1)2
dt

= y1

∫
e−

t
2−

ln(t)
2

(y1)2
dt

= y1

(∫ e− t
2−

ln(t)
2

(t2 + 6t+ 3)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
t2 + 6t+ 3

)
+ c2

(
t2 + 6t+ 3

(∫ e− t
2−

ln(t)
2

(t2 + 6t+ 3)2
dt

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t+ (t+ 1)

(
d
dt
y(t)

)
− 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

t
−

(t+1)
(

d
dt
y(t)

)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(t+1)
(

d
dt
y(t)

)
2t − y(t)

t
= 0

� Check to see if t0 = 0 is a regular singular point
◦ Define functions[

P2(t) = t+1
2t , P3(t) = −1

t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t+ (t+ 1)

(
d
dt
y(t)

)
− 2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−1 + 2r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + ak(k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = − ak(k−2)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = 2a0

• Apply recursion relation for k = 1
a2 = a1

6

• Express in terms of a0
a2 = a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(t) = a0 ·

(
1 + 2t+ 1

3t
2)

• Recursion relation for r = 1
2

ak+1 = − ak
(
k− 3

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+1 = − ak
(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(t) = a0 ·
(
1 + 2t+ 1

3t
2)+ ( ∞∑

k=0
bkt

k+ 1
2

)
, bk+1 = − bk

(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 56� �
dsolve(2*t*diff(diff(y(t),t),t)+(t+1)*diff(y(t),t)-2*y(t) = 0,

y(t),singsol=all)� �
y = c1

√
π
(
t2 + 6t+ 3

)
erf
(√

2
√
t

2

)
+ 5c1

(√
t+ t3/2

5

)√
2 e− t

2 + c2
(
t2 + 6t+ 3

)
Mathematica DSolve solution

Solving time : 11.023 (sec)
Leaf size : 71� �
DSolve[{2*t*D[y[t],{t,2}]+(1+t)*D[y[t],t]-2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

24

(√
2πc2

(
t2 + 6t+ 3

)
erf
(√

t√
2

)
+ 24c1

(
t2 + 6t+ 3

)
+ 2c2e−t/2√t(t+ 5)

)
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2.1.203 problem 206

Solved as second order ode using Kovacic algorithm . . . . . . . . .1429
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1432
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1434
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1434
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1434

Internal problem ID [9051]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 206
Date solved : Thursday, December 12, 2024 at 10:00:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2t2y′′ − ty′ + (1 + t) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.258 (sec)

Writing the ode as

2t2y′′ − ty′ + (1 + t) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t2

B = −t (3)
C = 1 + t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3− 8t
16t2 (6)

Comparing the above to (5) shows that

s = −3− 8t
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
−3− 8t
16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.388: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16t2. There is a pole at t = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16t2 − 1

2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(t)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
t− c

= 1
2

(
1

(t− (0))

)
= 1

2t
Now we search for a monic polynomial p(t) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(t) is found let

φ = θ + p′

p

= 1
2t

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2t +
1 + 8t
16t2 = 0

Solving for ω gives

ω = 1 + 2
√
2
√
−t

4t
Therefore the first solution to the ode z′′ = rz is

z1(t) = e
∫
ω dt

= e
∫ 1+2

√
2
√
−t

4t dt

= t1/4e
√
2
√
−t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t
2t2 dt

= z1e
ln(t)
4

= z1
(
t1/4
)

Which simplifies to

y1 =
√
t e

√
2
√
−t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −t

2t2 dt

(y1)2
dt

= y1

∫
e

ln(t)
2

(y1)2
dt

= y1

−

√
2
√
−t
(
1− e−2

√
2
√
−t
)

2
√
t


Therefore the solution is

y = c1y1 + c2y2

= c1
(√

t e
√
2
√
−t
)
+ c2

√
t e

√
2
√
−t

−

√
2
√
−t
(
1− e−2

√
2
√
−t
)

2
√
t



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t2 − t

(
d
dt
y(t)

)
+ (t+ 1) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = − (t+1)y(t)

2t2 +
d
dt
y(t)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

d
dt
y(t)
2t + (t+1)y(t)

2t2 = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − 1

2t , P3(t) = t+1
2t2
]

◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 1
2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t2 − t

(
d
dt
y(t)

)
+ (t+ 1) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑
k=0

akt
k+r+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert t ·
(

d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r) tr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1) + ak−1) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 1

2

)
(k + r − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(2k+1+2r)(k+r)

• Recursion relation for r = 1
ak+1 = − ak

(2k+3)(k+1)

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak

(2k+3)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = − ak
(2k+2)

(
k+ 1

2
)

• Solution for r = 1
2
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[
y(t) =

∞∑
k=0

akt
k+ 1

2 , ak+1 = − ak
(2k+2)

(
k+ 1

2
)
]

• Combine solutions and rename parameters[
y(t) =

(
∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+1 = − ak

(2k+3)(k+1) , bk+1 = − bk
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 29� �
dsolve(2*t^2*diff(diff(y(t),t),t)-t*diff(y(t),t)+(t+1)*y(t) = 0,

y(t),singsol=all)� �
y =

√
t
(
c1 sin

(√
2
√
t
)
+ c2 cos

(√
2
√
t
))

Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 62� �
DSolve[{2*t^2*D[y[t],{t,2}]-t*D[y[t],t]+(1+t)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
−i

√
2
√
t
√
t
(
2c1e2i

√
2
√
t + i

√
2c2
)
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2.1.204 problem 207

Solved as second order ode using Kovacic algorithm . . . . . . . . .1435
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1439
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1441
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1441
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1441

Internal problem ID [9052]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 207
Date solved : Thursday, December 12, 2024 at 10:00:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2t2y′′ +
(
t2 − t

)
y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as

2t2y′′ +
(
t2 − t

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t2

B = t2 − t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t− 3
16t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t− 3
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t− 3

16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.390: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 − 3

16t2 − 1
8t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 − 1
4t −

1
2t2 − 1

2t3 − 1
t4

− 2
t5

− 9
2t6 − 21

2t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t− 3
16t2

= Q+ R

16t2

=
(

1
16

)
+
(
−2t− 3
16t2

)
= 1

16 + −2t− 3
16t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder R
is −2. Dividing this by leading coefficient in t which is 16 gives −1

8 . Now b can be found.

b =
(
−1
8

)
− (0)

= −1
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
8

1
4

− 0
)

= −1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

8
1
4

− 0
)

= 1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t− 3
16t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4 −1

4
1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= 1
4t + (−)

(
1
4

)
= 1

4t −
1
4

= −t− 1
4t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4t −

1
4

)
(0) +

((
− 1
4t2

)
+
(

1
4t −

1
4

)2

−
(
t2 − 2t− 3

16t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

4t−
1
4
)
dt

= t1/4e− t
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2−t
2t2 dt

= z1e
− t

4+
ln(t)
4

= z1
(
t1/4e− t

4

)
Which simplifies to

y1 =
√
t e− t

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2−t

2t2 dt

(y1)2
dt

= y1

∫
e−

t
2+

ln(t)
2

(y1)2
dt

= y1

(
−i

√
π
√
2 erf

(
i
√
2
√
t

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

t e− t
2

)
+ c2

(
√
t e− t

2

(
−i

√
π
√
2 erf

(
i
√
2
√
t

2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t2 + (t2 − t)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

2t2 −
(t−1)

(
d
dt
y(t)

)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(t−1)
(

d
dt
y(t)

)
2t + y(t)

2t2 = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = t−1

2t , P3(t) = 1
2t2
]

◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 1
2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t2 + t(t− 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r) tr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1) + ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
((
k + r − 1

2

)
ak + ak−1

2

)
(k + r − 1) = 0

• Shift index using k− >k + 1
2
((
k + 1

2 + r
)
ak+1 + ak

2

)
(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2k+1+2r

• Recursion relation for r = 1
ak+1 = − ak

2k+3

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak

2k+3

]
• Recursion relation for r = 1

2

ak+1 = − ak
2k+2

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+1 = − ak
2k+2

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+1 = − ak

2k+3 , bk+1 = − bk
2k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 47� �
dsolve(2*t^2*diff(diff(y(t),t),t)+(t^2-t)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y =

e− t
2

(
23/4 erf

(√
2
√
−t

2

)√
π c1t+ 4c2

√
t
√
−t
)

4
√
−t

Mathematica DSolve solution

Solving time : 0.088 (sec)
Leaf size : 46� �
DSolve[{2*t^2*D[y[t],{t,2}]+(t^2-t)*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−t/2

(
c2
√
t+

√
2c1

√
−tΓ

(
1
2 ,−

t

2

))
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2.1.205 problem 208

Solved as second order ode using Kovacic algorithm . . . . . . . . .1442
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1446
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1448
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1448
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1448

Internal problem ID [9053]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 208
Date solved : Thursday, December 12, 2024 at 10:00:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ +
(
−t2 + t

)
y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.252 (sec)

Writing the ode as

t2y′′ +
(
−t2 + t

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 + t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.392: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4t2 − 1
2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
2t2 + 1

2t3 + 1
4t4 − 1

4t5 − 3
4t6 − 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−2t+ 3

4t2

)
= 1

4 + −2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2t +

(
1
2

)
= 1

2 − 1
2t

= t− 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2t

)
(0) +

((
1
2t2

)
+
(
1
2 − 1

2t

)2

−
(
t2 − 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2−
1
2t
)
dt

= e t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2+t

t2 dt

= z1e
t
2−

ln(t)
2

= z1

(
e t

2
√
t

)

Which simplifies to

y1 =
et
t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2+t

t2 dt

(y1)2
dt

= y1

∫
et−ln(t)

(y1)2
dt

= y1
(
−(1 + t) t et−ln(t)e−2t)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
et
t

)
+ c2

(
et
t

(
−(1 + t) t et−ln(t)e−2t))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + (−t2 + t)

(
d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

t2
+

(t−1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t−1)
(

d
dt
y(t)

)
t

− y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t−1

t
, P3(t) = − 1

t2

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= −1

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 − t(t− 1)

(
d
dt
y(t)

)
− y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r) tr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1)− ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y(t) =

∞∑
k=0

akt
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 1

ak+1 = ak
k+3

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k−1
)
+
(

∞∑
k=0

bkt
k+1
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(t^2*diff(diff(y(t),t),t)+(-t^2+t)*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = etc2 + c1t+ c1

t

Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 23� �
DSolve[{t^2*D[y[t],{t,2}]+(t-t^2)*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c2e

t − c1(t+ 1)
t



chapter 2. book solved problems 1449

2.1.206 problem 209

Solved as second order ode using Kovacic algorithm . . . . . . . . .1449
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1453
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1455
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1455
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1455

Internal problem ID [9054]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 209
Date solved : Thursday, December 12, 2024 at 10:00:12 AM
CAS classification : [_Lienard]

Solve

ty′′ −
(
t2 + 2

)
y′ + ty = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as

ty′′ +
(
−t2 − 2

)
y′ + ty = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −t2 − 2 (3)
C = t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 − 2t2 + 8
4t2 (6)

Comparing the above to (5) shows that

s = t4 − 2t2 + 8
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t4 − 2t2 + 8

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.394: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = t2

4 − 1
2 + 2

t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
1∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t

2 − 1
2t +

7
4t3 + 7

4t5 − 21
16t7 − 119

16t9 − 189
32t11 + 791

32t13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

ait
i

= t

2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = t2

4

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 − 2t2 + 8
4t2

= Q+ R

4t2

=
(
t2

4 − 1
2

)
+
(
2
t2

)
= t2

4 − 1
2 + 2

t2

We see that the coefficient of the term t in the quotient is −1
2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = t

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 1
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 1
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t4 − 2t2 + 8
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 t
2 −1 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= −1
t
+
(
t

2

)
= −1

t
+ t

2
= −1

t
+ t

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
t
+ t

2

)
(0) +

((
1
t2

+ 1
2

)
+
(
−1
t
+ t

2

)2

−
(
t4 − 2t2 + 8

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
t
+ t

2
)
dt

= e t2
4

t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−2

t
dt

= z1e
t2
4 +ln(t)

= z1
(
t e t2

4

)
Which simplifies to

y1 = e t2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2−2

t
dt

(y1)2
dt

= y1

∫
e

t2
2 +2 ln(t)

(y1)2
dt

= y1

−t e− t2
2 +

√
π
√
2 erf

(√
2 t
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e t2

2

)
+ c2

e t2
2

−t e− t2
2 +

√
π
√
2 erf

(√
2 t
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t− (t2 + 2)

(
d
dt
y(t)

)
+ ty(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t) +

(
t2+2

)(
d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(
t2+2

)(
d
dt
y(t)

)
t

+ y(t) = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions
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[
P2(t) = − t2+2

t
, P3(t) = 1

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t2 − 2)

(
d
dt
y(t)

)
+ ty(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t · y(t) to series expansion

t · y(t) =
∞∑
k=0

akt
k+r+1

◦ Shift index using k− >k − 1

t · y(t) =
∞∑
k=1

ak−1t
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−3 + r) t−1+r + a1(1 + r) (−2 + r) tr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r)− ak−1(k − 2 + r)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k − 2 + r) (ak+1(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+2(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = ak
k+2+r

• Recursion relation for r = 0
ak+2 = ak

k+2

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+2 = ak

k+2 ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = ak

k+5

• Solution for r = 3[
y(t) =

∞∑
k=0

akt
k+3, ak+2 = ak

k+5 , 4a1 = 0
]

• Combine solutions and rename parameters[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+3
)
, ak+2 = ak

k+2 ,−2a1 = 0, bk+2 = bk
5+k

, 4b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 33� �
dsolve(t*diff(diff(y(t),t),t)-(t^2+2)*diff(y(t),t)+y(t)*t = 0,

y(t),singsol=all)� �
y =

(
c2
√
π
√
2 erf

(√
2 t
2

)
+ c1

)
e t2

2 − 2c2t

Mathematica DSolve solution

Solving time : 0.187 (sec)
Leaf size : 52� �
DSolve[{t*D[y[t],{t,2}]-(t^2+2)*D[y[t],t]+t*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

√
π

2 c2e
t2
2 erf

(
t√
2

)
+ c1e

t2
2 − c2t
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2.1.207 problem 210

Solved as second order ode using Kovacic algorithm . . . . . . . . .1456
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1460
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1462
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1462
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1462

Internal problem ID [9055]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 210
Date solved : Thursday, December 12, 2024 at 10:00:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ + t(t+ 1) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.256 (sec)

Writing the ode as

t2y′′ +
(
t2 + t

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = t2 + t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 + 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.396: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 1

2t +
3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2t +

1
2t2 − 1

2t3 + 1
4t4 + 1

4t5 − 3
4t6 + 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
2t+ 3
4t2

)
= 1

4 + 2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= − 1
2t + (−)

(
1
2

)
= − 1

2t −
1
2

= −t+ 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2t −

1
2

)
(0) +

((
1
2t2

)
+
(
− 1
2t −

1
2

)2

−
(
t2 + 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2t−

1
2
)
dt

= e− t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2+t
t2 dt

= z1e
− t

2−
ln(t)
2

= z1

(
e− t

2
√
t

)

Which simplifies to

y1 =
e−t

t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2+t

t2 dt

(y1)2
dt

= y1

∫
e−t−ln(t)

(y1)2
dt

= y1
(
(−1 + t) t e−t−ln(t)e2t

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−t

t

)
+ c2

(
e−t

t

(
(−1 + t) t e−t−ln(t)e2t

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + t(t+ 1)

(
d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

t2
−

(t+1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(t+1)
(

d
dt
y(t)

)
t

− y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = t+1

t
, P3(t) = − 1

t2

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= −1

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 + t(t+ 1)

(
d
dt
y(t)

)
− y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r) tr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1) + ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y(t) =

∞∑
k=0

akt
k−1, ak+1 = − ak

k+1

]
• Recursion relation for r = 1

ak+1 = − ak
k+3

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak

k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k−1
)
+
(

∞∑
k=0

bkt
k+1
)
, ak+1 = − ak

k+1 , bk+1 = − bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 20� �
dsolve(t^2*diff(diff(y(t),t),t)+t*(t+1)*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c2e−t + c1(t− 1)

t

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 26� �
DSolve[{t^2*D[y[t],{t,2}]+t*(t+1)*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−t(c1et(t− 1) + c2)

t
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2.1.208 problem 211

Solved as second order ode using Kovacic algorithm . . . . . . . . .1463
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1467
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1469
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1469
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1469

Internal problem ID [9056]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 211
Date solved : Thursday, December 12, 2024 at 10:00:13 AM
CAS classification : [_Laguerre]

Solve

ty′′ − (4 + t) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.294 (sec)

Writing the ode as

ty′′ + (−4− t) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −4− t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 24
4t2 (6)

Comparing the above to (5) shows that

s = t2 + 24
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 24
4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.398: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 6

t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 6
t2

− 36
t4

+ 432
t6

− 6480
t8

+ 108864
t10

− 1959552
t12

+ 36951552
t14

+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 24
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
6
t2

)
= 1

4 + 6
t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 24
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= −2
t
+ (−)

(
1
2

)
= −2

t
− 1

2
= −4 + t

2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 2 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
t
− 1

2

)
(2t+ a1) +

((
2
t2

)
+
(
−2
t
− 1

2

)2

−
(
t2 + 24
4t2

))
= 0

(a1 − 6) t+ 2a0 − 4a1
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 12, a1 = 6}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t2 + 6t+ 12
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t2 + 6t+ 12

)
e
∫ (

− 2
t
− 1

2
)
dt

=
(
t2 + 6t+ 12

)
e− t

2−2 ln(t)

= (t2 + 6t+ 12) e− t
2

t2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4−t

t
dt

= z1e
t
2+2 ln(t)

= z1
(
t2e t

2

)
Which simplifies to

y1 = t2 + 6t+ 12

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−4−t

t
dt

(y1)2
dt

= y1

∫
et+4 ln(t)

(y1)2
dt

= y1

(
(t2 − 6t+ 12) et+4 ln(t)

(t2 + 6t+ 12) t4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
t2 + 6t+ 12

)
+ c2

(
t2 + 6t+ 12

(
(t2 − 6t+ 12) et+4 ln(t)

(t2 + 6t+ 12) t4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t− (t+ 4)

(
d
dt
y(t)

)
+ 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −2y(t)

t
+

(t+4)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dt2
y(t)−

(t+4)
(

d
dt
y(t)

)
t

+ 2y(t)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+4

t
, P3(t) = 2

t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −4

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t− 4)

(
d
dt
y(t)

)
+ 2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−5 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 4 + r)− ak(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−5 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 4 + r)− ak(k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−2)

(k+1+r)(k−4+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

(k+1)(k−4)

• Apply recursion relation for k = 0
a1 = a0

2

• Apply recursion relation for k = 1
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a2 = a1
6

• Express in terms of a0
a2 = a0

12

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(t) = a0 ·

(
1 + 1

2t+
1
12t

2)
• Recursion relation for r = 5

ak+1 = ak(k+3)
(k+6)(k+1)

• Solution for r = 5[
y(t) =

∞∑
k=0

akt
k+5, ak+1 = ak(k+3)

(k+6)(k+1)

]
• Combine solutions and rename parameters[

y(t) = a0 ·
(
1 + 1

2t+
1
12t

2)+ ( ∞∑
k=0

bkt
5+k

)
, bk+1 = bk(k+3)

(k+6)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(t*diff(diff(y(t),t),t)-(4+t)*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = c1

(
t2 + 6t+ 12

)
+ c2et

(
t2 − 6t+ 12

)
Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 85� �
DSolve[{t*D[y[t],{t,2}]-(4+t)*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

2et/2
√
t
(
(c2t2 − 6ic1t+ 12c2) cosh

(
t
2

)
+ i(c1(t2 + 12) + 6ic2t) sinh

(
t
2

))
√
π
√
−it
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2.1.209 problem 212

Solved as second order ode using Kovacic algorithm . . . . . . . . .1470
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1474
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1476
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1476
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1476

Internal problem ID [9057]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 212
Date solved : Thursday, December 12, 2024 at 10:00:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ +
(
t2 − 3t

)
y′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.286 (sec)

Writing the ode as

t2y′′ +
(
t2 − 3t

)
y′ + 3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = t2 − 3t (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 6t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 6t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 6t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.400: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

2t +
3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
2t −

3
2t2 − 9

2t3 − 63
4t4 − 243

4t5 − 999
4t6 − 4293

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 6t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−6t+ 3

4t2

)
= 1

4 + −6t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −6. Dividing this by leading coefficient in t which is 4 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 0
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 0
)

= 3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 6t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3

2
3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

t− c1

)
+ (−)[

√
r]∞

= 3
2t + (−)

(
1
2

)
= 3

2t −
1
2

= −t− 3
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2t −

1
2

)
(0) +

((
− 3
2t2

)
+
(

3
2t −

1
2

)2

−
(
t2 − 6t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 3

2t−
1
2
)
dt

= t3/2e− t
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2−3t

t2 dt

= z1e
− t

2+
3 ln(t)

2

= z1
(
t3/2e− t

2

)
Which simplifies to

y1 = t3e−t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2−3t

t2 dt

(y1)2
dt

= y1

∫
e−t+3 ln(t)

(y1)2
dt

= y1

(
− et
2t2 − et

2t −
Ei1 (−t)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
t3e−t

)
+ c2

(
t3e−t

(
− et
2t2 − et

2t −
Ei1 (−t)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + (t2 − 3t)

(
d
dt
y(t)

)
+ 3y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −3y(t)

t2
−

(−3+t)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(−3+t)
(

d
dt
y(t)

)
t

+ 3y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = −3+t

t
, P3(t) = 3

t2

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −3

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 3

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 + (−3 + t) t

(
d
dt
y(t)

)
+ 3y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r) (−3 + r) tr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 3) + ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 3}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 3) + ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k − 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k−2+r

• Recursion relation for r = 1
ak+1 = − ak

k−1

• Series not valid for r = 1 , division by 0 in the recursion relation at k = 1
ak+1 = − ak

k−1

• Recursion relation for r = 3
ak+1 = − ak

k+1

• Solution for r = 3[
y(t) =

∞∑
k=0

akt
k+3, ak+1 = − ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 34� �
dsolve(t^2*diff(diff(y(t),t),t)+(t^2-3*t)*diff(y(t),t)+3*y(t) = 0,

y(t),singsol=all)� �
y = t

(
e−t Ei1 (−t) c2t2 + e−tc1t

2 + c2t+ c2
)

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 41� �
DSolve[{t^2*D[y[t],{t,2}]+(t^2-3*t)*D[y[t],t]+3*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
−t
(
c1t

3 ExpIntegralEi(t) + 2c2t3 − c1e
t(t+ 1)t

)
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2.1.210 problem 213

Solved as second order ode using Kovacic algorithm . . . . . . . . .1477
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1481
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1483
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1483
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1483

Internal problem ID [9058]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 213
Date solved : Thursday, December 12, 2024 at 10:00:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

ty′′ + ty′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.269 (sec)

Writing the ode as

ty′′ + ty′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t− 8
4t (6)

Comparing the above to (5) shows that

s = t− 8
t = 4t

Therefore eq. (4) becomes

z′′(t) =
(
t− 8
4t

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.402: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t. There is a pole at t = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at t = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 2
t
− 4

t2
− 16

t3
− 80

t4
− 448

t5
− 2688

t6
− 16896

t7
+ . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t− 8
4t

= Q+ R

4t

=
(
1
4

)
+
(
−2
t

)
= 1

4 − 2
t

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is −8. Dividing this by leading coefficient in t which is 4 gives −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 0
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 0
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t− 8
4t

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −2 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2 then

d = α−
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= 1
t
+ (−)

(
1
2

)
= 1

t
− 1

2
= 1

t
− 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
t
− 1

2

)
(1) +

((
− 1
t2

)
+
(
1
t
− 1

2

)2

−
(
t− 8
4t

))
= 0

2 + a0
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = −2 + t

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

= (−2 + t) e
∫ ( 1

t
− 1

2
)
dt

= (−2 + t) e− t
2+ln(t)

= (−2 + t) t e− t
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t
t
dt

= z1e
− t

2

= z1
(
e− t

2

)
Which simplifies to

y1 = e−t(−2 + t) t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

t
dt

(y1)2
dt

= y1

∫
e−t

(y1)2
dt

= y1

(
−et(−t+ 1)

2 (2− t) t − Ei1 (−t)
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−t(−2 + t) t

)
+ c2

(
e−t(−2 + t) t

(
−et(−t+ 1)

2 (2− t) t − Ei1 (−t)
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t+ t

(
d
dt
y(t)

)
+ 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = −2y(t)

t
− d

dt
y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) + d

dt
y(t) + 2y(t)

t
= 0

� Check to see if t0 = 0 is a regular singular point
◦ Define functions[

P2(t) = 1, P3(t) = 2
t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 0
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◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ t

(
d
dt
y(t)

)
+ 2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t ·

(
d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−1 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak(k + r + 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+2)

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = −ak(k+2)

(k+1)k

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = −ak(k+2)

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak(k+3)
(k+2)(k+1)

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak(k+3)

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+1
)
, ak+1 = −ak(k+2)

(k+1)k , bk+1 = − bk(k+3)
(k+2)(k+1)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 35� �
dsolve(t*diff(diff(y(t),t),t)+t*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = t e−tc2(t− 2) Ei1 (−t) + c1e−t(t− 2) t+ c2(t− 1)

Mathematica DSolve solution

Solving time : 0.228 (sec)
Leaf size : 51� �
DSolve[{t*D[y[t],{t,2}]+t*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
−t
(
c2(t− 2)tExpIntegralEi(t) + 2c1t2 − t

(
c2e

t + 4c1
)
+ c2e

t
)
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2.1.211 problem 214

Solved as second order ode using Kovacic algorithm . . . . . . . . .1484
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1489
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1490
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1491
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1491

Internal problem ID [9059]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 214
Date solved : Thursday, December 12, 2024 at 10:00:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

ty′′ +
(
−t2 + 1

)
y′ + 4ty = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.647 (sec)

Writing the ode as

ty′′ +
(
−t2 + 1

)
y′ + 4ty = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −t2 + 1 (3)
C = 4t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 − 20t2 − 1
4t2 (6)

Comparing the above to (5) shows that

s = t4 − 20t2 − 1
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t4 − 20t2 − 1

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.404: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = t2

4 − 5− 1
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
1∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t

2 − 5
t
− 101

4t3 − 505
2t5 − 50601

16t7 − 355015
8t9 − 21351501

32t11 − 168167525
16t13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

ait
i

= t

2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = t2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 − 20t2 − 1
4t2

= Q+ R

4t2

=
(
t2

4 − 5
)
+
(
− 1
4t2

)
= t2

4 − 5− 1
4t2

We see that the coefficient of the term t in the quotient is −5. Now b can be found.

b = (−5)− (0)
= −5

Hence

[
√
r]∞ = t

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−5
1
2

− 1
)

= −11
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−5

1
2

− 1
)

= 9
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t4 − 20t2 − 1
4t2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 t
2 −11

2
9
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 9

2 then

d = α−
∞ −

(
α+
c1

)
= 9

2 −
(
1
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

t− c1

)
+ (−)[

√
r]∞

= 1
2t + (−)

(
t

2

)
= 1

2t −
t

2
= 1

2t −
t

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 4 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t4 + a3t
3 + a2t

2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12t2 + 6ta3 + 2a2

)
+ 2
(

1
2t −

t

2

)(
4t3 + 3a3t2 + 2a2t+ a1

)
+
((

− 1
2t2 − 1

2

)
+
(

1
2t −

t

2

)2

−
(
t4 − 20t2 − 1

4t2

))
= 0

t4a3 + 2(8 + a2) t3 + 3(a1 + 3a3) t2 + 4(a0 + a2) t+ a1
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = 0, a2 = −8, a3 = 0}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t4 − 8t2 + 8
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t4 − 8t2 + 8

)
e
∫ ( 1

2t−
t
2
)
dt

=
(
t4 − 8t2 + 8

)
e− t2

4 + ln(t)
2

=
(
t4 − 8t2 + 8

)√
t e− t2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2+1

t
dt

= z1e
t2
4 − ln(t)

2

= z1

(
e t2

4
√
t

)

Which simplifies to
y1 = t4 − 8t2 + 8

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2+1

t
dt

(y1)2
dt

= y1

∫
e

t2
2 −ln(t)

(y1)2
dt

= y1

(∫ e t2
2 −ln(t)

(t4 − 8t2 + 8)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
t4 − 8t2 + 8

)
+ c2

(
t4 − 8t2 + 8

(∫ e t2
2 −ln(t)

(t4 − 8t2 + 8)2
dt

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t+ (−t2 + 1)

(
d
dt
y(t)

)
+ 4ty(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −4y(t) +

(
t2−1

)(
d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(
t2−1

)(
d
dt
y(t)

)
t

+ 4y(t) = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t2−1

t
, P3(t) = 4

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t2 + 1)

(
d
dt
y(t)

)
+ 4ty(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t · y(t) to series expansion

t · y(t) =
∞∑
k=0

akt
k+r+1

◦ Shift index using k− >k − 1

t · y(t) =
∞∑
k=1

ak−1t
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r) tk+r

Rewrite ODE with series expansions
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a0r
2t−1+r + a1(1 + r)2 tr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 − ak−1(k − 5 + r)

)
tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − ak−1(k − 5) = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 − ak(k − 4) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(k−4)

(k+2)2

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = ak(k−4)

(k+2)2

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+2 = ak(k−4)

(k+2)2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.043 (sec)
Leaf size : 21� �
dsolve(t*diff(diff(y(t),t),t)+(-t^2+1)*diff(y(t),t)+4*y(t)*t = 0,

y(t),singsol=all)� �
y = (t4 − 8t2 + 8) (c1 + 2c2)

8

Mathematica DSolve solution

Solving time : 0.664 (sec)
Leaf size : 61� �
DSolve[{t*D[y[t],{t,2}]+(1-t^2)*D[y[t],t]+4*t*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

128c2
((

t4 − 8t2 + 8
)
ExpIntegralEi

(
t2

2

)
− 2e t2

2
(
t2 − 6

))
+ c1

(
t4 − 8t2 + 8

)
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2.1.212 problem 215

Solved as second order ode using Kovacic algorithm . . . . . . . . .1492
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1496
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1497
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1498
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1498

Internal problem ID [9060]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 215
Date solved : Thursday, December 12, 2024 at 10:00:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ − t(1 + t) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

t2y′′ +
(
−t2 − t

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 − t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 2t− 1
4t2 (6)

Comparing the above to (5) shows that

s = t2 + 2t− 1
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 2t− 1

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.406: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4t2 + 1
2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2t −

1
2t2 + 1

2t3 − 3
4t4 + 5

4t5 − 9
4t6 + 17

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 2t− 1
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
2t− 1
4t2

)
= 1

4 + 2t− 1
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 2t− 1
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

t− c1

)
+ (+)[

√
r]∞

= 1
2t +

(
1
2

)
= 1

2 + 1
2t

= 1 + t

2t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

2t

)
(0) +

((
− 1
2t2

)
+
(
1
2 + 1

2t

)2

−
(
t2 + 2t− 1

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2+
1
2t
)
dt

=
√
t e t

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−t

t2 dt

= z1e
t
2+

ln(t)
2

= z1
(√

t e t
2

)
Which simplifies to

y1 = t et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2−t

t2 dt

(y1)2
dt

= y1

∫
et+ln(t)

(y1)2
dt

= y1(−Ei1 (t))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
t et
)
+ c2

(
t et(−Ei1 (t))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 − t(t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) =

(t+1)
(

d
dt
y(t)

)
t

− y(t)
t2

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) + y(t)

t2
−

(t+1)
(

d
dt
y(t)

)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+1

t
, P3(t) = 1

t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0
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(t2 · P3(t))
∣∣∣∣
t=0

= 1

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 − t(t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r)2 tr +
(

∞∑
k=1

(
ak(k + r − 1)2 − ak−1(k + r − 1)

)
tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+r

• Recursion relation for r = 1
ak+1 = ak

k+1

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(t^2*diff(diff(y(t),t),t)-t*(t+1)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y = ett(c1 + c2 Ei1 (t))

Mathematica DSolve solution

Solving time : 0.035 (sec)
Leaf size : 20� �
DSolve[{t^2*D[y[t],{t,2}]-t*(1+t)*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → ett(c1 ExpIntegralEi(−t) + c2)
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2.1.213 problem 216

Solved as second order ode using Kovacic algorithm . . . . . . . . .1499
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1501
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1502
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1502
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1502

Internal problem ID [9061]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 216
Date solved : Thursday, December 12, 2024 at 10:00:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.195 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.408: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2 cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2 cos (2x)

)
+ c2

(
e−x2 cos (2x)

(
tan (2x)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 6a0 + (6a3 + 10a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 3) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 6a0 = 0, 6a3 + 10a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −3a0, a3 = −5a1

3

}
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• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 6ak + 4ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 6ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+7ak+2)

k2+7k+12 , a2 = −3a0, a3 = −5a1
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 24� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+6)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(cos (2x) c1 + sin (2x) c2)

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 37� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x(x+2i)(4c1 − ic2e

4ix)
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2.1.214 problem 217

Solved as second order ode using Kovacic algorithm . . . . . . . . .1503
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1507
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1508
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1509
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1509

Internal problem ID [9062]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 217
Date solved : Thursday, December 12, 2024 at 10:00:18 AM
CAS classification : [_Gegenbauer]

Solve (
−z2 + 1

)
y′′ − 3zy′ + λy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.448 (sec)

Writing the ode as (
−z2 + 1

)
y′′ − 3zy′ + λy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −z2 + 1
B = −3z (3)
C = λ

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4λ z2 + 3z2 − 4λ− 6
4 (z2 − 1)2

(6)

Comparing the above to (5) shows that

s = 4λ z2 + 3z2 − 4λ− 6

t = 4
(
z2 − 1

)2
Therefore eq. (4) becomes

z′′(z) =
(
4λ z2 + 3z2 − 4λ− 6

4 (z2 − 1)2
)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.410: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(z2 − 1)2. There is a pole at z = 1 of order 2. There is a pole at z = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (z + 1)2

+
− 9

16 −
λ
2

z + 1 − 3
16 (z − 1)2

+
λ
2 +

9
16

z − 1

For the pole at z = 1 let b be the coefficient of 1
(z−1)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at z = −1 let b be the coefficient of 1
(z+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
z2

in the Laurent series
expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 4λ z2 + 3z2 − 4λ− 6

4 (z2 − 1)2

Since the gcd(s, t) = 1. This gives b = 1. Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

1 2 {1, 2, 3}
−1 2 {1, 2, 3}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(z)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
z − c

= 1
2

(
1

(z − (1)) +
1

(z − (−1))

)
= 1

2z − 2 + 1
2z + 2

Now we search for a monic polynomial p(z) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(z) is found let

φ = θ + p′

p

= 1
2z − 2 + 1

2z + 2
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Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2z − 2 + 1

2z + 2

)
w + −4λ z2 − 3z2 + 4λ+ 4

4 (z2 − 1)2
= 0

Solving for ω gives

ω = z + 2
√
(z2 − 1) (λ+ 1)

2 (z − 1) (z + 1)
Therefore the first solution to the ode z′′ = rz is

z1(z) = e
∫
ω dz

= e
∫ z+2

√(
z2−1

)
(λ+1)

2(z−1)(z+1) dz

=
(
z2 − 1

)1/4(√(z2 − 1) (λ+ 1)
√
λ+ 1 + λz + z√

λ+ 1

)√
λ+1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
−3z

−z2+1 dz

= z1e
− 3 ln(z−1)

4 − 3 ln(z+1)
4

= z1

(
1

(z − 1)3/4 (z + 1)3/4

)

Which simplifies to

y1 =
(z2 − 1)1/4

(√
λ+ 1

(
z +

√
z2 − 1

))√λ+1

(z − 1)3/4 (z + 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
− −3z

−z2+1 dz

(y1)2
dz

= y1

∫
e−

3 ln(z−1)
2 − 3 ln(z+1)

2

(y1)2
dz

= y1

−
(√

λ+ 1
(
z +

√
z2 − 1

))−2
√
λ+1

2
√
λ+ 1


Therefore the solution is

y = c1y1 + c2y2

= c1

(z2 − 1)1/4
(√

λ+ 1
(
z +

√
z2 − 1

))√λ+1

(z − 1)3/4 (z + 1)3/4

+c2

(z2 − 1)1/4
(√

λ+ 1
(
z +

√
z2 − 1

))√λ+1

(z − 1)3/4 (z + 1)3/4

−
(√

λ+ 1
(
z +

√
z2 − 1

))−2
√
λ+1

2
√
λ+ 1


Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−z2 + 1)
(

d2

dz2
y(z)

)
− 3z

(
d
dz
y(z)

)
+ λy(z) = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = λy(z)

z2−1 −
3z
(

d
dz

y(z)
)

z2−1

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z) +

3z
(

d
dz

y(z)
)

z2−1 − λy(z)
z2−1 = 0

� Check to see if z0 is a regular singular point
◦ Define functions[

P2(z) = 3z
z2−1 , P3(z) = − λ

z2−1

]
◦ (z + 1) · P2(z) is analytic at z = −1

((z + 1) · P2(z))
∣∣∣∣
z=−1

= 3
2

◦ (z + 1)2 · P3(z) is analytic at z = −1(
(z + 1)2 · P3(z)

) ∣∣∣∣
z=−1

= 0

◦ z = −1is a regular singular point
Check to see if z0 is a regular singular point
z0 = −1

• Multiply by denominators

(z2 − 1)
(

d2

dz2
y(z)

)
+ 3z

(
d
dz
y(z)

)
− λy(z) = 0

• Change variables using z = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (3u− 3)

(
d
du
y(u)

)
− λy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 3 + 2r) + ak(k2 + 2kr + r2 + 2k − λ+ 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−r(1 + 2r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

−2(k + 1 + r)
(
k + r + 3

2

)
ak+1 + (k2 + (2r + 2) k + r2 + 2r − λ) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2+2k−λ+2r

)
ak

(k+1+r)(2k+3+2r)

• Recursion relation for r = 0

ak+1 =
(
k2+2k−λ

)
ak

(k+1)(2k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2+2k−λ

)
ak

(k+1)(2k+3)

]
• Revert the change of variables u = z + 1[

y(z) =
∞∑
k=0

ak(z + 1)k , ak+1 =
(
k2+2k−λ

)
ak

(k+1)(2k+3)

]
• Recursion relation for r = −1

2

ak+1 =
(
k2+k−λ− 3

4
)
ak(

k+ 1
2
)
(2k+2)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+1 =
(
k2+k−λ− 3

4
)
ak(

k+ 1
2
)
(2k+2)

]
• Revert the change of variables u = z + 1[

y(z) =
∞∑
k=0

ak(z + 1)k−
1
2 , ak+1 =

(
k2+k−λ− 3

4
)
ak(

k+ 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(z) =
(

∞∑
k=0

ak(z + 1)k
)
+
(

∞∑
k=0

bk(z + 1)k−
1
2

)
, ak+1 =

(
k2+2k−λ

)
ak

(k+1)(2k+3) , bk+1 =
(
k2+k−λ− 3

4
)
bk(

k+ 1
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.109 (sec)
Leaf size : 49� �
dsolve((-z^2+1)*diff(diff(y(z),z),z)-3*z*diff(y(z),z)+lambda*y(z) = 0,

y(z),singsol=all)� �
y(z) =

c2
(
z +

√
z2 − 1

)−√
λ+1 + c1

(
z +

√
z2 − 1

)√λ+1

√
z2 − 1

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 54� �
DSolve[{(1-z^2)*D[y[z],{z,2}]-3*z*D[y[z],z]+\[Lambda]*y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �

y(z) →
c1P

1
2√
λ+1− 1

2
(z) + c2Q

1
2√
λ+1− 1

2
(z)

4
√
z2 − 1
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2.1.215 problem 218

Solved as second order ode using Kovacic algorithm . . . . . . . . .1510
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1514
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1516
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1516
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1516

Internal problem ID [9063]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 218
Date solved : Thursday, December 12, 2024 at 10:00:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4zy′′ + 2(1− z) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.276 (sec)

Writing the ode as

4zy′′ + (−2z + 2) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4z
B = −2z + 2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = z2 + 2z − 3
16z2 (6)

Comparing the above to (5) shows that

s = z2 + 2z − 3
t = 16z2

Therefore eq. (4) becomes

z′′(z) =
(
z2 + 2z − 3

16z2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.412: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16z2. There is a pole at z = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 − 3

16z2 + 1
8z

For the pole at z = 0 let b be the coefficient of 1
z2

in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
0∑

i=0

aiz
i (8)
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Let a be the coefficient of zv = z0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 1
4z − 1

2z2 + 1
2z3 − 1

z4
+ 2

z5
− 9

2z6 + 21
2z7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aiz
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of zv−1 = z−1 = 1
z
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

z
in the above is 0. Now we need to find the coefficient

of 1
z
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
z
in r will be the

coefficient in R of the term in z of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= z2 + 2z − 3
16z2

= Q+ R

16z2

=
(

1
16

)
+
(
2z − 3
16z2

)
= 1

16 + 2z − 3
16z2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder
R is 2. Dividing this by leading coefficient in t which is 16 gives 1

8 . Now b can be found.

b =
(
1
8

)
− (0)

= 1
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
8
1
4
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
8
1
4
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = z2 + 2z − 3
16z2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

4 then

d = α+
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

z − c1

)
+ (+)[

√
r]∞

= 1
4z +

(
1
4

)
= 1

4 + 1
4z

= z + 1
4z

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 0 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
4 + 1

4z

)
(0) +

((
− 1
4z2

)
+
(
1
4 + 1

4z

)2

−
(
z2 + 2z − 3

16z2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(z) = pe
∫
ω dz

= e
∫ ( 1

4+
1
4z
)
dz

= z1/4e z
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
−2z+2

4z dz

= z1e
z
4−

ln(z)
4

= z1

(
e z

4

z1/4

)

Which simplifies to
y1 = e z

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
−−2z+2

4z dz

(y1)2
dz

= y1

∫
e

z
2−

ln(z)
2

(y1)2
dz

= y1

(
√
π
√
2 erf

(√
2
√
z

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e z

2
)
+ c2

(
e z

2

(
√
π
√
2 erf

(√
2
√
z

2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4z
(

d2

dz2
y(z)

)
+ 2(1− z)

(
d
dz
y(z)

)
− y(z) = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = y(z)

4z +
(z−1)

(
d
dz

y(z)
)

2z

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z)−

(z−1)
(

d
dz

y(z)
)

2z − y(z)
4z = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = − z−1
2z , P3(z) = − 1

4z

]
◦ z · P2(z) is analytic at z = 0



chapter 2. book solved problems 1515

(z · P2(z))
∣∣∣∣
z=0

= 1
2

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators

4z
(

d2

dz2
y(z)

)
+ (−2z + 2)

(
d
dz
y(z)

)
− y(z) = 0

• Assume series solution for y(z)

y(z) =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm ·

(
d
dz
y(z)

)
to series expansion form = 0..1

zm ·
(

d
dz
y(z)

)
=

∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm ·
(

d
dz
y(z)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z ·
(

d2

dz2
y(z)

)
to series expansion

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) zk+r

Rewrite ODE with series expansions

2a0r(−1 + 2r) z−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (2k + 2r + 1)− ak(2k + 2r + 1)) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
4
(
k + r + 1

2

) (
ak+1(k + 1 + r)− ak

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

2(k+1+r)

• Recursion relation for r = 0
ak+1 = ak

2(k+1)

• Solution for r = 0[
y(z) =

∞∑
k=0

akz
k, ak+1 = ak

2(k+1)

]
• Recursion relation for r = 1

2

ak+1 = ak
2
(
k+ 3

2
)

• Solution for r = 1
2[

y(z) =
∞∑
k=0

akz
k+ 1

2 , ak+1 = ak
2
(
k+ 3

2
)
]

• Combine solutions and rename parameters
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[
y(z) =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+ 1

2

)
, ak+1 = ak

2(k+1) , bk+1 = bk
2
(
k+ 3

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.093 (sec)
Leaf size : 22� �
dsolve(4*z*diff(diff(y(z),z),z)+2*(1-z)*diff(y(z),z)-y(z) = 0,

y(z),singsol=all)� �
y(z) = e z

2

(
erf
(√

2
√
z

2

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.203 (sec)
Leaf size : 34� �
DSolve[{4*z*D[y[z],{z,2}]+2*(1-z)*D[y[z],z]-y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �
y(z) → ez/2

(
c1 −

√
2c2Γ

(
1
2 ,

z

2

))
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2.1.216 problem 219

Solved as second order ode using Kovacic algorithm . . . . . . . . .1517
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1521
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1522
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1522
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1522

Internal problem ID [9064]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 219
Date solved : Thursday, December 12, 2024 at 10:00:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

f ′′ + 2(z − 1) f ′ + 4f = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.276 (sec)

Writing the ode as

f ′′ + (2z − 2) f ′ + 4f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2z − 2 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(z) = fe
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = z2 − 2z − 2
1 (6)

Comparing the above to (5) shows that

s = z2 − 2z − 2
t = 1

Therefore eq. (4) becomes

z′′(z) =
(
z2 − 2z − 2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then f is found using the inverse transfor-
mation

f = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.414: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
1∑

i=0

aiz
i (8)

Let a be the coefficient of zv = z1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ z − 1− 3

2z − 3
2z2 − 21

8z3 − 39
8z4 − 159

16z5 − 339
16z6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aiz
i

= z − 1 (10)

Now we need to find b, where b be the coefficient of zv−1 = z0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = z2 − 2z + 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= z2 − 2z − 2
1

= Q+ R

1
=
(
z2 − 2z − 2

)
+ (0)

= z2 − 2z − 2

We see that the coefficient of the term 1
z
in the quotient is −2. Now b can be found.

b = (−2)− (1)
= −3

Hence

[
√
r]∞ = z − 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1 − 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = z2 − 2z − 2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 z − 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−) (z − 1)
= 1− z

= 1− z

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 1 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = z + a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(1− z) (1) +
(
(−1) + (1− z)2 −

(
z2 − 2z − 2

))
= 0

2 + 2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(z) in eq. (2A) results in

p(z) = z − 1

Therefore the first solution to the ode z′′ = rz is

z1(z) = pe
∫
ω dz

= (z − 1) e
∫
(1−z)dz

= (z − 1) ez− 1
2 z

2

= (z − 1) e−
z(−2+z)

2

The first solution to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
2z−2

1 dz

= z1e
z− 1

2 z
2

= z1
(
e−

z(−2+z)
2

)
Which simplifies to

f1 = e−z(−2+z)(z − 1)

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dz

f 2
1

dz
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Substituting gives

f2 = f1

∫
e
∫
− 2z−2

1 dz

(f1)2
dz

= f1

∫
e−z2+2z

(f1)2
dz

= f1

(
−e(z−1)2−1

z − 1 − i
√
π e−1 erf (i(z − 1))

)

Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−z(−2+z)(z − 1)

)
+ c2

(
e−z(−2+z)(z − 1)

(
−e(z−1)2−1

z − 1 − i
√
π e−1 erf (i(z − 1))

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dz2
f(z) + 2(z − 1)

(
d
dz
f(z)

)
+ 4f(z) = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
f(z)

• Isolate 2nd derivative
d2

dz2
f(z) = −2(z − 1)

(
d
dz
f(z)

)
− 4f(z)

• Group terms with f(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dz2
f(z) + (−2 + 2z)

(
d
dz
f(z)

)
+ 4f(z) = 0

• Assume series solution for f(z)

f(z) =
∞∑
k=0

akz
k

� Rewrite DE with series expansions
◦ Convert zm ·

(
d
dz
f(z)

)
to series expansion form = 0..1

zm ·
(

d
dz
f(z)

)
=

∞∑
k=max(0,1−m)

akk z
k−1+m

◦ Shift index using k− >k + 1−m

zm ·
(

d
dz
f(z)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m) zk

◦ Convert d2

dz2
f(z) to series expansion

d2

dz2
f(z) =

∞∑
k=2

akk(k − 1) zk−2

◦ Shift index using k− >k + 2
d2

dz2
f(z) =

∞∑
k=0

ak+2(k + 2) (k + 1) zk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− 2ak+1(k + 1) + 2ak(k + 2)) zk = 0

• Each term in the series must be 0, giving the recursion relation
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k2ak+2 + (2ak − 2ak+1 + 3ak+2) k + 4ak − 2ak+1 + 2ak+2 = 0
• Recursion relation that defines the series solution to the ODE[

f(z) =
∞∑
k=0

akz
k, ak+2 = −2(akk−ak+1k+2ak−ak+1)

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 41� �
dsolve(diff(diff(f(z),z),z)+2*(z-1)*diff(f(z),z)+4*f(z) = 0,

f(z),singsol=all)� �
f(z) = ic2

√
π erf (i(z − 1)) (z − 1) e−(z−1)2 + c1e−z(z−2)(z − 1) + c2

Mathematica DSolve solution

Solving time : 0.203 (sec)
Leaf size : 72� �
DSolve[{D[ f[z],{z,2}]+2*(z-a)*D[ f[z],z]+4*f[z]==0,{}},

f[z],z,IncludeSingularSolutions->True]� �
f(z) → ez(2a−z)

(
−
√
πc2
√

(a− z)2erfi
(√

(a− z)2
)
+ c2e

(a−z)2 − 2ac1 + 2c1z
)
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2.1.217 problem 220

Solved as second order ode using Kovacic algorithm . . . . . . . . .1523
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1527
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1529
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1529
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1529

Internal problem ID [9065]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 220
Date solved : Thursday, December 12, 2024 at 10:00:20 AM
CAS classification : [_Lienard]

Solve

zy′′ − 2y′ + zy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as

zy′′ − 2y′ + zy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = z

B = −2 (3)
C = z

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −z2 + 2
z2

(6)

Comparing the above to (5) shows that

s = −z2 + 2
t = z2

Therefore eq. (4) becomes

z′′(z) =
(
−z2 + 2

z2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.416: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = z2. There is a pole at z = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 2
z2

For the pole at z = 0 let b be the coefficient of 1
z2

in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
0∑

i=0

aiz
i (8)
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Let a be the coefficient of zv = z0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− i

z2
− i

2z4 − i

2z6 − 5i
8z8 − 7i

8z10 − 21i
16z12 − 33i

16z14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aiz
i

= i (10)

Now we need to find b, where b be the coefficient of zv−1 = z−1 = 1
z
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
z
in the above is 0. Now we need to find the coefficient

of 1
z
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
z
in r will be the

coefficient in R of the term in z of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −z2 + 2
z2

= Q+ R

z2

= (−1) +
(

2
z2

)
= −1 + 2

z2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −z2 + 2
z2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

z − c1

)
+ (−)[

√
r]∞

= −1
z
+ (−) (i)

= −1
z
− i

= −1
z
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 1 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = z + a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
z
− i

)
(1) +

((
1
z2

)
+
(
−1
z
− i

)2

−
(
−z2 + 2

z2

))
= 0

2ia0 − 2
z

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −i}

Substituting these coefficients in p(z) in eq. (2A) results in

p(z) = z − i

Therefore the first solution to the ode z′′ = rz is

z1(z) = pe
∫
ω dz

= (z − i) e
∫ (

− 1
z
−i
)
dz

= (z − i) e− ln(z)−iz

= (z − i) e−iz

z
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
−2
z

dz

= z1e
ln(z)

= z1(z)

Which simplifies to
y1 = (z − i) e−iz

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
−−2

z
dz

(y1)2
dz

= y1

∫
e2 ln(z)

(y1)2
dz

= y1

(
(iz − 1) e2iz
−2z + 2i

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
(z − i) e−iz

)
+ c2

(
(z − i) e−iz

(
(iz − 1) e2iz
−2z + 2i

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

z
(

d2

dz2
y(z)

)
− 2 d

dz
y(z) + y(z) z = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = −y(z) +

2
(

d
dz

y(z)
)

z

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z)−

2
(

d
dz

y(z)
)

z
+ y(z) = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = −2
z
, P3(z) = 1

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −2
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◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators

z
(

d2

dz2
y(z)

)
− 2 d

dz
y(z) + y(z) z = 0

• Assume series solution for y(z)

y(z) =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert z · y(z) to series expansion

z · y(z) =
∞∑
k=0

akz
k+r+1

◦ Shift index using k− >k − 1

z · y(z) =
∞∑
k=1

ak−1z
k+r

◦ Convert d
dz
y(z) to series expansion

d
dz
y(z) =

∞∑
k=0

ak(k + r) zk+r−1

◦ Shift index using k− >k + 1
d
dz
y(z) =

∞∑
k=−1

ak+1(k + r + 1) zk+r

◦ Convert z ·
(

d2

dz2
y(z)

)
to series expansion

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r) zk+r

Rewrite ODE with series expansions

a0r(−3 + r) z−1+r + a1(1 + r) (−2 + r) zr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r) + ak−1) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k − 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k−1)

• Solution for r = 0
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[
y(z) =

∞∑
k=0

akz
k, ak+2 = − ak

(k+2)(k−1) ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = − ak

(k+5)(k+2)

• Solution for r = 3[
y(z) =

∞∑
k=0

akz
k+3, ak+2 = − ak

(k+5)(k+2) , 4a1 = 0
]

• Combine solutions and rename parameters[
y(z) =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+3
)
, ak+2 = − ak

(k+2)(k−1) ,−2a1 = 0, bk+2 = − bk
(5+k)(k+2) , 4b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 23� �
dsolve(z*diff(diff(y(z),z),z)-2*diff(y(z),z)+z*y(z) = 0,

y(z),singsol=all)� �
y(z) = (c1z + c2) cos (z) + sin (z) (c2z − c1)

Mathematica DSolve solution

Solving time : 0.077 (sec)
Leaf size : 39� �
DSolve[{z*D[y[z],{z,2}]-2*D[y[z],z]+z*y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �
y(z) → −

√
2
π
((c1z + c2) cos(z) + (c2z − c1) sin(z))
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2.1.218 problem 221

Solved as second order ode using Kovacic algorithm . . . . . . . . .1530
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1535
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1536
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1536
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1536

Internal problem ID [9066]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 221
Date solved : Thursday, December 12, 2024 at 10:00:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

zy′′ + (2z − 3) y′ + 4y
z

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as

zy′′ + (2z − 3) y′ + 4y
z

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = z

B = 2z − 3 (3)

C = 4
z

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4z2 − 12z − 1
4z2 (6)

Comparing the above to (5) shows that

s = 4z2 − 12z − 1
t = 4z2
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Therefore eq. (4) becomes

z′′(z) =
(
4z2 − 12z − 1

4z2

)
z(z) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.418: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4z2. There is a pole at z = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
4z2 − 3

z

For the pole at z = 0 let b be the coefficient of 1
z2

in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
0∑

i=0

aiz
i (8)

Let a be the coefficient of zv = z0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 3

2z − 5
4z2 − 15

8z3 − 115
32z4 − 495

64z5 − 2285
128z6 − 11055

256z7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aiz
i

= 1 (10)

Now we need to find b, where b be the coefficient of zv−1 = z−1 = 1
z
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
z
in the above is 0. Now we need to find the coefficient

of 1
z
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
z
in r will be the

coefficient in R of the term in z of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4z2 − 12z − 1
4z2

= Q+ R

4z2

= (1) +
(
−12z − 1

4z2

)
= 1 + −12z − 1

4z2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder R
is −12. Dividing this by leading coefficient in t which is 4 gives −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1 − 0

)
= −3

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1 − 0
)

= 3
2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4z2 − 12z − 1
4z2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −3
2

3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

z − c1

)
+ (−)[

√
r]∞

= 1
2z + (−) (1)

= 1
2z − 1

= 1
2z − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 1 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = z + a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2z − 1

)
(1) +

((
− 1
2z2

)
+
(

1
2z − 1

)2

−
(
4z2 − 12z − 1

4z2

))
= 0

1 + 2a0
z

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

2

}
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Substituting these coefficients in p(z) in eq. (2A) results in

p(z) = z − 1
2

Therefore the first solution to the ode z′′ = rz is

z1(z) = pe
∫
ω dz

=
(
z − 1

2

)
e
∫ ( 1

2z−1
)
dz

=
(
z − 1

2

)
e−z+ ln(z)

2

= (−1 + 2z)
√
z e−z

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
2z−3

z
dz

= z1e
−z+ 3 ln(z)

2

= z1
(
z3/2e−z

)
Which simplifies to

y1 =
z2e−2z(−1 + 2z)

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
− 2z−3

z
dz

(y1)2
dz

= y1

∫
e−2z+3 ln(z)

(y1)2
dz

= y1

(
−4 Ei1 (−2z)− 4 e2z

−1 + 2z

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
z2e−2z(−1 + 2z)

2

)
+ c2

(
z2e−2z(−1 + 2z)

2

(
−4 Ei1 (−2z)− 4 e2z

−1 + 2z

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

z
(

d2

dz2
y(z)

)
+ (−3 + 2z)

(
d
dz
y(z)

)
+ 4y(z)

z
= 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = −4y(z)

z2
−

(−3+2z)
(

d
dz

y(z)
)

z

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z) +

(−3+2z)
(

d
dz

y(z)
)

z
+ 4y(z)

z2
= 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = −3+2z
z

, P3(z) = 4
z2

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −3

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 4

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators(
d2

dz2
y(z)

)
z2 + z(−3 + 2z)

(
d
dz
y(z)

)
+ 4y(z) = 0

• Assume series solution for y(z)

y(z) =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm ·

(
d
dz
y(z)

)
to series expansion form = 1..2

zm ·
(

d
dz
y(z)

)
=

∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm ·
(

d
dz
y(z)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z2 ·
(

d2

dz2
y(z)

)
to series expansion

z2 ·
(

d2

dz2
y(z)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) zk+r

Rewrite ODE with series expansions

a0(−2 + r)2 zr +
(

∞∑
k=1

(
ak(k + r − 2)2 + 2ak−1(k + r − 1)

)
zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 + 2ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + r − 1)2 + 2ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r)
(k+r−1)2

• Recursion relation for r = 2
ak+1 = −2ak(k+2)

(k+1)2

• Solution for r = 2[
y(z) =

∞∑
k=0

akz
k+2, ak+1 = −2ak(k+2)

(k+1)2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 36� �
dsolve(z*diff(diff(y(z),z),z)+(2*z-3)*diff(y(z),z)+4/z*y(z) = 0,

y(z),singsol=all)� �
y(z) = 2

(
e−2zc2

(
z − 1

2

)
Ei1 (−2z) + c1

(
z − 1

2

)
e−2z + c2

2

)
z2

Mathematica DSolve solution

Solving time : 1.054 (sec)
Leaf size : 47� �
DSolve[{z*D[y[z],{z,2}]+(2*z-3)*D[y[z],z]+4/z*y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �
y(z) → −1

2e
−2zz2

(
4c2(1− 2z) ExpIntegralEi(2z)− 2c1z + 4c2e2z + c1

)
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2.1.219 problem 222

Solved as second order ode using Kovacic algorithm . . . . . . . . .1537
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1541
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1542
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1542
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1542

Internal problem ID [9067]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 222
Date solved : Thursday, December 12, 2024 at 10:00:21 AM
CAS classification : [_erf]

Solve

y′′ + 2xy′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.234 (sec)

Writing the ode as

y′′ + 2xy′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 3
1 (6)

Comparing the above to (5) shows that

s = x2 − 3
t = 1

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 3

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.420: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x− 3

2x − 9
8x3 − 27

16x5 − 405
128x7 − 1701

256x9 − 15309
1024x11 − 72171

2048x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 3
1

= Q+ R

1
=
(
x2 − 3

)
+ (0)

= x2 − 3

We see that the coefficient of the term 1
x
in the quotient is −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1 − 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−) (x)
= −x

= −x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(−x) (1) +
(
(−1) + (−x)2 −

(
x2 − 3

))
= 0

2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−xdx

= (x) e−x2
2

= x e−x2
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x
1 dx

= z1e
−x2

2

= z1
(
e−x2

2

)
Which simplifies to

y1 = e−x2
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2x

1 dx

(y1)2
dx

= y1

∫
e−x2

(y1)2
dx

= y1

(
−ex2

x
+
√
π erfi (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

x
)
+ c2

(
e−x2

x

(
−ex2

x
+
√
π erfi (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 2x
(

d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + 2ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + 2ak + ak+2) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − 2ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)*x+4*y(x) = 0,

y(x),singsol=all)� �
y = x

(
c2 erfi (x)

√
π + c1

)
e−x2 − c2

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 51� �
DSolve[{D[y[x],{x,2}]+2*x*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2

(
−
√
πc2

√
x2erfi

(√
x2
)
+ c2e

x2 + 2c1x
)
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2.1.220 problem 223

Solved as second order ode using Kovacic algorithm . . . . . . . . .1543
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1547
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1548
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1548
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1548

Internal problem ID [9068]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 223
Date solved : Thursday, December 12, 2024 at 10:00:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.318 (sec)

Writing the ode as

y′′ + xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.422: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2
(
x2 − 1

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ ex2
2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2
(
x2 − 1

))
+ c2

(
e−x2

2
(
x2 − 1

)(∫ ex2
2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak(k + 3) = 0
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• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak(k+3)

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.041 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+3*y(x) = 0,

y(x),singsol=all)� �
y = (x− 1) (x+ 1)

(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)
e−x2

2 − 2c1x

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 65� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x2

2

(√
2πc2

(
x2 − 1

)
erfi
(

x√
2

)
+ 4c1

(
x2 − 1

)
− 2c2e

x2
2 x

)
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2.1.221 problem 224

Solved as second order ode using Kovacic algorithm . . . . . . . . .1549
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1553
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1554
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1554
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1554

Internal problem ID [9069]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 224
Date solved : Thursday, December 12, 2024 at 10:00:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − x2y′ − 3xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as

y′′ − x2y′ − 3xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = −3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 + 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 + 8

)
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x(x3 + 8)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.424: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 + 2
x
− 4

x4 + 16
x7 − 80

x10 + 448
x13 − 2688

x16 + 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 + 8)
4

= Q+ R

4

=
(
1
4x

4 + 2x
)
+ (0)

= 1
4x

4 + 2x

We see that the coefficient of the term 1
x
in the quotient is 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 2
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 2
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x(x3 + 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 1 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(
x2

2

)
= x2

2

= x2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
x2

2

)
(1) +

(
(x) +

(
x2

2

)2

−
(
x(x3 + 8)

4

))
= 0

−xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫

x2
2 dx

= (x) ex3
6

= x ex3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)
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Which simplifies to

y1 = ex3
3 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1

(∫ e−x3
3

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex3

3 x
)
+ c2

(
ex3

3 x

(∫ e−x3
3

x2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x2( d
dx
y(x)

)
− 3xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion
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d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k + 2))xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 − ak−1 + ak+2) = 0

• Shift index using k− >k + 1
(k + 3) ((k + 1) ak+3 − ak + ak+3) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = ak

k+2 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 58� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^2-3*x*y(x) = 0,

y(x),singsol=all)� �
y =

9WhittakerM
(

1
3 ,

5
6 ,

x3

3

)
ex3

6 c2x
3 + 9c1e

x3
3 x2 + 532/3c2(x3)1/3 (x3 + 2)

9x

Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 51� �
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]-3*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

9e
x3
3

(
9c1x− 32/3c2

3√
x3Γ
(
−1
3 ,

x3

3

))
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2.1.222 problem 225

Solved as second order ode using Kovacic algorithm . . . . . . . . .1555
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1559
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1561
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1561
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1561

Internal problem ID [9070]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 225
Date solved : Thursday, December 12, 2024 at 10:00:23 AM
CAS classification : [_Gegenbauer]

Solve (
−4x2 + 1

)
y′′ − 20xy′ − 16y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.271 (sec)

Writing the ode as (
−4x2 + 1

)
y′′ − 20xy′ − 16y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −4x2 + 1
B = −20x (3)
C = −16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x2 + 6
(4x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −4x2 + 6

t =
(
4x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−4x2 + 6
(4x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.426: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (4x2 − 1)2. There is a pole at x = 1

2 of order 2. There is a pole at x = −1
2 of order 2.

Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16
(
x+ 1

2

)2 + 7
8
(
x+ 1

2

) + 5
16
(
x− 1

2

)2 − 7
8
(
x− 1

2

)
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −4x2 + 6

(4x2 − 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x2 + 6
(4x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1
2 2 0 5

4 −1
4

−1
2 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

) + (−) (0)

= − 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

)
= − 2x

4x2 − 1
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

)) (1) +

( 1
4
(
x− 1

2

)2 + 1
4
(
x+ 1

2

)2
)

+
(
− 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

))2

−
(

−4x2 + 6
(4x2 − 1)2

) = 0

4a0
4x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4
(
x− 1

2
)− 1

4
(
x+1

2
)
)
dx

= (x) 1
((2x− 1) (2x+ 1))1/4

= x

(4x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−20x

−4x2+1 dx

= z1e
−

5 ln
(
4x2−1

)
4

= z1

(
1

(4x2 − 1)5/4

)

Which simplifies to

y1 =
x

(4x2 − 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −20x

−4x2+1 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
4x2−1

)
2

(y1)2
dx

= y1

(
(4x2 − 1)3/2

x
− 4x

√
4x2 − 1 + ln

(
x
√
4 +

√
4x2 − 1

)√
4
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(4x2 − 1)3/2

)

+ c2

(
x

(4x2 − 1)3/2

(
(4x2 − 1)3/2

x
− 4x

√
4x2 − 1 + ln

(
x
√
4 +

√
4x2 − 1

)√
4
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−4x2 + 1)
(

d2

dx2y(x)
)
− 20x

(
d
dx
y(x)

)
− 16y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −16y(x)
4x2−1 −

20x
(

d
dx

y(x)
)

4x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
20x
(

d
dx

y(x)
)

4x2−1 + 16y(x)
4x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 20x
4x2−1 , P3(x) = 16

4x2−1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= 5
2

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 is a regular singular point
x0 = −1

2

• Multiply by denominators

(4x2 − 1)
(

d2

dx2y(x)
)
+ 20x

(
d
dx
y(x)

)
+ 16y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

(4u2 − 4u)
(

d2

du2y(u)
)
+ (20u− 10)

(
d
du
y(u)

)
+ 16y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + 2r)u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 5 + 2r) + 4ak(k + r + 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term in the series must be 0, giving the recursion relation

4ak(k + r + 2)2 − 4(k + 1 + r)
(
k + r + 5

2

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)2

(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
ak+1 = 2ak(k+2)2

(k+1)(2k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 2ak(k+2)2

(k+1)(2k+5)

]
• Revert the change of variables u = x+ 1

2[
y(x) =

∞∑
k=0

ak
(
x+ 1

2

)k
, ak+1 = 2ak(k+2)2

(k+1)(2k+5)

]
• Recursion relation for r = −3

2

ak+1 =
2ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+1 =
2ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1

2[
y(x) =

∞∑
k=0

ak
(
x+ 1

2

)k− 3
2 , ak+1 =

2ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(
x+ 1

2

)k)+
(

∞∑
k=0

bk
(
x+ 1

2

)k− 3
2

)
, ak+1 = 2ak(k+2)2

(k+1)(2k+5) , bk+1 =
2bk
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.047 (sec)
Leaf size : 48� �
dsolve((-4*x^2+1)*diff(diff(y(x),x),x)-20*diff(y(x),x)*x-16*y(x) = 0,

y(x),singsol=all)� �
y =

2 ln
(
2x+

√
4x2 − 1

)
c2x+ c1x−

√
4x2 − 1 c2

(4x2 − 1)3/2

Mathematica DSolve solution

Solving time : 0.232 (sec)
Leaf size : 68� �
DSolve[{(1-4*x^2)*D[y[x],{x,2}]-20*x*D[y[x],x]-16*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−2c2x arctan
(

2x√
1−4x2

)
− c2

√
1− 4x2 + c1x

4
√
1− 4x2 (4x2 − 1)5/4
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2.1.223 problem 226

Solved as second order ode using Kovacic algorithm . . . . . . . . .1562
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1566
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1568
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1568
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1568

Internal problem ID [9071]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 226
Date solved : Thursday, December 12, 2024 at 10:00:24 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ − 6xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.242 (sec)

Writing the ode as (
x2 − 1

)
y′′ − 6xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = −6x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 15

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

15
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.428: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
4 (x− 1) +

15
4 (x+ 1) +

15
4 (x− 1)2

+ 15
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 5
2 −3

2

−1 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2 (x− 1) +

5
2 (x+ 1) + (−) (0)

= − 3
2 (x− 1) +

5
2 (x+ 1)

= x− 4
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)
(0) +

((
3

2 (x− 1)2
− 5

2 (x+ 1)2
)
+
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)2

−
(

15
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2(x−1)+

5
2(x+1)

)
dx

= (x+ 1)5/2

(x− 1)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x
x2−1 dx

= z1e
3 ln(x−1)

2 + 3 ln(x+1)
2

= z1
(
(x− 1)3/2 (x+ 1)3/2

)
Which simplifies to

y1 = (x+ 1)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −6x

x2−1 dx

(y1)2
dx

= y1

∫
e3 ln(x−1)+3 ln(x+1)

(y1)2
dx

= y1

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)4

)
+ c2

(
(x+ 1)4

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 +

6
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
6
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−6u+ 6)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−4 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 3) + ak(k + r − 3) (k + r − 4))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−4 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 4}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 4)) (k + r − 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−4)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 4
ak+1 = ak(k−4)

2(k+1)

• Apply recursion relation for k = 0
a1 = −2a0

• Apply recursion relation for k = 1
a2 = −3a1

4

• Express in terms of a0
a2 = 3a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

2

• Apply recursion relation for k = 3
a4 = −a3

8

• Express in terms of a0
a4 = a0

16

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 2u+ 3

2u
2 − 1

2u
3 + 1

16u
4)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)4

16

]
• Recursion relation for r = 4

ak+1 = akk
2(k+5)

• Solution for r = 4[
y(u) =

∞∑
k=0

aku
k+4, ak+1 = akk

2(k+5)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+4 , ak+1 = akk
2(k+5)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)4
16 +

(
∞∑
k=0

bk(x+ 1)4+k

)
, bk+1 = bkk

2(5+k)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 25� �
dsolve((x^2-1)*diff(diff(y(x),x),x)-6*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

4 + c1x
3 + 6c2x2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.179 (sec)
Leaf size : 45� �
DSolve[{(x^2-1)*D[y[x],{x,2}]-6*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
x2 − 1(c2x(x2 + 1) + c1(x− 1)4)√

1− x2
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2.1.224 problem 227

Solved as second order ode using Kovacic algorithm . . . . . . . . .1569
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1573
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1574
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1575
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1575

Internal problem ID [9072]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 227
Date solved : Thursday, December 12, 2024 at 10:00:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as

y′′ + xy′ + (2 + x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x− 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 4x− 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 − x− 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.430: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1− 5
2x − 5

x2 − 65
4x3 − 115

2x4 − 885
4x5 − 1785

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 − 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 − x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 4x− 6
4

= Q+ R

4

=
(
1
4x

2 − x− 3
2

)
+ (0)

= 1
4x

2 − x− 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (1)

= −5
2

Hence

[
√
r]∞ = x

2 − 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 − x− 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 − 1 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 1572

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 − 1

)
= 1− x

2
= 1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
1− x

2

)
(2x+ a1) +

((
−1
2

)
+
(
1− x

2

)2
−
(
1
4x

2 − x− 3
2

))
= 0

(2 + x) a1 + 4x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = −4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 4x+ 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 4x+ 3

)
e
∫ (

1−x
2
)
dx

=
(
x2 − 4x+ 3

)
ex− 1

4x
2

=
(
x2 − 4x+ 3

)
e−

x(−4+x)
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 =
(
x2 − 4x+ 3

)
e−

x(−2+x)
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ e−x2
2 ex(−2+x)

(x2 − 4x+ 3)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 − 4x+ 3
)
e−

x(−2+x)
2

)
+ c2

((
x2 − 4x+ 3

)
e−

x(−2+x)
2

(∫ e−x2
2 ex(−2+x)

(x2 − 4x+ 3)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak(k + 2) + ak−1)xk

)
= 0

• Each term must be 0
2a2 + 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + akk + 2ak + ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 + ak+1(k + 1) + 2ak+1 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = −kak+1+ak+3ak+1

k2+5k+6 , 2a2 + 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.025 (sec)
Leaf size : 78� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y =

erf

√
2
√

− (x− 2)2

2

− 1

 c2(x− 3) e−
(x−2)2

2 (x− 1)
√
π −

√
2
√
− (x− 2)2 c2

− c1e−
(x−2)2

2 (x− 1) (x− 3)

 e−x

Mathematica DSolve solution

Solving time : 0.974 (sec)
Leaf size : 94� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x2

2 +x− 9
2

(
e5/2

√
2πc2

(
x2 − 4x+ 3

)
erfi
(
x− 2√

2

)
+ 4e9/2c1

(
x2 − 4x+ 3

)
− 2c2e

1
2 (x−3)2+x(x− 2)

)
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2.1.225 problem 228

Solved as second order ode using Kovacic algorithm . . . . . . . . .1576
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1580
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1580
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1581
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1581

Internal problem ID [9073]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 228
Date solved : Thursday, December 12, 2024 at 10:00:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.381 (sec)

Writing the ode as (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 1
B = 7x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 6
4 (2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 5x2 + 6

t = 4
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

5x2 + 6
4 (2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.432: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7

64
(
x− i

√
2

2

)2 − 7

64
(
x+ i

√
2

2

)2 − 17i
√
2

64
(
x− i

√
2

2

) + 17i
√
2

64
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 6

4 (2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 6
4 (2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 7
8

1
8

− i
√
2

2 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 5

4 −
(
1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2
+ (0)

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

= x

4x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

)
(1) +


− 1

8
(
x− i

√
2

2

)2 − 1

8
(
x+ i

√
2

2

)2
+

(
1

8x− 4i
√
2
+ 1

8x+ 4i
√
2

)2

−
(

5x2 + 6
4 (2x2 + 1)2

) = 0

− a0
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

8x−4i
√
2+

1
8x+4i

√
2

)
dx

= (x)
((

i
√
2− 2x

)(
2x+ i

√
2
))1/8

= x
(
−4x2 − 2

)1/8
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x

2x2+1 dx

= z1e
−

7 ln
(
2x2+1

)
8

= z1

(
1

(2x2 + 1)7/8

)

Which simplifies to

y1 =
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x

2x2+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x2+1

)
4

(y1)2
dx

= y1

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

)
+c2

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 37� �
dsolve((2*x^2+1)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

c1 LegendreP
(1
4 ,

3
4 , i

√
2x
)
+ c2 LegendreQ

(1
4 ,

3
4 , i

√
2x
)

(2x2 + 1)3/8

Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 66� �
DSolve[{(1+2*x^2)*D[y[x],{x,2}]+7*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c2Q

3
4
1
4

(
i
√
2x
)

(2x2 + 1)3/8
+ 2i 4

√
2c1x

(2x2 + 1)3/4Gamma
(1
4

)
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2.1.226 problem 229

Solved as second order ode using Kovacic algorithm . . . . . . . . .1582
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1586
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1587
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1587
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1588

Internal problem ID [9074]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 229
Date solved : Thursday, December 12, 2024 at 10:00:26 AM
CAS classification : [_Lienard]

Solve

4y′′ + xy′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as

4y′′ + xy′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4
B = x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 56
64 (6)

Comparing the above to (5) shows that

s = x2 − 56
t = 64

Therefore eq. (4) becomes

z′′(x) =
(
x2

64 − 7
8

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.433: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

8 − 7
2x − 49

x3 − 1372
x5 − 48020

x7 − 1882384
x9 − 79060128

x11 − 3478645632
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
8
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

8 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

64
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 56
64

= Q+ R

64

=
(
x2

64 − 7
8

)
+ (0)

= x2

64 − 7
8

We see that the coefficient of the term 1
x
in the quotient is −7

8 . Now b can be found.

b =
(
−7
8

)
− (0)

= −7
8

Hence

[
√
r]∞ = x

8

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
8

1
8

− 1
)

= −4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

8
1
8

− 1
)

= 3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

64 − 7
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
8 −4 3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3, and since there are no poles then

d = α−
∞

= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
8

)
= −x

8
= −x

8
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(
−x

8

) (
3x2 + 2xa2 + a1

)
+
((

−1
8

)
+
(
−x

8

)2
−
(
x2

64 − 7
8

))
= 0

6x+ 2a2 +
1
4a2x

2 + 1
2a1x+ 3

4a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = −12, a2 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 − 12x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 − 12x

)
e
∫
−x

8 dx

=
(
x3 − 12x

)
e−x2

16

= x
(
x2 − 12

)
e−x2

16

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
4 dx

= z1e
−x2

16

= z1
(
e−x2

16

)
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Which simplifies to

y1 = e−x2
8 x
(
x2 − 12

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

4 dx

(y1)2
dx

= y1

∫
e−

x2
8

(y1)2
dx

= y1

(∫ ex2
8

x2 (x2 − 12)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

8 x
(
x2 − 12

))
+ c2

(
e−x2

8 x
(
x2 − 12

)(∫ ex2
8

x2 (x2 − 12)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
4 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
x
(

d
dx

y(x)
)

4 − y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

4 + y(x) = 0
• Multiply by denominators

4 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(4ak+2(k + 2) (k + 1) + ak(k + 4))xk = 0

• Each term in the series must be 0, giving the recursion relation
4(k2 + 3k + 2) ak+2 + ak(k + 4) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak(k+4)

4(k2+3k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 34� �
dsolve(4*diff(diff(y(x),x),x)+diff(y(x),x)*x+4*y(x) = 0,

y(x),singsol=all)� �
y = −

(
−12 hypergeom

([
−3

2

]
,
[1
2

]
, x

2

8

)
c2 + c1x(x2 − 12)

)
e−x2

8

12
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Mathematica DSolve solution

Solving time : 0.149 (sec)
Leaf size : 122� �
DSolve[{4*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
e−

x2
8

(√
2πc2(x2 − 12)x2erfi

(√
x2

2
√
2

)
+ 4

√
x2
(
2
√
2c1x3 − c2e

x2
8 x2 + 8c2e

x2
8 − 24

√
2c1x

))
32
√
x2
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2.1.227 problem 230

Solved as second order ode using Kovacic algorithm . . . . . . . . .1589
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1593
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1594
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1594

Internal problem ID [9075]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 230
Date solved : Thursday, December 12, 2024 at 10:00:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.256 (sec)

Writing the ode as

y′′ + xy′ − 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 18
4 (6)

Comparing the above to (5) shows that

s = x2 + 18
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 9
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.435: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 9
2x − 81

4x3 + 729
4x5 − 32805

16x7 + 413343
16x9 − 11160261

32x11 + 157837977
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 18
4

= Q+ R

4

=
(
x2

4 + 9
2

)
+ (0)

= x2

4 + 9
2

We see that the coefficient of the term 1
x
in the quotient is 9

2 . Now b can be found.

b =
(
9
2

)
− (0)

= 9
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 9
2
1
2
− 1
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

9
2
1
2
− 1
)

= −5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 9
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 4 −5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4, and since there are no poles, then

d = α+
∞

= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(x
2

) (
4x3 + 3x2a3 + 2xa2 + a1

)
+
((

1
2

)
+
(x
2

)2
−
(
x2

4 + 9
2

))
= 0

−a3x
3 + (−2a2 + 12)x2 + (−3a1 + 6a3)x− 4a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = 0, a2 = 6, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 + 6x2 + 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 + 6x2 + 3

)
e
∫

x
2 dx

=
(
x4 + 6x2 + 3

)
ex2

4

=
(
x4 + 6x2 + 3

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to
y1 = x4 + 6x2 + 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ e−x2
2

(x4 + 6x2 + 3)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x4 + 6x2 + 3

)
+ c2

(
x4 + 6x2 + 3

(∫ e−x2
2

(x4 + 6x2 + 3)2
dx

))

Will add steps showing solving for IC soon.

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 47� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = xc1

(
x2 + 5

)√
2 e−x2

2 +
(
x4 + 6x2 + 3

)(√
π erf

(√
2x
2

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.028 (sec)
Leaf size : 43� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x2
2 HermiteH

(
−5, x√

2

)
+ 1

3c2
(
x4 + 6x2 + 3

)
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2.1.228 problem 231

Solved as second order ode using Kovacic algorithm . . . . . . . . .1595
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1599
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1599
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1600
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1600

Internal problem ID [9076]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 231
Date solved : Thursday, December 12, 2024 at 10:00:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4xy′′ − xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.261 (sec)

Writing the ode as

4xy′′ − xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x
B = −x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x− 32
64x (6)

Comparing the above to (5) shows that

s = x− 32
t = 64x

Therefore eq. (4) becomes

z′′(x) =
(
x− 32
64x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.436: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

8 − 2
x
− 16

x2 − 256
x3 − 5120

x4 − 114688
x5 − 2752512

x6 − 69206016
x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
8

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
8 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

64

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x− 32
64x

= Q+ R

64x

=
(

1
64

)
+
(
− 1
2x

)
= 1

64 − 1
2x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder R
is −32. Dividing this by leading coefficient in t which is 64 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

8

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
8

− 0
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
8

− 0
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x− 32
64x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1



chapter 2. book solved problems 1598

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
8 −2 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2 then

d = α−
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
x
+ (−)

(
1
8

)
= 1

x
− 1

8
= 1

x
− 1

8
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

8

)
(1) +

((
− 1
x2

)
+
(
1
x
− 1

8

)2

−
(
x− 32
64x

))
= 0

8 + a0
4x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −8}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −8 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−8 + x) e
∫ ( 1

x
− 1

8
)
dx

= (−8 + x) e−x
8+ln(x)

= (−8 + x)x e−x
8
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
4x dx

= z1e
x
8

= z1
(
ex

8
)

Which simplifies to
y1 = (−8 + x)x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

4x dx

(y1)2
dx

= y1

∫
e

x
4

(y1)2
dx

= y1

(
−
Ei1
(
−x

4

)
128 − ex

4

64x − ex
4

256
(
−2 + x

4

))

Therefore the solution is

y = c1y1 + c2y2

= c1((−8 + x)x) + c2

(
(−8 + x)x

(
−
Ei1
(
−x

4

)
128 − ex

4

64x − ex
4

256
(
−2 + x

4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 33� �
dsolve(4*x*diff(diff(y(x),x),x)-diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

xc2(x− 8) Ei1
(
−x

4

)
16 + c2(x− 4) ex

4

4 + c1x(x− 8)

Mathematica DSolve solution

Solving time : 0.227 (sec)
Leaf size : 43� �
DSolve[{4*x*D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

128c2
(
(x− 8)xExpIntegralEi

(x
4

)
− 4ex/4(x− 4)

)
+ c1(x− 8)x
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2.1.229 problem 232

Solved as second order ode using Kovacic algorithm . . . . . . . . .1601
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1605
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1607
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1607
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1608

Internal problem ID [9077]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 232
Date solved : Thursday, December 12, 2024 at 10:00:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2y′′ + x(1 + 18x) y′ + (1 + 12x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.318 (sec)

Writing the ode as

6x2y′′ +
(
18x2 + x

)
y′ + (1 + 12x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x2

B = 18x2 + x (3)
C = 1 + 12x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 324x2 − 252x− 35
144x2 (6)

Comparing the above to (5) shows that

s = 324x2 − 252x− 35
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
324x2 − 252x− 35

144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.437: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 − 35

144x2 − 7
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 −
7

12x − 7
36x2 −

49
648x3 −

245
5832x4 −

343
13122x5 −

66199
3779136x6 −

837949
68024448x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 9

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 324x2 − 252x− 35
144x2

= Q+ R

144x2

=
(
9
4

)
+
(
−252x− 35

144x2

)
= 9

4 + −252x− 35
144x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −252. Dividing this by leading coefficient in t which is 144 gives −7

4 . Now b can be
found.

b =
(
−7
4

)
− (0)

= −7
4

Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
4

3
2

− 0
)

= − 7
12

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

4
3
2

− 0
)

= 7
12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 324x2 − 252x− 35
144x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 − 7

12
7
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

12 then

d = α−
∞ −

(
α+
c1

)
= 7

12 −
(

7
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 7
12x + (−)

(
3
2

)
= 7

12x − 3
2

= 7
12x − 3

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
12x − 3

2

)
(0) +

((
− 7
12x2

)
+
(

7
12x − 3

2

)2

−
(
324x2 − 252x− 35

144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

12x−
3
2
)
dx

= x7/12e− 3x
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
18x2+x

6x2 dx

= z1e
− 3x

2 − ln(x)
12

= z1

(
e− 3x

2

x1/12

)

Which simplifies to
y1 =

√
x e−3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 18x2+x

6x2 dx

(y1)2
dx

= y1

∫
e−3x− ln(x)

6

(y1)2
dx

= y1

(∫ e−3x− ln(x)
6 e6x

x
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−3x)+ c2

(
√
x e−3x

(∫ e−3x− ln(x)
6 e6x

x
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

6x2
(

d2

dx2y(x)
)
+ x(1 + 18x)

(
d
dx
y(x)

)
+ (1 + 12x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (1+12x)y(x)
6x2 −

(1+18x)
(

d
dx

y(x)
)

6x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(1+18x)

(
d
dx

y(x)
)

6x + (1+12x)y(x)
6x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1+18x
6x , P3(x) = 1+12x

6x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2
(

d2

dx2y(x)
)
+ x(1 + 18x)

(
d
dx
y(x)

)
+ (1 + 12x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(3k + 3r − 1) (2k + 2r − 1) + 6ak−1(3k + 3r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term in the series must be 0, giving the recursion relation

6
((
k + r − 1

2

)
ak + 3ak−1

) (
k − 1

3 + r
)
= 0

• Shift index using k− >k + 1
6
((
k + 1

2 + r
)
ak+1 + 3ak

) (
k + 2

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − 6ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 = − 6ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 6ak
2k+2

]



chapter 2. book solved problems 1607

• Recursion relation for r = 1
3

ak+1 = − 6ak
2k+ 5

3

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 = − 6ak
2k+ 5

3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+1 = − 6ak

2k+2 , bk+1 = − 6bk
2k+ 5

3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 40� �
dsolve(6*x^2*diff(diff(y(x),x),x)+x*(1+18*x)*diff(y(x),x)+(1+12*x)*y(x) = 0,

y(x),singsol=all)� �
y =

− c2(−x)5/635/6
3 + x e−3x(c2Γ(56)− c2Γ

(5
6 ,−3x

)
+ c1

)
√
x
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Mathematica DSolve solution

Solving time : 0.506 (sec)
Leaf size : 47� �
DSolve[{6*x^2*D[y[x],{x,2}]+x*(1+18*x)*D[y[x],x]+(1+12*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−3x

(
6
√
3c2x4/3Γ

(
−1

6 ,−3x
)

(−x)5/6 + c1
√
x

)
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2.1.230 problem 233

Solved as second order ode using Kovacic algorithm . . . . . . . . .1609
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1614
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1615
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1616
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1616

Internal problem ID [9078]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 233
Date solved : Thursday, December 12, 2024 at 10:00:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2y′′ − x(x+ 8) y′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 3.624 (sec)

Writing the ode as

3x2y′′ +
(
−x2 − 8x

)
y′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = −x2 − 8x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 16x+ 40
36x2 (6)

Comparing the above to (5) shows that

s = x2 + 16x+ 40
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 16x+ 40

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.439: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 10

9x2 + 4
9x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 10
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

3
α−
c = 1

2 −
√
1 + 4b = −2

3
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 4
3x − 2

x2 + 16
x3 − 140

x4 + 1312
x5 − 12944

x6 + 132736
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 16x+ 40
36x2

= Q+ R

36x2

=
(

1
36

)
+
(
16x+ 40
36x2

)
= 1

36 + 16x+ 40
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 16. Dividing this by leading coefficient in t which is 36 gives 4

9 . Now b can be found.

b =
(
4
9

)
− (0)

= 4
9

Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 4
9
1
6
− 0
)

= 4
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

4
9
1
6
− 0
)

= −4
3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 16x+ 40
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
3 −2

3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

4
3 −4

3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4

3 then

d = α+
∞ −

(
α−
c1

)
= 4

3 −
(
−2
3

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 2
3x +

(
1
6

)
= − 2

3x + 1
6

= −4 + x

6x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 2
3x + 1

6

)
(2x+ a1) +

((
2
3x2

)
+
(
− 2
3x + 1

6

)2

−
(
x2 + 16x+ 40

36x2

))
= 0

(−a1 − 2)x− 2a0 − 4a1
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4, a1 = −2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2x+ 4
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2x+ 4

)
e
∫ (

− 2
3x+

1
6
)
dx

=
(
x2 − 2x+ 4

)
ex

6−
2 ln(x)

3

= (x2 − 2x+ 4) ex
6

x2/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−8x

3x2 dx

= z1e
x
6+

4 ln(x)
3

= z1
(
x4/3ex

6
)

Which simplifies to
y1 = x2/3ex

3
(
x2 − 2x+ 4

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−8x

3x2 dx

(y1)2
dx

= y1

∫
e

x
3+

8 ln(x)
3

(y1)2
dx

= y1

(∫ ex
3+

8 ln(x)
3 e− 2x

3

x4/3 (x2 − 2x+ 4)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2/3ex

3
(
x2 − 2x+ 4

))
+ c2

(
x2/3ex

3
(
x2 − 2x+ 4

)(∫ ex
3+

8 ln(x)
3 e− 2x

3

x4/3 (x2 − 2x+ 4)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
− x(x+ 8)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x2 +

(x+8)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+8)

(
d
dx

y(x)
)

3x + 2y(x)
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+8
3x , P3(x) = 2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −8
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
− x(x+ 8)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + 3r) (−3 + r)xr +
(

∞∑
k=1

(ak(3k + 3r − 2) (k + r − 3)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + 3r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
3, 23
}

• Each term in the series must be 0, giving the recursion relation
3
(
k + r − 2

3

)
(k + r − 3) ak − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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3
(
k + 1

3 + r
)
(k − 2 + r) ak+1 − ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(3k+1+3r)(k−2+r)

• Recursion relation for r = 3
ak+1 = ak(k+3)

(3k+10)(k+1)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = ak(k+3)

(3k+10)(k+1)

]
• Recursion relation for r = 2

3

ak+1 =
ak
(
k+ 2

3
)

(3k+3)
(
k− 4

3
)

• Solution for r = 2
3[

y(x) =
∞∑
k=0

akx
k+ 2

3 , ak+1 =
ak
(
k+ 2

3
)

(3k+3)
(
k− 4

3
)
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+3
)
+
(

∞∑
k=0

bkx
k+ 2

3

)
, ak+1 = ak(k+3)

(3k+10)(k+1) , bk+1 =
bk
(
k+ 2

3
)

(3k+3)
(
k− 4

3
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.104 (sec)
Leaf size : 38� �
dsolve(3*x^2*diff(diff(y(x),x),x)-x*(x+8)*diff(y(x),x)+6*y(x) = 0,

y(x),singsol=all)� �
y = c2

(
x2/3 − x5/3

2 + x8/3

4

)
ex

3 + c1 hypergeom
(
[3] ,

[
10
3

]
,
x

3

)
x3

Mathematica DSolve solution

Solving time : 1.772 (sec)
Leaf size : 79� �
DSolve[{3*x^2*D[y[x],{x,2}]-x*(x+8)*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x/3x2/3(x2 − 2x+ 4
)
−

c2e
x/3x2/3(x2 − 2x+ 4)Γ

(1
3 ,

x
3

)
6 32/3 + 1

6c2(x− 4)x
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2.1.231 problem 234

Solved as second order ode using Kovacic algorithm . . . . . . . . .1617
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1622
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1623
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1624
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1624

Internal problem ID [9079]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 234
Date solved : Thursday, December 12, 2024 at 10:00:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ − x(1 + 2x) y′ + 2(4x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.708 (sec)

Writing the ode as

2x2y′′ +
(
−2x2 − x

)
y′ + (8x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = −2x2 − x (3)
C = 8x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 60x+ 21
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 60x+ 21
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 60x+ 21

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.441: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 21

16x2 − 15
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 15
4x − 51

4x2 − 765
8x3 − 3519

4x4 − 144585
16x5 − 6358527

64x6 − 146409525
128x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 60x+ 21
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
−60x+ 21

16x2

)
= 1

4 + −60x+ 21
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −60. Dividing this by leading coefficient in t which is 16 gives −15

4 . Now b can be
found.

b =
(
−15

4

)
− (0)

= −15
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−15
4

1
2

− 0
)

= −15
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−15

4
1
2

− 0
)

= 15
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 60x+ 21
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −15

4
15
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 15

4 then

d = α−
∞ −

(
α+
c1

)
= 15

4 −
(
7
4

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 7
4x + (−)

(
1
2

)
= 7

4x − 1
2

= 7
4x − 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

7
4x − 1

2

)
(2x+ a1) +

((
− 7
4x2

)
+
(

7
4x − 1

2

)2

−
(
4x2 − 60x+ 21

16x2

))
= 0

2(9 + a1)x+ 4a0 + 7a1
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

63
4 , a1 = −9

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 9x+ 63
4
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 9x+ 63

4

)
e
∫ ( 7

4x−
1
2
)
dx

=
(
x2 − 9x+ 63

4

)
e−x

2+
7 ln(x)

4

= (4x2 − 36x+ 63)x7/4e−x
2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−x

2x2 dx

= z1e
x
2+

ln(x)
4

= z1
(
x1/4ex

2
)

Which simplifies to

y1 = x4 − 9x3 + 63
4 x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2−x

2x2 dx

(y1)2
dx

= y1

∫
ex+

ln(x)
2

(y1)2
dx

= y1

(∫ ex+
ln(x)

2(
x4 − 9x3 + 63

4 x
2
)2dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 − 9x3 + 63

4 x2
)
+ c2

(
x4 − 9x3 + 63

4 x2

(∫ ex+
ln(x)

2(
x4 − 9x3 + 63

4 x
2
)2dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
− x(2x+ 1)

(
d
dx
y(x)

)
+ 2(4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (4x−1)y(x)
x2 +

(2x+1)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+1)

(
d
dx

y(x)
)

2x + (4x−1)y(x)
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+1
2x , P3(x) = 4x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
− x(2x+ 1)

(
d
dx
y(x)

)
+ (8x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−2 + r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (k + r − 2)− 2ak−1(k − 5 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r) (−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
2,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r + 1

2

)
(k + r − 2) ak − 2ak−1(k − 5 + r) = 0

• Shift index using k− >k + 1
2
(
k + 3

2 + r
)
(k + r − 1) ak+1 − 2ak(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−4)

(2k+3+2r)(k+r−1)

• Recursion relation for r = 2 ; series terminates at k = 2
ak+1 = 2ak(k−2)

(2k+7)(k+1)

• Apply recursion relation for k = 0
a1 = −4a0

7

• Apply recursion relation for k = 1
a2 = −a1

9

• Express in terms of a0
a2 = 4a0

63

• Terminating series solution of the ODE for r = 2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 4

7x+ 4
63x

2)
• Recursion relation for r = −1

2

ak+1 =
2ak
(
k− 9

2
)

(2k+2)
(
k− 3

2
)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 =
2ak
(
k− 9

2
)

(2k+2)
(
k− 3

2
)
]

• Combine solutions and rename parameters[
y(x) = a0 ·

(
1− 4

7x+ 4
63x

2)+ ( ∞∑
k=0

bkx
k− 1

2

)
, bk+1 =

2bk
(
k− 9

2
)

(2k+2)
(
k− 3

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
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-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.077 (sec)
Leaf size : 32� �
dsolve(2*x^2*diff(diff(y(x),x),x)-x*(2*x+1)*diff(y(x),x)+2*(-1+4*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2(4x2 − 36x+ 63)
63 +

c2 hypergeom
([
−9

2

]
,
[
−3

2

]
, x
)

√
x

Mathematica DSolve solution

Solving time : 2.812 (sec)
Leaf size : 89� �
DSolve[{2*x^2*D[y[x],{x,2}]-x*(1+2*x)*D[y[x],x]+2*(4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x4 − 9x3 + 63x2

4

)
−

4c2
(√

π(−4x2 + 36x− 63)x5/2erfi
(√

x
)
+ 2ex(2x4 − 17x3 + 24x2 + 6x+ 3)

)
945

√
x
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2.1.232 problem 235

Solved as second order ode using Kovacic algorithm . . . . . . . . .1625
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1629
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1631
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1631
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1631

Internal problem ID [9080]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 235
Date solved : Thursday, December 12, 2024 at 10:00:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4x2y′ + (1 + 2x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as

4x2y′′ − 4x2y′ + (1 + 2x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 (3)
C = 1 + 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.443: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x − 1

2x2 − 1
2x3 − 3

4x4 − 5
4x5 − 9

4x6 − 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x− 1

4x2

)
= 1

4 + −2x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(0) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 2x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
2
)
dx

=
√
x e−x

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2
4x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2

4x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1(−Ei1 (−x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x(−Ei1 (−x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x2( d

dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+1)y(x)
4x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− d
dx
y(x) + (2x+1)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = 2x+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x2( d

dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(

∞∑
k=1

(
ak(2k + 2r − 1)2 − 2ak−1(2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 + (−4k − 4r + 6) ak−1 = 0

• Shift index using k− >k + 1
ak+1(2k + 1 + 2r)2 + ak(−4k − 4r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(2k+2r−1)

(2k+1+2r)2

• Recursion relation for r = 1
2

ak+1 = 4akk
(2k+2)2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 4akk
(2k+2)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x^2+(2*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = (Ei1 (−x) c2 + c1)

√
x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 19� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x^2*D[y[x],x]+(1+2*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2 ExpIntegralEi(x) + c1)
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2.1.233 problem 236

Solved as second order ode using Kovacic algorithm . . . . . . . . .1632
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1636
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1638
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1638
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1638

Internal problem ID [9081]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 236
Date solved : Thursday, December 12, 2024 at 10:00:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(3− 2x) y′ + (1− 2x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.304 (sec)

Writing the ode as

x2y′′ +
(
−2x2 + 3x

)
y′ + (1− 2x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 + 3x (3)
C = 1− 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x− 1
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 4x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.445: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
4x2 − 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2x − 1
4x2 − 1

8x3 − 3
32x4 − 5

64x5 − 9
128x6 − 17

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 4x− 1
4x2

= Q+ R

4x2

= (1) +
(
−4x− 1

4x2

)
= 1 + −4x− 1

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 4x− 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (1)

= 1
2x − 1

= 1
2x − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

)
(0) +

((
− 1
2x2

)
+
(

1
2x − 1

)2

−
(
4x2 − 4x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−1
)
dx

=
√
x e−x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2+3x

x2 dx

= z1e
x− 3 ln(x)

2

= z1

(
ex
x3/2

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2+3x

x2 dx

(y1)2
dx

= y1

∫
e2x−3 ln(x)

(y1)2
dx

= y1(−Ei1 (−2x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x
(−Ei1 (−2x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(3− 2x)

(
d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x−1)y(x)
x2 +

(2x−3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−3)

(
d
dx

y(x)
)

x
− (2x−1)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−3

x
, P3(x) = −2x−1

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− (2x− 3)x

(
d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 1)2 − 2ak−1(k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1)2 − 2ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r)2 − 2ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+1)

(k+2+r)2

• Recursion relation for r = −1
ak+1 = 2akk

(k+1)2

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = 2akk

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-2*x+3)*diff(y(x),x)+(1-2*x)*y(x) = 0,

y(x),singsol=all)� �
y = c2 Ei1 (−2x) + c1

x

Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 19� �
DSolve[{x^2*D[y[x],{x,2}]+x*(3-2*x)*D[y[x],x]+(1-2*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2 ExpIntegralEi(2x) + c1

x
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2.1.234 problem 237

Solved as second order ode using Kovacic algorithm . . . . . . . . .1639
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1643
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1645
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1645
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1645

Internal problem ID [9082]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 237
Date solved : Thursday, December 12, 2024 at 10:00:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(3 + x) y′ + (4− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.329 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 3x

)
y′ + (4− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 3x (3)
C = 4− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 10x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 10x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 10x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.447: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 + 5
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 5
2x − 13

2x2 + 65
2x3 − 819

4x4 + 5785
4x5 − 43797

4x6 + 347425
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 10x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
10x− 1
4x2

)
= 1

4 + 10x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 10. Dividing this by leading coefficient in t which is 4 gives 5

2 . Now b can be found.

b =
(
5
2

)
− (0)

= 5
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
2
1
2
− 0
)

= 5
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
2
1
2
− 0
)

= −5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 10x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

5
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1

)
= 5

2 −
(
1
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2x + 1
2

= 1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x + 1

2

)
(2x+ a1) +

((
− 1
2x2

)
+
(

1
2x + 1

2

)2

−
(
x2 + 10x− 1

4x2

))
= 0

(−a1 + 4)x− 2a0 + a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2, a1 = 4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 4x+ 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 4x+ 2

)
e
∫ ( 1

2x+
1
2
)
dx

=
(
x2 + 4x+ 2

)
ex

2+
ln(x)

2

=
(
x2 + 4x+ 2

)√
x ex

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x

x2 dx

= z1e
x
2+

3 ln(x)
2

= z1
(
x3/2ex

2
)

Which simplifies to
y1 = x2ex

(
x2 + 4x+ 2

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−3x

x2 dx

(y1)2
dx

= y1

∫
ex+3 ln(x)

(y1)2
dx

= y1

(
− e−x(−x− 3)
4 (x2 + 4x+ 2) −

Ei1 (x)
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

(
x2 + 4x+ 2

))
+ c2

(
x2ex

(
x2 + 4x+ 2

)(
− e−x(−x− 3)
4 (x2 + 4x+ 2) −

Ei1 (x)
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−4+x)y(x)
x2 +

(x+3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x
− (−4+x)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+3

x
, P3(x) = −−4+x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 − ak−1(k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 − ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + r − 1)2 − ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

(k+r−1)2

• Recursion relation for r = 2
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ak+1 = ak(k+3)
(k+1)2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+3)

(k+1)2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 42� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(-x+4)*y(x) = 0,

y(x),singsol=all)� �
y =

(
exc2

(
x2 + 4x+ 2

)
Ei1 (x) + c1

(
x2 + 4x+ 2

)
ex − c2(x+ 3)

)
x2

Mathematica DSolve solution

Solving time : 0.356 (sec)
Leaf size : 52� �
DSolve[{x^2*D[y[x],{x,2}]-x*(3+x)*D[y[x],x]+(4-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4x
2(c2ex(x2 + 4x+ 2

)
ExpIntegralEi(−x) + 4c1ex

(
x2 + 4x+ 2

)
+ c2(x+ 3)

)
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2.1.235 problem 238

Solved as second order ode using Kovacic algorithm . . . . . . . . .1646
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1651
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1652
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1652
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1652

Internal problem ID [9083]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 238
Date solved : Thursday, December 12, 2024 at 10:00:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(3− x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.327 (sec)

Writing the ode as

x2y′′ +
(
−x2 + 3x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 + 3x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 6x− 1

4x2

)
z(x) (7)



chapter 2. book solved problems 1647

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.449: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
2x − 5

2x2 − 15
2x3 − 115

4x4 − 495
4x5 − 2285

4x6 − 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−6x− 1

4x2

)
= 1

4 + −6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −6. Dividing this by leading coefficient in t which is 4 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 0
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 0
)

= 3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3

2
3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −−1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 6x− 1

4x2

))
= 0

1 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−1 + x) e
∫ ( 1

2x−
1
2
)
dx

= (−1 + x) e−x
2+

ln(x)
2

= (−1 + x)
√
x e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+3x

x2 dx

= z1e
x
2−

3 ln(x)
2

= z1

(
ex

2

x3/2

)

Which simplifies to

y1 =
−1 + x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+3x

x2 dx

(y1)2
dx

= y1

∫
ex−3 ln(x)

(y1)2
dx

= y1

(
−Ei1 (−x)− ex

−1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
−1 + x

x

)
+ c2

(
−1 + x

x

(
−Ei1 (−x)− ex

−1 + x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(−x+ 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x2 +

(x−3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−3)

(
d
dx

y(x)
)

x
+ y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−3

x
, P3(x) = 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x− 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 1)2 − ak−1(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1)2 − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + 2 + r)2 − ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r)
(k+2+r)2

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = ak(k−1)

(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (1− x)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 28� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-x+3)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2(x− 1) Ei1 (−x) + exc2 + c1(x− 1)

x

Mathematica DSolve solution

Solving time : 0.378 (sec)
Leaf size : 31� �
DSolve[{x^2*D[y[x],{x,2}]+x*(3-x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(x− 1) ExpIntegralEi(x) + c1(x− 1)− c2e

x

x
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2.1.236 problem 239

Solved as second order ode using Kovacic algorithm . . . . . . . . .1653
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1655
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1657
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1657
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1657

Internal problem ID [9084]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 239
Date solved : Thursday, December 12, 2024 at 10:00:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ −
(
2
√
5− 1

)
xy′ +

(
19
4 − 3x2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.185 (sec)

Writing the ode as

x2y′′ +
(
−2x

√
5 + x

)
y′ +

(
19
4 − 3x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x
√
5 + x (3)

C = 19
4 − 3x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
1 (6)

Comparing the above to (5) shows that

s = 3
t = 1
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Therefore eq. (4) becomes

z′′(x) = 3z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.451: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 3 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−
√
3x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

√
5+x

x2 dx

= z1e
ln(x)

√
5− ln(x)

2

= z1
(
x
√
5− 1

2

)
Which simplifies to

y1 = x
√
5− 1

2 e−
√
3x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

√
5+x

x2 dx

(y1)2
dx

= y1

∫
e
ln(x)

(
2
√
5−1

)
(y1)2

dx

= y1

eln(x)
(
2
√
5−1

)
x1−2

√
5e2

√
3x√3

6


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x
√
5− 1

2 e−
√
3x
)
+ c2

x
√
5− 1

2 e−
√
3x

eln(x)
(
2
√
5−1

)
x1−2

√
5e2

√
3x√3

6



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
−
(
−1 + 2

√
5
)
x
(

d
dx
y(x)

)
+
(19

4 − 3x2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
12x2−19

)
y(x)

4x2 +
(
−1+2

√
5
)(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
−1+2

√
5
)(

d
dx

y(x)
)

x
−
(
12x2−19

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −−1+2

√
5

x
, P3(x) = −12x2−19

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1− 2
√
5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 19
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4
(
−1 + 2

√
5
)
x
(

d
dx
y(x)

)
+ (−12x2 + 19) y(x) = 0
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• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions(
1 + 2

√
5− 2r

) (
−1 + 2

√
5− 2r

)
a0x

r +
(
−1 + 2

√
5− 2r

) (
−3 + 2

√
5− 2r

)
a1x

1+r +
(

∞∑
k=2

((
−2k + 1 + 2

√
5− 2r

) (
−2k − 1 + 2

√
5− 2r

)
ak − 12ak−2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation(
1 + 2

√
5− 2r

) (
−1 + 2

√
5− 2r

)
= 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 +
√
5, 12 +

√
5
}

• Each term must be 0(
−1 + 2

√
5− 2r

) (
−3 + 2

√
5− 2r

)
a1 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−8ak(k + r)

√
5 + (4k2 + 8kr + 4r2 + 19) ak − 12ak−2 = 0

• Shift index using k− >k + 2
−8ak+2(k + 2 + r)

√
5 +

(
4(k + 2)2 + 8(k + 2) r + 4r2 + 19

)
ak+2 − 12ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 12ak

−35+8k
√
5+8

√
5 r−4k2−8kr−4r2+16

√
5−16k−16r

• Recursion relation for r = −1
2 +

√
5

ak+2 = − 12ak
−27+8k

√
5+8

√
5
(
− 1

2+
√
5
)
−4k2−8k

(
− 1

2+
√
5
)
−4
(
− 1

2+
√
5
)2

−16k

• Solution for r = −1
2 +

√
5[

y(x) =
∞∑
k=0

akx
k− 1

2+
√
5, ak+2 = − 12ak

−27+8k
√
5+8

√
5
(
− 1

2+
√
5
)
−4k2−8k

(
− 1

2+
√
5
)
−4
(
− 1

2+
√
5
)2

−16k
, a1 = 0

]
• Recursion relation for r = 1

2 +
√
5

ak+2 = − 12ak
−43+8k

√
5+8

√
5
(

1
2+

√
5
)
−4k2−8k

(
1
2+

√
5
)
−4
(

1
2+

√
5
)2

−16k

• Solution for r = 1
2 +

√
5[

y(x) =
∞∑
k=0

akx
k+ 1

2+
√
5, ak+2 = − 12ak

−43+8k
√
5+8

√
5
(

1
2+

√
5
)
−4k2−8k

(
1
2+

√
5
)
−4
(

1
2+

√
5
)2

−16k
, a1 = 0

]
• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k− 1

2+
√
5
)
+
(

∞∑
k=0

bkx
k+ 1

2+
√
5
)
, ak+2 = − 12ak

−27+8k
√
5+8

√
5
(
− 1

2+
√
5
)
−4k2−8k

(
− 1

2+
√
5
)
−4
(
− 1

2+
√
5
)2

−16k
, a1 = 0, bk+2 = − 12bk

−43+8k
√
5+8

√
5
(

1
2+

√
5
)
−4k2−8k

(
1
2+

√
5
)
−4
(

1
2+

√
5
)2

−16k
, b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 29� �
dsolve(x^2*diff(diff(y(x),x),x)-(2*5^(1/2)-1)*x*diff(y(x),x)+(19/4-3*x^2)*y(x) = 0,

y(x),singsol=all)� �
y = x− 1

2+
√
5
(
c1 sinh

(√
3x
)
+ c2 cosh

(√
3x
))

Mathematica DSolve solution

Solving time : 0.14 (sec)
Leaf size : 53� �
DSolve[{x^2*D[y[x],{x,2}]-(2*Sqrt[5]-1)*x*D[y[x],x]+(19/4-3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

6e
−
√
3xx

√
5− 1

2

(√
3c2e2

√
3x + 6c1

)
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2.1.237 problem 240

Solved as second order ode using Kovacic algorithm . . . . . . . . .1658
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1662
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1664
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1664
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1664

Internal problem ID [9085]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 240
Date solved : Thursday, December 12, 2024 at 10:00:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(x− 3) y′ + (4− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.279 (sec)

Writing the ode as

x2y′′ +
(
x2 − 3x

)
y′ + (4− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − 3x (3)
C = 4− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.453: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x − 1

2x2 − 1
2x3 − 3

4x4 − 5
4x5 − 9

4x6 − 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x− 1

4x2

)
= 1

4 + −2x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(0) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 2x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
2
)
dx

=
√
x e−x

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−3x

x2 dx

= z1e
−x

2+
3 ln(x)

2

= z1
(
x3/2e−x

2
)

Which simplifies to
y1 = x2e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2−3x

x2 dx

(y1)2
dx

= y1

∫
e−x+3 ln(x)

(y1)2
dx

= y1(−Ei1 (−x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2e−x

)
+ c2

(
x2e−x(−Ei1 (−x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x− 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−4+x)y(x)
x2 −

(x−3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x−3)

(
d
dx

y(x)
)

x
− (−4+x)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x−3

x
, P3(x) = −−4+x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x− 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 + ak−1(k + r − 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 2) + ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+1(k + r − 1) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+r−1

• Recursion relation for r = 2
ak+1 = − ak

k+1

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x-3)*diff(y(x),x)+(-x+4)*y(x) = 0,

y(x),singsol=all)� �
y = e−xx2(Ei1 (−x) c2 + c1)

Mathematica DSolve solution

Solving time : 0.06 (sec)
Leaf size : 22� �
DSolve[{x^2*D[y[x],{x,2}]+x*(x-3)*D[y[x],x]+(4-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−xx2(c2 ExpIntegralEi(x) + c1)
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2.1.238 problem 241

Solved as second order ode using Kovacic algorithm . . . . . . . . .1665
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1669
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1671
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1671
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1671

Internal problem ID [9086]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 241
Date solved : Thursday, December 12, 2024 at 10:00:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x2y′ − (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.236 (sec)

Writing the ode as

x2y′′ + x2y′ + (−x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 (3)
C = −x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.455: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 1

x
+ 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
x
+ 1

x2 − 2
x3 + 3

x4 − 2
x5 − 6

x6 + 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
4x+ 8
4x2

)
= 1

4 + 4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1

1
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
1
2

)
= −1

x
− 1

2
= −2 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 1

2

)
(0) +

((
1
x2

)
+
(
−1
x
− 1

2

)2

−
(
x2 + 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x
− 1

2
)
dx

= e−x
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2
x2 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2

x2 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1
((
x2 − 2x+ 2

)
ex
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

((
x2 − 2x+ 2

)
ex
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
− (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x+2)y(x)
x2 − d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + d
dx
y(x)− (x+2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1, P3(x) = −x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (−x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + ak−1(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
(k − 1 + r) (ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − ak

k+1

]
• Recursion relation for r = 2

ak+1 = − ak
k+4

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak

k+4

]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = − ak

k+1 , bk+1 = − bk
4+k

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x^2-(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2(x2 − 2x+ 2)

x

Mathematica DSolve solution

Solving time : 0.057 (sec)
Leaf size : 31� �
DSolve[{x^2*D[y[x],{x,2}]+x^2*D[y[x],x]-(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2ex(x2 − 2x+ 2) + c1)

x
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2.1.239 problem 242

Solved as second order ode using Kovacic algorithm . . . . . . . . .1672
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1676
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1678
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1678
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1678

Internal problem ID [9087]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 242
Date solved : Thursday, December 12, 2024 at 10:00:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 2x2y′ +
(
x− 3

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.243 (sec)

Writing the ode as

x2y′′ + 2x2y′ +
(
x− 3

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 (3)

C = x− 3
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 4x+ 3
t = 4x2
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Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x+ 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.457: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
x
+ 3

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0



chapter 2. book solved problems 1674

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2x + 1
4x2 + 1

8x3 + 1
32x4 − 1

64x5 − 3
128x6 − 3

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 4x+ 3
4x2

= Q+ R

4x2

= (1) +
(
−4x+ 3

4x2

)
= 1 + −4x+ 3

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 4x+ 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x + (1)

= 1− 1
2x

= 1− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1− 1

2x

)
(0) +

((
1
2x2

)
+
(
1− 1

2x

)2

−
(
4x2 − 4x+ 3

4x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

1− 1
2x
)
dx

= ex√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2
x2 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to

y1 =
1√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2

x2 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1

(
−(1 + 2x) e−2x

4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√
x

)
+ c2

(
1√
x

(
−(1 + 2x) e−2x

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 2x2( d

dx
y(x)

)
+
(
x− 3

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (4x−3)y(x)
4x2 − 2 d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x) + 2 d
dx
y(x) + (4x−3)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2, P3(x) = 4x−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 8x2( d

dx
y(x)

)
+ (4x− 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 3) + 4ak−1(2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 3

2

) (
k + r + 1

2

)
ak + 8

(
k + r − 1

2

)
ak−1 = 0

• Shift index using k− >k + 1
4
(
k + r − 1

2

) (
k + 3

2 + r
)
ak+1 + 8

(
k + r + 1

2

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4(2k+2r+1)ak

(2k−1+2r)(2k+3+2r)

• Recursion relation for r = −1
2
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ak+1 = − 8kak
(2k−2)(2k+2)

• Series not valid for r = −1
2 , division by 0 in the recursion relation at k = 1

ak+1 = − 8kak
(2k−2)(2k+2)

• Recursion relation for r = 3
2

ak+1 = − 4(2k+4)ak
(2k+2)(2k+6)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 4(2k+4)ak
(2k+2)(2k+6)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 24� �
dsolve(x^2*diff(diff(y(x),x),x)+2*diff(y(x),x)*x^2+(x-3/4)*y(x) = 0,

y(x),singsol=all)� �
y = 2c2e−2xx+ e−2xc2 + c1√

x

Mathematica DSolve solution

Solving time : 0.057 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]+2*x^2*D[y[x],x]+(x-3/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1 − c2e

−2x(2x+ 1)
4
√
x
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2.1.240 problem 243

Solved as second order ode using Kovacic algorithm . . . . . . . . .1679
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1683
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1684
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1685
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1685

Internal problem ID [9088]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 243
Date solved : Thursday, December 12, 2024 at 10:00:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + x2y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.227 (sec)

Writing the ode as

x2(1 + x) y′′ + x2y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = x2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 8x+ 8
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 8x+ 8

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 8x+ 8
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.459: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 − 1

4 (1 + x)2
+ 2

1 + x
− 2

x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 8x+ 8

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 8x+ 8
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 1
2

1
2

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2 + 2x − 1

x
+ (−) (0)

= 1
2 + 2x − 1

x

= − x+ 2
2x (1 + x)



chapter 2. book solved problems 1682

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 + 2x − 1

x

)
(1) +

((
− 1
2 (1 + x)2

+ 1
x2

)
+
(

1
2 + 2x − 1

x

)2

−
(
−x2 + 8x+ 8
4 (x2 + x)2

))
= 0

−2 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 2) e
∫ ( 1

2+2x−
1
x

)
dx

= (x+ 2) e− ln(x)+ ln(1+x)
2

= (x+ 2)
√
1 + x

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2

x2(1+x) dx

= z1e
− ln(1+x)

2

= z1

(
1√
1 + x

)

Which simplifies to

y1 =
x+ 2
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2

x2(1+x) dx

(y1)2
dx

= y1

∫
e− ln(1+x)

(y1)2
dx

= y1

(
ln (1 + x) + 4

x+ 2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 2
x

)
+ c2

(
x+ 2
x

(
ln (1 + x) + 4

x+ 2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
(x+1)x2 −

d
dx

y(x)
x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x+1 − 2y(x)

(x+1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 1

x+1 , P3(x) = − 2
(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (u2 − 2u+ 1)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r
2u−1+r +

(
a1(1 + r)2 − 2a0(r2 + 1)

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − 2ak(k2 + 2kr + r2 + 1) + ak−1(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − 2a0(r2 + 1) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − 2ak(k2 + 1) + ak−1(k − 1)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 − 2ak+1

(
(k + 1)2 + 1

)
+ k2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1

(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1

(k+2)2 , a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1
(k+2)2 , a1 − 2a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+diff(y(x),x)*x^2-2*y(x) = 0,

y(x),singsol=all)� �
y = c2(x+ 2) ln (x+ 1) + c1x+ 2c1 + 4c2

x

Mathematica DSolve solution

Solving time : 0.097 (sec)
Leaf size : 30� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+x^2*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x+ 2) + c2(x+ 2) log(x+ 1) + 4c2

x
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2.1.241 problem 244

Solved as second order ode using Kovacic algorithm . . . . . . . . .1686
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1690
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1692
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1692
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1692

Internal problem ID [9089]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 244
Date solved : Thursday, December 12, 2024 at 10:00:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
x2 + 6

)
y′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.380 (sec)

Writing the ode as

x2y′′ +
(
x3 + 6x

)
y′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 + 6x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 14
4 (6)

Comparing the above to (5) shows that

s = x2 + 14
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 7
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.461: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 7
2x − 49

4x3 + 343
4x5 − 12005

16x7 + 117649
16x9 − 2470629

32x11 + 27176919
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 14
4

= Q+ R

4

=
(
x2

4 + 7
2

)
+ (0)

= x2

4 + 7
2

We see that the coefficient of the term 1
x
in the quotient is 7

2 . Now b can be found.

b =
(
7
2

)
− (0)

= 7
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 7
2
1
2
− 1
)

= 3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

7
2
1
2
− 1
)

= −4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 7
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 3 −4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3, and since there are no poles, then

d = α+
∞

= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(x
2

) (
3x2 + 2xa2 + a1

)
+
((

1
2

)
+
(x
2

)2
−
(
x2

4 + 7
2

))
= 0

−a2x
2 + (−2a1 + 6)x− 3a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = 3, a2 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 + 3x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 + 3x

)
e
∫

x
2 dx

=
(
x3 + 3x

)
ex2

4

= x
(
x2 + 3

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3+6x

x2 dx

= z1e
−x2

4 −3 ln(x)

= z1

(
e−x2

4

x3

)
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Which simplifies to

y1 =
x2 + 3
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3+6x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 −6 ln(x)

(y1)2
dx

= y1

(∫ e−x2
2 −6 ln(x)x4

(x2 + 3)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 3
x2

)
+ c2

(
x2 + 3
x2

(∫ e−x2
2 −6 ln(x)x4

(x2 + 3)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x2 + 6)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −6y(x)
x2 −

(
x2+6

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+6

)(
d
dx

y(x)
)

x
+ 6y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x2+6

x
, P3(x) = 6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0
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• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 + 6)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (2 + r)xr + a1(4 + r) (3 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 3) (k + r + 2) + ak−2(k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−2}

• Each term must be 0
a1(4 + r) (3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r + 2) + ak−2(k − 2 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 5 + r) (k + 4 + r) + ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r)

(k+5+r)(k+4+r)

• Recursion relation for r = −3
ak+2 = − ak(k−3)

(k+2)(k+1)

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = − ak(k−3)

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −2 ; series terminates at k = 2
ak+2 = − ak(k−2)

(k+3)(k+2)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak(k−2)

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−2
)
, ak+2 = − ak(k−3)

(k+2)(k+1) , a1 = 0, bk+2 = − bk(k−2)
(k+3)(k+2) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 35� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x^2+6)*diff(y(x),x)+6*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−
x2
2 hypergeom

(
[2] ,

[1
2

]
, x

2

2

)
+ c1(x2 + 3)x

x3

Mathematica DSolve solution

Solving time : 0.715 (sec)
Leaf size : 65� �
DSolve[{x^2*D[y[x],{x,2}]+x*(6+x^2)*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2πc2x(x2 + 3) erf

(
x√
2

)
− 12c1x(x2 + 3) + 2c2e−

x2
2 (x2 + 2)

12x3
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2.1.242 problem 245

Solved as second order ode using Kovacic algorithm . . . . . . . . .1693
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1697
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1699
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1699
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1699

Internal problem ID [9090]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 245
Date solved : Thursday, December 12, 2024 at 10:00:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(1− x) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.258 (sec)

Writing the ode as

x2y′′ +
(
−x2 + x

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 + x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.463: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2x + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

2x2 + 1
2x3 + 1

4x4 − 1
4x5 − 3

4x6 − 3
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x+ 3

4x2

)
= 1

4 + −2x+ 3
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x+ 3
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x +

(
1
2

)
= 1

2 − 1
2x

= x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2x

)
(0) +

((
1
2x2

)
+
(
1
2 − 1

2x

)2

−
(
x2 − 2x+ 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
2x
)
dx

= ex
2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+x

x2 dx

= z1e
x
2−

ln(x)
2

= z1

(
ex

2
√
x

)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+x

x2 dx

(y1)2
dx

= y1

∫
ex−ln(x)

(y1)2
dx

= y1
(
−(1 + x)x ex−ln(x)e−2x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x

(
−(1 + x)x ex−ln(x)e−2x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(1− x)

(
d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2 +

(
d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
(x−1)

x
− y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−1

x
, P3(x) = − 1

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x− 1)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 1

ak+1 = ak
k+3

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]



chapter 2. book solved problems 1699

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(1-x)*diff(y(x),x)-y(x) = 0,

y(x),singsol=all)� �
y = exc2 + c1x+ c1

x

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 23� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1-x)*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

x − c1(x+ 1)
x
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2.1.243 problem 246

Solved as second order ode using Kovacic algorithm . . . . . . . . .1700
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1704
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1706
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1706
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1706

Internal problem ID [9091]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 246
Date solved : Thursday, December 12, 2024 at 10:00:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(x+ 3) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 3x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 3x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.465: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 3
2x − 5

2x2 + 15
2x3 − 115

4x4 + 495
4x5 − 2285

4x6 + 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
6x− 1
4x2

)
= 1

4 + 6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 6. Dividing this by leading coefficient in t which is 4 gives 3

2 . Now b can be found.

b =
(
3
2

)
− (0)

= 3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
2
− 0
)

= 3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
2
− 0
)

= −3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

3
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2x + 1
2

= 1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x + 1

2

)2

−
(
x2 + 6x− 1

4x2

))
= 0

1− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ ( 1

2x+
1
2
)
dx

= (1 + x) ex
2+

ln(x)
2

= (1 + x)
√
x ex

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x

x2 dx

= z1e
x
2+

3 ln(x)
2

= z1
(
x3/2ex

2
)

Which simplifies to
y1 = x2ex(1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−3x

x2 dx

(y1)2
dx

= y1

∫
ex+3 ln(x)

(y1)2
dx

= y1

(
− e−x

−1− x
− Ei1 (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex(1 + x)

)
+ c2

(
x2ex(1 + x)

(
− e−x

−1− x
− Ei1 (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2 +

(x+3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x
+ 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+3

x
, P3(x) = 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 − ak−1(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
ak+1(k + r − 1)2 − ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(k+r−1)2

• Recursion relation for r = 2
ak+1 = ak(k+2)

(k+1)2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+2)

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 29� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = (exc2(x+ 1)Ei1 (x) + (x+ 1) c1ex − c2)x2

Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 34� �
DSolve[{x^2*D[y[x],{x,2}]-x*(x+3)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c2ex(x+ 1)ExpIntegralEi(−x) + c1e

x(x+ 1) + c2)
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2.1.244 problem 247

Solved as second order ode using Kovacic algorithm . . . . . . . . .1707
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1711
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1713
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1713
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1713

Internal problem ID [9092]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 247
Date solved : Thursday, December 12, 2024 at 10:00:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x2y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

x2y′′ − x2y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 8
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.467: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x2 − 4

x4 + 16
x6 − 80

x8 + 448
x10 − 2688

x12 + 16896
x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(

2
x2

)
= 1

4 + 2
x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
1
2

)
= −1

x
− 1

2
= −2 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 1

2

)
(1) +

((
1
x2

)
+
(
−1
x
− 1

2

)2

−
(
x2 + 8
4x2

))
= 0

−2 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

− 1
x
− 1

2
)
dx

= (2 + x) e−x
2−ln(x)

= (2 + x) e−x
2

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to

y1 =
2 + x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
(−2 + x) ex

2 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
2 + x

x

)
+ c2

(
2 + x

x

(
(−2 + x) ex

2 + x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)− d
dx
y(x)− 2y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = − 2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 ·

(
d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k − 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− ak−1(k − 1 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r)− ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(k+2+r)(k−1+r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = ak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = a0

2

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1 + x

2

)
• Recursion relation for r = 2
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ak+1 = ak(k+2)
(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+2)

(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1 + x

2

)
+
(

∞∑
k=0

bkx
k+2
)
, bk+1 = bk(k+2)

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x^2-2*y(x) = 0,

y(x),singsol=all)� �
y = c2ex(x− 2) + c1(x+ 2)

x

Mathematica DSolve solution

Solving time : 0.07 (sec)
Leaf size : 72� �
DSolve[{x^2*D[y[x],{x,2}]-x^2*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

2ex/2
(
(c1x+ 2ic2) cosh

(
x
2

)
− (ic2x+ 2c1) sinh

(
x
2

))
√
π
√
−ix

√
x
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2.1.245 problem 248

Solved as second order ode using Kovacic algorithm . . . . . . . . .1714
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1718
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1720
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1720
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1720

Internal problem ID [9093]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 248
Date solved : Thursday, December 12, 2024 at 10:00:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x2y′ − (3x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.303 (sec)

Writing the ode as

x2y′′ − x2y′ + (−3x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 (3)
C = −3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 12x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 12x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 12x+ 8

4x2

)
z(x) (7)



chapter 2. book solved problems 1715

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.469: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 + 3
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)



chapter 2. book solved problems 1716

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 3
x
− 7

x2 + 42
x3 − 301

x4 + 2394
x5 − 20342

x6 + 180852
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 12x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
12x+ 8
4x2

)
= 1

4 + 12x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 12. Dividing this by leading coefficient in t which is 4 gives 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
1
2
− 0
)

= 3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3

1
2
− 0
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 12x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 3 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α+
c1

)
= 3− (2)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 2
x
+
(
1
2

)
= 2

x
+ 1

2
= 4 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
+ 1

2

)
(1) +

((
− 2
x2

)
+
(
2
x
+ 1

2

)2

−
(
x2 + 12x+ 8

4x2

))
= 0

4− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 4 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (4 + x) e
∫ ( 2

x
+ 1

2
)
dx

= (4 + x) ex
2+2 ln(x)

= (4 + x)x2ex
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to
y1 = ex(4 + x)x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
−e−x(x3 + 3x2 − 2x+ 2)

24 (4 + x)x3 + Ei1 (x)
24

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex(4 + x)x2)+ c2

(
ex(4 + x)x2

(
−e−x(x3 + 3x2 − 2x+ 2)

24 (4 + x)x3 + Ei1 (x)
24

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
− (3x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (3x+2)y(x)
x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)− d
dx
y(x)− (3x+2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = −3x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
+ (−3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k + 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− ak−1(k + 2 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r)− ak(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+3)

(k+2+r)(k−1+r)

• Recursion relation for r = −1
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ak+1 = ak(k+2)
(k+1)(k−2)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 2
ak+1 = ak(k+2)

(k+1)(k−2)

• Recursion relation for r = 2
ak+1 = ak(k+5)

(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+5)

(k+4)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 48� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x^2-(2+3*x)*y(x) = 0,

y(x),singsol=all)� �
y = x3c2ex(x+ 4)Ei1 (x) + c1x

3(x+ 4) ex − c2(x3 + 3x2 − 2x+ 2)
x

Mathematica DSolve solution

Solving time : 0.264 (sec)
Leaf size : 59� �
DSolve[{x^2*D[y[x],{x,2}]-x^2*D[y[x],x]-(3*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → − 1

24c2e
x(x+ 4)x2 ExpIntegralEi(−x) + c1e

x(x+ 4)x2 − c2(x3 + 3x2 − 2x+ 2)
24x
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2.1.246 problem 249

Solved as second order ode using Kovacic algorithm . . . . . . . . .1721
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1726
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1727
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1727
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1727

Internal problem ID [9094]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 249
Date solved : Thursday, December 12, 2024 at 10:00:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(5− x) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.441 (sec)

Writing the ode as

x2y′′ +
(
−x2 + 5x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 + 5x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 10x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 10x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.471: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 5

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)



chapter 2. book solved problems 1723

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 5
2x − 13

2x2 − 65
2x3 − 819

4x4 − 5785
4x5 − 43797

4x6 − 347425
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 10x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−10x− 1

4x2

)
= 1

4 + −10x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −10. Dividing this by leading coefficient in t which is 4 gives −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 0
)

= −5
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 0
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 10x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −5

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
1
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −−1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x − 1

2

)
(2x+ a1) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 10x− 1

4x2

))
= 0

(a1 + 4)x+ 2a0 + a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2, a1 = −4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 4x+ 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 4x+ 2

)
e
∫ ( 1

2x−
1
2
)
dx

=
(
x2 − 4x+ 2

)
e−x

2+
ln(x)

2

=
(
x2 − 4x+ 2

)√
x e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+5x

x2 dx

= z1e
x
2−

5 ln(x)
2

= z1

(
ex

2

x5/2

)

Which simplifies to

y1 =
x2 − 4x+ 2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+5x

x2 dx

(y1)2
dx

= y1

∫
ex−5 ln(x)

(y1)2
dx

= y1

(
− ex(x− 3)
4 (x2 − 4x+ 2) −

Ei1 (−x)
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 4x+ 2

x2

)
+ c2

(
x2 − 4x+ 2

x2

(
− ex(x− 3)
4 (x2 − 4x+ 2) −

Ei1 (−x)
4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(5− x)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2 +

(x−5)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−5)

(
d
dx

y(x)
)

x
+ 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−5

x
, P3(x) = 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x− 5)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 2)2 − ak−1(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2)2 − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + 3 + r)2 − ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r)
(k+3+r)2

• Recursion relation for r = −2 ; series terminates at k = 2
ak+1 = ak(k−2)

(k+1)2

• Apply recursion relation for k = 0
a1 = −2a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

2

• Terminating series solution of the ODE for r = −2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 2x+ 1

2x
2)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 41� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(5-x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = (x2 − 4x+ 2) c2 Ei1 (−x) + c2(x− 3) ex + c1(x2 − 4x+ 2)

x2

Mathematica DSolve solution

Solving time : 0.325 (sec)
Leaf size : 48� �
DSolve[{x^2*D[y[x],{x,2}]+x*(5-x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(x2 − 4x+ 2)ExpIntegralEi(x) + 4c1(x2 − 4x+ 2)− c2e

x(x− 3)
4x2
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2.1.247 problem 250

Solved as second order ode using Kovacic algorithm . . . . . . . . .1728
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1732
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1734
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1734
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1734

Internal problem ID [9095]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 250
Date solved : Thursday, December 12, 2024 at 10:00:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4x(1− x) y′ + (2x− 9) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

4x2y′′ +
(
−4x2 + 4x

)
y′ + (2x− 9) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 + 4x (3)
C = 2x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.473: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2+4x

4x2 dx

= z1e
x
2−

ln(x)
2

= z1

(
ex

2
√
x

)

Which simplifies to

y1 =
ex
x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2+4x

4x2 dx

(y1)2
dx

= y1

∫
ex−ln(x)

(y1)2
dx

= y1
(
−
(
x2 + 2x+ 2

)
x ex−ln(x)e−2x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x3/2

)
+ c2

(
ex
x3/2

(
−
(
x2 + 2x+ 2

)
x ex−ln(x)e−2x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x(1− x)

(
d
dx
y(x)

)
+ (2x− 9) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x−9)y(x)
4x2 +

(
d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
(x−1)

x
+ (2x−9)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−1

x
, P3(x) = 2x−9

4x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(x− 1)

(
d
dx
y(x)

)
+ (2x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 3) (2k + 2r − 3)− 2ak−1(2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

4
((
k + r + 3

2

)
ak − ak−1

) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
4
((
k + 5

2 + r
)
ak+1 − ak

) (
k − 1

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

2k+5+2r

• Recursion relation for r = −3
2

ak+1 = 2ak
2k+2

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+1 = 2ak
2k+2

]
• Recursion relation for r = 3

2
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ak+1 = 2ak
2k+8

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = 2ak
2k+8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = 2ak

2k+2 , bk+1 = 2bk
2k+8

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 23� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*x*(1-x)*diff(y(x),x)+(2*x-9)*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2(x2 + 2x+ 2)

x3/2

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 30� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*(1-x)*D[y[x],x]+(2*x-9)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2(x2 + 2x+ 2)
x3/2
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2.1.248 problem 251

Solved as second order ode using Kovacic algorithm . . . . . . . . .1735
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1739
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1739
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1739
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1740

Internal problem ID [9096]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 251
Date solved : Thursday, December 12, 2024 at 10:00:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 2x(2 + x) y′ + 2(1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.291 (sec)

Writing the ode as

x2y′′ +
(
2x2 + 4x

)
y′ + (2x+ 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 + 4x (3)
C = 2x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2 + x

x
(6)

Comparing the above to (5) shows that

s = 2 + x

t = x

Therefore eq. (4) becomes

z′′(x) =
(
2 + x

x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.475: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

x
− 1

2x2 + 1
2x3 − 5

8x4 + 7
8x5 − 21

16x6 + 33
16x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 2 + x

x

= Q+ R

x

= (1) +
(
2
x

)
= 1 + 2

x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 2. Dividing this by leading coefficient in t which is 1 gives 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1 − 0

)
= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2
1 − 0

)
= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2 + x

x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1 −1
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Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1 then

d = α+
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+ (1)

= 1 + 1
x

= 1 + 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1 + 1

x

)
(0) +

((
− 1
x2

)
+
(
1 + 1

x

)2

−
(
2 + x

x

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

1+ 1
x

)
dx

= x ex

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+4x

x2 dx

= z1e
−x−2 ln(x)

= z1

(
e−x

x2

)
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Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+4x

x2 dx

(y1)2
dx

= y1

∫
e−2x−4 ln(x)

(y1)2
dx

= y1

(
−e−2x

3x + e−2x

3 − 2x e−2x

3 + 4x2 Ei1 (2x)
3

− 4 Ei1 (2x)x3 − 2 e−2xx2 + x e−2x − 6x Ei1 (2x) + 2 e−2x

3x

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
−e−2x

3x + e−2x

3 − 2x e−2x

3 + 4x2 Ei1 (2x)
3

− 4 Ei1 (2x)x3 − 2 e−2xx2 + x e−2x − 6x Ei1 (2x) + 2 e−2x

3x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)+2*x*(x+2)*diff(y(x),x)+2*y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = −2 Ei1 (2x) c2x+ e−2xc2 + c1x

x2
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Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 32� �
DSolve[{x^2*D[y[x],{x,2}]+2*x*(2+x)*D[y[x],x]+2*(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −2c2xExpIntegralEi(−2x) + c1x− c2e

−2x

x2
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2.1.249 problem 252

Solved as second order ode using Kovacic algorithm . . . . . . . . .1741
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1745
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1747
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1747
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1747

Internal problem ID [9097]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 252
Date solved : Thursday, December 12, 2024 at 10:00:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(1− x) y′ + (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as

x2y′′ +
(
x2 − x

)
y′ + (1− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − x (3)
C = 1− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 2x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.476: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 1

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2x − 1

2x2 + 1
2x3 − 3

4x4 + 5
4x5 − 9

4x6 + 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
2x− 1
4x2

)
= 1

4 + 2x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2 + 1
2x

= x+ 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

2x

)
(0) +

((
− 1
2x2

)
+
(
1
2 + 1

2x

)2

−
(
x2 + 2x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
1
2x
)
dx

=
√
x ex

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−x
x2 dx

= z1e
−x

2+
ln(x)

2

= z1
(√

x e−x
2
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2−x

x2 dx

(y1)2
dx

= y1

∫
e−x+ln(x)

(y1)2
dx

= y1(−Ei1 (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2(x(−Ei1 (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(1− x)

(
d
dx
y(x)

)
+ (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x−1)y(x)
x2 −

(
d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
(x−1)

x
− (x−1)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x−1

x
, P3(x) = −x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x− 1)

(
d
dx
y(x)

)
+ (1− x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 1)2 + ak−1(k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1)2 + ak−1(k − 2 + r) = 0

• Shift index using k− >k + 1
ak+1(k + r)2 + ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+r−1)

(k+r)2

• Recursion relation for r = 1
ak+1 = − akk

(k+1)2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − akk

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(1-x)*diff(y(x),x)+(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = x(Ei1 (x) c2 + c1)

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 17� �
DSolve[{x^2*D[y[x],{x,2}]-x*(1-x)*D[y[x],x]+(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2 ExpIntegralEi(−x) + c1)
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2.1.250 problem 253

Solved as second order ode using Kovacic algorithm . . . . . . . . .1748
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1750
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1752
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1752
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1752

Internal problem ID [9098]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 253
Date solved : Thursday, December 12, 2024 at 10:00:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4x(1 + 2x) y′ + (4x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.131 (sec)

Writing the ode as

4x2y′′ +
(
8x2 + 4x

)
y′ + (4x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 8x2 + 4x (3)
C = 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.478: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x2+4x

4x2 dx

= z1e
−x− ln(x)

2

= z1

(
e−x

√
x

)

Which simplifies to

y1 =
e−2x
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e−2x−ln(x)

(y1)2
dx

= y1

(
e−2x−ln(x)x e4x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−2x
√
x

)
+ c2

(
e−2x
√
x

(
e−2x−ln(x)x e4x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
+ (4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (4x−1)y(x)
4x2 −

(2x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x
+ (4x−1)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2x+1

x
, P3(x) = 4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
+ (4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−1(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
ak
(
k + r + 1

2

)
+ 2ak−1

)
= 0

• Shift index using k− >k + 1
4
(
k + r + 1

2

) (
ak+1

(
k + 3

2 + r
)
+ 2ak

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

2k+3+2r

• Recursion relation for r = −1
2

ak+1 = − 4ak
2k+2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = − 4ak
2k+2

]
• Recursion relation for r = 1

2

ak+1 = − 4ak
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 4ak
2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − 4ak

2k+2 , bk+1 = − 4bk
2k+4

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 16� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*x*(2*x+1)*diff(y(x),x)+(-1+4*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1 + e−2xc2√

x

Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 26� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*(1+2*x)*D[y[x],x]+(4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−2x + c2

2
√
x
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2.1.251 problem 254

Solved as second order ode using Kovacic algorithm . . . . . . . . .1753
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1757
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1757
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1757
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1758

Internal problem ID [9099]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 254
Date solved : Thursday, December 12, 2024 at 10:00:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(4 + x) y′ + (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as

x2y′′ +
(
x2 + 4x

)
y′ + (2 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + 4x (3)
C = 2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4 + x

4x (6)

Comparing the above to (5) shows that

s = 4 + x

t = 4x

Therefore eq. (4) becomes

z′′(x) =
(
4 + x

4x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.480: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
x
− 1

x2 + 2
x3 − 5

x4 + 14
x5 − 42

x6 + 132
x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4 + x

4x
= Q+ R

4x

=
(
1
4

)
+
(
1
x

)
= 1

4 + 1
x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1

1
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4 + x

4x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1 then

d = α+
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+
(
1
2

)
= 1

2 + 1
x

= 1
2 + 1

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

x

)
(0) +

((
− 1
x2

)
+
(
1
2 + 1

x

)2

−
(
4 + x

4x

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
1
x

)
dx

= x ex
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+4x

x2 dx

= z1e
−x

2−2 ln(x)

= z1

(
e−x

2

x2

)
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Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+4x

x2 dx

(y1)2
dx

= y1

∫
e−x−4 ln(x)

(y1)2
dx

= y1

(
−e−x

3x + e−x

6 − x e−x

6 + x2 Ei1 (x)
6 −Ei1 (x)x3 − e−xx2 − 6x Ei1 (x) + x e−x + 4 e−x

6x

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
−e−x

3x + e−x

6 − x e−x

6 + x2 Ei1 (x)
6

− Ei1 (x)x3 − e−xx2 − 6x Ei1 (x) + x e−x + 4 e−x

6x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+4)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = −e−xc2 + x(Ei1 (x) c2 + c1)

x2
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Mathematica DSolve solution

Solving time : 0.064 (sec)
Leaf size : 32� �
DSolve[{x^2*D[y[x],{x,2}]+x*(4+x)*D[y[x],x]+(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −c2xExpIntegralEi(−x) + c1x− c2e

−x

x2
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2.1.252 problem 255

Solved as second order ode using Kovacic algorithm . . . . . . . . .1759
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1764
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1765
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1765
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1766

Internal problem ID [9100]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 255
Date solved : Thursday, December 12, 2024 at 10:00:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 9

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.317 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 9

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 9
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.481: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− i

x2 − i

2x4 − i

2x6 − 5i
8x8 − 7i

8x10 − 21i
16x12 − 33i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 2
x2

= Q+ R

x2

= (−1) +
(

2
x2

)
= −1 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (i)

= −1
x
− i

= −1
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

)
(1) +

((
1
x2

)
+
(
−1
x
− i

)2

−
(
−x2 + 2

x2

))
= 0

2ia0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −i}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− i) e
∫ (

− 1
x
−i
)
dx

= (x− i) e− ln(x)−ix

= (x− i) e−ix

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x− i) e−ix

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix− 1) e2ix
−2x+ 2i

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x− i) e−ix

x3/2

)
+ c2

(
(x− i) e−ix

x3/2

(
(ix− 1) e2ix
−2x+ 2i

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 9

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−9

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−9

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−9

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + 2r) (−3 + 2r)xr + a1(5 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 3) (2k + 2r − 3) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
3
2

}
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• Each term must be 0
a1(5 + 2r) (−1 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 9) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 9

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+7

• Recursion relation for r = −3
2

ak+2 = − 4ak
4k2+4k−8

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = − 4ak
4k2+4k−8 , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − 4ak
4k2+28k+40

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − 4ak
4k2+28k+40 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − 4ak

4k2+4k−8 , a1 = 0, bk+2 = − 4bk
4k2+28k+40 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.067 (sec)
Leaf size : 30� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-9/4)*y(x) = 0,

y(x),singsol=all)� �
y = −c2(−x+ i) e−ix + (x+ i) c1eix

x3/2
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Mathematica DSolve solution

Solving time : 0.089 (sec)
Leaf size : 44� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-9/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π
((c1x+ c2) cos(x) + (c2x− c1) sin(x))

x3/2
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2.1.253 problem 256

Solved as second order ode using Kovacic algorithm . . . . . . . . .1767
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1769
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1771
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1771
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1771

Internal problem ID [9101]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 256
Date solved : Thursday, December 12, 2024 at 10:00:48 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.163 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.483: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1



chapter 2. book solved problems 1770

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.254 problem 257

Solved as second order ode using Kovacic algorithm . . . . . . . . .1772
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1777
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1778
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1779
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1779

Internal problem ID [9102]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 257
Date solved : Thursday, December 12, 2024 at 10:00:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2xy′′ + 5(1− 2x) y′ − 5y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.459 (sec)

Writing the ode as

2xy′′ + (−10x+ 5) y′ − 5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −10x+ 5 (3)
C = −5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 100x2 − 60x+ 5
16x2 (6)

Comparing the above to (5) shows that

s = 100x2 − 60x+ 5
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
100x2 − 60x+ 5

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.485: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 25
4 + 5

16x2 − 15
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 5

2 − 3
4x − 1

20x2 − 3
200x3 − 1

200x4 − 9
5000x5 − 137

200000x6 − 543
2000000x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 5
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 5
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 25

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 100x2 − 60x+ 5
16x2

= Q+ R

16x2

=
(
25
4

)
+
(
−60x+ 5

16x2

)
= 25

4 + −60x+ 5
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −60. Dividing this by leading coefficient in t which is 16 gives −15

4 . Now b can be
found.

b =
(
−15

4

)
− (0)

= −15
4

Hence

[
√
r]∞ = 5

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−15
4

5
2

− 0
)

= −3
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−15

4
5
2

− 0
)

= 3
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 100x2 − 60x+ 5
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 5
2 −3

4
3
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

4 then

d = α−
∞ −

(
α−
c1

)
= 3

4 −
(
−1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
4x + (−)

(
5
2

)
= − 1

4x − 5
2

= − 1
4x − 5

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4x − 5

2

)
(1) +

((
1
4x2

)
+
(
− 1
4x − 5

2

)2

−
(
100x2 − 60x+ 5

16x2

))
= 0

−1 + 10a0
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
10

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
10
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

10

)
e
∫ (

− 1
4x−

5
2
)
dx

=
(
x+ 1

10

)
e− 5x

2 − ln(x)
4

= (1 + 10x) e− 5x
2

10x1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x+5

2x dx

= z1e
5x
2 − 5 ln(x)

4

= z1

(
e 5x

2

x5/4

)

Which simplifies to

y1 =
1 + 10x
10x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x+5

2x dx

(y1)2
dx

= y1

∫
e5x−

5 ln(x)
2

(y1)2
dx

= y1

(∫ 100 e5x−
5 ln(x)

2 x3

(1 + 10x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1 + 10x
10x3/2

)
+ c2

(
1 + 10x
10x3/2

(∫ 100 e5x−
5 ln(x)

2 x3

(1 + 10x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x+ 5(−2x+ 1)

(
d
dx
y(x)

)
− 5y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 5y(x)
2x +

5(2x−1)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
5(2x−1)

(
d
dx

y(x)
)

2x − 5y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −5(2x−1)
2x , P3(x) = − 5

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (−10x+ 5)

(
d
dx
y(x)

)
− 5y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 5 + 2r)− 5ak(2k + 2r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r + 5

2

)
ak+1 − 10ak

(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 5ak(2k+2r+1)

(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
ak+1 = 5ak(2k+1)

(k+1)(2k+5)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = 5ak(2k+1)

(k+1)(2k+5)

]
• Recursion relation for r = −3

2 ; series terminates at k = 1

ak+1 = 5ak(2k−2)(
k− 1

2
)
(2k+2)

• Apply recursion relation for k = 0
a1 = 10a0

• Terminating series solution of the ODE for r = −3
2 . Use reduction of order to find the second linearly independent solution

y(x) = a0 · (1 + 10x)
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+ b0 · (1 + 10x) , ak+1 = 5ak(2k+1)

(k+1)(2k+5)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.069 (sec)
Leaf size : 45� �
dsolve(2*x*diff(diff(y(x),x),x)+5*(1-2*x)*diff(y(x),x)-5*y(x) = 0,

y(x),singsol=all)� �
y = −

10
(√

5 c1
√
π
( 1
10 + x

)
erfi
(√

5
√
x
)
− e5xc1

√
x− c2

( 1
10 + x

))
x3/2

Mathematica DSolve solution

Solving time : 0.044 (sec)
Leaf size : 40� �
DSolve[{2*x*D[y[x],{x,2}]+5*(1-2*x)*D[y[x],x]-5*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2L

3
2
− 1

2
(5x) + c1(10x+ 1)

10
√
5x3/2
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2.1.255 problem 258

Solved as second order ode using Kovacic algorithm . . . . . . . . .1780
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1782
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1784
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1784
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1784

Internal problem ID [9103]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 258
Date solved : Thursday, December 12, 2024 at 10:00:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.179 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.487: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.256 problem 259

Solved as second order ode using Kovacic algorithm . . . . . . . . .1785
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1790
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1791
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1792
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1792

Internal problem ID [9104]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 259
Date solved : Thursday, December 12, 2024 at 10:00:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (x+ n) y′ + (n+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.403 (sec)

Writing the ode as

xy′′ + (x+ n) y′ + (n+ 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x+ n (3)
C = n+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = n2 − 2xn+ x2 − 2n− 4x
4x2 (6)

Comparing the above to (5) shows that

s = n2 − 2xn+ x2 − 2n− 4x
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
n2 − 2xn+ x2 − 2n− 4x

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.489: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 +

1
4n

2 − 1
2n

x2 +
−n

2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 1
4n

2 − 1
2n. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = n

2
α−
c = 1

2 −
√
1 + 4b = 1− n

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2−
1
x
− n

2x−
3n6

2x7−
3n5

2x6−
3n4

2x5−
3n3

2x4−
3n2

2x3−
3n
2x2−

77n5

2x7 −53n4

2x6 −67n3

4x5 −37n2

4x4 −4n
x3−

1075n4

4x7 −491n3

4x6 −93n2

2x5 −13n
x4 −755n3

x7 −435n2

2x6 −45n
x5 −980n2

x7 −161n
x6 −588n

x7 −132
x7 −42

x6−
14
x5−

5
x4−

2
x3−

1
x2+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= n2 − 2xn+ x2 − 2n− 4x
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
(−2n− 4)x+ n2 − 2n

4x2

)
= 1

4 + (−2n− 4)x+ n2 − 2n
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2n− 4. Dividing this by leading coefficient in t which is 4 gives −n

2 − 1. Now b can
be found.

b =
(
−n

2 − 1
)
− (0)

= −n

2 − 1
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−n
2 − 1
1
2

− 0
)

= −n

2 − 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−n

2 − 1
1
2

− 0
)

= n

2 + 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = n2 − 2xn+ x2 − 2n− 4x
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 n
2 1− n

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −n

2 − 1 n
2 + 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = n

2 + 1 then

d = α−
∞ −

(
α+
c1

)
= n

2 + 1−
(n
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= n

2x + (−)
(
1
2

)
= n

2x − 1
2

= n− x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

n

2x − 1
2

)
(1) +

((
− n

2x2

)
+
(

n

2x − 1
2

)2

−
(
n2 − 2xn+ x2 − 2n− 4x

4x2

))
= 0

n+ a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −n}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− n

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− n) e
∫ (

n
2x−

1
2
)
dx

= (x− n) e−x
2+

n ln(x)
2

= −(n− x)xn
2 e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x+n
x

dx

= z1e
−x

2−
n ln(x)

2

= z1
(
x−n

2 e−x
2
)

Which simplifies to
y1 = (x− n) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x+n

x
dx

(y1)2
dx

= y1

∫
e−n ln(x)−x

(y1)2
dx

= y1

(∫ e−n ln(x)−xe2x

(x− n)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x− n) e−x

)
+ c2

(
(x− n) e−x

(∫ e−n ln(x)−xe2x

(x− n)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (x+ n)

(
d
dx
y(x)

)
+ (n+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (n+1)y(x)
x

−
(x+n)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+n)

(
d
dx

y(x)
)

x
+ (n+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+n
x
, P3(x) = n+1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= n

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (x+ n)

(
d
dx
y(x)

)
+ (n+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r + n)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r + n) + ak(n+ k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r + n) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1− n}
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• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + n) + ak(n+ k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(n+k+r+1)

(k+1+r)(k+r+n)

• Recursion relation for r = 0
ak+1 = − ak(n+k+1)

(k+1)(k+n)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − ak(n+k+1)

(k+1)(k+n)

]
• Recursion relation for r = 1− n

ak+1 = − ak(k+2)
(k+2−n)(k+1)

• Solution for r = 1− n[
y(x) =

∞∑
k=0

akx
k+1−n, ak+1 = − ak(k+2)

(k+2−n)(k+1)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1−n

)
, ak+1 = − ak(n+k+1)

(k+1)(k+n) , bk+1 = − bk(k+2)
(k+2−n)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 42� �
dsolve(x*diff(diff(y(x),x),x)+(x+n)*diff(y(x),x)+(n+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x(c2x−n+1 hypergeom ([−n] , [−n+ 2] , x)n+ (−x+ n) c1)

n

Mathematica DSolve solution

Solving time : 1.863 (sec)
Leaf size : 48� �
DSolve[{x*D[y[x],{x,2}]+(x+n)*D[y[x],x]+(n+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(n− x)

(
c2

∫ x

1

eK[1]K[1]−n

(n−K[1])2dK[1] + c1

)
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2.1.257 problem 260

Solved as second order ode using Kovacic algorithm . . . . . . . . .1793
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1797
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1797
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1798
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1798

Internal problem ID [9105]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 260
Date solved : Thursday, December 12, 2024 at 10:00:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x4y′′ + xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as

x4y′′ + xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4

B = x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −10x2 + 1
4x6 (6)

Comparing the above to (5) shows that

s = −10x2 + 1
t = 4x6

Therefore eq. (4) becomes

z′′(x) =
(
−10x2 + 1

4x6

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.491: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x6. There is a pole at x = 0 of order 6. Since there is no odd order pole larger than
2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = 1
4x6 − 5

2x4

There is pole in r at x = 0 of order 6, hence v = 3. Expanding
√
r as Laurent series about

this pole c = 0 gives
[
√
r]c ≈

1
2x3 − 5

2x − 25x
4 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 3 the above becomes

[
√
r]c =

1
2x3 (3B)

The above shows that the coefficient of 1
(x−0)3 is

a = 1
2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x4 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be −5

2 . Therefore

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]c =

1
2x3

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(−5
2

1
2

+ 3
)

= −1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−
−5

2
1
2

+ 3
)

= 4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −10x2 + 1
4x6

pole c location pole order [
√
r]c α+

c α−
c

0 6 1
2x3 −1 4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1

)
= 1− (−1)
= 2
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x3 − 1

x
+ (−) (0)

= 1
2x3 − 1

x

= 1
2x3 − 1

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x3 − 1

x

)
(2x+ a1) +

((
− 3
2x4 + 1

x2

)
+
(

1
2x3 − 1

x

)2

−
(
−10x2 + 1

4x6

))
= 0

(2a0 + 2)x+ a1
x3 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫ ( 1

2x3−
1
x

)
dx

=
(
x2 − 1

)
e− ln(x)− 1

4x2

= (x2 − 1) e−
1

4x2

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x4 dx

= z1e
1

4x2

= z1
(
e

1
4x2
)

Which simplifies to

y1 =
x2 − 1

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x4 dx

(y1)2
dx

= y1

∫
e

1
2x2

(y1)2
dx

= y1

(∫ e
1

2x2 x2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 1

x

)
+ c2

(
x2 − 1

x

(∫ e
1

2x2 x2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.044 (sec)
Leaf size : 50� �
dsolve(x^4*diff(diff(y(x),x),x)+diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y =

c1
√
2
√
π (x− 1) (x+ 1) erfi

(√
2

2x

)
+ c2x

2 + 2 e
1

2x2 c1x− c2

x

Mathematica DSolve solution

Solving time : 0.313 (sec)
Leaf size : 61� �
DSolve[{x^4*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
2πc2(x2 − 1) erfi

(
1√
2x

)
− 4c1(x2 − 1) + 2c2e

1
2x2 x

4x
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2.1.258 problem 261

Solved as second order ode using Kovacic algorithm . . . . . . . . .1799
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1804
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1805
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1805
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1806

Internal problem ID [9106]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 261
Date solved : Thursday, December 12, 2024 at 10:00:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.286 (sec)

Writing the ode as

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 + x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x+ 15
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 + 4x+ 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x+ 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.492: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 15
4x2 + 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x + 7
4x2 − 7

8x3 − 35
32x4 + 133

64x5 + 63
128x6 − 1239

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 4x+ 15
4x2

= Q+ R

4x2

= (1) +
(
4x+ 15
4x2

)
= 1 + 4x+ 15

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 4x+ 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
2x + (−) (1)

= − 3
2x − 1

= − 3
2x − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x − 1

)
(1) +

((
3
2x2

)
+
(
− 3
2x − 1

)2

−
(
4x2 + 4x+ 15

4x2

))
= 0

−3 + 2a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

3
2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 3
2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 3

2

)
e
∫ (

− 3
2x−1

)
dx

=
(
x+ 3

2

)
e−x− 3 ln(x)

2

= (3 + 2x) e−x

2x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+x

x2 dx

= z1e
−x− ln(x)

2

= z1

(
e−x

√
x

)

Which simplifies to

y1 =
e−2x(3 + 2x)

2x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+x

x2 dx

(y1)2
dx

= y1

∫
e−2x−ln(x)

(y1)2
dx

= y1

(
(2x2 − 4x+ 3)x e−2x−ln(x)e4x

6 + 4x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−2x(3 + 2x)

2x2

)
+ c2

(
e−2x(3 + 2x)

2x2

(
(2x2 − 4x+ 3)x e−2x−ln(x)e4x

6 + 4x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (2x2 + x)

(
d
dx
y(x)

)
− 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4y(x)
x2 −

(2x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x
− 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2x+1

x
, P3(x) = − 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(2x+ 1)

(
d
dx
y(x)

)
− 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 2) + 2ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2) + 2ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + 3 + r) (k + r − 1) + 2ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r)
(k+3+r)(k+r−1)

• Recursion relation for r = −2 ; series terminates at k = 2
ak+1 = − 2ak(k−2)

(k+1)(k−3)

• Apply recursion relation for k = 0
a1 = −4a0

3

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 2a0

3

• Terminating series solution of the ODE for r = −2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 4

3x+ 2
3x

2)
• Recursion relation for r = 2

ak+1 = − 2ak(k+2)
(k+5)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − 2ak(k+2)

(k+5)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− 4

3x+ 2
3x

2)+ ( ∞∑
k=0

bkx
k+2
)
, bk+1 = − 2bk(k+2)

(5+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 31� �
dsolve(x^2*diff(diff(y(x),x),x)+(2*x^2+x)*diff(y(x),x)-4*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−2x(2x+ 3) + 2c1
(
x2 − 2x+ 3

2

)
x2
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Mathematica DSolve solution

Solving time : 0.77 (sec)
Leaf size : 44� �
DSolve[{x^2*D[y[x],{x,2}]+(x+2*x^2)*D[y[x],x]-4*y[x]==2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4

(
2c1e−2x(2x+ 3)

x2 + c2(2x2 − 4x+ 3)
x2 − 2

)
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2.1.259 problem 262

Solved as second order ode using Kovacic algorithm . . . . . . . . .1807
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1811
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1813
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1813
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1813

Internal problem ID [9107]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 262
Date solved : Thursday, December 12, 2024 at 10:00:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
4x3 − 14x2 − 2x

)
y′′ −

(
6x2 − 7x+ 1

)
y′ + (6x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.484 (sec)

Writing the ode as(
4x3 − 14x2 − 2x

)
y′′ +

(
−6x2 + 7x− 1

)
y′ + (6x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 − 14x2 − 2x
B = −6x2 + 7x− 1 (3)
C = 6x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −12x4 + 156x3 + 297x2 − 78x− 3
16 (2x3 − 7x2 − x)2

(6)

Comparing the above to (5) shows that

s = −12x4 + 156x3 + 297x2 − 78x− 3

t = 16
(
2x3 − 7x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−12x4 + 156x3 + 297x2 − 78x− 3

16 (2x3 − 7x2 − x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.494: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(2x3 − 7x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at
x = 7

4 +
√
57
4 of order 2. There is a pole at x = 7

4 −
√
57
4 of order 2. Since there is no odd

order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are met.
Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 9
4x − 3

16x2 + 3

4
(
x− 7

4 −
√
57
4

)2 + 3

4
(
x− 7

4 +
√
57
4

)2 +
9
8 −

29
√
57

152

x− 7
4 −

√
57
4

+
9
8 +

29
√
57

152

x− 7
4 +

√
57
4

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 7
4 +

√
57
4 let b be the coefficient of 1(

x− 7
4−

√
57
4

)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 7

4 −
√
57
4 let b be the coefficient of 1(

x− 7
4+

√
57
4

)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −12x4 + 156x3 + 297x2 − 78x− 3

16 (2x3 − 7x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −12x4 + 156x3 + 297x2 − 78x− 3
16 (2x3 − 7x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

7
4 +

√
57
4 2 0 3

2 −1
2

7
4 −

√
57
4 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1

4 −
(
−3
4

)
= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

) + (−) (0)

= 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

)
= −6x2 + 7x− 1

8x3 − 28x2 − 4x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

)
 (1) +


− 1

4x2 + 1

2
(
x− 7

4 −
√
57
4

)2 + 1

2
(
x− 7

4 +
√
57
4

)2
+

 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

)
2

−
(
−12x4 + 156x3 + 297x2 − 78x− 3

16 (2x3 − 7x2 − x)2
) = 0

32(6x− 1) (a0 + 1) (2x2 − 7x− 1)(
4x− 7 +

√
57
)2 (−4x+ 7 +

√
57
)2

x
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ 1

4x−
1

2
(
x− 7

4−
√

57
4

)− 1

2
(
x− 7

4+
√

57
4

)
dx

= (x− 1) e
−

(
57+7

√
57

)√
57 ln

(
4x−7−

√
57

)
2
(
399+57

√
57

) + 2 ln(x)(
7+

√
57

)(
−7+

√
57

)+
(
−57+7

√
57

)√
57 ln

(
4x−7+

√
57

)
−798+114

√
57

= (x− 1)x1/4√
4x− 7−

√
57
√

4x− 7 +
√
57

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x2+7x−1

4x3−14x2−2x dx

= z1e
− ln(x)

4 +
ln

(
2x2−7x−1

)
2

= z1

(√
2x2 − 7x− 1

x1/4

)
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Which simplifies to

y1 =
(x− 1)

√
2

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −6x2+7x−1

4x3−14x2−2x dx

(y1)2
dx

= y1

∫
e−

ln(x)
2 +ln

(
2x2−7x−1

)
(y1)2

dx

= y1

(
16x(2x+ 1) e−

ln(x)
2 +ln

(
2x2−7x−1

)
(x− 1) (2x2 − 7x− 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x− 1)

√
2

4

)
+ c2

(
(x− 1)

√
2

4

(
16x(2x+ 1) e−

ln(x)
2 +ln

(
2x2−7x−1

)
(x− 1) (2x2 − 7x− 1)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(4x3 − 14x2 − 2x)
(

d2

dx2y(x)
)
− (6x2 − 7x+ 1)

(
d
dx
y(x)

)
+ (6x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (6x−1)y(x)
2x(2x2−7x−1) +

(
6x2−7x+1

)(
d
dx

y(x)
)

2x(2x2−7x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
6x2−7x+1

)(
d
dx

y(x)
)

2x(2x2−7x−1) + (6x−1)y(x)
2x(2x2−7x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x2−7x+1
2x(2x2−7x−1) , P3(x) = 6x−1

2x(2x2−7x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators

2x(2x2 − 7x− 1)
(

d2

dx2y(x)
)
+ (−6x2 + 7x− 1)

(
d
dx
y(x)

)
+ (6x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r + (−a1(1 + r) (1 + 2r)− a0(14r2 − 21r + 1))xr +
(

∞∑
k=1

(−ak+1(k + 1 + r) (2k + 1 + 2r)− ak(14k2 + 28kr + 14r2 − 21k − 21r + 1) + 2ak−1(k − 2 + r) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
−a1(1 + r) (1 + 2r)− a0(14r2 − 21r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−14ak + 4ak−1 − 2ak+1) k2 + ((−28ak + 8ak−1 − 4ak+1) r + 21ak − 18ak−1 − 3ak+1) k + (−14ak + 4ak−1 − 2ak+1) r2 + (21ak − 18ak−1 − 3ak+1) r − ak + 20ak−1 − ak+1 = 0

• Shift index using k− >k + 1
(−14ak+1 + 4ak − 2ak+2) (k + 1)2 + ((−28ak+1 + 8ak − 4ak+2) r + 21ak+1 − 18ak − 3ak+2) (k + 1) + (−14ak+1 + 4ak − 2ak+2) r2 + (21ak+1 − 18ak − 3ak+2) r − ak+1 + 20ak − ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4k2ak−14k2ak+1+8krak−28krak+1+4r2ak−14r2ak+1−10kak−7kak+1−10rak−7rak+1+6ak+6ak+1

2k2+4kr+2r2+7k+7r+6

• Recursion relation for r = 0
ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6 ,−a1 − a0 = 0
]

• Recursion relation for r = 1
2

ak+2 = 4k2ak−14k2ak+1−6kak−21kak+1+2ak−ak+1
2k2+9k+10

• Solution for r = 1
2
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[
y(x) =

∞∑
k=0

akx
k+ 1

2 , ak+2 = 4k2ak−14k2ak+1−6kak−21kak+1+2ak−ak+1
2k2+9k+10 ,−3a1 + 6a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6 ,−a1 − a0 = 0, bk+2 = 4k2bk−14k2bk+1−6kbk−21kbk+1+2bk−bk+1
2k2+9k+10 ,−3b1 + 6b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 21� �
dsolve((4*x^3-14*x^2-2*x)*diff(diff(y(x),x),x)-(6*x^2-7*x+1)*diff(y(x),x)+(6*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = c2

√
x+ c1(x− 1) + 2c2x3/2

Mathematica DSolve solution

Solving time : 9.99 (sec)
Leaf size : 26� �
DSolve[{(4*x^3-14*x^2-2*x)*D[y[x],{x,2}]-(6*x^2-7*x+1)*D[y[x],x]+(6*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 1)− 2c2

√
x(2x+ 1)
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2.1.260 problem 263

Solved as second order ode using Kovacic algorithm . . . . . . . . .1814
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1818
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1820
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1820
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1820

Internal problem ID [9108]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 263
Date solved : Thursday, December 12, 2024 at 10:00:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x2y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.252 (sec)

Writing the ode as

x2y′′ + x2y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.496: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2
x2 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2

x2 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1
(
−
(
x2 + 2x+ 2

)
e−x
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
−
(
x2 + 2x+ 2

)
e−x
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x2 − d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + d
dx
y(x) + (x−2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1, P3(x) = x−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r) + ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+1)

(k+2+r)(k−1+r)

• Recursion relation for r = −1
ak+1 = − akk

(k+1)(k−2)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 2
ak+1 = − akk

(k+1)(k−2)

• Recursion relation for r = 2
ak+1 = − ak(k+3)

(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak(k+3)

(k+4)(k+1)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 24� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x^2+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = c2e−x(x2 + 2x+ 2) + c1

x

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 29� �
DSolve[{x^2*D[y[x],{x,2}]+x^2*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1 − c2e

−x(x2 + 2x+ 2)
x
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2.1.261 problem 264

Solved as second order ode using Kovacic algorithm . . . . . . . . .1821
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1825
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1827
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1827
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1827

Internal problem ID [9109]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 264
Date solved : Thursday, December 12, 2024 at 10:00:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x2y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.250 (sec)

Writing the ode as

x2y′′ − x2y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)



chapter 2. book solved problems 1822

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.498: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1
(
−
(
x2 + 2x+ 2

)
e−x
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x

(
−
(
x2 + 2x+ 2

)
e−x
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− d
dx
y(x) + (x−2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = x−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k − 1 + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+4

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak

k+4

]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
4+k

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x^2+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2(x2 + 2x+ 2)

x

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 28� �
DSolve[{x^2*D[y[x],{x,2}]-x^2*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2(x2 + 2x+ 2)
x
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2.1.262 problem 265

Solved as second order ode using Kovacic algorithm . . . . . . . . .1828
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1832
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1833
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1834
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1834

Internal problem ID [9110]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 265
Date solved : Thursday, December 12, 2024 at 10:00:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 4x) y′′ − xy′

2 − 3xy
4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.337 (sec)

Writing the ode as

(
−4x3 + x2) y′′ − xy′

2 − 3xy
4 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −4x3 + x2

B = −x

2 (3)

C = −3x
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −48x2 − 20x+ 5
16 (4x2 − x)2

(6)

Comparing the above to (5) shows that

s = −48x2 − 20x+ 5

t = 16
(
4x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−48x2 − 20x+ 5
16 (4x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.500: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(4x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

4 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16
(
x− 1

4

)2 − 5
4
(
x− 1

4

) + 5
4x + 5

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}
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For the pole at x = 1
4 let b be the coefficient of 1(

x− 1
4
)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= −48x2 − 20x+ 5

16 (4x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}
1
4 2 {1, 2, 3}

Order of r at ∞ E∞

2 {1, 2, 3}

Using the family {e1, e2, . . . , e∞} given by

e1 = 2, e2 = 1, e∞ = 3

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(3− (2 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
2

(x− (0)) +
1(

x−
(1
4

)))
= 1

x
+ 1

2x− 1
2

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0
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And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
x
+ 1

2x− 1
2

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(
1
x
+ 1

2x− 1
2

)
w + 144x2 − 12x− 5

16x2 (−1 + 4x)2
= 0

Solving for ω gives

ω = 12x− 2 + 3
√
1− 4x

4x (−1 + 4x)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 12x−2+3

√
1−4x

4x(−1+4x) dx

=

√
x (−1 + 4x)1/4

√
2
(√

1−4x+1√
x

)3/2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

2
−4x3+x2 dx

= z1e
ln(x)

4 − ln(−1+4x)
4

= z1

(
x1/4

(−1 + 4x)1/4

)

Which simplifies to

y1 =
x1/4√2

(√
1− 4x+ 1

)√√
1−4x+1√

x

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

2
−4x3+x2 dx

(y1)2
dx

= y1

∫
e

ln(x)
2 − ln(−1+4x)

2

(y1)2
dx

= y1

2 e−
ln(−1+4x)

2 + ln(1−4x)
2

(
−
(√

1− 4x+ 1
)2 + 2

√
1− 4x+ 2

)3/2
3
(√

1− 4x+ 1
)3
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Therefore the solution is

y = c1y1 + c2y2

= c1

x1/4√2
(√

1− 4x+ 1
)√√

1−4x+1√
x

4


+c2

x1/4√2
(√

1− 4x+ 1
)√√

1−4x+1√
x

4

2 e−
ln(−1+4x)

2 + ln(1−4x)
2

(
−
(√

1− 4x+ 1
)2 + 2

√
1− 4x+ 2

)3/2
3
(√

1− 4x+ 1
)3




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(1− 4x)
(

d2

dx2y(x)
)
−

x
(

d
dx

y(x)
)

2 − 3xy(x)
4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 3y(x)
4x(4x−1) −

d
dx

y(x)
2x(4x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
2x(4x−1) +

3y(x)
4x(4x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
2x(4x−1) , P3(x) = 3

4x(4x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x(4x− 1)
(

d2

dx2y(x)
)
+ 2 d

dx
y(x) + 3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r
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◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (2k − 1 + 2r) + ak(4k + 4r − 1) (4k + 4r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−4(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 16

(
k + r − 3

4

)
ak
(
k + r − 1

4

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = (4k+4r−3)ak(4k+4r−1)

2(k+1+r)(2k−1+2r)

• Recursion relation for r = 0
ak+1 = (4k−3)ak(4k−1)

2(k+1)(2k−1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (4k−3)ak(4k−1)

2(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 = (4k+3)ak(4k+5)
2
(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = (4k+3)ak(4k+5)
2
(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = (4k−3)ak(4k−1)

2(k+1)(2k−1) , bk+1 = (4k+3)bk(4k+5)
2
(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 46� �
dsolve(x^2*(1-4*x)*diff(diff(y(x),x),x)-1/2*diff(y(x),x)*x-3/4*x*y(x) = 0,

y(x),singsol=all)� �
y = −

√
2
(
(x− 1) c1

√
1− 4x− 2c2x3/2 + c1(3x− 1)

)(
1 +

√
1− 4x

)3/2
Mathematica DSolve solution

Solving time : 4.239 (sec)
Leaf size : 111� �
DSolve[{x^2*(1-4*x)*D[y[x],{x,2}]+((1-(3/2))*x-(6-4*(3/2))*x^2)*D[y[x],x]+(3/2)*(1-(3/2))*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x 4
√
4x− 1

(
6c1
(√

4x− 1− i
)3/2 + ic2

(√
4x− 1 + i

)3/2)
6 4
√
1− 4x 4

√√
4x− 1− i

4
√√

4x− 1 + i
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2.1.263 problem 266

Solved as second order ode using Kovacic algorithm . . . . . . . . .1835
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1840
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1841
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1842
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1842

Internal problem ID [9111]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 266
Date solved : Thursday, December 12, 2024 at 10:00:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.298 (sec)

Writing the ode as

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x+ 35
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x+ 35
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x+ 35

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.502: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 35

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 17

2x2 + 17
2x3 − 255

4x4 − 833
4x5 + 3213

4x6 + 21709
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x+ 35
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x+ 35

4x2

)
= 1

4 + −2x+ 35
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x+ 35
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−5
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 5
2x +

(
1
2

)
= − 5

2x + 1
2

= −5 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 5
2x + 1

2

)
(2x+ a1) +

((
5
2x2

)
+
(
− 5
2x + 1

2

)2

−
(
x2 − 2x+ 35

4x2

))
= 0

(−a1 − 8)x− 2a0 − 5a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 20, a1 = −8}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 8x+ 20
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 8x+ 20

)
e
∫ (

− 5
2x+

1
2
)
dx

=
(
x2 − 8x+ 20

)
ex

2−
5 ln(x)

2

= (x2 − 8x+ 20) ex
2

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to

y1 =
x2 − 8x+ 20

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
−(x3 + 9x2 + 36x+ 60)x e−x−ln(x)

x2 − 8x+ 20

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 8x+ 20

x3

)
+ c2

(
x2 − 8x+ 20

x3

(
−(x3 + 9x2 + 36x+ 60)x e−x−ln(x)

x2 − 8x+ 20

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (x2 + x)

(
d
dx
y(x)

)
+ (x− 9) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−9)y(x)
x2 −

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
+ (x−9)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+1

x
, P3(x) = x−9

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r + 3) (k + r − 3) + ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(3 + r) (−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 3}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 3) (k + r − 3) + ak−1(k + r) = 0
• Shift index using k− >k + 1

ak+1(k + 4 + r) (k − 2 + r) + ak(k + r + 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+1)
(k+4+r)(k−2+r)

• Recursion relation for r = −3 ; series terminates at k = 2
ak+1 = − ak(k−2)

(k+1)(k−5)

• Apply recursion relation for k = 0
a1 = −2a0

5

• Apply recursion relation for k = 1
a2 = −a1

8

• Express in terms of a0
a2 = a0

20

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 2

5x+ 1
20x

2)
• Recursion relation for r = 3

ak+1 = − ak(k+4)
(k+7)(k+1)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = − ak(k+4)

(k+7)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− 2

5x+ 1
20x

2)+ ( ∞∑
k=0

bkx
k+3
)
, bk+1 = − bk(4+k)

(k+7)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 38� �
dsolve(x^2*diff(diff(y(x),x),x)+(x^2+x)*diff(y(x),x)+(x-9)*y(x) = 0,

y(x),singsol=all)� �
y = c2e−x(x3 + 9x2 + 36x+ 60) + c1(x2 − 8x+ 20)

x3

Mathematica DSolve solution

Solving time : 0.352 (sec)
Leaf size : 42� �
DSolve[{x^2*D[y[x],{x,2}]+(x+x^2)*D[y[x],x]+(x-9)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1((x− 8)x+ 20)− c2e

−x(x3 + 9x2 + 36x+ 60)
x3
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2.1.264 problem 267

Solved as second order ode using Kovacic algorithm . . . . . . . . .1843
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1848
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1849
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1849
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1850

Internal problem ID [9112]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 267
Date solved : Thursday, December 12, 2024 at 10:00:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(x+ 1) y′ + (3x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as

x2y′′ +
(
x2 + x

)
y′ + (3x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = 3x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 10x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 10x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.504: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4x2 − 5
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 5
2x − 11

2x2 − 55
2x3 − 671

4x4 − 4565
4x5 − 33231

4x6 − 253275
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 10x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−10x+ 3

4x2

)
= 1

4 + −10x+ 3
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −10. Dividing this by leading coefficient in t which is 4 gives −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 0
)

= −5
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 0
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 10x+ 3
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −5

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
2x + (−)

(
1
2

)
= 3

2x − 1
2

= −−3 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2x − 1

2

)
(1) +

((
− 3
2x2

)
+
(

3
2x − 1

2

)2

−
(
x2 − 10x+ 3

4x2

))
= 0

3 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −3 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−3 + x) e
∫ ( 3

2x−
1
2
)
dx

= (−3 + x) e−x
2+

3 ln(x)
2

= (−3 + x)x3/2e−x
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to
y1 = x e−x(−3 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
− ex
18x2 − 7 ex

54x − Ei1 (−x)
6 − ex

27 (−3 + x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x(−3 + x)

)
+ c2

(
x e−x(−3 + x)

(
− ex
18x2 − 7 ex

54x − Ei1 (−x)
6 − ex

27 (−3 + x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (3x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−1)y(x)
x2 −

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
+ (3x−1)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+1

x
, P3(x) = 3x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (3x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1) + ak−1(k + 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 1}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 1) (k + r − 1) + ak−1(k + 2 + r) = 0
• Shift index using k− >k + 1

ak+1(k + 2 + r) (k + r) + ak(k + r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+3)
(k+2+r)(k+r)

• Recursion relation for r = −1
ak+1 = − ak(k+2)

(k+1)(k−1)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 1
ak+1 = − ak(k+2)

(k+1)(k−1)

• Recursion relation for r = 1
ak+1 = − ak(k+4)

(k+3)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − ak(k+4)

(k+3)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 48� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)+(3*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = x2c2e−x(x− 3) Ei1 (−x) + c1x

2(x− 3) e−x + c2(x2 − 2x− 1)
x



chapter 2. book solved problems 1850

Mathematica DSolve solution

Solving time : 0.263 (sec)
Leaf size : 66� �
DSolve[{x^2*D[y[x],{x,2}]+x*(x+1)*D[y[x],x]+(3*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2(x− 3)x2 ExpIntegralEi(x) + 6c1x3 − x2(c2ex + 18c1) + 2c2exx+ c2e

x)
6x
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2.1.265 problem 268

Solved as second order ode using Kovacic algorithm . . . . . . . . .1851
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1855
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1857
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1857
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1857

Internal problem ID [9113]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 268
Date solved : Thursday, December 12, 2024 at 10:00:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ −
(
x2 + 4x

)
y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.285 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 4x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 4x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 8x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 8x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 8x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.506: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x
+ 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)



chapter 2. book solved problems 1853

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x
− 2

x2 + 8
x3 − 36

x4 + 176
x5 − 912

x6 + 4928
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 8x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
8x+ 8
4x2

)
= 1

4 + 8x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 8. Dividing this by leading coefficient in t which is 4 gives 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 0
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 0
)

= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 8x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 2 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α+
c1

)
= 2− (2)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 2
x
+
(
1
2

)
= 1

2 + 2
x

= x+ 4
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 2

x

)
(0) +

((
− 2
x2

)
+
(
1
2 + 2

x

)2

−
(
x2 + 8x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
2
x

)
dx

= x2ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−4x

x2 dx

= z1e
x
2+2 ln(x)

= z1
(
x2ex

2
)

Which simplifies to
y1 = x4ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−4x

x2 dx

(y1)2
dx

= y1

∫
ex+4 ln(x)

(y1)2
dx

= y1

(
−e−x

3x3 + e−x

6x2 − e−x

6x + Ei1 (x)
6

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x4ex

)
+ c2

(
x4ex

(
−e−x

3x3 + e−x

6x2 − e−x

6x + Ei1 (x)
6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− (x2 + 4x)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2 +

(x+4)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+4)

(
d
dx

y(x)
)

x
+ 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+4

x
, P3(x) = 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 4)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−4 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 4)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 4}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 4)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k − 3 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k−3+r

• Recursion relation for r = 1
ak+1 = ak

k−2

• Series not valid for r = 1 , division by 0 in the recursion relation at k = 2
ak+1 = ak

k−2

• Recursion relation for r = 4
ak+1 = ak

k+1

• Solution for r = 4[
y(x) =

∞∑
k=0

akx
k+4, ak+1 = ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 35� �
dsolve(x^2*diff(diff(y(x),x),x)-(x^2+4*x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y =

(
ex Ei1 (x) c2x3 + exx3c1 − c2

(
x2 − x+ 2

))
x

Mathematica DSolve solution

Solving time : 0.066 (sec)
Leaf size : 41� �
DSolve[{x^2*D[y[x],{x,2}]-(x^2+4*x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

xx4 − 1
6c1x

(
exx3 ExpIntegralEi(−x) + x2 − x+ 2

)
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2.1.266 problem 269

Solved as second order ode using Kovacic algorithm . . . . . . . . .1858
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1863
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1863
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1863
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1863

Internal problem ID [9114]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 269
Date solved : Thursday, December 12, 2024 at 10:00:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ − (3x+ 2) y′ + (2x− 1) y
x

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.522 (sec)

Writing the ode as

2x2y′′ + (−3x− 2) y′ +
(
2− 1

x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = −3x− 2 (3)

C = 2− 1
x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 36x+ 4
16x4 (6)

Comparing the above to (5) shows that

s = 5x2 + 36x+ 4
t = 16x4
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Therefore eq. (4) becomes

z′′(x) =
(
5x2 + 36x+ 4

16x4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.508: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x4. There is a pole at x = 0 of order 4. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
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The partial fraction decomposition of r is

r = 5
16x2 + 9

4x3 + 1
4x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

1
2x2 + 9

4x − 19
4 + 171x

8 − 475x2

4 + 11799x3

16 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

1
2x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = 1
2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be 9

4 . Therefore

b =
(
9
4

)
− (0)

= 9
4

Hence

[
√
r]c =

1
2x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

( 9
4
1
2
+ 2
)

= 13
4

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−

9
4
1
2
+ 2
)

= −5
4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 36x+ 4

16x4

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 36x+ 4
16x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 1
2x2

13
4 −5

4
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1

)
= −1

4 −
(
−5
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x2 − 5

4x + (−) (0)

= − 1
2x2 − 5

4x
= −2− 5x

4x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x2 − 5

4x

)
(1) +

((
1
x3 + 5

4x2

)
+
(
− 1
2x2 − 5

4x

)2

−
(
5x2 + 36x+ 4

16x4

))
= 0

−2 + 5a0
2x2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

2
5

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2
5
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 2

5

)
e
∫ (

− 1
2x2−

5
4x

)
dx

=
(
x+ 2

5

)
e−

5 ln(x)
4 + 1

2x

= (2 + 5x) e 1
2x

5x5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x−2
2x2 dx

= z1e
3 ln(x)

4 − 1
2x

= z1
(
x3/4e− 1

2x

)
Which simplifies to

y1 =
2 + 5x
5
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x−2

2x2 dx

(y1)2
dx

= y1

∫
e

3 ln(x)
2 − 1

x

(y1)2
dx

= y1

(∫ 25 e
3 ln(x)

2 − 1
xx

(2 + 5x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
2 + 5x
5
√
x

)
+ c2

(
2 + 5x
5
√
x

(∫ 25 e
3 ln(x)

2 − 1
xx

(2 + 5x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.143 (sec)
Leaf size : 35� �
dsolve(2*x^2*diff(diff(y(x),x),x)-(2+3*x)*diff(y(x),x)+(2*x-1)/x*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−
1
x hypergeom

(
[2] ,

[
−1

2

]
, 1
x

)
x5/2 + 5c1x+ 2c1√

x

Mathematica DSolve solution

Solving time : 0.321 (sec)
Leaf size : 70� �
DSolve[{2*x^2*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]+(2*x-1)/x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

2
√
πc2(5x+ 2)erf

(
1√
x

)
3
√
x

+ 2
3c2e

−1/x(x2 − 4x− 2
)
+ c1(5x+ 2)

5
√
x
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2.1.267 problem 270

Solved as second order ode using Kovacic algorithm . . . . . . . . .1864
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1868
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1869
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1870
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1870

Internal problem ID [9115]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 270
Date solved : Thursday, December 12, 2024 at 10:00:58 AM
CAS classification : [_Jacobi]

Solve

x(1− x) y′′ +
(
3
2 − 2x

)
y′ − y

4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as (
−x2 + x

)
y′′ +

(
3
2 − 2x

)
y′ − y

4 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = 3
2 − 2x (3)

C = −1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x2 + 4x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −4x2 + 4x− 3

t = 16
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−4x2 + 4x− 3
16 (x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.509: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
8x − 3

16 (−1 + x)2
+ 1

−8 + 8x − 3
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −4x2 + 4x− 3

16 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x2 + 4x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
4x + 1

−4 + 4x + (−) (0)

= 1
4x + 1

−4 + 4x
= 2x− 1

4x (−1 + x)
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x + 1

−4 + 4x

)
(0) +

((
− 1
4x2 − 1

4 (−1 + x)2
)
+
(

1
4x + 1

−4 + 4x

)2

−
(
−4x2 + 4x− 3
16 (x2 − x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x+
1

−4+4x

)
dx

= (x(−1 + x))1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

3
2−2x

−x2+x
dx

= z1e
− 3 ln(x)

4 − ln(−1+x)
4

= z1

(
1

x3/4 (−1 + x)1/4

)

Which simplifies to

y1 =
(x(−1 + x))1/4

x3/4 (−1 + x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

3
2−2x

−x2+x
dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2 − ln(−1+x)

2

(y1)2
dx

= y1

(
ln
(
−1
2 + x+

√
x2 − x

))



chapter 2. book solved problems 1868

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x(−1 + x))1/4

x3/4 (−1 + x)1/4

)
+ c2

(
(x(−1 + x))1/4

x3/4 (−1 + x)1/4

(
ln
(
−1
2 + x+

√
x2 − x

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(1− x)
(

d2

dx2y(x)
)
+
(3
2 − 2x

) (
d
dx
y(x)

)
− y(x)

4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
4x(x−1) −

(4x−3)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4x−3)

(
d
dx

y(x)
)

2x(x−1) + y(x)
4x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x−3
2x(x−1) , P3(x) = 1

4x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x(x− 1)
(

d2

dx2y(x)
)
+ (8x− 6)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(1 + 2r)x−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 3 + 2r) + ak(2k + 2r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

ak(2k + 2r + 1)2 − 4(k + 1 + r)
(
k + r + 3

2

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r+1)2

2(k+1+r)(2k+3+2r)

• Recursion relation for r = 0
ak+1 = ak(2k+1)2

2(k+1)(2k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak(2k+1)2

2(k+1)(2k+3)

]
• Recursion relation for r = −1

2

ak+1 = 2akk2(
k+ 1

2
)
(2k+2)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = 2akk2(
k+ 1

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = ak(2k+1)2

2(k+1)(2k+3) , bk+1 = 2bkk2(
k+ 1

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 32� �
dsolve(x*(1-x)*diff(diff(y(x),x),x)+(3/2-2*x)*diff(y(x),x)-1/4*y(x) = 0,

y(x),singsol=all)� �
y =

c2 ln
(
−1 + 2x+ 2

√
x (x− 1)

)
− c2 ln (2) + c1

√
x

Mathematica DSolve solution

Solving time : 0.153 (sec)
Leaf size : 53� �
DSolve[{x*(1-x)*D[y[x],{x,2}]+(3/2-2*x)*D[y[x],x]-1/4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4c2
√
x− 1arctanh

(√
x−1√
x+1

)
√

−((x− 1)x)
+ c1√

x
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2.1.268 problem 271

Solved as second order ode using Kovacic algorithm . . . . . . . . .1871
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1875
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1875
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1875
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1875

Internal problem ID [9116]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 271
Date solved : Thursday, December 12, 2024 at 10:00:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x(1− x) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.262 (sec)

Writing the ode as (
−2x2 + 2x

)
y′′ + xy′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x2 + 2x
B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x+ 8
16x (−1 + x)2

(6)

Comparing the above to (5) shows that

s = −3x+ 8
t = 16x(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

−3x+ 8
16x (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.511: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x(−1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
2 (−1 + x) +

1
2x + 5

16 (−1 + x)2

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x+ 8

16x (−1 + x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x+ 8
16x (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

4 (−1 + x) + (0)

= 1
x
− 1

4 (−1 + x)

= 1
x
− 1

−4 + 4x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

4 (−1 + x)

)
(0) +

((
− 1
x2 + 1

4 (−1 + x)2
)
+
(
1
x
− 1

4 (−1 + x)

)2

−
(

−3x+ 8
16x (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

4(−1+x)

)
dx

= x

(−1 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

−2x2+2x dx

= z1e
ln(−1+x)

4

= z1
(
(−1 + x)1/4

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

−2x2+2x dx

(y1)2
dx

= y1

∫
e

ln(−1+x)
2

(y1)2
dx

= y1

(
−
√
−1 + x

x
+ arctan

(√
−1 + x

))
Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
−
√
−1 + x

x
+ arctan

(√
−1 + x

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(2*x*(1-x)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ arctan

(√
x− 1

)
xc2 −

√
x− 1 c2

Mathematica DSolve solution

Solving time : 0.139 (sec)
Leaf size : 43� �
DSolve[{2*x*(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4

√
2
(
c2xarctanh

(√
1− x

)
+ c1x− c2

√
1− x

)
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2.1.269 problem 272

Solved as second order ode using Kovacic algorithm . . . . . . . . .1876
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1880
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1881
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1882
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1882

Internal problem ID [9117]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 272
Date solved : Thursday, December 12, 2024 at 10:00:59 AM
CAS classification : [_Jacobi]

Solve

2x(1− x) y′′ + (1− 11x) y′ − 10y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.255 (sec)

Writing the ode as (
−2x2 + 2x

)
y′′ + (1− 11x) y′ − 10y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x2 + 2x
B = 1− 11x (3)
C = −10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 + 66x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −3x2 + 66x− 3

t = 16
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 + 66x− 3
16 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.512: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4 (−1 + x)2

− 15
4 (−1 + x) +

15
4x − 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 1 let b be the coefficient of 1

(−1+x)2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 + 66x− 3

16 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 + 66x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

4 −
(
−3
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 3
4x − 3

2 (−1 + x) + (−) (0)

= 3
4x − 3

2 (−1 + x)

= − 3(x+ 1)
4x (−1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4x − 3

2 (−1 + x)

)
(1) +

((
− 3
4x2 + 3

2 (−1 + x)2
)
+
(

3
4x − 3

2 (−1 + x)

)2

−
(
−3x2 + 66x− 3
16 (x2 − x)2

))
= 0

−3 + 3a0
2x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 3

4x−
3

2(−1+x)

)
dx

= (x+ 1) e−
3 ln(−1+x)

2 + 3 ln(x)
4

= (x+ 1)x3/4

(−1 + x)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−11x

−2x2+2x dx

= z1e
− 5 ln(−1+x)

2 − ln(x)
4

= z1

(
1

(−1 + x)5/2 x1/4

)

Which simplifies to

y1 =
√
x (x+ 1)

(−1 + x)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−11x

−2x2+2x dx

(y1)2
dx

= y1

∫
e−5 ln(−1+x)− ln(x)

2

(y1)2
dx

= y1

(
2(x2 + 6x+ 1) (−1 + x)5 e−5 ln(−1+x)− ln(x)

2

x+ 1

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (x+ 1)

(−1 + x)4
)
+ c2

(√
x (x+ 1)

(−1 + x)4

(
2(x2 + 6x+ 1) (−1 + x)5 e−5 ln(−1+x)− ln(x)

2

x+ 1

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x(1− x)
(

d2

dx2y(x)
)
+ (1− 11x)

(
d
dx
y(x)

)
− 10y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 5y(x)
x(x−1) −

(11x−1)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(11x−1)

(
d
dx

y(x)
)

2x(x−1) + 5y(x)
x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x−1
2x(x−1) , P3(x) = 5

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x(x− 1)
(

d2

dx2y(x)
)
+ (11x− 1)

(
d
dx
y(x)

)
+ 10y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r + 5) (k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2(k + r + 2)

(
k + r + 5

2

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r+2)(2k+2r+5)ak

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0
ak+1 = (k+2)(2k+5)ak

(k+1)(2k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (k+2)(2k+5)ak

(k+1)(2k+1)

]
• Recursion relation for r = 1

2

ak+1 =
(
k+ 5

2
)
(2k+6)ak(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
(
k+ 5

2
)
(2k+6)ak(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = (k+2)(2k+5)ak

(k+1)(2k+1) , bk+1 =
(
k+ 5

2
)
(2k+6)bk(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 29� �
dsolve(2*x*(1-x)*diff(diff(y(x),x),x)+(1-11*x)*diff(y(x),x)-10*y(x) = 0,

y(x),singsol=all)� �
y = c1(x2 + 6x+ 1) + c2

√
x (x+ 1)

(x− 1)4

Mathematica DSolve solution

Solving time : 0.132 (sec)
Leaf size : 35� �
DSolve[{2*x*(1-x)*D[y[x],{x,2}]+(1-11*x)*D[y[x],x]-10*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

√
x(x+ 1)− 2c2(x2 + 6x+ 1)

(x− 1)4
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2.1.270 problem 273

Solved as second order ode using Kovacic algorithm . . . . . . . . .1883
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1887
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1889
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1889
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1889

Internal problem ID [9118]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 273
Date solved : Thursday, December 12, 2024 at 10:01:00 AM
CAS classification : [_Jacobi]

Solve

x(1− x) y′′ + (1− 2x) y′
3 + 20y

9 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

(
−x2 + x

)
y′′ +

(
−2x

3 + 1
3

)
y′ + 20y

9 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = −2x
3 + 1

3 (3)

C = 20
9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 72x2 − 72x− 5
36 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = 72x2 − 72x− 5

t = 36
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
72x2 − 72x− 5
36 (x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.514: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36x2 − 41

18x − 5
36 (−1 + x)2

+ 41
18 (−1 + x)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6



chapter 2. book solved problems 1885

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 72x2 − 72x− 5

36 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 72x2 − 72x− 5
36 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

1 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
6x + 5

6 (−1 + x) + (0)

= 1
6x + 5

6 (−1 + x)

= −1 + 6x
6x (−1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x + 5

6 (−1 + x)

)
(1) +

((
− 1
6x2 − 5

6 (−1 + x)2
)
+
(

1
6x + 5

6 (−1 + x)

)2

−
(
72x2 − 72x− 5
36 (x2 − x)2

))
= 0

−1− 6a0
3x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

6

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −1
6 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
−1
6 + x

)
e
∫ ( 1

6x+
5

6(−1+x)

)
dx

=
(
−1
6 + x

)
e

5 ln(−1+x)
6 + ln(x)

6

=
(
−1
6 + x

)
(−1 + x)5/6 x1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
− 2x

3 +1
3

−x2+x
dx

= z1e
− ln(x(−1+x))

6

= z1

(
1

(x (−1 + x))1/6

)

Which simplifies to

y1 =
(−1 + 6x) (−1 + x)5/6 x1/6

6 (x (−1 + x))1/6
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−− 2x

3 +1
3

−x2+x
dx

(y1)2
dx

= y1

∫
e−

ln(x(−1+x))
3

(y1)2
dx

= y1

(
− 54x2/3(−5 + 6x)
5 (−1 + 6x) (−1 + x)2/3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−1 + 6x) (−1 + x)5/6 x1/6

6 (x (−1 + x))1/6

)
+c2

(
(−1 + 6x) (−1 + x)5/6 x1/6

6 (x (−1 + x))1/6

(
− 54x2/3(−5 + 6x)
5 (−1 + 6x) (−1 + x)2/3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(1− x)
(

d2

dx2y(x)
)
+

(−2x+1)
(

d
dx

y(x)
)

3 + 20y(x)
9 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 20y(x)
9x(x−1) −

(2x−1)
(

d
dx

y(x)
)

3x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x−1)

(
d
dx

y(x)
)

3x(x−1) − 20y(x)
9x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x−1
3x(x−1) , P3(x) = − 20

9x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

9x(x− 1)
(

d2

dx2y(x)
)
+ (6x− 3)

(
d
dx
y(x)

)
− 20y(x) = 0
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• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−3a0r(−2 + 3r)x−1+r +
(

∞∑
k=0

(−3ak+1(k + 1 + r) (3k + 1 + 3r) + ak(3k + 3r + 4) (3k + 3r − 5))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3r(−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 23
}

• Each term in the series must be 0, giving the recursion relation
−9
(
k + r + 1

3

)
(k + 1 + r) ak+1 + 9

(
k + 4

3 + r
) (

k + r − 5
3

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (3k+3r+4)(3k+3r−5)ak

3(3k+1+3r)(k+1+r)

• Recursion relation for r = 0
ak+1 = (3k+4)(3k−5)ak

3(3k+1)(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (3k+4)(3k−5)ak

3(3k+1)(k+1)

]
• Recursion relation for r = 2

3 ; series terminates at k = 1

ak+1 = (3k+6)(3k−3)ak
3(3k+3)

(
k+ 5

3
)

• Apply recursion relation for k = 0
a1 = −6a0

5

• Terminating series solution of the ODE for r = 2
3 . Use reduction of order to find the second linearly independent solution

y(x) = a0 ·
(
−6x

5 + 1
)

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+ b0 ·

(
−6x

5 + 1
)
, ak+1 = (3k+4)(3k−5)ak

3(3k+1)(k+1)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 27� �
dsolve(x*(1-x)*diff(diff(y(x),x),x)+1/3*(1-2*x)*diff(y(x),x)+20/9*y(x) = 0,

y(x),singsol=all)� �
y = c1(6x− 5)x2/3 + c2(6x− 1) (x− 1)2/3

Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 51� �
DSolve[{x*(1-x)*D[y[x],{x,2}]+1/3*(1-2*x)*D[y[x],x]+20/9*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

3
√

−((x− 1)x)Q
2
3
1 (2x− 1) + c1x

2/3(6x− 5)
3Gamma

(4
3

)
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2.1.271 problem 274

Solved as second order ode using Kovacic algorithm . . . . . . . . .1890
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1894
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1896
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1896
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1896

Internal problem ID [9119]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 274
Date solved : Thursday, December 12, 2024 at 10:01:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4y′′ + 3(−x2 + 2) y
(−x2 + 1)2

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.220 (sec)

Writing the ode as

4y′′ + (−3x2 + 6) y
(x2 − 1)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4
B = 0 (3)

C = −3x2 + 6
(x2 − 1)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 6
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 6

t = 4
(
x2 − 1

)2
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Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 6
4 (x2 − 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.516: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 9
16 (x+ 1) +

9
16 (x− 1) −

3
16 (x+ 1)2

− 3
16 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 6

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 6
4 (x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x− 1) +

3
4 (x+ 1) + (0)

= 3
4 (x− 1) +

3
4 (x+ 1)

= 3x
2x2 − 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x− 1) +

3
4 (x+ 1)

)
(0) +

((
− 3
4 (x− 1)2

− 3
4 (x+ 1)2

)
+
(

3
4 (x− 1) +

3
4 (x+ 1)

)2

−
(

3x2 − 6
4 (x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4(x−1)+
3

4(x+1)

)
dx

=
(
x2 − 1

)3/4
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

=
(
x2 − 1

)3/4
Which simplifies to

y1 =
(
x2 − 1

)3/4
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

=
(
x2 − 1

)3/4 ∫ 1
(x2 − 1)3/2

dx

=
(
x2 − 1

)3/4(−(x− 1) (x+ 1)x
(x2 − 1)3/2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 − 1
)3/4)+ c2

((
x2 − 1

)3/4(−(x− 1) (x+ 1)x
(x2 − 1)3/2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4 d2

dx2y(x) + 3
(
−x2+2

)
y(x)

(−x2+1)2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3
(
x2−2

)
y(x)

4(x2−1)2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− 3
(
x2−2

)
y(x)

4(x2−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 3
(
x2−2

)
4(x2−1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 3
16

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4(x2 − 1)2
(

d2

dx2y(x)
)
+ (−3x2 + 6) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u4 − 16u3 + 16u2)
(

d2

du2y(u)
)
+ (−3u2 + 6u+ 3) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..4
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)ur + (a1(3 + 4r) (1 + 4r)− 2a0(8r2 − 8r − 3))u1+r +
(

∞∑
k=2

(
ak(4k + 4r − 1) (4k + 4r − 3)− 2ak−1

(
8(k − 1)2 + 16(k − 1) r + 8r2 − 8k + 5− 8r

)
+ ak−2(2k + 2r − 3) (2k − 7 + 2r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term must be 0

a1(3 + 4r) (1 + 4r)− 2a0(8r2 − 8r − 3) = 0
• Solve for the dependent coefficient(s)

a1 = 2a0
(
8r2−8r−3

)
16r2+16r+3

• Each term in the series must be 0, giving the recursion relation
4(4ak + ak−2 − 4ak−1) k2 + 4(2(4ak + ak−2 − 4ak−1) r − 4ak − 5ak−2 + 12ak−1) k + 4(4ak + ak−2 − 4ak−1) r2 + 4(−4ak − 5ak−2 + 12ak−1) r + 3ak + 21ak−2 − 26ak−1 = 0

• Shift index using k− >k + 2
4(4ak+2 + ak − 4ak+1) (k + 2)2 + 4(2(4ak+2 + ak − 4ak+1) r − 4ak+2 − 5ak + 12ak+1) (k + 2) + 4(4ak+2 + ak − 4ak+1) r2 + 4(−4ak+2 − 5ak + 12ak+1) r + 3ak+2 + 21ak − 26ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−16k2ak+1+8krak−32krak+1+4r2ak−16r2ak+1−4kak−16kak+1−4rak−16rak+1−3ak+6ak+1

16k2+32kr+16r2+48k+48r+35

• Recursion relation for r = 1
4

ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15
4 ak+ak+1

16k2+56k+48

• Solution for r = 1
4[

y(u) =
∞∑
k=0

aku
k+ 1

4 , ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15
4 ak+ak+1

16k2+56k+48 , a1 = −9a0
8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
1
4 , ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15

4 ak+ak+1
16k2+56k+48 , a1 = −9a0

8

]
• Recursion relation for r = 3

4

ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15
4 ak−15ak+1

16k2+72k+80

• Solution for r = 3
4[

y(u) =
∞∑
k=0

aku
k+ 3

4 , ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15
4 ak−15ak+1

16k2+72k+80 , a1 = −3a0
8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
3
4 , ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15

4 ak−15ak+1
16k2+72k+80 , a1 = −3a0

8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k+
1
4

)
+
(

∞∑
k=0

bk(x+ 1)k+
3
4

)
, ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15

4 ak+ak+1
16k2+56k+48 , a1 = −9a0

8 , bk+2 = −4k2bk−16k2bk+1+2kbk−40kbk+1− 15
4 bk−15bk+1

16k2+72k+80 , b1 = −3b0
8

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 24� �
dsolve(4*diff(diff(y(x),x),x)+3*(-x^2+2)/(-x^2+1)^2*y(x) = 0,

y(x),singsol=all)� �
y = c1

(
x2 − 1

)3/4 + c2
(
x2 − 1

)1/4
x

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 51� �
DSolve[{4*D[y[x],{x,2}]+3*(2-x^2)/(1-x^2)^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
√
x2 − 1

c2Q
1
2
1
2
(x) +

√
2
π
c1x

4
√
1− x2
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2.1.272 problem 275

Solved as second order ode using Kovacic algorithm . . . . . . . . .1897
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1902
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1903
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1903
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1904

Internal problem ID [9120]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 275
Date solved : Thursday, December 12, 2024 at 10:01:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ − 2u′

x
− a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.329 (sec)

Writing the ode as

u′′ − 2u′

x
− a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = −2
x

(3)

C = −a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.518: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + a2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 1

a x2 − 1
2a3x4 + 1

2a5x6 − 5
8a7x8 + 7

8a9x10 − 21
16a11x12 + 33

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= a2x2 + 2
x2

= Q+ R

x2

=
(
a2
)
+
(

2
x2

)
= 2

x2 + a2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (a)

= −1
x
− a

= −ax− 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− a

)
(1) +

((
1
x2

)
+
(
−1
x
− a

)2

−
(
a2x2 + 2

x2

))
= 0

2aa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

a

)
e
∫ (

− 1
x
−a
)
dx

=
(
x+ 1

a

)
e−ax−ln(x)

= (ax+ 1) e−ax

ax

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
− 2

x
1 dx

= z1e
ln(x)

= z1(x)

Which simplifies to

u1 =
(ax+ 1) e−ax

a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−− 2

x
1 dx

(u1)2
dx

= u1

∫
e2 ln(x)

(u1)2
dx

= u1

(
(ax− 1) e2ax
2a (ax+ 1)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax+ 1) e−ax

a

)
+ c2

(
(ax+ 1) e−ax

a

(
(ax− 1) e2ax
2a (ax+ 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2u(x)−
2
(

d
dx

u(x)
)

x
− a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

−a2u(x)x+
(

d2

dx2u(x)
)
x− 2 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + a1(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {0, 3}
• Each term must be 0

a1(1 + r) (−2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k − 2 + r)− a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + r − 1)− a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = a2ak

(k+2)(k−1)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k−1) ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = a2ak

(k+5)(k+2)

• Solution for r = 3[
u(x) =

∞∑
k=0

akx
k+3, ak+2 = a2ak

(k+5)(k+2) , 4a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k

)
+
(

∞∑
k=0

ckx
k+3
)
, bk+2 = a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = a2ck
(5+k)(k+2) , 4c1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 28� �
dsolve(diff(diff(u(x),x),x)-2/x*diff(u(x),x)-a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1eax(ax− 1) + c2e−ax(ax+ 1)
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Mathematica DSolve solution

Solving time : 0.158 (sec)
Leaf size : 68� �
DSolve[{D[u[x],{x,2}]-2/x*D[u[x],x]-a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �

u(x) →

√
2
π

√
x((iac2x+ c1) sinh(ax)− (ac1x+ ic2) cosh(ax))

a
√
−iax
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2.1.273 problem 276

Solved as second order ode using Kovacic algorithm . . . . . . . . .1905
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1907
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1909
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1909
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1909

Internal problem ID [9121]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 276
Date solved : Thursday, December 12, 2024 at 10:01:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 2u′

x
− a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.141 (sec)

Writing the ode as

u′′ + 2u′

x
− a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 2
x

(3)

C = −a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2

1 (6)

Comparing the above to (5) shows that

s = a2

t = 1
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Therefore eq. (4) becomes

z′′(x) =
(
a2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.520: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = a2 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
a2 x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

2
x
1 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

u1 =
ecsgn(a)ax

x
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The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

2
x
1 dx

(u1)2
dx

= u1

∫
e−2 ln(x)

(u1)2
dx

= u1

(
− e−2 csgn(a)ax

2 csgn (a) a

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
ecsgn(a)ax

x

)
+ c2

(
ecsgn(a)ax

x

(
− e−2 csgn(a)ax

2 csgn (a) a

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

d2

dx2u(x) +
2
(

d
dx

u(x)
)

x
− a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

−a2u(x)x+
(

d2

dx2u(x)
)
x+ 2 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r)− a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− a2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = a2ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = a2ak

(k+1)(k+2)

• Solution for r = −1[
u(x) =

∞∑
k=0

akx
k−1, ak+2 = a2ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = a2ak

(k+2)(k+3)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−1
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = a2bk

(k+1)(k+2) , 0 = 0, ck+2 = a2ck
(k+2)(k+3) , 2c1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 21� �
dsolve(diff(diff(u(x),x),x)+2/x*diff(u(x),x)-a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1 sinh (ax) + c2 cosh (ax)

x

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 35� �
DSolve[{D[u[x],{x,2}]+2/x*D[u[x],x]-a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) → 2ac1e−ax + c2e

ax

2ax
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2.1.274 problem 277

Solved as second order ode using Kovacic algorithm . . . . . . . . .1910
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1912
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1914
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1914
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1914

Internal problem ID [9122]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 277
Date solved : Thursday, December 12, 2024 at 10:01:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 2u′

x
+ a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.154 (sec)

Writing the ode as

u′′ + 2u′

x
+ a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 2
x

(3)

C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2

1 (6)

Comparing the above to (5) shows that

s = −a2

t = 1
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Therefore eq. (4) becomes

z′′(x) =
(
−a2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.522: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −a2 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
−a2 x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

2
x
1 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

u1 =
e
√
−a2 x

x
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The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

2
x
1 dx

(u1)2
dx

= u1

∫
e−2 ln(x)

(u1)2
dx

= u1

(√
−a2 e−2

√
−a2 x

2a2

)

Therefore the solution is

u = c1u1 + c2u2

= c1

(
e
√
−a2 x

x

)
+ c2

(
e
√
−a2 x

x

(√
−a2 e−2

√
−a2 x

2a2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

d2

dx2u(x) +
2
(

d
dx

u(x)
)

x
+ a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

a2u(x)x+
(

d2

dx2u(x)
)
x+ 2 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + a2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − a2ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − a2ak

(k+1)(k+2)

• Solution for r = −1[
u(x) =

∞∑
k=0

akx
k−1, ak+2 = − a2ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − a2ak

(k+2)(k+3)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = − a2ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−1
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = − a2bk

(k+1)(k+2) , 0 = 0, ck+2 = − a2ck
(k+2)(k+3) , 2c1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 21� �
dsolve(diff(diff(u(x),x),x)+2/x*diff(u(x),x)+a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1 sin (ax) + c2 cos (ax)

x

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 42� �
DSolve[{D[u[x],{x,2}]+2/x*D[u[x],x]+a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) →

e−iax
(
2c1 − ic2e2iax

a

)
2x
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2.1.275 problem 278

Solved as second order ode using Kovacic algorithm . . . . . . . . .1915
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1920
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1921
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1921
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1922

Internal problem ID [9123]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 278
Date solved : Thursday, December 12, 2024 at 10:01:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 4u′

x
− a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.313 (sec)

Writing the ode as

u′′ + 4u′

x
− a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 4
x

(3)

C = −a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.524: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + a2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 1

a x2 − 1
2a3x4 + 1

2a5x6 − 5
8a7x8 + 7

8a9x10 − 21
16a11x12 + 33

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= a2x2 + 2
x2

= Q+ R

x2

=
(
a2
)
+
(

2
x2

)
= 2

x2 + a2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (a)

= −1
x
− a

= −ax− 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− a

)
(1) +

((
1
x2

)
+
(
−1
x
− a

)2

−
(
a2x2 + 2

x2

))
= 0

2aa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

a

)
e
∫ (

− 1
x
−a
)
dx

=
(
x+ 1

a

)
e−ax−ln(x)

= (ax+ 1) e−ax

ax

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

4
x
1 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

u1 =
(ax+ 1) e−ax

x3a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

4
x
1 dx

(u1)2
dx

= u1

∫
e−4 ln(x)

(u1)2
dx

= u1

(
(ax− 1) e2ax
2a (ax+ 1)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax+ 1) e−ax

x3a

)
+ c2

(
(ax+ 1) e−ax

x3a

(
(ax− 1) e2ax
2a (ax+ 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2u(x) +
4
(

d
dx

u(x)
)

x
− a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

−a2u(x)x+
(

d2

dx2u(x)
)
x+ 4 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−3, 0}
• Each term must be 0

a1(1 + r) (4 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 4 + r)− a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 5 + r)− a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = a2ak

(k−1)(k+2)

• Solution for r = −3[
u(x) =

∞∑
k=0

akx
k−3, ak+2 = a2ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = a2ak

(k+2)(k+5)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−3
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = a2ck
(5+k)(k+2) , 4c1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 32� �
dsolve(diff(diff(u(x),x),x)+4/x*diff(u(x),x)-a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1eax(ax− 1) + c2e−ax(ax+ 1)

x3
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Mathematica DSolve solution

Solving time : 0.12 (sec)
Leaf size : 68� �
DSolve[{D[u[x],{x,2}]+4/x*D[u[x],x]-a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �

u(x) →

√
2
π
((iac2x+ c1) sinh(ax)− (ac1x+ ic2) cosh(ax))

ax5/2
√
−iax
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2.1.276 problem 279

Solved as second order ode using Kovacic algorithm . . . . . . . . .1923
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1928
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1929
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1929
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1930

Internal problem ID [9124]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 279
Date solved : Thursday, December 12, 2024 at 10:01:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 4u′

x
+ a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.352 (sec)

Writing the ode as

u′′ + 4u′

x
+ a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 4
x

(3)

C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −a2x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.526: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 − a2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ia− i

a x2 − i

2a3x4 − i

2a5x6 − 5i
8a7x8 − 7i

8a9x10 − 21i
16a11x12 − 33i

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = ia

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= ia (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −a2x2 + 2
x2

= Q+ R

x2

=
(
−a2

)
+
(

2
x2

)
= 2

x2 − a2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = ia

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
ia

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
ia

− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 ia 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (ia)

= −1
x
− ia

= −1
x
− ia

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− ia

)
(1) +

((
1
x2

)
+
(
−1
x
− ia

)2

−
(
−a2x2 + 2

x2

))
= 0

2iaa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = − i

a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− i

a

)
e
∫ (

− 1
x
−ia

)
dx

=
(
x− i

a

)
e− ln(x)−iax

= (ax− i) e−iax

xa

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

4
x
1 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

u1 =
(ax− i) e−iax

x3a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

4
x
1 dx

(u1)2
dx

= u1

∫
e−4 ln(x)

(u1)2
dx

= u1

(
(iax− 1) e2iax
2a (−ax+ i)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax− i) e−iax

x3a

)
+ c2

(
(ax− i) e−iax

x3a

(
(iax− 1) e2iax
2a (−ax+ i)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2u(x) +
4
(

d
dx

u(x)
)

x
+ a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

a2u(x)x+
(

d2

dx2u(x)
)
x+ 4 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r) + a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−3, 0}
• Each term must be 0

a1(1 + r) (4 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 4 + r) + a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 5 + r) + a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − a2ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = − a2ak

(k−1)(k+2)

• Solution for r = −3[
u(x) =

∞∑
k=0

akx
k−3, ak+2 = − a2ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = − a2ak

(k+2)(k+5)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = − a2ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−3
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = − a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = − a2ck
(5+k)(k+2) , 4c1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.049 (sec)
Leaf size : 33� �
dsolve(diff(diff(u(x),x),x)+4/x*diff(u(x),x)+a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = (ac1x+ c2) cos (ax) + sin (ax) (ac2x− c1)

x3
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Mathematica DSolve solution

Solving time : 0.141 (sec)
Leaf size : 57� �
DSolve[{D[u[x],{x,2}]+4/x*D[u[x],x]+a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �

u(x) → −

√
2
π
((ac1x+ c2) cos(ax) + (ac2x− c1) sin(ax))

x3/2(ax)3/2
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2.1.277 problem 280

Solved as second order ode using Kovacic algorithm . . . . . . . . .1931
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1936
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1937
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1937
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1938

Internal problem ID [9125]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 280
Date solved : Thursday, December 12, 2024 at 10:01:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − a2y = 6y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.339 (sec)

Writing the ode as

y′′ +
(
−a2 − 6

x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −a2 − 6
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.528: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = a2 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0



chapter 2. book solved problems 1933

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 3

a x2 − 9
2a3x4 + 27

2a5x6 − 405
8a7x8 + 1701

8a9x10 − 15309
16a11x12 + 72171

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= a2x2 + 6
x2

= Q+ R

x2

=
(
a2
)
+
(

6
x2

)
= a2 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = a2x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (a)

= −2
x
− a

= −ax− 2
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− a

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− a

)2

−
(
a2x2 + 6

x2

))
= 0

2axa1 + 4aa0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

3
a2

, a1 =
3
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 3x
a

+ 3
a2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 3x

a
+ 3

a2

)
e
∫ (

− 2
x
−a
)
dx

=
(
x2 + 3x

a
+ 3

a2

)
e−ax−2 ln(x)

= (a2x2 + 3ax+ 3) e−ax

a2x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (a2x2 + 3ax+ 3) e−ax

a2x2

Which simplifies to

y1 =
(a2x2 + 3ax+ 3) e−ax

a2x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (a2x2 + 3ax+ 3) e−ax

a2x2

∫ 1
(a2x2+3ax+3)2e−2ax

a4x4

dx

= (a2x2 + 3ax+ 3) e−ax

a2x2

(
(a2x2 − 3ax+ 3) e2ax
2a (a2x2 + 3ax+ 3)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(a2x2 + 3ax+ 3) e−ax

a2x2

)
+ c2

(
(a2x2 + 3ax+ 3) e−ax

a2x2

(
(a2x2 − 3ax+ 3) e2ax
2a (a2x2 + 3ax+ 3)

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 1936

Maple step by step solution

Let’s solve
d2

dx2y(x)− a2y(x) = 6y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
a2x2+6

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
(
a2x2+6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = −a2x2+6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (−a2x2 − 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3)− ak−2a
2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 3)− ak−2a

2 = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r − 1)− aka
2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = aka

2

(k+4+r)(k+r−1)

• Recursion relation for r = −2
ak+2 = aka

2

(k+2)(k−3)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = aka

2

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = aka

2

(k+7)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = aka

2

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

bkx
k−2
)
+
(

∞∑
k=0

ckx
k+3
)
, bk+2 = bka

2

(k+2)(k−3) , b1 = 0, ck+2 = cka
2

(k+7)(k+2) , c1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 48� �
dsolve(diff(diff(y(x),x),x)-a^2*y(x) = 6/x^2*y(x),

y(x),singsol=all)� �
y = c2e−ax(a2x2 + 3ax+ 3) + c1eax(a2x2 − 3ax+ 3)

x2
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Mathematica DSolve solution

Solving time : 0.199 (sec)
Leaf size : 90� �
DSolve[{D[y[x],{x,2}]-a^2*y[x]==6*y[x]/x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
2
π
((a2c2x2 − 3iac1x+ 3c2) cosh(ax) + i(c1(a2x2 + 3) + 3iac2x) sinh(ax))

a2x3/2
√
−iax
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2.1.278 problem 281

Solved as second order ode using Kovacic algorithm . . . . . . . . .1939
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1944
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1945
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1945
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1946

Internal problem ID [9126]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 281
Date solved : Thursday, December 12, 2024 at 10:01:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + n2y = 6y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.389 (sec)

Writing the ode as

y′′ +
(
n2 − 6

x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = n2 − 6
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −n2x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −n2x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−n2x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.530: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −n2 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ in− 3i

n x2 − 9i
2n3x4 − 27i

2n5x6 − 405i
8n7x8 − 1701i

8n9x10 − 15309i
16n11x12 − 72171i

16n13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = in

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= in (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −n2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −n2x2 + 6
x2

= Q+ R

x2

=
(
−n2)+ ( 6

x2

)
= −n2 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = in

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
in

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
in

− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −n2x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 in 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (in)

= −2
x
− in

= −2
x
− in

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− in

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− in

)2

−
(
−n2x2 + 6

x2

))
= 0

(2ina1 − 6)x+ 4ina0 − 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = − 3

n2 , a1 = −3i
n

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix
n

− 3
n2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix

n
− 3

n2

)
e
∫ (

− 2
x
−in

)
dx

=
(
x2 − 3ix

n
− 3

n2

)
e−2 ln(x)−inx

= (n2x2 − 3inx− 3) e−inx

x2n2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (n2x2 − 3inx− 3) e−inx

x2n2

Which simplifies to

y1 =
(n2x2 − 3inx− 3) e−inx

x2n2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (n2x2 − 3inx− 3) e−inx

x2n2

∫ 1
(n2x2−3inx−3)2e−2inx

x4n4

dx

= (n2x2 − 3inx− 3) e−inx

x2n2

(
(in2x2 − 3nx− 3i) e2inx
2n (−n2x2 + 3inx+ 3)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(n2x2 − 3inx− 3) e−inx

x2n2

)
+c2

(
(n2x2 − 3inx− 3) e−inx

x2n2

(
(in2x2 − 3nx− 3i) e2inx
2n (−n2x2 + 3inx+ 3)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + n2y(x) = 6y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
n2x2−6

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
n2x2−6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = n2x2−6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (n2x2 − 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3) + ak−2n
2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 3) + ak−2n

2 = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r − 1) + akn
2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = − akn

2

(k+4+r)(k+r−1)

• Recursion relation for r = −2
ak+2 = − akn

2

(k+2)(k−3)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − akn

2

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = − akn

2

(k+7)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = − akn

2

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = − akn

2

(k+2)(k−3) , a1 = 0, bk+2 = − bkn
2

(k+7)(k+2) , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.051 (sec)
Leaf size : 53� �
dsolve(diff(diff(y(x),x),x)+n^2*y(x) = 6/x^2*y(x),

y(x),singsol=all)� �
y = (c1n2x2 + 3c2nx− 3c1) cos (nx) + sin (nx) (c2n2x2 − 3c1nx− 3c2)

x2
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Mathematica DSolve solution

Solving time : 0.196 (sec)
Leaf size : 79� �
DSolve[{D[y[x],{x,2}]+n^2*y[x]==6*y[x]/x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π

√
x((c2(−n2)x2 + 3c1nx+ 3c2) cos(nx) + (c1(n2x2 − 3) + 3c2nx) sin(nx))

(nx)5/2
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2.1.279 problem 282

Solved as second order ode using Kovacic algorithm . . . . . . . . .1947
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1949
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1951
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1951
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1951

Internal problem ID [9127]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 282
Date solved : Thursday, December 12, 2024 at 10:01:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ −
(
x2 + 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.121 (sec)

Writing the ode as

x2y′′ + xy′ +
(
−x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = −x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1
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Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.532: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
e−x

√
x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

√
x

)
+ c2

(
e−x

√
x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
−
(
x2 + 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
4x2+1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

−
(
4x2+1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = −4x2+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (−4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1)− 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
− 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4ak

4k2+12k+8 , a1 = 0, bk+2 = 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x-(x^2+1/4)*y(x) = 0,

y(x),singsol=all)� �
y = c1 sinh (x) + c2 cosh (x)√

x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 32� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]-(x^2+1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2e2x + 2c1)

2
√
x
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2.1.280 problem 283

Solved as second order ode using Kovacic algorithm . . . . . . . . .1952
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1957
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1958
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1958
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1958

Internal problem ID [9128]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 283
Date solved : Thursday, December 12, 2024 at 10:01:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ + (−9a2 + 4x2) y
4a2 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.412 (sec)

Writing the ode as

x2y′′ + xy′ +
(
−9
4 + x2

a2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = −9
4 + x2

a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2a2 − x2

x2a2
(6)

Comparing the above to (5) shows that

s = 2a2 − x2

t = x2a2
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Therefore eq. (4) becomes

z′′(x) =
(
2a2 − x2

x2a2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.534: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2a2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
a2

+ 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ −33ia13

16x14 − 21ia11
16x12 − 7ia9

8x10 − 5ia7
8x8 − ia5

2x6 − ia3

2x4 − ia

x2 + i

a
+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i

a
(10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = − 1

a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 2a2 − x2

x2a2

= Q+ R

x2a2

=
(
− 1
a2

)
+
(

2
x2

)
= − 1

a2
+ 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
a

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

i
a

− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2a2 − x2

x2a2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i
a

0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
i

a

)
= −1

x
− i

a

= −ix+ a

xa

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

a

)
(1) +

((
1
x2

)
+
(
−1
x
− i

a

)2

−
(
2a2 − x2

x2a2

))
= 0

2ia0 − 2a
xa

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −ia}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −ia+ x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−ia+ x) e
∫ (

− 1
x
− i

a

)
dx

= (−ia+ x) e− ln(x)− ix
a

= (−ia+ x) e− ix
a

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(−ia+ x) e− ix

a

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
−(ix+ a) a(ia+ x) e 2ix

a

2 (ia− x)2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−ia+ x) e− ix

a

x3/2

)
+ c2

(
(−ia+ x) e− ix

a

x3/2

(
−(ix+ a) a(ia+ x) e 2ix

a

2 (ia− x)2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
−9a2+4x2)y(x)

4a2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
9a2−4x2)y(x)

4a2x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

−
(
9a2−4x2)y(x)

4a2x2 = 0
• Multiply by denominators of the ODE

4
(

d2

dx2y(x)
)
x2a2 + 4

(
d
dx
y(x)

)
x a2 − (9a2 − 4x2) y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

4
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
x2a2 + 4

(
d
dt
y(t)

)
a2 − (9a2 − 4x2) y(t) = 0

• Simplify

−9y(t) a2 + 4y(t)x2 + 4a2
(

d2

dt2
y(t)

)
= 0

• Isolate 2nd derivative
d2

dt2
y(t) =

(
9a2−4x2)y(t)

4a2

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

(
9a2−4x2)y(t)

4a2 = 0
• Characteristic polynomial of ODE

r2 − 9a2−4x2

4a2 = 0
• Factor the characteristic polynomial

4r2a2−9a2+4x2

4a2 = 0
• Roots of the characteristic polynomial

r =
(√

9a2−4x2

2a ,−
√
9a2−4x2

2a

)
• 1st solution of the ODE

y1(t) = e
√

9a2−4x2 t
2a

• 2nd solution of the ODE

y2(t) = e−
√

9a2−4x2 t
2a

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)
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• Substitute in solutions

y(t) = C1 e
√

9a2−4x2 t
2a + C2 e−

√
9a2−4x2 t

2a

• Change variables back using t = ln (x)

y(x) = C1 e
√

9a2−4x2 ln(x)
2a + C2 e−

√
9a2−4x2 ln(x)

2a

• Simplify

y(x) = C1 x
√

9a2−4x2
2a + C2 x−

√
9a2−4x2

2a

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.072 (sec)
Leaf size : 37� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+1/4*(-9*a^2+4*x^2)/a^2*y(x) = 0,

y(x),singsol=all)� �
y = c2(ix+ a) e− ix

a + (−ix+ a) c1e
ix
a

x3/2

Mathematica DSolve solution

Solving time : 0.142 (sec)
Leaf size : 62� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(4*x^2-9*a^2)/(4*a^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π

(
(ac2 + c1x) cos

(
x
a

)
+ (c2x− ac1) sin

(
x
a

))
x
√

x
a
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2.1.281 problem 284

Solved as second order ode using Kovacic algorithm . . . . . . . . .1959
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1964
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1965
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1965
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1966

Internal problem ID [9129]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 284
Date solved : Thursday, December 12, 2024 at 10:01:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.383 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 25
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.536: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− 3i

x2 − 9i
2x4 − 27i

2x6 − 405i
8x8 − 1701i

8x10 − 15309i
16x12 − 72171i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 6
x2

= Q+ R

x2

= (−1) +
(

6
x2

)
= −1 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (i)

= −2
x
− i

= −2
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− i

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− i

)2

−
(
−x2 + 6

x2

))
= 0

2ixa1 + 4ia0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3, a1 = −3i}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix− 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix− 3

)
e
∫ (

− 2
x
−i
)
dx

=
(
x2 − 3ix− 3

)
e−2 ln(x)−ix

= (x2 − 3ix− 3) e−ix

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x2 − 3ix− 3) e−ix

x5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 3ix− 3) e−ix

x5/2

)
+ c2

(
(x2 − 3ix− 3) e−ix

x5/2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 25

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−25

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−25

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−25

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −25
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 25) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−5 + 2r)xr + a1(7 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
5
2

}
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• Each term must be 0
a1(7 + 2r) (−3 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2(2k + 9 + 2r) (2k − 1 + 2r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(2k+9+2r)(2k−1+2r)

• Recursion relation for r = −5
2

ak+2 = − 4ak
(2k+4)(2k−6)

• Solution for r = −5
2[

y(x) =
∞∑
k=0

akx
k− 5

2 , ak+2 = − 4ak
(2k+4)(2k−6) , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − 4ak
(2k+14)(2k+4)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − 4ak
(2k+14)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − 4ak

(2k+4)(2k−6) , a1 = 0, bk+2 = − 4bk
(2k+14)(2k+4) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.075 (sec)
Leaf size : 43� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-25/4)*y(x) = 0,

y(x),singsol=all)� �
y =

−3c2
(
ix− 1

3x
2 + 1

)
e−ix + 3c1eix

(
ix+ 1

3x
2 − 1

)
x5/2
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Mathematica DSolve solution

Solving time : 0.137 (sec)
Leaf size : 59� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-25/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π
((−c2x

2 + 3c1x+ 3c2) cos(x) + (c1(x2 − 3) + 3c2x) sin(x))
x5/2
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2.1.282 problem 285

Solved as second order ode using Kovacic algorithm . . . . . . . . .1967
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1972
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1973
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1973
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1974

Internal problem ID [9130]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 285
Date solved : Thursday, December 12, 2024 at 10:01:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + qy′ = 2y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.326 (sec)

Writing the ode as

y′′ + qy′ − 2y
x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = q (3)

C = − 2
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = q2x2 + 8
4x2 (6)

Comparing the above to (5) shows that

s = q2x2 + 8
t = 4x2
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Therefore eq. (4) becomes

z′′(x) =
(
q2x2 + 8

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.538: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = q2

4 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ q

2 + 2
q x2 − 4

q3x4 + 16
q5x6 − 80

q7x8 + 448
q9x10 − 2688

q11x12 + 16896
q13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = q

2
From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= q

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = q2

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= q2x2 + 8
4x2

= Q+ R

4x2

=
(
q2

4

)
+
(

2
x2

)
= q2

4 + 2
x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = q

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
q
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

q
2
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = q2x2 + 8
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 q
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(q
2

)
= −1

x
− q

2
= −qx+ 2

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− q

2

)
(1) +

((
1
x2

)
+
(
−1
x
− q

2

)2

−
(
q2x2 + 8

4x2

))
= 0

qa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

2
q

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2
q

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 2

q

)
e
∫ (

− 1
x
− q

2
)
dx

=
(
x+ 2

q

)
e−

qx
2 −ln(x)

= (qx+ 2) e− qx
2

qx

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
q
1 dx

= z1e
− qx

2

= z1
(
e−

qx
2

)
Which simplifies to

y1 =
e−qx(qx+ 2)

qx

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− q

1 dx

(y1)2
dx

= y1

∫
e−qx

(y1)2
dx

= y1

(
(qx− 2) eqx
q (qx+ 2)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−qx(qx+ 2)

qx

)
+ c2

(
e−qx(qx+ 2)

qx

(
(qx− 2) eqx
q (qx+ 2)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + q
(

d
dx
y(x)

)
= 2y(x)

x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −q
(

d
dx
y(x)

)
+ 2y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + q
(

d
dx
y(x)

)
− 2y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = q, P3(x) = − 2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

q
(

d
dx
y(x)

)
x2 + x2

(
d2

dx2y(x)
)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 ·

(
d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + qak−1(k − 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + qak−1(k − 1 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r) + qak(k + r) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = − qak(k+r)

(k+2+r)(k−1+r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = − qak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = − qa0

2

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
− qx

2 + 1
)

• Recursion relation for r = 2
ak+1 = − qak(k+2)

(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − qak(k+2)

(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
− qx

2 + 1
)
+
(

∞∑
k=0

bkx
k+2
)
, bk+1 = − qbk(k+2)

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 28� �
dsolve(diff(diff(y(x),x),x)+q*diff(y(x),x) = 2/x^2*y(x),

y(x),singsol=all)� �
y = c2e−qx(qx+ 2) + c1(qx− 2)

x



chapter 2. book solved problems 1974

Mathematica DSolve solution

Solving time : 0.085 (sec)
Leaf size : 80� �
DSolve[{D[y[x],{x,2}]+q*D[y[x],x]==2*y[x]/x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

qx3/2e−
qx
2
(
2(ic2qx+ 2c1) sinh

(
qx
2

)
− 2(c1qx+ 2ic2) cosh

(
qx
2

))
√
π(−iqx)5/2
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2.1.283 problem 286

Solved as second order ode using Kovacic algorithm . . . . . . . . .1975
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1979
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1981
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1981
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1981

Internal problem ID [9131]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 286
Date solved : Thursday, December 12, 2024 at 10:01:09 AM
CAS classification : [[_Emden, _Fowler]]

Solve

xy′′ + 3y′ + 4x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.318 (sec)

Writing the ode as

xy′′ + 3y′ + 4x3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.540: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2



chapter 2. book solved problems 1978

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ 4x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)
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• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − 4ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − 4bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 21� �
dsolve(x*diff(diff(y(x),x),x)+3*diff(y(x),x)+4*y(x)*x^3 = 0,

y(x),singsol=all)� �
y = c1 sin (x2) + c2 cos (x2)

x2

Mathematica DSolve solution

Solving time : 0.086 (sec)
Leaf size : 41� �
DSolve[{x*D[y[x],{x,2}]+3*D[y[x],x]+4*x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−ix2 − ic2e

ix2

4x2
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2.1.284 problem 287

Solved as second order ode using Kovacic algorithm . . . . . . . . .1982
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1986
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1987
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1988
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1988

Internal problem ID [9132]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 287
Date solved : Thursday, December 12, 2024 at 10:01:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 2x

)
y′′ − 2(x+ 1) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.254 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (−2x− 2) y′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = −2x− 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.542: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x+ 2)2

+ 3
4 (x+ 2) +

3
4x2 − 3

4x

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2



chapter 2. book solved problems 1984

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
2 −1

2

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x+ 2) +

3
2x + (−) (0)

= − 1
2 (x+ 2) +

3
2x

= x+ 3
x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x+ 2) +

3
2x

)
(0) +

((
1

2 (x+ 2)2
− 3

2x2

)
+
(
− 1
2 (x+ 2) +

3
2x

)2

−
(

3
(x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x+2)+

3
2x

)
dx

= x3/2
√
x+ 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2
x2+2x dx

= z1e
ln(x(x+2))

2

= z1
(√

x (x+ 2)
)

Which simplifies to

y1 =
√

x (x+ 2)x3/2
√
x+ 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x2+2x dx

(y1)2
dx

= y1

∫
eln(x(x+2))

(y1)2
dx

= y1

(
−1
x
− 1

x2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (x+ 2)x3/2
√
x+ 2

)
+ c2

(√
x (x+ 2)x3/2
√
x+ 2

(
−1
x
− 1

x2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 + 2x)
(

d2

dx2y(x)
)
− 2(x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x(x+2) +

2(x+1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x(x+2) + 2y(x)
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2(x+1)
x(x+2) , P3(x) = 2

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (−2− 2x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2− 2u)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 2)) (k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 2[
y(x) = a0x2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0x2

4 +
(

∞∑
k=0

bk(x+ 2)k+2
)
, bk+1 = bkk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve((x^2+2*x)*diff(diff(y(x),x),x)-2*(x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2x+ c2

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 19� �
DSolve[{(x^2+2*x)*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x

2 − c2(x+ 1)
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2.1.285 problem 288

Solved as second order ode using Kovacic algorithm . . . . . . . . .1989
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .1993
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1994
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .1995
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .1995

Internal problem ID [9133]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 288
Date solved : Thursday, December 12, 2024 at 10:01:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 2x

)
y′′ − 2(x+ 1) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.253 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (−2x− 2) y′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = −2x− 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.544: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2 + 3

4 (x+ 2) +
3

4 (x+ 2)2
− 3

4x

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
2 −1

2

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x+ 2) +

3
2x + (−) (0)

= − 1
2 (x+ 2) +

3
2x

= x+ 3
x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x+ 2) +

3
2x

)
(0) +

((
1

2 (x+ 2)2
− 3

2x2

)
+
(
− 1
2 (x+ 2) +

3
2x

)2

−
(

3
(x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x+2)+

3
2x

)
dx

= x3/2
√
x+ 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2
x2+2x dx

= z1e
ln(x(x+2))

2

= z1
(√

x (x+ 2)
)

Which simplifies to

y1 =
√

x (x+ 2)x3/2
√
x+ 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x2+2x dx

(y1)2
dx

= y1

∫
eln(x(x+2))

(y1)2
dx

= y1

(
−1
x
− 1

x2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (x+ 2)x3/2
√
x+ 2

)
+ c2

(√
x (x+ 2)x3/2
√
x+ 2

(
−1
x
− 1

x2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 + 2x)
(

d2

dx2y(x)
)
− 2(x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x(x+2) +

2(x+1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x(x+2) + 2y(x)
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2(x+1)
x(x+2) , P3(x) = 2

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (−2− 2x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2− 2u)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 2)) (k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 2[
y(x) = a0x2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0x2

4 +
(

∞∑
k=0

bk(x+ 2)k+2
)
, bk+1 = bkk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve((x^2+2*x)*diff(diff(y(x),x),x)-2*(x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2x+ c2

Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 19� �
DSolve[{(x^2+2*x)*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x

2 − c2(x+ 1)
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2.1.286 problem 289

Solved as second order ode using Kovacic algorithm . . . . . . . . .1996
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2000
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2000
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2000
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2000

Internal problem ID [9134]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 289
Date solved : Thursday, December 12, 2024 at 10:01:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.313 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.546: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2



chapter 2. book solved problems 1998

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 21� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.287 problem 290

Solved as second order ode using Kovacic algorithm . . . . . . . . .2001
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2005
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2005
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2005
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2005

Internal problem ID [9135]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 290
Date solved : Thursday, December 12, 2024 at 10:01:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.547: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 21� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.288 problem 291

Solved as second order ode using Kovacic algorithm . . . . . . . . .2006
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2008
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2009
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2009
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2009

Internal problem ID [9136]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 291
Date solved : Thursday, December 12, 2024 at 10:01:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.093 (sec)

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.548: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2
)
+ c2

(
ex2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 4x
(

d
dx
y(x)

)
+ (4x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

2(c2x+ c1)
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2.1.289 problem 292

Solved as second order ode using Kovacic algorithm . . . . . . . . .2010
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2012
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2013
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2013
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2013

Internal problem ID [9137]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 292
Date solved : Thursday, December 12, 2024 at 10:01:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.090 (sec)

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.550: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2
)
+ c2

(
ex2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 4x
(

d
dx
y(x)

)
+ (4x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.028 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

2(c2x+ c1)
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2.1.290 problem 293

Solved as second order ode using Kovacic algorithm . . . . . . . . .2014
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2019
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2020
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2021
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2021

Internal problem ID [9138]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 293
Date solved : Thursday, December 12, 2024 at 10:01:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2x− 3) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.394 (sec)

Writing the ode as

(2x− 3) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x− 3
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 8x+ 18
4 (2x− 3)2

(6)

Comparing the above to (5) shows that

s = x2 − 8x+ 18
t = 4(2x− 3)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 8x+ 18
4 (2x− 3)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.552: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x− 3)2. There is a pole at x = 3

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 33

64
(
x− 3

2

)2 − 5
16
(
x− 3

2

)
For the pole at x = 3

2 let b be the coefficient of 1(
x− 3

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 33
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

8
α−
c = 1

2 −
√
1 + 4b = −3

8

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 − 5
8x − 11

16x2 − 1
32x3 + 245

64x4 + 2591
128x5 + 21117

256x6 + 154743
512x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

16

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 8x+ 18
16x2 − 48x+ 36

= Q+ R

16x2 − 48x+ 36

=
(

1
16

)
+
( −5x+ 63

4
16x2 − 48x+ 36

)
= 1

16 +
−5x+ 63

4
16x2 − 48x+ 36

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −5. Dividing this by leading coefficient in t which is 16 gives − 5

16 . Now b can be found.

b =
(
− 5
16

)
− (0)

= − 5
16
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Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(− 5
16
1
4

− 0
)

= −5
8

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
− 5

16
1
4

− 0
)

= 5
8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 8x+ 18
4 (2x− 3)2

pole c location pole order [
√
r]c α+

c α−
c

3
2 2 0 11

8 −3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4 −5

8
5
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

8 then

d = α−
∞ −

(
α−
c1

)
= 5

8 −
(
−3
8

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
8
(
x− 3

2

) + (−)
(
1
4

)
= − 3

8
(
x− 3

2

) − 1
4

= − x

4x− 6

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
8
(
x− 3

2

) − 1
4

)
(1) +

( 3
8
(
x− 3

2

)2
)

+
(
− 3
8
(
x− 3

2

) − 1
4

)2

−
(
x2 − 8x+ 18
4 (2x− 3)2

) = 0

a0
2x− 3 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 3
8
(
x− 3

2
)− 1

4

)
dx

= (x) e−x
4−

3 ln(2x−3)
8

= x e−x
4

(2x− 3)3/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

2x−3 dx

= z1e
x
4+

3 ln(2x−3)
8

= z1
(
(2x− 3)3/8 ex

4

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

2x−3 dx

(y1)2
dx

= y1

∫
e

x
2+

3 ln(2x−3)
4

(y1)2
dx

= y1

(∫ ex
2+

3 ln(2x−3)
4

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(∫ ex
2+

3 ln(2x−3)
4

x2 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(2x− 3)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
2x−3 +

(
d
dx

y(x)
)
x

2x−3

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

2x−3 + y(x)
2x−3 = 0

� Check to see if x0 = 3
2 is a regular singular point

◦ Define functions[
P2(x) = − x

2x−3 , P3(x) = 1
2x−3

]
◦
(
x− 3

2

)
· P2(x) is analytic at x = 3

2((
x− 3

2

)
· P2(x)

) ∣∣∣∣
x= 3

2

= −3
4

◦
(
x− 3

2

)2 · P3(x) is analytic at x = 3
2((

x− 3
2

)2 · P3(x)
) ∣∣∣∣

x= 3
2

= 0

◦ x = 3
2 is a regular singular point

Check to see if x0 = 3
2 is a regular singular point

x0 = 3
2

• Multiply by denominators

(2x− 3)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 3
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+
(
−u− 3

2

) (
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
a0r(−7+4r)u−1+r

2 +
(

∞∑
k=0

(
ak+1(k+1+r)(4k−3+4r)

2 − ak(k + r − 1)
)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(−7+4r)

2 = 0
• Values of r that satisfy the indicial equation

r ∈
{
0, 74
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 3

4

)
(k + 1 + r) ak+1 − ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)

(4k−3+4r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = 2ak(k−1)

(4k−3)(k+1)

• Apply recursion relation for k = 0
a1 = 2a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1 + 2u

3

)
• Revert the change of variables u = x− 3

2[
y(x) = 2a0x

3

]
• Recursion relation for r = 7

4

ak+1 =
2ak
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)

• Solution for r = 7
4[

y(u) =
∞∑
k=0

aku
k+ 7

4 , ak+1 =
2ak
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)
]

• Revert the change of variables u = x− 3
2[

y(x) =
∞∑
k=0

ak
(
x− 3

2

)k+ 7
4 , ak+1 =

2ak
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)
]

• Combine solutions and rename parameters[
y(x) = 2a0x

3 +
(

∞∑
k=0

bk
(
x− 3

2

)k+ 7
4

)
, bk+1 =

2bk
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
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<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.043 (sec)
Leaf size : 29� �
dsolve((2*x-3)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = 2c1(2x− 3)3/4

(
x− 3

2

)
KummerM

(
3
4 ,

11
4 ,

x

2 − 3
4

)
+ c2x

Mathematica DSolve solution

Solving time : 0.13 (sec)
Leaf size : 63� �
DSolve[{(2*x-3)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2 23/4(2x− 3)

(
c2(2x− 3)3/4L

7
4
− 3

4

(
x

2 − 3
4

)
+ 4

√
2c1x

2x− 3

)
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2.1.291 problem 294

Solved as second order ode using Kovacic algorithm . . . . . . . . .2022
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2026
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2027
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2027
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2027

Internal problem ID [9139]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 294
Date solved : Thursday, December 12, 2024 at 10:01:14 AM
CAS classification : [_Hermite]

Solve

y′′ − xy′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.262 (sec)

Writing the ode as

y′′ − xy′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 10
4 (6)

Comparing the above to (5) shows that

s = x2 + 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.554: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 5
2x − 25

4x3 + 125
4x5 − 3125

16x7 + 21875
16x9 − 328125

32x11 + 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 10
4

= Q+ R

4

=
(
x2

4 + 5
2

)
+ (0)

= x2

4 + 5
2

We see that the coefficient of the term 1
x
in the quotient is 5

2 . Now b can be found.

b =
(
5
2

)
− (0)

= 5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
2
1
2
− 1
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
2
1
2
− 1
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 2 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2, and since there are no poles, then

d = α+
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(x
2

)
(2x+ a1) +

((
1
2

)
+
(x
2

)2
−
(
x2

4 + 5
2

))
= 0

−a1x− 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 1

)
e
∫

x
2 dx

=
(
x2 + 1

)
ex2

4

=
(
x2 + 1

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to

y1 = ex2
2
(
x2 + 1

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

(∫ e−x2
2

(x2 + 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2

2
(
x2 + 1

))
+ c2

(
ex2

2
(
x2 + 1

)(∫ e−x2
2

(x2 + 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k + 3) = 0
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• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = ak(k+3)

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 37� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-3*y(x) = 0,

y(x),singsol=all)� �
y =

(
x2 + 1

)(√
π erf

(√
2x
2

)
c1 + c2

)
ex2

2 +
√
2 c1x

Mathematica DSolve solution

Solving time : 0.029 (sec)
Leaf size : 35� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1HermiteH

(
−3, x√

2

)
+ c2e

x2
2
(
x2 + 1

)
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2.1.292 problem 295

Solved as second order ode using Kovacic algorithm . . . . . . . . .2028
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2032
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2032
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2032
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2032

Internal problem ID [9140]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 295
Date solved : Thursday, December 12, 2024 at 10:01:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.285 (sec)

Writing the ode as (
x2 + 1

)
y′′ − xy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 6
4 (x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −x2 − 6

t = 4
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 − 6
4 (x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.556: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x− i)2

+ 5
16 (x+ i)2

+ 7i
16 (x− i) −

7i
16 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 6

4 (x2 + 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 6
4 (x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (x− i) −

1
4 (x+ i) + (−) (0)

= − 1
4 (x− i) −

1
4 (x+ i)

= − x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (x− i) −

1
4 (x+ i)

)
(1) +

((
1

4 (x− i)2
+ 1

4 (x+ i)2
)
+
(
− 1
4 (x− i) −

1
4 (x+ i)

)2

−
(

−x2 − 6
4 (x2 + 1)2

))
= 0

(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4(x−i)−

1
4(x+i)

)
dx

= (x) 1
((−x+ i) (x+ i))1/4

= x

(−x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

x2+1 dx

= z1e
ln

(
x2+1

)
4

= z1
((

x2 + 1
)1/4)

Which simplifies to

y1 =
(
1
2 − i

2

)
x
√
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x2+1 dx

(y1)2
dx

= y1

∫
e

ln
(
x2+1

)
2

(y1)2
dx

= y1

(
i

(
−(x2 + 1)3/2

x
+ x

√
x2 + 1 + arcsinh (x)

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

((
1
2−

i

2

)
x
√
2
)
+c2

((
1
2−

i

2

)
x
√
2
(
i

(
−(x2 + 1)3/2

x
+x

√
x2 + 1+arcsinh (x)

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 23� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = −

√
x2 + 1 c2 + x(arcsinh (x) c2 + c1)

Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 39� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2xarctanh

(
x√

x2 + 1

)
− c2

√
x2 + 1 + c1x
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2.1.293 problem 296

Solved as second order ode using Kovacic algorithm . . . . . . . . .2033
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2037
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2038
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2038
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2038

Internal problem ID [9141]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 296
Date solved : Thursday, December 12, 2024 at 10:01:15 AM
CAS classification : [_Hermite]

Solve

y′′ − xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.278 (sec)

Writing the ode as

y′′ − xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.557: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)



chapter 2. book solved problems 2037

Which simplifies to
y1 = x2 − 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

(∫ ex2
2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 − 1

)
+ c2

(
x2 − 1

(∫ ex2
2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
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ak+2 = ak(k−2)
k2+3k+2

• Apply recursion relation for k = 0
a2 = −a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y(x) = A2x

2 + A1x− a0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.041 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = −2c1e

x2
2 x+ (x− 1) (x+ 1)

(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)

Mathematica DSolve solution

Solving time : 0.142 (sec)
Leaf size : 54� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4c2
(√

2π
(
x2 − 1

)
erfi
(

x√
2

)
− 2ex2

2 x

)
+ c1

(
x2 − 1

)
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2.1.294 problem 297

Solved as second order ode using Kovacic algorithm . . . . . . . . .2039
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2043
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2045
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2045
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2045

Internal problem ID [9142]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 297
Date solved : Thursday, December 12, 2024 at 10:01:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
−x2 + 1

)
y′′ − y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.709 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x− 3
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 − 4x− 3

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x− 3
4 (x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.559: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 7
16 (x− 1) −

3
16 (x− 1)2

− 7
16 (x+ 1) +

5
16 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 4x2 − 4x− 3

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 1. Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

1 2 {1, 2, 3}
−1 2 {−1, 2, 5}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = −1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (−1)))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (1)) +
−1

(x− (−1))

)
= 1

2x− 2 − 1
2 (x+ 1)

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

4a0 − 6
(x+ 1)2 (x− 1)

= 0

And solving for p gives
p = x+ 3

2



chapter 2. book solved problems 2042

Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 3

2
+ 1

2x− 2 − 1
2 (x+ 1)

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 3

2
+ 1

2x− 2 − 1
2 (x+ 1)

)
w + −8x3 − 4x2 + 10x+ 7

4 (x2 − 1)2 (2x+ 3)
= 0

Solving for ω gives

ω = 2
√
5
√

(x− 1) (x+ 1)x+ 2
√
5
√

(x− 1) (x+ 1) + 2x2 + 2x+ 1
2 (2x+ 3) (x− 1) (x+ 1)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 2

√
5
√

(x−1)(x+1) x+2
√
5
√

(x−1)(x+1)+2x2+2x+1
2(2x+3)(x−1)(x+1) dx

=
(x− 1)1/4

√
2x+ 3

(
x+

√
x2 − 1

)√
5

2 51/4

(x+ 1)1/4
√

5
√
x2−1+(2+3x)

√
5

√
x2−1

√
− (2x+3)2

x2−1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1

−x2+1 dx

= z1e
arctanh(x)

2

= z1

(√
x+ 1√
−x2 + 1

)

Which simplifies to

y1 =

√
x+1√
−x2+1

(
x+

√
x2 − 1

)√
5
2
√
2x+ 3 (5x− 5)1/4√

i
(
3
√
5x+5

√
x2−1+2

√
5
)

2x+3 (x+ 1)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −1

−x2+1 dx

(y1)2
dx

= y1

∫
earctanh(x)

(y1)2
dx

= y1

∫ i
√
x+ 1

(
x+

√
x2 − 1

)−√
5 (3√5x+ 5

√
x2 − 1 + 2

√
5
)

(2x+ 3)2
√
5x− 5

dx
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Therefore the solution is

y = c1y1 + c2y2

= c1


√

x+1√
−x2+1

(
x+

√
x2 − 1

)√
5

2
√
2x+ 3 (5x− 5)1/4√

i
(
3
√
5x+5

√
x2−1+2

√
5
)

2x+3 (x+ 1)1/4



+c2


√

x+1√
−x2+1

(
x+

√
x2 − 1

)√
5

2
√
2x+ 3 (5x− 5)1/4√

i
(
3
√
5x+5

√
x2−1+2

√
5
)

2x+3 (x+ 1)1/4

∫ i
√
x+ 1

(
x+

√
x2 − 1

)−√
5 (3√5x+ 5

√
x2 − 1 + 2

√
5
)

(2x+ 3)2
√
5x− 5

dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− d

dx
y(x) + y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2−1 −

d
dx

y(x)
x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x2−1 − y(x)

x2−1 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 1

x2−1 , P3(x) = − 1
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ d

dx
y(x)− y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ d

du
y(u)− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
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d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k − 1 + 2r) + ak(k2 + 2kr + r2 − k − r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + (k2 + (2r − 1) k + r2 − r − 1) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2−k−r−1

)
ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0

ak+1 =
(
k2−k−1

)
ak

(k+1)(2k−1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2−k−1

)
ak

(k+1)(2k−1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 =
(
k2−k−1

)
ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 =
(
k2+2k− 1

4
)
ak(

k+ 5
2
)
(2k+2)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
(
k2+2k− 1

4
)
ak(

k+ 5
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
3
2 , ak+1 =

(
k2+2k− 1

4
)
ak(

k+ 5
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+
3
2

)
, ak+1 =

(
k2−k−1

)
ak

(k+1)(2k−1) , bk+1 =
(
k2+2k− 1

4
)
bk(

k+ 5
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : 66� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

([√
5
2 − 1

2 ,−
1
2 −

√
5
2

]
,

[
−1
2

]
,
1
2 + x

2

)

+ 2c2
√
2 + 2x hypergeom

([
1−

√
5
2 ,

√
5
2 + 1

]
,

[
5
2

]
,
1
2 + x

2

)
(x+ 1)

Mathematica DSolve solution

Solving time : 131.567 (sec)
Leaf size : 195� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(√
x− 1−

√
x+ 1

)− 1
2−

√
5
2
(√

x− 1 +
√
x+ 1

) 1
2

(√
5−1

) (√
x− 1

−
√
5
√
x+ 1

)c2

∫ x

1

−
2
√

K[1] + 1
(√

K[1]− 1−
√

K[1] + 1
)√5 (√

K[1]− 1 +
√

K[1] + 1
)−√

5

√
1−K[1]

(√
K[1]− 1−

√
5
√
K[1] + 1

)2 dK[1]

+ c1
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2.1.295 problem 298

Solved as second order ode using Kovacic algorithm . . . . . . . . .2046
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2050
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2051
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2052
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2052

Internal problem ID [9143]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 298
Date solved : Thursday, December 12, 2024 at 10:01:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x+ 1)2 y′′ +
(
−x2 + 1

)
y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.204 (sec)

Writing the ode as

x(x+ 1)2 y′′ +
(
−x2 + 1

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(x+ 1)2

B = −x2 + 1 (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)



chapter 2. book solved problems 2047

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.561: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+1
x(x+1)2

dx

= z1e
− ln(x)

2 +ln(x+1)

= z1

(
x+ 1√

x

)

Which simplifies to
y1 = x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x2+1

x(x+1)2
dx

(y1)2
dx

= y1

∫
e− ln(x)+2 ln(x+1)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 1) + c2(x+ 1(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(x+ 1)2
(

d2

dx2y(x)
)
+ (−x2 + 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x(x+1)2 +

(x−1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−1)

(
d
dx

y(x)
)

x(x+1) + (x−1)y(x)
x(x+1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x−1
x(x+1) , P3(x) = x−1

x(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)2
(

d2

dx2y(x)
)
− (x− 1) (x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − u2)
(

d2

du2y(u)
)
+ (−u2 + 2u)

(
d
du
y(u)

)
+ (u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0(−1 + r) (−2 + r)ur +
(

∞∑
k=1

(
−ak(k + r − 1) (k + r − 2) + ak−1(k + r − 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 1) (k + r − 2) + ak−1(k + r − 2)2 = 0

• Shift index using k− >k + 1
−ak+1(k + r) (k + r − 1) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+r

• Recursion relation for r = 1
ak+1 = akk

k+1

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+1 = akk

k+1

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+1 , ak+1 = akk
k+1

]
• Recursion relation for r = 2

ak+1 = ak(k+1)
k+2

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak(k+1)

k+2

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = ak(k+1)
k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k+1
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+1 = akk

k+1 , bk+1 = bk(k+1)
k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve(x*(x+1)^2*diff(diff(y(x),x),x)+(-x^2+1)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = (x+ 1) (c2 ln (x) + c1)

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 17� �
DSolve[{x*(x+1)^2*D[y[x],{x,2}]+(1-x^2)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → (x+ 1)(c2 log(x) + c1)
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2.1.296 problem 299

Solved as second order ode using Kovacic algorithm . . . . . . . . .2053
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2057
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2058
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2058
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2058

Internal problem ID [9144]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 299
Date solved : Thursday, December 12, 2024 at 10:01:18 AM
CAS classification : [[_Emden, _Fowler]]

Solve

2xy′′ − y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.237 (sec)

Writing the ode as

2xy′′ − y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −1 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.563: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16x2 − 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
(
2
√
−x− 1

)
e2

√
−x

(−x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
2x dx

= z1e
ln(x)

4

= z1
(
x1/4)

Which simplifies to

y1 =
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

2x dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

)
+ c2

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x

+
d
dx

y(x)
2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
2x + y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.028 (sec)
Leaf size : 36� �
dsolve(2*x*diff(diff(y(x),x),x)-diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
2c1

√
x+ c2

)
cos
(
2
√
x
)
− sin

(
2
√
x
) (

−2c2
√
x+ c1

)
Mathematica DSolve solution

Solving time : 0.129 (sec)
Leaf size : 59� �
DSolve[{2*x*D[y[x],{x,2}]-D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

2i
√
x
(
2
√
x+ i

)
+ 1

8c2e
−2i

√
x
(
1 + 2i

√
x
)
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2.1.297 problem 300

Solved as second order ode using Kovacic algorithm . . . . . . . . .2059
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2063
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2063
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2064
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2064

Internal problem ID [9145]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 300
Date solved : Thursday, December 12, 2024 at 10:01:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

xy′′ + xy′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x+ 8
4x (6)

Comparing the above to (5) shows that

s = x+ 8
t = 4x

Therefore eq. (4) becomes

z′′(x) =
(
x+ 8
4x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.565: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x
− 4

x2 + 16
x3 − 80

x4 + 448
x5 − 2688

x6 + 16896
x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x+ 8
4x

= Q+ R

4x

=
(
1
4

)
+
(
2
x

)
= 1

4 + 2
x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 8. Dividing this by leading coefficient in t which is 4 gives 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 0
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 0
)

= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x+ 8
4x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 2 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+
(
1
2

)
= 1

x
+ 1

2
= 1

x
+ 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
+ 1

2

)
(1) +

((
− 1
x2

)
+
(
1
x
+ 1

2

)2

−
(
x+ 8
4x

))
= 0

2− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ ( 1

x
+ 1

2
)
dx

= (2 + x) ex
2+ln(x)

= (2 + x)x ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x
dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = (2 + x)x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

x
dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

(
−e−x

4x + Ei1 (x)
2 + e−x

−8− 4x

)
Therefore the solution is

y = c1y1 + c2y2

= c1((2 + x)x) + c2

(
(2 + x)x

(
−e−x

4x + Ei1 (x)
2 + e−x

−8− 4x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 28� �
dsolve(x*diff(diff(y(x),x),x)+diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = −(x+ 1) c2e−x

2 +
(
c1 +

Ei1 (x) c2
2

)
x(x+ 2)

Mathematica DSolve solution

Solving time : 0.088 (sec)
Leaf size : 39� �
DSolve[{x*D[y[x],{x,2}]+x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x(x+ 2)− 1

2c2e
−x(ex(x+ 2)xExpIntegralEi(−x) + x+ 1)
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2.1.298 problem 301

Solved as second order ode using Kovacic algorithm . . . . . . . . .2065
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2069
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2070
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2070
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2070

Internal problem ID [9146]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 301
Date solved : Thursday, December 12, 2024 at 10:01:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x− 1)2 y′′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.192 (sec)

Writing the ode as

x(x− 1)2 y′′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(x− 1)2

B = 0 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x (x− 1)2

(6)

Comparing the above to (5) shows that

s = 2
t = x(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(

2
x (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.566: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 0
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x(x− 1)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x
− 2

x− 1 + 2
(x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

x− 1 + (0)

= 1
x
− 1

x− 1
= − 1

x (x− 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

x− 1

)
(0) +

((
− 1
x2 + 1

(x− 1)2
)
+
(
1
x
− 1

x− 1

)2

−
(

2
x (x− 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

x−1

)
dx

= x

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x

x− 1

Which simplifies to

y1 =
x

x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x

x− 1

∫ 1
x2

(x−1)2
dx

= x

x− 1

(
x− 1

x
− 2 ln (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

x− 1

)
+ c2

(
x

x− 1

(
x− 1

x
− 2 ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(x− 1)2
(

d2

dx2y(x)
)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x(x−1)2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− 2y(x)
x(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 2
(x−1)2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x− 1)2
(

d2

dx2y(x)
)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r + (a1(1 + r) r − 2a0(r2 − r + 1))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r)− 2ak(k2 + 2kr + r2 − k − r + 1) + ak−1(k + r − 1) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
a1(1 + r) r − 2a0(r2 − r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 2ak − 3ak−1 + ak+1) k + (−2ak + ak−1 + ak+1) r2 + (2ak − 3ak−1 + ak+1) r − 2ak + 2ak−1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 2ak+1 − 3ak + ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (2ak+1 − 3ak + ak+2) r − 2ak+1 + 2ak = 0
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• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−kak−2kak+1−rak−2rak+1−2ak+1

k2+2kr+r2+3k+3r+2

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2 ,−2a0 = 0
]

• Recursion relation for r = 1
ak+2 = −k2ak−2k2ak+1+kak−6kak+1−6ak+1

k2+5k+6

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −k2ak−2k2ak+1+kak−6kak+1−6ak+1

k2+5k+6 , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2 ,−2a0 = 0, bk+2 = −k2bk−2k2bk+1+kbk−6kbk+1−6bk+1
k2+5k+6 , 2b1 − 2b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 27� �
dsolve(x*(x-1)^2*diff(diff(y(x),x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = 2c2x ln (x)− c2x

2 + c1x+ c2
x− 1

Mathematica DSolve solution

Solving time : 0.055 (sec)
Leaf size : 33� �
DSolve[{x*(x-1)^2*D[y[x],{x,2}]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −c2x

2 − c1x+ 2c2x log(x) + c2
x− 1
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2.1.299 problem 302

Solved as second order ode using Kovacic algorithm . . . . . . . . .2071
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2073
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2074
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2074
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2074

Internal problem ID [9147]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 302
Date solved : Thursday, December 12, 2024 at 10:01:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2xy′ + x2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.182 (sec)

Writing the ode as

y′′ − 2xy′ + x2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2x (3)
C = x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.568: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
1 dx

= z1e
x2
2

= z1
(
ex2

2

)
Which simplifies to

y1 = ex2
2 cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

1 dx

(y1)2
dx

= y1

∫
ex

2

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2

2 cos (x)
)
+ c2

(
ex2

2 cos (x) (tan (x))
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 2x
(

d
dx
y(x)

)
+ x2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y(x) to series expansion

x2 · y(x) =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y(x) =
∞∑
k=2

ak−2x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + (6a3 − 2a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2akk + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 − 2a1 = 0]

• Solve for the dependent coefficient(s){
a2 = 0, a3 = a1

3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − 2akk + ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 2ak+2(k + 2) + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2kak+2−ak+4ak+2

k2+7k+12 , a2 = 0, a3 = a1
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 20� �
dsolve(diff(diff(y(x),x),x)-2*diff(y(x),x)*x+x^2*y(x) = 0,

y(x),singsol=all)� �
y = ex2

2 (cos (x) c1 + sin (x) c2)

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{D[y[x],{x,2}]-2*x*D[y[x],x]+x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
1
2x(x−2i)(2c1 − ic2e

2ix)
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2.1.300 problem 303

Solved as second order ode using Kovacic algorithm . . . . . . . . .2075
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2080
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2081
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2082
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2082

Internal problem ID [9148]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 303
Date solved : Thursday, December 12, 2024 at 10:01:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x
(
−x2 + 2

)
y′′ −

(
x2 + 4x+ 2

)
((1− x) y′ + y) = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.536 (sec)

Writing the ode as(
−x3 + 2x

)
y′′ +

(
x3 + 3x2 − 2x− 2

)
y′ +

(
−x2 − 4x− 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + 2x
B = x3 + 3x2 − 2x− 2 (3)
C = −x2 − 4x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12
4 (x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12

t = 4
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12

4 (x3 − 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.570: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 6
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of order

2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

2x + 3
4x2 + 3

4
(
x−

√
2
)2 + 3

4
(
x+

√
2
)2 +

−5
√
2

8 − 1
2

x−
√
2

+
5
√
2

8 − 1
2

x+
√
2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x =

√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −
√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2x − 1

2x2 − 3
2x3 + 21

4x4 − 43
4x5 + 135

4x6 − 147
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12
4x6 − 16x4 + 16x2

= Q+ R

4x6 − 16x4 + 16x2

=
(
1
4

)
+
(
2x5 − x4 − 16x3 + 20x2 + 24x+ 12

4x6 − 16x4 + 16x2

)
= 1

4 + 2x5 − x4 − 16x3 + 20x2 + 24x+ 12
4x6 − 16x4 + 16x2
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Since the degree of t is 6, then we see that the coefficient of the term x5 in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12
4 (x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2√
2 2 0 3

2 −1
2

−
√
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
2x − 1

2
(
x−

√
2
) − 1

2
(
x+

√
2
) + (1

2

)
= 3

2x − 1
2
(
x−

√
2
) − 1

2
(
x+

√
2
) + 1

2

= x3 + x2 − 2x− 6
2x3 − 4x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2x − 1

2
(
x−

√
2
) − 1

2
(
x+

√
2
) + 1

2

)
(0) +

(− 3
2x2 + 1

2
(
x−

√
2
)2 + 1

2
(
x+

√
2
)2
)

+
(

3
2x − 1

2
(
x−

√
2
) − 1

2
(
x+

√
2
) + 1

2

)2

−
(
x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12

4 (x3 − 2x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

2x−
1

2
(
x−

√
2
)− 1

2
(
x+

√
2
)+ 1

2

)
dx

= x3/2ex
2√

x+
√
2
√

x−
√
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3+3x2−2x−2

−x3+2x dx

= z1e
x
2+

ln(x)
2 +

ln
(
x2−2

)
2

= z1
(√

x
√
x2 − 2 ex

2

)
Which simplifies to

y1 = x2ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3+3x2−2x−2

−x3+2x dx

(y1)2
dx

= y1

∫
ex+ln(x)+ln

(
x2−2

)
(y1)2

dx

= y1

(
−(x− 1) ex+ln(x)+ln

(
x2−2

)
e−2x

x3 (x2 − 2)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

)
+ c2

(
x2ex

(
−(x− 1) ex+ln(x)+ln

(
x2−2

)
e−2x

x3 (x2 − 2)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(−x2 + 2)
(

d2

dx2y(x)
)
− (x2 + 4x+ 2)

(
(1− x)

(
d
dx
y(x)

)
+ y(x)

)
= 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+4x+2

)
y(x)

x(x2−2) +
(
x2+4x+2

)
(x−1)

(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2+4x+2

)
(x−1)

(
d
dx

y(x)
)

x(x2−2) +
(
x2+4x+2

)
y(x)

x(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − (x−1)

(
x2+4x+2

)
x(x2−2) , P3(x) = x2+4x+2

x(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 − 2)
(

d2

dx2y(x)
)
− (x− 1) (x2 + 4x+ 2)

(
d
dx
y(x)

)
+ (x2 + 4x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + 2a0(1 + r))xr +
(
−2a2(2 + r) r + 2a1(2 + r) + a0(−2 + r)2

)
x1+r +

(
∞∑
k=2

(
−2ak+1(k + r + 1) (k + r − 1) + 2ak(k + r + 1) + ak−1(k − 3 + r)2 − ak−2(k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• The coefficients of each power of x must be 0[
−2a1(1 + r) (−1 + r) + 2a0(1 + r) = 0,−2a2(2 + r) r + 2a1(2 + r) + a0(−2 + r)2 = 0

]
• Solve for the dependent coefficient(s){

a1 = a0
−1+r

, a2 = a0
(
r2−5r+10

)
2(r2+r−2)

}
• Each term in the series must be 0, giving the recursion relation

ak−1(k − 3 + r)2 − 2ak+1(k + r + 1) (k + r − 1) + (2ak − ak−2) k + (2ak − ak−2) r + 2ak + 3ak−2 = 0
• Shift index using k− >k + 2

ak+1(k + r − 1)2 − 2ak+3(k + 3 + r) (k + r + 1) + (2ak+2 − ak) (k + 2) + (2ak+2 − ak) r + 2ak+2 + 3ak = 0
• Recursion relation that defines series solution to ODE

ak+3 = k2ak+1+2krak+1+r2ak+1−akk−2kak+1+2kak+2−akr−2rak+1+2rak+2+ak+ak+1+6ak+2
2(k+3+r)(k+r+1)

• Recursion relation for r = 0
ak+3 = k2ak+1−akk−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+3 = k2ak+1−akk−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1) , a1 = −a0, a2 = −5a0
2

]
• Recursion relation for r = 2

ak+3 = k2ak+1−akk+2kak+1+2kak+2−ak+ak+1+10ak+2
2(k+5)(k+3)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+3 = k2ak+1−akk+2kak+1+2kak+2−ak+ak+1+10ak+2

2(k+5)(k+3) , a1 = a0, a2 = a0
2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+3 = k2ak+1−kak−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1) , a1 = −a0, a2 = −5a0
2 , bk+3 = k2bk+1−kbk+2kbk+1+2kbk+2−bk+bk+1+10bk+2

2(5+k)(k+3) , b1 = b0, b2 = b0
2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve(x*(-x^2+2)*diff(diff(y(x),x),x)-(x^2+4*x+2)*((1-x)*diff(y(x),x)+y(x)) = 0,

y(x),singsol=all)� �
y = c1(x− 1) + c2exx2

Mathematica DSolve solution

Solving time : 0.312 (sec)
Leaf size : 21� �
DSolve[{x*(2-x^2)*D[y[x],{x,2}]-(x^2+4*x+2)*((1-x)*D[y[x],x]+y[x])==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

xx2 + c2(x− 1)
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2.1.301 problem 304

Solved as second order ode using Kovacic algorithm . . . . . . . . .2083
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2087
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2088
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2089
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2089

Internal problem ID [9149]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 304
Date solved : Thursday, December 12, 2024 at 10:01:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − (1 + 2x) (xy′ − y) = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.253 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−2x2 − x

)
y′ + (1 + 2x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −2x2 − x (3)
C = 1 + 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −4x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−4x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.572: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (1 + x)2

− 1
4x2 − 1

2x + 1
2 + 2x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2 (1 + x) +

1
2x + (0)

= − 1
2 (1 + x) +

1
2x

= 1
2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (1 + x) +

1
2x

)
(0) +

((
1

2 (1 + x)2
− 1

2x2

)
+
(
− 1
2 (1 + x) +

1
2x

)2

−
(

−4x− 1
4 (x2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(1+x)+

1
2x

)
dx

=
√
x√

1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−x
x2(1+x) dx

= z1e
ln(x(1+x))

2

= z1
(√

x (1 + x)
)

Which simplifies to

y1 =
√

x (1 + x)
√
x√

1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2−x

x2(1+x) dx

(y1)2
dx

= y1

∫
eln(x(1+x))

(y1)2
dx

= y1(x+ ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (1 + x)

√
x√

1 + x

)
+ c2

(√
x (1 + x)

√
x√

1 + x
(x+ ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− (2x+ 1)

(
x
(

d
dx
y(x)

)
− y(x)

)
= 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+1)y(x)
x2(x+1) +

(2x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+1)

(
d
dx

y(x)
)

x(x+1) + (2x+1)y(x)
x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2x+1
x(x+1) , P3(x) = 2x+1

x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
− x(2x+ 1)

(
d
dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−2u2 + 3u− 1)

(
d
du
y(u)

)
+ (2u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r + (a1(1 + r) (−1 + r)− a0(2r2 − 5r + 1))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− ak(2k2 + 4kr + 2r2 − 5k − 5r + 1) + ak−1(k + r − 2) (k − 3 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− a0(2r2 − 5r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 5ak − 5ak−1) k + (−2ak + ak−1 + ak+1) r2 + (5ak − 5ak−1) r − ak + 6ak−1 − ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 5ak+1 − 5ak) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (5ak+1 − 5ak) r − ak+1 + 6ak − ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−3kak+kak+1−3rak+rak+1+2ak+2ak+1

k2+2kr+r2+2k+2r

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−3kak+kak+1+2ak+2ak+1

k2+2k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = −k2ak−2k2ak+1−3kak+kak+1+2ak+2ak+1
k2+2k

• Recursion relation for r = 2
ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1

k2+6k+8

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1

k2+6k+8 , 3a1 + a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+2 , ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1
k2+6k+8 , 3a1 + a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-(2*x+1)*(diff(y(x),x)*x-y(x)) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c2x+ c1)

Mathematica DSolve solution

Solving time : 0.28 (sec)
Leaf size : 132� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-(1+2*x)*(x*D[y[x],x]+y[x])==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

1+
√
2Hypergeometric2F1

(
−1
2 +

√
2−

√
17
2 ,−1

2 +
√
2 +

√
17
2 , 1 + 2

√
2,−x

)
+ c1x

1−
√
2Hypergeometric2F1

(
1
2

(
−1− 2

√
2−

√
17
)
,
1
2

(
−1− 2

√
2 +

√
17
)
, 1

− 2
√
2,−x

)
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2.1.302 problem 305

Solved as second order ode using Kovacic algorithm . . . . . . . . .2090
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2094
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2095
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2095
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2096

Internal problem ID [9150]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 305
Date solved : Thursday, December 12, 2024 at 10:01:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2(2− x)x2y′′ − (4− x)xy′ + (3− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.203 (sec)

Writing the ode as (
−2x3 + 4x2) y′′ + (x2 − 4x

)
y′ + (3− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + 4x2

B = x2 − 4x (3)
C = 3− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
16 (−2 + x)2

(6)

Comparing the above to (5) shows that

s = −3
t = 16(−2 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
− 3
16 (−2 + x)2

)
z(x) (7)



chapter 2. book solved problems 2091

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.574: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(−2 + x)2. There is a pole at x = 2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (−2 + x)2

For the pole at x = 2 let b be the coefficient of 1
(−2+x)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 3

16 (−2 + x)2
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Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
16 (−2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

2 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
−8 + 4x + (−) (0)

= 1
−8 + 4x

= 1
−8 + 4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
−8 + 4x

)
(0) +

((
− 1
4 (−2 + x)2

)
+
(

1
−8 + 4x

)2

−
(
− 3
16 (−2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

−8+4xdx

= (−2 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−4x

−2x3+4x2 dx

= z1e
− ln(−2+x)

4 + ln(x)
2

= z1

( √
x

(−2 + x)1/4

)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2−4x

−2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

ln(−2+x)
2 +ln(x)

(y1)2
dx

= y1

(
2 e−

ln(−2+x)
2 +ln(x)(−2 + x)

x

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(
√
x

(
2 e−

ln(−2+x)
2 +ln(x)(−2 + x)

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2(−x+ 2)x2
(

d2

dx2y(x)
)
− x(4− x)

(
d
dx
y(x)

)
+ (−x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−3)y(x)
2x2(x−2) +

(−4+x)
(

d
dx

y(x)
)

2x(x−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−4+x)

(
d
dx

y(x)
)

2x(x−2) + (x−3)y(x)
2x2(x−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − −4+x
2x(x−2) , P3(x) = x−3

2x2(x−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x− 2)
(

d2

dx2y(x)
)
− x(−4 + x)

(
d
dx
y(x)

)
+ (x− 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(−ak(2k + 2r − 1) (2k + 2r − 3) + ak−1(2k + 2r − 3) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term in the series must be 0, giving the recursion relation

−4
((
−k

2 −
r
2 + 1

)
ak−1 +

(
k + r − 1

2

)
ak
) (

k + r − 3
2

)
= 0

• Shift index using k− >k + 1
−4
((
−k

2 +
1
2 −

r
2

)
ak +

(
k + 1

2 + r
)
ak+1

) (
k + r − 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r−1)ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 =
(
k− 1

2
)
ak

2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
(
k− 1

2
)
ak

2k+2

]
• Recursion relation for r = 3

2

ak+1 =
(
k+ 1

2
)
ak

2k+4

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 =
(
k+ 1

2
)
ak

2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 =

(
k− 1

2
)
ak

2k+2 , bk+1 =
(
k+ 1

2
)
bk

2k+4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 19� �
dsolve(2*(-x+2)*x^2*diff(diff(y(x),x),x)-x*(-x+4)*diff(y(x),x)+(-x+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x+ c2

√
x (x− 2)
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Mathematica DSolve solution

Solving time : 0.097 (sec)
Leaf size : 41� �
DSolve[{2*(2-x)*x^2*D[y[x],{x,2}]-(4-x)*x*D[y[x],x]+(3-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x− 2

√
x
(
2c2

√
x− 2 + c1

)
4
√
2− x
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2.1.303 problem 306

Solved as second order ode using Kovacic algorithm . . . . . . . . .2097
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2101
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2101
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2101
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2101

Internal problem ID [9151]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 306
Date solved : Thursday, December 12, 2024 at 10:01:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− x)x2y′′ + (5x− 4)xy′ + (6− 9x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.229 (sec)

Writing the ode as (
−x3 + x2) y′′ + (5x2 − 4x

)
y′ + (6− 9x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = 5x2 − 4x (3)
C = 6− 9x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x+ 4
4x (−1 + x)2

(6)

Comparing the above to (5) shows that

s = −x+ 4
t = 4x(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

−x+ 4
4x (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.576: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(−1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (−1 + x)2

+ 1
x
− 1

−1 + x

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x+ 4

4x (−1 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x+ 4
4x (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x
− 1

2 (−1 + x) + (−) (0)

= 1
x
− 1

2 (−1 + x)

= −2 + x

2 (−1 + x)x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

2 (−1 + x)

)
(0) +

((
− 1
x2 + 1

2 (−1 + x)2
)
+
(
1
x
− 1

2 (−1 + x)

)2

−
(

−x+ 4
4x (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

2(−1+x)

)
dx

= x√
−1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2−4x
−x3+x2 dx

= z1e
2 ln(x)+ ln(−1+x)

2

= z1
(
x2√−1 + x

)
Which simplifies to

y1 = x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2−4x

−x3+x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)+ln(−1+x)

(y1)2
dx

= y1

(
ln (x) + 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x3)+ c2

(
x3
(
ln (x) + 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 18� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)+(5*x-4)*x*diff(y(x),x)+(6-9*x)*y(x) = 0,

y(x),singsol=all)� �
y = x2(c2x ln (x) + c1x+ c2)

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 24� �
DSolve[{(1-x)*x^2*D[y[x],{x,2}]+(5*x-4)*x*D[y[x],x]+(6-9*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c1x− c2(x log(x) + 1))
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2.1.304 problem 307

Solved as second order ode using Kovacic algorithm . . . . . . . . .2102
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2106
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2107
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2107
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2108

Internal problem ID [9152]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 307
Date solved : Thursday, December 12, 2024 at 10:01:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ +
(
4x2 + 1

)
y′ + 4x

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.204 (sec)

Writing the ode as

xy′′ +
(
4x2 + 1

)
y′ +

(
4x3 + 4x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 4x2 + 1 (3)
C = 4x3 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.577: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x2+1

x
dx

= z1e
−x2− ln(x)

2

= z1

(
e−x2

√
x

)

Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x2+1

x
dx

(y1)2
dx

= y1

∫
e−2x2−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (4x2 + 1)

(
d
dx
y(x)

)
+ 4x(x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−4x2 − 4) y(x)−
(
4x2+1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
4x2+1

)(
d
dx

y(x)
)

x
+ (4x2 + 4) y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4x2+1
x

, P3(x) = 4x2 + 4
]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (4x2 + 1)

(
d
dx
y(x)

)
+ 4x(x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 1..3

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r + a1(1 + r)2 xr +

(
a2(2 + r)2 + 4a0(1 + r)

)
x1+r +

(
a3(3 + r)2 + 4a1(2 + r)

)
x2+r +

(
∞∑
k=3

(
ak+1(k + 1 + r)2 + 4ak−1(k + r) + 4ak−3

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• The coefficients of each power of x must be 0[
a1(1 + r)2 = 0, a2(2 + r)2 + 4a0(1 + r) = 0, a3(3 + r)2 + 4a1(2 + r) = 0

]
• Solve for the dependent coefficient(s){

a1 = 0, a2 = −4a0(1+r)
r2+4r+4 , a3 = 0

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + 4ak−1k + 4ak−3 = 0
• Shift index using k− >k + 3

ak+4(k + 4)2 + 4ak+2(k + 3) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = −4(kak+2+ak+3ak+2)
(k+4)2

• Recursion relation for r = 0
ak+4 = −4(kak+2+ak+3ak+2)

(k+4)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = −4(kak+2+ak+3ak+2)

(k+4)2 , a1 = 0, a2 = −a0, a3 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+(4*x^2+1)*diff(y(x),x)+4*x*(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 21� �
DSolve[{x*D[y[x],{x,2}]+(4*x^2+1)*D[y[x],x]+4*x*(x^2+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2 log(x) + c1)
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2.1.305 problem 309

Solved as second order ode using Kovacic algorithm . . . . . . . . .2109
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2113
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2114
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2114

Internal problem ID [9153]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 309
Date solved : Thursday, December 12, 2024 at 10:01:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2xy′ + 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as

y′′ − 2xy′ + 8y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2x (3)
C = 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 9
1 (6)

Comparing the above to (5) shows that

s = x2 − 9
t = 1

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 9

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.579: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x− 9

2x − 81
8x3 − 729

16x5 − 32805
128x7 − 413343

256x9 − 11160261
1024x11 − 157837977

2048x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 9
1

= Q+ R

1
=
(
x2 − 9

)
+ (0)

= x2 − 9

We see that the coefficient of the term 1
x
in the quotient is −9. Now b can be found.

b = (−9)− (0)
= −9

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−9
1 − 1

)
= −5

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−9

1 − 1
)

= 4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 9

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x −5 4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 4, and since there are no poles then

d = α−
∞

= 4
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−) (x)
= −x

= −x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives(
12x2 + 6xa3 + 2a2

)
+ 2(−x)

(
4x3 + 3x2a3 + 2xa2 + a1

)
+
(
(−1) + (−x)2 −

(
x2 − 9

))
= 0

2a3x3 + 4(3 + a2)x2 + 6(a1 + a3)x+ 8a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

3
4 , a1 = 0, a2 = −3, a3 = 0

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 3x2 + 3
4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 3x2 + 3

4

)
e
∫
−xdx

=
(
x4 − 3x2 + 3

4

)
e−x2

2

= (4x4 − 12x2 + 3) e−x2
2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
1 dx

= z1e
x2
2

= z1
(
ex2

2

)
Which simplifies to

y1 = x4 − 3x2 + 3
4
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

1 dx

(y1)2
dx

= y1

∫
ex

2

(y1)2
dx

= y1

(∫ ex2(
x4 − 3x2 + 3

4

)2dx
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 − 3x2 + 3

4

)
+ c2

(
x4 − 3x2 + 3

4

(∫ ex2(
x4 − 3x2 + 3

4

)2dx
))

Will add steps showing solving for IC soon.

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.039 (sec)
Leaf size : 42� �
dsolve(diff(diff(y(x),x),x)-2*diff(y(x),x)*x+8*y(x) = 0,

y(x),singsol=all)� �
y = 2c1

(
−2x3 + 5x

)
ex2 + 4

(
erfi (x)

√
π c1 + c2

)(
x4 − 3x2 + 3

4

)

Mathematica DSolve solution

Solving time : 1.632 (sec)
Leaf size : 63� �
DSolve[{D[y[x],{x,2}]-2*x*D[y[x],x]+8*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x4 − 3x2 + 3

4

)
− 1

12c2
(√

π
(
−4x4 + 12x2 − 3

)
erfi(x) + 2ex2

x
(
2x2 − 5

))
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2.1.306 problem 310

Solved as second order ode using Kovacic algorithm . . . . . . . . .2115
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2119
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2120
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2121
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2121

Internal problem ID [9154]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 310
Date solved : Thursday, December 12, 2024 at 10:01:24 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.325 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 12x2 − 13
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 12x2 − 13

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
12x2 − 13
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.580: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− 1)2

− 1
4 (x+ 1)2

− 25
4 (x+ 1) +

25
4 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 12x2 − 13

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 12. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 4

α−
∞ = 1

2 −
√
1 + 4b = −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 12x2 − 13
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 4 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 4− (1)
= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(

1
2x− 2 + 1

2x+ 2

)(
3x2 + 2xa2 + a1

)
+
((

− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(
12x2 − 13
(x2 − 1)2

))
= 0

−6a2x2 + (−10a1 − 6)x− 12a0 − 2a2
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = 0, a1 = −3

5 , a2 = 0
}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 − 3
5x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 − 3

5x
)
e
∫ ( 1

2x−2+
1

2x+2

)
dx

=
(
x3 − 3

5x
)√

(x− 1) (x+ 1)

= (5x3 − 3x)
√
x2 − 1

5
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)

Which simplifies to

y1 =
(5x3 − 3x)

√
x2 − 1

5
√
x− 1

√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
25 ln (x− 1)

8 + 125x
36
(
x2 − 3

5

) + 25
9x − 25 ln (x+ 1)

8

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(5x3 − 3x)

√
x2 − 1

5
√
x− 1

√
x+ 1

)

+ c2

(
(5x3 − 3x)

√
x2 − 1

5
√
x− 1

√
x+ 1

(
25 ln (x− 1)

8 + 125x
36
(
x2 − 3

5

) + 25
9x − 25 ln (x+ 1)

8

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 12y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 4) (k + r − 3)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 4) (k − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+4)(k−3)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = ak(k+4)(k−3)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −6a0

• Apply recursion relation for k = 1
a2 = −5a1

4

• Express in terms of a0
a2 = 15a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −5a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 6u+ 15

2 u
2 − 5

2u
3)

• Revert the change of variables u = x+ 1[
y(x) = a0

(3
2x− 5

2x
3)]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 55� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2(5x3 − 3x) ln (x− 1)

24 + (−5x3 + 3x) c2 ln (x+ 1)
24 − 5c1x3

3 + 5c2x2

12 + c1x− c2
9

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 59� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2c1x
(
5x2 − 3

)
+ c2

(
−5x2

2 − 1
4
(
5x2 − 3

)
x(log(1− x)− log(x+ 1)) + 2

3

)
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2.1.307 problem 311

Solved as second order ode using Kovacic algorithm . . . . . . . . .2122
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2126
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2127
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2127
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2127

Internal problem ID [9155]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 311
Date solved : Thursday, December 12, 2024 at 10:01:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x+ 2) y′′ + 2(x+ 1) y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.262 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (2x+ 2) y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = 2x+ 2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 + 4x− 1
(x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 2x2 + 4x− 1

t =
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
2x2 + 4x− 1
(x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.582: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x+ 2)2

− 5
4 (x+ 2) +

5
4x − 1

4x2

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 + 4x− 1

(x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 + 4x− 1
(x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 1
2

1
2

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x+ 4 + 1

2x + (0)

= 1
2x+ 4 + 1

2x
= x+ 1

x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x+ 4 + 1

2x

)
(1) +

((
− 1
2 (x+ 2)2

− 1
2x2

)
+
(

1
2x+ 4 + 1

2x

)2

−
(
2x2 + 4x− 1
(x2 + 2x)2

))
= 0

2− 2a0
x (x+ 2) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 1

2x+4+
1
2x

)
dx

= (x+ 1)
√

x (x+ 2)
= (x+ 1)

√
x (x+ 2)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x+2
x2+2x dx

= z1e
− ln(x(x+2))

2

= z1

(
1√

x (x+ 2)

)

Which simplifies to
y1 = x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x+2

x2+2x dx

(y1)2
dx

= y1

∫
e− ln(x(x+2))

(y1)2
dx

= y1

(
1

x+ 1 − ln (x+ 2)
2 + ln (x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 1) + c2

(
x+ 1

(
1

x+ 1 − ln (x+ 2)
2 + ln (x)

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(x+ 2)
(

d2

dx2y(x)
)
+ 2(x+ 1)

(
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
2(x+1)

(
d
dx

y(x)
)

x(x+2) + 2y(x)
x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)− 2y(x)
x(x+2) +

2(x+1)
(

d
dx

y(x)
)

x(x+2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2(x+1)

x(x+2) , P3(x) = − 2
x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (2x+ 2)

(
d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 2
[y(x) = a0(−x− 1)]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 28� �
dsolve(x*(x+2)*diff(diff(y(x),x),x)+2*(x+1)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = −(x+ 1) c2 ln (x+ 2)

2 + c2(x+ 1) ln (x)
2 + c1x+ c1 + c2

Mathematica DSolve solution

Solving time : 0.036 (sec)
Leaf size : 37� �
DSolve[{x*(x+2)*D[y[x],{x,2}]+2*(x+1)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x+ 1)− 1

2c2((x+ 1) log(−x)− (x+ 1) log(x+ 2) + 2)
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2.1.308 problem 313

Solved as second order ode using Kovacic algorithm . . . . . . . . .2128
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2132
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2134
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2134
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2134

Internal problem ID [9156]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 313
Date solved : Thursday, December 12, 2024 at 10:01:26 AM
CAS classification :
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

x(x+ 2) y′′ + (x+ 1) y′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.253 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (x+ 1) y′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = x+ 1 (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 + 30x− 3
4 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 15x2 + 30x− 3

t = 4
(
x2 + 2x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
15x2 + 30x− 3
4 (x2 + 2x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.584: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 − 3

16 (x+ 2)2
+ 33

16x − 33
16 (x+ 2)

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 + 30x− 3

4 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 + 30x− 3
4 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
4

1
4

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x+ 2) +

3
4x + (0)

= 3
4 (x+ 2) +

3
4x

=
3x
2 + 3

2
x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x+ 2) +

3
4x

)
(1) +

((
− 3
4 (x+ 2)2

− 3
4x2

)
+
(

3
4 (x+ 2) +

3
4x

)2

−
(
15x2 + 30x− 3
4 (x2 + 2x)2

))
= 0

3− 3a0
x (x+ 2) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 3

4(x+2)+
3
4x

)
dx

= (x+ 1) (x(x+ 2))3/4

= (x+ 1) (x(x+ 2))3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x+1

x2+2x dx

= z1e
− ln(x(x+2))

4

= z1

(
1

(x (x+ 2))1/4

)

Which simplifies to

y1 =
√
x (x+ 2) (x+ 1)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x+1

x2+2x dx

(y1)2
dx

= y1

∫
e−

ln(x(x+2))
2

(y1)2
dx

= y1

(
− 2x2 + 4x+ 1√

x (x+ 2) (x+ 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x (x+ 2) (x+ 1)
)
+ c2

(√
x (x+ 2) (x+ 1)

(
− 2x2 + 4x+ 1√

x (x+ 2) (x+ 1)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
− 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4y(x)
x(x+2) −

(x+1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x(x+2) − 4y(x)
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x(x+2) , P3(x) = − 4

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
− 4y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− 4y(u) = 0

• Assume series solution for y(u)
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y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k + r + 2) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + ak(k + r + 2) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+2)(k+r−2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k+2)(k−2)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = −4a0

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 2a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (2u2 − 4u+ 1)

• Revert the change of variables u = x+ 2
[y(x) = a0(2x2 + 4x+ 1)]

• Recursion relation for r = 1
2

ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+
1
2 , ak+1 =

ak
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters
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[
y(x) = a0(2x2 + 4x+ 1) +

(
∞∑
k=0

bk(x+ 2)k+
1
2

)
, bk+1 =

bk
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

Solution is available but has compositions of trig with ln functions of radicals. Attempting a simpler solution
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- linear_1 successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 28� �
dsolve(x*(x+2)*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)-4*y(x) = 0,

y(x),singsol=all)� �
y = c2(x+ 1)

√
x (x+ 2) + 2c1

(
x2 + 2x+ 1

2

)

Mathematica DSolve solution

Solving time : 2.196 (sec)
Leaf size : 73� �
DSolve[{x*(x+2)*D[y[x],{x,2}]+(x+1)*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1 cosh

(
8arctanh

( √
x− 1√

3−
√
x+ 2

))
− ic2 sinh

(
8arctanh

( √
x− 1√

3−
√
x+ 2

))
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2.1.309 problem 314

Solved as second order ode using Kovacic algorithm . . . . . . . . .2135
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2140
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2141
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2141
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2142

Internal problem ID [9157]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 314
Date solved : Thursday, December 12, 2024 at 10:01:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.586: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.310 problem 315

Solved as second order ode using Kovacic algorithm . . . . . . . . .2143
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2147
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2147
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2147
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2147

Internal problem ID [9158]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 315
Date solved : Thursday, December 12, 2024 at 10:01:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.307 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.588: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.07 (sec)
Leaf size : 21� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.311 problem 316

Solved as second order ode using Kovacic algorithm . . . . . . . . .2148
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2152
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2152
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2152
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2153

Internal problem ID [9159]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 316
Date solved : Thursday, December 12, 2024 at 10:01:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.400 (sec)

Writing the ode as (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x+ 10
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

(6)

Comparing the above to (5) shows that

s = 15x2 − 32x+ 180

t = 4
(
x2 − 2x+ 10

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.589: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 2x+ 10)2. There is a pole at x = 1 + 3i of order 2. There is a pole at
x = 1− 3i of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is
2 then the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 7

36 +
i
24

(x− 1− 3i)2
+

− 7
36 −

i
24

(x− 1 + 3i)2
− 149i

216 (x− 1− 3i) +
149i

216 (x− 1 + 3i)

For the pole at x = 1 + 3i let b be the coefficient of 1
(x−1−3i)2 in the partial fractions

decomposition of r given above. Therefore b = − 7
36 +

i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 + i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 − i

12
For the pole at x = 1− 3i let b be the coefficient of 1

(x−1+3i)2 in the partial fractions
decomposition of r given above. Therefore b = − 7

36 −
i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 − i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 + i

12
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 − 32x+ 180

4 (x2 − 2x+ 10)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

pole c location pole order [
√
r]c α+

c α−
c

1 + 3i 2 0 3
4 +

i
12

1
4 −

i
12

1− 3i 2 0 3
4 −

i
12

1
4 +

i
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i + (0)

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i
= 3x− 4

2x2 − 4x+ 20
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)
(1) +

(( −3
4 −

i
12

(x− 1− 3i)2
+

−3
4 +

i
12

(x− 1 + 3i)2
)
+
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)2

−
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

))
= 0

−
3
(
a0 + 4

3

)
(x2 − 2x+ 10)

(−x+ 1 + 3i)2 (x− 1 + 3i)2
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −4

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 4

3

)
e
∫ ( 3

4+ i
12

x−1−3i+
3
4− i

12
x−1+3i

)
dx

=
(
x− 4

3

)
e

3 ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= (3x− 4) (x2 − 2x+ 10)3/4 e−
arctan

(
x
3− 1

3
)

6

3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2−2x+10 dx

= z1e
−

ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= z1

 e−
arctan

(
x
3− 1

3
)

6

(x2 − 2x+ 10)1/4


Which simplifies to

y1 =
√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2−2x+10 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3

(y1)2
dx

= y1

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)


Therefore the solution is

y = c1y1 + c2y2

= c1

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3


+c2

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 31� �
dsolve((x^2-2*x+10)*diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = 3c2

(
x− 4

3

)
(x− 1 + 3i)

1
2−

i
6 (x− 1− 3i)

1
2+

i
6 + c1

(
x2 − 4

3x+ 5
)
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Mathematica DSolve solution

Solving time : 1.253 (sec)
Leaf size : 92� �
DSolve[{(x^2-2*x+10)*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ 1
3(3x

− 4)
√
x2 − 2x+ 10e− 1

3 arctan
(
x−1
3
)(

c2

∫ x

1

9e 1
3 arctan

( 1
3 (K[1]−1)

)
(4− 3K[1])2 (K[1]2 − 2K[1] + 10)3/2

dK[1]

+ c1

)
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2.1.312 problem 317

Solved as second order ode using Kovacic algorithm . . . . . . . . .2154
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2158
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2158
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2158
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2159

Internal problem ID [9160]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 317
Date solved : Thursday, December 12, 2024 at 10:01:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.398 (sec)

Writing the ode as (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x+ 10
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

(6)

Comparing the above to (5) shows that

s = 15x2 − 32x+ 180

t = 4
(
x2 − 2x+ 10

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.590: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 2x+ 10)2. There is a pole at x = 1 + 3i of order 2. There is a pole at
x = 1− 3i of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is
2 then the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 7

36 +
i
24

(x− 1− 3i)2
+

− 7
36 −

i
24

(x− 1 + 3i)2
− 149i

216 (x− 1− 3i) +
149i

216 (x− 1 + 3i)

For the pole at x = 1 + 3i let b be the coefficient of 1
(x−1−3i)2 in the partial fractions

decomposition of r given above. Therefore b = − 7
36 +

i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 + i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 − i

12
For the pole at x = 1− 3i let b be the coefficient of 1

(x−1+3i)2 in the partial fractions
decomposition of r given above. Therefore b = − 7

36 −
i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 − i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 + i

12
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 − 32x+ 180

4 (x2 − 2x+ 10)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

pole c location pole order [
√
r]c α+

c α−
c

1 + 3i 2 0 3
4 +

i
12

1
4 −

i
12

1− 3i 2 0 3
4 −

i
12

1
4 +

i
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i + (0)

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i
= 3x− 4

2x2 − 4x+ 20
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)
(1) +

(( −3
4 −

i
12

(x− 1− 3i)2
+

−3
4 +

i
12

(x− 1 + 3i)2
)
+
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)2

−
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

))
= 0

−
3
(
a0 + 4

3

)
(x2 − 2x+ 10)

(−x+ 1 + 3i)2 (x− 1 + 3i)2
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −4

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 4

3

)
e
∫ ( 3

4+ i
12

x−1−3i+
3
4− i

12
x−1+3i

)
dx

=
(
x− 4

3

)
e

3 ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= (3x− 4) (x2 − 2x+ 10)3/4 e−
arctan

(
x
3− 1

3
)

6

3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2−2x+10 dx

= z1e
−

ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= z1

 e−
arctan

(
x
3− 1

3
)

6

(x2 − 2x+ 10)1/4


Which simplifies to

y1 =
√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2−2x+10 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3

(y1)2
dx

= y1

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)


Therefore the solution is

y = c1y1 + c2y2

= c1

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3


+c2

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.019 (sec)
Leaf size : 31� �
dsolve((x^2-2*x+10)*diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = 3c2

(
x− 4

3

)
(x− 1 + 3i)

1
2−

i
6 (x− 1− 3i)

1
2+

i
6 + c1

(
x2 − 4

3x+ 5
)
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Mathematica DSolve solution

Solving time : 0.849 (sec)
Leaf size : 92� �
DSolve[{(x^2-2*x+10)*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ 1
3(3x

− 4)
√
x2 − 2x+ 10e− 1

3 arctan
(
x−1
3
)(

c2

∫ x

1

9e 1
3 arctan

( 1
3 (K[1]−1)

)
(4− 3K[1])2 (K[1]2 − 2K[1] + 10)3/2

dK[1]

+ c1

)
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2.1.313 problem 318

Solved as second order ode using Kovacic algorithm . . . . . . . . .2160
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2164
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2165
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2165
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2165

Internal problem ID [9161]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 318
Date solved : Thursday, December 12, 2024 at 10:01:29 AM
CAS classification : [_Hermite]

Solve

y′′ − xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.274 (sec)

Writing the ode as

y′′ − xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.591: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 2163

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = x2 − 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

(∫ ex2
2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 − 1

)
+ c2

(
x2 − 1

(∫ ex2
2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
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ak+2 = ak(k−2)
k2+3k+2

• Apply recursion relation for k = 0
a2 = −a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y(x) = A2x

2 + A1x− a0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.040 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = −2c1e

x2
2 x+ (x− 1) (x+ 1)

(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)

Mathematica DSolve solution

Solving time : 0.137 (sec)
Leaf size : 54� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4c2
(√

2π
(
x2 − 1

)
erfi
(

x√
2

)
− 2ex2

2 x

)
+ c1

(
x2 − 1

)
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2.1.314 problem 319

Solved as second order ode using Kovacic algorithm . . . . . . . . .2166
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2171
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2172
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2172
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2173

Internal problem ID [9162]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 319
Date solved : Thursday, December 12, 2024 at 10:01:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x+ 2) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as

(x+ 2) y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x+ 2
B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 12
4 (x+ 2)2

(6)

Comparing the above to (5) shows that

s = x2 + 4x+ 12
t = 4(x+ 2)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 12
4 (x+ 2)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.593: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x+ 2)2. There is a pole at x = −2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

(x+ 2)2

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x2 − 8

x3 + 20
x4 − 32

x5 + 16
x6 + 64

x7 − 80
x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 12
4x2 + 16x+ 16

= Q+ R

4x2 + 16x+ 16

=
(
1
4

)
+
(

8
4x2 + 16x+ 16

)
= 1

4 + 8
4x2 + 16x+ 16

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 12
4 (x+ 2)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
x+ 2 + (−)

(
1
2

)
= − 1

x+ 2 − 1
2

= − 4 + x

2 (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x+ 2 − 1

2

)
(1) +

((
1

(x+ 2)2
)
+
(
− 1
x+ 2 − 1

2

)2

−
(
x2 + 4x+ 12
4 (x+ 2)2

))
= 0

a0 − 4
x+ 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 4 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (4 + x) e
∫ (

− 1
x+2−

1
2

)
dx

= (4 + x) e−x
2−ln(x+2)

= (4 + x) e−x
2

x+ 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x+2 dx

= z1e
−x

2+ln(x+2)

= z1
(
(x+ 2) e−x

2
)

Which simplifies to
y1 = e−x(4 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x+2 dx

(y1)2
dx

= y1

∫
e−x+2 ln(x+2)

(y1)2
dx

= y1

(
x e−x+2 ln(x+2)e2x

(4 + x) (x+ 2)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x(4 + x)

)
+ c2

(
e−x(4 + x)

(
x e−x+2 ln(x+2)e2x

(4 + x) (x+ 2)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x+2 −

(
d
dx

y(x)
)
x

x+2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
x

x+2 − y(x)
x+2 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x
x+2 , P3(x) = − 1

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r−1)
(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = − ak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 2[

y(x) = −a0x
2

]
• Recursion relation for r = 3

ak+1 = − ak(k+2)
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+2)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+3 , ak+1 = − ak(k+2)
(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = −a0x
2 +

(
∞∑
k=0

bk(x+ 2)k+3
)
, bk+1 = − bk(k+2)

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve((x+2)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ c2e−x(x+ 4)



chapter 2. book solved problems 2173

Mathematica DSolve solution

Solving time : 0.157 (sec)
Leaf size : 72� �
DSolve[{(x+2)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −
2
√

2
π
e−x−2√x+ 2(c1(ex+2x+ x+ 4)− ic2((ex+2 − 1)x− 4))√

−i(x+ 2)
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2.1.315 problem 320

Solved as second order ode using Kovacic algorithm . . . . . . . . .2174
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2177
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2177
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2178
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2178

Internal problem ID [9163]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 320
Date solved : Thursday, December 12, 2024 at 10:01:31 AM
CAS classification : [[_Emden, _Fowler]]

Solve (
x2 + 1

)
y′′ − 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 0 (3)
C = −6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6
x2 + 1 (6)

Comparing the above to (5) shows that

s = 6
t = x2 + 1

Therefore eq. (4) becomes

z′′(x) =
(

6
x2 + 1

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.595: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2 + 1. There is a pole at x = i of order 1. There is a pole at x = −i of order 1.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = i of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 6

x2 + 1
Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6
x2 + 1
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pole c location pole order [
√
r]c α+

c α−
c

i 1 0 0 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α−
c1

)
= 3− (1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x− i

+ (0)

= 1
x− i

= 1
x− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
x− i

)
(2x+ a1) +

((
− 1
(x− i)2

)
+
(

1
x− i

)2

−
(

6
x2 + 1

))
= 0

2 + −4x− 2a1
−x+ i

+ −6x2 − 6a1x− 6a0
x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + ix
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + ix

)
e
∫ 1

x−i
dx

=
(
x2 + ix

)
e

ln
(
x2+1

)
2 +i arctan(x)

= x(x+ i) (ix+ 1)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x(x+ i) (ix+ 1)

Which simplifies to
y1 = ix3 + ix

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= ix3 + ix

∫ 1
(ix3 + ix)2

dx

= ix3 + ix

(
x

2x2 + 2 + 3 arctan (x)
2 + 1

x

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ix3 + ix

)
+ c2

(
ix3 + ix

(
x

2x2 + 2 + 3 arctan (x)
2 + 1

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm



chapter 2. book solved problems 2178

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 31� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-6*y(x) = 0,

y(x),singsol=all)� �
y = 3xc2(x2 + 1) arctan (x)

2 + c1x
3 + 3c2x2

2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 36� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x3 + x

)
− 1

2c2
(
3
(
x3 + x

)
arctan(x) + 3x2 + 2

)
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2.1.316 problem 321

Solved as second order ode using Kovacic algorithm . . . . . . . . .2179
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2183
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2183
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2183
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2183

Internal problem ID [9164]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 321
Date solved : Thursday, December 12, 2024 at 10:01:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 2

)
y′′ + 3xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.398 (sec)

Writing the ode as (
x2 + 2

)
y′′ + 3xy′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2
B = 3x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 20
4 (x2 + 2)2

(6)

Comparing the above to (5) shows that

s = 7x2 + 20

t = 4
(
x2 + 2

)2
Therefore eq. (4) becomes

z′′(x) =
(

7x2 + 20
4 (x2 + 2)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.596: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 2)2. There is a pole at x = i

√
2 of order 2. There is a pole at x = −i

√
2 of

order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16
(
x− i

√
2
)2 − 3

16
(
x+ i

√
2
)2 − 17i

√
2

32
(
x− i

√
2
) + 17i

√
2

32
(
x+ i

√
2
)

For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −i
√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 7x2 + 20

4 (x2 + 2)2

Since the gcd(s, t) = 1. This gives b = 7
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

i
√
2 2 {1, 2, 3}

−i
√
2 2 {1, 2, 3}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1(

x−
(
i
√
2
)) + 1(

x−
(
−i

√
2
)))

= 1
2x− 2i

√
2
+ 1

2x+ 2i
√
2

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1
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Now that p(x) is found let

φ = θ + p′

p

= 1
2x− 2i

√
2
+ 1

2x+ 2i
√
2

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2x− 2i

√
2
+ 1

2x+ 2i
√
2

)
w + 7x2 + 16

4
(√

2 + ix
)2 (

x+ i
√
2
)2 = 0

Solving for ω gives

ω = x+ 2
√
2x2 + 4

2x2 + 4

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ x+2

√
2x2+4

2x2+4 dx

=
(
x2 + 2

)1/4 e√2 arcsinh
(√

2 x
2

)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x

x2+2 dx

= z1e
−

3 ln
(
x2+2

)
4

= z1

(
1

(x2 + 2)3/4

)

Which simplifies to

y1 =
e
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

x2+2 dx

(y1)2
dx

= y1

∫
e−

3 ln
(
x2+2

)
2

(y1)2
dx

= y1

∫ e−2
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

e
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

+ c2

e
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

∫ e−2
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

dx



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.083 (sec)
Leaf size : 45� �
dsolve((x^2+2)*diff(diff(y(x),x),x)+3*diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y =

c1
(√

x2 + 2 + x
)√2 + c2

(√
x2 + 2 + x

)−√
2

√
x2 + 2

Mathematica DSolve solution

Solving time : 0.14 (sec)
Leaf size : 92� �
DSolve[{(x^2+2)*D[y[x],{x,2}]+3*x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
23/4c1 cos

(
2
√
2 arcsin

(
1
2

√
2− i

√
2x
))

√
π
√
x2 + 2

+
c2Q

1
2
− 1

2+
√
2

(
ix√
2

)
4
√
x2 + 2
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2.1.317 problem 322

Solved as second order ode using Kovacic algorithm . . . . . . . . .2184
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2189
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2190
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2190
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2191

Internal problem ID [9165]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 322
Date solved : Thursday, December 12, 2024 at 10:01:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.597: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (x− 1)2
− 1

2 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.318 problem 325

Solved as second order ode using Kovacic algorithm . . . . . . . . .2192
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2197
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2198
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2199
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2199

Internal problem ID [9166]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 325
Date solved : Thursday, December 12, 2024 at 10:01:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.388 (sec)

Writing the ode as

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 5
3x+ x2 (3)

C = −1
3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x2 + 30x+ 7
36x2 (6)

Comparing the above to (5) shows that

s = 9x2 + 30x+ 7
t = 36x2
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Therefore eq. (4) becomes

z′′(x) =
(
9x2 + 30x+ 7

36x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.599: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 5

6x + 7
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 5
6x − 1

2x2 + 5
6x3 − 59

36x4 + 385
108x5 − 2681

324x6 + 19525
972x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x2 + 30x+ 7
36x2

= Q+ R

36x2

=
(
1
4

)
+
(
30x+ 7
36x2

)
= 1

4 + 30x+ 7
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 30. Dividing this by leading coefficient in t which is 36 gives 5

6 . Now b can be found.

b =
(
5
6

)
− (0)

= 5
6
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
6
1
2
− 0
)

= 5
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
6
1
2
− 0
)

= −5
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x2 + 30x+ 7
36x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

5
6 −5

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

6 then

d = α+
∞ −

(
α−
c1

)
= 5

6 −
(
−1
6

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
6x +

(
1
2

)
= − 1

6x + 1
2

= − 1
6x + 1

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6x + 1

2

)
(1) +

((
1
6x2

)
+
(
− 1
6x + 1

2

)2

−
(
9x2 + 30x+ 7

36x2

))
= 0

−1− 3a0
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 1

3

)
e
∫ (

− 1
6x+

1
2
)
dx

=
(
x− 1

3

)
ex

2−
ln(x)

6

= (−1 + 3x) ex
2

3x1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

5
3x+x2

x2 dx

= z1e
−x

2−
5 ln(x)

6

= z1

(
e−x

2

x5/6

)
Which simplifies to

y1 =
−1 + 3x

3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

5
3x+x2

x2 dx

(y1)2
dx

= y1

∫
e−x− 5 ln(x)

3

(y1)2
dx

= y1

(∫ 9 e−x− 5 ln(x)
3 x2

(−1 + 3x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
−1 + 3x

3x

)
+ c2

(
−1 + 3x

3x

(∫ 9 e−x− 5 ln(x)
3 x2

(−1 + 3x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+
(5
3x+ x2) ( d

dx
y(x)

)
− y(x)

3 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
3x2 −

(5+3x)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+3x)

(
d
dx

y(x)
)

3x − y(x)
3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 5+3x
3x , P3(x) = − 1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
+ x(5 + 3x)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 1) (3k + 3r − 1) + 3ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

3(k + r + 1)
(
k − 1

3 + r
)
ak + 3ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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3(k + 2 + r)
(
k + 2

3 + r
)
ak+1 + 3ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak(k+r)

(k+2+r)(3k+2+3r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = − 3ak(k−1)

(k+1)(3k−1)

• Apply recursion relation for k = 0
a1 = −3a0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (1− 3x)

• Recursion relation for r = 1
3

ak+1 = − 3ak
(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 = − 3ak
(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

]
• Combine solutions and rename parameters[

y(x) = a0 · (1− 3x) +
(

∞∑
k=0

bkx
k+ 1

3

)
, bk+1 = − 3bk

(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.076 (sec)
Leaf size : 29� �
dsolve(x^2*diff(diff(y(x),x),x)+(5/3*x+x^2)*diff(y(x),x)-1/3*y(x) = 0,

y(x),singsol=all)� �
y =

c1x
4/3 hypergeom

(
[2] ,

[7
3

]
, x
)
e−x − 3c2x+ c2

x

Mathematica DSolve solution

Solving time : 0.858 (sec)
Leaf size : 47� �
DSolve[{x^2*D[y[x],{x,2}]+(5/3*x+x^2)*D[y[x],x]-1/3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

−3c1x+ 3c2e−x 3
√
x+ c2(1− 3x)Γ

(1
3 , x
)
+ c1

3x
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2.1.319 problem 326

Solved as second order ode using Kovacic algorithm . . . . . . . . .2200
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2204
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2205
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2205
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2205

Internal problem ID [9167]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 326
Date solved : Thursday, December 12, 2024 at 10:01:33 AM
CAS classification : [[_Emden, _Fowler]]

Solve

2xy′′ − y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.237 (sec)

Writing the ode as

2xy′′ − y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −1 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)



chapter 2. book solved problems 2201

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.601: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16x2 − 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
(
2
√
−x− 1

)
e2

√
−x

(−x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
2x dx

= z1e
ln(x)

4

= z1
(
x1/4)

Which simplifies to

y1 =
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

2x dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

)
+ c2

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x

+
d
dx

y(x)
2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
2x + y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 36� �
dsolve(2*x*diff(diff(y(x),x),x)-diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
2c1

√
x+ c2

)
cos
(
2
√
x
)
− sin

(
2
√
x
) (

−2c2
√
x+ c1

)
Mathematica DSolve solution

Solving time : 0.121 (sec)
Leaf size : 59� �
DSolve[{2*x*D[y[x],{x,2}]-D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

2i
√
x
(
2
√
x+ i

)
+ 1

8c2e
−2i

√
x
(
1 + 2i

√
x
)
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2.1.320 problem 327

Solved as second order ode using Kovacic algorithm . . . . . . . . .2206
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2211
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2212
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2213
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2213

Internal problem ID [9168]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 327
Date solved : Thursday, December 12, 2024 at 10:01:34 AM
CAS classification : [_Laguerre]

Solve

2xy′′ − (3 + 2x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.358 (sec)

Writing the ode as

2xy′′ + (−3− 2x) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −3− 2x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x+ 21
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 + 4x+ 21
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x+ 21

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.603: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 1

4x + 21
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
4x + 5

4x2 − 5
8x3 − 5

4x4 + 35
16x5 + 105

64x6 − 1005
128x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 4x+ 21
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
4x+ 21
16x2

)
= 1

4 + 4x+ 21
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
2
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
2
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 4x+ 21
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

4 then

d = α+
∞ −

(
α−
c1

)
= 1

4 −
(
−3
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 3
4x +

(
1
2

)
= − 3

4x + 1
2

= − 3
4x + 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
4x + 1

2

)
(1) +

((
3
4x2

)
+
(
− 3
4x + 1

2

)2

−
(
4x2 + 4x+ 21

16x2

))
= 0

−3− 2a0
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −3

2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 3
2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 3

2

)
e
∫ (

− 3
4x+

1
2
)
dx

=
(
x− 3

2

)
ex

2−
3 ln(x)

4

= (−3 + 2x) ex
2

2x3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3−2x

2x dx

= z1e
x
2+

3 ln(x)
4

= z1
(
x3/4ex

2
)

Which simplifies to

y1 =
ex(−3 + 2x)

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3−2x

2x dx

(y1)2
dx

= y1

∫
ex+

3 ln(x)
2

(y1)2
dx

= y1

(∫ 4 ex+
3 ln(x)

2 e−2x

(−3 + 2x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex(−3 + 2x)

2

)
+ c2

(
ex(−3 + 2x)

2

(∫ 4 ex+
3 ln(x)

2 e−2x

(−3 + 2x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x− (2x+ 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
2x +

(2x+3)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+3)

(
d
dx

y(x)
)

2x + y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+3
2x , P3(x) = 1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (−2x− 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−5 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 3 + 2r)− ak(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 52
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r − 3

2

)
ak+1 − 2

(
k + r − 1

2

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (2k+2r−1)ak

(k+1+r)(2k−3+2r)

• Recursion relation for r = 0
ak+1 = (2k−1)ak

(k+1)(2k−3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (2k−1)ak

(k+1)(2k−3)

]
• Recursion relation for r = 5

2

ak+1 = (2k+4)ak(
k+ 7

2
)
(2k+2)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+1 = (2k+4)ak(
k+ 7

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+1 = (2k−1)ak

(k+1)(2k−3) , bk+1 = (2k+4)bk(
k+ 7

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 24� �
dsolve(2*x*diff(diff(y(x),x),x)-(2*x+3)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

(
[2] ,

[
7
2

]
, x

)
x5/2 −

2c2
(
x− 3

2

)
ex

3

Mathematica DSolve solution

Solving time : 1.059 (sec)
Leaf size : 54� �
DSolve[{2*x*D[y[x],{x,2}]-(3+2*x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4
(
−
√
πc2e

x(2x− 3)erf
(√

x
)
+ 2c1ex(2x− 3)− 6c2

√
x
)
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2.1.321 problem 328

Solved as second order ode using Kovacic algorithm . . . . . . . . .2214
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2218
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2219
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2219
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2220

Internal problem ID [9169]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 328
Date solved : Thursday, December 12, 2024 at 10:01:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + 3xy′ + (2x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.243 (sec)

Writing the ode as

2x2y′′ + 3xy′ + (2x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 3x (3)
C = 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.605: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1
x
+ 5

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
(
2
√
−x− 1

)
e2

√
−x

(−x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
2x2 dx

= z1e
− 3 ln(x)

4

= z1

(
1

x3/4

)

Which simplifies to

y1 =
(
2
√
−x− 1

)
e2

√
−x

x3/4 (−x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

2x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2

(y1)2
dx

= y1

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

((
2
√
−x− 1

)
e2

√
−x

x3/4 (−x)1/4

)
+ c2

((
2
√
−x− 1

)
e2

√
−x

x3/4 (−x)1/4

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ (2x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x−1)y(x)
2x2 −

3
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

2x + (2x−1)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
2x , P3(x) = 2x−1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ (2x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r − 1) + 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
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• Each term in the series must be 0, giving the recursion relation
2(k + r + 1)

(
k + r − 1

2

)
ak + 2ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 1

2 + r
)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+2+r)(2k+1+2r)

• Recursion relation for r = −1
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 1

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.402 (sec)
Leaf size : 73� �
dsolve(2*x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x+(2*x-1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2

√ (
−2

√
x+i

)
(4x+1)

2
√
x+i

e−2i
√
x + c1

√ (
2
√
x+i

)
(4x+1)

−2
√
x+i

e2i
√
x

x
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Mathematica DSolve solution

Solving time : 0.135 (sec)
Leaf size : 64� �
DSolve[{2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+(2*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−2i
√
x
(
8c1e4i

√
x
(
2
√
x+ i

)
+ c2

(
1 + 2i

√
x
))

8x
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2.1.322 problem 329

Solved as second order ode using Kovacic algorithm . . . . . . . . .2221
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2223
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2225
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2225
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2225

Internal problem ID [9170]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 329
Date solved : Thursday, December 12, 2024 at 10:01:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + 2y′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.095 (sec)

Writing the ode as

xy′′ + 2y′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.607: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx



chapter 2. book solved problems 2223

Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x)− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
− y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = −1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x)− xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r)− ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = ak

(k+1)(k+2) , 0 = 0, bk+2 = bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)-x*y(x) = 0,

y(x),singsol=all)� �
y = c1 sinh (x) + c2 cosh (x)

x

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 28� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−x + c2e

x

2x
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2.1.323 problem 330

Solved as second order ode using Kovacic algorithm . . . . . . . . .2226
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2228
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2230
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2230
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2230

Internal problem ID [9171]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 330
Date solved : Thursday, December 12, 2024 at 10:01:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.181 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.609: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.324 problem 331

Solved as second order ode using Kovacic algorithm . . . . . . . . .2231
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2236
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2237
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2237
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2238

Internal problem ID [9172]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 331
Date solved : Thursday, December 12, 2024 at 10:01:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (x− 6) y′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.339 (sec)

Writing the ode as

xy′′ + (x− 6) y′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x− 6 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 48
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 48
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 48
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.611: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 12

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 12. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 4

α−
c = 1

2 −
√
1 + 4b = −3

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 12
x2 − 144

x4 + 3456
x6 − 103680

x8 + 3483648
x10 − 125411328

x12 + 4729798656
x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 48
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
12
x2

)
= 1

4 + 12
x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 48
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 4 −3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−3)
= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −3
x
+ (−)

(
1
2

)
= −3

x
− 1

2
= −6 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(
−3
x
− 1

2

)(
3x2 + 2a2x+ a1

)
+
((

3
x2

)
+
(
−3
x
− 1

2

)2

−
(
x2 + 48
4x2

))
= 0

(a2 − 12)x2 + 2(a1 − 5a2)x+ 3a0 − 6a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 120, a1 = 60, a2 = 12}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 + 12x2 + 60x+ 120
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 + 12x2 + 60x+ 120

)
e
∫ (

− 3
x
− 1

2
)
dx

=
(
x3 + 12x2 + 60x+ 120

)
e−x

2−3 ln(x)

= (x3 + 12x2 + 60x+ 120) e−x
2

x3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x−6
x

dx

= z1e
−x

2+3 ln(x)

= z1
(
x3e−x

2
)

Which simplifies to
y1 = e−x

(
x3 + 12x2 + 60x+ 120

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x−6

x
dx

(y1)2
dx

= y1

∫
e−x+6 ln(x)

(y1)2
dx

= y1

(
(x3 − 12x2 + 60x− 120) e−x+6 ln(x)e2x

(x3 + 12x2 + 60x+ 120)x6

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
(
x3 + 12x2 + 60x+ 120

))
+ c2

(
e−x
(
x3 + 12x2 + 60x+ 120

)((x3 − 12x2 + 60x− 120) e−x+6 ln(x)e2x
(x3 + 12x2 + 60x+ 120)x6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−6 + x)

(
d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3y(x)
x

−
(−6+x)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−6+x)

(
d
dx

y(x)
)

x
− 3y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −6+x
x

, P3(x) = − 3
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−6 + x)

(
d
dx
y(x)

)
− 3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−7 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 6 + r) + ak(k + r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 7}
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• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 6 + r) + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(k+1+r)(k−6+r)

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = − ak(k−3)

(k+1)(k−6)

• Apply recursion relation for k = 0
a1 = −a0

2

• Apply recursion relation for k = 1
a2 = −a1

5

• Express in terms of a0
a2 = a0

10

• Apply recursion relation for k = 2
a3 = −a2

12

• Express in terms of a0
a3 = − a0

120

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 1

2x+ 1
10x

2 − 1
120x

3)
• Recursion relation for r = 7

ak+1 = − ak(k+4)
(k+8)(k+1)

• Solution for r = 7[
y(x) =

∞∑
k=0

akx
k+7, ak+1 = − ak(k+4)

(k+8)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− 1

2x+ 1
10x

2 − 1
120x

3)+ ( ∞∑
k=0

bkx
k+7
)
, bk+1 = − bk(4+k)

(k+8)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 39� �
dsolve(x*diff(diff(y(x),x),x)+(x-6)*diff(y(x),x)-3*y(x) = 0,

y(x),singsol=all)� �
y = c1

(
x3 − 12x2 + 60x− 120

)
+ c2e−x

(
x3 + 12x2 + 60x+ 120

)
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Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 98� �
DSolve[{x*D[y[x],{x,2}]+(x-6)*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
2e−x/2√x

(
(c1x3 + 12ic2x2 + 60c1x+ 120ic2) cosh

(
x
2

)
− (12c1(x2 + 10) + ic2x(x2 + 60)) sinh

(
x
2

))
√
π
√
−ix
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2.1.325 problem 332

Solved as second order ode using Kovacic algorithm . . . . . . . . .2239
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2243
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2243
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2243
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2243

Internal problem ID [9173]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 332
Date solved : Thursday, December 12, 2024 at 10:01:37 AM
CAS classification : [[_Emden, _Fowler]]

Solve

x4y′′ + λy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.281 (sec)

Writing the ode as

x4y′′ + λy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4

B = 0 (3)
C = λ

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −λ

x4 (6)

Comparing the above to (5) shows that

s = −λ

t = x4

Therefore eq. (4) becomes

z′′(x) =
(
− λ

x4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.613: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x4. There is a pole at x = 0 of order 4. Since there is no odd order pole larger than
2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − λ

x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

i
√
λ

x2 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

i
√
λ

x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = i
√
λ

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be 0. Therefore

b = (0)− (0)
= 0

Hence

[
√
r]c =

i
√
λ

x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
0

i
√
λ
+ 2
)

= 1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
− 0
i
√
λ
+ 2
)

= 1

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − λ

x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 i
√
λ

x2 1 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1

)
= 1− (1)
= 0



chapter 2. book solved problems 2242

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −i
√
λ

x2 + 1
x
+ (−) (0)

= −i
√
λ

x2 + 1
x

= −i
√
λ+ x

x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−i

√
λ

x2 + 1
x

)
(0) +

(2i
√
λ

x3 − 1
x2

)
+
(
−i

√
λ

x2 + 1
x

)2

−
(
− λ

x4

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− i
√
λ

x2 + 1
x

)
dx

= x e i
√
λ

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x e i
√
λ

x

Which simplifies to

y1 = x e i
√
λ

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x e i
√
λ

x

∫ 1
x2e 2i

√
λ

x

dx

= x e i
√
λ

x

(
−ie− 2i

√
λ

x

2
√
λ

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e i

√
λ

x

)
+ c2

(
x e i

√
λ

x

(
−ie− 2i

√
λ

x

2
√
λ

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 31� �
dsolve(x^4*diff(diff(y(x),x),x)+lambda*y(x) = 0,

y(x),singsol=all)� �
y = x

(
c1 sinh

(√
−λ

x

)
+ c2 cosh

(√
−λ

x

))

Mathematica DSolve solution

Solving time : 0.177 (sec)
Leaf size : 52� �
DSolve[{x^4*D[y[x],{x,2}]+\[Lambda]*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1xe

i
√
λ

x − ic2xe
− i

√
λ

x

2
√
λ
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2.1.326 problem 333

Solved as second order ode using Kovacic algorithm . . . . . . . . .2244
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2248
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2250
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2250
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2250

Internal problem ID [9174]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 333
Date solved : Thursday, December 12, 2024 at 10:01:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.333 (sec)

Writing the ode as

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 4x (3)
C = 4x2 − 25

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 6
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6

x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.614: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− 3i

x2 − 9i
2x4 − 27i

2x6 − 405i
8x8 − 1701i

8x10 − 15309i
16x12 − 72171i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 6
x2

= Q+ R

x2

= (−1) +
(

6
x2

)
= −1 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (i)

= −2
x
− i

= −2
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− i

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− i

)2

−
(
−x2 + 6

x2

))
= 0

2ixa1 + 4ia0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3, a1 = −3i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix− 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix− 3

)
e
∫ (

− 2
x
−i
)
dx

=
(
x2 − 3ix− 3

)
e−2 ln(x)−ix

= (x2 − 3ix− 3) e−ix

x2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
4x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x2 − 3ix− 3) e−ix

x5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 3ix− 3) e−ix

x5/2

)
+ c2

(
(x2 − 3ix− 3) e−ix

x5/2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 25) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−25

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−25

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−25

4x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −25
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 25) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−5 + 2r)xr + a1(7 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
5
2

}
• Each term must be 0

a1(7 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2(2k + 9 + 2r) (2k − 1 + 2r) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 4ak
(2k+9+2r)(2k−1+2r)

• Recursion relation for r = −5
2

ak+2 = − 4ak
(2k+4)(2k−6)

• Solution for r = −5
2[

y(x) =
∞∑
k=0

akx
k− 5

2 , ak+2 = − 4ak
(2k+4)(2k−6) , a1 = 0

]
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• Recursion relation for r = 5
2

ak+2 = − 4ak
(2k+14)(2k+4)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − 4ak
(2k+14)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − 4ak

(2k+4)(2k−6) , a1 = 0, bk+2 = − 4bk
(2k+14)(2k+4) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.074 (sec)
Leaf size : 43� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2-25)*y(x) = 0,

y(x),singsol=all)� �
y =

−3c2
(
ix− 1

3x
2 + 1

)
e−ix + 3c1eix

(
ix+ 1

3x
2 − 1

)
x5/2

Mathematica DSolve solution

Solving time : 0.139 (sec)
Leaf size : 59� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2-25)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π
((−c2x

2 + 3c1x+ 3c2) cos(x) + (c1(x2 − 3) + 3c2x) sin(x))
x5/2
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2.1.327 problem 334

Solved as second order ode using Kovacic algorithm . . . . . . . . .2251
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2253
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2255
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2255
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2255

Internal problem ID [9175]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 334
Date solved : Thursday, December 12, 2024 at 10:01:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.193 (sec)

Writing the ode as

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = 36x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −36
1 (6)

Comparing the above to (5) shows that

s = −36
t = 1
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Therefore eq. (4) becomes

z′′(x) = −36z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.616: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −36 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (6x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (6x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
tan (6x)

6

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (6x)√

x

)
+ c2

(
cos (6x)√

x

(
tan (6x)

6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
36x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
144x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
144x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 144x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (144x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 144ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 144ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 144ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 144ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 144ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 144ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 144ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 144ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 144ak

4k2+12k+8 , a1 = 0, bk+2 = − 144bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(36*x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = c1 sin (6x) + c2 cos (6x)√

x

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(36*x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−6ix(12c1 − ic2e

12ix)
12
√
x
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2.1.328 problem 335

Solved as second order ode using Kovacic algorithm . . . . . . . . .2256
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2260
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2262
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2262
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2262

Internal problem ID [9176]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 335
Date solved : Thursday, December 12, 2024 at 10:01:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.318 (sec)

Writing the ode as

x2y′′ +
(
x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)
C = x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 2

x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.618: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− i

x2 − i

2x4 − i

2x6 − 5i
8x8 − 7i

8x10 − 21i
16x12 − 33i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 2
x2

= Q+ R

x2

= (−1) +
(

2
x2

)
= −1 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (i)

= −1
x
− i

= −1
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

)
(1) +

((
1
x2

)
+
(
−1
x
− i

)2

−
(
−x2 + 2

x2

))
= 0

2ia0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− i) e
∫ (

− 1
x
−i
)
dx

= (x− i) e− ln(x)−ix

= (x− i) e−ix

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (x− i) e−ix

x

Which simplifies to

y1 =
(x− i) e−ix

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (x− i) e−ix

x

∫ 1
(x−i)2e−2ix

x2

dx

= (x− i) e−ix

x

(
(ix− 1) e2ix
−2x+ 2i

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x− i) e−ix

x

)
+ c2

(
(x− i) e−ix

x

(
(ix− 1) e2ix
−2x+ 2i

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−2

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
x2−2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = x2−2

x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr + a1(2 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term must be 0
a1(2 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+3+r)(k+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+2)(k−1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+2)(k−1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+5)(k+2)

• Solution for r = 2
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[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+5)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k−1) , a1 = 0, bk+2 = − bk
(5+k)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)+(x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = (c1x+ c2) cos (x) + sin (x) (c2x− c1)

x

Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 21� �
DSolve[{x^2*D[y[x],{x,2}]+(x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c1j1(x)− c2y1(x))
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2.1.329 problem 336

Solved as second order ode using Kovacic algorithm . . . . . . . . .2263
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2267
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2269
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2269
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2269

Internal problem ID [9177]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 336
Date solved : Thursday, December 12, 2024 at 10:01:40 AM
CAS classification : [[_Emden, _Fowler]]

Solve

xy′′ + 3y′ + x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.306 (sec)

Writing the ode as

xy′′ + 3y′ + x3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −4x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−4x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.620: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ix− 3i

8x3−
9i

128x7−
27i

1024x11−
405i

32768x15−
1701i

262144x19−
15309i

4194304x23−
72171i

33554432x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −4x4 + 3
4x2

= Q+ R

4x2

=
(
−x2)+ ( 3

4x2

)
= −x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 1
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 1
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (ix)

= − 1
2x − ix

= − 1
2x − ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − ix

)
(0) +

((
1
2x2 − i

)
+
(
− 1
2x − ix

)2

−
(
−4x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−ix

)
dx

= e− ix2
2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e− ix2

2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ieix2

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− ix2

2

x2

)
+ c2

(
e− ix2

2

x2

(
−ieix2

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + x3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = x2]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + ak = 0

• Recursion relation that defines series solution to ODE
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ak+4 = − ak
(k+4+r)(k+6+r)

• Recursion relation for r = −2
ak+4 = − ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 25� �
dsolve(x*diff(diff(y(x),x),x)+3*diff(y(x),x)+y(x)*x^3 = 0,

y(x),singsol=all)� �
y =

c1 sin
(

x2

2

)
+ c2 cos

(
x2

2

)
x2

Mathematica DSolve solution

Solving time : 0.089 (sec)
Leaf size : 43� �
DSolve[{x*D[y[x],{x,2}]+3*D[y[x],x]+x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

ix2
2

(
2c1 − ic2e

ix2
)

2x2
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2.1.330 problem 337

Solved as second order ode using Kovacic algorithm . . . . . . . . .2270
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2272
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2274
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2274
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2274

Internal problem ID [9178]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 337
Date solved : Thursday, December 12, 2024 at 10:01:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.168 (sec)

Writing the ode as

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 4x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.622: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
x2 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

y1 =
cos (x)
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

x2 dx

(y1)2
dx

= y1

∫
e−4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)
x2

)
+ c2

(
cos (x)
x2 (tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 −
4
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
4
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1
ak+2 = − ak

(k+3)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x2

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x2
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2.1.331 problem 338

Solved as second order ode using Kovacic algorithm . . . . . . . . .2275
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2279
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2281
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2281
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2281

Internal problem ID [9179]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 338
Date solved : Thursday, December 12, 2024 at 10:01:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x2

B = 32x (3)
C = x4 − 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x4 + 12
16x2 (6)

Comparing the above to (5) shows that

s = −x4 + 12
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−x4 + 12
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.624: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −x2

16 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ix

4 − 3i
2x3 − 9i

2x7 − 27i
x11 − 405i

2x15 − 1701i
x19 − 15309i

x23 − 144342i
x27 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

4
From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= ix

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = −x2

16
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −x4 + 12
16x2

= Q+ R

16x2

=
(
−x2

16

)
+
(

3
4x2

)
= −x2

16 + 3
4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = ix

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
4
− 1
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

i
4
− 1
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x4 + 12
16x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 ix
4 −1

2 −1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−)

(
ix

4

)
= − 1

2x − ix

4
= − 1

2x − ix

4

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − ix

4

)
(0) +

((
1
2x2 − i

4

)
+
(
− 1
2x − ix

4

)2

−
(
−x4 + 12
16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

ix
4
)
dx

= e− ix2
8

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
32x
16x2 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
e− ix2

8

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 32x

16x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1
(
−2ie ix2

4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− ix2

8

x3/2

)
+ c2

(
e− ix2

8

x3/2

(
−2ie ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

16x2
(

d2

dx2y(x)
)
+ 32x

(
d
dx
y(x)

)
+ (x4 − 12) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x4−12

)
y(x)

16x2 −
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+
(
x4−12

)
y(x)

16x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = x4−12

16x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ 32x

(
d
dx
y(x)

)
+ (x4 − 12) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..4

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

4a0(3 + 2r) (−1 + 2r)xr + 4a1(5 + 2r) (1 + 2r)x1+r + 4a2(7 + 2r) (3 + 2r)x2+r + 4a3(9 + 2r) (5 + 2r)x3+r +
(

∞∑
k=4

(4ak(2k + 2r + 3) (2k + 2r − 1) + ak−4)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(3 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
1
2

}
• The coefficients of each power of x must be 0

[4a1(5 + 2r) (1 + 2r) = 0, 4a2(7 + 2r) (3 + 2r) = 0, 4a3(9 + 2r) (5 + 2r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

16
(
k + r + 3

2

) (
k + r − 1

2

)
ak + ak−4 = 0

• Shift index using k− >k + 4
16
(
k + 11

2 + r
) (

k + 7
2 + r

)
ak+4 + ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − ak

4(2k+11+2r)(2k+7+2r)

• Recursion relation for r = −3
2

ak+4 = − ak
4(2k+8)(2k+4)

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+4 = − ak
4(2k+8)(2k+4) , a1 = 0, a2 = 0, a3 = 0

]
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• Recursion relation for r = 1
2

ak+4 = − ak
4(2k+12)(2k+8)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+4 = − ak
4(2k+12)(2k+8) , a1 = 0, a2 = 0, a3 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a4+k = − ak

4(2k+8)(2k+4) , a1 = 0, a2 = 0, a3 = 0, b4+k = − bk
4(2k+12)(2k+8) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 25� �
dsolve(16*x^2*diff(diff(y(x),x),x)+32*diff(y(x),x)*x+(x^4-12)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 sin
(

x2

8

)
+ c2 cos

(
x2

8

)
x3/2

Mathematica DSolve solution

Solving time : 0.101 (sec)
Leaf size : 42� �
DSolve[{16*x^2*D[y[x],{x,2}]+32*x*D[y[x],x]+(x^4-12)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

ix2
8

(
c1 − 2ic2e

ix2
4

)
x3/2
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2.1.332 problem 339

Solved as second order ode using Kovacic algorithm . . . . . . . . .2282
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2286
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2287
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2287
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2288

Internal problem ID [9180]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 339
Date solved : Thursday, December 12, 2024 at 10:01:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − x2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.399 (sec)

Writing the ode as

y′′ − x2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 − 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 − 8

)
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x(x3 − 8)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.626: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 − 2
x
− 4

x4 − 16
x7 − 80

x10 − 448
x13 − 2688

x16 − 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 − 8)
4

= Q+ R

4

=
(
1
4x

4 − 2x
)
+ (0)

= 1
4x

4 − 2x

We see that the coefficient of the term 1
x
in the quotient is −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 2
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 2
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x(x3 − 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 −3 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x2

2

)
= −x2

2

= −x2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x2

2

)
(1) +

(
(−x) +

(
−x2

2

)2

−
(
x(x3 − 8)

4

))
= 0

xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x2

2 dx

= (x) e−x3
6

= x e−x3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)
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Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1


32/3(−1)1/3

(
−3x2(−1)2/3Γ

( 2
3
)

(−x3)2/3
+ 3 31/3(−1)2/3e

x3
3

x
+

3x2(−1)2/3Γ
(

2
3 ,−

x3
3

)
(−x3)2/3

)
9


Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

x


32/3(−1)1/3

(
−3x2(−1)2/3Γ

( 2
3
)

(−x3)2/3
+ 3 31/3(−1)2/3e

x3
3

x
+

3x2(−1)2/3Γ
(

2
3 ,−

x3
3

)
(−x3)2/3

)
9




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x2( d
dx
y(x)

)
+ xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1
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x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k − 2))xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−1(k − 2) = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak(k − 1) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = ak(k−1)

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^2+x*y(x) = 0,

y(x),singsol=all)� �
y = c2

(
−x3)1/3 32/3Γ(2

3

)
− c2

(
−x3)1/3 32/3Γ(2

3 ,−
x3

3

)
+ 3c2e

x3
3 + c1x
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Mathematica DSolve solution

Solving time : 0.082 (sec)
Leaf size : 41� �
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x−

c2
3
√
−x3Γ

(
−1

3 ,−
x3

3

)
3 3
√
3
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2.1.333 problem 340

Solved as second order ode using Kovacic algorithm . . . . . . . . .2289
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2293
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2295
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2295
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2295

Internal problem ID [9181]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 340
Date solved : Thursday, December 12, 2024 at 10:01:43 AM
CAS classification : [_Laguerre]

Solve

xy′′ − (x+ 2) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.255 (sec)

Writing the ode as

xy′′ + (−x− 2) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −x− 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.628: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−2

x
dx

= z1e
x
2+ln(x)

= z1
(
x ex

2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x−2

x
dx

(y1)2
dx

= y1

∫
ex+2 ln(x)

(y1)2
dx

= y1

(
−(x2 + 2x+ 2) ex+2 ln(x)e−2x

x2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−(x2 + 2x+ 2) ex+2 ln(x)e−2x

x2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (x+ 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x

+
(x+2)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+2)

(
d
dx

y(x)
)

x
+ 2y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+2
x
, P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−x− 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 2)− ak(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]
• Recursion relation for r = 3

ak+1 = ak
k+4

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = ak

k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+3
)
, ak+1 = ak

k+1 , bk+1 = bk
4+k

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 19� �
dsolve(x*diff(diff(y(x),x),x)-(x+2)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2

(
x2 + 2x+ 2

)
Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 24� �
DSolve[{x*D[y[x],{x,2}]-(x+2)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2
(
x2 + 2x+ 2

)
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2.1.334 problem 341

Solved as second order ode using Kovacic algorithm . . . . . . . . .2296
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2300
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2301
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2301
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2301

Internal problem ID [9182]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 341
Date solved : Thursday, December 12, 2024 at 10:01:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.297 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.630: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 37� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = −x

(
c2 erf

(
i
√
2x
2

)
π − c1

)
e−x2

2 + i
√
π
√
2 c2

Mathematica DSolve solution

Solving time : 0.09 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.335 problem 342

Solved as second order ode using Kovacic algorithm . . . . . . . . .2302
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2306
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2307
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2307
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2307

Internal problem ID [9183]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 342
Date solved : Thursday, December 12, 2024 at 10:01:44 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.632: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
4 (x− 1) −

1
4 (x− 1)2

− 5
4 (x+ 1) −

1
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 − 3

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2 + 1

2x+ 2

)
(1) +

((
− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(

2x2 − 3
(x2 − 1)2

))
= 0

− 2a0
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2+
1

2x+2

)
dx

= (x)
√

(x− 1) (x+ 1)
= x

√
x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)
Which simplifies to

y1 =
x
√
x2 − 1√

x− 1
√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
ln (x− 1)

2 + 1
x
− ln (x+ 1)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x
√
x2 − 1√

x− 1
√
x+ 1

)
+ c2

(
x
√
x2 − 1√

x− 1
√
x+ 1

(
ln (x− 1)

2 + 1
x
− ln (x+ 1)

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 2y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 2

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 1
[y(x) = −a0x]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 25� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = − ln (x+ 1) c2x

2 + c2 ln (x− 1)x
2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 33� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x− 1

2c2(x log(1− x)− x log(x+ 1) + 2)
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2.1.336 problem 343

Solved as second order ode using Kovacic algorithm . . . . . . . . .2308
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2310
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2311
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2311
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2311

Internal problem ID [9184]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 343
Date solved : Thursday, December 12, 2024 at 10:01:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.093 (sec)

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.634: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2
)
+ c2

(
ex2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 4x
(

d
dx
y(x)

)
+ (4x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

2(c2x+ c1)
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2.1.337 problem 344

Solved as second order ode using Kovacic algorithm . . . . . . . . .2312
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2316
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2318
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2318
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2318

Internal problem ID [9185]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 344
Date solved : Thursday, December 12, 2024 at 10:01:45 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 30y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.347 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 30y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 30

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 30x2 − 31
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 30x2 − 31

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
30x2 − 31
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.636: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x+ 1)2

+ 61
4 (x− 1) −

61
4 (x+ 1) −

1
4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 30x2 − 31

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 30. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 6

α−
∞ = 1

2 −
√
1 + 4b = −5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 30x2 − 31
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 6 −5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 6 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 6− (1)
= 5

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 5 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
20x3 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(

1
2x− 2 + 1

2x+ 2

)(
5x4 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(
30x2 − 31
(x2 − 1)2

))
= 0

−10a4x4 + (−18a3 − 20)x3 + (−24a2 − 12a4)x2 + (−28a1 − 6a3)x− 30a0 − 2a2
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = 0, a1 =

5
21 , a2 = 0, a3 = −10

9 , a4 = 0
}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x5 − 10
9 x3 + 5

21x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x5 − 10

9 x3 + 5
21x

)
e
∫ ( 1

2x−2+
1

2x+2

)
dx

=
(
x5 − 10

9 x3 + 5
21x

)√
(x− 1) (x+ 1)

= (63x5 − 70x3 + 15x)
√
x2 − 1

63
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)

Which simplifies to

y1 =
(63x5 − 70x3 + 15x)

√
x2 − 1

63
√
x− 1

√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
−3969 ln (x+ 1)

128 + 3969 ln (x− 1)
128 + 441

25x −
3087

(
−23x3 + 935

63 x
)

1600
(
x4 − 10

9 x
2 + 5

21

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(63x5 − 70x3 + 15x)

√
x2 − 1

63
√
x− 1

√
x+ 1

)

+ c2

(
(63x5 − 70x3 + 15x)

√
x2 − 1

63
√
x− 1

√
x+ 1

(
−3969 ln (x+ 1)

128 + 3969 ln (x− 1)
128 + 441

25x

−
3087

(
−23x3 + 935

63 x
)

1600
(
x4 − 10

9 x
2 + 5

21

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 30y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 30y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 30y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 30

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 30y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 30y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 6) (k + r − 5)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 6) (k − 5) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+6)(k−5)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 5
ak+1 = ak(k+6)(k−5)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −15a0

• Apply recursion relation for k = 1
a2 = −7a1

2

• Express in terms of a0
a2 = 105a0

2

• Apply recursion relation for k = 2
a3 = −4a2

3

• Express in terms of a0
a3 = −70a0

• Apply recursion relation for k = 3
a4 = −9a3

16

• Express in terms of a0
a4 = 315a0

8

• Apply recursion relation for k = 4
a5 = −a4

5

• Express in terms of a0
a5 = −63a0

8

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 15u+ 105

2 u2 − 70u3 + 315
8 u4 − 63

8 u
5)

• Revert the change of variables u = x+ 1[
y(x) = a0

(
−15

8 x+ 35
4 x

3 − 63
8 x

5)]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 71� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+30*y(x) = 0,

y(x),singsol=all)� �
y =

21
(
x4 − 10

9 x
2 + 5

21

)
c2x ln (x− 1)

640 −
21
(
x4 − 10

9 x
2 + 5

21

)
c2x ln (x+ 1)

640
+ 21c1x5

5 + 21c2x4

320 − 14c1x3

3 − 49c2x2

960 + c1x+ c2
225

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 76� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+30*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

8c1x
(
63x4 − 70x2 + 15

)
+ c2

(
−63x4

8 + 49x2

8 − 1
16
(
63x4 − 70x2 + 15

)
x(log(1− x)− log(x+ 1))− 8

15

)
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2.1.338 problem 345

Solved as second order ode using Kovacic algorithm . . . . . . . . .2319
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2321
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2323
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2323
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2323

Internal problem ID [9186]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 345
Date solved : Thursday, December 12, 2024 at 10:01:46 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.164 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.638: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.339 problem 346

Solved as second order ode using Kovacic algorithm . . . . . . . . .2324
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2328
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2329
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2329
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2330

Internal problem ID [9187]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 346
Date solved : Thursday, December 12, 2024 at 10:01:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (2x+ 1) y′ + (x+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.193 (sec)

Writing the ode as

xy′′ + (2x+ 1) y′ + (x+ 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2x+ 1 (3)
C = x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.640: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)



chapter 2. book solved problems 2327

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x+1

x
dx

= z1e
−x− ln(x)

2

= z1

(
e−x

√
x

)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x+1

x
dx

(y1)2
dx

= y1

∫
e−2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ln (x))

)
Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (2x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
x

−
(2x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x
+ (x+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x

, P3(x) = x+1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (2x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 + a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 + ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 + a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + 2akk + ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + 2ak+1(k + 1) + ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −2kak+1+ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −2kak+1+ak+3ak+1

(k+2)2 , a1 + a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve(x*diff(diff(y(x),x),x)+(2*x+1)*diff(y(x),x)+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = e−x(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]+(2*x+1)*D[y[x],x]+(x+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2 log(x) + c1)



chapter 2. book solved problems 2331

2.1.340 problem 347

Solved as second order ode using Kovacic algorithm . . . . . . . . .2331
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2335
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2336
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2336
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2337

Internal problem ID [9188]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 347
Date solved : Thursday, December 12, 2024 at 10:01:47 AM
CAS classification : [_Jacobi]

Solve

2x(x− 1) y′′ − (x+ 1) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.224 (sec)

Writing the ode as (
2x2 − 2x

)
y′′ + (−x− 1) y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 − 2x
B = −x− 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 + 18x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −3x2 + 18x− 3

t = 16
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 + 18x− 3
16 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.642: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
4 (x− 1) +

3
4 (x− 1)2

− 3
16x2 + 3

4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 1 let b be the coefficient of 1

(x−1)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 + 18x− 3

16 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 + 18x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 3
4x − 1

2 (x− 1) + (−) (0)

= 3
4x − 1

2 (x− 1)

= x− 3
4x (x− 1)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4x − 1

2 (x− 1)

)
(0) +

((
− 3
4x2 + 1

2 (x− 1)2
)
+
(

3
4x − 1

2 (x− 1)

)2

−
(
−3x2 + 18x− 3
16 (x2 − x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4x−
1

2(x−1)

)
dx

= x3/4
√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−1

2x2−2x dx

= z1e
− ln(x)

4 + ln(x−1)
2

= z1

(√
x− 1
x1/4

)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x−1

2x2−2x dx

(y1)2
dx

= y1

∫
e−

ln(x)
2 +ln(x−1)

(y1)2
dx

= y1

(
2(x+ 1) e−

ln(x)
2 +ln(x−1)

x− 1

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(
√
x

(
2(x+ 1) e−

ln(x)
2 +ln(x−1)

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x(x− 1)
(

d2

dx2y(x)
)
− (x+ 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
2x(x−1) +

(x+1)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

2x(x−1) + y(x)
2x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x+1
2x(x−1) , P3(x) = 1

2x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x(x− 1)
(

d2

dx2y(x)
)
+ (−x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2

(
k + r − 1

2

)
ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = (2k+2r−1)ak(k+r−1)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = (2k−1)ak(k−1)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (x+ 1)

• Recursion relation for r = 1
2

ak+1 =
2kak

(
k− 1

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2kak

(
k− 1

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) = a0 · (x+ 1) +
(

∞∑
k=0

bkx
k+ 1

2

)
, bk+1 =

2kbk
(
k− 1

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 14� �
dsolve(2*x*(x-1)*diff(diff(y(x),x),x)-(x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2

√
x+ c1x+ c1
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Mathematica DSolve solution

Solving time : 0.083 (sec)
Leaf size : 21� �
DSolve[{2*x*(x-1)*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

√
x− 2c2(x+ 1)
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2.1.341 problem 348

Solved as second order ode using Kovacic algorithm . . . . . . . . .2338
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2340
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2342
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2342
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2342

Internal problem ID [9189]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 348
Date solved : Thursday, December 12, 2024 at 10:01:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + 2y′ + 4xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.174 (sec)

Writing the ode as

xy′′ + 2y′ + 4xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.644: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (2x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (2x)

x

)
+ c2

(
cos (2x)

x

(
tan (2x)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + 4xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ 4y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 4

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + 4xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − 4ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − 4ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − 4ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − 4ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − 4ak

(k+1)(k+2) , 0 = 0, bk+2 = − 4bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+4*x*y(x) = 0,

y(x),singsol=all)� �
y = c1 sin (2x) + c2 cos (2x)

x

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+4*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−2ix − ic2e

2ix

4x
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2.1.342 problem 349

Solved as second order ode using Kovacic algorithm . . . . . . . . .2343
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2345
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2347
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2347
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2347

Internal problem ID [9190]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 349
Date solved : Thursday, December 12, 2024 at 10:01:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (2− 2x) y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.102 (sec)

Writing the ode as

xy′′ + (2− 2x) y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2− 2x (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.646: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2−2x

x
dx

= z1e
x−ln(x)

= z1

(
ex
x

)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2−2x

x
dx

(y1)2
dx

= y1

∫
e2x−2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 2)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x

+
2
(

d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)
(x−1)

x
+ (x−2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x−1)
x

, P3(x) = x−2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 2)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r)− 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 2 + r)− 2ak(k + 1 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r)− 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 2 + r)− 2akk − 2akr − 2ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− 2ak+1(k + 1)− 2rak+1 − 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak+4ak+1

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3) , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0, bk+2 = 2kbk+1−bk+4bk+1
(k+2)(k+3) , 2b1 − 2b0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(x*diff(diff(y(x),x),x)+(-2*x+2)*diff(y(x),x)+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c1x+ c2)

x

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]+(2-2*x)*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)

x
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2.1.343 problem 350

Solved as second order ode using Kovacic algorithm . . . . . . . . .2348
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2350
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2352
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2352
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2352

Internal problem ID [9191]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 350
Date solved : Thursday, December 12, 2024 at 10:01:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.174 (sec)

Writing the ode as

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 6x (3)
C = 4x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.648: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x
x2 dx

= z1e
−3 ln(x)

= z1

(
1
x3

)

Which simplifies to

y1 =
cos (2x)

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 6x

x2 dx

(y1)2
dx

= y1

∫
e−6 ln(x)

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (2x)

x3

)
+ c2

(
cos (2x)

x3

(
tan (2x)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 6x

(
d
dx
y(x)

)
+ (4x2 + 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
2x2+3

)
y(x)

x2 −
6
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
6
(

d
dx

y(x)
)

x
+ 2

(
2x2+3

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 6

x
, P3(x) = 2

(
2x2+3

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 6x

(
d
dx
y(x)

)
+ (4x2 + 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (2 + r)xr + a1(4 + r) (3 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 3) (k + r + 2) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−2}

• Each term must be 0
a1(4 + r) (3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r + 2) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 5 + r) (k + 4 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(k+5+r)(k+4+r)

• Recursion relation for r = −3
ak+2 = − 4ak

(k+2)(k+1)

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = − 4ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −2
ak+2 = − 4ak

(k+3)(k+2)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − 4ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−2
)
, ak+2 = − 4ak

(k+1)(k+2) , a1 = 0, bk+2 = − 4bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+6*diff(y(x),x)*x+(4*x^2+6)*y(x) = 0,

y(x),singsol=all)� �
y = c1 sin (2x) + c2 cos (2x)

x3

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]+6*x*D[y[x],x]+(4*x^2+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−2ix − ic2e

2ix

4x3
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2.1.344 problem 351

Solved as second order ode using Kovacic algorithm . . . . . . . . .2353
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2357
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2358
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2358
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2359

Internal problem ID [9192]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 351
Date solved : Thursday, December 12, 2024 at 10:01:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.194 (sec)

Writing the ode as

xy′′ + (1− 2x) y′ + (x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1− 2x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.650: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)



chapter 2. book solved problems 2356

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−2x

x
dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−2x

x
dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x

+
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+ (x−1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)+(1-2*x)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 17� �
DSolve[{x*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2 log(x) + c1)



chapter 2. book solved problems 2360

2.1.345 problem 352

Solved as second order ode using Kovacic algorithm . . . . . . . . .2360
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2364
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2365
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2366
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2366

Internal problem ID [9193]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 352
Date solved : Thursday, December 12, 2024 at 10:01:50 AM
CAS classification : [_Jacobi]

Solve

x(1− x) y′′ +
(
1
2 + 2x

)
y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.294 (sec)

Writing the ode as

(
−x2 + x

)
y′′ +

(
1
2 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = 1
2 + 2x (3)

C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 48x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = 48x− 3

t = 16
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(

48x− 3
16 (x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.652: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 21
8 (−1 + x) +

21
8x − 3

16x2 + 45
16 (−1 + x)2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 48x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 9
4 −5

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
4x − 5

4 (−1 + x) + (0)

= 1
4x − 5

4 (−1 + x)

= − 4x+ 1
4x (−1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x − 5

4 (−1 + x)

)
(1) +

((
− 1
4x2 + 5

4 (−1 + x)2
)
+
(

1
4x − 5

4 (−1 + x)

)2

−
(

48x− 3
16 (x2 − x)2

))
= 0

−1 + 4a0
2x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
4

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

4

)
e
∫ ( 1

4x−
5

4(−1+x)

)
dx

=
(
x+ 1

4

)
e−

5 ln(−1+x)
4 + ln(x)

4

=
(
x+ 1

4

)
x1/4

(−1 + x)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

1
2+2x

−x2+x
dx

= z1e
5 ln(−1+x)

4 − ln(x)
4

= z1

(
(−1 + x)5/4

x1/4

)

Which simplifies to

y1 = x+ 1
4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

1
2+2x

−x2+x
dx

(y1)2
dx

= y1

∫
e

5 ln(−1+x)
2 − ln(x)

2

(y1)2
dx

= y1

−

√
−1 + x

√
x
(
12 ln

(
−1

2 + x+
√
x (−1 + x)

)
x− 4

√
x (−1 + x)x+ 3 ln

(
−1

2 + x+
√

x (−1 + x)
)
− 26

√
x (−1 + x)

)
√

x (−1 + x) (4x+ 1)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 1

4

)
+ c2

x

+1
4

−

√
−1 + x

√
x
(
12 ln

(
−1

2 + x+
√
x (−1 + x)

)
x− 4

√
x (−1 + x)x+ 3 ln

(
−1

2 + x+
√
x (−1 + x)

)
− 26

√
x (−1 + x)

)
√

x (−1 + x) (4x+ 1)



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(1− x)
(

d2

dx2y(x)
)
+
(1
2 + 2x

) (
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x(x−1) +

(4x+1)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(4x+1)

(
d
dx

y(x)
)

2x(x−1) + 2y(x)
x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 4x+1
2x(x−1) , P3(x) = 2

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x(x− 1)
(

d2

dx2y(x)
)
+ (−4x− 1)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + 2ak(k + r − 1) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2ak(k + r − 1) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)(k+r−2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = 2ak(k−1)(k−2)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = 4a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (4x+ 1)

• Recursion relation for r = 1
2

ak+1 =
2ak
(
k− 1

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2ak
(
k− 1

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) = a0 · (4x+ 1) +
(

∞∑
k=0

bkx
k+ 1

2

)
, bk+1 =

2bk
(
k− 1

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 53� �
dsolve(x*(1-x)*diff(diff(y(x),x),x)+(1/2+2*x)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = (−12x− 3) c2 ln

(
−1 + 2x+ 2

√
x (x− 1)

)
+ (4x+ 26) c2

√
x (x− 1) + 4

(
x+ 1

4

)
(3c2 ln (2) + c1)

Mathematica DSolve solution

Solving time : 0.306 (sec)
Leaf size : 64� �
DSolve[{x*(1-x)*D[y[x],{x,2}]+(1/2+2*x)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2c2
(√

−((x− 1)x)(2x+ 13)− 6(4x+ 1) arctan
(√

1− x√
x+ 1

))
+ c1

(
x+ 1

4

)
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2.1.346 problem 353

Solved as second order ode using Kovacic algorithm . . . . . . . . .2367
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2371
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2372
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2373
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2373

Internal problem ID [9194]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 353
Date solved : Thursday, December 12, 2024 at 10:01:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4
(
t2 − 3t+ 2

)
y′′ − 2y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.295 (sec)

Writing the ode as (
4t2 − 12t+ 8

)
y′′ − 2y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4t2 − 12t+ 8
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4t2 + 20t− 19
16 (t2 − 3t+ 2)2

(6)

Comparing the above to (5) shows that

s = −4t2 + 20t− 19

t = 16
(
t2 − 3t+ 2

)2
Therefore eq. (4) becomes

z′′(t) =
(
−4t2 + 20t− 19
16 (t2 − 3t+ 2)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.654: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(t2 − 3t+ 2)2. There is a pole at t = 2 of order 2. There is a pole at t = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
8 (t− 1) −

3
16 (t− 1)2

+ 5
16 (t− 2)2

− 3
8 (t− 2)

For the pole at t = 2 let b be the coefficient of 1
(t−2)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at t = 1 let b be the coefficient of 1

(t−1)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −4t2 + 20t− 19

16 (t2 − 3t+ 2)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4t2 + 20t− 19
16 (t2 − 3t+ 2)2

pole c location pole order [
√
r]c α+

c α−
c

2 2 0 5
4 −1

4

1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
4 (t− 2) +

3
4 (t− 1) + (−) (0)

= − 1
4 (t− 2) +

3
4 (t− 1)

= 2t− 5
4 (t− 1) (t− 2)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (t− 2) +

3
4 (t− 1)

)
(0) +

((
1

4 (t− 2)2
− 3

4 (t− 1)2
)
+
(
− 1
4 (t− 2) +

3
4 (t− 1)

)2

−
(
−4t2 + 20t− 19
16 (t2 − 3t+ 2)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
4(t−2)+

3
4(t−1)

)
dt

= (t− 1)3/4

(t− 2)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2

4t2−12t+8 dt

= z1e
ln(t−2)

4 − ln(t−1)
4

= z1

(
(t− 2)1/4

(t− 1)1/4

)

Which simplifies to
y1 =

√
t− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2

4t2−12t+8 dt

(y1)2
dt

= y1

∫
e

ln(t−2)
2 − ln(t−1)

2

(y1)2
dt

= y1

(
−2

√
t− 2√
t− 1

+
ln
(
−3

2 + t+
√
t2 − 3t+ 2

)√
(t− 1) (t− 2)

√
t− 2

√
t− 1

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

t− 1
)
+ c2

(
√
t− 1

(
−2

√
t− 2√
t− 1

+
ln
(
−3

2 + t+
√
t2 − 3t+ 2

)√
(t− 1) (t− 2)

√
t− 2

√
t− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4(t2 − 3t+ 2)
(

d2

dt2
y(t)

)
− 2 d

dt
y(t) + y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = − y(t)

4(t2−3t+2) +
d
dt
y(t)

2(t2−3t+2)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

d
dt
y(t)

2(t2−3t+2) +
y(t)

4(t2−3t+2) = 0
� Check to see if t0 is a regular singular point

◦ Define functions[
P2(t) = − 1

2(t2−3t+2) , P3(t) = 1
4(t2−3t+2)

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= 1
2

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
Check to see if t0 is a regular singular point
t0 = 1

• Multiply by denominators

(4t2 − 12t+ 8)
(

d2

dt2
y(t)

)
− 2 d

dt
y(t) + y(t) = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

(4u2 − 4u)
(

d2

du2y(u)
)
− 2 d

du
y(u) + y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−1 + 2r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 − 4(k + 1 + r) ak+1

(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r−1)2

2(k+1+r)(2k+1+2r)

• Recursion relation for r = 0
ak+1 = ak(2k−1)2

2(k+1)(2k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(2k−1)2

2(k+1)(2k+1)

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k , ak+1 = ak(2k−1)2
2(k+1)(2k+1)

]
• Recursion relation for r = 1

2

ak+1 = 2akk2(
k+ 3

2
)
(2k+2)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 = 2akk2(
k+ 3

2
)
(2k+2)

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k+
1
2 , ak+1 = 2akk2(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+
1
2

)
, ak+1 = ak(2k−1)2

2(k+1)(2k+1) , bk+1 = 2bkk2(
k+ 3

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 56� �
dsolve(4*(t^2-3*t+2)*diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �

y = c1
√
t− 1 +

c2

(√
t2−3t+2

(
ln(2)−ln

(
−3+2t+2

√
(t−1)(t−2)

))
2 + t− 2

)
√
t− 2

Mathematica DSolve solution

Solving time : 0.285 (sec)
Leaf size : 53� �
DSolve[{4*(t^2-3*t+2)*D[y[t],{t,2}]-2*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

√
1− t

−2c2arctanh

 1√
t−1
t−2

+ 2c2√
t−1
t−2

+ c1
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2.1.347 problem 354

Solved as second order ode using Kovacic algorithm . . . . . . . . .2374
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2378
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2380
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2380
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2380

Internal problem ID [9195]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 354
Date solved : Thursday, December 12, 2024 at 10:01:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2
(
t2 − 5t+ 6

)
y′′ + (2t− 3) y′ − 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.286 (sec)

Writing the ode as (
2t2 − 10t+ 12

)
y′′ + (2t− 3) y′ − 8y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t2 − 10t+ 12
B = 2t− 3 (3)
C = −8

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

(6)

Comparing the above to (5) shows that

s = 60t2 − 308t+ 381

t = 16
(
t2 − 5t+ 6

)2
Therefore eq. (4) becomes

z′′(t) =
(
60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.656: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(t2 − 5t+ 6)2. There is a pole at t = 3 of order 2. There is a pole at t = 2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (t− 3)2

+ 5
16 (t− 2)2

− 29
8 (t− 2) +

29
8 (t− 3)

For the pole at t = 3 let b be the coefficient of 1
(t−3)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at t = 2 let b be the coefficient of 1

(t−2)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 60t2 − 308t+ 381

16 (t2 − 5t+ 6)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

pole c location pole order [
√
r]c α+

c α−
c

3 2 0 3
4

1
4

2 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (+)[

√
r]∞

= 1
4t− 12 + 5

4 (t− 2) + (0)

= 1
4t− 12 + 5

4 (t− 2)

= 6t− 17
4 (t− 2) (t− 3)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4t− 12 + 5

4 (t− 2)

)
(1) +

((
− 1
4 (t− 3)2

− 5
4 (t− 2)2

)
+
(

1
4t− 12 + 5

4 (t− 2)

)2

−
(
60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

))
= 0

−6a0 − 17
2t2 − 10t+ 12 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −17

6

}
Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t− 17
6

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t− 17

6

)
e
∫ ( 1

4t−12+
5

4(t−2)

)
dt

=
(
t− 17

6

)
e

5 ln(t−2)
4 + ln(t−3)

4

=
(
t− 17

6

)
(t− 2)5/4 (t− 3)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2t−3

2t2−10t+12 dt

= z1e
ln(t−2)

4 − 3 ln(t−3)
4

= z1

(
(t− 2)1/4

(t− 3)3/4

)

Which simplifies to

y1 =
(t− 2)3/2 (6t− 17)

6
√
t− 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 2t−3

2t2−10t+12 dt

(y1)2
dt

= y1

∫
e

ln(t−2)
2 − 3 ln(t−3)

2

(y1)2
dt

= y1

(
24(t− 3)2 (24t2 − 104t+ 111) e

ln(t−2)
2 − 3 ln(t−3)

2

5 (6t− 17) (t− 2)2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(t− 2)3/2 (6t− 17)

6
√
t− 3

)

+ c2

(
(t− 2)3/2 (6t− 17)

6
√
t− 3

(
24(t− 3)2 (24t2 − 104t+ 111) e

ln(t−2)
2 − 3 ln(t−3)

2

5 (6t− 17) (t− 2)2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2(t2 − 5t+ 6)
(

d2

dt2
y(t)

)
+ (2t− 3)

(
d
dt
y(t)

)
− 8y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = 4y(t)

t2−5t+6 −
(2t−3)

(
d
dt
y(t)

)
2(t2−5t+6)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(2t−3)
(

d
dt
y(t)

)
2(t2−5t+6) − 4y(t)

t2−5t+6 = 0
� Check to see if t0 is a regular singular point

◦ Define functions[
P2(t) = 2t−3

2(t2−5t+6) , P3(t) = − 4
t2−5t+6

]
◦ (t− 2) · P2(t) is analytic at t = 2

((t− 2) · P2(t))
∣∣∣∣
t=2

= −1
2

◦ (t− 2)2 · P3(t) is analytic at t = 2(
(t− 2)2 · P3(t)

) ∣∣∣∣
t=2

= 0

◦ t = 2is a regular singular point
Check to see if t0 is a regular singular point
t0 = 2

• Multiply by denominators

(2t2 − 10t+ 12)
(

d2

dt2
y(t)

)
+ (2t− 3)

(
d
dt
y(t)

)
− 8y(t) = 0

• Change variables using t = u+ 2 so that the regular singular point is at u = 0

(2u2 − 2u)
(

d2

du2y(u)
)
+ (2u+ 1)

(
d
du
y(u)

)
− 8y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak(k + r + 2) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 2ak(k + r + 2) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)(k+r−2)

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = 2ak(k+2)(k−2)

(k+1)(2k−1)

• Apply recursion relation for k = 0
a1 = 8a0

• Apply recursion relation for k = 1
a2 = −3a1

• Express in terms of a0
a2 = −24a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−24u2 + 8u+ 1)

• Revert the change of variables u = t− 2
[y(t) = a0(−24t2 + 104t− 111)]

• Recursion relation for r = 3
2

ak+1 =
2ak
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
2ak
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

]
• Revert the change of variables u = t− 2[

y(t) =
∞∑
k=0

ak(t− 2)k+
3
2 , ak+1 =

2ak
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(t) = a0(−24t2 + 104t− 111) +
(

∞∑
k=0

bk(t− 2)k+
3
2

)
, bk+1 =

2bk
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.037 (sec)
Leaf size : 35� �
dsolve(2*(t^2-5*t+6)*diff(diff(y(t),t),t)+(2*t-3)*diff(y(t),t)-8*y(t) = 0,

y(t),singsol=all)� �
y = c1(24t2 − 104t+ 111)

24 + c2(6t− 17) (t− 2)3/2√
t− 3

Mathematica DSolve solution

Solving time : 0.731 (sec)
Leaf size : 140� �
DSolve[{2*(t^2-5*t+6)*D[y[t],{t,2}]+(2*t-3)*D[y[t],t]-8*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t)

→
4
√
2− t 4

√
t− 3(t− 2)5/4

(
5c1(6t− 17)− 24c2

(√
t−2−1

)√
t−3

(
−t2+

(
4
√
t−2−2

)
t−4

√
t−2+7

)(
24t2−104t+111

)(
−t+

√
t−2+2

)3(−t+2
√
t−2+1

) )
30(3− t)3/4
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2.1.348 problem 355

Solved as second order ode using Kovacic algorithm . . . . . . . . .2381
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2385
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2387
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2387
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2387

Internal problem ID [9196]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 355
Date solved : Thursday, December 12, 2024 at 10:01:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3t(1 + t) y′′ + ty′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.326 (sec)

Writing the ode as (
3t2 + 3t

)
y′′ + ty′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3t2 + 3t
B = t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7t+ 12
36t (1 + t)2

(6)

Comparing the above to (5) shows that

s = 7t+ 12
t = 36t(1 + t)2

Therefore eq. (4) becomes

z′′(t) =
(

7t+ 12
36t (1 + t)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.658: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36t(1 + t)2. There is a pole at t = 0 of order 1. There is a pole at t = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at t = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36 (1 + t)2

+ 1
3t −

1
3 (1 + t)

For the pole at t = −1 let b be the coefficient of 1
(1+t)2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 7t+ 12

36t (1 + t)2

Since the gcd(s, t) = 1. This gives b = 7
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

6
α−
∞ = 1

2 −
√
1 + 4b = −1

6
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7t+ 12
36t (1 + t)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
−1 2 0 5

6
1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

6 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 7

6 −
(
7
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

t− c2

)
+ (+)[

√
r]∞

= 1
t
+ 1

6 + 6t + (0)

= 1
t
+ 1

6 + 6t
= 1

t
+ 1

6 + 6t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)



chapter 2. book solved problems 2384

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
t
+ 1

6 + 6t

)
(0) +

((
− 1
t2

− 1
6 (1 + t)2

)
+
(
1
t
+ 1

6 + 6t

)2

−
(

7t+ 12
36t (1 + t)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

t
+ 1

6+6t

)
dt

= t(1 + t)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t

3t2+3t dt

= z1e
− ln(1+t)

6

= z1

(
1

(1 + t)1/6

)

Which simplifies to
y1 = t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

3t2+3t dt

(y1)2
dt

= y1

∫
e−

ln(1+t)
3

(y1)2
dt

= y1

 −2(1 + t)1/3 − 1
3 (1 + t)2/3 + 3 (1 + t)1/3 + 3

+
ln
(
(1 + t)2/3 + (1 + t)1/3 + 1

)
6

−

√
3 arctan

((
1+2(1+t)1/3

)√
3

3

)
3 − 1

3
(
(1 + t)1/3 − 1

) −
ln
(
(1 + t)1/3 − 1

)
3


Therefore the solution is
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y = c1y1 + c2y2

= c1(t) + c2

t

 −2(1 + t)1/3 − 1
3 (1 + t)2/3 + 3 (1 + t)1/3 + 3

+
ln
(
(1 + t)2/3 + (1 + t)1/3 + 1

)
6

−

√
3 arctan

((
1+2(1+t)1/3

)√
3

3

)
3 − 1

3
(
(1 + t)1/3 − 1

) −
ln
(
(1 + t)1/3 − 1

)
3




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3t(t+ 1)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = y(t)

3t(t+1) −
d
dt
y(t)

3(t+1)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) +

d
dt
y(t)

3(t+1) −
y(t)

3t(t+1) = 0
� Check to see if t0 is a regular singular point

◦ Define functions[
P2(t) = 1

3(t+1) , P3(t) = − 1
3t(t+1)

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1
3

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1

• Multiply by denominators

3t(t+ 1)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(3u2 − 3u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−2 + 3r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (3k + 3r + 1) + ak(3k + 3r + 1) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 23
}

• Each term in the series must be 0, giving the recursion relation
3
(
k + r + 1

3

)
((−k − r − 1) ak+1 + ak(k + r − 1)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+1+r

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k−1)

k+1

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = t+ 1
[y(t) = −a0t]

• Recursion relation for r = 2
3

ak+1 =
ak
(
k− 1

3
)

k+ 5
3

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+1 =
ak
(
k− 1

3
)

k+ 5
3

]
• Revert the change of variables u = t+ 1[

y(t) =
∞∑
k=0

ak(t+ 1)k+
2
3 , ak+1 =

ak
(
k− 1

3
)

k+ 5
3

]
• Combine solutions and rename parameters[

y(t) = −a0t+
(

∞∑
k=0

bk(t+ 1)k+
2
3

)
, bk+1 =

bk
(
k− 1

3
)

k+ 5
3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.063 (sec)
Leaf size : 67� �
dsolve(3*t*(t+1)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c1t+ 2

√
3 arctan


(
2(t+ 1)1/3 + 1

)√
3

3

 tc2

− ln
(
(t+ 1)2/3 + (t+ 1)1/3 + 1

)
tc2 + 6(t+ 1)2/3 c2 + 2 ln

(
(t+ 1)1/3 − 1

)
tc2

Mathematica DSolve solution

Solving time : 0.315 (sec)
Leaf size : 93� �
DSolve[{3*t*(1+t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t)

→
6c1t− c2

(
2
√
3t arctan

(
2

3
√
t+ 1+1√

3

)
+ 6(t+ 1)2/3 + 2t log

(
3
√
t+ 1− 1

)
− t log

(
(t+ 1)2/3 + 3

√
t+ 1 + 1

))
6 6
√
3
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2.1.349 problem 356

Solved as second order ode using Kovacic algorithm . . . . . . . . .2388
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2391
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2393
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2393
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2393

Internal problem ID [9197]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 356
Date solved : Thursday, December 12, 2024 at 10:01:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
x+ 3

4

)
y

4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.237 (sec)

Writing the ode as

x2y′′ +
(
x

4 + 3
16

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)

C = x

4 + 3
16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x− 3
16x2 (6)

Comparing the above to (5) shows that

s = −4x− 3
t = 16x2
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Therefore eq. (4) becomes

z′′(x) =
(
−4x− 3
16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.660: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x − 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.
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pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1 + 4x
16x2 = 0

Solving for ω gives

ω = 1 + 2
√
−x

4x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+2

√
−x

4x dx

= x1/4e
√
−x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x1/4e
√
−x

Which simplifies to

y1 = x1/4e
√
−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x1/4e
√
−x

∫ 1
√
x e2

√
−x

dx

= x1/4e
√
−x

−

√
−x
(
1− e−2

√
−x
)

√
x



Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/4e

√
−x
)
+ c2

x1/4e
√
−x

−

√
−x
(
1− e−2

√
−x
)

√
x



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+
( 3
4+x

)
y(x)

4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3+4x)y(x)
16x2
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• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + (3+4x)y(x)
16x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 3+4x
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ (3 + 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)xr +
(

∞∑
k=1

(ak(4k + 4r − 1) (4k + 4r − 3) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term in the series must be 0, giving the recursion relation

16
(
k + r − 3

4

) (
k + r − 1

4

)
ak + 4ak−1 = 0

• Shift index using k− >k + 1
16
(
k + 1

4 + r
) (

k + 3
4 + r

)
ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(4k+1+4r)(4k+3+4r)

• Recursion relation for r = 1
4

ak+1 = − 4ak
(4k+2)(4k+4)

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+1 = − 4ak
(4k+2)(4k+4)

]
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• Recursion relation for r = 3
4

ak+1 = − 4ak
(4k+4)(4k+6)

• Solution for r = 3
4[

y(x) =
∞∑
k=0

akx
k+ 3

4 , ak+1 = − 4ak
(4k+4)(4k+6)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+1 = − 4ak

(4k+2)(4k+4) , bk+1 = − 4bk
(4k+4)(4k+6)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+1/4*(x+3/4)*y(x) = 0,

y(x),singsol=all)� �
y = x1/4(c1 sin (√x

)
+ c2 cos

(√
x
))

Mathematica DSolve solution

Solving time : 0.088 (sec)
Leaf size : 43� �
DSolve[{x^2*D[y[x],{x,2}]+1/4*(x+3/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−i

√
x 4
√
x
(
c1e

2i
√
x + ic2

)
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2.1.350 problem 357

Solved as second order ode using Kovacic algorithm . . . . . . . . .2394
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2396
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2398
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2398
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2398

Internal problem ID [9198]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 357
Date solved : Thursday, December 12, 2024 at 10:01:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ + (x2 − 1) y
4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.188 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2

4 − 1
4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2

4 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4 (6)

Comparing the above to (5) shows that

s = −1
t = 4
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Therefore eq. (4) becomes

z′′(x) = −z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.662: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(x
2

)
Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos
(
x
2

)
√
x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1
(
2 tan

(x
2

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos
(
x
2

)
√
x

)
+ c2

(
cos
(
x
2

)
√
x

(
2 tan

(x
2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2−1

)
y(x)

4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − ak

4k2+12k+8 , a1 = 0, bk+2 = − bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+1/4*(x^2-1)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 sin
(
x
2

)
+ c2 cos

(
x
2

)
√
x

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 36� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+1/4*(x^2-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

ix
2 (c1 − ic2e

ix)√
x
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2.1.351 problem 358

Solved as second order ode using Kovacic algorithm . . . . . . . . .2399
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2403
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2404
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2404
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2405

Internal problem ID [9199]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 358
Date solved : Thursday, December 12, 2024 at 10:01:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.201 (sec)

Writing the ode as

xy′′ + (1− 2x) y′ + (x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1− 2x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)



chapter 2. book solved problems 2400

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.664: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−2x

x
dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−2x

x
dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x

+
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+ (x−1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)+(1-2*x)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 17� �
DSolve[{x*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2 log(x) + c1)
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2.1.352 problem 359

Solved as second order ode using Kovacic algorithm . . . . . . . . .2406
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2410
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2412
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2412
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2412

Internal problem ID [9200]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 359
Date solved : Thursday, December 12, 2024 at 10:01:54 AM
CAS classification : [_Laguerre]

Solve

xy′′ − (x+ 1) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

xy′′ + (−x− 1) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −x− 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.666: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

2x2 + 1
2x3 + 1

4x4 − 1
4x5 − 3

4x6 − 3
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x+ 3

4x2

)
= 1

4 + −2x+ 3
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x+ 3
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x +

(
1
2

)
= 1

2 − 1
2x

= x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2x

)
(0) +

((
1
2x2

)
+
(
1
2 − 1

2x

)2

−
(
x2 − 2x+ 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
2x
)
dx

= ex
2

√
x



chapter 2. book solved problems 2410

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−1

x
dx

= z1e
x
2+

ln(x)
2

= z1
(√

x ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x−1

x
dx

(y1)2
dx

= y1

∫
ex+ln(x)

(y1)2
dx

= y1

(
−(x+ 1) ex+ln(x)e−2x

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−(x+ 1) ex+ln(x)e−2x

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (x+ 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x

+
(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

x
+ y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+1
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−2 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)-(x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = exc2 + c1x+ c1

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2(x+ 1)
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2.1.353 problem 360

Solved as second order ode using Kovacic algorithm . . . . . . . . .2413
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2417
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2419
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2419
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2419

Internal problem ID [9201]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 360
Date solved : Thursday, December 12, 2024 at 10:01:55 AM
CAS classification : [[_Emden, _Fowler]]

Solve

xy′′ + 3y′ + 4x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.315 (sec)

Writing the ode as

xy′′ + 3y′ + 4x3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.668: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ 4x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)
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• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − 4ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − 4bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 21� �
dsolve(x*diff(diff(y(x),x),x)+3*diff(y(x),x)+4*y(x)*x^3 = 0,

y(x),singsol=all)� �
y = c1 sin (x2) + c2 cos (x2)

x2

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 41� �
DSolve[{x*D[y[x],{x,2}]+3*D[y[x],x]+4*x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−ix2 − ic2e

ix2

4x2



chapter 2. book solved problems 2420

2.1.354 problem 361

Solved as second order ode using Kovacic algorithm . . . . . . . . .2420
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2424
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2424
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2424
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2424

Internal problem ID [9202]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 361
Date solved : Thursday, December 12, 2024 at 10:01:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 1
)
y′′ + 2x

(
−x2 + 1

)
y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.250 (sec)

Writing the ode as (
−x4 + x2) y′′ + (−2x3 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + x2

B = −2x3 + 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
x2 (x2 − 1) (6)

Comparing the above to (5) shows that

s = −2
t = x2(x2 − 1

)
Therefore eq. (4) becomes

z′′(x) =
(
− 2
x2 (x2 − 1)

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.670: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2(x2 − 1). There is a pole at x = 0 of order 2. There is a pole at x = 1 of order
1. There is a pole at x = −1 of order 1. Since there is no odd order pole larger than 2
and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 1 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 1

x+ 1 − 1
x− 1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 2
x2 (x2 − 1)

pole c location pole order [
√
r]c α+

c α−
c

1 1 0 0 1
0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1− (0)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x− 1 − 1

x
+ (−) (0)

= 1
x− 1 − 1

x

= 1
x2 − x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
x− 1 − 1

x

)
(1) +

((
− 1
(x− 1)2

+ 1
x2

)
+
(

1
x− 1 − 1

x

)2

−
(
− 2
x2 (x2 − 1)

))
= 0

−2a0 + 2
x3 − x

= 0
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Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 1

x−1−
1
x

)
dx

= (x+ 1) eln(x−1)−ln(x)

= x2 − 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+2x
−x4+x2 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
x2 − 1
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+2x

−x4+x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
− 1
4 (x− 1) +

ln (x− 1)
4 − 1

4 (x+ 1) −
ln (x+ 1)

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 1
x2

)
+ c2

(
x2 − 1
x2

(
− 1
4 (x− 1) +

ln (x− 1)
4 − 1

4 (x+ 1) −
ln (x+ 1)

4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 47� �
dsolve(x^2*(-x^2+1)*diff(diff(y(x),x),x)+2*x*(-x^2+1)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = c2(x2 − 1) ln (x− 1) + (−x2 + 1) c2 ln (x+ 1) + 2c1x2 − 2c2x− 2c1

2x2

Mathematica DSolve solution

Solving time : 0.095 (sec)
Leaf size : 56� �
DSolve[{x^2*(1-x^2)*D[y[x],{x,2}]+2*x*(1-x^2)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −4c1x2 − c2(x2 − 1) log(1− x) + c2(x2 − 1) log(x+ 1) + 2c2x+ 4c1

4x2
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2.1.355 problem 362

Solved as second order ode using Kovacic algorithm . . . . . . . . .2425
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2429
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2431
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2431
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2431

Internal problem ID [9203]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 362
Date solved : Thursday, December 12, 2024 at 10:01:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2xy′′ + (x− 2) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.265 (sec)

Writing the ode as

2xy′′ + (x− 2) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = x− 2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 12
16x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 12
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 12

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.671: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 1

4x + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 1
2x + 1

x2 − 2
x3 + 2

x4 + 4
x5 − 24

x6 + 48
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 12
16x2

= Q+ R

16x2

=
(

1
16

)
+
(
4x+ 12
16x2

)
= 1

16 + 4x+ 12
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
4
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
4
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 12
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−)

(
1
4

)
= − 1

2x − 1
4

= −x+ 2
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

4

)
(0) +

((
1
2x2

)
+
(
− 1
2x − 1

4

)2

−
(
x2 + 4x+ 12

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
4
)
dx

= e−x
4

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x−2
2x dx

= z1e
−x

4+
ln(x)

2

= z1
(√

x e−x
4
)

Which simplifies to
y1 = e−x

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x−2

2x dx

(y1)2
dx

= y1

∫
e−

x
2+ln(x)

(y1)2
dx

= y1

(
2(x− 2) e−x

2+ln(x)ex
x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x

2
)
+ c2

(
e−x

2

(
2(x− 2) e−x

2+ln(x)ex
x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x+ (x− 2)

(
d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
2x −

(x−2)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x−2)

(
d
dx

y(x)
)

2x − y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x−2
2x , P3(x) = − 1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (x− 2)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

2a0r(−2 + r)x−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
2
(
ak+1(k + 1 + r) + ak

2

)
(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2(k+1+r)

• Recursion relation for r = 0
ak+1 = − ak

2(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − ak

2(k+1)

]
• Recursion relation for r = 2

ak+1 = − ak
2(k+3)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak

2(k+3)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = − ak

2(k+1) , bk+1 = − bk
2(k+3)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve(2*x*diff(diff(y(x),x),x)+(x-2)*diff(y(x),x)-y(x) = 0,

y(x),singsol=all)� �
y = c1(x− 2) + e−x

2 c2

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 23� �
DSolve[{2*x*D[y[x],{x,2}]+(x-2)*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x/2 + 2c2(x− 2)
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2.1.356 problem 363

Solved as second order ode using Kovacic algorithm . . . . . . . . .2432
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2434
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2436
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2436
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2436

Internal problem ID [9204]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 363
Date solved : Thursday, December 12, 2024 at 10:01:57 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.160 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.673: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.357 problem 364

Solved as second order ode using Kovacic algorithm . . . . . . . . .2437
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2439
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2440
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2440
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2440

Internal problem ID [9205]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 364
Date solved : Thursday, December 12, 2024 at 10:01:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2x2y′ +
(
x4 + 2x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.134 (sec)

Writing the ode as

y′′ + 2x2y′ +
(
x4 + 2x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x2 (3)
C = x4 + 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.675: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2
1 dx

= z1e
−x3

3

= z1
(
e−x3

3

)
Which simplifies to

y1 = e−
x
(
x2+3

)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2x2

1 dx

(y1)2
dx

= y1

∫
e−

2x3
3

(y1)2
dx

= y1

e− 2x3
3 e

2x
(
x2+3

)
3

2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−

x
(
x2+3

)
3

)
+ c2

e−
x
(
x2+3

)
3

e− 2x3
3 e

2x
(
x2+3

)
3

2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 2x2( d
dx
y(x)

)
+ (x4 + 2x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..4

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions
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2a2 − a0 + (6a3 − a1 + 2a0)x+ (12a4 − a2 + 4a1)x2 + (20a5 − a3 + 6a2)x3 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1)− ak + 2ak−1k + ak−4)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a0 = 0, 6a3 − a1 + 2a0 = 0, 12a4 − a2 + 4a1 = 0, 20a5 − a3 + 6a2 = 0]

• Solve for the dependent coefficient(s){
a2 = a0

2 , a3 =
a1
6 − a0

3 , a4 =
a0
24 −

a1
3 , a5 =

a1
120 −

a0
6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 2ak−1k − ak + ak−4 = 0
• Shift index using k− >k + 4(

(k + 4)2 + 3k + 14
)
ak+6 + 2ak+3(k + 4)− ak+4 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+6 = −2kak+3+ak+8ak+3−ak+4

k2+11k+30 , a2 = a0
2 , a3 =

a1
6 − a0

3 , a4 =
a0
24 −

a1
3 , a5 =

a1
120 −

a0
6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 27� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)*x^2+(x^4+2*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−

x
(
x2−3

)
3 + c2e−

x
(
x2+3

)
3

Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 34� �
DSolve[{D[y[x],{x,2}]+2*x^2*D[y[x],x]+(x^4+2*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
− 1

3x
(
x2+3

)(
c2e

2x + 2c1
)
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2.1.358 problem 365

Solved as second order ode using Kovacic algorithm . . . . . . . . .2441
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2445
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2446
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2446
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2446

Internal problem ID [9206]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 365
Date solved : Thursday, December 12, 2024 at 10:01:58 AM
CAS classification : [[_Emden, _Fowler]]

Solve

u′′ + u

x2 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.258 (sec)

Writing the ode as

u′′ + u

x2 = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 1
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
x2 (6)

Comparing the above to (5) shows that

s = −1
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.677: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + i
√
3

2

α−
c = 1

2 −
√
1 + 4b = 1

2 − i
√
3

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

x2
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Since the gcd(s, t) = 1. This gives b = −1. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2 + i
√
3

2

α−
∞ = 1

2 −
√
1 + 4b = 1

2 − i
√
3

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2 +

i
√
3

2
1
2 −

i
√
3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2 +

i
√
3

2
1
2 −

i
√
3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 −
i
√
3

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 − i
√
3

2 −

(
1
2 − i

√
3

2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

=
1
2 −

i
√
3

2
x

+ (−) (0)

=
1
2 −

i
√
3

2
x

= 1− i
√
3

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

i
√
3

2
x

)
(0) +

(− 1
2 −

i
√
3

2
x2

)
+
(

1
2 −

i
√
3

2
x

)2

−
(
− 1
x2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2− i
√
3

2
x

dx

= x
1
2−

i
√

3
2

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

u1 = z1

= x
1
2−

i
√
3

2

Which simplifies to

u1 = x
1
2−

i
√
3

2

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Since B = 0 then the above becomes

u2 = u1

∫ 1
u2
1
dx

= x
1
2−

i
√
3

2

∫ 1
x1−i

√
3
dx

= x
1
2−

i
√
3

2

(
−ix

√
3xi

√
3−1

3

)

Therefore the solution is

u = c1u1 + c2u2

= c1
(
x

1
2−

i
√
3

2

)
+ c2

(
x

1
2−

i
√
3

2

(
−ix

√
3xi

√
3−1

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2u(x) + u(x)
x2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
• Multiply by denominators of the ODE(

d2

dx2u(x)
)
x2 + u(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of u with respect to x , using the chain rule

d
dx
u(x) =

(
d
dt
u(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
u(x) =

d
dt
u(t)
x

◦ Calculate the 2nd derivative of u with respect to x , using the chain rule
d2

dx2u(x) =
(

d2

dt2
u(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
u(t)

)
◦ Compute derivative

d2

dx2u(x) =
d2
dt2 u(t)

x2 −
d
dt
u(t)
x2

Substitute the change of variables back into the ODE(
d2
dt2 u(t)

x2 −
d
dt
u(t)
x2

)
x2 + u(t) = 0

• Simplify
d2

dt2
u(t)− d

dt
u(t) + u(t) = 0

• Characteristic polynomial of ODE
r2 − r + 1 = 0

• Use quadratic formula to solve for r

r = 1±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

I
√
3

2 , 12 +
I
√
3

2

)
• 1st solution of the ODE

u1(t) = e t
2 cos

(√
3 t
2

)
• 2nd solution of the ODE

u2(t) = e t
2 sin

(√
3 t
2

)
• General solution of the ODE

u(t) = C1u1(t) + C2u2(t)
• Substitute in solutions

u(t) = C1 e t
2 cos

(√
3 t
2

)
+ C2 e t

2 sin
(√

3 t
2

)
• Change variables back using t = ln (x)

u(x) = C1
√
x cos

(√
3 ln(x)
2

)
+ C2

√
x sin

(√
3 ln(x)
2

)
• Simplify

u(x) =
√
x
(
C1 cos

(√
3 ln(x)
2

)
+ C2 sin

(√
3 ln(x)
2

))
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 29� �
dsolve(diff(diff(u(x),x),x)+1/x^2*u(x) = 0,

u(x),singsol=all)� �
u(x) =

√
x

(
c1 sin

(√
3 ln (x)
2

)
+ c2 cos

(√
3 ln (x)
2

))

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 42� �
DSolve[{D[u[x],{x,2}]+1/x^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) →

√
x

(
c1 cos

(
1
2
√
3 log(x)

)
+ c2 sin

(
1
2
√
3 log(x)

))
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2.1.359 problem 366

Solved as second order ode using Kovacic algorithm . . . . . . . . .2447
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2449
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2450
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2450
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2450

Internal problem ID [9207]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 366
Date solved : Thursday, December 12, 2024 at 10:01:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ − (2x+ 1)u′ +
(
x2 + x− 1

)
u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.108 (sec)

Writing the ode as

u′′ + (−2x− 1)u′ +
(
x2 + x− 1

)
u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2x− 1 (3)
C = x2 + x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.679: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−1

1 dx

= z1e
1
2x

2+ 1
2x

= z1
(
e

x(x+1)
2

)
Which simplifies to

u1 = ex2
2

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx
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Substituting gives

u2 = u1

∫
e
∫
−−2x−1

1 dx

(u1)2
dx

= u1

∫
ex

2+x

(u1)2
dx

= u1

(
ex2+xe−x2

)
Therefore the solution is

u = c1u1 + c2u2

= c1
(
ex2

2

)
+ c2

(
ex2

2

(
ex2+xe−x2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2u(x)− (2x+ 1)
(

d
dx
u(x)

)
+ (x2 + x− 1)u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
• Isolate 2nd derivative

d2

dx2u(x) = (−x2 − x+ 1)u(x) + (2x+ 1)
(

d
dx
u(x)

)
• Group terms with u(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2u(x) + (−2x− 1)
(

d
dx
u(x)

)
+ (x2 + x− 1)u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · u(x) to series expansion form = 0..2

xm · u(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · u(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert xm ·
(

d
dx
u(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
u(x)

)
=

∞∑
k=max(0,1−m)

akk x
k−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
u(x)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m)xk

◦ Convert d2

dx2u(x) to series expansion

d2

dx2u(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2u(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions
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2a2 − a1 − a0 + (6a3 − 2a2 − 3a1 + a0)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak+1(k + 1)− ak(2k + 1) + ak−1 + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a1 − a0 = 0, 6a3 − 2a2 − 3a1 + a0 = 0]

• Solve for the dependent coefficient(s){
a2 = a1

2 + a0
2 , a3 =

2a1
3

}
• Each term in the series must be 0, giving the recursion relation

k2ak+2 + (−2ak − ak+1 + 3ak+2) k − ak + ak−2 + ak−1 − ak+1 + 2ak+2 = 0
• Shift index using k− >k + 2

(k + 2)2 ak+4 + (−2ak+2 − ak+3 + 3ak+4) (k + 2)− ak+2 + ak + ak+1 − ak+3 + 2ak+4 = 0
• Recursion relation that defines the series solution to the ODE[

u(x) =
∞∑
k=0

akx
k, ak+4 = 2kak+2+kak+3−ak−ak+1+5ak+2+3ak+3

k2+7k+12 , a2 = a1
2 + a0

2 , a3 =
2a1
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 22� �
dsolve(diff(diff(u(x),x),x)-(2*x+1)*diff(u(x),x)+(x^2+x-1)*u(x) = 0,

u(x),singsol=all)� �
u(x) = ex2

2 c1 + c2e
x(x+2)

2

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 24� �
DSolve[{D[u[x],{x,2}]-(2*x+1)*D[u[x],x]+(x^2+x-1)*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) → e

x2
2 (c2ex + c1)
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2.1.360 problem 367

Solved as second order ode using Kovacic algorithm . . . . . . . . .2451
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2455
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2456
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2457
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2457

Internal problem ID [9208]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 367
Date solved : Thursday, December 12, 2024 at 10:01:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2y′ +
(
1 + 2

(1 + 3x)2
)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.162 (sec)

Writing the ode as

y′′ + 2y′ +
(
1 + 2

(1 + 3x)2
)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)

C = 1 + 2
(1 + 3x)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
(1 + 3x)2

(6)

Comparing the above to (5) shows that

s = −2
t = (1 + 3x)2
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Therefore eq. (4) becomes

z′′(x) =
(
− 2
(1 + 3x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.681: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (1 + 3x)2. There is a pole at x = −1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9
(
x+ 1

3

)2
For the pole at x = −1

3 let b be the coefficient of 1(
x+ 1

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 2

(1 + 3x)2

Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 2
(1 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
3 2 0 2

3
1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α−
c1

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
1 + 3x + (−) (0)

= 1
1 + 3x

= 1
1 + 3x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
1 + 3x

)
(0) +

((
− 1
3
(
x+ 1

3

)2
)

+
(

1
1 + 3x

)2

−
(
− 2
(1 + 3x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

1+3xdx

= (1 + 3x)1/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to

y1 = e−x(1 + 3x)1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1
(
(1 + 3x)1/3 e−2xe2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x(1 + 3x)1/3

)
+ c2

(
e−x(1 + 3x)1/3

(
(1 + 3x)1/3 e−2xe2x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + 2 d
dx
y(x) +

(
1 + 2

(3x+1)2

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3
(
3x2+2x+1

)
y(x)

(3x+1)2 − 2 d
dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + 2 d
dx
y(x) + 3

(
3x2+2x+1

)
y(x)

(3x+1)2 = 0

� Check to see if x0 = −1
3 is a regular singular point

◦ Define functions[
P2(x) = 2, P3(x) = 3

(
3x2+2x+1

)
(3x+1)2

]
◦
(
x+ 1

3

)
· P2(x) is analytic at x = −1

3((
x+ 1

3

)
· P2(x)

) ∣∣∣∣
x=− 1

3

= 0

◦
(
x+ 1

3

)2 · P3(x) is analytic at x = −1
3((

x+ 1
3

)2 · P3(x)
) ∣∣∣∣

x=− 1
3

= 2
9

◦ x = −1
3 is a regular singular point

Check to see if x0 = −1
3 is a regular singular point

x0 = −1
3

• Multiply by denominators

(3x+ 1)2
(

d2

dx2y(x)
)
+ 2(3x+ 1)2

(
d
dx
y(x)

)
+ (9x2 + 6x+ 3) y(x) = 0

• Change variables using x = u− 1
3 so that the regular singular point is at u = 0

9u2
(

d2

du2y(u)
)
+ 18u2( d

du
y(u)

)
+ (9u2 + 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion

u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r
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Rewrite ODE with series expansions

a0(−1 + 3r) (−2 + 3r)ur + (a1(2 + 3r) (1 + 3r) + 18a0r)u1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (3k + 3r − 2) + 18ak−1(k − 1 + r) + 9ak−2)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

2
3

}
• Each term must be 0

a1(2 + 3r) (1 + 3r) + 18a0r = 0
• Solve for the dependent coefficient(s)

a1 = − 18a0r
9r2+9r+2

• Each term in the series must be 0, giving the recursion relation
9
(
k − 1

3 + r
) (

k + r − 2
3

)
ak + 18ak−1k + 18ak−1r + 9ak−2 − 18ak−1 = 0

• Shift index using k− >k + 2
9
(
k + 5

3 + r
) (

k + 4
3 + r

)
ak+2 + 18ak+1(k + 2) + 18ak+1r + 9ak − 18ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −9(2kak+1+2ak+1r+ak+2ak+1)

(3k+5+3r)(3k+4+3r)

• Recursion relation for r = 1
3

ak+2 = −9
(
2kak+1+ak+ 8

3ak+1
)

(3k+6)(3k+5)

• Solution for r = 1
3[

y(u) =
∞∑
k=0

aku
k+ 1

3 , ak+2 = −9
(
2kak+1+ak+ 8

3ak+1
)

(3k+6)(3k+5) , a1 = −a0

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k+ 1
3 , ak+2 = −9

(
2kak+1+ak+ 8

3ak+1
)

(3k+6)(3k+5) , a1 = −a0

]
• Recursion relation for r = 2

3

ak+2 = −9
(
2kak+1+ak+ 10

3 ak+1
)

(3k+7)(3k+6)

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+2 = −9
(
2kak+1+ak+ 10

3 ak+1
)

(3k+7)(3k+6) , a1 = −a0

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k+ 2
3 , ak+2 = −9

(
2kak+1+ak+ 10

3 ak+1
)

(3k+7)(3k+6) , a1 = −a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(
x+ 1

3

)k+ 1
3

)
+
(

∞∑
k=0

bk
(
x+ 1

3

)k+ 2
3

)
, ak+2 = −9

(
2kak+1+ak+ 8

3ak+1
)

(3k+6)(3k+5) , a1 = −a0, bk+2 = −9
(
2kbk+1+bk+ 10

3 bk+1
)

(3k+7)(3k+6) , b1 = −b0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 27� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)+(1+2/(3*x+1)^2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x(3x+ 1)1/3

(
(3x+ 1)1/3 c2 + c1

)
Mathematica DSolve solution

Solving time : 0.077 (sec)
Leaf size : 35� �
DSolve[{D[y[x],{x,2}]+2*D[y[x],x]+(1+2/(1+3*x)^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x 3

√
3x+ 1

(
c2

3
√
3x+ 1 + c1

)
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2.1.361 problem 368

Solved as second order ode using Kovacic algorithm . . . . . . . . .2458
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2460
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2461
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2462
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2462

Internal problem ID [9209]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 368
Date solved : Thursday, December 12, 2024 at 10:02:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.166 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.683: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.362 problem 369

Solved as second order ode using Kovacic algorithm . . . . . . . . .2463
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2467
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2468
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2469
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2469

Internal problem ID [9210]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 369
Date solved : Thursday, December 12, 2024 at 10:02:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2y′
x

− 2y
(1 + x)2

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.160 (sec)

Writing the ode as

y′′ + 2y′
x

− 2y
(1 + x)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 2
x

(3)

C = − 2
(1 + x)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
(1 + x)2

(6)

Comparing the above to (5) shows that

s = 2
t = (1 + x)2
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Therefore eq. (4) becomes

z′′(x) =
(

2
(1 + x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.685: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (1 + x)2. There is a pole at x = −1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

(1 + x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
(1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
1 + x

+ (−) (0)

= − 1
1 + x

= − 1
1 + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

)
(0) +

((
1

(1 + x)2
)
+
(
− 1
1 + x

)2

−
(

2
(1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

1+x
dx

= 1
1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

2
x
1 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
1

x2 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

2
x
1 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
(1 + x)3

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x2 + x

)
+ c2

(
1

x2 + x

(
(1 + x)3

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
− 2y(x)

(x+1)2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = − 2

(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= −2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)2
(

d2

dx2y(x)
)
+ 2(x+ 1)2

(
d
dx
y(x)

)
− 2xy(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − u2)
(

d2

du2y(u)
)
+ 2u2( d

du
y(u)

)
+ (−2u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0(1 + r) (−2 + r)ur +
(

∞∑
k=1

(−ak(k + r + 1) (k + r − 2) + ak−1(k + r + 1) (k + r − 2))uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
−(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
−(k + r + 1) (k + r − 2) (ak − ak−1) = 0

• Shift index using k− >k + 1
−(k + r + 2) (k − 1 + r) (ak+1 − ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

• Recursion relation for r = −1
ak+1 = ak

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = ak

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−1 , ak+1 = ak

]
• Recursion relation for r = 2

ak+1 = ak
• Solution for r = 2[

y(u) =
∞∑
k=0

aku
k+2, ak+1 = ak

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = ak

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+1 = ak, bk+1 = bk

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 29� �
dsolve(diff(diff(y(x),x),x)+2/x*diff(y(x),x)-2/(x+1)^2*y(x) = 0,

y(x),singsol=all)� �
y = (x3 + 3x2 + 3x) c2 + c1

x (x+ 1)

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 34� �
DSolve[{D[y[x],{x,2}]+2/x*D[y[x],x]-2/(1+x)^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x(x2 + 3x+ 3) + 3c1

3x(x+ 1)
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2.1.363 problem 370

Solved as second order ode using Kovacic algorithm . . . . . . . . .2470
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2474
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2474
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2474
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2474

Internal problem ID [9211]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 370
Date solved : Thursday, December 12, 2024 at 10:02:01 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ + y

2x4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

y′′ + y

2x4 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 1
2x4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
2x4 (6)

Comparing the above to (5) shows that

s = −1
t = 2x4

Therefore eq. (4) becomes

z′′(x) =
(
− 1
2x4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.687: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 2x4. There is a pole at x = 0 of order 4. Since there is no odd order pole larger than
2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − 1
2x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

i
√
2

2x2 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

i
√
2

2x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = i
√
2

2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be 0. Therefore

b = (0)− (0)
= 0

Hence

[
√
r]c =

i
√
2

2x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
0

i
√
2

2

+ 2
)

= 1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
− 0

i
√
2

2

+ 2
)

= 1

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
2x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 i
√
2

2x2 1 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1

)
= 1− (1)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −i
√
2

2x2 + 1
x
+ (−) (0)

= −i
√
2

2x2 + 1
x

= −i
√
2 + 2x
2x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−i

√
2

2x2 + 1
x

)
(0) +

(i
√
2

x3 − 1
x2

)
+
(
−i

√
2

2x2 + 1
x

)2

−
(
− 1
2x4

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− i
√
2

2x2 +
1
x

)
dx

= x e i
√
2

2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x e i
√
2

2x

Which simplifies to

y1 = x e i
√
2

2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x e i
√
2

2x

∫ 1
x2e i

√
2

x

dx

= x e i
√
2

2x

(
−i

√
2 e− i

√
2

x

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e i

√
2

2x

)
+ c2

(
x e i

√
2

2x

(
−i

√
2 e− i

√
2

x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 29� �
dsolve(diff(diff(y(x),x),x)+1/2/x^4*y(x) = 0,

y(x),singsol=all)� �
y = x

(
c1 sin

(√
2

2x

)
+ c2 cos

(√
2

2x

))

Mathematica DSolve solution

Solving time : 0.142 (sec)
Leaf size : 50� �
DSolve[{D[y[x],{x,2}]+1/(2*x^4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

i√
2xx− ic2e

− i√
2xx√

2
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2.1.364 problem 371

Solved as second order ode using Kovacic algorithm . . . . . . . . .2475
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2479
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2480
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2480
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2480

Internal problem ID [9212]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 371
Date solved : Thursday, December 12, 2024 at 10:02:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.688: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.223 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.365 problem 372

Solved as second order ode using Kovacic algorithm . . . . . . . . .2481
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2485
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2486
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2486
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2486

Internal problem ID [9213]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 372
Date solved : Thursday, December 12, 2024 at 10:02:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.265 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.690: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.164 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.366 problem 373

Solved as second order ode using Kovacic algorithm . . . . . . . . .2487
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2491
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2492
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2492
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2492

Internal problem ID [9214]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 373
Date solved : Thursday, December 12, 2024 at 10:02:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.692: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)



chapter 2. book solved problems 2491

Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.166 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.367 problem 374

Solved as second order ode using Kovacic algorithm . . . . . . . . .2493
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2497
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2498
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2498
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2498

Internal problem ID [9215]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 374
Date solved : Thursday, December 12, 2024 at 10:02:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.694: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.368 problem 375

Solved as second order ode using Kovacic algorithm . . . . . . . . .2499
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2503
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2504
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2504
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2504

Internal problem ID [9216]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 375
Date solved : Thursday, December 12, 2024 at 10:02:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)



chapter 2. book solved problems 2500

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.696: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.166 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.369 problem 376

Solved as second order ode using Kovacic algorithm . . . . . . . . .2505
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2509
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2510
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2510
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2510

Internal problem ID [9217]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 376
Date solved : Thursday, December 12, 2024 at 10:02:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.271 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.698: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.370 problem 377

Solved as second order ode using Kovacic algorithm . . . . . . . . .2511
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2515
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2516
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2516
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2516

Internal problem ID [9218]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 377
Date solved : Thursday, December 12, 2024 at 10:02:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.700: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.166 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.371 problem 378

Solved as second order ode using Kovacic algorithm . . . . . . . . .2517
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2521
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2522
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2522
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2522

Internal problem ID [9219]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 378
Date solved : Thursday, December 12, 2024 at 10:02:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.702: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.372 problem 379

Solved as second order ode using Kovacic algorithm . . . . . . . . .2523
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2527
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2528
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2528
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2528

Internal problem ID [9220]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 379
Date solved : Thursday, December 12, 2024 at 10:02:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.276 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.704: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.373 problem 380

Solved as second order ode using Kovacic algorithm . . . . . . . . .2529
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2533
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2534
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2534
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2534

Internal problem ID [9221]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 380
Date solved : Thursday, December 12, 2024 at 10:02:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.706: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 2532

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.374 problem 381

Solved as second order ode using Kovacic algorithm . . . . . . . . .2535
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2539
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2540
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2540
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2540

Internal problem ID [9222]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 381
Date solved : Thursday, December 12, 2024 at 10:02:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.708: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.375 problem 382

Solved as second order ode using Kovacic algorithm . . . . . . . . .2541
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2543
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2545
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2545
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2545

Internal problem ID [9223]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 382
Date solved : Thursday, December 12, 2024 at 10:02:09 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.164 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.710: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.376 problem 383

Solved as second order ode using Kovacic algorithm . . . . . . . . .2546
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2549
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2551
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2551
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2551

Internal problem ID [9224]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 383
Date solved : Thursday, December 12, 2024 at 10:02:09 AM
CAS classification : [[_Emden, _Fowler]]

Solve

2x2y′′ + 3xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.214 (sec)

Writing the ode as

2x2y′′ + 3xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 3x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8x− 3
16x2 (6)

Comparing the above to (5) shows that

s = 8x− 3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
8x− 3
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.712: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
2x − 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1− 8x
16x2 = 0

Solving for ω gives

ω = 1 + 2
√
2
√
x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+2

√
2
√
x

4x dx

= x1/4e
√
2
√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
2x2 dx

= z1e
− 3 ln(x)

4

= z1

(
1

x3/4

)

Which simplifies to

y1 =
e
√
2
√
x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

2x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2

(y1)2
dx

= y1

(
−e−2

√
2
√
x
√
2

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
2
√
x

√
x

)
+ c2

(
e
√
2
√
x

√
x

(
−e−2

√
2
√
x
√
2

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
2x −

3
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

2x − y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
2x , P3(x) = − 1

2x

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ 3 d

dx
y(x)− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 3 + 2r)− ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r + 3

2

)
(k + 1 + r) ak+1 − ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

(2k+3+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = ak

(2k+3)(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak

(2k+3)(k+1)

]
• Recursion relation for r = −1

2

ak+1 = ak
(2k+2)

(
k+ 1

2
)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = ak
(2k+2)

(
k+ 1

2
)
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = ak

(2k+3)(k+1) , bk+1 = bk
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 29� �
dsolve(2*x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y =

c1 sinh
(√

x
√
2
)
+ c2 cosh

(√
x
√
2
)

√
x

Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 56� �
DSolve[{2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−
√
2
√
x
(
2c1e2

√
2
√
x −

√
2c2
)

2
√
x
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2.1.377 problem 384

Solved as second order ode using Kovacic algorithm . . . . . . . . .2552
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2556
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2558
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2558
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2558

Internal problem ID [9225]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 384
Date solved : Thursday, December 12, 2024 at 10:02:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
3x2 + 2x

)
y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.262 (sec)

Writing the ode as

x2y′′ +
(
3x2 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 3x2 + 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x2 + 12x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = 9x2 + 12x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
9x2 + 12x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.714: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 + 3

x
+ 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 + 1
x
+ 1

3x2 − 2
9x3 + 1

9x4 − 2
81x5 − 2

81x6 + 28
729x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x2 + 12x+ 8
4x2

= Q+ R

4x2

=
(
9
4

)
+
(
12x+ 8
4x2

)
= 9

4 + 12x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 12. Dividing this by leading coefficient in t which is 4 gives 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
3
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3

3
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x2 + 12x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
3
2

)
= −1

x
− 3

2
= −1

x
− 3

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 3

2

)
(0) +

((
1
x2

)
+
(
−1
x
− 3

2

)2

−
(
9x2 + 12x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x
− 3

2
)
dx

= e− 3x
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2+2x

x2 dx

= z1e
− 3x

2 −ln(x)

= z1

(
e− 3x

2

x

)

Which simplifies to

y1 =
e−3x

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2+2x

x2 dx

(y1)2
dx

= y1

∫
e−3x−2 ln(x)

(y1)2
dx

= y1

(
(9x2 − 6x+ 2)x2e−3x−2 ln(x)e6x

27

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−3x

x2

)
+ c2

(
e−3x

x2

(
(9x2 − 6x+ 2)x2e−3x−2 ln(x)e6x

27

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (3x2 + 2x)

(
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2 −

(3x+2)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x+2)

(
d
dx

y(x)
)

x
− 2y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 3x+2

x
, P3(x) = − 2

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(3x+ 2)

(
d
dx
y(x)

)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 1) + 3ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 2) + 3ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 3 + r) + 3ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak

k+3+r

• Recursion relation for r = −2
ak+1 = − 3ak

k+1

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+1 = − 3ak

k+1

]
• Recursion relation for r = 1

ak+1 = − 3ak
k+4

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − 3ak

k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − 3ak

k+1 , bk+1 = − 3bk
4+k

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)+(3*x^2+2*x)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = c1e−3x + c2(9x2 − 6x+ 2)

x2

Mathematica DSolve solution

Solving time : 0.044 (sec)
Leaf size : 35� �
DSolve[{x^2*D[y[x],{x,2}]+(2*x+3*x^2)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(9x2 − 6x+ 2) + 27c2e−3x

27x2
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2.1.378 problem 385

Solved as second order ode using Kovacic algorithm . . . . . . . . .2559
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2563
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2565
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2566
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2566

Internal problem ID [9226]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 385
Date solved : Thursday, December 12, 2024 at 10:02:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + x+ 1
)
y′′ + x

(
11x2 + 11x+ 9

)
y′ +

(
7x2 + 10x+ 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.075 (sec)

Writing the ode as(
2x4 + 2x3 + 2x2) y′′ + (11x3 + 11x2 + 9x

)
y′ +

(
7x2 + 10x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 2x3 + 2x2

B = 11x3 + 11x2 + 9x (3)
C = 7x2 + 10x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 21x4 + 18x3 + 27x2 − 2x− 3

t = 16
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.716: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at
x = −1

2 +
i
√
3

2 of order 2. There is a pole at x = −1
2 −

i
√
3

2 of order 2. Since there is no
odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 5

24 +
i
√
3

24(
x+ 1

2 −
i
√
3

2

)2 +
− 5

24 −
i
√
3

24(
x+ 1

2 +
i
√
3

2

)2 +
−1

8 −
43i

√
3

72

x+ 1
2 −

i
√
3

2

+
−1

8 +
43i

√
3

72

x+ 1
2 +

i
√
3

2

− 3
16x2 + 1

4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 +

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

6 + 6i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

6 + 6i
√
3

12

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 −

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

6− 6i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
6− 6i

√
3

12

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

−1
2 +

i
√
3

2 2 0 1
2 +

√
6+6i

√
3

12
1
2 −

√
6+6i

√
3

12

−1
2 −

i
√
3

2 2 0 1
2 +

√
6−6i

√
3

12
1
2 −

√
6−6i

√
3

12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
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α+
∞ = 7

4 then

d = α+
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

+ (0)

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

= 7x2 + 3x+ 1
4x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

4x2 −
1
2 +

√
6+6i

√
3

12(
x+ 1

2 −
i
√
3

2

)2 −
1
2 +

√
6−6i

√
3

12(
x+ 1

2 +
i
√
3

2

)2
+

(
1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)2

−
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x+
1
2+

√
6+6i

√
3

12
x+1

2− i
√
3

2
+

1
2+

√
6−6i

√
3

12
x+1

2+ i
√
3

2

)
dx

= 2
(
x2 + x+ 1

)3/4√2x1/4e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+11x2+9x
2x4+2x3+2x2 dx

= z1e
−

ln
(
x2+x+1

)
4 −

√
3 arctan

(
(2x+1)

√
3

3

)
6 − 9 ln(x)

4

= z1

 e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

(x2 + x+ 1)1/4 x9/4
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Which simplifies to

y1 =
2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+11x2+9x

2x4+2x3+2x2 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 − 9 ln(x)

2

(y1)2
dx

= y1

∫ e−
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 − 9 ln(x)

2 x4e
2
√
3 arctan

(
(2x+1)

√
3

3

)
3

8x2 + 8x+ 8 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2


+c2

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

∫ e−
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 − 9 ln(x)

2 x4e
2
√
3 arctan

(
(2x+1)

√
3

3

)
3

8x2 + 8x+ 8 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) −
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1) +
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2+11x+9

2x(x2+x+1) , P3(x) = 7x2+10x+6
2x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 9
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (3 + 2r)xr + (a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r))x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r + 3) + ak−1(2k + 2r + 3) (k + r + 1) + ak−2(2k + 2r + 3) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2,−3

2

}
• Each term must be 0

a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (2+r)a0
3+r

• Each term in the series must be 0, giving the recursion relation
2
(
k + r + 3

2

)
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r + 2ak − ak−2 + ak−1) = 0

• Shift index using k− >k + 2
2
(
k + 7

2 + r
)
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r + 2ak+2 − ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −kak+kak+1+rak+rak+1+ak+3ak+1
k+4+r

• Recursion relation for r = −2
ak+2 = −kak+kak+1−ak+ak+1

k+2

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

, a1 = −a0
3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0, bk+2 = −kbk+kbk+1− 1
2 bk+

3
2 bk+1

k+ 5
2

, b1 = − b0
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 1.009 (sec)
Leaf size : 229� �
dsolve(2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(11*x^2+11*x+9)*diff(y(x),x)+(7*x^2+10*x+6)*y(x) = 0,

y(x),singsol=all)� �
y

=

(
2x+ i

√
3 + 1

) 5
√
3+3i

6
√
3+6i

(
i
√
3− 2x− 1

) 64i
√
3+2368(√

3+i
)3(

i−
√
3
)4(

13
√
3+9i

)
e−

√
3 arctan

(
(2x+1)

√
3

3

)
6

(
HeunG

(√
3+i

i−
√
3 , 0, 0,

5
2 ,

1
2 ,

5
√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c1
√
x+HeunG

(
√
3+i

i−
√
3 ,−

64(
i
√
3−1

)3(
−i+

√
3
)4 , 12 , 3, 32 , 5

√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c2x

)
x5/2 (x2 + x+ 1)1/4

Mathematica DSolve solution

Solving time : 1.07 (sec)
Leaf size : 93� �
DSolve[{2*x^2*(1+x+x^2)*D[y[x],{x,2}] + x*(9+11*x+11*x^2)*D[y[x],x] + (6+10*x+7*x^2)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
x2 + x+ 1e−

arctan
(

2x+1√
3

)
√
3

c2
∫ x

1
e

arctan
(

2K[1]+1√
3

)
√

3√
K[1](K[1]2+K[1]+1)3/2

dK[1] + c1


x2
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2.1.379 problem 388

Solved as second order ode using Kovacic algorithm . . . . . . . . .2567
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2571
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2573
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2573
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2573

Internal problem ID [9227]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 388
Date solved : Thursday, December 12, 2024 at 10:02:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1 + x) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.303 (sec)

Writing the ode as

xy′′ + (1 + x) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1 + x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.718: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 − 3
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
2x − 5

2x2 − 15
2x3 − 115

4x4 − 495
4x5 − 2285

4x6 − 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−6x− 1

4x2

)
= 1

4 + −6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −6. Dividing this by leading coefficient in t which is 4 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 0
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 0
)

= 3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3

2
3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −−1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 6x− 1

4x2

))
= 0

1 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−1 + x) e
∫ ( 1

2x−
1
2
)
dx

= (−1 + x) e−x
2+

ln(x)
2

= (−1 + x)
√
x e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+x
x

dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to
y1 = e−x(−1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+x

x
dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
− ex
−1 + x

− Ei1 (−x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x(−1 + x)

)
+ c2

(
e−x(−1 + x)

(
− ex
−1 + x

− Ei1 (−x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x

−
(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
+ 2y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x
, P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + ak(k + r + 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + ak(k + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+2)

(k+1)2

• Recursion relation for r = 0
ak+1 = −ak(k+2)

(k+1)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = −ak(k+2)

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 29� �
dsolve(x*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = e−xc2(x− 1) Ei1 (−x) + c1e−x(x− 1) + c2

Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 33� �
DSolve[{x*D[y[x],{x,2}] +(1+x)*D[y[x],x]+2*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2(x− 1) ExpIntegralEi(x) + c1(x− 1)− c2e

x)
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2.1.380 problem 389

Solved as second order ode using Kovacic algorithm . . . . . . . . .2574
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2578
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2580
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2580
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2580

Internal problem ID [9228]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 389
Date solved : Thursday, December 12, 2024 at 10:02:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 − 2x+ 1
)
y′′ − x(3 + x) y′ + (4 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.344 (sec)

Writing the ode as

x2(x− 1)2 y′′ +
(
−x2 − 3x

)
y′ + (4 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(x− 1)2

B = −x2 − 3x (3)
C = 4 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 10x− 1
4x2 (x− 1)4

(6)

Comparing the above to (5) shows that

s = 7x2 + 10x− 1
t = 4x2(x− 1)4

Therefore eq. (4) becomes

z′′(x) =
(
7x2 + 10x− 1
4x2 (x− 1)4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.720: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2(x− 1)4. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 4.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 4
(x− 1)4

+ 7
4 (x− 1)2

− 2
(x− 1)3

− 3
2 (x− 1) +

3
2x − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)



chapter 2. book solved problems 2576

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = 4
(x− 1)4

+ 7
4 (x− 1)2

− 2
(x− 1)3

− 3
2 (x− 1) +

3
2x − 1

4x2

There is pole in r at x = 1 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 1 gives

[
√
r]c ≈

2
(x− 1)2

− 1
2 (x− 1) +

21
32 − 9x

32 + 53(x− 1)2

256 − 149(x− 1)3

1024 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

2
(x− 1)2

(3B)

The above shows that the coefficient of 1
(x−1)2 is

a = 2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 1. This term becomes 1
(x−1)3 . The coefficient of this term in the sum [

√
r]c is seen to

be 0 and the coefficient of this term r is found from the partial fraction decomposition
from above to be −2. Therefore

b = (−2)− (0)
= −2

Hence

[
√
r]c =

2
(x− 1)2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−2
2 + 2

)
= 1

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−2

2 + 2
)

= 3
2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7x2 + 10x− 1
4x2 (x− 1)4

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 4 2
(x−1)2

1
2

3
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x + 2

(x− 1)2
+ 1

2x− 2 + (−) (0)

= 1
2x + 2

(x− 1)2
+ 1

2x− 2

= 2x2 + x+ 1
2x (x− 1)2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)
(0) +

((
− 1
2x2 − 4

(x− 1)3
− 1

2 (x− 1)2
)
+
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)2

−
(
7x2 + 10x− 1
4x2 (x− 1)4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
2

(x−1)2
+ 1

2x−2

)
dx

=
√
x− 1

√
x e−

2
x−1
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x
x2(x−1)2

dx

= z1e
− 2

x−1−
3 ln(x−1)

2 + 3 ln(x)
2

= z1

(
x3/2e−

2
x−1

(x− 1)3/2

)

Which simplifies to

y1 =
x3/2e−

4
x−1
√
x (x− 1)

(x− 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x2−3x

x2(x−1)2
dx

(y1)2
dx

= y1

∫
e−

4
x−1−3 ln(x−1)+3 ln(x)

(y1)2
dx

= y1

(
e−4 Ei1

(
− 4
x− 1 − 4

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

)
+ c2

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

(
e−4 Ei1

(
− 4
x− 1 − 4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+4)y(x)
x2(x2−2x+1) +

(x+3)
(

d
dx

y(x)
)

x(x2−2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x(x2−2x+1) + (x+4)y(x)
x2(x2−2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − x+3

x(x2−2x+1) , P3(x) = x+4
x2(x2−2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(
a1(−1 + r)2 − a0(1 + 2r) (−1 + r)

)
x1+r +

(
∞∑
k=2

(
ak(k + r − 2)2 − ak−1(2k − 1 + 2r) (k + r − 2) + ak−2(k + r − 2) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 − a0(1 + 2r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(1+2r)

−1+r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 − 2ak−1) k + (ak + ak−2 − 2ak−1) r − 2ak − 3ak−2 + ak−1) (k + r − 2) = 0

• Shift index using k− >k + 2
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((ak+2 + ak − 2ak+1) (k + 2) + (ak+2 + ak − 2ak+1) r − 2ak+2 − 3ak + ak+1) (k + r) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −kak−2kak+1+rak−2rak+1−ak−3ak+1
k+r

• Recursion relation for r = 2
ak+2 = −kak−2kak+1+ak−7ak+1

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −kak−2kak+1+ak−7ak+1

k+2 , a1 = 5a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 45� �
dsolve(x^2*(x^2-2*x+1)*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(x+4)*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
Ei1
(
− 4x

x−1

)
e−

4x
x−1 c2 + e−

4
x−1 c1

)
x− 1

Mathematica DSolve solution

Solving time : 0.296 (sec)
Leaf size : 54� �
DSolve[{x^2*(1-2*x+x^2)*D[y[x],{x,2}] -x*(3+x)*D[y[x],x]+(4+x)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−
4x
x−1

√
1− xx2(c2 ExpIntegralEi ( 4x

x−1

)
+ e4c1

)
(x− 1)3/2
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2.1.381 problem 390

Solved as second order ode using Kovacic algorithm . . . . . . . . .2581
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2585
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2586
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2587
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2587

Internal problem ID [9229]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 390
Date solved : Thursday, December 12, 2024 at 10:02:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ + 5x2y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.244 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + 5x2y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = 5x2 (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 24x− 16
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 24x− 16

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 24x− 16
16 (x2 + 2x)2

)
z(x) (7)



chapter 2. book solved problems 2582

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.722: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 8x − 1

4x2 + 5
16 (2 + x)2

− 1
8x

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 24x− 16

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 24x− 16
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 5
4 −1

4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (2 + x) +

1
2x + (−) (0)

= − 1
4 (2 + x) +

1
2x

= x+ 4
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (2 + x) +

1
2x

)
(0) +

((
1

4 (2 + x)2
− 1

2x2

)
+
(
− 1
4 (2 + x) +

1
2x

)2

−
(
−3x2 − 24x− 16
16 (x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
4(2+x)+

1
2x

)
dx

=
√
x

(2 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2

2x3+4x2 dx

= z1e
− 5 ln(2+x)

4

= z1

(
1

(2 + x)5/4

)

Which simplifies to

y1 =
√
x

(2 + x)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2

2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(2+x)
2

(y1)2
dx

= y1

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(2 + x)3/2

)
+ c2

( √
x

(2 + x)3/2

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2(x+2)x2 −

5
(

d
dx

y(x)
)

2(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)

2(x+2) + (x+1)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
2(x+2) , P3(x) = x+1

2(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 5
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (5u2 − 20u+ 20)

(
d
du
y(u)

)
+ (u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(3 + 2r)u−1+r + (4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 5 + 2r)− ak(8k2 + 16kr + 8r2 + 12k + 12r + 1) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term must be 0

4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 12ak − ak−1 + 28ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−12ak − ak−1 + 28ak+1) r − ak + 20ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 12ak+1 − ak + 28ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−12ak+1 − ak + 28ak+2) r − ak+1 + 20ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+3kak−28kak+1+3rak−28rak+1+ak−21ak+1
4(2k2+4kr+2r2+11k+11r+14)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1
4(2k2+11k+14) , 20a1 − a0 = 0

]
• Recursion relation for r = −3

2

ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2) ,−4a1 − a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k−
3
2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1

4(2k2+5k+2) ,−4a1 − a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k−
3
2

)
, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0, bk+2 = −2k2bk−8k2bk+1−3kbk−4kbk+1+bk+3bk+1
4(2k2+5k+2) ,−4b1 − b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 39� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+5*diff(y(x),x)*x^2+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

(√
x+ 2

√
2 c2 − 2 arctanh

(√
2
√
x+2

2

)
c2 + c1

)√
x

(x+ 2)3/2

Mathematica DSolve solution

Solving time : 0.105 (sec)
Leaf size : 55� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}] +5*x^2*D[y[x],x]+(1+x)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
−2

√
2c2arctanh

(√
x+2√
2

)
+ 2c2

√
x+ 2 + c1

)
(x+ 2)3/2
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2.1.382 problem 391

Solved as second order ode using Kovacic algorithm . . . . . . . . .2588
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2590
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2592
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2592
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2592

Internal problem ID [9230]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 391
Date solved : Thursday, December 12, 2024 at 10:02:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.167 (sec)

Writing the ode as

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 4x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.724: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
x2 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

y1 =
cos (x)
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

x2 dx

(y1)2
dx

= y1

∫
e−4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)
x2

)
+ c2

(
cos (x)
x2 (tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 −
4
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
4
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1
ak+2 = − ak

(k+3)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x2

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x2
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2.1.383 problem 392

Solved as second order ode using Kovacic algorithm . . . . . . . . .2593
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2595
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2597
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2597
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2597

Internal problem ID [9231]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 392
Date solved : Thursday, December 12, 2024 at 10:02:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.182 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.726: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.384 problem 394

Solved as second order ode using Kovacic algorithm . . . . . . . . .2598
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2603
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2604
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2604
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2605

Internal problem ID [9232]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 394
Date solved : Thursday, December 12, 2024 at 10:02:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − xy′ −
(
x2 + 5

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.276 (sec)

Writing the ode as

x2y′′ − xy′ +
(
−x2 − 5

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x (3)

C = −x2 − 5
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.728: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

x2 − 1
2x4 + 1

2x6 − 5
8x8 + 7

8x10 − 21
16x12 + 33

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2
x2

= Q+ R

x2

= (1) +
(

2
x2

)
= 1 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1 − 0

)
= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
1 − 0

)
= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (1)

= −1
x
− 1

= −1 + x

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 1
)
(1) +

((
1
x2

)
+
(
−1
x
− 1
)2

−
(
x2 + 2
x2

))
= 0

−2 + 2a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}



chapter 2. book solved problems 2602

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ (

− 1
x
−1
)
dx

= (1 + x) e−x−ln(x)

= (1 + x) e−x

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to

y1 =
(1 + x) e−x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
(−1 + x) e2x

2 + 2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x) e−x

√
x

)
+ c2

(
(1 + x) e−x

√
x

(
(−1 + x) e2x

2 + 2x

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 2603

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
−
(
x2 + 5

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
4x2+5

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
4x2+5

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −4x2+5

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −5
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−4x2 − 5) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−5 + 2r)xr + a1(3 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 5)− 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
5
2

}
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• Each term must be 0
a1(3 + 2r) (−3 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
4
(
k + r + 1

2

) (
k − 5

2 + r
)
ak − 4ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 5

2 + r
) (

k − 1
2 + r

)
ak+2 − 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4ak

(2k+5+2r)(2k−1+2r)

• Recursion relation for r = −1
2

ak+2 = 4ak
(2k+4)(2k−2)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4ak
(2k+4)(2k−2) , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = 4ak
(2k+10)(2k+4)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = 4ak
(2k+10)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = 4ak

(2k+4)(2k−2) , a1 = 0, bk+2 = 4bk
(2k+10)(2k+4) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x-(x^2+5/4)*y(x) = 0,

y(x),singsol=all)� �
y = (x+ 1) c2e−x + c1ex(x− 1)√

x
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Mathematica DSolve solution

Solving time : 0.107 (sec)
Leaf size : 53� �
DSolve[{x^2*D[y[x],{x,2}]-x*D[y[x],x]-(x^2+5/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
2
π
((ic2x+ c1) sinh(x)− (c1x+ ic2) cosh(x))

√
−ix
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2.1.385 problem 395

Solved as second order ode using Kovacic algorithm . . . . . . . . .2606
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2608
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2610
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2610
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2610

Internal problem ID [9233]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 395
Date solved : Thursday, December 12, 2024 at 10:02:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.179 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.730: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]



chapter 2. book solved problems 2610

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.386 problem 396

Solved as second order ode using Kovacic algorithm . . . . . . . . .2611
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2615
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2617
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2617
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2617

Internal problem ID [9234]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 396
Date solved : Thursday, December 12, 2024 at 10:02:17 AM
CAS classification : [[_Emden, _Fowler]]

Solve

x2y′′ + 3xy′ + 4x4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as

x2y′′ + 3xy′ + 4x4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 3x (3)
C = 4x4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.732: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
x2 dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ 4x4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ 4x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)
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• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − 4ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − 4bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x+4*y(x)*x^4 = 0,

y(x),singsol=all)� �
y = c1 sin (x2) + c2 cos (x2)

x2

Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 41� �
DSolve[{x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+4*x^4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−ix2 − ic2e

ix2

4x2
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2.1.387 problem 398

Solved as second order ode using Kovacic algorithm . . . . . . . . .2618
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2622
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2623
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2623
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2623

Internal problem ID [9235]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 398
Date solved : Thursday, December 12, 2024 at 10:02:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
x2 + 3

)
y

Solved as second order ode using Kovacic algorithm

Time used: 0.241 (sec)

Writing the ode as

y′′ +
(
−x2 − 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −x2 − 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 3
1 (6)

Comparing the above to (5) shows that

s = x2 + 3
t = 1

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 3

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.734: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x+ 3

2x − 9
8x3 + 27

16x5 − 405
128x7 + 1701

256x9 − 15309
1024x11 + 72171

2048x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 3
1

= Q+ R

1
=
(
x2 + 3

)
+ (0)

= x2 + 3

We see that the coefficient of the term 1
x
in the quotient is 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
1 − 1

)
= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x 1 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 + (x)
= x

= x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(x) (1) +
(
(1) + (x)2 −

(
x2 + 3

))
= 0

−2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
xdx

= (x) ex2
2

= x ex2
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x ex2
2

Which simplifies to

y1 = x ex2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx



chapter 2. book solved problems 2622

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x ex2
2

∫ 1
x2ex2 dx

= x ex2
2

(
−e−x2

x
−
√
π erf (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x ex2

2

)
+ c2

(
x ex2

2

(
−e−x2

x
−
√
π erf (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) = (x2 + 3) y(x)
• Highest derivative means the order of the ODE is 2

d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) + (−x2 − 3) y(x) = 0
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 3a0 + (6a3 − 3a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 3ak − ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 3a0 = 0, 6a3 − 3a1 = 0]

• Solve for the dependent coefficient(s){
a2 = 3a0

2 , a3 = a1
2

}
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• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 3ak − ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 3ak+2 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 3ak+2+ak

k2+7k+12 , a2 =
3a0
2 , a3 = a1

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 30� �
dsolve(diff(diff(y(x),x),x) = (x^2+3)*y(x),

y(x),singsol=all)� �
y = x

(
c2 erf (x)

√
π + c1

)
ex2

2 + e−x2
2 c2

Mathematica DSolve solution

Solving time : 0.107 (sec)
Leaf size : 46� �
DSolve[{D[y[x],{x,2}]==(x^2+3)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

x2
2

(
−
√
πc2e

x2
xerf(x) + c1e

x2
x− c2

)
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2.1.388 problem 399

Solved as second order ode using Kovacic algorithm . . . . . . . . .2624
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2626
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2627
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2627
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2627

Internal problem ID [9236]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 399
Date solved : Thursday, December 12, 2024 at 10:02:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2xy′ +
(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.100 (sec)

Writing the ode as

y′′ + 2xy′ +
(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.736: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x
1 dx

= z1e
−x2

2

= z1
(
e−x2

2

)
Which simplifies to

y1 = e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2x

1 dx

(y1)2
dx

= y1

∫
e−x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2

)
+ c2

(
e−x2

2 (x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 2x
(

d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + a0 + (6a3 + 3a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(2k + 1) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + a0 = 0, 6a3 + 3a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0

2 , a3 = −a1
2

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 2akk + ak + ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 2ak+2(k + 2) + ak+2 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2kak+2+ak+5ak+2

k2+7k+12 , a2 = −a0
2 , a3 = −a1

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)*x+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2

2 (c2x+ c1)

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 22� �
DSolve[{D[y[x],{x,2}]+2*x*D[y[x],x]+(x^2+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

x2
2 (c2x+ c1)
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2.1.389 problem 400

Solved as second order ode using Kovacic algorithm . . . . . . . . .2628
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2632
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2632
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2632
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2633

Internal problem ID [9237]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 400
Date solved : Thursday, December 12, 2024 at 10:02:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x3y′′ + y′ − y

x
= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.252 (sec)

Writing the ode as

x3y′′ + y′ − y

x
= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3

B = 1 (3)

C = −1
x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2x2 + 1
4x6 (6)

Comparing the above to (5) shows that

s = −2x2 + 1
t = 4x6
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Therefore eq. (4) becomes

z′′(x) =
(
−2x2 + 1

4x6

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.738: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x6. There is a pole at x = 0 of order 6. Since there is no odd order pole larger than
2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − 1
2x4 + 1

4x6
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There is pole in r at x = 0 of order 6, hence v = 3. Expanding
√
r as Laurent series about

this pole c = 0 gives
[
√
r]c ≈

1
2x3 − 1

2x − x

4 + . . . (2B)

Using eq. (1B), taking the sum up to v = 3 the above becomes

[
√
r]c =

1
2x3 (3B)

The above shows that the coefficient of 1
(x−0)3 is

a = 1
2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x4 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be −1

2 . Therefore

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]c =

1
2x3

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(−1
2

1
2

+ 3
)

= 1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−
−1

2
1
2

+ 3
)

= 2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −2x2 + 1
4x6

pole c location pole order [
√
r]c α+

c α−
c

0 6 1
2x3 1 2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1

)
= 1− (1)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x3 + 1

x
+ (−) (0)

= 1
2x3 + 1

x

= 1
2x3 + 1

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x3 + 1

x

)
(0) +

((
− 3
2x4 − 1

x2

)
+
(

1
2x3 + 1

x

)2

−
(
−2x2 + 1

4x6

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x3+
1
x

)
dx

= x e−
1

4x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
x3 dx

= z1e
1

4x2

= z1
(
e

1
4x2
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 1

x3 dx

(y1)2
dx

= y1

∫
e

1
2x2

(y1)2
dx

= y1

i
√
π
√
2 erf

(
i
√
2

2x

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

x

i
√
π
√
2 erf

(
i
√
2

2x

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 19� �
dsolve(x^3*diff(diff(y(x),x),x)+diff(y(x),x)-y(x)/x = 0,

y(x),singsol=all)� �
y = x

(
c1 + c2 erf

(
i
√
2

2x

))
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Mathematica DSolve solution

Solving time : 0.126 (sec)
Leaf size : 34� �
DSolve[{x^3*D[y[x],{x,2}]+ D[y[x],x]-1/x*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x−

√
π

2 c2xerfi
(

1√
2x

)
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2.1.390 problem 401

Solved as second order ode using Kovacic algorithm . . . . . . . . .2634
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2636
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2638
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2638
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2638

Internal problem ID [9238]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 401
Date solved : Thursday, December 12, 2024 at 10:02:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.181 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.739: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.054 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.391 problem 402

Solved as second order ode using Kovacic algorithm . . . . . . . . .2639
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2641
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2643
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2643
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2643

Internal problem ID [9239]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 402
Date solved : Thursday, December 12, 2024 at 10:02:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.131 (sec)

Writing the ode as

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −8x2 + 4x (3)
C = 4x2 − 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.741: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x2+4x

4x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex√
x

)
+ c2

(
ex√
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ (−8x2 + 4x)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−4x−1

)
y(x)

4x2 +
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+
(
4x2−4x−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−1

x
, P3(x) = 4x2−4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(2x− 1)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + (a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−1(2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 4a0
3+2r

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 1) + (−8k − 8r + 4) ak−1 + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ (−8k − 12− 8r) ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4(2kak+1+2rak+1−ak+3ak+1)

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8 , a1 = 2a0

]
• Recursion relation for r = 1

2

ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24 , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4(2kak+1−ak+2ak+1)

4k2+12k+8 , a1 = 2a0, bk+2 = 4(2kbk+1−bk+4bk+1)
4k2+20k+24 , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 15� �
dsolve(4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2x+ c1)√

x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 21� �
DSolve[{4*x^2*D[y[x],{x,2}]+(-8*x^2+4*x)*D[y[x],x]+(4*x^2-4*x-1)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)√

x
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2.1.392 problem 404

Solved as second order ode using Kovacic algorithm . . . . . . . . .2644
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2646
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2647
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2647
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2647

Internal problem ID [9240]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 404
Date solved : Thursday, December 12, 2024 at 10:02:20 AM
CAS classification : [[_2nd_order, _missing_x]]

Solve

y′′ − y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.224 (sec)

Writing the ode as

y′′ − y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.743: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)
Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
1 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to

y1 = ex
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−1

1 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex

2 cos
(√

3x
2

))
+ c2

ex
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



Will add steps showing solving for IC soon.

–6

–4

–2

0

2

4

6

y’(x)

–6 –4 –2 0 2 4 6

y(x)

Figure 2.1: Slope field plot
y′′ − y′ + y = 0

Maple step by step solution

Let’s solve
d2

dx2y(x)− d
dx
y(x) + y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Characteristic polynomial of ODE

r2 − r + 1 = 0
• Use quadratic formula to solve for r

r = 1±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

I
√
3

2 , 12 +
I
√
3

2

)
• 1st solution of the ODE

y1(x) = ex
2 cos

(√
3x
2

)
• 2nd solution of the ODE
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y2(x) = ex
2 sin

(√
3x
2

)
• General solution of the ODE

y(x) = C1y1(x) + C2y2(x)
• Substitute in solutions

y(x) = C1 ex
2 cos

(√
3x
2

)
+ C2 ex

2 sin
(√

3x
2

)
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 28� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = ex

2

(
c1 sin

(√
3x
2

)
+ c2 cos

(√
3x
2

))

Mathematica DSolve solution

Solving time : 0.034 (sec)
Leaf size : 42� �
DSolve[{D[y[x],{x,2}]-D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex/2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))



chapter 2. book solved problems 2648

2.1.393 problem 405

Solved as second order ode using Kovacic algorithm . . . . . . . . .2648
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2652
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2653
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2654
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2654

Internal problem ID [9241]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 405
Date solved : Thursday, December 12, 2024 at 10:02:21 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.242 (sec)

Writing the ode as (
x2 − 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.745: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
4 (x− 1) +

3
4 (x+ 1) +

3
4 (x− 1)2

+ 3
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

−1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− 1) +

3
2 (x+ 1) + (−) (0)

= − 1
2 (x− 1) +

3
2 (x+ 1)

= x− 2
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

3
2 (x+ 1)

)
(0) +

((
1

2 (x− 1)2
− 3

2 (x+ 1)2
)
+
(
− 1
2 (x− 1) +

3
2 (x+ 1)

)2

−
(

3
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

3
2(x+1)

)
dx

= (x+ 1)3/2√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2−1 dx

= z1e
ln(x−1)

2 + ln(x+1)
2

= z1
(√

x− 1
√
x+ 1

)
Which simplifies to

y1 = (x+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2−1 dx

(y1)2
dx

= y1

∫
eln(x−1)+ln(x+1)

(y1)2
dx

= y1

(
−x eln(x−1)+ln(x+1)

(x+ 1)3 (x− 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)2

)
+ c2

(
(x+ 1)2

(
−x eln(x−1)+ln(x+1)

(x+ 1)3 (x− 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
2
(

d
dx

y(x)
)
x

x2−1 − 2y(x)
x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) + 2y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − 2x

x2−1 , P3(x) = 2
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−2u+ 2)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 2)) (k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)2
4 +

(
∞∑
k=0

bk(x+ 1)k+2
)
, bk+1 = bkk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve((x^2-1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.127 (sec)
Leaf size : 39� �
DSolve[{(x^2-1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x2 − 1(c1(x− 1)2 + c2x)√

1− x2
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2.1.394 problem 406

Solved as second order ode using Kovacic algorithm . . . . . . . . .2655
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2657
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2658
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2659
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2659

Internal problem ID [9242]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 406
Date solved : Thursday, December 12, 2024 at 10:02:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(x+ 2) y′ + (x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.109 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 2x

)
y′ + (x+ 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 2x (3)
C = x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.747: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−2x

x2 dx

= z1e
x
2+ln(x)

= z1
(
x ex

2
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x2−2x

x2 dx

(y1)2
dx

= y1

∫
ex+2 ln(x)

(y1)2
dx

= y1

(
ex+2 ln(x)

x2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
ex+2 ln(x)

x2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(x+ 2)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+2)y(x)
x2 +

(x+2)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+2)

(
d
dx

y(x)
)

x
+ (x+2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+2

x
, P3(x) = x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 2)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 2)− ak−1(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+1(k + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+r

• Recursion relation for r = 1
ak+1 = ak

k+1

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak

k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 12� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(x+2)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(c1 + exc2)

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 16� �
DSolve[{x^2*D[y[x],{x,2}]-x*(x+2)*D[y[x],x]+(x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2ex + c1)
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2.1.395 problem 407

Solved as second order ode using Kovacic algorithm . . . . . . . . .2660
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2665
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2666
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2666
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2667

Internal problem ID [9243]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 407
Date solved : Thursday, December 12, 2024 at 10:02:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x+ 1) y′′ − (x+ 2) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as

(x+ 1) y′′ + (−x− 2) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x+ 1
B = −x− 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2
4 (x+ 1)2

(6)

Comparing the above to (5) shows that

s = x2 + 2
t = 4(x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(

x2 + 2
4 (x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.749: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x+ 1)2. There is a pole at x = −1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x+ 1) +
3

4 (x+ 1)2

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x2 − 1
x3 + 3

4x4 − 3
4x5 + 1

x6 − 1
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2
4x2 + 8x+ 4

= Q+ R

4x2 + 8x+ 4

=
(
1
4

)
+
(

−2x+ 1
4x2 + 8x+ 4

)
= 1

4 + −2x+ 1
4x2 + 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2
4 (x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x+ 1) +

(
1
2

)
= − 1

2 (x+ 1) +
1
2

= x

2x+ 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x+ 1) +

1
2

)
(0) +

((
1

2 (x+ 1)2
)
+
(
− 1
2 (x+ 1) +

1
2

)2

−
(

x2 + 2
4 (x+ 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x+1)+

1
2

)
dx

= ex
2

√
x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−2
x+1 dx

= z1e
x
2+

ln(x+1)
2

= z1
(√

x+ 1 ex
2

)
Which simplifies to

y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x−2

x+1 dx

(y1)2
dx

= y1

∫
ex+ln(x+1)

(y1)2
dx

= y1

(
−(x+ 2) ex+ln(x+1)e−2x

x+ 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−(x+ 2) ex+ln(x+1)e−2x

x+ 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 1)
(

d2

dx2y(x)
)
− (x+ 2)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x+1 +

(x+2)
(

d
dx

y(x)
)

x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+2)

(
d
dx

y(x)
)

x+1 + y(x)
x+1 = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = −x+2
x+1 , P3(x) = 1

x+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators

(x+ 1)
(

d2

dx2y(x)
)
+ (−x− 2)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve((x+1)*diff(diff(y(x),x),x)-(x+2)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1(x+ 2) + exc2
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Mathematica DSolve solution

Solving time : 0.231 (sec)
Leaf size : 29� �
DSolve[{(x+1)*D[y[x],{x,2}]-(x+2)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x+1 − 2c2(x+ 2)√
2e
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2.1.396 problem 408

Solved as second order ode using Kovacic algorithm . . . . . . . . .2668
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2672
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2673
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2674
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2674

Internal problem ID [9244]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 408
Date solved : Thursday, December 12, 2024 at 10:02:23 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ + 2xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.241 (sec)

Writing the ode as (
−x2 + 1

)
y′′ + 2xy′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.751: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x+ 1) +

3
4 (x− 1)2

− 3
4 (x− 1) +

3
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

−1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− 1) +

3
2 (x+ 1) + (−) (0)

= − 1
2 (x− 1) +

3
2 (x+ 1)

= x− 2
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

3
2 (x+ 1)

)
(0) +

((
1

2 (x− 1)2
− 3

2 (x+ 1)2
)
+
(
− 1
2 (x− 1) +

3
2 (x+ 1)

)2

−
(

3
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

3
2(x+1)

)
dx

= (x+ 1)3/2√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x

−x2+1 dx

= z1e
ln(x−1)

2 + ln(x+1)
2

= z1
(√

x− 1
√
x+ 1

)
Which simplifies to

y1 = (x+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

−x2+1 dx

(y1)2
dx

= y1

∫
eln(x−1)+ln(x+1)

(y1)2
dx

= y1

(
−x eln(x−1)+ln(x+1)

(x+ 1)3 (x− 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)2

)
+ c2

(
(x+ 1)2

(
−x eln(x−1)+ln(x+1)

(x+ 1)3 (x− 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
2
(

d
dx

y(x)
)
x

x2−1 − 2y(x)
x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) + 2y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − 2x

x2−1 , P3(x) = 2
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−2u+ 2)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 2)) (k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)2
4 +

(
∞∑
k=0

bk(x+ 1)k+2
)
, bk+1 = bkk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)+2*diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.1 (sec)
Leaf size : 39� �
DSolve[{(1-x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x2 − 1(c1(x− 1)2 + c2x)√

1− x2
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2.1.397 problem 409

Solved as second order ode using Kovacic algorithm . . . . . . . . .2675
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2679
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2680
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2680
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2680

Internal problem ID [9245]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 409
Date solved : Thursday, December 12, 2024 at 10:02:23 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.753: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
4 (x− 1) −

5
4 (x+ 1) −

1
4 (x− 1)2

− 1
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 − 3

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2 + 1

2x+ 2

)
(1) +

((
− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(

2x2 − 3
(x2 − 1)2

))
= 0

− 2a0
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2+
1

2x+2

)
dx

= (x)
√

(x− 1) (x+ 1)
= x

√
x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)
Which simplifies to

y1 =
x
√
x2 − 1√

x− 1
√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
ln (x− 1)

2 − ln (x+ 1)
2 + 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x
√
x2 − 1√

x− 1
√
x+ 1

)
+ c2

(
x
√
x2 − 1√

x− 1
√
x+ 1

(
ln (x− 1)

2 − ln (x+ 1)
2 + 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 2y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 2

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 1
[y(x) = −a0x]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = − ln (x+ 1) c2x

2 + c2 ln (x− 1)x
2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 33� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x− 1

2c2(x log(1− x)− x log(x+ 1) + 2)
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2.1.398 problem 410

Solved as second order ode using Kovacic algorithm . . . . . . . . .2681
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2683
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2685
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2685
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2685

Internal problem ID [9246]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 410
Date solved : Thursday, December 12, 2024 at 10:02:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.183 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.755: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions



chapter 2. book solved problems 2684

◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]



chapter 2. book solved problems 2685

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 33� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x− 1

2c2(x log(1− x)− x log(x+ 1) + 2)
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2.1.399 problem 411

Solved as second order ode using Kovacic algorithm . . . . . . . . .2686
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2690
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2692
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2692
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2692

Internal problem ID [9247]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 411
Date solved : Thursday, December 12, 2024 at 10:02:25 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ − 6xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.247 (sec)

Writing the ode as (
x2 − 1

)
y′′ − 6xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = −6x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 15

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

15
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.757: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
4 (x− 1) +

15
4 (x+ 1)2

+ 15
4 (x− 1)2

+ 15
4 (x+ 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 5
2 −3

2

−1 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2 (x− 1) +

5
2 (x+ 1) + (−) (0)

= − 3
2 (x− 1) +

5
2 (x+ 1)

= x− 4
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)
(0) +

((
3

2 (x− 1)2
− 5

2 (x+ 1)2
)
+
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)2

−
(

15
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2(x−1)+

5
2(x+1)

)
dx

= (x+ 1)5/2

(x− 1)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x
x2−1 dx

= z1e
3 ln(x−1)

2 + 3 ln(x+1)
2

= z1
(
(x− 1)3/2 (x+ 1)3/2

)
Which simplifies to

y1 = (x+ 1)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −6x

x2−1 dx

(y1)2
dx

= y1

∫
e3 ln(x−1)+3 ln(x+1)

(y1)2
dx

= y1

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)4

)
+ c2

(
(x+ 1)4

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 +

6
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
6
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−6u+ 6)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−4 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 3) + ak(k + r − 3) (k + r − 4))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−4 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 4}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 4)) (k + r − 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−4)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 4
ak+1 = ak(k−4)

2(k+1)

• Apply recursion relation for k = 0
a1 = −2a0

• Apply recursion relation for k = 1
a2 = −3a1

4

• Express in terms of a0
a2 = 3a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

2

• Apply recursion relation for k = 3
a4 = −a3

8

• Express in terms of a0
a4 = a0

16

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 2u+ 3

2u
2 − 1

2u
3 + 1

16u
4)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)4

16

]
• Recursion relation for r = 4

ak+1 = akk
2(k+5)

• Solution for r = 4[
y(u) =

∞∑
k=0

aku
k+4, ak+1 = akk

2(k+5)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+4 , ak+1 = akk
2(k+5)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)4
16 +

(
∞∑
k=0

bk(x+ 1)4+k

)
, bk+1 = bkk

2(5+k)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 25� �
dsolve((x^2-1)*diff(diff(y(x),x),x)-6*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

4 + c1x
3 + 6c2x2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.18 (sec)
Leaf size : 45� �
DSolve[{(x^2-1)*D[y[x],{x,2}]-6*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
x2 − 1(c2x(x2 + 1) + c1(x− 1)4)√

1− x2
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2.1.400 problem 412

Solved as second order ode using Kovacic algorithm . . . . . . . . .2693
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2697
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2697
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2697
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2698

Internal problem ID [9248]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 412
Date solved : Thursday, December 12, 2024 at 10:02:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 3

)
y′′ − 7xy′ + 16y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.458 (sec)

Writing the ode as (
x2 + 3

)
y′′ − 7xy′ + 16y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 3
B = −7x (3)
C = 16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 234
4 (x2 + 3)2

(6)

Comparing the above to (5) shows that

s = −x2 − 234

t = 4
(
x2 + 3

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 234
4 (x2 + 3)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.759: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 3)2. There is a pole at x = i

√
3 of order 2. There is a pole at x = −i

√
3 of

order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 77
16
(
x− i

√
3
)2 + 77

16
(
x+ i

√
3
)2 + 79i

√
3

48
(
x− i

√
3
) − 79i

√
3

48
(
x+ i

√
3
)

For the pole at x = i
√
3 let b be the coefficient of 1(

x−i
√
3
)2 in the partial fractions decom-

position of r given above. Therefore b = 77
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

4
α−
c = 1

2 −
√
1 + 4b = −7

4
For the pole at x = −i

√
3 let b be the coefficient of 1(

x+i
√
3
)2 in the partial fractions

decomposition of r given above. Therefore b = 77
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

4
α−
c = 1

2 −
√
1 + 4b = −7

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 234

4 (x2 + 3)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 234
4 (x2 + 3)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
3 2 0 11

4 −7
4

−i
√
3 2 0 11

4 −7
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−7
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
) + (−) (0)

= − 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
)

= − 7x
2x2 + 6
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(
− 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
)) (4x3 + 3x2a3 + 2xa2 + a1

)
+

( 7
4
(
x− i

√
3
)2 + 7

4
(
x+ i

√
3
)2
)

+
(
− 7
4
(
x− i

√
3
) − 7

4
(
x+ i

√
3
))2

−
(
−x2 − 234
4 (x2 + 3)2

) = 0

(a3x3 + 4(9 + a2)x2 + 9(a1 + 2a3)x+ 16a0 + 6a2) (x2 + 3)(
−ix+

√
3
)2 (√3 + ix

)2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

27
8 , a1 = 0, a2 = −9, a3 = 0

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 9x2 + 27
8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 9x2 + 27

8

)
e
∫ (

− 7
4
(
x−i

√
3
)− 7

4
(
x+i

√
3
)
)
dx

=
(
x4 − 9x2 + 27

8

)
1((

i
√
3− x

) (
x+ i

√
3
))7/4

= 8x4 − 72x2 + 27
8 (−x2 − 3)7/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−7x
x2+3 dx

= z1e
7 ln

(
x2+3

)
4

= z1
((

x2 + 3
)7/4)

Which simplifies to

y1 =
(
1
2 + i

2

)(
x4 − 9x2 + 27

8

)√
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− −7x

x2+3 dx

(y1)2
dx

= y1

∫
e

7 ln
(
x2+3

)
2

(y1)2
dx

= y1(Expression too large to display)

Therefore the solution is

y = c1y1 + c2y2

= c1

((
1
2 + i

2

)(
x4 − 9x2 + 27

8

)√
2
)

+ c2

((
1
2 + i

2

)(
x4 − 9x2 + 27

8

)√
2(Expression too large to display)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 65� �
dsolve((x^2+3)*diff(diff(y(x),x),x)-7*diff(y(x),x)*x+16*y(x) = 0,

y(x),singsol=all)� �
y = 4c2

(
x4 − 9x2 + 27

8

)
ln
(√

x2 + 3− x
)

+ 5(10x3 − 33x) c2
√
x2 + 3

6 +
(
x4 − 9x2 + 27

8

)(
c1 +

25c2
3

)
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Mathematica DSolve solution

Solving time : 0.341 (sec)
Leaf size : 492� �
DSolve[{(x^2+3)*D[y[x],{x,2}]-7*x*D[y[x],x]+16*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

24c2
(
12960x2RootSum

[
7838208000#14 − 188281584000#12 − 241544908800#1

+18453344881&,#1 log
(
−411757211968704000#13−166063274606980800#12+10138703825167113960#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

+ 5248800x2RootSum
[
210880720572480000000#14 − 30882886815600000#12

+ 97825688064000#1
+18453344881&,#1 log

(
27353083060732502808000000#13−27238528617410025720000#12−4106175049192681153800#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 4860RootSum
[
7838208000#14 − 188281584000#12 − 241544908800#1

+18453344881&,#1 log
(
−411757211968704000#13−166063274606980800#12+10138703825167113960#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 1968300RootSum
[
210880720572480000000#14 − 30882886815600000#12

+ 97825688064000#1
+18453344881&,#1 log

(
27353083060732502808000000#13−27238528617410025720000#12−4106175049192681153800#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 1440x4RootSum
[
7838208000#14 − 188281584000#12 − 241544908800#1

+18453344881&,#1 log
(
−411757211968704000#13−166063274606980800#12+10138703825167113960#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

− 583200x4RootSum
[
210880720572480000000#14 − 30882886815600000#12

+ 97825688064000#1
+18453344881&,#1 log

(
27353083060732502808000000#13−27238528617410025720000#12−4106175049192681153800#1−868082003147887664x2+868082003147887664x

√
x2 + 3+15417510572689690113

)
&
]

+ 165
√
x2 + 3x+ 216x2 log

(√
x2 + 3− x

)
− 81 log

(√
x2 + 3− x

)
− 24x4 log

(√
x2 + 3− x

)
− 50

√
x2 + 3x3

)
+ c1

(
x4 − 9x2 + 27

8

)
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2.1.401 problem 413

Solved as second order ode using Kovacic algorithm . . . . . . . . .2699
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2703
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2704
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2704
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2705

Internal problem ID [9249]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 413
Date solved : Thursday, December 12, 2024 at 10:02:26 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ + 8xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.205 (sec)

Writing the ode as (
x2 − 1

)
y′′ + 8xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = 8x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 8

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

8
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.760: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
x− 1 + 2

x+ 1 + 2
(x− 1)2

+ 2
(x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 2 −1
−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− 1 + 2

x+ 1 + (−) (0)

= − 1
x− 1 + 2

x+ 1
= x− 3

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− 1 + 2

x+ 1

)
(0) +

((
1

(x− 1)2
− 2

(x+ 1)2
)
+
(
− 1
x− 1 + 2

x+ 1

)2

−
(

8
(x2 − 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−1+

2
x+1

)
dx

= (x+ 1)2

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x

x2−1 dx

= z1e
−2 ln(x−1)−2 ln(x+1)

= z1

(
1

(x− 1)2 (x+ 1)2
)

Which simplifies to

y1 =
1

(x− 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x

x2−1 dx

(y1)2
dx

= y1

∫
e−4 ln(x−1)−4 ln(x+1)

(y1)2
dx

= y1

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x− 1)3
)
+ c2

(
1

(x− 1)3

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 2703

Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 −

8
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
8
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (8u− 8)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r + 4) + ak(k + r + 4) (k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 0}
• Each term in the series must be 0, giving the recursion relation

(k + r + 4) ((−2k − 2r − 2) ak+1 + ak(k + r + 3)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r+3)
2(k+1+r)

• Recursion relation for r = −3
ak+1 = akk

2(k−2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 2
ak+1 = akk

2(k−2)

• Recursion relation for r = 0
ak+1 = ak(k+3)

2(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+3)

2(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+3)
2(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 29� �
dsolve((x^2-1)*diff(diff(y(x),x),x)+8*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3 + 3c1x2 + 3c2x+ c1

(x2 − 1)3
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Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 37� �
DSolve[{(x^2-1)*D[y[x],{x,2}]+8*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1(x− 1)3 − c2(3x2 + 1)

3 (x2 − 1)3
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2.1.402 problem 414

Solved as second order ode using Kovacic algorithm . . . . . . . . .2706
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2710
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2711
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2711

Internal problem ID [9250]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 414
Date solved : Thursday, December 12, 2024 at 10:02:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as

3y′′ + xy′ − 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 54
36 (6)

Comparing the above to (5) shows that

s = x2 + 54
t = 36

Therefore eq. (4) becomes

z′′(x) =
(
x2

36 + 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.762: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

6 +
9
2x− 243

4x3 +
6561
4x5 − 885735

16x7 + 33480783
16x9 − 2711943423

32x11 + 115063885233
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

36
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 54
36

= Q+ R

36

=
(
x2

36 + 3
2

)
+ (0)

= x2

36 + 3
2

We see that the coefficient of the term 1
x
in the quotient is 3

2 . Now b can be found.

b =
(
3
2

)
− (0)

= 3
2

Hence

[
√
r]∞ = x

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
6
− 1
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
6
− 1
)

= −5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

36 + 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
6 4 −5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 2709

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4, and since there are no poles, then

d = α+
∞

= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
6

)
= x

6
= x

6
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(x
6

) (
4x3 + 3x2a3 + 2xa2 + a1

)
+
((

1
6

)
+
(x
6

)2
−
(
x2

36 + 3
2

))
= 0

−a3x
3

3 + 2(18− a2)x2

3 + (−a1 + 6a3)x− 4a0
3 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 27, a1 = 0, a2 = 18, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 + 18x2 + 27

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 + 18x2 + 27

)
e
∫

x
6 dx

=
(
x4 + 18x2 + 27

)
ex2

12

=
(
x4 + 18x2 + 27

)
ex2

12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
3 dx

= z1e
−x2

12

= z1
(
e−x2

12

)
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Which simplifies to
y1 = x4 + 18x2 + 27

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

3 dx

(y1)2
dx

= y1

∫
e−

x2
6

(y1)2
dx

= y1

(∫ e−x2
6

(x4 + 18x2 + 27)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x4 + 18x2 + 27

)
+ c2

(
x4 + 18x2 + 27

(∫ e−x2
6

(x4 + 18x2 + 27)2
dx

))

Will add steps showing solving for IC soon.

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.060 (sec)
Leaf size : 47� �
dsolve(3*diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = xc1

(
x2 + 15

)√
6 e−x2

6 +
(
x4 + 18x2 + 27

)(√
π erf

(√
6x
6

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.033 (sec)
Leaf size : 43� �
DSolve[{3*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x2
6 HermiteH

(
−5, x√

6

)
+ 1

27c2
(
x4 + 18x2 + 27

)
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2.1.403 problem 415

Solved as second order ode using Kovacic algorithm . . . . . . . . .2712
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2716
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2717
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2717
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2718

Internal problem ID [9251]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 415
Date solved : Thursday, December 12, 2024 at 10:02:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

5y′′ − 2xy′ + 10y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.295 (sec)

Writing the ode as

5y′′ − 2xy′ + 10y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 5
B = −2x (3)
C = 10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 55
25 (6)

Comparing the above to (5) shows that

s = x2 − 55
t = 25

Therefore eq. (4) becomes

z′′(x) =
(
x2

25 − 11
5

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.763: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

5−
11
2x−

605
8x3−

33275
16x5 −9150625

128x7 −704598125
256x9 −116258690625

1024x11 −10048072546875
2048x13 +. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 1
5
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

5 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

25
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 55
25

= Q+ R

25

=
(
x2

25 − 11
5

)
+ (0)

= x2

25 − 11
5

We see that the coefficient of the term 1
x
in the quotient is −11

5 . Now b can be found.

b =
(
−11

5

)
− (0)

= −11
5

Hence

[
√
r]∞ = x

5

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−11
5

1
5

− 1
)

= −6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−11

5
1
5

− 1
)

= 5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

25 − 11
5

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
5 −6 5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5, and since there are no poles then

d = α−
∞

= 5

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
5

)
= −x

5
= −x

5
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 5 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives(
20x3 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(
−x

5

) (
5x4 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

−1
5

)
+
(
−x

5

)2
−
(
x2

25 − 11
5

))
= 0

2a4x4

5 + 4(25 + a3)x3

5 + 6(a2 + 10a4)x2

5 + 2(4a1 + 15a3)x
5 + 2a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = 0, a1 =

375
4 , a2 = 0, a3 = −25, a4 = 0

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x5 − 25x3 + 375
4 x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x5 − 25x3 + 375

4 x

)
e
∫
−x

5 dx

=
(
x5 − 25x3 + 375

4 x

)
e−x2

10

= (4x5 − 100x3 + 375x) e−x2
10

4
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
5 dx

= z1e
x2
10

= z1
(
ex2

10

)
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Which simplifies to

y1 = x5 − 25x3 + 375
4 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

5 dx

(y1)2
dx

= y1

∫
e

x2
5

(y1)2
dx

= y1

(∫ ex2
5(

x5 − 25x3 + 375
4 x
)2dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x5 − 25x3 + 375

4 x

)
+ c2

(
x5 − 25x3 + 375

4 x

(∫ ex2
5(

x5 − 25x3 + 375
4 x
)2dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
5 d2

dx2y(x)− 2x
(

d
dx
y(x)

)
+ 10y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
2x
(

d
dx

y(x)
)

5 − 2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2x
(

d
dx

y(x)
)

5 + 2y(x) = 0
• Multiply by denominators

5 d2

dx2y(x)− 2x
(

d
dx
y(x)

)
+ 10y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(5ak+2(k + 2) (k + 1)− 2ak(k − 5))xk = 0

• Each term in the series must be 0, giving the recursion relation
5(k2 + 3k + 2) ak+2 − 2ak(k − 5) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2ak(k−5)

5(k2+3k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 31� �
dsolve(5*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+10*y(x) = 0,

y(x),singsol=all)� �
y = c2 hypergeom

([
−5
2

]
,

[
1
2

]
,
x2

5

)
+

4c1x
(
x4 − 25x2 + 375

4

)
375
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Mathematica DSolve solution

Solving time : 0.192 (sec)
Leaf size : 138� �
DSolve[{5*D[y[x],{x,2}]-2*x*D[y[x],x]+10*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → − 1

200

√
π

5 c2
√
x2
(
4x4 − 100x2 + 375

)
erfi
(√

x2
√
5

)
+ 32c1x5

25
√
5

− 32c1x3
√
5

− 9
20c2e

x2
5 x2 + c2e

x2
5 + 1

50c2e
x2
5 x4 + 24

√
5c1x
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2.1.404 problem 416

Solved as second order ode using Kovacic algorithm . . . . . . . . .2719
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2723
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2724
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2724
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2724

Internal problem ID [9252]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 416
Date solved : Thursday, December 12, 2024 at 10:02:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − x2y′ − 3xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as

y′′ − x2y′ − 3xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = −3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 + 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 + 8

)
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x(x3 + 8)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.765: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 + 2
x
− 4

x4 + 16
x7 − 80

x10 + 448
x13 − 2688

x16 + 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 + 8)
4

= Q+ R

4

=
(
1
4x

4 + 2x
)
+ (0)

= 1
4x

4 + 2x

We see that the coefficient of the term 1
x
in the quotient is 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 2
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 2
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x(x3 + 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 1 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(
x2

2

)
= x2

2

= x2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
x2

2

)
(1) +

(
(x) +

(
x2

2

)2

−
(
x(x3 + 8)

4

))
= 0

−xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫

x2
2 dx

= (x) ex3
6

= x ex3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)
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Which simplifies to

y1 = ex3
3 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1

(∫ e−x3
3

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex3

3 x
)
+ c2

(
ex3

3 x

(∫ e−x3
3

x2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x2( d
dx
y(x)

)
− 3xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion
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d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k + 2))xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 − ak−1 + ak+2) = 0

• Shift index using k− >k + 1
(k + 3) ((k + 1) ak+3 − ak + ak+3) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = ak

k+2 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 58� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^2-3*x*y(x) = 0,

y(x),singsol=all)� �
y =

9WhittakerM
(

1
3 ,

5
6 ,

x3

3

)
ex3

6 c2x
3 + 9c1e

x3
3 x2 + 532/3c2(x3)1/3 (x3 + 2)

9x

Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 51� �
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]-3*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

9e
x3
3

(
9c1x− 32/3c2

3√
x3Γ
(
−1
3 ,

x3

3

))
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2.1.405 problem 417

Solved as second order ode using Kovacic algorithm . . . . . . . . .2725
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2729
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2729
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2729
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2729

Internal problem ID [9253]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 417
Date solved : Thursday, December 12, 2024 at 10:02:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ + 2xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.317 (sec)

Writing the ode as (
x2 + 1

)
y′′ + 2xy′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 + 3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 + 3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 + 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.767: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− i)2

− 1
4 (x+ i)2

− 5i
4 (x− i) +

5i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 + 3

(x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 + 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 1
2

1
2

−i 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2i +

1
2x+ 2i + (0)

= 1
2x− 2i +

1
2x+ 2i

= x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2i +

1
2x+ 2i

)
(1) +

((
− 1
2 (x− i)2

− 1
2 (x+ i)2

)
+
(

1
2x− 2i +

1
2x+ 2i

)2

−
(

2x2 + 3
(x2 + 1)2

))
= 0

− 2(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2i+
1

2x+2i

)
dx

= (x)
√
(−x+ i) (x+ i)

= x
√
−x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x

x2+1 dx

= z1e
−

ln
(
x2+1

)
2

= z1

(
1√

x2 + 1

)

Which simplifies to
y1 = ix

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

x2+1 dx

(y1)2
dx

= y1

∫
e− ln

(
x2+1

)
(y1)2

dx

= y1

(
1
x
+ arctan (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ix) + c2

(
ix

(
1
x
+ arctan (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 14� �
dsolve((x^2+1)*diff(diff(y(x),x),x)+2*diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = c1x+ arctan (x)xc2 + c2

Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 48� �
DSolve[{(1+x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2i(2c1x− c2x log(1− ix) + c2x log(1 + ix) + 2ic2)
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2.1.406 problem 418

Solved as second order ode using Kovacic algorithm . . . . . . . . .2730
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2734
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2735
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2735
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2735

Internal problem ID [9254]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 418
Date solved : Thursday, December 12, 2024 at 10:02:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.250 (sec)

Writing the ode as

y′′ + xy′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 10
4 (6)

Comparing the above to (5) shows that

s = x2 + 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.768: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 5
2x − 25

4x3 + 125
4x5 − 3125

16x7 + 21875
16x9 − 328125

32x11 + 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 10
4

= Q+ R

4

=
(
x2

4 + 5
2

)
+ (0)

= x2

4 + 5
2

We see that the coefficient of the term 1
x
in the quotient is 5

2 . Now b can be found.

b =
(
5
2

)
− (0)

= 5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
2
1
2
− 1
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
2
1
2
− 1
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 2 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2, and since there are no poles, then

d = α+
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(x
2

)
(2x+ a1) +

((
1
2

)
+
(x
2

)2
−
(
x2

4 + 5
2

))
= 0

−a1x− 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 1

)
e
∫

x
2 dx

=
(
x2 + 1

)
ex2

4

=
(
x2 + 1

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to
y1 = x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ e−x2
2

(x2 + 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 + 1

)
+ c2

(
x2 + 1

(∫ e−x2
2

(x2 + 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
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ak+2 = − ak(k−2)
k2+3k+2

• Apply recursion relation for k = 0
a2 = a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y(x) = A2x

2 + A1x+ a0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 37� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y =

√
2 e−x2

2 c1x+
(
x2 + 1

)(√
π erf

(√
2x
2

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.029 (sec)
Leaf size : 35� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x2
2 HermiteH

(
−3, x√

2

)
+ c2

(
x2 + 1

)
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2.1.407 problem 419

Solved as second order ode using Kovacic algorithm . . . . . . . . .2736
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2740
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2740
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2740
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2740

Internal problem ID [9255]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 419
Date solved : Thursday, December 12, 2024 at 10:02:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 6x+ 10

)
y′′ − 4(x− 3) y′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.323 (sec)

Writing the ode as (
x2 − 6x+ 10

)
y′′ + (−4x+ 12) y′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 6x+ 10
B = −4x+ 12 (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −8
(x2 − 6x+ 10)2

(6)

Comparing the above to (5) shows that

s = −8

t =
(
x2 − 6x+ 10

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 8
(x2 − 6x+ 10)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.770: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 6x+ 10)2. There is a pole at x = 3+ i of order 2. There is a pole at x = 3− i

of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− 3− i)2

+ 2
(x− 3 + i)2

+ 2i
x− 3− i

− 2i
x− 3 + i

For the pole at x = 3 + i let b be the coefficient of 1
(x−3−i)2 in the partial fractions decom-

position of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 3− i let b be the coefficient of 1
(x−3+i)2 in the partial fractions decom-

position of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 8
(x2 − 6x+ 10)2

pole c location pole order [
√
r]c α+

c α−
c

3 + i 2 0 2 −1
3− i 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− 3− i

+ 2
x− 3 + i

+ (−) (0)

= − 1
x− 3− i

+ 2
x− 3 + i

= x− 3− 3i
x2 − 6x+ 10

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− 3− i

+ 2
x− 3 + i

)
(0) +

((
1

(x− 3− i)2
− 2

(x− 3 + i)2
)
+
(
− 1
x− 3− i

+ 2
x− 3 + i

)2

−
(
− 8
(x2 − 6x+ 10)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−3−i

+ 2
x−3+i

)
dx

= (x2 − 6x+ 10)2

(ix− 3i+ 1)3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x+12

x2−6x+10 dx

= z1e
ln
(
x2−6x+10

)
= z1

(
x2 − 6x+ 10

)
Which simplifies to

y1 =
(x2 − 6x+ 10)3

(ix− 3i+ 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −4x+12

x2−6x+10 dx

(y1)2
dx

= y1

∫
e2 ln

(
x2−6x+10

)
(y1)2

dx

= y1

(
x2 − 6x+ 26

3

(x− 3 + i)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 6x+ 10)3

(ix− 3i+ 1)3

)
+ c2

(
(x2 − 6x+ 10)3

(ix− 3i+ 1)3
(
x2 − 6x+ 26

3

(x− 3 + i)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 31� �
dsolve((x^2-6*x+10)*diff(diff(y(x),x),x)-4*(x-3)*diff(y(x),x)+6*y(x) = 0,

y(x),singsol=all)� �
y = c1x

3 + c2x
2 + 6(−5c1 − c2)x+ 60c1 +

26c2
3

Mathematica DSolve solution

Solving time : 0.121 (sec)
Leaf size : 36� �
DSolve[{(x^2-6*x+10)*D[y[x],{x,2}]-4*(x-3)*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

3i
(
c2
(
3x2 − 18x+ 26

)
+ 3c1(x− (3 + i))3

)
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2.1.408 problem 420

Solved as second order ode using Kovacic algorithm . . . . . . . . .2741
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2745
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2746
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2747
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2747

Internal problem ID [9256]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 420
Date solved : Thursday, December 12, 2024 at 10:02:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 6x

)
y′′ + (3x+ 9) y′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as (
x2 + 6x

)
y′′ + (3x+ 9) y′ − 3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 6x
B = 3x+ 9 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 + 90x− 27
4 (x2 + 6x)2

(6)

Comparing the above to (5) shows that

s = 15x2 + 90x− 27

t = 4
(
x2 + 6x

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 + 90x− 27
4 (x2 + 6x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.771: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 6x)2. There is a pole at x = 0 of order 2. There is a pole at x = −6 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 11
16x − 3

16 (x+ 6)2
− 11

16 (x+ 6) −
3

16x2

For the pole at x = −6 let b be the coefficient of 1
(x+6)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 + 90x− 27

4 (x2 + 6x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 + 90x− 27
4 (x2 + 6x)2

pole c location pole order [
√
r]c α+

c α−
c

−6 2 0 3
4

1
4

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x+ 6) +

3
4x + (0)

= 3
4 (x+ 6) +

3
4x

=
3x
2 + 9

2
x (x+ 6)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x+ 6) +

3
4x

)
(1) +

((
− 3
4 (x+ 6)2

− 3
4x2

)
+
(

3
4 (x+ 6) +

3
4x

)2

−
(
15x2 + 90x− 27
4 (x2 + 6x)2

))
= 0

9− 3a0
x (x+ 6) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 3) e
∫ ( 3

4(x+6)+
3
4x

)
dx

= (x+ 3) (x(x+ 6))3/4

= (x+ 3) (x(x+ 6))3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x+9
x2+6x dx

= z1e
− 3 ln(x(x+6))

4

= z1

(
1

(x (x+ 6))3/4

)

Which simplifies to
y1 = x+ 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x+9

x2+6x dx

(y1)2
dx

= y1

∫
e−

3 ln(x(x+6))
2

(y1)2
dx

= y1

(
−(x+ 6)x(2x2 + 12x+ 9)

81 (x+ 3) (x (x+ 6))3/2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 3) + c2

(
x+ 3

(
−(x+ 6)x(2x2 + 12x+ 9)

81 (x+ 3) (x (x+ 6))3/2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(x2 + 6x)
(

d2

dx2y(x)
)
+ (3x+ 9)

(
d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3y(x)
x(6+x) −

3(x+3)
(

d
dx

y(x)
)

x(6+x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3(x+3)

(
d
dx

y(x)
)

x(6+x) − 3y(x)
x(6+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3(x+3)
x(6+x) , P3(x) = − 3

x(6+x)

]
◦ (6 + x) · P2(x) is analytic at x = −6

((6 + x) · P2(x))
∣∣∣∣
x=−6

= 3
2

◦ (6 + x)2 · P3(x) is analytic at x = −6(
(6 + x)2 · P3(x)

) ∣∣∣∣
x=−6

= 0

◦ x = −6is a regular singular point
Check to see if x0 is a regular singular point
x0 = −6

• Multiply by denominators

x(6 + x)
(

d2

dx2y(x)
)
+ (3x+ 9)

(
d
dx
y(x)

)
− 3y(x) = 0

• Change variables using x = u− 6 so that the regular singular point is at u = 0

(u2 − 6u)
(

d2

du2y(u)
)
+ (3u− 9)

(
d
du
y(u)

)
− 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−3a0r(1 + 2r)u−1+r +
(

∞∑
k=0

(−3ak+1(k + 1 + r) (2k + 3 + 2r) + ak(k + r + 3) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

−6
(
k + r + 3

2

)
(k + 1 + r) ak+1 + ak(k + r + 3) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+3)(k+r−1)

3(2k+3+2r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+3)(k−1)

3(2k+3)(k+1)

• Apply recursion relation for k = 0
a1 = −a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

3

)
• Revert the change of variables u = 6 + x[

y(x) = a0
(
−1− x

3

)]
• Recursion relation for r = −1

2

ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)

3(2k+2)
(
k+ 1

2
)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)

3(2k+2)
(
k+ 1

2
)
]

• Revert the change of variables u = 6 + x[
y(x) =

∞∑
k=0

ak(6 + x)k−
1
2 , ak+1 =

ak
(
k+ 5

2
)(
k− 3

2
)

3(2k+2)
(
k+ 1

2
)
]

• Combine solutions and rename parameters[
y(x) = a0

(
−1− x

3

)
+
(

∞∑
k=0

bk(6 + x)k−
1
2

)
, bk+1 =

bk
(
k+ 5

2
)(
k− 3

2
)

3(2k+2)
(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.037 (sec)
Leaf size : 30� �
dsolve((x^2+6*x)*diff(diff(y(x),x),x)+(3*x+9)*diff(y(x),x)-3*y(x) = 0,

y(x),singsol=all)� �
y = c1(x+ 3) + c2(2x2 + 12x+ 9)

√
x
√
6 + x

Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 82� �
DSolve[{(x^2+6*x)*D[y[x],{x,2}]+(3*x+9)*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
9
√
πc2

4
√

−x(x+ 6)Q
1
2
3
2

(
x
3 + 1

)
+
√
6c1(2x2 + 12x+ 9)

9
√
π

4
√
−x2

√
x+ 6



chapter 2. book solved problems 2748

2.1.409 problem 421

Solved as second order ode using Kovacic algorithm . . . . . . . . .2748
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2752
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2754
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2754
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2754

Internal problem ID [9257]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 421
Date solved : Thursday, December 12, 2024 at 10:02:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

ty′′ +
(
t2 − 1

)
y′ + t3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.455 (sec)

Writing the ode as

ty′′ +
(
t2 − 1

)
y′ + t3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = t2 − 1 (3)
C = t3

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3t4 + 3
4t2 (6)

Comparing the above to (5) shows that

s = −3t4 + 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
−3t4 + 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.773: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −3t2
4 + 3

4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
1∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i

√
3 t
2 − i

√
3

4t3 − i
√
3

16t7 − i
√
3

32t11 − 5i
√
3

256t15 − 7i
√
3

512t19 − 21i
√
3

2048t23 − 33i
√
3

4096t27 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i
√
3

2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

ait
i

= i
√
3 t
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = −3t2

4

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −3t4 + 3
4t2

= Q+ R

4t2

=
(
−3t2

4

)
+
(

3
4t2

)
= −3t2

4 + 3
4t2

We see that the coefficient of the term t in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

√
3 t
2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0

i
√
3

2

− 1
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0

i
√
3

2

− 1
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3t4 + 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 i
√
3 t
2 −1

2 −1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= − 1
2t + (−)

(
i
√
3 t
2

)

= − 1
2t −

i
√
3 t
2

= −i
√
3 t2 − 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2t −

i
√
3 t
2

)
(0) +

( 1
2t2 − i

√
3

2

)
+
(
− 1
2t −

i
√
3 t
2

)2

−
(
−3t4 + 3

4t2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2t−

i
√
3 t
2

)
dt

= e− i
√

3 t2
4

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2−1

t
dt

= z1e
− t2

4 + ln(t)
2

= z1
(√

t e− t2
4

)
Which simplifies to

y1 = e−
t2

(
1+i

√
3
)

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2−1

t
dt

(y1)2
dt

= y1

∫
e−

t2
2 +ln(t)

(y1)2
dt

= y1

−i
√
3 e− t2

2 +ln(t)e
t2

(
1+i

√
3
)

2

3t


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−

t2
(
1+i

√
3
)

4

)
+ c2

e−
t2

(
1+i

√
3
)

4

−i
√
3 e− t2

2 +ln(t)e
t2

(
1+i

√
3
)

2

3t



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t+ (t2 − 1)

(
d
dt
y(t)

)
+ t3y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −t2y(t)−

(
t2−1

)(
d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(
t2−1

)(
d
dt
y(t)

)
t

+ t2y(t) = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions
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[
P2(t) = t2−1

t
, P3(t) = t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (t2 − 1)

(
d
dt
y(t)

)
+ t3y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t3 · y(t) to series expansion

t3 · y(t) =
∞∑
k=0

akt
k+r+3

◦ Shift index using k− >k − 3

t3 · y(t) =
∞∑
k=3

ak−3t
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−2 + r) t−1+r + a1(1 + r) (−1 + r) tr + (a2(2 + r) r + a0r) t1+r + (a3(3 + r) (1 + r) + a1(1 + r)) t2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r − 1) + ak−1(k + r − 1) + ak−3) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• The coefficients of each power of t must be 0
[a1(1 + r) (−1 + r) = 0, a2(2 + r) r + a0r = 0, a3(3 + r) (1 + r) + a1(1 + r) = 0]

• Solve for the dependent coefficient(s){
a1 = 0, a2 = − a0

2+r
, a3 = 0

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + r − 1) + ak−1(k + r − 1) + ak−3 = 0
• Shift index using k− >k + 3
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ak+4(k + 4 + r) (k + 2 + r) + ak+2(k + 2 + r) + ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = −kak+2+rak+2+ak+2ak+2
(k+4+r)(k+2+r)

• Recursion relation for r = 0
ak+4 = −kak+2+ak+2ak+2

(k+4)(k+2)

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+4 = −kak+2+ak+2ak+2

(k+4)(k+2) , a1 = 0, a2 = −a0
2 , a3 = 0

]
• Recursion relation for r = 2

ak+4 = −kak+2+ak+4ak+2
(k+6)(k+4)

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+4 = −kak+2+ak+4ak+2

(k+6)(k+4) , a1 = 0, a2 = −a0
4 , a3 = 0

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+2
)
, a4+k = −kak+2+ak+2ak+2

(4+k)(k+2) , a1 = 0, a2 = −a0
2 , a3 = 0, b4+k = −kbk+2+bk+4bk+2

(k+6)(4+k) , b1 = 0, b2 = − b0
4 , b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.018 (sec)
Leaf size : 34� �
dsolve(t*diff(diff(y(t),t),t)+(t^2-1)*diff(y(t),t)+t^3*y(t) = 0,

y(t),singsol=all)� �
y = e− t2

4

(
c1 cos

(√
3 t2
4

)
+ c2 sin

(√
3 t2
4

))

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 48� �
DSolve[{t*D[y[t],{t,2}]+(t^2-1)*D[y[t],t]+t^3*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−

t2
4

(
c2 cos

(√
3t2
4

)
+ c1 sin

(√
3t2
4

))
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2.1.410 problem 422

Solved as second order ode using Kovacic algorithm . . . . . . . . .2755
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2757
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2758
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2759
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2759

Internal problem ID [9258]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 422
Date solved : Thursday, December 12, 2024 at 10:02:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ − t(t+ 2) y′ + (t+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.109 (sec)

Writing the ode as

t2y′′ +
(
−t2 − 2t

)
y′ + (t+ 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 − 2t (3)
C = t+ 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.775: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−2t

t2 dt

= z1e
t
2+ln(t)

= z1
(
t e t

2

)
Which simplifies to

y1 = t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt
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Substituting gives

y2 = y1

∫
e
∫
−−t2−2t

t2 dt

(y1)2
dt

= y1

∫
et+2 ln(t)

(y1)2
dt

= y1

(
et+2 ln(t)

t2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(t) + c2

(
t

(
et+2 ln(t)

t2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 − t(t+ 2)

(
d
dt
y(t)

)
+ (t+ 2) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = − (t+2)y(t)

t2
+

(t+2)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+2)
(

d
dt
y(t)

)
t

+ (t+2)y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+2

t
, P3(t) = t+2

t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 − t(t+ 2)

(
d
dt
y(t)

)
+ (t+ 2) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑
k=0

akt
k+r+m
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◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r) tr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 2)− ak−1(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+1(k + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+r

• Recursion relation for r = 1
ak+1 = ak

k+1

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+2

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+2

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 12� �
dsolve(t^2*diff(diff(y(t),t),t)-t*(t+2)*diff(y(t),t)+(t+2)*y(t) = 0,

y(t),singsol=all)� �
y = t

(
c1 + etc2

)
Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 16� �
DSolve[{t^2*D[y[t],{t,2}]-t*(t+2)*D[y[t],t]+(t+2)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → t

(
c2e

t + c1
)
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2.1.411 problem 423

Solved as second order ode using Kovacic algorithm . . . . . . . . .2760
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2765
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2766
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2766
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2767

Internal problem ID [9259]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 423
Date solved : Thursday, December 12, 2024 at 10:02:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.268 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.777: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (x− 1)2
− 1

2 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2



chapter 2. book solved problems 2767

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.412 problem 424

Solved as second order ode using Kovacic algorithm . . . . . . . . .2768
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2771
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2773
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2773
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2773

Internal problem ID [9260]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 424
Date solved : Thursday, December 12, 2024 at 10:02:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ −
(
x− 3

16

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.191 (sec)

Writing the ode as

x2y′′ +
(
−x+ 3

16

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)

C = −x+ 3
16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 16x− 3
16x2 (6)

Comparing the above to (5) shows that

s = 16x− 3
t = 16x2
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Therefore eq. (4) becomes

z′′(x) =
(
16x− 3
16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.779: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 + 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.
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pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1− 16x
16x2 = 0

Solving for ω gives

ω = 1 + 4
√
x

4x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+4

√
x

4x dx

= x1/4e2
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x1/4e2
√
x

Which simplifies to

y1 = x1/4e2
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x1/4e2
√
x

∫ 1√
x e4

√
x
dx

= x1/4e2
√
x

(
−e−4

√
x

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/4e2

√
x
)
+ c2

(
x1/4e2

√
x

(
−e−4

√
x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
−
(
x− 3

16

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (16x−3)y(x)
16x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− (16x−3)y(x)
16x2 = 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = −16x−3
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ (−16x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)xr +
(

∞∑
k=1

(ak(4k + 4r − 1) (4k + 4r − 3)− 16ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term in the series must be 0, giving the recursion relation

16
(
k + r − 3

4

) (
k + r − 1

4

)
ak − 16ak−1 = 0

• Shift index using k− >k + 1
16
(
k + 1

4 + r
) (

k + 3
4 + r

)
ak+1 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 16ak

(4k+1+4r)(4k+3+4r)

• Recursion relation for r = 1
4

ak+1 = 16ak
(4k+2)(4k+4)

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+1 = 16ak
(4k+2)(4k+4)

]
• Recursion relation for r = 3

4

ak+1 = 16ak
(4k+4)(4k+6)
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• Solution for r = 3
4[

y(x) =
∞∑
k=0

akx
k+ 3

4 , ak+1 = 16ak
(4k+4)(4k+6)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+1 = 16ak

(4k+2)(4k+4) , bk+1 = 16bk
(4k+4)(4k+6)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)-(x-3/16)*y(x) = 0,

y(x),singsol=all)� �
y = x1/4(c1 sinh (2√x

)
+ c2 cosh

(
2
√
x
))

Mathematica DSolve solution

Solving time : 0.07 (sec)
Leaf size : 41� �
DSolve[{x^2*D[y[x],{x,2}]-(x-1875/10000)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−2

√
x 4
√
x
(
2c1e4

√
x − c2

)
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2.1.413 problem 425

Solved as second order ode using Kovacic algorithm . . . . . . . . .2774
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2776
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2778
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2778
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2778

Internal problem ID [9261]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 425
Date solved : Thursday, December 12, 2024 at 10:02:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.176 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.781: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-25/100)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.414 problem 426

Solved as second order ode using Kovacic algorithm . . . . . . . . .2779
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2781
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2782
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2783
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2783

Internal problem ID [9262]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 426
Date solved : Thursday, December 12, 2024 at 10:02:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ − t(t+ 2) y′ + (t+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.103 (sec)

Writing the ode as

t2y′′ +
(
−t2 − 2t

)
y′ + (t+ 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 − 2t (3)
C = t+ 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.783: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−2t

t2 dt

= z1e
t
2+ln(t)

= z1
(
t e t

2

)
Which simplifies to

y1 = t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt
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Substituting gives

y2 = y1

∫
e
∫
−−t2−2t

t2 dt

(y1)2
dt

= y1

∫
et+2 ln(t)

(y1)2
dt

= y1

(
et+2 ln(t)

t2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(t) + c2

(
t

(
et+2 ln(t)

t2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 − t(t+ 2)

(
d
dt
y(t)

)
+ (t+ 2) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = − (t+2)y(t)

t2
+

(t+2)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+2)
(

d
dt
y(t)

)
t

+ (t+2)y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+2

t
, P3(t) = t+2

t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 − t(t+ 2)

(
d
dt
y(t)

)
+ (t+ 2) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑
k=0

akt
k+r+m
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◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r) tr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 2)− ak−1(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+1(k + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+r

• Recursion relation for r = 1
ak+1 = ak

k+1

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+2

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+2

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 12� �
dsolve(t^2*diff(diff(y(t),t),t)-t*(t+2)*diff(y(t),t)+(t+2)*y(t) = 0,

y(t),singsol=all)� �
y = t

(
c1 + etc2

)
Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 16� �
DSolve[{t^2*D[y[t],{t,2}]-t*(t+2)*D[y[t],t]+(t+2)*y[t] == 0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → t

(
c2e

t + c1
)
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2.1.415 problem 427

Solved as second order ode using Kovacic algorithm . . . . . . . . .2784
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2788
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2790
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2790
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2790

Internal problem ID [9263]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 427
Date solved : Thursday, December 12, 2024 at 10:02:35 AM
CAS classification : [_Laguerre]

Solve

ty′′ − (1 + t) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as

ty′′ + (−1− t) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −1− t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.785: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2t +
3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
2t2 + 1

2t3 + 1
4t4 − 1

4t5 − 3
4t6 − 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−2t+ 3

4t2

)
= 1

4 + −2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2t +

(
1
2

)
= 1

2 − 1
2t

= t− 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2t

)
(0) +

((
1
2t2

)
+
(
1
2 − 1

2t

)2

−
(
t2 − 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2−
1
2t
)
dt

= e t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−1−t

t
dt

= z1e
t
2+

ln(t)
2

= z1
(√

t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−1−t

t
dt

(y1)2
dt

= y1

∫
et+ln(t)

(y1)2
dt

= y1

(
−(1 + t) et+ln(t)e−2t

t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−(1 + t) et+ln(t)e−2t

t

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t− (t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t
+

(t+1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+1)
(

d
dt
y(t)

)
t

+ y(t)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+1

t
, P3(t) = 1

t

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t− 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−2 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13� �
dsolve(t*diff(diff(y(t),t),t)-(t+1)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y = etc2 + c1t+ c1

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 19� �
DSolve[{t*D[y[t],{t,2}]-(1+t)*D[y[t],t]+y[t] == 0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2(t+ 1)
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2.1.416 problem 428

Solved as second order ode using Kovacic algorithm . . . . . . . . .2791
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2796
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2797
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2797
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2798

Internal problem ID [9264]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 428
Date solved : Thursday, December 12, 2024 at 10:02:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− t) y′′ + ty′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

(1− t) y′′ + ty′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− t

B = t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 4t+ 6
4 (−1 + t)2

(6)

Comparing the above to (5) shows that

s = t2 − 4t+ 6
t = 4(−1 + t)2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 4t+ 6
4 (−1 + t)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.787: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + t)2. There is a pole at t = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (−1 + t) +
3

4 (−1 + t)2

For the pole at t = 1 let b be the coefficient of 1
(−1+t)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
t3

+ 11
4t4 + 21

4t5 + 15
2t6 + 6

t7
− 117

16t8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 4t+ 6
4t2 − 8t+ 4

= Q+ R

4t2 − 8t+ 4

=
(
1
4

)
+
(

−2t+ 5
4t2 − 8t+ 4

)
= 1

4 + −2t+ 5
4t2 − 8t+ 4

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 4t+ 6
4 (−1 + t)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + t) +

(
1
2

)
= − 1

2 (−1 + t) +
1
2

= t− 2
2t− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + t) +

1
2

)
(0) +

((
1

2 (−1 + t)2
)
+
(
− 1
2 (−1 + t) +

1
2

)2

−
(
t2 − 4t+ 6
4 (−1 + t)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(−1+t)+

1
2

)
dt

= e t
2

√
−1 + t

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t

1−t
dt

= z1e
t
2+

ln(−1+t)
2

= z1
(√

−1 + t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

1−t
dt

(y1)2
dt

= y1

∫
et+ln(−1+t)

(y1)2
dt

= y1

(
−t et+ln(−1+t)e−2t

−1 + t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−t et+ln(−1+t)e−2t

−1 + t

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(1− t)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t−1 +
(

d
dt
y(t)

)
t

t−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(
d
dt
y(t)

)
t

t−1 + y(t)
t−1 = 0

� Check to see if t0 = 1 is a regular singular point
◦ Define functions[

P2(t) = − t
t−1 , P3(t) = 1

t−1

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= −1

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
Check to see if t0 = 1 is a regular singular point
t0 = 1

• Multiply by denominators

(t− 1)
(

d2

dt2
y(t)

)
− t
(

d
dt
y(t)

)
+ y(t) = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((1-t)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c1t+ etc2
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Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 17� �
DSolve[{(1-t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t] == 0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2t
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2.1.417 problem 429

Solved as second order ode using Kovacic algorithm . . . . . . . . .2799
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2801
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2803
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2803
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2803

Internal problem ID [9265]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 429
Date solved : Thursday, December 12, 2024 at 10:02:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.176 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.789: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.065 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-25/100)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.418 problem 430

Solved as second order ode using Kovacic algorithm . . . . . . . . .2804
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2808
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2810
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2810
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2810

Internal problem ID [9266]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 430
Date solved : Thursday, December 12, 2024 at 10:02:37 AM
CAS classification : [_Laguerre]

Solve

ty′′ − (1 + t) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

ty′′ + (−1− t) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −1− t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.791: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4t2 − 1
2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
2t2 + 1

2t3 + 1
4t4 − 1

4t5 − 3
4t6 − 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−2t+ 3

4t2

)
= 1

4 + −2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2t +

(
1
2

)
= 1

2 − 1
2t

= t− 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2t

)
(0) +

((
1
2t2

)
+
(
1
2 − 1

2t

)2

−
(
t2 − 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2−
1
2t
)
dt

= e t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−1−t

t
dt

= z1e
t
2+

ln(t)
2

= z1
(√

t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−1−t

t
dt

(y1)2
dt

= y1

∫
et+ln(t)

(y1)2
dt

= y1

(
−(1 + t) et+ln(t)e−2t

t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−(1 + t) et+ln(t)e−2t

t

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t− (t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t
+

(t+1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t+1)
(

d
dt
y(t)

)
t

+ y(t)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+1

t
, P3(t) = 1

t

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t− 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−2 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(t) =

∞∑
k=0

akt
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13� �
dsolve(t*diff(diff(y(t),t),t)-(t+1)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y = etc2 + c1t+ c1

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 19� �
DSolve[{t*D[y[t],{t,2}]-(1+t)*D[y[t],t]+y[t] ==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2(t+ 1)
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2.1.419 problem 431

Solved as second order ode using Kovacic algorithm . . . . . . . . .2811
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2816
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2817
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2817
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2818

Internal problem ID [9267]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 431
Date solved : Thursday, December 12, 2024 at 10:02:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− t) y′′ + ty′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.274 (sec)

Writing the ode as

(1− t) y′′ + ty′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− t

B = t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 4t+ 6
4 (−1 + t)2

(6)

Comparing the above to (5) shows that

s = t2 − 4t+ 6
t = 4(−1 + t)2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 4t+ 6
4 (−1 + t)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.793: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + t)2. There is a pole at t = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (−1 + t)2
− 1

2 (−1 + t)

For the pole at t = 1 let b be the coefficient of 1
(−1+t)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
t3

+ 11
4t4 + 21

4t5 + 15
2t6 + 6

t7
− 117

16t8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 4t+ 6
4t2 − 8t+ 4

= Q+ R

4t2 − 8t+ 4

=
(
1
4

)
+
(

−2t+ 5
4t2 − 8t+ 4

)
= 1

4 + −2t+ 5
4t2 − 8t+ 4

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 4t+ 6
4 (−1 + t)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + t) +

(
1
2

)
= − 1

2 (−1 + t) +
1
2

= t− 2
2t− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + t) +

1
2

)
(0) +

((
1

2 (−1 + t)2
)
+
(
− 1
2 (−1 + t) +

1
2

)2

−
(
t2 − 4t+ 6
4 (−1 + t)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(−1+t)+

1
2

)
dt

= e t
2

√
−1 + t

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t

1−t
dt

= z1e
t
2+

ln(−1+t)
2

= z1
(√

−1 + t e t
2

)
Which simplifies to

y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

1−t
dt

(y1)2
dt

= y1

∫
et+ln(−1+t)

(y1)2
dt

= y1

(
−t et+ln(−1+t)e−2t

−1 + t

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(
−t et+ln(−1+t)e−2t

−1 + t

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 2816

Maple step by step solution

Let’s solve

(1− t)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

t−1 +
(

d
dt
y(t)

)
t

t−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(
d
dt
y(t)

)
t

t−1 + y(t)
t−1 = 0

� Check to see if t0 = 1 is a regular singular point
◦ Define functions[

P2(t) = − t
t−1 , P3(t) = 1

t−1

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= −1

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
Check to see if t0 = 1 is a regular singular point
t0 = 1

• Multiply by denominators

(t− 1)
(

d2

dt2
y(t)

)
− t
(

d
dt
y(t)

)
+ y(t) = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 12� �
dsolve((1-t)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c1t+ etc2
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Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 17� �
DSolve[{(1-t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t] ==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

t − c2t
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2.1.420 problem 432

Solved as second order ode using Kovacic algorithm . . . . . . . . .2819
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2823
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2824
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2824
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2824

Internal problem ID [9268]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 432
Date solved : Thursday, December 12, 2024 at 10:02:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.795: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.069 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.421 problem 433

Solved as second order ode using Kovacic algorithm . . . . . . . . .2825
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2829
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2829
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2829
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2829

Internal problem ID [9269]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 433
Date solved : Thursday, December 12, 2024 at 10:02:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 4xy′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.302 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 4xy′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −4x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −8
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −8

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 8
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.797: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− i)2

+ 2
(x+ i)2

+ 2i
x− i

− 2i
x+ i

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 8
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 2 −1
−i 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− i

+ 2
x+ i

+ (−) (0)

= − 1
x− i

+ 2
x+ i

= x− 3i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− i

+ 2
x+ i

)
(0) +

((
1

(x− i)2
− 2

(x+ i)2
)
+
(
− 1
x− i

+ 2
x+ i

)2

−
(
− 8
(x2 + 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−i

+ 2
x+i

)
dx

= (x2 + 1)2

(ix+ 1)3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2+1 dx

= z1e
ln
(
x2+1

)
= z1

(
x2 + 1

)
Which simplifies to

y1 =
(x2 + 1)3

(ix+ 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −4x

x2+1 dx

(y1)2
dx

= y1

∫
e2 ln

(
x2+1

)
(y1)2

dx

= y1

(
x2 − 1

3

(x+ i)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)3

(ix+ 1)3

)
+ c2

(
(x2 + 1)3

(ix+ 1)3
(

x2 − 1
3

(x+ i)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 21� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+6*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3 − 3c1x2 − 3c2x+ c1

Mathematica DSolve solution

Solving time : 0.098 (sec)
Leaf size : 33� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

3i
(
c2
(
3x2 − 1

)
+ 3c1(x− i)3

)
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2.1.422 problem 434

Solved as second order ode using Kovacic algorithm . . . . . . . . .2830
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2835
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2836
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2836
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2837

Internal problem ID [9270]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 434
Date solved : Thursday, December 12, 2024 at 10:02:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− x) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.271 (sec)

Writing the ode as

(1− x) y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− x

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (−1 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.798: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + x)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (−1 + x) +
3

4 (−1 + x)2

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + x) +

(
1
2

)
= − 1

2 (−1 + x) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + x) +

1
2

)
(0) +

((
1

2 (−1 + x)2
)
+
(
− 1
2 (−1 + x) +

1
2

)2

−
(
x2 − 4x+ 6
4 (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(−1+x)+

1
2

)
dx

= ex
2

√
−1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

1−x
dx

= z1e
x
2+

ln(−1+x)
2

= z1
(√

−1 + x ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

1−x
dx

(y1)2
dx

= y1

∫
ex+ln(−1+x)

(y1)2
dx

= y1

(
−x ex+ln(−1+x)e−2x

−1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(−1+x)e−2x

−1 + x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(1− x)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 12� �
dsolve((1-x)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 17� �
DSolve[{(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.423 problem 435

Solved as second order ode using Kovacic algorithm . . . . . . . . .2838
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2842
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2843
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2843
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2844

Internal problem ID [9271]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 435
Date solved : Thursday, December 12, 2024 at 10:02:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2y′′ + xy′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.274 (sec)

Writing the ode as

2y′′ + xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2
B = x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 20
16 (6)

Comparing the above to (5) shows that

s = x2 − 20
t = 16

Therefore eq. (4) becomes

z′′(x) =
(
x2

16 − 5
4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.800: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 − 5
2x − 25

2x3 − 125
x5 − 3125

2x7 − 21875
x9 − 328125

x11 − 5156250
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

16
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 20
16

= Q+ R

16

=
(
x2

16 − 5
4

)
+ (0)

= x2

16 − 5
4

We see that the coefficient of the term 1
x
in the quotient is −5

4 . Now b can be found.

b =
(
−5
4

)
− (0)

= −5
4

Hence

[
√
r]∞ = x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
4

1
4

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

4
1
4

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

16 − 5
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
4 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
4

)
= −x

4
= −x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

4

)
(2x+ a1) +

((
−1
4

)
+
(
−x

4

)2
−
(
x2

16 − 5
4

))
= 0

2 + a1x

2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2

)
e
∫
−x

4 dx

=
(
x2 − 2

)
e−x2

8

=
(
x2 − 2

)
e−x2

8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
2 dx

= z1e
−x2

8

= z1
(
e−x2

8

)
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Which simplifies to

y1 = e−x2
4
(
x2 − 2

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

2 dx

(y1)2
dx

= y1

∫
e−

x2
4

(y1)2
dx

= y1

(∫ ex2
4

(x2 − 2)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

4
(
x2 − 2

))
+ c2

(
e−x2

4
(
x2 − 2

)(∫ ex2
4

(x2 − 2)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
2 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
x
(

d
dx

y(x)
)

2 − 3y(x)
2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

2 + 3y(x)
2 = 0

• Multiply by denominators
2 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(2ak+2(k + 2) (k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(2k2 + 6k + 4) ak+2 + ak(k + 3) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak(k+3)

2(k2+3k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.042 (sec)
Leaf size : 32� �
dsolve(2*diff(diff(y(x),x),x)+diff(y(x),x)*x+3*y(x) = 0,

y(x),singsol=all)� �
y =

(
x2 − 2

) (
c1
√
π erfi

(x
2

)
+ c2

)
e−x2

4 − 2c1x
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Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 61� �
DSolve[{2*D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

8e
−x2

4

(√
πc2
(
x2 − 2

)
erfi
(x
2

)
+ 8c1

(
x2 − 2

)
− 2c2e

x2
4 x
)
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2.1.424 problem 436

Solved as second order ode using Kovacic algorithm . . . . . . . . .2845
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2849
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2850
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2850
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2850

Internal problem ID [9272]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 436
Date solved : Thursday, December 12, 2024 at 10:02:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.802: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.069 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.425 problem 437

Solved as second order ode using Kovacic algorithm . . . . . . . . .2851
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2856
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2857
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2857
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2858

Internal problem ID [9273]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 437
Date solved : Thursday, December 12, 2024 at 10:02:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− x) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as

(1− x) y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− x

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (−1 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.804: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(−1 + x)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (−1 + x) +
3

4 (−1 + x)2

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (−1 + x) +

(
1
2

)
= − 1

2 (−1 + x) +
1
2

= x− 2
−2 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (−1 + x) +

1
2

)
(0) +

((
1

2 (−1 + x)2
)
+
(
− 1
2 (−1 + x) +

1
2

)2

−
(
x2 − 4x+ 6
4 (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(−1+x)+

1
2

)
dx

= ex
2

√
−1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

1−x
dx

= z1e
x
2+

ln(−1+x)
2

= z1
(√

−1 + x ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

1−x
dx

(y1)2
dx

= y1

∫
ex+ln(−1+x)

(y1)2
dx

= y1

(
−x ex+ln(−1+x)e−2x

−1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(−1+x)e−2x

−1 + x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(1− x)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 12� �
dsolve((1-x)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 17� �
DSolve[{(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.426 problem 438

Solved as second order ode using Kovacic algorithm . . . . . . . . .2859
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2863
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2864
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2864
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2864

Internal problem ID [9274]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 438
Date solved : Thursday, December 12, 2024 at 10:02:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)



chapter 2. book solved problems 2860

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.806: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation



chapter 2. book solved problems 2864

(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.427 problem 439

Solved as second order ode using Kovacic algorithm . . . . . . . . .2865
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2869
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2871
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2871
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2871

Internal problem ID [9275]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 439
Date solved : Thursday, December 12, 2024 at 10:02:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
−x2 + 4

)
y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.049 (sec)

Writing the ode as (
−x2 + 4

)
y′′ + xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 4
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 11x2 − 24
4 (x2 − 4)2

(6)

Comparing the above to (5) shows that

s = 11x2 − 24

t = 4
(
x2 − 4

)2
Therefore eq. (4) becomes

z′′(x) =
(

11x2 − 24
4 (x2 − 4)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.808: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 4)2. There is a pole at x = 2 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 17
32 (x− 2) +

5
16 (x+ 2)2

+ 5
16 (x− 2)2

− 17
32 (x+ 2)

For the pole at x = 2 let b be the coefficient of 1
(x−2)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 11x2 − 24

4 (x2 − 4)2

Since the gcd(s, t) = 1. This gives b = 11
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

2 2 {−1, 2, 5}
−2 2 {−1, 2, 5}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e2 = −1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (−1 + (−1)))

= 2

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (2)) +
−1

(x− (−2))

)
= − 1

2 (x− 2) −
1

2 (x+ 2)

Now we search for a monic polynomial p(x) of degree d = 2 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 2, then letting
p = x2 + a1x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

11x2a1 + 16(6 + a0)x+ 36a1
(x2 − 4)2

= 0

And solving for p gives
p = x2 − 6
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Now that p(x) is found let

φ = θ + p′

p

= 2x
x2 − 6 − 1

2 (x− 2) −
1

2 (x+ 2)

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

2x
x2 − 6 − 1

2 (x− 2) −
1

2 (x+ 2)

)
w + −11x4 + 74x2 − 128

4x6 − 56x4 + 256x2 − 384 = 0

Solving for ω gives

ω = 2
√
3x2

√
x2 − 4 + x3 − 8

√
3
√
x2 − 4− 2x

2 (x2 − 6) (x− 2) (x+ 2)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 2

√
3 x2

√
x2−4+x3−8

√
3
√

x2−4−2x
2
(
x2−6

)
(x−2)(x+2)

dx

=
√
x2 − 6

(
x+

√
x2 − 4

)√3 e−
arctanh


(√

2
√
3 x−4

)√
2

2
√

x2−4


2 −

arctanh


(
4+

√
2
√
3 x

)√
2

2
√

x2−4


2

(x+ 2)1/4 (x− 2)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

−x2+4 dx

= z1e
ln

(
x2−4

)
4

= z1
((

x2 − 4
)1/4)

Which simplifies to

y1 =
√
x2 − 6

(
x+

√
x2 − 4

)√3
e−

arctanh
(

x
√
6−4√

2x2−8

)
2 −

arctanh
(

4+x
√
6√

2x2−8

)
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

−x2+4 dx

(y1)2
dx

= y1

∫
e

ln
(
x2−4

)
2

(y1)2
dx

= y1

∫ √
x2 − 4

(
x+

√
x2 − 4

)−2
√
3 e

arctanh
(

x
√
6−4√

2x2−8

)
+arctanh

(
4+x

√
6√

2x2−8

)
x2 − 6 dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
√
x2 − 6

(
x+

√
x2 − 4

)√3
e−

arctanh
(

x
√
6−4√

2x2−8

)
2 −

arctanh
(

4+x
√
6√

2x2−8

)
2

)
+ c2

√
x2 − 6

(
x

+
√
x2 − 4

)√3
e−

arctanh
(

x
√
6−4√

2x2−8

)
2 −

arctanh
(

4+x
√
6√

2x2−8

)
2

∫ √
x2 − 4

(
x+

√
x2 − 4

)−2
√
3 e

arctanh
(

x
√
6−4√

2x2−8

)
+arctanh

(
4+x

√
6√

2x2−8

)
x2 − 6 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 4)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2−4 +

x
(

d
dx

y(x)
)

x2−4

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
x
(

d
dx

y(x)
)

x2−4 − 2y(x)
x2−4 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x
x2−4 , P3(x) = − 2

x2−4

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

(x2 − 4)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 4u)
(

d2

du2y(u)
)
+ (−u+ 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (2k − 1 + 2r) + ak(k2 + 2kr + r2 − 2k − 2r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−4(k + 1 + r)

(
k + r − 1

2

)
ak+1 + ak(k2 + (2r − 2) k + r2 − 2r − 2) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak
(
k2+2kr+r2−2k−2r−2

)
2(k+1+r)(2k−1+2r)

• Recursion relation for r = 0

ak+1 = ak
(
k2−2k−2

)
2(k+1)(2k−1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

(
k2−2k−2

)
2(k+1)(2k−1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k , ak+1 = ak
(
k2−2k−2

)
2(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 =
ak
(
k2+k− 11

4
)

2
(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
ak
(
k2+k− 11

4
)

2
(
k+ 5

2
)
(2k+2)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+
3
2 , ak+1 =

ak
(
k2+k− 11

4
)

2
(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k+
3
2

)
, ak+1 = ak

(
k2−2k−2

)
2(k+1)(2k−1) , bk+1 =

bk
(
k2+k− 11

4
)

2
(
k+ 5

2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.018 (sec)
Leaf size : 37� �
dsolve((-x^2+4)*diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
x2 − 4

)3/4(LegendreQ(√3− 1
2 ,

3
2 ,

x

2

)
c2 + LegendreP

(√
3− 1

2 ,
3
2 ,

x

2

)
c1

)

Mathematica DSolve solution

Solving time : 0.076 (sec)
Leaf size : 58� �
DSolve[{(4-x^2)*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(
x2 − 4

)3/4 (
c1P

3
2
− 1

2+
√
3

(x
2

)
+ c2Q

3
2
− 1

2+
√
3

(x
2

))
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2.1.428 problem 440

Solved as second order ode using Kovacic algorithm . . . . . . . . .2872
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2874
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2876
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2876
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2876

Internal problem ID [9276]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 440
Date solved : Thursday, December 12, 2024 at 10:02:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.127 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.810: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−2x)+ c2

(√
x e−2x

(
e4x
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
16x2−3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
16x2−3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 3

2

) (
k + r − 1

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 1

2 + r
) (

k + 3
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+1+2r)(2k+3+2r)

• Recursion relation for r = 1
2

ak+2 = 16ak
(2k+2)(2k+4)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+2)(2k+4) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+4)(2k+6)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+4)(2k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+2)(2k+4) , a1 = 0, bk+2 = 16bk
(2k+4)(2k+6) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(-16*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c1 sinh (2x) + c2 cosh (2x))

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 32� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(3-16*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−2x√x

(
c2e

4x + 4c1
)
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2.1.429 problem 441

Solved as second order ode using Kovacic algorithm . . . . . . . . .2877
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2882
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2883
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2883
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2884

Internal problem ID [9277]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 441
Date solved : Thursday, December 12, 2024 at 10:02:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.812: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.430 problem 442

Solved as second order ode using Kovacic algorithm . . . . . . . . .2885
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2887
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2888
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2889
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2889

Internal problem ID [9278]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 442
Date solved : Thursday, December 12, 2024 at 10:02:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.167 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.814: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.042 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.431 problem 444

Solved as second order ode using Kovacic algorithm . . . . . . . . .2890
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2895
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2896
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2896
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2897

Internal problem ID [9279]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 444
Date solved : Thursday, December 12, 2024 at 10:02:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.348 (sec)

Writing the ode as (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x
B = −x2 + 2 (3)
C = 2x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

(6)

Comparing the above to (5) shows that

s = x4 − 8x3 + 24x2 − 24x+ 12

t = 4
(
x2 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.816: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4 (x− 2) −
3
4x + 3

4 (x− 2)2
+ 3

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 2 let b be the coefficient of 1

(x−2)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 2

x3 + 11
x4 + 42

x5 + 132
x6 + 348

x7 + 711
x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 − 8x3 + 24x2 − 24x+ 12
4x4 − 16x3 + 16x2

= Q+ R

4x4 − 16x3 + 16x2

=
(
1
4

)
+
(
−4x3 + 20x2 − 24x+ 12

4x4 − 16x3 + 16x2

)
= 1

4 + −4x3 + 20x2 − 24x+ 12
4x4 − 16x3 + 16x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2x − 1

2 (x− 2) +
(
1
2

)
= − 1

2x − 1
2 (x− 2) +

1
2

= − 1
2x − 1

2x− 4 + 1
2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

2 (x− 2) +
1
2

)
(0) +

((
1
2x2 + 1

2 (x− 2)2
)
+
(
− 1
2x − 1

2 (x− 2) +
1
2

)2

−
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
2(x−2)+

1
2

)
dx

= ex
2

√
x− 2

√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+2
x2−2x dx

= z1e
x
2+

ln(x−2)
2 + ln(x)

2

= z1
(√

x− 2
√
x ex

2
)

Which simplifies to

y1 =
√
x− 2

√
x ex√

x (x− 2)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+2

x2−2x dx

(y1)2
dx

= y1

∫
ex+ln(x−2)+ln(x)

(y1)2
dx

= y1

(
−x ex+ln(x−2)+ln(x)e−2x

x− 2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x− 2

√
x ex√

x (x− 2)

)
+ c2

(√
x− 2

√
x ex√

x (x− 2)

(
−x ex+ln(x−2)+ln(x)e−2x

x− 2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 2x)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
+ (2x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(x−1)y(x)
x(x−2) +

(
x2−2

)(
d
dx

y(x)
)

x(x−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−2

)(
d
dx

y(x)
)

x(x−2) + 2(x−1)y(x)
x(x−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(x−2) , P3(x) = 2(x−1)

x(x−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x− 2)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
+ (2x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(−2ak+1(k + r + 1) (k + r − 1) + ak(k + r + 1) (k + r − 2)− ak−1(k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− 2k2ak+1 + (−4rak+1 − ak−1) k − 2r2ak+1 − ak−1r + 3ak−1 + 2ak+1 = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k + r − 1)− 2(k + 1)2 ak+2 + (−4rak+2 − ak) (k + 1)− 2r2ak+2 − rak + 3ak + 2ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = k2ak+1+2krak+1+r2ak+1−kak+kak+1−rak+rak+1+2ak−2ak+1

2(k2+2kr+r2+2k+2r)

• Recursion relation for r = 0
ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1

2(k2+2k)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Recursion relation for r = 2
ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8) ,−6a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve((x^2-2*x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)+(2*x-2)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + exc2
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Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 18� �
DSolve[{(x^2-2*x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]+(2*x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

2 + c1e
x
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2.1.432 problem 445

Solved as second order ode using Kovacic algorithm . . . . . . . . .2898
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2902
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2904
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2904
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2905

Internal problem ID [9280]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 445
Date solved : Thursday, December 12, 2024 at 10:02:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2x+ 1) y′′ − 2y′ − (2x+ 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as

(2x+ 1) y′′ − 2y′ + (−2x− 3) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x+ 1
B = −2 (3)
C = −2x− 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(2x+ 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (2x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(2x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.818: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x+ 1)2. There is a pole at x = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 8x+ 6
(2x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
2x+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(2x+ 1)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
2x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2

2x+1 dx

= z1e
ln(2x+1)

2

= z1
(√

2x+ 1
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2

2x+1 dx

(y1)2
dx

= y1

∫
eln(2x+1)

(y1)2
dx

= y1
(
x e2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
x e2x

))
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x)− (2x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x+3)y(x)
2x+1 +

2
(

d
dx

y(x)
)

2x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2
(

d
dx

y(x)
)

2x+1 − (2x+3)y(x)
2x+1 = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

2x+1 , P3(x) = −2x+3
2x+1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x) + (−2x− 3) y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (−2u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r)− 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}
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• Each term must be 0
2a1(1 + r) (−1 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r)− 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak+1+ak

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y(x) =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 16� �
dsolve((2*x+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)-(2*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2exx
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Mathematica DSolve solution

Solving time : 0.08 (sec)
Leaf size : 29� �
DSolve[{(2*x+1)*D[y[x],{x,2}]-2*D[y[x],x]-(2*x+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2
(
c2e

2x+1x+ c1
)
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2.1.433 problem 446

Solved as second order ode using Kovacic algorithm . . . . . . . . .2906
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2908
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2910
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2910
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2910

Internal problem ID [9281]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 446
Date solved : Thursday, December 12, 2024 at 10:02:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.124 (sec)

Writing the ode as

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −8x2 + 4x (3)
C = 4x2 − 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.820: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x2+4x

4x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex√
x

)
+ c2

(
ex√
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ (−8x2 + 4x)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−4x−1

)
y(x)

4x2 +
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+
(
4x2−4x−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−1

x
, P3(x) = 4x2−4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(2x− 1)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + (a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−1(2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 4a0
3+2r

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 1) + (−8k − 8r + 4) ak−1 + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ (−8k − 12− 8r) ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4(2kak+1+2rak+1−ak+3ak+1)

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8 , a1 = 2a0

]
• Recursion relation for r = 1

2

ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24 , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4(2kak+1−ak+2ak+1)

4k2+12k+8 , a1 = 2a0, bk+2 = 4(2kbk+1−bk+4bk+1)
4k2+20k+24 , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 15� �
dsolve(4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2x+ c1)√

x

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 21� �
DSolve[{4*x^2*D[y[x],{x,2}]+(4*x-8*x^2)*D[y[x],x]+(4*x^2-4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)√

x
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2.1.434 problem 447

Solved as second order ode using Kovacic algorithm . . . . . . . . .2911
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2913
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2914
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2914
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2914

Internal problem ID [9282]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 447
Date solved : Thursday, December 12, 2024 at 10:02:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.092 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.822: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.1.435 problem 448

Solved as second order ode using Kovacic algorithm . . . . . . . . .2915
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2917
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2919
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2919
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2919

Internal problem ID [9283]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 448
Date solved : Thursday, December 12, 2024 at 10:02:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 2x(x− 1) y′ +
(
x2 − 2x+ 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.106 (sec)

Writing the ode as

x2y′′ +
(
2x2 − 2x

)
y′ +

(
x2 − 2x+ 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 − 2x (3)
C = x2 − 2x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.824: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2−2x

x2 dx

= z1e
−x+ln(x)

= z1
(
x e−x

)
Which simplifies to

y1 = x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2x2−2x

x2 dx

(y1)2
dx

= y1

∫
e−2x+2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x

)
+ c2

(
x e−x(x)

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 2x(x− 1)

(
d
dx
y(x)

)
+ (x2 − 2x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−2x+2

)
y(x)

x2 −
2
(

d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
(x−1)

x
+
(
x2−2x+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2(x−1)

x
, P3(x) = x2−2x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 2x(x− 1)

(
d
dx
y(x)

)
+ (x2 − 2x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + (a1r(−1 + r) + 2a0(−1 + r))x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + 2ak−1(k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) + 2a0(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = −2a0

r

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + 2ak−1k + 2ak−1r + ak−2 − 4ak−1 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + 2ak+1(k + 2) + 2ak+1r + ak − 4ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2ak+1r+ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = −2kak+1+ak+2ak+1

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −2kak+1+ak+2ak+1

(k+2)(k+1) , a1 = −2a0
]

• Recursion relation for r = 2
ak+2 = −2kak+1+ak+4ak+1

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −2kak+1+ak+4ak+1

(k+3)(k+2) , a1 = −a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = −2kak+1+ak+2ak+1

(k+2)(k+1) , a1 = −2a0, bk+2 = −2kbk+1+bk+4bk+1
(k+3)(k+2) , b1 = −b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)+2*x*(x-1)*diff(y(x),x)+(x^2-2*x+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−xx(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 19� �
DSolve[{x^2*D[y[x],{x,2}]+2*x*(x-1)*D[y[x],x]+(x^2-2*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−xx(c2x+ c1)
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2.1.436 problem 449

Solved as second order ode using Kovacic algorithm . . . . . . . . .2920
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2924
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2925
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2925
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2926

Internal problem ID [9284]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 449
Date solved : Thursday, December 12, 2024 at 10:02:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(2x− 1) y′ +
(
x2 − x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.187 (sec)

Writing the ode as

x2y′′ +
(
−2x2 + x

)
y′ +

(
x2 − x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 + x (3)
C = x2 − x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.826: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3

4x2
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Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2+x

x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2+x

x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1

(
x3e2x−ln(x)e−2x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x

(
x3e2x−ln(x)e−2x

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(2x− 1)

(
d
dx
y(x)

)
+ (x2 − x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−x−1

)
y(x)

x2 +
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+
(
x2−x−1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−1

x
, P3(x) = x2−x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(2x− 1)

(
d
dx
y(x)

)
+ (x2 − x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr + (a1(2 + r) r − a0(1 + 2r))x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 1)− ak−1(2k − 1 + 2r) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 1}
• Each term must be 0

a1(2 + r) r − a0(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = a0(1+2r)
r(2+r)

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 1) + (1− 2k − 2r) ak−1 + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r + 1) + (−3− 2k − 2r) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak+3ak+1

(k+3+r)(k+r+1)

• Recursion relation for r = −1
ak+2 = 2kak+1−ak+ak+1

(k+2)k

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 0
ak+2 = 2kak+1−ak+ak+1

(k+2)k

• Recursion relation for r = 1
ak+2 = 2kak+1−ak+5ak+1

(k+4)(k+2)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = 2kak+1−ak+5ak+1

(k+4)(k+2) , a1 = a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(2*x-1)*diff(y(x),x)+(x^2-x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2x2 + c1)

x
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Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 23� �
DSolve[{x^2*D[y[x],{x,2}]-x*(2*x-1)*D[y[x],x]+(x^2-x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

(c1
x
+ c2x

2

)
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2.1.437 problem 450

Solved as second order ode using Kovacic algorithm . . . . . . . . .2927
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2931
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2933
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2933
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2934

Internal problem ID [9285]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 450
Date solved : Thursday, December 12, 2024 at 10:02:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− 2x) y′′ + 2y′ + (2x− 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as

(1− 2x) y′′ + 2y′ + (2x− 3) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− 2x
B = 2 (3)
C = 2x− 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 8x+ 6
(−1 + 2x)2

(6)

Comparing the above to (5) shows that

s = 4x2 − 8x+ 6
t = (−1 + 2x)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 8x+ 6
(−1 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.828: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (−1 + 2x)2. There is a pole at x = 1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x− 1

2

)2 − 1
x− 1

2

For the pole at x = 1
2 let b be the coefficient of 1(

x− 1
2
)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2x + 1
4x3 + 11

32x4 + 21
64x5 + 15

64x6 + 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 8x+ 6
4x2 − 4x+ 1

= Q+ R

4x2 − 4x+ 1

= (1) +
(

−4x+ 5
4x2 − 4x+ 1

)
= 1 + −4x+ 5

4x2 − 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2



chapter 2. book solved problems 2930

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 8x+ 6
(−1 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2
(
x− 1

2

) + (1)

= − 1
2
(
x− 1

2

) + 1

= −2 + 2x
−1 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x− 1

2

) + 1
)
(0) +

( 1
2
(
x− 1

2

)2
)

+
(
− 1
2
(
x− 1

2

) + 1
)2

−
(
4x2 − 8x+ 6
(−1 + 2x)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x− 1

2
)+1

)
dx

= ex√
−1 + 2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2

1−2x dx

= z1e
ln(1−2x)

2

= z1
(√

1− 2x
)

Which simplifies to

y1 =
√
1− 2x ex√
−1 + 2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1−2x dx

(y1)2
dx

= y1

∫
eln(1−2x)

(y1)2
dx

= y1
(
−x e−2x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(√
1− 2x ex√
−1 + 2x

)
+ c2

(√
1− 2x ex√
−1 + 2x

(
−x e−2x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−2x+ 1)
(

d2

dx2y(x)
)
+ 2 d

dx
y(x) + (2x− 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x−3)y(x)
2x−1 +

2
(

d
dx

y(x)
)

2x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2
(

d
dx

y(x)
)

2x−1 − (2x−3)y(x)
2x−1 = 0

� Check to see if x0 = 1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

2x−1 , P3(x) = −2x−3
2x−1

]
◦
(
x− 1

2

)
· P2(x) is analytic at x = 1

2((
x− 1

2

)
· P2(x)

) ∣∣∣∣
x= 1

2

= −1

◦
(
x− 1

2

)2 · P3(x) is analytic at x = 1
2((

x− 1
2

)2 · P3(x)
) ∣∣∣∣

x= 1
2

= 0

◦ x = 1
2 is a regular singular point

Check to see if x0 = 1
2 is a regular singular point

x0 = 1
2

• Multiply by denominators

(2x− 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x) + (3− 2x) y(x) = 0

• Change variables using x = u+ 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (2− 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r) + 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1) + 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}
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• Each term must be 0
2a1(1 + r) (−1 + r) + 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1) + 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r) + 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak+1+ak

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = −ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = −ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = −ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = −ak+1+ak

(k+4)(k+2) , 6a1 + 2a0 = 0
]

• Revert the change of variables u = x− 1
2[

y(x) =
∞∑
k=0

ak
(
x− 1

2

)k+2
, ak+2 = −ak+1+ak

(k+4)(k+2) , 6a1 + 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 16� �
dsolve((1-2*x)*diff(diff(y(x),x),x)+2*diff(y(x),x)+(2*x-3)*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2x e−x
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Mathematica DSolve solution

Solving time : 0.267 (sec)
Leaf size : 48� �
DSolve[{(1-2*x)*D[y[x],{x,2}]+2*D[y[x],x]+(2*x-3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2
√
1− 2x(c1e2x − ec2x)√

2x− 1
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2.1.438 problem 451

Solved as second order ode using Kovacic algorithm . . . . . . . . .2935
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2939
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2940
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2941
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2941

Internal problem ID [9286]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 451
Date solved : Thursday, December 12, 2024 at 10:02:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2xy′′ + (4x+ 1) y′ + (2x+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.184 (sec)

Writing the ode as

2xy′′ + (4x+ 1) y′ + (2x+ 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = 4x+ 1 (3)
C = 2x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
16x2 (6)

Comparing the above to (5) shows that

s = −3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
− 3
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.830: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 3

16x2
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Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
16x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
4x + (−) (0)

= 1
4x

= 1
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x

)
(0) +

((
− 1
4x2

)
+
(

1
4x

)2

−
(
− 3
16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

4xdx

= x1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x+1
2x dx

= z1e
−x− ln(x)

4

= z1

(
e−x

x1/4

)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x+1

2x dx

(y1)2
dx

= y1

∫
e−2x− ln(x)

2

(y1)2
dx

= y1
(
2x e−2x− ln(x)

2 e2x
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
2x e−2x− ln(x)

2 e2x
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x+ (4x+ 1)

(
d
dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+1)y(x)
2x −

(4x+1)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4x+1)

(
d
dx

y(x)
)

2x + (2x+1)y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4x+1
2x , P3(x) = 2x+1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (4x+ 1)

(
d
dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions



chapter 2. book solved problems 2940

a0r(−1 + 2r)x−1+r + (a1(1 + r) (1 + 2r) + a0(1 + 4r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (2k + 1 + 2r) + ak(4k + 4r + 1) + 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
a1(1 + r) (1 + 2r) + a0(1 + 4r) = 0

• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 4akk + 4akr + ak + 2ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 3

2 + r
)
ak+2 + 4ak+1(k + 1) + 4rak+1 + ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4kak+1+4rak+1+2ak+5ak+1

(k+2+r)(2k+3+2r)

• Recursion relation for r = 0
ak+2 = −4kak+1+2ak+5ak+1

(k+2)(2k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −4kak+1+2ak+5ak+1

(k+2)(2k+3) , a1 + a0 = 0
]

• Recursion relation for r = 1
2

ak+2 = −4kak+1+2ak+7ak+1(
k+ 5

2
)
(2k+4)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −4kak+1+2ak+7ak+1(
k+ 5

2
)
(2k+4) , 3a1 + 3a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −4kak+1+2ak+5ak+1

(k+2)(2k+3) , a1 + a0 = 0, bk+2 = −4kbk+1+2bk+7bk+1(
k+ 5

2
)
(2k+4) , 3b1 + 3b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve(2*x*diff(diff(y(x),x),x)+(4*x+1)*diff(y(x),x)+(2*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x

(
c1 + c2

√
x
)

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 23� �
DSolve[{2*x*D[y[x],{x,2}]+(4*x+1)*D[y[x],x]+(2*x+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x

(
2c2

√
x+ c1

)



chapter 2. book solved problems 2942

2.1.439 problem 452

Solved as second order ode using Kovacic algorithm . . . . . . . . .2942
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2946
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2947
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2947
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2948

Internal problem ID [9287]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 452
Date solved : Thursday, December 12, 2024 at 10:02:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (2x+ 1) y′ + (x+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.193 (sec)

Writing the ode as

xy′′ + (−2x− 1) y′ + (x+ 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 1 (3)
C = x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.832: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3

4x2
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Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−1

x
dx

= z1e
x+ ln(x)

2

= z1
(√

x ex
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−1

x
dx

(y1)2
dx

= y1

∫
e2x+ln(x)

(y1)2
dx

= y1

(
x e2x+ln(x)e−2x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x e2x+ln(x)e−2x

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (2x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
x

+
(2x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+1)

(
d
dx

y(x)
)

x
+ (x+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+1
x

, P3(x) = x+1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x− 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−2 + r)x−1+r + (a1(1 + r) (−1 + r)− a0(−1 + 2r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− ak(2k + 2r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− a0(−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r − 1) + ak(−2k − 2r + 1) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r) + ak+1(−2k − 1− 2r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak+ak+1

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = 2kak+1−ak+ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = 2kak+1−ak+5ak+1

(k+4)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2kak+1−ak+5ak+1

(k+4)(k+2) , 3a1 − 3a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 14� �
dsolve(x*diff(diff(y(x),x),x)-(2*x+1)*diff(y(x),x)+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = ex

(
c2x

2 + c1
)
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Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 23� �
DSolve[{x*D[y[x],{x,2}]-(2*x+1)*D[y[x],x]+(x+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
x
(
c2x

2 + 2c1
)
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2.1.440 problem 453

Solved as second order ode using Kovacic algorithm . . . . . . . . .2949
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2951
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2953
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2953
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2953

Internal problem ID [9288]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 453
Date solved : Thursday, December 12, 2024 at 10:02:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4x(x+ 1) y′ + (2x+ 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.132 (sec)

Writing the ode as

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 − 4x (3)
C = 2x+ 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.834: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2−4x

4x2 dx

= z1e
x
2+

ln(x)
2

= z1
(√

x ex
2
)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x2−4x

4x2 dx

(y1)2
dx

= y1

∫
ex+ln(x)

(y1)2
dx

= y1

(
ex+ln(x)

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x

(
ex+ln(x)

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x(x+ 1)

(
d
dx
y(x)

)
+ (2x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+3)y(x)
4x2 +

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

x
+ (2x+3)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+1

x
, P3(x) = 2x+3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(x+ 1)

(
d
dx
y(x)

)
+ (2x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (2k + 2r − 3)− 2ak−1(2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term in the series must be 0, giving the recursion relation

4
((
k + r − 1

2

)
ak − ak−1

) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
4
((
k + 1

2 + r
)
ak+1 − ak

) (
k + r − 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 = 2ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
2k+2

]
• Recursion relation for r = 3

2

ak+1 = 2ak
2k+4

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = 2ak
2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = 2ak

2k+2 , bk+1 = 2bk
2k+4

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*x*(x+1)*diff(y(x),x)+(2*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = (c1 + exc2)

√
x

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 20� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*(x+1)*D[y[x],x]+(2*x+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2ex + c1)
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2.1.441 problem 454

Solved as second order ode using Kovacic algorithm . . . . . . . . .2954
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2956
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2958
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2958
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2958

Internal problem ID [9289]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 454
Date solved : Thursday, December 12, 2024 at 10:02:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (2− 2x) y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.102 (sec)

Writing the ode as

xy′′ + (2− 2x) y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2− 2x (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.836: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2−2x

x
dx

= z1e
x−ln(x)

= z1

(
ex
x

)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2−2x

x
dx

(y1)2
dx

= y1

∫
e2x−2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 2)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x

+
2
(

d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)
(x−1)

x
+ (x−2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x−1)
x

, P3(x) = x−2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 2)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r)− 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 2 + r)− 2ak(k + 1 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r)− 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 2 + r)− 2akk − 2akr − 2ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− 2ak+1(k + 1)− 2rak+1 − 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak+4ak+1

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3) , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0, bk+2 = 2kbk+1−bk+4bk+1
(k+2)(k+3) , 2b1 − 2b0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve(x*diff(diff(y(x),x),x)+(-2*x+2)*diff(y(x),x)+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c1x+ c2)

x

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]+(2-2*x)*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)

x
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2.1.442 problem 455

Solved as second order ode using Kovacic algorithm . . . . . . . . .2959
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2961
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2962
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2962
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2962

Internal problem ID [9290]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 455
Date solved : Thursday, December 12, 2024 at 10:02:52 AM
CAS classification :
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

x2y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.085 (sec)

Writing the ode as

x2y′′ − 2xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.838: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2(x(x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x2 +

2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+ 2y(x)

x2 = 0
• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 2y(t) = 0

• Simplify
d2

dt2
y(t)− 3 d

dt
y(t) + 2y(t) = 0

• Characteristic polynomial of ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
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(r − 1) (r − 2) = 0
• Roots of the characteristic polynomial

r = (1, 2)
• 1st solution of the ODE

y1(t) = et

• 2nd solution of the ODE
y2(t) = e2t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 et + C2 e2t

• Change variables back using t = ln (x)
y(x) = C2 x2 + C1x

• Simplify
y(x) = x(C2x+ C1 )

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 11� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = x(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.017 (sec)
Leaf size : 14� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2x+ c1)
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2.1.443 problem 456

Solved as second order ode using Kovacic algorithm . . . . . . . . .2963
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2966
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2968
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2968
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2968

Internal problem ID [9291]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 456
Date solved : Thursday, December 12, 2024 at 10:02:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (2x+ 2) y′ + (x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.164 (sec)

Writing the ode as

xy′′ + (−2x− 2) y′ + (x+ 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 2 (3)
C = x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.840: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2
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Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2

x
dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x
dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1

(
x e2x+2 ln(x)e−2x

3

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x e2x+2 ln(x)e−2x

3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (2x+ 2)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+2)y(x)
x

+
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+ (x+2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x+1)
x

, P3(x) = x+2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2− 2x)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + (a1(1 + r) (−2 + r)− 2a0(−1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 2 + r)− 2ak(k + r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r)− 2a0(−1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r)− 2akk − 2akr + 2ak + ak−1 = 0
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• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− 2ak+1(k + 1)− 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2) , 4a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(x*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = ex

(
c2x

3 + c1
)

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 23� �
DSolve[{x*D[y[x],{x,2}]-(2*x+2)*D[y[x],x]+(x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3e
x
(
c2x

3 + 3c1
)
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2.1.444 problem 457

Solved as second order ode using Kovacic algorithm . . . . . . . . .2969
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2971
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2972
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2973
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2973

Internal problem ID [9292]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 457
Date solved : Thursday, December 12, 2024 at 10:02:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.159 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.842: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.445 problem 458

Solved as second order ode using Kovacic algorithm . . . . . . . . .2974
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2978
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2979
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2979
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2980

Internal problem ID [9293]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 458
Date solved : Thursday, December 12, 2024 at 10:02:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (4x+ 1) y′ + (4x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.188 (sec)

Writing the ode as

xy′′ + (−4x− 1) y′ + (4x+ 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −4x− 1 (3)
C = 4x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.844: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3

4x2



chapter 2. book solved problems 2976

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x−1

x
dx

= z1e
2x+ ln(x)

2

= z1
(√

x e2x
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x−1

x
dx

(y1)2
dx

= y1

∫
e4x+ln(x)

(y1)2
dx

= y1

(
x e4x+ln(x)e−4x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
x e4x+ln(x)e−4x

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (4x+ 1)

(
d
dx
y(x)

)
+ (2 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(2x+1)y(x)
x

+
(4x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(4x+1)

(
d
dx

y(x)
)

x
+ 2(2x+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −4x+1
x

, P3(x) = 2(2x+1)
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−4x− 1)

(
d
dx
y(x)

)
+ (2 + 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−2 + r)x−1+r + (a1(1 + r) (−1 + r)− 2a0(−1 + 2r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− 2ak(2k + 2r − 1) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− 2a0(−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r − 1) + ak(−4k − 4r + 2) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r) + ak+1(−4k − 2− 4r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2(2kak+1+2rak+1−2ak+ak+1)

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = 2(2kak+1−2ak+ak+1)

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = 2(2kak+1−2ak+ak+1)

(k+2)k

• Recursion relation for r = 2
ak+2 = 2(2kak+1−2ak+5ak+1)

(k+4)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2(2kak+1−2ak+5ak+1)

(k+4)(k+2) , 3a1 − 6a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 16� �
dsolve(x*diff(diff(y(x),x),x)-(4*x+1)*diff(y(x),x)+(4*x+2)*y(x) = 0,

y(x),singsol=all)� �
y = e2x

(
c2x

2 + c1
)
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Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 25� �
DSolve[{x*D[y[x],{x,2}]-(4*x+1)*D[y[x],x]+(4*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
2x(c2x2 + 2c1

)
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2.1.446 problem 460

Solved as second order ode using Kovacic algorithm . . . . . . . . .2981
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2983
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2985
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2985
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2985

Internal problem ID [9294]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 460
Date solved : Thursday, December 12, 2024 at 10:02:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.127 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.846: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−2x)+ c2

(√
x e−2x

(
e4x
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
16x2−3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
16x2−3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 3

2

) (
k + r − 1

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 1

2 + r
) (

k + 3
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+1+2r)(2k+3+2r)

• Recursion relation for r = 1
2

ak+2 = 16ak
(2k+2)(2k+4)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+2)(2k+4) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+4)(2k+6)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+4)(2k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+2)(2k+4) , a1 = 0, bk+2 = 16bk
(2k+4)(2k+6) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 21� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(-16*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c1 sinh (2x) + c2 cosh (2x))

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 32� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(3-16*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−2x√x

(
c2e

4x + 4c1
)



chapter 2. book solved problems 2986

2.1.447 problem 461

Solved as second order ode using Kovacic algorithm . . . . . . . . .2986
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2991
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2992
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .2993
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .2993

Internal problem ID [9295]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 461
Date solved : Thursday, December 12, 2024 at 10:02:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2x+ 1)xy′′ − 2
(
2x2 − 1

)
y′ − 4(x+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.279 (sec)

Writing the ode as (
2x2 + x

)
y′′ +

(
−4x2 + 2

)
y′ + (−4x− 4) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + x

B = −4x2 + 2 (3)
C = −4x− 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(2x+ 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (2x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(2x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.848: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x+ 1)2. There is a pole at x = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 8x+ 6
(2x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
2x+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(2x+ 1)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
2x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2+2
2x2+x

dx

= z1e
x+ ln(2x+1)

2 −ln(x)

= z1

(√
2x+ 1 ex

x

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2+2

2x2+x
dx

(y1)2
dx

= y1

∫
e2x+ln(2x+1)−2 ln(x)

(y1)2
dx

= y1

(
x3e2x+ln(2x+1)−2 ln(x)

2x+ 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x3e2x+ln(2x+1)−2 ln(x)

2x+ 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(2x+ 1)x
(

d2

dx2y(x)
)
− 2(2x2 − 1)

(
d
dx
y(x)

)
− 4(x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4(x+1)y(x)
(2x+1)x +

2
(
2x2−1

)(
d
dx

y(x)
)

(2x+1)x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(
2x2−1

)(
d
dx

y(x)
)

(2x+1)x − 4(x+1)y(x)
(2x+1)x = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −2
(
2x2−1

)
(2x+1)x , P3(x) = − 4(x+1)

(2x+1)x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

(2x+ 1)x
(

d2

dx2y(x)
)
+ (−4x2 + 2)

(
d
dx
y(x)

)
+ (−4− 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0r(1 + r)x−1+r + (a1(1 + r) (2 + r) + 2a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + 2ak(k + r + 1) (k + r − 2)− 4ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) + 2a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + 2ak(k + r + 1) (k + r − 2)− 4ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + 2ak+1(k + 2 + r) (k + r − 1)− 4ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −2
(
k2ak+1+2krak+1+r2ak+1−2kak+kak+1−2rak+rak+1−2ak−2ak+1

)
(k+2+r)(k+3+r)

• Recursion relation for r = −1

ak+2 = −2
(
k2ak+1−2kak−kak+1−2ak+1

)
(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −2

(
k2ak+1−2kak−kak+1−2ak+1

)
(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −2
(
k2ak+1−2kak+kak+1−2ak−2ak+1

)
(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −2

(
k2ak+1−2kak+kak+1−2ak−2ak+1

)
(k+2)(k+3) , 2a1 − 4a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = −2

(
k2ak+1−2kak−kak+1−2ak+1

)
(k+1)(k+2) , 0 = 0, bk+2 = −2

(
k2bk+1−2kbk+kbk+1−2bk−2bk+1

)
(k+2)(k+3) , 2b1 − 4b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve((2*x+1)*x*diff(diff(y(x),x),x)-2*(2*x^2-1)*diff(y(x),x)-4*y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = c2e2xx+ c1

x

Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 28� �
DSolve[{(2*x+1)*x*D[y[x],{x,2}]-2*(2*x^2-1)*D[y[x],x]-4*(x+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

2x+1x+ c1√
ex
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2.1.448 problem 462

Solved as second order ode using Kovacic algorithm . . . . . . . . .2994
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .2999
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3000
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3000
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3001

Internal problem ID [9296]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 462
Date solved : Thursday, December 12, 2024 at 10:02:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.355 (sec)

Writing the ode as (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x
B = −x2 + 2 (3)
C = 2x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

(6)

Comparing the above to (5) shows that

s = x4 − 8x3 + 24x2 − 24x+ 12

t = 4
(
x2 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.850: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (x− 2)2
− 1

4 (x− 2) +
3
4x2 − 3

4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 2 let b be the coefficient of 1

(x−2)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 2

x3 + 11
x4 + 42

x5 + 132
x6 + 348

x7 + 711
x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 − 8x3 + 24x2 − 24x+ 12
4x4 − 16x3 + 16x2

= Q+ R

4x4 − 16x3 + 16x2

=
(
1
4

)
+
(
−4x3 + 20x2 − 24x+ 12

4x4 − 16x3 + 16x2

)
= 1

4 + −4x3 + 20x2 − 24x+ 12
4x4 − 16x3 + 16x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2x − 1

2 (x− 2) +
(
1
2

)
= − 1

2x − 1
2 (x− 2) +

1
2

= − 1
2x − 1

2x− 4 + 1
2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

2 (x− 2) +
1
2

)
(0) +

((
1
2x2 + 1

2 (x− 2)2
)
+
(
− 1
2x − 1

2 (x− 2) +
1
2

)2

−
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
2(x−2)+

1
2

)
dx

= ex
2

√
x
√
x− 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+2
x2−2x dx

= z1e
x
2+

ln(x)
2 + ln(x−2)

2

= z1
(√

x
√
x− 2 ex

2
)

Which simplifies to

y1 =
√
x
√
x− 2 ex√

x (x− 2)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+2

x2−2x dx

(y1)2
dx

= y1

∫
ex+ln(x)+ln(x−2)

(y1)2
dx

= y1

(
−x ex+ln(x)+ln(x−2)e−2x

x− 2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x
√
x− 2 ex√

x (x− 2)

)
+ c2

(√
x
√
x− 2 ex√

x (x− 2)

(
−x ex+ln(x)+ln(x−2)e−2x

x− 2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 2x)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
+ (2x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(x−1)y(x)
x(x−2) +

(
x2−2

)(
d
dx

y(x)
)

x(x−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−2

)(
d
dx

y(x)
)

x(x−2) + 2(x−1)y(x)
x(x−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(x−2) , P3(x) = 2(x−1)

x(x−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x− 2)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
+ (2x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(−2ak+1(k + r + 1) (k + r − 1) + ak(k + r + 1) (k + r − 2)− ak−1(k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− 2k2ak+1 + (−4rak+1 − ak−1) k − 2r2ak+1 − ak−1r + 3ak−1 + 2ak+1 = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k + r − 1)− 2(k + 1)2 ak+2 + (−4rak+2 − ak) (k + 1)− 2r2ak+2 − rak + 3ak + 2ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = k2ak+1+2krak+1+r2ak+1−kak+kak+1−rak+rak+1+2ak−2ak+1

2(k2+2kr+r2+2k+2r)

• Recursion relation for r = 0
ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1

2(k2+2k)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Recursion relation for r = 2
ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8) ,−6a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve((x^2-2*x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)+(2*x-2)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + exc2
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Mathematica DSolve solution

Solving time : 0.066 (sec)
Leaf size : 18� �
DSolve[{(x^2-2*x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]+(2*x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

2 + c1e
x
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2.1.449 problem 463

Solved as second order ode using Kovacic algorithm . . . . . . . . .3002
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3006
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3007
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3007
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3008

Internal problem ID [9297]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 463
Date solved : Thursday, December 12, 2024 at 10:02:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (4x+ 1) y′ + (4x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.191 (sec)

Writing the ode as

xy′′ + (−4x− 1) y′ + (4x+ 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −4x− 1 (3)
C = 4x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.852: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3

4x2
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Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x−1

x
dx

= z1e
2x+ ln(x)

2

= z1
(√

x e2x
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x−1

x
dx

(y1)2
dx

= y1

∫
e4x+ln(x)

(y1)2
dx

= y1

(
x e4x+ln(x)e−4x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
x e4x+ln(x)e−4x

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (4x+ 1)

(
d
dx
y(x)

)
+ (2 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(2x+1)y(x)
x

+
(4x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(4x+1)

(
d
dx

y(x)
)

x
+ 2(2x+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −4x+1
x

, P3(x) = 2(2x+1)
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−4x− 1)

(
d
dx
y(x)

)
+ (2 + 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−2 + r)x−1+r + (a1(1 + r) (−1 + r)− 2a0(−1 + 2r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− 2ak(2k + 2r − 1) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− 2a0(−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r − 1) + ak(−4k − 4r + 2) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r) + ak+1(−4k − 2− 4r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2(2kak+1+2rak+1−2ak+ak+1)

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = 2(2kak+1−2ak+ak+1)

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = 2(2kak+1−2ak+ak+1)

(k+2)k

• Recursion relation for r = 2
ak+2 = 2(2kak+1−2ak+5ak+1)

(k+4)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2(2kak+1−2ak+5ak+1)

(k+4)(k+2) , 3a1 − 6a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve(x*diff(diff(y(x),x),x)-(4*x+1)*diff(y(x),x)+(4*x+2)*y(x) = 0,

y(x),singsol=all)� �
y = e2x

(
c2x

2 + c1
)
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Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 25� �
DSolve[{x*D[y[x],{x,2}]-(4*x+1)*D[y[x],x]+(4*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
2x(c2x2 + 2c1

)
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2.1.450 problem 464

Solved as second order ode using Kovacic algorithm . . . . . . . . .3009
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3014
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3015
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3016
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3016

Internal problem ID [9298]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 464
Date solved : Thursday, December 12, 2024 at 10:02:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(3x− 1) y′′ − (3x+ 2) y′ − (6x− 8) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as

(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x− 1
B = −3x− 2 (3)
C = −6x+ 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 81x2 − 108x+ 54
4 (3x− 1)2

(6)

Comparing the above to (5) shows that

s = 81x2 − 108x+ 54
t = 4(3x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
81x2 − 108x+ 54

4 (3x− 1)2
)
z(x) (7)



chapter 2. book solved problems 3010

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.854: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3x− 1)2. There is a pole at x = 1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 + 3

4
(
x− 1

3

)2 − 3
2
(
x− 1

3

)
For the pole at x = 1

3 let b be the coefficient of 1(
x− 1

3
)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 − 1
2x + 1

9x3 + 11
108x4 + 7

108x5 + 5
162x6 + 2

243x7 − 13
3888x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 81x2 − 108x+ 54
36x2 − 24x+ 4

= Q+ R

36x2 − 24x+ 4

=
(
9
4

)
+
(

−54x+ 45
36x2 − 24x+ 4

)
= 9

4 + −54x+ 45
36x2 − 24x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −54. Dividing this by leading coefficient in t which is 36 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2
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Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

3
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
3
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 81x2 − 108x+ 54
4 (3x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1
3 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2
(
x− 1

3

) + (3
2

)
= − 1

2
(
x− 1

3

) + 3
2

= 9x− 6
6x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x− 1

3

) + 3
2

)
(0) +

( 1
2
(
x− 1

3

)2
)

+
(
− 1
2
(
x− 1

3

) + 3
2

)2

−
(
81x2 − 108x+ 54

4 (3x− 1)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x− 1

3
)+ 3

2

)
dx

= e 3x
2

√
3x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x−2
3x−1 dx

= z1e
x
2+

ln(3x−1)
2

= z1
(√

3x− 1 ex
2
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x−2

3x−1 dx

(y1)2
dx

= y1

∫
ex+ln(3x−1)

(y1)2
dx

= y1

(
−x ex+ln(3x−1)e−4x

3x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
−x ex+ln(3x−1)e−4x

3x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(3x− 1)
(

d2

dx2y(x)
)
− (3x+ 2)

(
d
dx
y(x)

)
− (6x− 8) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(3x−4)y(x)
3x−1 +

(3x+2)
(

d
dx

y(x)
)

3x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(3x+2)

(
d
dx

y(x)
)

3x−1 − 2(3x−4)y(x)
3x−1 = 0

� Check to see if x0 = 1
3 is a regular singular point

◦ Define functions[
P2(x) = −3x+2

3x−1 , P3(x) = −2(3x−4)
3x−1

]
◦
(
x− 1

3

)
· P2(x) is analytic at x = 1

3((
x− 1

3

)
· P2(x)

) ∣∣∣∣
x= 1

3

= −1

◦
(
x− 1

3

)2 · P3(x) is analytic at x = 1
3((

x− 1
3

)2 · P3(x)
) ∣∣∣∣

x= 1
3

= 0

◦ x = 1
3 is a regular singular point

Check to see if x0 = 1
3 is a regular singular point

x0 = 1
3

• Multiply by denominators

(3x− 1)
(

d2

dx2y(x)
)
+ (−3x− 2)

(
d
dx
y(x)

)
+ (−6x+ 8) y(x) = 0

• Change variables using x = u+ 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+ (−3u− 3)

(
d
du
y(u)

)
+ (−6u+ 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1
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◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

3a0r(−2 + r)u−1+r + (3a1(1 + r) (−1 + r)− 3a0(−2 + r))ur +
(

∞∑
k=1

(3ak+1(k + 1 + r) (k + r − 1)− 3ak(k + r − 2)− 6ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
3a1(1 + r) (−1 + r)− 3a0(−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
3ak+1(k + 1 + r) (k + r − 1) + ak(−3k − 3r + 6)− 6ak−1 = 0

• Shift index using k− >k + 1
3ak+2(k + 2 + r) (k + r) + ak+1(−3k + 3− 3r)− 6ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = kak+1+rak+1+2ak−ak+1

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = kak+1+2ak+ak+1

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

• Revert the change of variables u = x− 1
3[

y(x) =
∞∑
k=0

ak
(
x− 1

3

)k+2
, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 18� �
dsolve((3*x-1)*diff(diff(y(x),x),x)-(2+3*x)*diff(y(x),x)-(6*x-8)*y(x) = 0,

y(x),singsol=all)� �
y = e2xc1 + c2x e−x

Mathematica DSolve solution

Solving time : 0.126 (sec)
Leaf size : 35� �
DSolve[{(3*x-1)*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]-(6*x-8)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2 (c1e3x + 2ec2x)√
2
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2.1.451 problem 465

Solved as second order ode using Kovacic algorithm . . . . . . . . .3017
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3019
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3021
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3021
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3021

Internal problem ID [9299]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 465
Date solved : Thursday, December 12, 2024 at 10:02:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x+ 1)2 y′′ − 2(x+ 1) y′ −
(
x2 + 2x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.109 (sec)

Writing the ode as

(x+ 1)2 y′′ + (−2x− 2) y′ +
(
−x2 − 2x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = (x+ 1)2

B = −2x− 2 (3)
C = −x2 − 2x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.856: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2
(x+1)2

dx

= z1e
ln(x+1)

= z1(x+ 1)

Which simplifies to
y1 = (x+ 1) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x−2

(x+1)2
dx

(y1)2
dx

= y1

∫
e2 ln(x+1)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1) e−x

)
+ c2

(
(x+ 1) e−x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(x+ 1)2
(

d2

dx2y(x)
)
− 2(x+ 1)

(
d
dx
y(x)

)
− (x2 + 2x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
x2+2x−1

)
y(x)

(x+1)2 +
2
(

d
dx

y(x)
)

x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x+1 −
(
x2+2x−1

)
y(x)

(x+1)2 = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = − 2
x+1 , P3(x) = −x2+2x−1

(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators

(x+ 1)2
(

d2

dx2y(x)
)
+ (−2− 2x)

(
d
dx
y(x)

)
+ (−x2 − 2x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

u2
(

d2

du2y(u)
)
− 2u

(
d
du
y(u)

)
+ (−u2 + 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r
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� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u ·
(

d
du
y(u)

)
to series expansion

u ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r

◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion

u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)ur + a1r(−1 + r)u1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2)− ak−2)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2)− ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r)− ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = ak

(k+2)(k+1)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+2 = ak

(k+2)(k+1) , a1 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+1 , ak+2 = ak
(k+2)(k+1) , a1 = 0

]
• Recursion relation for r = 2

ak+2 = ak
(k+3)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak

(k+3)(k+2) , a1 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+2 , ak+2 = ak
(k+3)(k+2) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k+1
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+2 = ak

(k+1)(k+2) , a1 = 0, bk+2 = bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve((x+1)^2*diff(diff(y(x),x),x)-2*(x+1)*diff(y(x),x)-(x^2+2*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = (x+ 1) (c1 sinh (x) + c2 cosh (x))

Mathematica DSolve solution

Solving time : 0.192 (sec)
Leaf size : 147� �
DSolve[{(x+1)^2*D[y[x],{x,2}]-2*(x+1)*x*D[y[x],x]-(x^2+2*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2

1
2 i
(√

7+i
)
e
−
((√

2−1
)
(x+1)

)
(x

+ 1)
1
2 i
(√

7+i
)(

c1HypergeometricU
(
1
2

(
1−

√
2 + i

√
7
)
, 1 + i

√
7, 2

√
2(x+ 1)

)
+ c2L

i
√
7

1
2

(
−1+

√
2−i

√
7
)(2√2(x+ 1)

))
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2.1.452 problem 466

Solved as second order ode using Kovacic algorithm . . . . . . . . .3022
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3024
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3026
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3026
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3026

Internal problem ID [9300]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 466
Date solved : Thursday, December 12, 2024 at 10:02:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.125 (sec)

Writing the ode as

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −8x2 + 4x (3)
C = 4x2 − 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.858: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x2+4x

4x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex√
x

)
+ c2

(
ex√
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ (−8x2 + 4x)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−4x−1

)
y(x)

4x2 +
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+
(
4x2−4x−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−1

x
, P3(x) = 4x2−4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(2x− 1)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + (a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−1(2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 4a0
3+2r

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 1) + (−8k − 8r + 4) ak−1 + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ (−8k − 12− 8r) ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4(2kak+1+2rak+1−ak+3ak+1)

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8 , a1 = 2a0

]
• Recursion relation for r = 1

2

ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24 , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4(2kak+1−ak+2ak+1)

4k2+12k+8 , a1 = 2a0, bk+2 = 4(2kbk+1−bk+4bk+1)
4k2+20k+24 , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 15� �
dsolve(4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2x+ c1)√

x

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 21� �
DSolve[{4*x^2*D[y[x],{x,2}]+(4*x-8*x^2)*D[y[x],x]+(4*x^2-4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)√

x
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2.1.453 problem 467

Solved as second order ode using Kovacic algorithm . . . . . . . . .3027
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3029
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3030
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3030
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3030

Internal problem ID [9301]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 467
Date solved : Thursday, December 12, 2024 at 10:02:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.095 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.860: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 21� �
DSolve[{4*x^2*D[y[x],{x,2}]+(4*x-8*x^2)*D[y[x],x]+(4*x^2-4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)√

x
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2.1.454 problem 468

Solved as second order ode using Kovacic algorithm . . . . . . . . .3031
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3035
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3037
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3037
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3038

Internal problem ID [9302]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 468
Date solved : Thursday, December 12, 2024 at 10:02:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2x+ 1) y′′ − 2y′ − (2x+ 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

(2x+ 1) y′′ − 2y′ + (−2x− 3) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x+ 1
B = −2 (3)
C = −2x− 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(2x+ 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (2x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(2x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.862: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x+ 1)2. There is a pole at x = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 8x+ 6
(2x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
2x+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(2x+ 1)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
2x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2

2x+1 dx

= z1e
ln(2x+1)

2

= z1
(√

2x+ 1
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2

2x+1 dx

(y1)2
dx

= y1

∫
eln(2x+1)

(y1)2
dx

= y1
(
x e2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
x e2x

))
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x)− (2x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x+3)y(x)
2x+1 +

2
(

d
dx

y(x)
)

2x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2
(

d
dx

y(x)
)

2x+1 − (2x+3)y(x)
2x+1 = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

2x+1 , P3(x) = −2x+3
2x+1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x) + (−2x− 3) y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (−2u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r)− 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}
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• Each term must be 0
2a1(1 + r) (−1 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r)− 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak+1+ak

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y(x) =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 16� �
dsolve((2*x+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)-(2*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2exx
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Mathematica DSolve solution

Solving time : 0.067 (sec)
Leaf size : 29� �
DSolve[{(2*x+1)*D[y[x],{x,2}]-2*D[y[x],x]-(2*x+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2
(
c2e

2x+1x+ c1
)
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2.1.455 problem 469

Solved as second order ode using Kovacic algorithm . . . . . . . . .3039
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3042
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3044
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3044
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3044

Internal problem ID [9303]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 469
Date solved : Thursday, December 12, 2024 at 10:03:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (2x+ 2) y′ + (x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.164 (sec)

Writing the ode as

xy′′ + (−2x− 2) y′ + (x+ 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 2 (3)
C = x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.864: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2
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Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2

x
dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x
dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1

(
x e2x+2 ln(x)e−2x

3

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x e2x+2 ln(x)e−2x

3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (2x+ 2)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+2)y(x)
x

+
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+ (x+2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x+1)
x

, P3(x) = x+2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2− 2x)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + (a1(1 + r) (−2 + r)− 2a0(−1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 2 + r)− 2ak(k + r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r)− 2a0(−1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r)− 2akk − 2akr + 2ak + ak−1 = 0
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• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− 2ak+1(k + 1)− 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2) , 4a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(x*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = ex

(
c2x

3 + c1
)

Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 29� �
DSolve[{x*D[y[x],{x,2}]-(2*x+2)*D[y[x],x]+(x+2)*y[x]==6*x^3*Exp[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

6e
x
(
9x4 + 2c2x3 + 6c1

)
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2.1.456 problem 470

Solved as second order ode using Kovacic algorithm . . . . . . . . .3045
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3047
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3048
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3049
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3049

Internal problem ID [9304]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 470
Date solved : Thursday, December 12, 2024 at 10:03:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.165 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.866: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.457 problem 472

Solved as second order ode using Kovacic algorithm . . . . . . . . .3050
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3052
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3054
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3054
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3054

Internal problem ID [9305]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 472
Date solved : Thursday, December 12, 2024 at 10:03:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.123 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.868: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−2x)+ c2

(√
x e−2x

(
e4x
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
16x2−3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
16x2−3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−16x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 3

2

) (
k + r − 1

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 1

2 + r
) (

k + 3
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+1+2r)(2k+3+2r)

• Recursion relation for r = 1
2

ak+2 = 16ak
(2k+2)(2k+4)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+2)(2k+4) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+4)(2k+6)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+4)(2k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+2)(2k+4) , a1 = 0, bk+2 = 16bk
(2k+4)(2k+6) , b1 = 0

]



chapter 2. book solved problems 3054

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 21� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(-16*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c1 sinh (2x) + c2 cosh (2x))

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 32� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(3-16*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−2x√x

(
c2e

4x + 4c1
)
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2.1.458 problem 473

Solved as second order ode using Kovacic algorithm . . . . . . . . .3055
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3057
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3059
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3059
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3059

Internal problem ID [9306]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 473
Date solved : Thursday, December 12, 2024 at 10:03:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4xy′ +
(
4x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.181 (sec)

Writing the ode as

4x2y′′ − 4xy′ +
(
4x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = 4x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.870: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 =

√
x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x cos (x)
)
+ c2

(√
x cos (x) (tan (x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (4x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2+3

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

+
(
4x2+3

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = 4x2+3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (4x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 3

2

) (
k + r − 1

2

)
ak + 4ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 1

2 + r
) (

k + 3
2 + r

)
ak+2 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(2k+1+2r)(2k+3+2r)

• Recursion relation for r = 1
2

ak+2 = − 4ak
(2k+2)(2k+4)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
(2k+2)(2k+4) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − 4ak
(2k+4)(2k+6)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − 4ak
(2k+4)(2k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − 4ak

(2k+2)(2k+4) , a1 = 0, bk+2 = − 4bk
(2k+4)(2k+6) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 17� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−ix

√
x
(
2c1 − ic2e

2ix)
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2.1.459 problem 474

Solved as second order ode using Kovacic algorithm . . . . . . . . .3060
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3062
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3064
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3064
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3064

Internal problem ID [9307]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 474
Date solved : Thursday, December 12, 2024 at 10:03:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ −
(
x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.101 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
−x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = −x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.872: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x

)
+ c2

(
x e−x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
− (x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
x2−2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
−
(
x2−2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = −x2−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (−x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2)− ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2)− ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r)− ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = ak

(k+1)(k+2) , a1 = 0, bk+2 = bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x-(x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = x(c1 sinh (x) + c2 cosh (x))

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 25� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]-(x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−xx+ 1
2c2e

xx
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2.1.460 problem 475

Solved as second order ode using Kovacic algorithm . . . . . . . . .3065
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3067
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3069
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3069
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3069

Internal problem ID [9308]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 475
Date solved : Thursday, December 12, 2024 at 10:03:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2x(x+ 1) y′ +
(
x2 + 2x+ 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.105 (sec)

Writing the ode as

x2y′′ +
(
−2x2 − 2x

)
y′ +

(
x2 + 2x+ 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 − 2x (3)
C = x2 + 2x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.874: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−2x

x2 dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = x ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x2−2x

x2 dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(x ex) + c2(x ex(x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x(x+ 1)

(
d
dx
y(x)

)
+ (x2 + 2x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2x+2

)
y(x)

x2 +
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+
(
x2+2x+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2(x+1)

x
, P3(x) = x2+2x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x(x+ 1)

(
d
dx
y(x)

)
+ (x2 + 2x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + (a1r(−1 + r)− 2a0(−1 + r))x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2)− 2ak−1(k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r)− 2a0(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 2a0

r

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2)− 2ak−1k − 2ak−1r + ak−2 + 4ak−1 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r)− 2ak+1(k + 2)− 2ak+1r + ak + 4ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2ak+1r−ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1) , a1 = 2a0
]

• Recursion relation for r = 2
ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2) , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , a1 = 2a0, bk+2 = 2kbk+1−bk+4bk+1
(k+2)(k+3) , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(x^2*diff(diff(y(x),x),x)-2*x*(x+1)*diff(y(x),x)+(x^2+2*x+2)*y(x) = 0,

y(x),singsol=all)� �
y = exx(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.202 (sec)
Leaf size : 41� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → eixx(c1HypergeometricU(−i, 0,−2ix) + c2L

−1
i (−2ix))
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2.1.461 problem 476

Solved as second order ode using Kovacic algorithm . . . . . . . . .3070
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3072
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3074
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3074
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3074

Internal problem ID [9309]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 476
Date solved : Thursday, December 12, 2024 at 10:03:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2x(x+ 2) y′ +
(
x2 + 4x+ 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.102 (sec)

Writing the ode as

x2y′′ +
(
−2x2 − 4x

)
y′ +

(
x2 + 4x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 − 4x (3)
C = x2 + 4x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.876: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−4x

x2 dx

= z1e
x+2 ln(x)

= z1
(
x2ex

)
Which simplifies to

y1 = x2ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x2−4x

x2 dx

(y1)2
dx

= y1

∫
e2x+4 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

)
+ c2

(
x2ex(x)

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x(x+ 2)

(
d
dx
y(x)

)
+ (x2 + 4x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+4x+6

)
y(x)

x2 +
2(x+2)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+2)

(
d
dx

y(x)
)

x
+
(
x2+4x+6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2(x+2)

x
, P3(x) = x2+4x+6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x(x+ 2)

(
d
dx
y(x)

)
+ (x2 + 4x+ 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−3 + r)xr + (a1(−1 + r) (−2 + r)− 2a0(−2 + r))x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 3)− 2ak−1(k + r − 3) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 3}

• Each term must be 0
a1(−1 + r) (−2 + r)− 2a0(−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 2a0

−1+r

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2) (k + r − 3)− 2ak−1k − 2ak−1r + ak−2 + 6ak−1 = 0

• Shift index using k− >k + 2
ak+2(k + r) (k + r − 1)− 2ak+1(k + 2)− 2ak+1r + ak + 6ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2ak+1r−ak−2ak+1

(k+r)(k+r−1)

• Recursion relation for r = 2
ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2kak+1−ak+2ak+1

(k+2)(k+1) , a1 = 2a0
]

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+4ak+1

(k+3)(k+2) , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , a1 = 2a0, bk+2 = 2kbk+1−bk+4bk+1
(k+2)(k+3) , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*x*(x+2)*diff(y(x),x)+(x^2+4*x+6)*y(x) = 0,

y(x),singsol=all)� �
y = exx2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 19� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*(x+2)*D[y[x],x]+(x^2+4*x+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → exx2(c2x+ c1)
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2.1.462 problem 477

Solved as second order ode using Kovacic algorithm . . . . . . . . .3075
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3077
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3078
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3079
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3079

Internal problem ID [9310]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 477
Date solved : Thursday, December 12, 2024 at 10:03:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 4xy′ +
(
x2 + 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.164 (sec)

Writing the ode as

x2y′′ − 4xy′ +
(
x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −4x (3)
C = x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.878: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2 dx

= z1e
2 ln(x)

= z1
(
x2)

Which simplifies to
y1 = x2 cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 cos (x)

)
+ c2

(
x2 cos (x) (tan (x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (x2 + 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+6

)
y(x)

x2 +
4
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
4
(

d
dx

y(x)
)

x
+
(
x2+6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 4

x
, P3(x) = x2+6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (x2 + 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−3 + r)xr + a1(−1 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 3) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 3}

• Each term must be 0
a1(−1 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2) (k + r − 3) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + r) (k + r − 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+r)(k+r−1)

• Recursion relation for r = 2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(x^2+6)*y(x) = 0,

y(x),singsol=all)� �
y = x2(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(x^2+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−ixx2(2c1 − ic2e

2ix)
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2.1.463 problem 478

Solved as second order ode using Kovacic algorithm . . . . . . . . .3080
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3085
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3086
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3086
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3087

Internal problem ID [9311]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 478
Date solved : Thursday, December 12, 2024 at 10:03:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.880: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

(
d
dx

y(x)
)
x

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.464 problem 479

Solved as second order ode using Kovacic algorithm . . . . . . . . .3088
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3090
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3092
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3092
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3092

Internal problem ID [9312]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 479
Date solved : Thursday, December 12, 2024 at 10:03:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4x(x+ 1) y′ + (2x+ 3) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.135 (sec)

Writing the ode as

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 − 4x (3)
C = 2x+ 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.882: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2−4x

4x2 dx

= z1e
x
2+

ln(x)
2

= z1
(√

x ex
2
)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x2−4x

4x2 dx

(y1)2
dx

= y1

∫
ex+ln(x)

(y1)2
dx

= y1

(
ex+ln(x)

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x

(
ex+ln(x)

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x(x+ 1)

(
d
dx
y(x)

)
+ (2x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+3)y(x)
4x2 +

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

x
+ (2x+3)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+1

x
, P3(x) = 2x+3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(x+ 1)

(
d
dx
y(x)

)
+ (2x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (2k + 2r − 3)− 2ak−1(2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term in the series must be 0, giving the recursion relation

4
((
k + r − 1

2

)
ak − ak−1

) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
4
((
k + 1

2 + r
)
ak+1 − ak

) (
k + r − 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 = 2ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
2k+2

]
• Recursion relation for r = 3

2

ak+1 = 2ak
2k+4

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = 2ak
2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = 2ak

2k+2 , bk+1 = 2bk
2k+4

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 14� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*x*(x+1)*diff(y(x),x)+(2*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = (c1 + exc2)

√
x

Mathematica DSolve solution

Solving time : 0.036 (sec)
Leaf size : 20� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x*(x+1)*D[y[x],x]+(2*x+3)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2ex + c1)
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2.1.465 problem 480

Solved as second order ode using Kovacic algorithm . . . . . . . . .3093
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3098
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3099
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3100
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3100

Internal problem ID [9313]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 480
Date solved : Thursday, December 12, 2024 at 10:03:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(3x− 1) y′′ − (3x+ 2) y′ − (6x− 8) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as

(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x− 1
B = −3x− 2 (3)
C = −6x+ 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 81x2 − 108x+ 54
4 (3x− 1)2

(6)

Comparing the above to (5) shows that

s = 81x2 − 108x+ 54
t = 4(3x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
81x2 − 108x+ 54

4 (3x− 1)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.884: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3x− 1)2. There is a pole at x = 1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 + 3

4
(
x− 1

3

)2 − 3
2
(
x− 1

3

)
For the pole at x = 1

3 let b be the coefficient of 1(
x− 1

3
)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 − 1
2x + 1

9x3 + 11
108x4 + 7

108x5 + 5
162x6 + 2

243x7 − 13
3888x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 81x2 − 108x+ 54
36x2 − 24x+ 4

= Q+ R

36x2 − 24x+ 4

=
(
9
4

)
+
(

−54x+ 45
36x2 − 24x+ 4

)
= 9

4 + −54x+ 45
36x2 − 24x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −54. Dividing this by leading coefficient in t which is 36 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2
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Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

3
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
3
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 81x2 − 108x+ 54
4 (3x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1
3 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2
(
x− 1

3

) + (3
2

)
= − 1

2
(
x− 1

3

) + 3
2

= 9x− 6
6x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x− 1

3

) + 3
2

)
(0) +

( 1
2
(
x− 1

3

)2
)

+
(
− 1
2
(
x− 1

3

) + 3
2

)2

−
(
81x2 − 108x+ 54

4 (3x− 1)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x− 1

3
)+ 3

2

)
dx

= e 3x
2

√
3x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x−2
3x−1 dx

= z1e
x
2+

ln(3x−1)
2

= z1
(√

3x− 1 ex
2
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x−2

3x−1 dx

(y1)2
dx

= y1

∫
ex+ln(3x−1)

(y1)2
dx

= y1

(
−x ex+ln(3x−1)e−4x

3x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
−x ex+ln(3x−1)e−4x

3x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(3x− 1)
(

d2

dx2y(x)
)
− (3x+ 2)

(
d
dx
y(x)

)
− (6x− 8) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(3x−4)y(x)
3x−1 +

(3x+2)
(

d
dx

y(x)
)

3x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(3x+2)

(
d
dx

y(x)
)

3x−1 − 2(3x−4)y(x)
3x−1 = 0

� Check to see if x0 = 1
3 is a regular singular point

◦ Define functions[
P2(x) = −3x+2

3x−1 , P3(x) = −2(3x−4)
3x−1

]
◦
(
x− 1

3

)
· P2(x) is analytic at x = 1

3((
x− 1

3

)
· P2(x)

) ∣∣∣∣
x= 1

3

= −1

◦
(
x− 1

3

)2 · P3(x) is analytic at x = 1
3((

x− 1
3

)2 · P3(x)
) ∣∣∣∣

x= 1
3

= 0

◦ x = 1
3 is a regular singular point

Check to see if x0 = 1
3 is a regular singular point

x0 = 1
3

• Multiply by denominators

(3x− 1)
(

d2

dx2y(x)
)
+ (−3x− 2)

(
d
dx
y(x)

)
+ (−6x+ 8) y(x) = 0

• Change variables using x = u+ 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+ (−3u− 3)

(
d
du
y(u)

)
+ (−6u+ 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1
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◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

3a0r(−2 + r)u−1+r + (3a1(1 + r) (−1 + r)− 3a0(−2 + r))ur +
(

∞∑
k=1

(3ak+1(k + 1 + r) (k + r − 1)− 3ak(k + r − 2)− 6ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
3a1(1 + r) (−1 + r)− 3a0(−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
3ak+1(k + 1 + r) (k + r − 1) + ak(−3k − 3r + 6)− 6ak−1 = 0

• Shift index using k− >k + 1
3ak+2(k + 2 + r) (k + r) + ak+1(−3k + 3− 3r)− 6ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = kak+1+rak+1+2ak−ak+1

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = kak+1+2ak+ak+1

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

• Revert the change of variables u = x− 1
3[

y(x) =
∞∑
k=0

ak
(
x− 1

3

)k+2
, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 18� �
dsolve((3*x-1)*diff(diff(y(x),x),x)-(2+3*x)*diff(y(x),x)-(6*x-8)*y(x) = 0,

y(x),singsol=all)� �
y = e2xc1 + c2x e−x

Mathematica DSolve solution

Solving time : 0.103 (sec)
Leaf size : 35� �
DSolve[{(3*x-1)*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]-(6*x-8)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2 (c1e3x + 2ec2x)√
2
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2.1.466 problem 481

Solved as second order ode using Kovacic algorithm . . . . . . . . .3101
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3106
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3107
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3107
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3108

Internal problem ID [9314]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 481
Date solved : Thursday, December 12, 2024 at 10:03:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2 + x) y′′ + xy′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.338 (sec)

Writing the ode as

(2 + x) y′′ + xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2 + x

B = x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 12x− 20
4 (2 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 12x− 20
t = 4(2 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 12x− 20
4 (2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.886: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2 + x)2. There is a pole at x = −2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 4

2 + x
+ 2

(2 + x)2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 4
x
− 6

x2 − 72
x3 − 556

x4 − 5440
x5 − 55088

x6 − 586688
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 12x− 20
4x2 + 16x+ 16

= Q+ R

4x2 + 16x+ 16

=
(
1
4

)
+
(

−16x− 24
4x2 + 16x+ 16

)
= 1

4 + −16x− 24
4x2 + 16x+ 16

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −16. Dividing this by leading coefficient in t which is 4 gives −4. Now b can be found.

b = (−4)− (0)
= −4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−4
1
2

− 0
)

= −4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−4

1
2

− 0
)

= 4
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 12x− 20
4 (2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −4 4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 4 then

d = α−
∞ −

(
α+
c1

)
= 4− (2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 2
2 + x

+ (−)
(
1
2

)
= 2

2 + x
− 1

2
= − x− 2

2 (2 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

2
2 + x

− 1
2

)
(2x+ a1) +

((
− 2
(2 + x)2

)
+
(

2
2 + x

− 1
2

)2

−
(
x2 − 12x− 20
4 (2 + x)2

))
= 0

(a1 + 6)x+ 2a0 + 2a1 + 4
2 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4, a1 = −6}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 6x+ 4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 6x+ 4

)
e
∫ ( 2

2+x
− 1

2

)
dx

=
(
x2 − 6x+ 4

)
e−x

2+2 ln(2+x)

=
(
x2 − 6x+ 4

)
(2 + x)2 e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

2+x
dx

= z1e
−x

2+ln(2+x)

= z1
(
(2 + x) e−x

2
)

Which simplifies to
y1 = (2 + x)3 e−x

(
x2 − 6x+ 4

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

2+x
dx

(y1)2
dx

= y1

∫
e−x+2 ln(2+x)

(y1)2
dx

= y1

(
−ex(x4 − x3 − 18x2 − 22x+ 8)

240 (x2 − 6x+ 4) (2 + x)3
− e−2 Ei1 (−2− x)

240

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x)3 e−x

(
x2 − 6x+ 4

))
+c2

(
(2+x)3 e−x

(
x2−6x+4

)(
−ex(x4 − x3 − 18x2 − 22x+ 8)

240 (x2 − 6x+ 4) (2 + x)3
− e−2 Ei1 (−2− x)

240

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3y(x)
x+2 −

(
d
dx

y(x)
)
x

x+2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
x

x+2 + 3y(x)
x+2 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x
x+2 , P3(x) = 3

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+3)
(k+1+r)(k−2+r)

• Recursion relation for r = 0
ak+1 = − ak(k+3)

(k+1)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2
ak+1 = − ak(k+3)

(k+1)(k−2)

• Recursion relation for r = 3
ak+1 = − ak(k+6)

(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+6)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+3 , ak+1 = − ak(k+6)
(k+4)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 72� �
dsolve((x+2)*diff(diff(y(x),x),x)+diff(y(x),x)*x+3*y(x) = 0,

y(x),singsol=all)� �
y = e−2−xc2

(
x2 − 6x+ 4

)
(x+ 2)3 Ei1 (−2− x)

+ c1e−x
(
x2 − 6x+ 4

)
(x+ 2)3 + c2

(
x4 − x3 − 18x2 − 22x+ 8

)
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Mathematica DSolve solution

Solving time : 0.207 (sec)
Leaf size : 81� �
DSolve[{(2+x)*D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

960e
−x−1(c2(x2 − 6x+ 4

)
(x+ 2)3 ExpIntegralEi(x+ 2)

+ 3840c1
(
x2 − 6x+ 4

)
(x+ 2)3 − c2e

x+2(x4 − x3 − 18x2 − 22x+ 8
))
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2.1.467 problem 482

Solved as second order ode using Kovacic algorithm . . . . . . . . .3109
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3113
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3113
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3113
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3113

Internal problem ID [9315]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 482
Date solved : Thursday, December 12, 2024 at 10:03:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x) y′′ + x(4 + x) y′ + (2− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as (
−x3 + x2) y′′ + (x2 + 4x

)
y′ + (2− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = x2 + 4x (3)
C = 2− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x+ 36
4x (−1 + x)2

(6)

Comparing the above to (5) shows that

s = −x+ 36
t = 4x(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

−x+ 36
4x (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.888: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(−1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
x
− 9

−1 + x
+ 35

4 (−1 + x)2

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x+ 36

4x (−1 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x+ 36
4x (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 7

2 −5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−3
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x
− 5

2 (−1 + x) + (−) (0)

= 1
x
− 5

2 (−1 + x)

= 1
x
− 5

−2 + 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
1
x
− 5

2 (−1 + x)

)
(2x+ a1) +

((
− 1
x2 + 5

2 (−1 + x)2
)
+
(
1
x
− 5

2 (−1 + x)

)2

−
(

−x+ 36
4x (−1 + x)2

))
= 0

(a1 − 6)x+ 4a0 − 2a1
x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = 6}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 6x+ 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 6x+ 3

)
e
∫ ( 1

x
− 5

2(−1+x)

)
dx

=
(
x2 + 6x+ 3

)
e−

5 ln(−1+x)
2 +ln(x)

= (x2 + 6x+ 3)x
(−1 + x)5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+4x

−x3+x2 dx

= z1e
5 ln(−1+x)

2 −2 ln(x)

= z1

(
(−1 + x)5/2

x2

)

Which simplifies to

y1 =
x2 + 6x+ 3

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2+4x

−x3+x2 dx

(y1)2
dx

= y1

∫
e5 ln(−1+x)−4 ln(x)

(y1)2
dx

= y1

(
−

4
(
−38x− 69

2

)
9 (x2 + 6x+ 3) + ln (x) + 1

9x

)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x2 + 6x+ 3

x

)
+ c2

(
x2 + 6x+ 3

x

(
−

4
(
−38x− 69

2

)
9 (x2 + 6x+ 3) + ln (x) + 1

9x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 49� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)+x*(x+4)*diff(y(x),x)+(-x+2)*y(x) = 0,

y(x),singsol=all)� �
y = 3xc2(x2 + 6x+ 3) ln (x) + c1x

3 + (6c1 + 51c2)x2 + (3c1 + 48c2)x+ c2
x2

Mathematica DSolve solution

Solving time : 0.112 (sec)
Leaf size : 53� �
DSolve[{x^2*(1-x)*D[y[x],{x,2}]+x*(4+x)*D[y[x],x]+(2-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1x(x2 + 6x+ 3)− c2(51x2 + 3(x2 + 6x+ 3)x log(x) + 48x+ 1)

3x2
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2.1.468 problem 483

Solved as second order ode using Kovacic algorithm . . . . . . . . .3114
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3118
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3119
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3119
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3120

Internal problem ID [9316]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 483
Date solved : Thursday, December 12, 2024 at 10:03:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + x(1 + 2x) y′ − (4 + 6x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.271 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
2x2 + x

)
y′ + (−6x− 4) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = 2x2 + x (3)
C = −6x− 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 24x2 + 40x+ 15
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 24x2 + 40x+ 15

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
24x2 + 40x+ 15

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.889: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x2 − 1

4 (1 + x)2
+ 5

2x − 5
2 (1 + x)

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 24x2 + 40x+ 15

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 24x2 + 40x+ 15
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 1
2

1
2

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 3− (3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2 + 2x + 5

2x + (0)

= 1
2 + 2x + 5

2x
= 6x+ 5

2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 + 2x + 5

2x

)
(0) +

((
− 1
2 (1 + x)2

− 5
2x2

)
+
(

1
2 + 2x + 5

2x

)2

−
(
24x2 + 40x+ 15

4 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+2x+
5
2x

)
dx

= x5/2√1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+x
x2(1+x) dx

= z1e
− ln(x(1+x))

2

= z1

(
1√

x (1 + x)

)

Which simplifies to

y1 =
x5/2√1 + x√

x (1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+x

x2(1+x) dx

(y1)2
dx

= y1

∫
e− ln(x(1+x))

(y1)2
dx

= y1

(
− 1
4x4 − 1

2x2 + ln (x) + 1
3x3 + 1

x
− ln (1 + x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x5/2√1 + x√

x (1 + x)

)
+ c2

(
x5/2√1 + x√

x (1 + x)

(
− 1
4x4 − 1

2x2 + ln (x) + 1
3x3 + 1

x
− ln (1 + x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(2x+ 1)

(
d
dx
y(x)

)
− (4 + 6x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(3x+2)y(x)
(x+1)x2 −

(2x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x(x+1) − 2(3x+2)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x(x+1) , P3(x) = − 2(3x+2)

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(2x+ 1)

(
d
dx
y(x)

)
+ (−6x− 4) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (2u2 − 3u+ 1)

(
d
du
y(u)

)
+ (−6u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r
2u−1+r +

(
a1(1 + r)2 − a0(2r2 + r − 2)

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k2 + 4kr + 2r2 + k + r − 2) + ak−1(k + 2 + r) (k − 3 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(2r2 + r − 2) = 0

• Each term in the series must be 0, giving the recursion relation
(k2 − k − 6) ak−1 + (−2k2 − k + 2) ak + ak+1(k + 1)2 = 0

• Shift index using k− >k + 1(
(k + 1)2 − k − 7

)
ak +

(
−2(k + 1)2 − k + 1

)
ak+1 + ak+2(k + 2)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2 , a1 + 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1
(k+2)2 , a1 + 2a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 46� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+x*(2*x+1)*diff(y(x),x)-(4+6*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2(12 ln (x+ 1)x4 − 12 ln (x)x4 − 12x3 + 6x2 − 4x+ 3)
x2
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Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 52� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+x*(1+2*x)*D[y[x],x]-(4+6*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x

2 + c2(12x4 log(x)− 12x4 log(x+ 1) + 12x3 − 6x2 + 4x− 3)
12x2
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2.1.469 problem 484

Solved as second order ode using Kovacic algorithm . . . . . . . . .3121
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3125
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3127
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3127
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3127

Internal problem ID [9317]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 484
Date solved : Thursday, December 12, 2024 at 10:03:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(2x2 + 1
)
y′′ + x

(
2x2 + 4

)
y′ + 2

(
−x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.471 (sec)

Writing the ode as (
2x4 + x2) y′′ + (2x3 + 4x

)
y′ +

(
−2x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + x2

B = 2x3 + 4x (3)
C = −2x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 9
(2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 9

t =
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 9
(2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.891: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21

16
(
x− i

√
2

2

)2 + 21

16
(
x+ i

√
2

2

)2 + 15i
√
2

16
(
x− i

√
2

2

) − 15i
√
2

16
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 9

(2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 9
(2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 7
4 −3

4

− i
√
2

2 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

) + (−) (0)

= − 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

)
= − 3x

2x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

)
 (1) +


 3

4
(
x− i

√
2

2

)2 + 3

4
(
x+ i

√
2

2

)2
+

− 3
4
(
x− i

√
2

2

) − 3
4
(
x+ i

√
2

2

)
2

−
(

3x2 − 9
(2x2 + 1)2

) = 0

6a0
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫− 3

4
(
x− i

√
2

2

)− 3

4
(
x+ i

√
2

2

)
dx

= (x) 1((
i
√
2− 2x

) (
2x+ i

√
2
))3/4

= x

(−4x2 − 2)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+4x
2x4+x2 dx

= z1e
3 ln

(
2x2+1

)
4 −2 ln(x)

= z1

(
(2x2 + 1)3/4

x2

)

Which simplifies to

y1 =
21/4(4x2 + 2)3/4

2x (−4x2 − 2)3/4
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+4x

2x4+x2 dx

(y1)2
dx

= y1

∫
e

3 ln
(
2x2+1

)
2 −4 ln(x)

(y1)2
dx

= y1

−
2i(2x4 − x2 − 1)

√
2x2 + 1

√
2
√

(−4x2−2)(4x2+2)
(2x2+1)2

x
√
−4x2 − 2

√
4x2 + 2

−
6i arcsinh

(√
2x
)√ (−4x2−2)(4x2+2)

(2x2+1)2 (2x2 + 1)
√
−4x2 − 2

√
4x2 + 2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
21/4(4x2 + 2)3/4

2x (−4x2 − 2)3/4

)
+c2

 21/4(4x2 + 2)3/4

2x (−4x2 − 2)3/4

−
2i(2x4 − x2 − 1)

√
2x2 + 1

√
2
√

(−4x2−2)(4x2+2)
(2x2+1)2

x
√
−4x2 − 2

√
4x2 + 2

−
6i arcsinh

(√
2x
)√ (−4x2−2)(4x2+2)

(2x2+1)2 (2x2 + 1)
√
−4x2 − 2

√
4x2 + 2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(2x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 + 4)

(
d
dx
y(x)

)
+ 2(−x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2
(
x2−1

)
y(x)

x2(2x2+1) −
2
(
x2+2

)(
d
dx

y(x)
)

x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
x2+2

)(
d
dx

y(x)
)

x(2x2+1) − 2
(
x2−1

)
y(x)

x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(
x2+2

)
x(2x2+1) , P3(x) = − 2

(
x2−1

)
x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
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Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 2x(x2 + 2)

(
d
dx
y(x)

)
+ (−2x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + 2ak−2(k + r − 1) (k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + 2ak−2(k + r − 1) (k − 3 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + 2ak(k + r + 1) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(k+r+1)(k+r−1)

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1 ; series terminates at k = 2



chapter 2. book solved problems 3127

ak+2 = − 2akk(k−2)
(k+3)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − 2akk(k−2)

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1) , a1 = 0, bk+2 = − 2bkk(k−2)
(k+3)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 42� �
dsolve(x^2*(2*x^2+1)*diff(diff(y(x),x),x)+x*(2*x^2+4)*diff(y(x),x)+2*(-x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2(x− 1) (x+ 1)
√
2
√
2x2 + 1 + x

(
3c2 arcsinh

(√
2x
)
+ c1

)
x2

Mathematica DSolve solution

Solving time : 0.153 (sec)
Leaf size : 70� �
DSolve[{x^2*(1+2*x^2)*D[y[x],{x,2}]+x*(4+2*x^2)*D[y[x],x]+2*(1-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
3c2arctanh

(
x√

x2+ 1
2

)
√
2x

− c2
√
2x2 + 1
x2 + c2

√
2x2 + 1 + c1

x
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2.1.470 problem 485

Solved as second order ode using Kovacic algorithm . . . . . . . . .3128
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3132
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3134
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3134
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3134

Internal problem ID [9318]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 485
Date solved : Thursday, December 12, 2024 at 10:03:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 2
)
y′′ + 2x

(
x2 + 5

)
y′ + 2

(
−x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.510 (sec)

Writing the ode as (
x4 + 2x2) y′′ + (2x3 + 10x

)
y′ +

(
−2x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + 2x2

B = 2x3 + 10x (3)
C = −2x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x4 − 5x2 + 3
(x3 + 2x)2

(6)

Comparing the above to (5) shows that

s = 2x4 − 5x2 + 3

t =
(
x3 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
2x4 − 5x2 + 3
(x3 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.893: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x3 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2 of order

2. There is a pole at x = −i
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2 + 21

16
(
x− i

√
2
)2 + 21

16
(
x+ i

√
2
)2 + 11i

√
2

32
(
x− i

√
2
) − 11i

√
2

32
(
x+ i

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

For the pole at x = −i
√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x4 − 5x2 + 3

(x3 + 2x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x4 − 5x2 + 3
(x3 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

i
√
2 2 0 7

4 −3
4

−i
√
2 2 0 7

4 −3
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 2− (0)
= 2



chapter 2. book solved problems 3131

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
) + (0)

= 3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
)

= 3
x3 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
)) (2x+ a1) +

(− 3
2x2 + 3

4
(
x− i

√
2
)2 + 3

4
(
x+ i

√
2
)2
)

+
(

3
2x − 3

4
(
x− i

√
2
) − 3

4
(
x+ i

√
2
))2

−
(
2x4 − 5x2 + 3
(x3 + 2x)2

) = 0

2(x2 + 2) (x2a1 + (a0 − 8)x− 3a1)
x
(
x+ i

√
2
)2 (√2 + ix

)2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 8

)
e
∫ ( 3

2x−
3

4
(
x−i

√
2
)− 3

4
(
x+i

√
2
)
)
dx

=
(
x2 + 8

)
e−

3 ln
(
x2+2

)
4 + 3 ln(x)

2

= (x2 + 8)x3/2

(x2 + 2)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+10x
x4+2x2 dx

= z1e
3 ln

(
x2+2

)
4 − 5 ln(x)

2

= z1

(
(x2 + 2)3/4

x5/2

)
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Which simplifies to

y1 =
x2 + 8

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+10x

x4+2x2 dx

(y1)2
dx

= y1

∫
e

3 ln
(
x2+2

)
2 −5 ln(x)

(y1)2
dx

= y1

−(x2 + 2)5/2

256x2 + (x2 + 2)3/2

384 +
√
x2 + 2
96 −

√
2 arctanh

( √
2√

x2+2

)
64 + 3

√
x2 + 2

64 (x2 + 8)

+ x2
√
x2 + 2
768


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 8

x

)
+ c2

x2 + 8
x

−(x2 + 2)5/2

256x2 + (x2 + 2)3/2

384 +
√
x2 + 2
96

−

√
2 arctanh

( √
2√

x2+2

)
64 + 3

√
x2 + 2

64 (x2 + 8) +
x2
√
x2 + 2
768



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 2)
(

d2

dx2y(x)
)
+ 2x(x2 + 5)

(
d
dx
y(x)

)
+ 2(−x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2
(
x2−3

)
y(x)

(x2+2)x2 −
2
(
x2+5

)(
d
dx

y(x)
)

x(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
x2+5

)(
d
dx

y(x)
)

x(x2+2) − 2
(
x2−3

)
y(x)

(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(
x2+5

)
x(x2+2) , P3(x) = − 2

(
x2−3

)
(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 2)
(

d2

dx2y(x)
)
+ 2x(x2 + 5)

(
d
dx
y(x)

)
+ (−2x2 + 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

2a0(3 + r) (1 + r)xr + 2a1(4 + r) (2 + r)x1+r +
(

∞∑
k=2

(2ak(k + r + 3) (k + r + 1) + ak−2(k + r) (k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(3 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−1}

• Each term must be 0
2a1(4 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
2ak(k + r + 3) (k + r + 1) + ak−2(k + r) (k − 3 + r) = 0

• Shift index using k− >k + 2
2ak+2(k + 5 + r) (k + r + 3) + ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)(k+r−1)

2(k+5+r)(k+r+3)
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• Recursion relation for r = −3 ; series terminates at k = 4
ak+2 = −ak(k−1)(k−4)

2(k+2)k

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = −ak(k−1)(k−4)

2(k+2)k , a1 = 0
]

• Recursion relation for r = −1 ; series terminates at k = 2
ak+2 = −ak(k+1)(k−2)

2(k+4)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+1)(k−2)

2(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = −ak(k−1)(−4+k)

2(k+2)k , a1 = 0, bk+2 = − bk(k+1)(k−2)
2(4+k)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 53� �
dsolve(x^2*(x^2+2)*diff(diff(y(x),x),x)+2*x*(x^2+5)*diff(y(x),x)+2*(-x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y =

−c2
√
x2 + 2 (x− 2) (x+ 2)

√
2 + (x2 + 8)x2

(
arctanh

( √
2√

x2+2

)
c2 + c1

)
x3

Mathematica DSolve solution

Solving time : 0.183 (sec)
Leaf size : 88� �
DSolve[{x^2*(2+x^2)*D[y[x],{x,2}]+2*x*(x^2+5)*D[y[x],x]+2*(3-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−
√
2c2(x2 + 8)x2arctanh

(√
x2+2√
2

)
+ 64c1x4 + 2x2(c2√x2 + 2 + 256c1

)
− 8c2

√
x2 + 2

64x3



chapter 2. book solved problems 3135

2.1.471 problem 486

Solved as second order ode using Kovacic algorithm . . . . . . . . .3135
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3139
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3139
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3139
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3139

Internal problem ID [9319]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 486
Date solved : Thursday, December 12, 2024 at 10:03:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ + 6xy′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.300 (sec)

Writing the ode as (
x2 + 1

)
y′′ + 6xy′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 6x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.895: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x

x2+1 dx

= z1e
−

3 ln
(
x2+1

)
2

= z1

(
1

(x2 + 1)3/2

)

Which simplifies to

y1 =
1

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6x

x2+1 dx

(y1)2
dx

= y1

∫
e−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(ix+ 1)2
)
+ c2

(
1

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 24� �
dsolve((x^2+1)*diff(diff(y(x),x),x)+6*diff(y(x),x)*x+6*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

(x2 + 1)2

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 29� �
DSolve[{(1+x^2)*D[y[x],{x,2}]+6*x*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2

(x2 + 1)2
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2.1.472 problem 487

Solved as second order ode using Kovacic algorithm . . . . . . . . .3140
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3144
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3144
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3144
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3144

Internal problem ID [9320]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 487
Date solved : Thursday, December 12, 2024 at 10:03:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ + 2xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as (
x2 + 1

)
y′′ + 2xy′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 + 3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 + 3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 + 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.896: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− i)2

− 1
4 (x+ i)2

− 5i
4 (x− i) +

5i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 + 3

(x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 + 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 1
2

1
2

−i 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2i +

1
2x+ 2i + (0)

= 1
2x− 2i +

1
2x+ 2i

= x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2i +

1
2x+ 2i

)
(1) +

((
− 1
2 (x− i)2

− 1
2 (x+ i)2

)
+
(

1
2x− 2i +

1
2x+ 2i

)2

−
(

2x2 + 3
(x2 + 1)2

))
= 0

− 2(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2i+
1

2x+2i

)
dx

= (x)
√

(−x+ i) (x+ i)
= x

√
−x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x

x2+1 dx

= z1e
−

ln
(
x2+1

)
2

= z1

(
1√

x2 + 1

)

Which simplifies to
y1 = ix

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

x2+1 dx

(y1)2
dx

= y1

∫
e− ln

(
x2+1

)
(y1)2

dx

= y1

(
1
x
+ arctan (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ix) + c2

(
ix

(
1
x
+ arctan (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve((x^2+1)*diff(diff(y(x),x),x)+2*diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = c1x+ arctan (x)xc2 + c2

Mathematica DSolve solution

Solving time : 0.033 (sec)
Leaf size : 48� �
DSolve[{(1+x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2i(2c1x− c2x log(1− ix) + c2x log(1 + ix) + 2ic2)
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2.1.473 problem 488

Solved as second order ode using Kovacic algorithm . . . . . . . . .3145
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3149
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3149
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3149
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3149

Internal problem ID [9321]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 488
Date solved : Thursday, December 12, 2024 at 10:03:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 8xy′ + 20y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.307 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 8xy′ + 20y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −8x (3)
C = 20

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −24
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −24

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 24
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.897: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
(x− i)2

+ 6
(x+ i)2

+ 6i
x− i

− 6i
x+ i

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 24
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3 −2
−i 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 2
x− i

+ 3
x+ i

+ (−) (0)

= − 2
x− i

+ 3
x+ i

= x− 5i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
x− i

+ 3
x+ i

)
(0) +

((
2

(x− i)2
− 3

(x+ i)2
)
+
(
− 2
x− i

+ 3
x+ i

)2

−
(
− 24
(x2 + 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 2
x−i

+ 3
x+i

)
dx

= (x2 + 1)3

(ix+ 1)5

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x
x2+1 dx

= z1e
2 ln
(
x2+1

)
= z1

((
x2 + 1

)2)
Which simplifies to

y1 =
(x2 + 1)5

(ix+ 1)5

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −8x

x2+1 dx

(y1)2
dx

= y1

∫
e4 ln

(
x2+1

)
(y1)2

dx

= y1

(
x4 − 2x2 + 1

5

(x+ i)5
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)5

(ix+ 1)5

)
+ c2

(
(x2 + 1)5

(ix+ 1)5
(
x4 − 2x2 + 1

5

(x+ i)5
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 33� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-8*diff(y(x),x)*x+20*y(x) = 0,

y(x),singsol=all)� �
y = c2x

5 + 5c1x4 − 10c2x3 − 10c1x2 + 5c2x+ c1

Mathematica DSolve solution

Solving time : 0.106 (sec)
Leaf size : 38� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-8*x*D[y[x],x]+20*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

5ic2
(
5x4 − 10x2 + 1

)
+ c1(1 + ix)5
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2.1.474 problem 489

Solved as second order ode using Kovacic algorithm . . . . . . . . .3150
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3154
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3155
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3155
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3156

Internal problem ID [9322]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 489
Date solved : Thursday, December 12, 2024 at 10:03:12 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 8xy′ − 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.213 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 8xy′ − 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −8x (3)
C = −12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 8

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

8
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.898: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x+ 1 − 2

x− 1 + 2
(x+ 1)2

+ 2
(x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 2 −1
−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x− 1 + 2

x+ 1 + (−) (0)

= − 1
x− 1 + 2

x+ 1
= x− 3

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x− 1 + 2

x+ 1

)
(0) +

((
1

(x− 1)2
− 2

(x+ 1)2
)
+
(
− 1
x− 1 + 2

x+ 1

)2

−
(

8
(x2 − 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x−1+

2
x+1

)
dx

= (x+ 1)2

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x

−x2+1 dx

= z1e
−2 ln(x−1)−2 ln(x+1)

= z1

(
1

(x− 1)2 (x+ 1)2
)

Which simplifies to

y1 =
1

(x− 1)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −8x

−x2+1 dx

(y1)2
dx

= y1

∫
e−4 ln(x−1)−4 ln(x+1)

(y1)2
dx

= y1

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x− 1)3
)
+ c2

(
1

(x− 1)3

(
−(x+ 1) (3x2 + 1) (x− 1)4 e−4 ln(x−1)−4 ln(x+1)

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 8x

(
d
dx
y(x)

)
− 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 −

8
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
8
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (8u− 8)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r + 4) + ak(k + r + 4) (k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 0}
• Each term in the series must be 0, giving the recursion relation

(k + r + 4) ((−2k − 2r − 2) ak+1 + ak(k + r + 3)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r+3)
2(k+1+r)

• Recursion relation for r = −3
ak+1 = akk

2(k−2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 2
ak+1 = akk

2(k−2)

• Recursion relation for r = 0
ak+1 = ak(k+3)

2(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+3)

2(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+3)
2(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 29� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-8*diff(y(x),x)*x-12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3 + 3c1x2 + 3c2x+ c1

(x2 − 1)3
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Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 37� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-8*x*D[y[x],x]-12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1(x− 1)3 − c2(3x2 + 1)

3 (x2 − 1)3
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2.1.475 problem 490

Solved as second order ode using Kovacic algorithm . . . . . . . . .3157
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3161
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3161
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3162
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3162

Internal problem ID [9323]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 490
Date solved : Thursday, December 12, 2024 at 10:03:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 1
B = 7x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 6
4 (2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 5x2 + 6

t = 4
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

5x2 + 6
4 (2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.900: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7

64
(
x− i

√
2

2

)2 − 7

64
(
x+ i

√
2

2

)2 − 17i
√
2

64
(
x− i

√
2

2

) + 17i
√
2

64
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 6

4 (2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 6
4 (2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 7
8

1
8

− i
√
2

2 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 5

4 −
(
1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2
+ (0)

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

= x

4x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

)
(1) +


− 1

8
(
x− i

√
2

2

)2 − 1

8
(
x+ i

√
2

2

)2
+

(
1

8x− 4i
√
2
+ 1

8x+ 4i
√
2

)2

−
(

5x2 + 6
4 (2x2 + 1)2

) = 0

− a0
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

8x−4i
√
2+

1
8x+4i

√
2

)
dx

= (x)
((

i
√
2− 2x

)(
2x+ i

√
2
))1/8

= x
(
−4x2 − 2

)1/8
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x

2x2+1 dx

= z1e
−

7 ln
(
2x2+1

)
8

= z1

(
1

(2x2 + 1)7/8

)

Which simplifies to

y1 =
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x

2x2+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x2+1

)
4

(y1)2
dx

= y1

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

)
+c2

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 37� �
dsolve((2*x^2+1)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

c1 LegendreP
(1
4 ,

3
4 , i

√
2x
)
+ c2 LegendreQ

(1
4 ,

3
4 , i

√
2x
)

(2x2 + 1)3/8

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 66� �
DSolve[{(1+2*x^2)*D[y[x],{x,2}]+7*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c2Q

3
4
1
4

(
i
√
2x
)

(2x2 + 1)3/8
+ 2i 4

√
2c1x

(2x2 + 1)3/4Gamma
(1
4

)
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2.1.476 problem 491

Solved as second order ode using Kovacic algorithm . . . . . . . . .3163
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3167
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3168
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3169
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3169

Internal problem ID [9324]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 491
Date solved : Thursday, December 12, 2024 at 10:03:13 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 5xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.302 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 5xy′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −5x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −x2 + 6

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 + 6
4 (x2 − 1)2

)
z(x) (7)



chapter 2. book solved problems 3164

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.901: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
16 (x− 1) +

5
16 (x+ 1)2

+ 5
16 (x− 1)2

+ 7
16 (x+ 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 6

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
4 (x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 5
4 −1

4

−1 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (x− 1) −

1
4 (x+ 1) + (−) (0)

= − 1
4 (x− 1) −

1
4 (x+ 1)

= − x

2x2 − 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (x− 1) −

1
4 (x+ 1)

)
(1) +

((
1

4 (x− 1)2
+ 1

4 (x+ 1)2
)
+
(
− 1
4 (x− 1) −

1
4 (x+ 1)

)2

−
(

−x2 + 6
4 (x2 − 1)2

))
= 0

a0
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4(x−1)−

1
4(x+1)

)
dx

= (x) 1
((x− 1) (x+ 1))1/4

= x

(x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−5x

−x2+1 dx

= z1e
− 5 ln(x−1)

4 − 5 ln(x+1)
4

= z1

(
1

(x− 1)5/4 (x+ 1)5/4

)

Which simplifies to

y1 =
x

(x− 1)5/4 (x+ 1)5/4 (x2 − 1)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −5x

−x2+1 dx

(y1)2
dx

= y1

∫
e−

5 ln(x−1)
2 − 5 ln(x+1)

2

(y1)2
dx

= y1

(
(x2 − 1)3/2

x
− x

√
x2 − 1 + ln

(
x+

√
x2 − 1

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x− 1)5/4 (x+ 1)5/4 (x2 − 1)1/4

)
+c2

(
x

(x− 1)5/4 (x+ 1)5/4 (x2 − 1)1/4

(
(x2 − 1)3/2

x
−x

√
x2 − 1+ln

(
x+

√
x2 − 1

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 5x

(
d
dx
y(x)

)
− 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2−1 −

5
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)
x

x2−1 + 4y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x
x2−1 , P3(x) = 4

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 5x

(
d
dx
y(x)

)
+ 4y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (5u− 5)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(3 + 2r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (2k + 5 + 2r) + ak(k + r + 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 2)2 − 2(k + 1 + r)
(
k + r + 5

2

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+2)2

(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
ak+1 = ak(k+2)2

(k+1)(2k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+2)2

(k+1)(2k+5)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+2)2
(k+1)(2k+5)

]
• Recursion relation for r = −3

2

ak+1 =
ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+1 =
ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
3
2 , ak+1 =

ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
3
2

)
, ak+1 = ak(k+2)2

(k+1)(2k+5) , bk+1 =
bk
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.047 (sec)
Leaf size : 39� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-5*diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y =

ln
(
x+

√
x2 − 1

)
c2x+ c1x−

√
x2 − 1 c2

(x2 − 1)3/2

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 49� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-5*x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2xarctanh
(

x√
x2−1

)
− c2

√
x2 − 1 + c1x

(x2 − 1)3/2
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2.1.477 problem 492

Solved as second order ode using Kovacic algorithm . . . . . . . . .3170
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3174
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3174
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3174
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3174

Internal problem ID [9325]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 492
Date solved : Thursday, December 12, 2024 at 10:03:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 10xy′ + 28y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.356 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 10xy′ + 28y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −10x (3)
C = 28

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 33
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 33

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
2x2 − 33
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.903: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4 (x− i)2

+ 35
4 (x+ i)2

+ 31i
4 (x− i) −

31i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 − 33

(x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 33
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 7
2 −5

2

−i 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 5
2 (x− i) +

7
2 (x+ i) + (0)

= − 5
2 (x− i) +

7
2 (x+ i)

= x− 6i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2 (x− i) +

7
2 (x+ i)

)
(1) +

((
5

2 (x− i)2
− 7

2 (x+ i)2
)
+
(
− 5
2 (x− i) +

7
2 (x+ i)

)2

−
(
2x2 − 33
(x2 + 1)2

))
= 0

−2(x2 + 1) (6i+ a0)
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −6i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 6i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 6i) e
∫ (

− 5
2(x−i)+

7
2(x+i)

)
dx

= (x− 6i) e
ln

(
x2+1

)
2 −6i arctan(x)

= (−x+ 6i) (x2 + 1)7/2

(−x+ i)6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x
x2+1 dx

= z1e
5 ln

(
x2+1

)
2

= z1
((

x2 + 1
)5/2)

Which simplifies to

y1 =
(x2 + 1)6 (−x+ 6i)

(−x+ i)6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x

x2+1 dx

(y1)2
dx

= y1

∫
e5 ln

(
x2+1

)
(y1)2

dx

= y1

(
724i

2401 (x+ i)4
− 16i

147 (x+ i)6
− 3125i

117649 (x+ i)2
+ 496

1715 (x+ i)5
− 7432

50421 (x+ i)3

− 3125
823543 (x+ i) +

3125
823543 (x− 6i)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)6 (−x+ 6i)

(−x+ i)6

)

+ c2

(
(x2 + 1)6 (−x+ 6i)

(−x+ i)6
(

724i
2401 (x+ i)4

− 16i
147 (x+ i)6

− 3125i
117649 (x+ i)2

+ 496
1715 (x+ i)5

− 7432
50421 (x+ i)3

− 3125
823543 (x+ i) +

3125
823543 (x− 6i)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 39� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-10*diff(y(x),x)*x+28*y(x) = 0,

y(x),singsol=all)� �
y = c1 +

35
3 c1x

4 − 14c1x2 + c2x
7 + 21c2x5 − 105c2x3 + 35c2x

Mathematica DSolve solution

Solving time : 0.106 (sec)
Leaf size : 40� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-10*x*D[y[x],x]+28*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

105c2
(
35x4 − 42x2 + 3

)
− c1(x− i)6(x+ 6i)
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2.1.478 problem 493

Solved as second order ode using Kovacic algorithm . . . . . . . . .3175
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3179
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3180
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3180
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3180

Internal problem ID [9326]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 493
Date solved : Thursday, December 12, 2024 at 10:03:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.252 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.904: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.479 problem 495

Solved as second order ode using Kovacic algorithm . . . . . . . . .3181
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3185
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3187
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3188
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3188

Internal problem ID [9327]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 495
Date solved : Thursday, December 12, 2024 at 10:03:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 − 8x+ 11

)
y′′ − 16(x− 2) y′ + 36y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.620 (sec)

Writing the ode as (
2x2 − 8x+ 11

)
y′′ + (−16x+ 32) y′ + 36y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 − 8x+ 11
B = −16x+ 32 (3)
C = 36

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8x2 − 32x− 100
(2x2 − 8x+ 11)2

(6)

Comparing the above to (5) shows that

s = 8x2 − 32x− 100

t =
(
2x2 − 8x+ 11

)2
Therefore eq. (4) becomes

z′′(x) =
(
8x2 − 32x− 100
(2x2 − 8x+ 11)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.906: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x2 − 8x+ 11)2. There is a pole at x = 2 + i

√
6

2 of order 2. There is a pole
at x = 2− i

√
6

2 of order 2. Since there is no odd order pole larger than 2 and the order at
∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6(
x− 2− i

√
6

2

)2 + 6(
x− 2 + i

√
6

2

)2 + 5i
√
6

3
(
x− 2− i

√
6

2

) − 5i
√
6

3
(
x− 2 + i

√
6

2

)
For the pole at x = 2 + i

√
6

2 let b be the coefficient of 1(
x−2− i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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For the pole at x = 2− i
√
6

2 let b be the coefficient of 1(
x−2+ i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 8x2 − 32x− 100

(2x2 − 8x+ 11)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8x2 − 32x− 100
(2x2 − 8x+ 11)2

pole c location pole order [
√
r]c α+

c α−
c

2 + i
√
6

2 2 0 3 −2

2− i
√
6

2 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

+ (0)

= − 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

= −5i
√
6 + 2x− 4

2x2 − 8x+ 11

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

)
(1) +


 2(

x− 2− i
√
6

2

)2 − 3(
x− 2 + i

√
6

2

)2
+

(
− 2
x− 2− i

√
6

2

+ 3
x− 2 + i

√
6

2

)2

−
(
8x2 − 32x− 100
(2x2 − 8x+ 11)2

) = 0

−10i
√
6− 4a0 − 8

2x2 − 8x+ 11 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −5i

√
6

2 − 2
}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 2− 5i
√
6

2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 2− 5i

√
6

2

)
e
∫ (

− 2
x−2− i

√
6

2
+ 3

x−2+ i
√
6

2

)
dx

=
(
x− 2− 5i

√
6

2

)
e

ln
(
4x2−16x+22

)
2 −5i arctan

(
(2x−4)

√
6

6

)

=
9
(
5
√
6 + 2ix− 4i

)
(2x2 − 8x+ 11)3

√
6

2
(
−x

√
6 + 2

√
6 + 3i

)5
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−16x+32

2x2−8x+11 dx

= z1e
2 ln
(
2x2−8x+11

)
= z1

((
2x2 − 8x+ 11

)2)
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Which simplifies to

y1 =
9(2x2 − 8x+ 11)5

(
5
√
6 + 2ix− 4i

)√
6

2
(
x
√
6− 2

√
6− 3i

)5
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −16x+32

2x2−8x+11 dx

(y1)2
dx

= y1

∫
e4 ln

(
2x2−8x+11

)
(y1)2

dx

= y1

(
− 10i

√
6

27
(
2x− 4 + i

√
6
)4 + 8i

√
6

729
(
2x− 4 + i

√
6
)2 − 16

15
(
2x− 4 + i

√
6
)5

+ 22
81
(
2x− 4 + i

√
6
)3 + 4

2187
(
2x− 4 + i

√
6
) − 4

2187
(
−5i

√
6 + 2x− 4

))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
9(2x2 − 8x+ 11)5

(
5
√
6 + 2ix− 4i

)√
6

2
(
x
√
6− 2

√
6− 3i

)5
)

+ c2

(
9(2x2 − 8x+ 11)5

(
5
√
6 + 2ix− 4i

)√
6

2
(
x
√
6− 2

√
6− 3i

)5
(
− 10i

√
6

27
(
2x− 4 + i

√
6
)4

+ 8i
√
6

729
(
2x− 4 + i

√
6
)2 − 16

15
(
2x− 4 + i

√
6
)5 + 22

81
(
2x− 4 + i

√
6
)3

+ 4
2187

(
2x− 4 + i

√
6
) − 4

2187
(
−5i

√
6 + 2x− 4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 − 8x+ 11)
(

d2

dx2y(x)
)
− 16(x− 2)

(
d
dx
y(x)

)
+ 36y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 36y(x)
2x2−8x+11 +

16(x−2)
(

d
dx

y(x)
)

2x2−8x+11

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
16(x−2)

(
d
dx

y(x)
)

2x2−8x+11 + 36y(x)
2x2−8x+11 = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = − 16(x−2)

2x2−8x+11 , P3(x) = 36
2x2−8x+11

]
◦
(
x− 2 + I

√
6

2

)
· P2(x) is analytic at x = 2− I

√
6

2((
x− 2 + I

√
6

2

)
· P2(x)

) ∣∣∣∣
x=2− I

√
6

2

= 0

◦
(
x− 2 + I

√
6

2

)2
· P3(x) is analytic at x = 2− I

√
6

2((
x− 2 + I

√
6

2

)2
· P3(x)

) ∣∣∣∣
x=2− I

√
6

2

= 0

◦ x = 2− I
√
6

2 is a regular singular point
Check to see if x0 is a regular singular point
x0 = 2− I

√
6

2

• Multiply by denominators

(2x2 − 8x+ 11)
(

d2

dx2y(x)
)
+ (−16x+ 32)

(
d
dx
y(x)

)
+ 36y(x) = 0

• Change variables using x = u+ 2− I
√
6

2 so that the regular singular point is at u = 0(
2u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
−16u+ 8 I

√
6
) (

d
du
y(u)

)
+ 36y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2 I
√
6 r(r − 5) a0u−1+r +

(
∞∑
k=0

(
−2 I

√
6 (k + 1 + r) (k − 4 + r) ak+1 + 2ak(k + r − 3) (k + r − 6)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2 I

√
6 r(r − 5) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
−2 I

√
6 (k + 1 + r) (k − 4 + r) ak+1 + 2ak(k + r − 3) (k + r − 6) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

6ak
(
k2+2kr+r2−9k−9r+18

)√
6

k2+2kr+r2−3k−3r−4

• Recursion relation for r = 0 ; series terminates at k = 3

ak+1 =
− I

6ak
(
k2−9k+18

)√
6

k2−3k−4
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• Apply recursion relation for k = 0
a1 = 3 I

4 a0
√
6

• Apply recursion relation for k = 1
a2 = 5 I

18a1
√
6

• Express in terms of a0
a2 = −5a0

4

• Apply recursion relation for k = 2
a3 = I

9a2
√
6

• Express in terms of a0
a3 = −5 I

36a0
√
6

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1 + 3 I

√
6u

4 − 5u2

4 − 5 I
√
6u3

36

)
• Revert the change of variables u = x− 2 + I

√
6

2[
y(x) = − I

72a0
√
6 (10x3 − 60x2 + 111x− 62)

]
• Recursion relation for r = 5 ; series terminates at k = 1

ak+1 =
− I

6ak
(
k2+k−2

)√
6

k2+7k+6

• Apply recursion relation for k = 0
a1 = I

18a0
√
6

• Terminating series solution of the ODE for r = 5 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1 + I

√
6u

18

)
• Revert the change of variables u = x− 2 + I

√
6

2[
y(x) = a0

(
5
6 +

I(x−2)
√
6

18

)]
• Combine solutions and rename parameters[

y(x) = − Ia0
√
6
(
10x3−60x2+111x−62

)
72 + b0

(
5
6 +

I(x−2)
√
6

18

)]
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 55� �
dsolve((2*x^2-8*x+11)*diff(diff(y(x),x),x)-16*(x-2)*diff(y(x),x)+36*y(x) = 0,

y(x),singsol=all)� �
y = c2x

6 − 12c2x5 + 165c2x4

2 + c1x
3 + 3(−8c1 − 1815c2)x2

4
+ 3(37c1 + 10890c2)x

10 − 31c1
5 − 16577c2

8

Mathematica DSolve solution

Solving time : 1.432 (sec)
Leaf size : 91� �
DSolve[{(11-8*x+2*x^2)*D[y[x],{x,2}]-16*(x-2)*D[y[x],x]+36*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

15ic2
(
10x3 − 60x2 + 111x− 62

)
+

c1
(
2x+ 5i

√
6− 4

)
(2(x− 4)x+ 11)2

(
2ix+

√
6− 4i

)3
2
(
−2ix+

√
6 + 4i

)2
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2.1.480 problem 496

Solved as second order ode using Kovacic algorithm . . . . . . . . .3189
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3193
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3194
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3194
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3195

Internal problem ID [9328]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 496
Date solved : Thursday, December 12, 2024 at 10:03:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + (x− 3) y′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.320 (sec)

Writing the ode as

y′′ + (x− 3) y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x− 3 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6x− 1
4 (6)

Comparing the above to (5) shows that

s = x2 − 6x− 1
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
−1
4 + 1

4x
2 − 3

2x
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.908: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2 − 5

2x − 15
2x2 − 115

4x3 − 495
4x4 − 2285

4x5 − 11055
4x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 − 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 − 3

2x+ 9
4

This shows that the coefficient of 1 in the above is 9
4 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6x− 1
4

= Q+ R

4

=
(
−1
4 + 1

4x
2 − 3

2x
)
+ (0)

= −1
4 + 1

4x
2 − 3

2x

We see that the coefficient of the term 1
x
in the quotient is −1

4 . Now b can be found.

b =
(
−1
4

)
−
(
9
4

)
= −5

2
Hence

[
√
r]∞ = x

2 − 3
2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −1
4 + 1

4x
2 − 3

2x

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −

3
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x

2 − 3
2

)
= 3

2 − x

2
= 3

2 − x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
3
2 − x

2

)
(2x+ a1) +

((
−1
2

)
+
(
3
2 − x

2

)2

−
(
−1
4 + 1

4x
2 − 3

2x
))

= 0

(x+ 3) a1 + 6x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = −6}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 6x+ 8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 6x+ 8

)
e
∫ ( 3

2−
x
2
)
dx

=
(
x2 − 6x+ 8

)
e 3

2x−
1
4x

2

=
(
x2 − 6x+ 8

)
e−

x(−6+x)
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x−3
1 dx

= z1e
3
2x−

1
4x

2

= z1
(
e−

x(−6+x)
4

)
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Which simplifies to

y1 = e−
x(−6+x)

2
(
x2 − 6x+ 8

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x−3

1 dx

(y1)2
dx

= y1

∫
e−

1
2x

2+3x

(y1)2
dx

= y1

(∫ e− 1
2x

2+3xex(−6+x)

(x2 − 6x+ 8)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−

x(−6+x)
2
(
x2 − 6x+ 8

))
+ c2

(
e−

x(−6+x)
2
(
x2 − 6x+ 8

)(∫ e− 1
2x

2+3xex(−6+x)

(x2 − 6x+ 8)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + (x− 3)
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=max(0,1−m)

akk x
k−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
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∞∑
k=0

(ak+2(k + 2) (k + 1)− 3ak+1(k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (ak − 3ak+1 + 3ak+2) k + 3ak − 3ak+1 + 2ak+2 = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = −akk−3ak+1k+3ak−3ak+1

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.026 (sec)
Leaf size : 73� �
dsolve(diff(diff(y(x),x),x)+(x-3)*diff(y(x),x)+3*y(x) = 0,

y(x),singsol=all)� �
y = c2e−

(x−3)2
2 (x− 2)

erf

√
2
√

− (x− 3)2

2

− 1

 (x− 4)
√
π

−
√
2
√

− (x− 3)2 c2 − c1e−
(x−3)2

2 (x− 2) (x− 4)
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Mathematica DSolve solution

Solving time : 0.343 (sec)
Leaf size : 90� �
DSolve[{D[y[x],{x,2}]+(x-3)*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
− 1

2 (x−6)x−8
(
e7/2

√
2πc2

(
x2 − 6x+ 8

)
erfi
(
x− 3√

2

)
+ 4e8c1

(
x2 − 6x+ 8

)
− 2c2e

1
2 (x−4)2+x(x− 3)

)
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2.1.481 problem 497

Solved as second order ode using Kovacic algorithm . . . . . . . . .3196
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3200
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3202
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3202
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3202

Internal problem ID [9329]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 497
Date solved : Thursday, December 12, 2024 at 10:03:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 8x+ 14

)
y′′ − 8(x− 4) y′ + 20y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.297 (sec)

Writing the ode as (
x2 − 8x+ 14

)
y′′ + (−8x+ 32) y′ + 20y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 8x+ 14
B = −8x+ 32 (3)
C = 20

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 48
(x2 − 8x+ 14)2

(6)

Comparing the above to (5) shows that

s = 48

t =
(
x2 − 8x+ 14

)2
Therefore eq. (4) becomes

z′′(x) =
(

48
(x2 − 8x+ 14)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.910: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (x2 − 8x+ 14)2. There is a pole at x = 4 +

√
2 of order 2. There is a pole at

x = 4−
√
2 of order 2. Since there is no odd order pole larger than 2 and the order at ∞

is 4 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6(
x− 4 +

√
2
)2 + 6(

x− 4−
√
2
)2 + 3

√
2

x− 4 +
√
2
− 3

√
2

x− 4−
√
2

For the pole at x = 4 +
√
2 let b be the coefficient of 1(

x−4−
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = 4−
√
2 let b be the coefficient of 1(

x−4+
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 48
(x2 − 8x+ 14)2

pole c location pole order [
√
r]c α+

c α−
c

4 +
√
2 2 0 3 −2

4−
√
2 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 2
x− 4−

√
2
+ 3

x− 4 +
√
2
+ (−) (0)

= − 2
x− 4−

√
2
+ 3

x− 4 +
√
2

= x− 4− 5
√
2

x2 − 8x+ 14

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
x− 4−

√
2
+ 3

x− 4 +
√
2

)
(0) +

((
2(

x− 4−
√
2
)2 − 3(

x− 4 +
√
2
)2
)

+
(
− 2
x− 4−

√
2
+ 3

x− 4 +
√
2

)2

−
(

48
(x2 − 8x+ 14)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 2
x−4−

√
2+

3
x−4+

√
2

)
dx

=
(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x+32

x2−8x+14 dx

= z1e
2 ln
(
x2−8x+14

)
= z1

((
x2 − 8x+ 14

)2)
Which simplifies to

y1 =
(x2 − 8x+ 14)2

(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −8x+32

x2−8x+14 dx

(y1)2
dx

= y1

∫
e4 ln

(
x2−8x+14

)
(y1)2

dx

= y1

(
− 16(

x− 4 +
√
2
)3 + 4

√
2(

x− 4 +
√
2
)2 − 1

x− 4 +
√
2
+ 16

√
2(

x− 4 +
√
2
)4

− 64
5
(
x− 4 +

√
2
)5
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 8x+ 14)2

(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

)

+ c2

(
(x2 − 8x+ 14)2

(
x− 4 +

√
2
)3(

−x+ 4 +
√
2
)2

(
− 16(

x− 4 +
√
2
)3 + 4

√
2(

x− 4 +
√
2
)2

− 1
x− 4 +

√
2
+ 16

√
2(

x− 4 +
√
2
)4 − 64

5
(
x− 4 +

√
2
)5
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 8x+ 14)
(

d2

dx2y(x)
)
− 8(−4 + x)

(
d
dx
y(x)

)
+ 20y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 20y(x)
x2−8x+14 +

8(−4+x)
(

d
dx

y(x)
)

x2−8x+14

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
8(−4+x)

(
d
dx

y(x)
)

x2−8x+14 + 20y(x)
x2−8x+14 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 8(−4+x)
x2−8x+14 , P3(x) = 20

x2−8x+14

]
◦
(
x− 4 +

√
2
)
· P2(x) is analytic at x = 4−

√
2((

x− 4 +
√
2
)
· P2(x)

) ∣∣∣∣
x=4−

√
2
= 0

◦
(
x− 4 +

√
2
)2 · P3(x) is analytic at x = 4−

√
2((

x− 4 +
√
2
)2 · P3(x)

) ∣∣∣∣
x=4−

√
2
= 0

◦ x = 4−
√
2is a regular singular point

Check to see if x0 is a regular singular point
x0 = 4−

√
2

• Multiply by denominators

(x2 − 8x+ 14)
(

d2

dx2y(x)
)
+ (−8x+ 32)

(
d
dx
y(x)

)
+ 20y(x) = 0

• Change variables using x = u+ 4−
√
2 so that the regular singular point is at u = 0(

u2 − 2u
√
2
) (

d2

du2y(u)
)
+
(
−8u+ 8

√
2
) (

d
du
y(u)

)
+ 20y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2
√
2 (r − 5) ra0u−1+r +

(
∞∑
k=0

(
−2

√
2 (k + r − 4) (k + 1 + r) ak+1 + ak(k + r − 4) (k + r − 5)

)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
−2

√
2 (r − 5) r = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
(k + r − 4)

(
−2ak+1(k + 1 + r)

√
2 + ak(k + r − 5)

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)

√
2

4(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 5

ak+1 = ak(k−5)
√
2

4(k+1)

• Apply recursion relation for k = 0
a1 = −5a0

√
2

4

• Apply recursion relation for k = 1
a2 = −a1

√
2

2

• Express in terms of a0
a2 = 5a0

4

• Apply recursion relation for k = 2
a3 = −a2

√
2

4

• Express in terms of a0
a3 = −5a0

√
2

16

• Apply recursion relation for k = 3
a4 = −a3

√
2

8

• Express in terms of a0
a4 = 5a0

64

• Apply recursion relation for k = 4
a5 = −a4

√
2

20

• Express in terms of a0
a5 = −a0

√
2

256

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1− 5u

√
2

4 + 5u2

4 − 5
√
2u3

16 + 5u4

64 −
√
2u5

256

)
• Revert the change of variables u = x− 4 +

√
2[

y(x) = a0
( (

−x5+20x4−180x3+880x2−2260x+2384
)√

2
256 + 5x4

128 −
5x3

8 + 125x2

32 − 45x
4 + 401

32

)]
• Recursion relation for r = 5

ak+1 = akk
√
2

4(k+6)

• Solution for r = 5[
y(u) =

∞∑
k=0

aku
k+5, ak+1 = akk

√
2

4(k+6)

]
• Revert the change of variables u = x− 4 +

√
2[

y(x) =
∞∑
k=0

ak
(
x− 4 +

√
2
)k+5

, ak+1 = akk
√
2

4(k+6)

]
• Combine solutions and rename parameters[

y(x) = a0
( (

−x5+20x4−180x3+880x2−2260x+2384
)√

2
256 + 5x4

128 −
5x3

8 + 125x2

32 − 45x
4 + 401

32

)
+
(

∞∑
k=0

bk
(
x− 4 +

√
2
)5+k

)
, bk+1 = bkk

√
2

4(k+6)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 55� �
dsolve((x^2-8*x+14)*diff(diff(y(x),x),x)-8*(x-4)*diff(y(x),x)+20*y(x) = 0,

y(x),singsol=all)� �
y= c1x

5+c2x
4+4(−35c1−4c2)x3+20(56c1+5c2)x2+4(−875c1−72c2)x+4032c1+

1604c2
5

Mathematica DSolve solution

Solving time : 0.148 (sec)
Leaf size : 77� �
DSolve[{(x^2-8*x+14)*D[y[x],{x,2}]+8*(x-4)*D[y[x],x]+20*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c1P

3
1
2 i
(
i+

√
31
)(x−4√

2

)
+ c2Q

3
1
2 i
(
i+

√
31
)(x−4√

2

)
(x2 − 8x+ 14)3/2
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2.1.482 problem 498

Solved as second order ode using Kovacic algorithm . . . . . . . . .3203
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3207
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3209
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3209
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3209

Internal problem ID [9330]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 498
Date solved : Thursday, December 12, 2024 at 10:03:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 4x+ 5

)
y′′ − 20(x+ 1) y′ + 60y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.574 (sec)

Writing the ode as (
2x2 + 4x+ 5

)
y′′ + (−20x− 20) y′ + 60y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 4x+ 5
B = −20x− 20 (3)
C = 60

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −210
(2x2 + 4x+ 5)2

(6)

Comparing the above to (5) shows that

s = −210

t =
(
2x2 + 4x+ 5

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 210
(2x2 + 4x+ 5)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.912: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x2 + 4x+ 5)2. There is a pole at x = −1 + i

√
6

2 of order 2. There is a pole at
x = −1− i

√
6

2 of order 2. Since there is no odd order pole larger than 2 and the order at
∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35

4
(
x+ 1− i

√
6

2

)2 + 35

4
(
x+ 1 + i

√
6

2

)2 + 35i
√
6

12
(
x+ 1− i

√
6

2

) − 35i
√
6

12
(
x+ 1 + i

√
6

2

)
For the pole at x = −1 + i

√
6

2 let b be the coefficient of 1(
x+1− i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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For the pole at x = −1− i
√
6

2 let b be the coefficient of 1(
x+1+ i

√
6

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 210
(2x2 + 4x+ 5)2

pole c location pole order [
√
r]c α+

c α−
c

−1 + i
√
6

2 2 0 7
2 −5

2

−1− i
√
6

2 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

) + (−) (0)

= − 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

)
= −6i

√
6 + 2x+ 2

2x2 + 4x+ 5
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

)
 (0) +


 5

2
(
x+ 1− i

√
6

2

)2 − 7

2
(
x+ 1 + i

√
6

2

)2
+

− 5
2
(
x+ 1− i

√
6

2

) + 7
2
(
x+ 1 + i

√
6

2

)
2

−
(
− 210
(2x2 + 4x+ 5)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫− 5

2
(
x+1− i

√
6

2

)+ 7

2
(
x+1+ i

√
6

2

)
dx

= 27
√
2 (2x2 + 4x+ 5)7/2(
3 + i (x+ 1)

√
6
)6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−20x−20
2x2+4x+5 dx

= z1e
5 ln

(
2x2+4x+5

)
2

= z1
((

2x2 + 4x+ 5
)5/2)

Which simplifies to

y1 = − (2x2 + 4x+ 5)6
√
2

27
(
i− (x+1)

√
2
√
3

3

)6
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −20x−20

2x2+4x+5 dx

(y1)2
dx

= y1

∫
e5 ln

(
2x2+4x+5

)
(y1)2

dx

= y1

−
1
2x

5 + 5
2x

4 + 5
2x

3 − 5
2x

2 − 31
8 x− 7

8

2
(
x+ 1 + i

√
6

2

)6
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Therefore the solution is

y = c1y1 + c2y2

= c1

− (2x2 + 4x+ 5)6
√
2

27
(
i− (x+1)

√
2
√
3

3

)6


+ c2

− (2x2 + 4x+ 5)6
√
2

27
(
i− (x+1)

√
2
√
3

3

)6
−

1
2x

5 + 5
2x

4 + 5
2x

3 − 5
2x

2 − 31
8 x− 7

8

2
(
x+ 1 + i

√
6

2

)6



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 + 4x+ 5)
(

d2

dx2y(x)
)
− 20(x+ 1)

(
d
dx
y(x)

)
+ 60y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 60y(x)
2x2+4x+5 +

20(x+1)
(

d
dx

y(x)
)

2x2+4x+5

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
20(x+1)

(
d
dx

y(x)
)

2x2+4x+5 + 60y(x)
2x2+4x+5 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 20(x+1)
2x2+4x+5 , P3(x) = 60

2x2+4x+5

]
◦
(
x+ 1 + I

√
6

2

)
· P2(x) is analytic at x = −1− I

√
6

2((
x+ 1 + I

√
6

2

)
· P2(x)

) ∣∣∣∣
x=−1− I

√
6

2

= 0

◦
(
x+ 1 + I

√
6

2

)2
· P3(x) is analytic at x = −1− I

√
6

2((
x+ 1 + I

√
6

2

)2
· P3(x)

) ∣∣∣∣
x=−1− I

√
6

2

= 0

◦ x = −1− I
√
6

2 is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1− I

√
6

2

• Multiply by denominators

(2x2 + 4x+ 5)
(

d2

dx2y(x)
)
+ (−20x− 20)

(
d
dx
y(x)

)
+ 60y(x) = 0

• Change variables using x = u− 1− I
√
6

2 so that the regular singular point is at u = 0(
2u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
−20u+ 10 I

√
6
) (

d
du
y(u)

)
+ 60y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2 I
√
6 r(r − 6) a0u−1+r +

(
∞∑
k=0

(
−2 I

√
6 (k + 1 + r) (k + r − 5) ak+1 + 2ak(k + r − 5) (k + r − 6)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2 I

√
6 r(r − 6) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term in the series must be 0, giving the recursion relation
−2
(
Iak+1(k + 1 + r)

√
6− ak(k + r − 6)

)
(k + r − 5) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

6ak(k+r−6)
√
6

k+1+r

• Recursion relation for r = 0 ; series terminates at k = 6

ak+1 =
− I

6ak(k−6)
√
6

k+1

• Recursion relation that defines the terminating series solution of the ODE for r = 0[
y(u) =

5∑
k=0

aku
k, ak+1 =

− I
6ak(k−6)

√
6

k+1

]
• Revert the change of variables u = x+ 1 + I

√
6

2[
y(x) =

5∑
k=0

ak
(
x+ 1 + I

√
6

2

)k
, ak+1 =

− I
6ak(k−6)

√
6

k+1

]
• Recursion relation for r = 6

ak+1 =
− I

6akk
√
6

k+7

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+1 =

− I
6akk

√
6

k+7

]
• Revert the change of variables u = x+ 1 + I

√
6

2[
y(x) =

∞∑
k=0

ak
(
x+ 1 + I

√
6

2

)k+6
, ak+1 =

− I
6akk

√
6

k+7

]
• Combine solutions and rename parameters[

y(x) =
(

5∑
k=0

ak
(
x+ 1 + I

√
6

2

)k)
+
(

∞∑
k=0

bk
(
x+ 1 + I

√
6

2

)k+6
)
, ak+1 =

− I
6ak(k−6)

√
6

k+1 , bk+1 =
− I

6 bkk
√
6

k+7

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 65� �
dsolve((2*x^2+4*x+5)*diff(diff(y(x),x),x)-20*(x+1)*diff(y(x),x)+60*y(x) = 0,

y(x),singsol=all)� �
y = c2x

6 + c1x
5 + 5(2c1 − 15c2)x4

2 + 5(c1 − 20c2)x3

+ 5(−4c1 − 45c2)x2

4 + (−31c1 + 120c2)x
4 − 7c1

4 + 155c2
8

Mathematica DSolve solution

Solving time : 1.442 (sec)
Leaf size : 83� �
DSolve[{(2*x^2+4*x+5)*D[y[x],{x,2}]-20*(x+1)*D[y[x],x]+60*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
(2x2 + 4x+ 5)5/2

(
4c2(4x5 + 20x4 + 20x3 − 20x2 − 31x− 7) + c1

(
2ix+

√
6 + 2i

)6)
(4x2 + 8x+ 10)5/2
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2.1.483 problem 499

Solved as second order ode using Kovacic algorithm . . . . . . . . .3210
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3214
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3216
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3217
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3217

Internal problem ID [9331]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 499
Date solved : Thursday, December 12, 2024 at 10:03:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x3 + 1

)
y′′ + 7x2y′ + 9xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.474 (sec)

Writing the ode as (
x3 + 1

)
y′′ + 7x2y′ + 9xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + 1
B = 7x2 (3)
C = 9x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x(x3 + 8)
4 (x3 + 1)2

(6)

Comparing the above to (5) shows that

s = −x
(
x3 + 8

)
t = 4

(
x3 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− x(x3 + 8)
4 (x3 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.914: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + 1)2. There is a pole at x = −1 of order 2. There is a pole at x = 1

2 −
i
√
3

2 of
order 2. There is a pole at x = 1

2 +
i
√
3

2 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
18 (x+ 1) +

7
36 (x+ 1)2

+ 7

36
(
x− 1

2 −
i
√
3

2

)2
+ 7

36
(
x− 1

2 +
i
√
3

2

)2 +
− 5

36 +
5i
√
3

36

x− 1
2 −

i
√
3

2

+
− 5

36 −
5i
√
3

36

x− 1
2 +

i
√
3

2

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
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For the pole at x = 1
2 −

i
√
3

2 let b be the coefficient of 1(
x− 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
For the pole at x = 1

2 +
i
√
3

2 let b be the coefficient of 1(
x− 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − x(x3 + 8)

4 (x3 + 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − x(x3 + 8)
4 (x3 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
6 −1

6
1
2 −

i
√
3

2 2 0 7
6 −1

6
1
2 +

i
√
3

2 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
−1
2

)
= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

) + (−) (0)

= − 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

)
= − x2

2x3 + 2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

)
 (1) +


 1
6 (x+ 1)2

+ 1

6
(
x− 1

2 +
i
√
3

2

)2 + 1

6
(
x− 1

2 −
i
√
3

2

)2
+

− 1
6 (x+ 1) −

1
6
(
x− 1

2 +
i
√
3

2

) − 1
6
(
x− 1

2 −
i
√
3

2

)
2

−
(
− x(x3 + 8)
4 (x3 + 1)2

) = 0

16a0x(x2 − x+ 1)(
2x− 1 + i

√
3
)2 (

i
√
3− 2x+ 1

)2 (x+ 1)
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫− 1

6(x+1)−
1

6
(
x− 1

2+ i
√
3

2

)− 1

6
(
x− 1

2− i
√
3

2

)
dx

= (x) 1(
(x+ 1)

(
2x− 1 + i

√
3
) (

i
√
3− 2x+ 1

))1/6
= x(

(x+ 1)
(
2x− 1 + i

√
3
) (

i
√
3− 2x+ 1

))1/6
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x2
x3+1 dx

= z1e
−

7 ln
(
x3+1

)
6

= z1

(
1

(x3 + 1)7/6

)
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Which simplifies to

y1 =
x

(x3 + 1)7/6 (−4x3 − 4)1/6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x2

x3+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
x3+1

)
3

(y1)2
dx

= y1

(∫ (−4x3 − 4)1/3

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x3 + 1)7/6 (−4x3 − 4)1/6

)
+c2

(
x

(x3 + 1)7/6 (−4x3 − 4)1/6

(∫ (−4x3 − 4)1/3

x2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(x3 + 1)
(

d2

dx2y(x)
)
+ 7x2( d

dx
y(x)

)
+ 9xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −9xy(x)
x3+1 −

7x2
(

d
dx

y(x)
)

x3+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
7x2
(

d
dx

y(x)
)

x3+1 + 9xy(x)
x3+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2

x3+1 , P3(x) = 9x
x3+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1
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• Multiply by denominators

(x3 + 1)
(

d2

dx2y(x)
)
+ 7x2( d

dx
y(x)

)
+ 9xy(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 3u2 + 3u)
(

d2

du2y(u)
)
+ (7u2 − 14u+ 7)

(
d
du
y(u)

)
+ (9u− 9) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(4 + 3r)u−1+r + (a1(1 + r) (7 + 3r)− a0(3r2 + 11r + 9))ur +
(

∞∑
k=1

(
ak+1(k + 1 + r) (3k + 7 + 3r)− ak(3k2 + 6kr + 3r2 + 11k + 11r + 9) + ak−1(k + 2 + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• Each term must be 0

a1(1 + r) (7 + 3r)− a0(3r2 + 11r + 9) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (3k + 7 + 3r)− ak(3k2 + 6kr + 3r2 + 11k + 11r + 9) + ak−1(k + 2 + r)2 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (3k + 10 + 3r)− ak+1
(
3(k + 1)2 + 6(k + 1) r + 3r2 + 11k + 20 + 11r

)
+ ak(k + r + 3)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−3k2ak+1+2krak−6krak+1+r2ak−3r2ak+1+6kak−17kak+1+6rak−17rak+1+9ak−23ak+1

(k+2+r)(3k+10+3r)

• Recursion relation for r = 0
ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10) , 7a1 − 9a0 = 0
]

• Revert the change of variables u = x+ 1
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[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1
(k+2)(3k+10) , 7a1 − 9a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −k2ak−3k2ak+1+ 10
3 kak−9kak+1+ 25

9 ak− 17
3 ak+1(

k+ 2
3
)
(3k+6)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −k2ak−3k2ak+1+ 10
3 kak−9kak+1+ 25

9 ak− 17
3 ak+1(

k+ 2
3
)
(3k+6) ,−a1 + a0

3 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k−
4
3 , ak+2 = −k2ak−3k2ak+1+ 10

3 kak−9kak+1+ 25
9 ak− 17

3 ak+1(
k+ 2

3
)
(3k+6) ,−a1 + a0

3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
4
3

)
, ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10) , 7a1 − 9a0 = 0, bk+2 = −k2bk−3k2bk+1+ 10
3 kbk−9kbk+1+ 25

9 bk− 17
3 bk+1(

k+ 2
3
)
(3k+6) ,−b1 + b0

3 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.254 (sec)
Leaf size : 28� �
dsolve((x^3+1)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x^2+9*x*y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

(
[1, 1] ,

[
2
3

]
,−x3

)
+ c2x

(x3 + 1)4/3

Mathematica DSolve solution

Solving time : 0.972 (sec)
Leaf size : 118� �
DSolve[{(1+x^3)*D[y[x],{x,2}]+7*x^2*D[y[x],x]+9*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−2

√
3c2x arctan

(
√
3x

2
3
√
x3 + 1+x

)
− 6c2 3

√
x3 + 1− 2c2x log

(
3
√
x3 + 1− x

)
+ c2x log

(
3
√
x3 + 1x+ (x3 + 1)2/3 + x2

)
+ 6c1x

6 (x3 + 1)4/3
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2.1.484 problem 500

Solved as second order ode using Kovacic algorithm . . . . . . . . .3218
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3223
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3223
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3223
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3223

Internal problem ID [9332]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 500
Date solved : Thursday, December 12, 2024 at 10:03:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x5 + 1

)
y′′ + 14x4y′ + 10x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.051 (sec)

Writing the ode as (
2x5 + 1

)
y′′ + 14x4y′ + 10x3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x5 + 1
B = 14x4 (3)
C = 10x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x3(5x5 + 6)
(2x5 + 1)2

(6)

Comparing the above to (5) shows that

s = 3x3(5x5 + 6
)

t =
(
2x5 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x3(5x5 + 6)
(2x5 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.916: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 10− 8
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x5 + 1)2. There is a pole at x = 24/5

√
5

8 + 24/5
8 + i23/10

√
5−

√
5

4 of order 2. There
is a pole at x = 24/5

8 − 24/5
√
5

8 + i23/10
√

5−
√
5

8 + i23/10
√

5−
√
5
√
5

8 of order 2. There is a pole at
x = −24/5

2 of order 2. There is a pole at x = 24/5
8 − 24/5

√
5

8 − i23/10
√

5−
√
5
√
5

8 − i23/10
√

5−
√
5

8

of order 2. There is a pole at x = 24/5
√
5

8 + 24/5
8 − i23/10

√
5−

√
5

4 of order 2. Since there is no
odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = Expression too large to display

For the pole at x = 24/5
√
5

8 + 24/5
8 + i23/10

√
5−

√
5

4 let b be the coefficient of 1(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

)2

in the partial fractions decomposition of r given above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10
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For the pole at x = 24/5
8 − 24/5

√
5

8 + i23/10
√

5−
√
5

8 + i23/10
√

5−
√
5
√
5

8 let b be the coefficient of
1(

x− 24/5
8 + 24/5

√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

)2 in the partial fractions decomposition of r given

above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

For the pole at x = −24/5
2 let b be the coefficient of 1(

x+ 24/5
2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

For the pole at x = 24/5
8 − 24/5

√
5

8 − i23/10
√

5−
√
5
√
5

8 − i23/10
√

5−
√
5

8 let b be the coefficient of
1(

x− 24/5
8 + 24/5

√
5

8 + i23/10
√

5−
√
5
√
5

8 + i23/10
√

5−
√
5

8

)2 in the partial fractions decomposition of r given

above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

For the pole at x = 24/5
√
5

8 + 24/5
8 − i23/10

√
5−

√
5

4 let b be the coefficient of 1(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

)2

in the partial fractions decomposition of r given above. Therefore b = − 21
100 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

10
α−
c = 1

2 −
√
1 + 4b = 3

10

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x3(5x5 + 6)

(2x5 + 1)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x3(5x5 + 6)
(2x5 + 1)2
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pole c location pole order [
√
r]c α+

c α−
c

24/5
√
5

8 + 24/5
8 + i23/10

√
5−

√
5

4 2 0 7
10

3
10

24/5
8 − 24/5

√
5

8 + i23/10
√

5−
√
5

8 + i23/10
√

5−
√
5
√
5

8 2 0 7
10

3
10

−24/5
2 2 0 7

10
3
10

24/5
8 − 24/5

√
5

8 − i23/10
√

5−
√
5
√
5

8 − i23/10
√

5−
√
5

8 2 0 7
10

3
10

24/5
√
5

8 + 24/5
8 − i23/10

√
5−

√
5

4 2 0 7
10

3
10

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α−
c1 + α−

c2 + α−
c3 + α−

c4 + α−
c5

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+
(
(−)[

√
r]c4 +

α−
c4

x− c4

)
+
(
(−)[

√
r]c5 +

α−
c5

x− c5

)
+ (+)[

√
r]∞

= 3
10
(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

) + 3
10
(
x+ 24/5

2

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 + i23/10
√

5−
√
5
√
5

8 + i23/10
√

5−
√
5

8

) + 3
10
(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

) + (0)

= 3
10
(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

) + 3
10
(
x+ 24/5

2

) + 3
10
(
x− 24/5

8 + 24/5
√
5

8 + i23/10
√

5−
√
5
√
5

8 + i23/10
√

5−
√
5

8

) + 3
10
(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

)
= 3x4

2x5 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) and Solving for the coefficients ai in the above using
method of undetermined coefficients gives

{a0 = 0}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e

∫ 3

10
(
x− 24/5

√
5

8 − 24/5
8 − i23/10

√
5−

√
5

4

)+ 3

10
(
x− 24/5

8 +24/5
√
5

8 − i23/10
√

5−
√
5

8 − i23/10
√

5−
√
5
√
5

8

)+ 3

10
(
x+24/5

2

)+ 3

10
(
x− 24/5

8 +24/5
√

5
8 + i23/10

√
5−

√
5
√
5

8 + i23/10
√

5−
√
5

8

)+ 3

10
(
x− 24/5

√
5

8 − 24/5
8 + i23/10

√
5−

√
5

4

)
dx

= (x)
((

24/5
√
5 + 2i23/10

√
5−

√
5 + 24/5 − 8x

)(
−i23/10

√
5−

√
5
√
5 + 24/5

√
5− i23/10

√
5−

√
5− 24/5 + 8x

)(
24/5 + 2x

)(
i23/10

√
5−

√
5
√
5 + 24/5

√
5 + i23/10

√
5−

√
5− 24/5 + 8x

)(
24/5

√
5− 2i23/10

√
5−

√
5 + 24/5 − 8x

))3/10

= x83/10
((

x+ 24/5
2

)(
i23/10

√
5−

√
5 +

(
−
√
5− 1

)
24/5

2 + 4x
)(

i
(√

5 + 1
)
23/10

√
5−

√
5 +

(√
5− 1

)
24/5 + 8x

)(
i
(√

5 + 1
)
23/10

√
5−

√
5 +

(
−
√
5 + 1

)
24/5 − 8x

)(
i23/10

√
5−

√
5 +

(√
5 + 1

)
24/5

2 − 4x
))3/10

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
14x4
2x5+1 dx

= z1e
−

7 ln
(
2x5+1

)
10

= z1

(
1

(2x5 + 1)7/10

)

Which simplifies to

y1 =
x83/10(1024x5 + 512)3/10

(2x5 + 1)7/10

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 14x4

2x5+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x5+1

)
5

(y1)2
dx

= y1

(∫ 82/5

8x2 (1024x5 + 512)3/5
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x83/10(1024x5 + 512)3/10

(2x5 + 1)7/10

)
+c2

(
x83/10(1024x5 + 512)3/10

(2x5 + 1)7/10

(∫ 82/5

8x2 (1024x5 + 512)3/5
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.142 (sec)
Leaf size : 30� �
dsolve((2*x^5+1)*diff(diff(y(x),x),x)+14*x^4*diff(y(x),x)+10*y(x)*x^3 = 0,

y(x),singsol=all)� �
y = c1x

(2x5 + 1)2/5
+ c2 hypergeom

([
1
5 , 1
]
,

[
4
5

]
,−2x5

)

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{(1+2*x^5)*D[y[x],{x,2}]+14*x^4*D[y[x],x]+10*x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Timed out
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2.1.485 problem 501

Solved as second order ode using Kovacic algorithm . . . . . . . . .3224
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3228
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3229
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3229
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3230

Internal problem ID [9333]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 501
Date solved : Thursday, December 12, 2024 at 10:03:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + x6y′ + 7x5y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.451 (sec)

Writing the ode as

y′′ + x6y′ + 7x5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x6 (3)
C = 7x5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x5(x7 − 16)
4 (6)

Comparing the above to (5) shows that

s = x5(x7 − 16
)

t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x5(x7 − 16)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.917: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 12
= −12

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −12 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −12 then

v = −Or(∞)
2 = 12

2 = 6

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
6∑

i=0

aix
i (8)

Let a be the coefficient of xv = x6 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x6

2 − 4
x
− 16

x8 − 128
x15 − 1280

x22 − 14336
x29 − 172032

x36 − 2162688
x43 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 6 gives

[
√
r]∞ =

6∑
i=0

aix
i

= x6

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x5 = x5 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x12

4

This shows that the coefficient of x5 in the above is 0. Now we need to find the coefficient
of x5 in r. How this is done depends on if v = 0 or not. Since v = 6 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x5 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= x5(x7 − 16)
4

= Q+ R

4

=
(
1
4x

12 − 4x5
)
+ (0)

= 1
4x

12 − 4x5

We see that the coefficient of the term 1
x
in the quotient is −4. Now b can be found.

b = (−4)− (0)
= −4

Hence

[
√
r]∞ = x6

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−4
1
2

− 6
)

= −7

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−4

1
2

− 6
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x5(x7 − 16)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−12 x6

2 −7 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 3227

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x6

2

)
= −x6

2

= −x6

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x6

2

)
(1) +

((
−3x5)+ (−x6

2

)2

−
(
x5(x7 − 16)

4

))
= 0

x5a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x6

2 dx

= (x) e−x7
14

= x e−x7
14

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x6
1 dx

= z1e
−x7

14

= z1
(
e−x7

14

)
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Which simplifies to

y1 = e−x7
7 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x6

1 dx

(y1)2
dx

= y1

∫
e−

x7
7

(y1)2
dx

= y1


76/7(−1)1/7

(
−7x6(−1)6/7Γ

( 6
7
)

(−x7)6/7
+ 7 71/7(−1)6/7e

x7
7

x
+

7x6(−1)6/7Γ
(

6
7 ,−

x7
7

)
(−x7)6/7

)
49


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x7

7 x
)

+ c2

e−x7
7 x


76/7(−1)1/7

(
−7x6(−1)6/7Γ

( 6
7
)

(−x7)6/7
+ 7 71/7(−1)6/7e

x7
7

x
+

7x6(−1)6/7Γ
(

6
7 ,−

x7
7

)
(−x7)6/7

)
49




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x6( d
dx
y(x)

)
+ 7x5y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x5 · y(x) to series expansion

x5 · y(x) =
∞∑
k=0

akx
k+5

◦ Shift index using k− >k − 5

x5 · y(x) =
∞∑
k=5

ak−5x
k

◦ Convert x6 ·
(

d
dx
y(x)

)
to series expansion

x6 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+5
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◦ Shift index using k− >k − 5

x6 ·
(

d
dx
y(x)

)
=

∞∑
k=5

ak−5(k − 5)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

30a6x4 + 20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=5

(ak+2(k + 2) (k + 1) + ak−5(k + 2))xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0, 30a6 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0}

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak−5 + ak+2) = 0

• Shift index using k− >k + 5
(k + 7) ((k + 5) ak+7 + ak + ak+7) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+7 = − ak

k+6 , a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 63� �
dsolve(diff(diff(y(x),x),x)+x^6*diff(y(x),x)+7*x^5*y(x) = 0,

y(x),singsol=all)� �
y = c2e−

x7
7
(
−x7)1/7 76/7Γ(6

7

)
− c2e−

x7
7
(
−x7)1/7 76/7Γ(6

7 ,−
x7

7

)
+ c1e−

x7
7 x+ 7c2
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Mathematica DSolve solution

Solving time : 0.123 (sec)
Leaf size : 53� �
DSolve[{D[y[x],{x,2}]+x^6*D[y[x],x]+7*x^5*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

49e
−x7

7

(
49c1x− 76/7c2 7

√
−x7Γ

(
−1
7 ,−

x7

7

))
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2.1.486 problem 502

Solved as second order ode using Kovacic algorithm . . . . . . . . .3231
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3236
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3236
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3237
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3237

Internal problem ID [9334]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 502
Date solved : Friday, December 13, 2024 at 05:38:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x8 + 1

)
y′′ − 16x7y′ + 72x6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 440.004 (sec)

Writing the ode as (
x8 + 1

)
y′′ − 16x7y′ + 72x6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x8 + 1
B = −16x7 (3)
C = 72x6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −128x6

(x8 + 1)2
(6)

Comparing the above to (5) shows that

s = −128x6

t =
(
x8 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 128x6

(x8 + 1)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.919: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 16− 6
= 10

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (x8 + 1)2. There is a pole at x =

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2 of order 2.
There is a pole at x =

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 of order 2. There is a pole at x =
−
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 of order 2. There is a pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2

of order 2. There is a pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2 of order 2. There
is a pole at x = −

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 of order 2. There is a pole at x =√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 of order 2. There is a pole at x =
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 10 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 10 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.
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Looking at poles of order 2. The partial fractions decomposition of r is

r = 2(
x−

√
2+

√
2

2 − i
√

2−
√
2

2

)2 + 2(
x−

√
2−

√
2

2 − i
√

2+
√
2

2

)2 + 2(
x+

√
2−

√
2

2 − i
√

2+
√
2

2

)2
+ 2(

x+
√

2+
√
2

2 − i
√

2−
√
2

2

)2 + 2(
x+

√
2+

√
2

2 + i
√

2−
√
2

2

)2
+ 2(

x+
√

2−
√
2

2 + i
√

2+
√
2

2

)2 + 2(
x−

√
2−

√
2

2 + i
√

2+
√
2

2

)2
+ 2(

x−
√

2+
√
2

2 + i
√

2−
√
2

2

)2 +
2
(√

2+
√
2

2 + i
√

2−
√
2

2

)7
x−

√
2+

√
2

2 − i
√

2−
√
2

2

+
2
(√

2−
√
2

2 + i
√

2+
√
2

2

)7
x−

√
2−

√
2

2 − i
√

2+
√
2

2

+
2
(
−
√

2−
√
2

2 + i
√

2+
√
2

2

)7
x+

√
2−

√
2

2 − i
√

2+
√
2

2

+
2
(
−
√

2+
√
2

2 + i
√

2−
√
2

2

)7
x+

√
2+

√
2

2 − i
√

2−
√
2

2

+
2
(
−
√

2+
√
2

2 − i
√

2−
√
2

2

)7
x+

√
2+

√
2

2 + i
√

2−
√
2

2

+
2
(
−
√

2−
√
2

2 − i
√

2+
√
2

2

)7
x+

√
2−

√
2

2 + i
√

2+
√
2

2

+
2
(√

2−
√
2

2 − i
√

2+
√
2

2

)7
x−

√
2−

√
2

2 + i
√

2+
√
2

2

+
2
(√

2+
√
2

2 − i
√

2−
√
2

2

)7
x−

√
2+

√
2

2 + i
√

2−
√
2

2

For the pole at x =
√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2
√

2−
√

2
2 −

√
2−

√
2

2 − i
√

2−
√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x =
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2−

√
2

2 − i
√

2−
√

2
√
2

2 − i
√

2−
√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2−

√
2

2 − i
√

2−
√
2
√

2
2 − i

√
2−

√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√

2
2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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For the pole at x = −
√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√

2
2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = −
√

2−
√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x+

√
2−

√
2

2 + i
√

2−
√
2
√

2
2 + i

√
2−

√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x =
√

2−
√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x =
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2 let b be the coefficient of 1(
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√

2
2

)2

in the partial fractions decomposition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 10 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 128x6

(x8 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2 2 0 2 −1√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 2 0 2 −1

−
√

2−
√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2 2 0 2 −1

−
√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2 2 0 2 −1

−
√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2 2 0 2 −1

−
√

2−
√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 2 0 2 −1√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2 2 0 2 −1
√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2 2 0 2 −1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

10 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3 + α−

c4 + α−
c5 + α−

c6 + α−
c7 + α+

c8

)
= 1− (−5)
= 6

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+
(
(−)[

√
r]c4 +

α−
c4

x− c4

)
+
(
(−)[

√
r]c5 +

α−
c5

x− c5

)
+
(
(−)[

√
r]c6 +

α−
c6

x− c6

)
+
(
(−)[

√
r]c7 +

α−
c7

x− c7

)
+
(
(+)[

√
r]c8 +

α+
c8

x− c8

)
+ (−)[

√
r]∞

= − 1
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

+ 2
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2

+ (−) (0)

= − 1
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 − i
√

2−
√
2
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 − i
√

2−
√
2

2

− 1
x+

√
2
√

2−
√
2

2 +
√

2−
√
2

2 + i
√

2−
√
2

2

− 1
x+

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

− 1
x−

√
2−

√
2

2 + i
√

2−
√
2
√
2

2 + i
√

2−
√
2

2

+ 2
x−

√
2
√

2−
√
2

2 −
√

2−
√
2

2 + i
√

2−
√
2

2

=

(
(3x6 − 3ix4 − 3ix2 − 3)

√
2− 3((−1 + i)x4 + 1 + i) (x2 + 1)

)√
2−

√
2− 3x

(
((−1 + i)x4 + 1 + i)

√
2 + 2

(
5x4

3 + i
)
x2
)

2
(
−x
(
1 +

√
2
)√

2−
√
2 + x2 + 1

)(
x
(
1 +

√
2
)√

2−
√
2 + x2 + 1

)(
−x
√
2−

√
2 + x2 + 1

)(
x
√

2−
√
2 + x2 + 1

)
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 6 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x6 + x5a5 + x4a4 + x3a3 + x2a2 + xa1 + a0 (2A)

Substituting the above in eq. (1A) and Solving for the coefficients ai in the above using
method of undetermined coefficients gives{
a0 = −i

√
2− 1 + i

i
√
2 + 1 + i

, a1 =
(12

7 − 12i
7

)√
2(

i
√
2 + 1 + i

)√
2−

√
2
, a2 =

15
√
2

7 + 15
7 − 15i

7

i
√
2 + 1 + i

, a3 =
32

7
(
i
√
2 + 1 + i

)√
2−

√
2
, a4 =

15
√
2

7 + 15
7 + 15i

7

i
√
2 + 1 + i

, a5 =
(12

7 + 12i
7

)√
2(

i
√
2 + 1 + i

)√
2−

√
2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x6 +
(12

7 + 12i
7

)
x5√2(

i
√
2 + 1 + i

)√
2−

√
2
+

15x4(√2 + 1 + i
)

7
(
i
√
2 + 1 + i

) + 32x3

7
(
i
√
2 + 1 + i

)√
2−

√
2
+

15x2(√2 + 1− i
)

7
(
i
√
2 + 1 + i

) +
(12

7 − 12i
7

)
x
√
2(

i
√
2 + 1 + i

)√
2−

√
2
− i

√
2− 1 + i

i
√
2 + 1 + i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x6 +

(12
7 + 12i

7

)
x5√2(

i
√
2 + 1 + i

)√
2−

√
2
+

15x4(√2 + 1 + i
)

7
(
i
√
2 + 1 + i

) + 32x3

7
(
i
√
2 + 1 + i

)√
2−

√
2
+

15x2(√2 + 1− i
)

7
(
i
√
2 + 1 + i

) +
(12

7 − 12i
7

)
x
√
2(

i
√
2 + 1 + i

)√
2−

√
2
− i

√
2− 1 + i

i
√
2 + 1 + i

)
e
∫ (

− 1

x−
√
2
√

2−
√

2
2 −

√
2−

√
2

2 − i
√

2−
√

2
2

− 1

x−
√

2−
√

2
2 − i

√
2−

√
2
√
2

2 − i
√

2−
√
2

2

− 1

x+
√

2−
√
2

2 − i
√

2−
√
2
√

2
2 − i

√
2−

√
2

2

− 1

x+
√
2
√

2−
√

2
2 +

√
2−

√
2

2 − i
√

2−
√

2
2

− 1

x+
√

2
√

2−
√
2

2 +
√

2−
√

2
2 + i

√
2−

√
2

2

− 1

x+
√

2−
√

2
2 + i

√
2−

√
2
√
2

2 + i
√

2−
√

2
2

− 1

x−
√

2−
√

2
2 + i

√
2−

√
2
√

2
2 + i

√
2−

√
2

2

+ 2

x−
√

2
√

2−
√
2

2 −
√

2−
√

2
2 + i

√
2−

√
2

2

)
dx

=
(
x6 +

(12
7 + 12i

7

)
x5√2(

i
√
2 + 1 + i

)√
2−

√
2
+

15x4(√2 + 1 + i
)

7
(
i
√
2 + 1 + i

) + 32x3

7
(
i
√
2 + 1 + i

)√
2−

√
2
+

15x2(√2 + 1− i
)

7
(
i
√
2 + 1 + i

) +
(12

7 − 12i
7

)
x
√
2(

i
√
2 + 1 + i

)√
2−

√
2
− i

√
2− 1 + i

i
√
2 + 1 + i

)
Expression too large to display

= Expression too large to display
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−16x7
x8+1 dx

= z1e
ln
(
x8+1

)
= z1

(
x8 + 1

)
Which simplifies to

y1 = Expression too large to display

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−16x7

x8+1 dx

(y1)2
dx

= y1

∫
e2 ln

(
x8+1

)
(y1)2

dx

= y1(Expression too large to display)

Therefore the solution is

y = c1y1 + c2y2

= c1(Expression too large to display)
+ c2(Expression too large to display(Expression too large to display))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 22� �
dsolve((x^8+1)*diff(diff(y(x),x),x)-16*x^7*diff(y(x),x)+72*x^6*y(x) = 0,

y(x),singsol=all)� �
y = −7

9c1 + c1x
8 + c2x

9 − 9
7c2x

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{(1+x^8)*D[y[x],{x,2}]-16*x^7*D[y[x],x]+72*x^6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Timed out
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2.1.487 problem 503

Solved as second order ode using Kovacic algorithm . . . . . . . . .3238
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3242
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3243
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3243
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3244

Internal problem ID [9335]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 503
Date solved : Thursday, December 12, 2024 at 10:10:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + x5y′ + 6x4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.481 (sec)

Writing the ode as

y′′ + x5y′ + 6x4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x5 (3)
C = 6x4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4(x6 − 14)
4 (6)

Comparing the above to (5) shows that

s = x4(x6 − 14
)

t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x4(x6 − 14)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.920: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 10
= −10

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −10 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −10 then

v = −Or(∞)
2 = 10

2 = 5

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
5∑

i=0

aix
i (8)

Let a be the coefficient of xv = x5 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x5

2 − 7
2x − 49

4x7 − 343
4x13 − 12005

16x19 − 117649
16x25 − 2470629

32x31 − 27176919
32x37 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 5 gives

[
√
r]∞ =

5∑
i=0

aix
i

= x5

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x4 = x4 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x10

4
This shows that the coefficient of x4 in the above is 0. Now we need to find the coefficient
of x4 in r. How this is done depends on if v = 0 or not. Since v = 5 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x4 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= x4(x6 − 14)
4

= Q+ R

4

=
(
1
4x

10 − 7
2x

4
)
+ (0)

= 1
4x

10 − 7
2x

4

We see that the coefficient of the term 1
x
in the quotient is −7

2 . Now b can be found.

b =
(
−7
2

)
− (0)

= −7
2

Hence

[
√
r]∞ = x5

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
2

1
2

− 5
)

= −6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

2
1
2

− 5
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4(x6 − 14)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−10 x5

2 −6 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x5

2

)
= −x5

2

= −x5

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x5

2

)
(1) +

((
−5x4

2

)
+
(
−x5

2

)2

−
(
x4(x6 − 14)

4

))
= 0

x4a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x5

2 dx

= (x) e−x6
12

= x e−x6
12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x5
1 dx

= z1e
−x6

12

= z1
(
e−x6

12

)
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Which simplifies to

y1 = e−x6
6 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x5

1 dx

(y1)2
dx

= y1

∫
e−

x6
6

(y1)2
dx

= y1


65/6(−1)1/6

(
−6x5(−1)5/6Γ

( 5
6
)

(−x6)5/6
+ 6 61/6(−1)5/6e

x6
6

x
+

6x5(−1)5/6Γ
(

5
6 ,−

x6
6

)
(−x6)5/6

)
36


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x6

6 x
)

+ c2

e−x6
6 x


65/6(−1)1/6

(
−6x5(−1)5/6Γ

( 5
6
)

(−x6)5/6
+ 6 61/6(−1)5/6e

x6
6

x
+

6x5(−1)5/6Γ
(

5
6 ,−

x6
6

)
(−x6)5/6

)
36




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x5( d
dx
y(x)

)
+ 6x4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x4 · y(x) to series expansion

x4 · y(x) =
∞∑
k=0

akx
k+4

◦ Shift index using k− >k − 4

x4 · y(x) =
∞∑
k=4

ak−4x
k

◦ Convert x5 ·
(

d
dx
y(x)

)
to series expansion

x5 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+4
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◦ Shift index using k− >k − 4

x5 ·
(

d
dx
y(x)

)
=

∞∑
k=4

ak−4(k − 4)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1) + ak−4(k + 2))xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0}

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak−4 + ak+2) = 0

• Shift index using k− >k + 4
(k + 6) ((k + 4) ak+6 + ak + ak+6) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+6 = − ak

k+5 , a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 63� �
dsolve(diff(diff(y(x),x),x)+x^5*diff(y(x),x)+6*y(x)*x^4 = 0,

y(x),singsol=all)� �
y = c2e−

x6
6
(
−x6)1/6 65/6Γ(5

6

)
− c2e−

x6
6
(
−x6)1/6 65/6Γ(5

6 ,−
x6

6

)
+ c1e−

x6
6 x+ 6c2
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Mathematica DSolve solution

Solving time : 0.137 (sec)
Leaf size : 53� �
DSolve[{D[y[x],{x,2}]+x^5*D[y[x],x]+6*x^4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

36e
−x6

6

(
36c1x− 65/6c2 6

√
−x6Γ

(
−1
6 ,−

x6

6

))
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2.1.488 problem 504

Solved as second order ode using Kovacic algorithm . . . . . . . . .3245
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3250
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3251
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3252
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3252

Internal problem ID [9336]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 504
Date solved : Thursday, December 12, 2024 at 10:10:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1 + 3x) y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 30.398 (sec)

Writing the ode as

(1 + 3x) y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1 + 3x
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 24x− 6
4 (1 + 3x)2

(6)

Comparing the above to (5) shows that

s = x2 − 24x− 6
t = 4(1 + 3x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 24x− 6
4 (1 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.922: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(1 + 3x)2. There is a pole at x = −1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 19

324
(
x+ 1

3

)2 − 37
54
(
x+ 1

3

)
For the pole at x = −1

3 let b be the coefficient of 1(
x+ 1

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 19
324 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 19

18
α−
c = 1

2 −
√
1 + 4b = − 1

18

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0



chapter 2. book solved problems 3247

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6−
37
18x− 319

27x2 −
11831
81x3 − 2157901

972x4 − 110035199
2916x5 − 1501983319

2187x6 − 85889060456
6561x7 + . . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

36

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 24x− 6
36x2 + 24x+ 4

= Q+ R

36x2 + 24x+ 4

=
(

1
36

)
+
( −74x

3 − 55
9

36x2 + 24x+ 4

)
= 1

36 +
−74x

3 − 55
9

36x2 + 24x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −74

3 . Dividing this by leading coefficient in t which is 36 gives −37
54 . Now b can be

found.

b =
(
−37
54

)
− (0)

= −37
54
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Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−37
54
1
6

− 0
)

= −37
18

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−37

54
1
6

− 0
)

= 37
18

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 24x− 6
4 (1 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
3 2 0 19

18 − 1
18

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6 −37

18
37
18

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 37

18 then

d = α−
∞ −

(
α+
c1

)
= 37

18 −
(
19
18

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 19
18
(
x+ 1

3

) + (−)
(
1
6

)
= 19

18
(
x+ 1

3

) − 1
6

= − −6 + x

2 (1 + 3x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

19
18
(
x+ 1

3

) − 1
6

)
(1) +

(− 19
18
(
x+ 1

3

)2
)

+
(

19
18
(
x+ 1

3

) − 1
6

)2

−
(
x2 − 24x− 6
4 (1 + 3x)2

) = 0

a0 + 6
1 + 3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −6}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −6 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−6 + x) e
∫ ( 19

18
(
x+1

3
)− 1

6

)
dx

= (−6 + x) e−x
6+

19 ln(1+3x)
18

= (−6 + x) (1 + 3x)19/18 e−x
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

1+3x dx

= z1e
−x

6+
ln(1+3x)

18

= z1
(
(1 + 3x)1/18 e−x

6

)
Which simplifies to

y1 = (1 + 3x)10/9 e−x
3 (−6 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

1+3x dx

(y1)2
dx

= y1

∫
e−

x
3+

ln(1+3x)
9

(y1)2
dx

= y1

(∫ e−x
3+

ln(1+3x)
9 e 2x

3

(1 + 3x)20/9 (−6 + x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(1 + 3x)10/9 e−x

3 (−6 + x)
)

+ c2

(
(1 + 3x)10/9 e−x

3 (−6 + x)
(∫ e−x

3+
ln(1+3x)

9 e 2x
3

(1 + 3x)20/9 (−6 + x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(3x+ 1)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
3x+1 −

x
(

d
dx

y(x)
)

3x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

3x+1 + 2y(x)
3x+1 = 0

� Check to see if x0 = −1
3 is a regular singular point

◦ Define functions[
P2(x) = x

3x+1 , P3(x) = 2
3x+1

]
◦
(
x+ 1

3

)
· P2(x) is analytic at x = −1

3((
x+ 1

3

)
· P2(x)

) ∣∣∣∣
x=− 1

3

= −1
9

◦
(
x+ 1

3

)2 · P3(x) is analytic at x = −1
3((

x+ 1
3

)2 · P3(x)
) ∣∣∣∣

x=− 1
3

= 0

◦ x = −1
3 is a regular singular point

Check to see if x0 = −1
3 is a regular singular point

x0 = −1
3

• Multiply by denominators

(3x+ 1)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+
(
u− 1

3

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
a0r(−10+9r)u−1+r

3 +
(

∞∑
k=0

(
ak+1(k+1+r)(9k−1+9r)

3 + ak(k + r + 2)
)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(−10+9r)

3 = 0
• Values of r that satisfy the indicial equation

r ∈
{
0, 109

}
• Each term in the series must be 0, giving the recursion relation

3(k + 1 + r)
(
k − 1

9 + r
)
ak+1 + ak(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak(k+r+2)

(k+1+r)(9k−1+9r)

• Recursion relation for r = 0
ak+1 = − 3ak(k+2)

(k+1)(9k−1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = − 3ak(k+2)

(k+1)(9k−1)

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k
, ak+1 = − 3ak(k+2)

(k+1)(9k−1)

]
• Recursion relation for r = 10

9

ak+1 = − 3ak
(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

• Solution for r = 10
9[

y(u) =
∞∑
k=0

aku
k+ 10

9 , ak+1 = − 3ak
(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k+ 10
9 , ak+1 = − 3ak

(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(
x+ 1

3

)k)+
(

∞∑
k=0

bk
(
x+ 1

3

)k+ 10
9

)
, ak+1 = − 3ak(k+2)

(k+1)(9k−1) , bk+1 = − 3bk
(
k+ 28

9
)(

k+ 19
9
)
(9k+9)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
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<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 62� �
dsolve((3*x+1)*diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
x+ 1

3

)
c1(x− 6) e−x

3

(
Γ
(
−1

9

)
+ 10Γ

(
− 10

9 ,−x
3−

1
9
)

9

) (
−x

3 −
1
9

)1/9
9

+ 3
(
x+ 1

3

)
c2(x− 6) e−x

3

(
x

3 + 1
9

)1/9

− 10c1e
1
9

9

Mathematica DSolve solution

Solving time : 1.32 (sec)
Leaf size : 124� �
DSolve[{(1+3*x)*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
e−

x
3−

1
9

(
1520c1 9

√
3x+ 1(3x2 − 17x− 6)− 28/9c2e

x
3+

1
9 (9x2 − 48x− 26) + 28/937/9c2 9

√
−3x− 1(3x2 − 17x− 6) Γ

(8
9 ,

1
9(−3x− 1)

))
380 217/18
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2.1.489 problem 505

Solved as second order ode using Kovacic algorithm . . . . . . . . .3253
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3257
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3259
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3260
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3260

Internal problem ID [9337]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 505
Date solved : Thursday, December 12, 2024 at 10:11:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
3x2 + x+ 1

)
y′′ + (2 + 15x) y′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.820 (sec)

Writing the ode as (
3x2 + x+ 1

)
y′′ + (2 + 15x) y′ + 12y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2 + x+ 1
B = 2 + 15x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −9x2 − 12x− 18
4 (3x2 + x+ 1)2

(6)

Comparing the above to (5) shows that

s = −9x2 − 12x− 18

t = 4
(
3x2 + x+ 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
−9x2 − 12x− 18
4 (3x2 + x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.924: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3x2 + x+ 1)2. There is a pole at x = −1

6 +
i
√
11
6 of order 2. There is a pole at

x = −1
6 −

i
√
11
6 of order 2. Since there is no odd order pole larger than 2 and the order at

∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
27
88 +

3i
√
11

88(
x+ 1

6 −
i
√
11
6

)2 +
27
88 −

3i
√
11

88(
x+ 1

6 +
i
√
11
6

)2 + 57i
√
11

242
(
x+ 1

6 −
i
√
11
6

) − 57i
√
11

242
(
x+ 1

6 +
i
√
11
6

)
For the pole at x = −1

6 +
i
√
11
6 let b be the coefficient of 1(

x+ 1
6−

i
√

11
6

)2 in the partial fractions

decomposition of r given above. Therefore b = 27
88 +

3i
√
11

88 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
1078 + 66i

√
11

44

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
1078 + 66i

√
11

44
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For the pole at x = −1
6 −

i
√
11
6 let b be the coefficient of 1(

x+ 1
6+

i
√
11
6

)2 in the partial fractions

decomposition of r given above. Therefore b = 27
88 −

3i
√
11

88 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
1078− 66i

√
11

44

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

1078− 66i
√
11

44

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −9x2 − 12x− 18

4 (3x2 + x+ 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −9x2 − 12x− 18
4 (3x2 + x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
6 +

i
√
11
6 2 0 1

2 +
√

1078+66i
√
11

44
1
2 −

√
1078+66i

√
11

44

−1
6 −

i
√
11
6 2 0 1

2 +
√

1078−66i
√
11

44
1
2 −

√
1078−66i

√
11

44

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

=
1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

+ (−) (0)

=
1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

= − 3x
6x2 + 2x+ 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

)
(1) +


−

1
2 −

√
1078+66i

√
11

44(
x+ 1

6 −
i
√
11
6

)2 −
1
2 −

√
1078−66i

√
11

44(
x+ 1

6 +
i
√
11
6

)2
+

(
1
2 −

√
1078+66i

√
11

44

x+ 1
6 −

i
√
11
6

+
1
2 −

√
1078−66i

√
11

44

x+ 1
6 +

i
√
11
6

)2

−
(
−9x2 − 12x− 18
4 (3x2 + x+ 1)2

) = 0

3a0
3x2 + x+ 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2−
√

1078+66i
√
11

44
x+1

6− i
√
11
6

+
1
2−

√
1078−66i

√
11

44
x+1

6+ i
√
11
6

)
dx

= (x) e−
ln

(
36x2+12x+12

)
4 +

√
11 arctan

(
(6x+1)

√
11

11

)
22

= x
√
2 33/4e

√
11 arctan

(
(6x+1)

√
11

11

)
22

6 (3x2 + x+ 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2+15x

3x2+x+1 dx

= z1e
−

5 ln
(
3x2+x+1

)
4 +

√
11 arctan

(
(6x+1)

√
11

11

)
22

= z1

e
√
11 arctan

(
(6x+1)

√
11

11

)
22

(3x2 + x+ 1)5/4





chapter 2. book solved problems 3257

Which simplifies to

y1 =
e

√
11 arctan

(
(6x+1)

√
11

11

)
11 x

√
2 33/4

6 (3x2 + x+ 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2+15x

3x2+x+1 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
3x2+x+1

)
2 +

√
11 arctan

(
(6x+1)

√
11

11

)
11

(y1)2
dx

= y1

∫ 2 e−
5 ln

(
3x2+x+1

)
2 +

√
11 arctan

(
(6x+1)

√
11

11

)
11 (3x2 + x+ 1)3 e−

2
√
11 arctan

(
(6x+1)

√
11

11

)
11

√
3

x2 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

e
√
11 arctan

(
(6x+1)

√
11

11

)
11 x

√
2 33/4

6 (3x2 + x+ 1)3/2


+c2

e
√
11 arctan

(
(6x+1)

√
11

11

)
11 x

√
2 33/4

6 (3x2 + x+ 1)3/2

∫ 2 e−
5 ln

(
3x2+x+1

)
2 +

√
11 arctan

(
(6x+1)

√
11

11

)
11 (3x2 + x+ 1)3 e−

2
√
11 arctan

(
(6x+1)

√
11

11

)
11

√
3

x2 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(3x2 + x+ 1)
(

d2

dx2y(x)
)
+ (2 + 15x)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 12y(x)
3x2+x+1 −

(2+15x)
(

d
dx

y(x)
)

3x2+x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2+15x)

(
d
dx

y(x)
)

3x2+x+1 + 12y(x)
3x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2+15x
3x2+x+1 , P3(x) = 12

3x2+x+1

]
◦
(

I
√
11
6 + x+ 1

6

)
· P2(x) is analytic at x = −1

6 −
I
√
11
6
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((
I
√
11
6 + x+ 1

6

)
· P2(x)

) ∣∣∣∣
x=− 1

6−
I
√

11
6

= 0

◦
(

I
√
11
6 + x+ 1

6

)2
· P3(x) is analytic at x = −1

6 −
I
√
11
6((

I
√
11
6 + x+ 1

6

)2
· P3(x)

) ∣∣∣∣
x=− 1

6−
I
√
11
6

= 0

◦ x = −1
6 −

I
√
11
6 is a regular singular point

Check to see if x0 is a regular singular point
x0 = −1

6 −
I
√
11
6

• Multiply by denominators

(3x2 + x+ 1)
(

d2

dx2y(x)
)
+ (2 + 15x)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1
6 −

I
√
11
6 so that the regular singular point is at u = 0(

3u2 − Iu
√
11
) (

d2

du2y(u)
)
+
(
−1

2 + 15u− 5 I
√
11

2

) (
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
I
√
11 r

(
I
√
11−33−22r

)
a0u−1+r

22 +
(

∞∑
k=0

(
I
√
11 (k+1+r)

(
I
√
11−22k−55−22r

)
ak+1

22 + 3ak(k + r + 2)2
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
I
22

√
11 r

(
I
√
11− 33− 22r

)
= 0

• Values of r that satisfy the indicial equation

r ∈
{
0,−3

2 +
I
√
11

22

}
• Each term in the series must be 0, giving the recursion relation

3ak(k + r + 2)2 − (k + 1 + r) ak+1
(1
2 + I

(
k + r + 5

2

)√
11
)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = 6ak
(
k2+2kr+r2+4k+4r+4

)
2 I

√
11 k2+4 Ikr

√
11+2 I

√
11 r2+7 Ik

√
11+7 Ir

√
11+5 I

√
11+k+r+1

• Recursion relation for r = 0

ak+1 = 6ak
(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

]
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• Revert the change of variables u = I
√
11
6 + x+ 1

6[
y(x) =

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k
, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

]
• Recursion relation for r = −3

2 +
I
√
11

22

ak+1 =
6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

• Solution for r = −3
2 +

I
√
11

22[
y(u) =

∞∑
k=0

aku
k− 3

2+
I
√
11

22 , ak+1 =
6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]
• Revert the change of variables u = I

√
11
6 + x+ 1

6[
y(x) =

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k− 3
2+

I
√
11

22
, ak+1 =

6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√

11
22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√

11
22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k)
+
(

∞∑
k=0

bk
(

I
√
11
6 + x+ 1

6

)k− 3
2+

I
√
11

22

)
, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

, bk+1 =
6bk
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√

11
22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√

11
22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 3260

Maple dsolve solution

Solving time : 3.273 (sec)
Leaf size : 163� �
dsolve((3*x^2+x+1)*diff(diff(y(x),x),x)+(2+15*x)*diff(y(x),x)+12*y(x) = 0,

y(x),singsol=all)� �
y

=

(
c1(−36x2 − 12x− 12)−

1
4+

i
√
11

44
(
i
√
11− 6x− 1

)3/2 hypergeom([12 + i
√
11

22 , 12 +
i
√
11

22

]
,
[
−1

2 +
i
√
11

22

]
, 12 +

i(−6x−1)
√
11

22

)
+
(
i
√
11 + 6x+ 1

) 5
4−

i
√
11

44
(
i
√
11− 6x− 1

) 5
4+

i
√
11

44 hypergeom
(
[2, 2] ,

[
5
2 −

i
√
11

22

]
, 12 +

i(−6x−1)
√
11

22

)
c2

)
e

√
11 arctan

(
(6x+1)

√
11

11

)
22

(3x2 + x+ 1)5/4

Mathematica DSolve solution

Solving time : 5.054 (sec)
Leaf size : 93� �
DSolve[{(1+x+3*x^2)*D[y[x],{x,2}]+(2+15*x)*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

xe
arctan

(
6x+1√

11

)
√
11

c2
∫ x

1
e
−

arctan
(

6K[1]+1√
11

)
√
11

√
3K[1]2+K[1]+1

K[1]2 dK[1] + c1


(3x2 + x+ 1)3/2
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2.1.490 problem 506

Solved as second order ode using Kovacic algorithm . . . . . . . . .3261
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3266
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3267
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3267
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3268

Internal problem ID [9338]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 506
Date solved : Thursday, December 12, 2024 at 10:11:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2 + x) y′′ + (1 + x) y′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.392 (sec)

Writing the ode as

(2 + x) y′′ + (1 + x) y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2 + x

B = 1 + x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10x− 21
4 (2 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 10x− 21
t = 4(2 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 10x− 21
4 (2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.926: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2 + x)2. There is a pole at x = −2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (2 + x)2
− 7

2 (2 + x)

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 7
2x − 9

2x2 − 97
2x3 − 1291

4x4 − 11103
4x5 − 98061

4x6 − 913053
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 10x− 21
4x2 + 16x+ 16

= Q+ R

4x2 + 16x+ 16

=
(
1
4

)
+
(

−14x− 25
4x2 + 16x+ 16

)
= 1

4 + −14x− 25
4x2 + 16x+ 16

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −14. Dividing this by leading coefficient in t which is 4 gives −7

2 . Now b can be found.

b =
(
−7
2

)
− (0)

= −7
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
2

1
2

− 0
)

= −7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

2
1
2

− 0
)

= 7
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 10x− 21
4 (2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −7

2
7
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

2 then

d = α−
∞ −

(
α+
c1

)
= 7

2 −
(
3
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
2 (2 + x) + (−)

(
1
2

)
= 3

2 (2 + x) −
1
2

= − −1 + x

2 (2 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(2) + 2
(

3
2 (2 + x) −

1
2

)
(2x+ a1) +

((
− 3
2 (2 + x)2

)
+
(

3
2 (2 + x) −

1
2

)2

−
(
x2 − 10x− 21
4 (2 + x)2

))
= 0

(a1 + 4)x+ 2a0 + a1 + 4
2 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = −4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 4x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 4x

)
e
∫ ( 3

2(2+x)−
1
2

)
dx

=
(
x2 − 4x

)
e−x

2+
3 ln(2+x)

2

= x(x− 4) (2 + x)3/2 e−x
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+x
2+x

dx

= z1e
−x

2+
ln(2+x)

2

= z1
(√

2 + x e−x
2

)
Which simplifies to

y1 = (2 + x)2 e−xx(x− 4)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+x

2+x
dx

(y1)2
dx

= y1

∫
e−x+ln(2+x)

(y1)2
dx

= y1

(
− ex
3456 (x− 4) −

e−2 Ei1 (−2− x)
48 − ex

128x − 11 ex
864 (2 + x) −

ex

288 (2 + x)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x)2 e−xx(x− 4)

)
+ c2

(
(2 + x)2 e−xx(x− 4)

(
− ex
3456 (x− 4) −

e−2 Ei1 (−2− x)
48

− ex
128x − 11 ex

864 (2 + x) −
ex

288 (2 + x)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3y(x)
x+2 −

(x+1)
(

d
dx

y(x)
)

x+2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x+2 + 3y(x)
x+2 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x+1
x+2 , P3(x) = 3

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators

(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
+ 3y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1) + ak(k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k + r − 1) + ak(k + r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+3)
(k+1+r)(k+r−1)

• Recursion relation for r = 0
ak+1 = − ak(k+3)

(k+1)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+1 = − ak(k+3)

(k+1)(k−1)

• Recursion relation for r = 2
ak+1 = − ak(k+5)

(k+3)(k+1)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = − ak(k+5)

(k+3)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+2 , ak+1 = − ak(k+5)
(k+3)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 59� �
dsolve((x+2)*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)+3*y(x) = 0,

y(x),singsol=all)� �
y = xc2e−2−x(x− 4) (x+ 2)2 Ei1 (−2− x) + c1e−xx(x− 4) (x+ 2)2 + c2

(
x3 − x2 − 10x− 6

)
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Mathematica DSolve solution

Solving time : 0.279 (sec)
Leaf size : 99� �
DSolve[{(2+x)*D[y[x],{x,2}]+(1+x)*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ e−x−1(c2(x− 4)(x+ 2)2xExpIntegralEi(x+ 2) + 384c1x4 − c2e
x+2x3 + x2(c2ex+2 − 4608c1) + x(10c2ex+2 − 6144c1) + 6c2ex+2)

96
√
2
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2.1.491 problem 507

Solved as second order ode using Kovacic algorithm . . . . . . . . .3269
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3274
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3275
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3275
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3276

Internal problem ID [9339]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 507
Date solved : Thursday, December 12, 2024 at 10:11:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(4 + x) y′′ + (2 + x) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.330 (sec)

Writing the ode as

(4 + x) y′′ + (2 + x) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4 + x

B = 2 + x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x− 24
4 (4 + x)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x− 24
t = 4(4 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x− 24
4 (4 + x)2

)
z(x) (7)



chapter 2. book solved problems 3270

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.928: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(4 + x)2. There is a pole at x = −4 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

4 + x
+ 2

(4 + x)2

For the pole at x = −4 let b be the coefficient of 1
(4+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
x
+ 5

x2 − 34
x3 + 59

x4 − 586
x5 + 370

x6 − 12484
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x− 24
4x2 + 32x+ 64

= Q+ R

4x2 + 32x+ 64

=
(
1
4

)
+
(

−12x− 40
4x2 + 32x+ 64

)
= 1

4 + −12x− 40
4x2 + 32x+ 64

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −12. Dividing this by leading coefficient in t which is 4 gives −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1
2

− 0
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1
2

− 0
)

= 3
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x− 24
4 (4 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−4 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3 3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3 then

d = α−
∞ −

(
α+
c1

)
= 3− (2)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 2
4 + x

+ (−)
(
1
2

)
= 2

4 + x
− 1

2
= − x

2 (4 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

2
4 + x

− 1
2

)
(1) +

((
− 2
(4 + x)2

)
+
(

2
4 + x

− 1
2

)2

−
(
x2 − 4x− 24
4 (4 + x)2

))
= 0

a0
4 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 2

4+x
− 1

2

)
dx

= (x) e−x
2+2 ln(4+x)

= x(4 + x)2 e−x
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2+x
4+x

dx

= z1e
−x

2+ln(4+x)

= z1
(
(4 + x) e−x

2
)

Which simplifies to
y1 = (4 + x)3 e−xx

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2+x

4+x
dx

(y1)2
dx

= y1

∫
e−x+2 ln(4+x)

(y1)2
dx

= y1

(
− ex
256x − e−4 Ei1 (−4− x)

24 − ex

48 (4 + x)3
− 5 ex

192 (4 + x)2
− 29 ex

768 (4 + x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(4 + x)3 e−xx

)
+ c2

(
(4 + x)3 e−xx

(
− ex
256x − e−4 Ei1 (−4− x)

24 − ex

48 (4 + x)3

− 5 ex

192 (4 + x)2
− 29 ex

768 (4 + x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 4)
(

d2

dx2y(x)
)
+ (x+ 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x+4 −

(x+2)
(

d
dx

y(x)
)

x+4

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+2)

(
d
dx

y(x)
)

x+4 + 2y(x)
x+4 = 0

� Check to see if x0 = −4 is a regular singular point
◦ Define functions[

P2(x) = x+2
x+4 , P3(x) = 2

x+4

]
◦ (x+ 4) · P2(x) is analytic at x = −4

((x+ 4) · P2(x))
∣∣∣∣
x=−4

= −2

◦ (x+ 4)2 · P3(x) is analytic at x = −4(
(x+ 4)2 · P3(x)

) ∣∣∣∣
x=−4

= 0

◦ x = −4is a regular singular point
Check to see if x0 = −4 is a regular singular point
x0 = −4

• Multiply by denominators

(x+ 4)
(

d2

dx2y(x)
)
+ (x+ 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 4 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 2) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+2)
(k+1+r)(k−2+r)

• Recursion relation for r = 0
ak+1 = − ak(k+2)

(k+1)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2
ak+1 = − ak(k+2)

(k+1)(k−2)

• Recursion relation for r = 3
ak+1 = − ak(k+5)

(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+5)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 4[

y(x) =
∞∑
k=0

ak(x+ 4)k+3 , ak+1 = − ak(k+5)
(k+4)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 53� �
dsolve((x+4)*diff(diff(y(x),x),x)+(x+2)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = xc2e−x−4(x+ 4)3 Ei1 (−x− 4) + c1e−xx(x+ 4)3 + c2

(
x3 + 9x2 + 22x+ 6

)
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Mathematica DSolve solution

Solving time : 0.165 (sec)
Leaf size : 97� �
DSolve[{(4+x)*D[y[x],{x,2}]+(2+x)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

24e
−x−4(c2x(x+ 4)3 ExpIntegralEi(x+ 4)

+ e4
(
24c1x4 + x3(288c1 − c2e

x) + 9x2(128c1 − c2e
x) + 2x(768c1 − 11c2ex)− 6c2ex

))
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2.1.492 problem 508

Solved as second order ode using Kovacic algorithm . . . . . . . . .3277
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3281
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3282
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3283
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3283

Internal problem ID [9340]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 508
Date solved : Thursday, December 12, 2024 at 10:11:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 3x

)
y′′ + 10(1 + x) y′ + 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.336 (sec)

Writing the ode as (
2x2 + 3x

)
y′′ + (10x+ 10) y′ + 8y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 3x
B = 10x+ 10 (3)
C = 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6x+ 10
(2x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 6x+ 10

t =
(
2x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6x+ 10
(2x2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.930: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 22
27x + 10

9x2 − 5
36
(
x+ 3

2

)2 + 22
27
(
x+ 3

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 10

9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

3
α−
c = 1

2 −
√
1 + 4b = −2

3
For the pole at x = −3

2 let b be the coefficient of 1(
x+ 3

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6



chapter 2. book solved problems 3279

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 6x+ 10

(2x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6x+ 10
(2x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
3 −2

3

−3
2 2 0 5

6
1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 2
3x + 1

6x+ 9 + (−) (0)

= − 2
3x + 1

6x+ 9
= − x+ 2

x (2x+ 3)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
3x + 1

6x+ 9

)
(1) +

((
2
3x2 − 1

6
(
x+ 3

2

)2
)

+
(
− 2
3x + 1

6x+ 9

)2

−
(
−x2 + 6x+ 10
(2x2 + 3x)2

))
= 0

−4 + 2a0
x (2x+ 3) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 2) e
∫ (

− 2
3x+

1
6x+9

)
dx

= (x+ 2) e−
2 ln(x)

3 + ln(2x+3)
6

= (x+ 2) (2x+ 3)1/6

x2/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
10x+10
2x2+3x dx

= z1e
− 5 ln(x)

3 − 5 ln(2x+3)
6

= z1

(
1

x5/3 (2x+ 3)5/6

)

Which simplifies to

y1 =
x+ 2

x7/3 (2x+ 3)2/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 10x+10

2x2+3x dx

(y1)2
dx

= y1

∫
e−

10 ln(x)
3 − 5 ln(2x+3)

3

(y1)2
dx

= y1

(∫ e−
10 ln(x)

3 − 5 ln(2x+3)
3 x14/3(2x+ 3)4/3

(x+ 2)2
dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 2

x7/3 (2x+ 3)2/3

)
+ c2

(
x+ 2

x7/3 (2x+ 3)2/3

(∫ e−
10 ln(x)

3 − 5 ln(2x+3)
3 x14/3(2x+ 3)4/3

(x+ 2)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 + 3x)
(

d2

dx2y(x)
)
+ 10(x+ 1)

(
d
dx
y(x)

)
+ 8y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 8y(x)
x(2x+3) −

10(x+1)
(

d
dx

y(x)
)

x(2x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
10(x+1)

(
d
dx

y(x)
)

x(2x+3) + 8y(x)
x(2x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 10(x+1)
x(2x+3) , P3(x) = 8

x(2x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 10
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(2x+ 3)
(

d2

dx2y(x)
)
+ (10x+ 10)

(
d
dx
y(x)

)
+ 8y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(7 + 3r)x−1+r +
(

∞∑
k=0

(
ak+1(k + 1 + r) (3k + 10 + 3r) + 2ak(k + r + 2)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(7 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

3

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (3k + 10 + 3r) + 2ak(k + r + 2)2 = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r+2)2
(k+1+r)(3k+10+3r)

• Recursion relation for r = 0
ak+1 = − 2ak(k+2)2

(k+1)(3k+10)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − 2ak(k+2)2

(k+1)(3k+10)

]
• Recursion relation for r = −7

3

ak+1 = − 2ak
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

• Solution for r = −7
3[

y(x) =
∞∑
k=0

akx
k− 7

3 , ak+1 = − 2ak
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 7

3

)
, ak+1 = − 2ak(k+2)2

(k+1)(3k+10) , bk+1 = − 2bk
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius



chapter 2. book solved problems 3283

<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.220 (sec)
Leaf size : 31� �
dsolve((2*x^2+3*x)*diff(diff(y(x),x),x)+10*(x+1)*diff(y(x),x)+8*y(x) = 0,

y(x),singsol=all)� �
y = c1(x+ 2)(

1 + 2x
3

)2/3
x7/3

+ c2 hypergeom
(
[2, 2] ,

[
10
3

]
,−2x

3

)

Mathematica DSolve solution

Solving time : 0.374 (sec)
Leaf size : 245� �
DSolve[{(3*x+2*x^2)*D[y[x],{x,2}]+10*(1+x)*D[y[x],x]+8*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−2 22/3

√
3c2(x+ 2) arctan

( √
3

3
√
2x+ 3

2
3
√
2 3
√
x+

3
√
2x+ 3

)
+ 22/3c2x log

(
22/3x2/3 + 3

√
2 3
√
2x+ 3 3

√
x+ (2x+ 3)2/3

)
+ 2 22/3c2 log

(
22/3x2/3 + 3

√
2 3
√
2x+ 3 3

√
x+ (2x+ 3)2/3

)
+ 4c1x− 8c2 3

√
x(2x+ 3)2/3 − 2 22/3c2(x+ 2) log

(
3
√
2x+ 3− 3

√
2 3
√
x
)
+ 8c1

4x7/3(2x+ 3)2/3
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2.1.493 problem 509

Solved as second order ode using Kovacic algorithm . . . . . . . . .3284
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3288
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3288
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3289
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3289

Internal problem ID [9341]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 509
Date solved : Thursday, December 12, 2024 at 10:11:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − (6− 7x) y′ + 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.318 (sec)

Writing the ode as

x2y′′ + (−6 + 7x) y′ + 8y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −6 + 7x (3)
C = 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 60x+ 36
4x4 (6)

Comparing the above to (5) shows that

s = 3x2 − 60x+ 36
t = 4x4

Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 60x+ 36

4x4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.932: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x4. There is a pole at x = 0 of order 4. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = 3
4x2 − 15

x3 + 9
x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

3
x2 − 5

2x − 11
12 − 55x

72 − 671x2

864 − 4565x3

5184 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

3
x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = 3

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be −15. Therefore

b = (−15)− (0)
= −15

Hence

[
√
r]c =

3
x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−15
3 + 2

)
= −3

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−15

3 + 2
)

= 7
2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 60x+ 36

4x4

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 60x+ 36
4x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 3
x2 −3

2
7
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α+
c1

)
= −1

2 −
(
−3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
x2 − 3

2x + (−) (0)

= 3
x2 − 3

2x

= −3(−2 + x)
2x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
x2 − 3

2x

)
(1) +

((
− 6
x3 + 3

2x2

)
+
(

3
x2 − 3

2x

)2

−
(
3x2 − 60x+ 36

4x4

))
= 0

6 + 3a0
x2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−2 + x) e
∫ ( 3

x2−
3
2x

)
dx

= (−2 + x) e− 3
x
− 3 ln(x)

2

= (−2 + x) e− 3
x

x3/2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6+7x

x2 dx

= z1e
− 3

x
− 7 ln(x)

2

= z1

(
e− 3

x

x7/2

)

Which simplifies to

y1 =
e− 6

x (−2 + x)
x5

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6+7x

x2 dx

(y1)2
dx

= y1

∫
e−

6
x
−7 ln(x)

(y1)2
dx

= y1

(
7x e 6

x + 54 Ei1
(
−6
x

)
+ 12 e 6

x

6
x
− 3

+ x2e 6
x

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− 6

x (−2 + x)
x5

)
+ c2

(
e− 6

x (−2 + x)
x5

(
7x e 6

x + 54 Ei1
(
−6
x

)
+ 12 e 6

x

6
x
− 3

+ x2e 6
x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 50� �
dsolve(x^2*diff(diff(y(x),x),x)-(6-7*x)*diff(y(x),x)+8*y(x) = 0,

y(x),singsol=all)� �
y =

108 e− 6
x c2(x− 2) Ei1

(
− 6

x

)
+ c1(x− 2) e− 6

x + xc2(x2 + 12x− 36)
x5

Mathematica DSolve solution

Solving time : 0.183 (sec)
Leaf size : 59� �
DSolve[{x^2*D[y[x],{x,2}]-(6-7*x)*D[y[x],x]+8*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−6/x(−108c2(x− 2) ExpIntegralEi
( 6
x

)
+ c2e

6/xx(x2 + 12x− 36) + 2c1(x− 2)
)

2x5
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2.1.494 problem 510

Solved as second order ode using Kovacic algorithm . . . . . . . . .3290
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3294
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3296
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3297
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3297

Internal problem ID [9342]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 510
Date solved : Thursday, December 12, 2024 at 10:11:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + x+ 1

)
y′′ + (1 + 7x) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.043 (sec)

Writing the ode as (
2x2 + x+ 1

)
y′′ + (1 + 7x) y′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + x+ 1
B = 1 + 7x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 − 2x+ 5
4 (2x2 + x+ 1)2

(6)

Comparing the above to (5) shows that

s = 5x2 − 2x+ 5

t = 4
(
2x2 + x+ 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

5x2 − 2x+ 5
4 (2x2 + x+ 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.933: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + x+ 1)2. There is a pole at x = −1

4 + i
√
7

4 of order 2. There is a pole at
x = −1

4 −
i
√
7

4 of order 2. Since there is no odd order pole larger than 2 and the order at
∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 29

224 +
9i
√
7

224(
x+ 1

4 −
i
√
7

4

)2 +
− 29

224 −
9i
√
7

224(
x+ 1

4 +
i
√
7

4

)2 − 8i
√
7

49
(
x+ 1

4 −
i
√
7

4

) + 8i
√
7

49
(
x+ 1

4 +
i
√
7

4

)
For the pole at x = −1

4 +
i
√
7

4 let b be the coefficient of 1(
x+ 1

4−
i
√
7

4

)2 in the partial fractions

decomposition of r given above. Therefore b = − 29
224 +

9i
√
7

224 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + 3
√

42 + 14i
√
7

56

α−
c = 1

2 −
√
1 + 4b = 1

2 − 3
√

42 + 14i
√
7

56
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For the pole at x = −1
4 −

i
√
7

4 let b be the coefficient of 1(
x+ 1

4+
i
√
7

4

)2 in the partial fractions

decomposition of r given above. Therefore b = − 29
224 −

9i
√
7

224 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + 3
√
42− 14i

√
7

56

α−
c = 1

2 −
√
1 + 4b = 1

2 − 3
√
42− 14i

√
7

56

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 − 2x+ 5

4 (2x2 + x+ 1)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 − 2x+ 5
4 (2x2 + x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
4 +

i
√
7

4 2 0 1
2 +

3
√

42+14i
√
7

56
1
2 −

3
√

42+14i
√
7

56

−1
4 −

i
√
7

4 2 0 1
2 +

3
√

42−14i
√
7

56
1
2 −

3
√

42−14i
√
7

56

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 5

4 −
(
1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

=
1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

+ (0)

=
1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

= x+ 1
4x2 + 2x+ 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

)
(1) +


−

1
2 −

3
√

42+14i
√
7

56(
x+ 1

4 −
i
√
7

4

)2 −
1
2 −

3
√

42−14i
√
7

56(
x+ 1

4 +
i
√
7

4

)2
+

(
1
2 −

3
√

42+14i
√
7

56

x+ 1
4 −

i
√
7

4

+
1
2 −

3
√

42−14i
√
7

56

x+ 1
4 +

i
√
7

4

)2

−
(

5x2 − 2x+ 5
4 (2x2 + x+ 1)2

) = 0

−a0 + 1
2x2 + x+ 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 1

2− 3
√

42+14i
√
7

56
x+1

4− i
√

7
4

+
1
2− 3

√
42−14i

√
7

56
x+1

4+ i
√
7

4

)
dx

= (x+ 1) e
ln

(
16x2+8x+8

)
8 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
28

= (x+ 1) 23/8
(
2x2 + x+ 1

)1/8 e 3
√
7 arctan

(
(4x+1)

√
7

7

)
28

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+7x

2x2+x+1 dx

= z1e
−

7 ln
(
2x2+x+1

)
8 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
28

= z1

e
3
√
7 arctan

(
(4x+1)

√
7

7

)
28

(2x2 + x+ 1)7/8





chapter 2. book solved problems 3294

Which simplifies to

y1 =
e

3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (x+ 1) 23/8

(2x2 + x+ 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+7x

2x2+x+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x2+x+1

)
4 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
14

(y1)2
dx

= y1

∫ e−
7 ln

(
2x2+x+1

)
4 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (2x2 + x+ 1)3/2 e−

3
√
7 arctan

(
(4x+1)

√
7

7

)
7 21/4

2 (x+ 1)2
dx


Therefore the solution is

y = c1y1 + c2y2

= c1

e
3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (x+ 1) 23/8

(2x2 + x+ 1)3/4


+c2

e
3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (x+ 1) 23/8

(2x2 + x+ 1)3/4

∫ e−
7 ln

(
2x2+x+1

)
4 +

3
√
7 arctan

(
(4x+1)

√
7

7

)
14 (2x2 + x+ 1)3/2 e−

3
√
7 arctan

(
(4x+1)

√
7

7

)
7 21/4

2 (x+ 1)2
dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2x2 + x+ 1)
(

d2

dx2y(x)
)
+ (1 + 7x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
2x2+x+1 −

(1+7x)
(

d
dx

y(x)
)

2x2+x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(1+7x)

(
d
dx

y(x)
)

2x2+x+1 + 2y(x)
2x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+7x
2x2+x+1 , P3(x) = 2

2x2+x+1

]
◦
(

I
√
7

4 + x+ 1
4

)
· P2(x) is analytic at x = −1

4 −
I
√
7

4
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((
I
√
7

4 + x+ 1
4

)
· P2(x)

) ∣∣∣∣
x=− 1

4−
I
√
7

4

= 0

◦
(

I
√
7

4 + x+ 1
4

)2
· P3(x) is analytic at x = −1

4 −
I
√
7

4((
I
√
7

4 + x+ 1
4

)2
· P3(x)

) ∣∣∣∣
x=− 1

4−
I
√
7

4

= 0

◦ x = −1
4 −

I
√
7

4 is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

4 −
I
√
7

4

• Multiply by denominators

(2x2 + x+ 1)
(

d2

dx2y(x)
)
+ (1 + 7x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 1
4 −

I
√
7

4 so that the regular singular point is at u = 0(
2u2 − Iu

√
7
) (

d2

du2y(u)
)
+
(
−3

4 + 7u− 7 I
√
7

4

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
I
√
7 r
(
3 I

√
7−21−28r

)
a0u−1+r

28 +
(

∞∑
k=0

(
I
√
7 (k+1+r)

(
3 I

√
7−28k−49−28r

)
ak+1

28 + ak(k + r + 2) (2k + 2r + 1)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
I
28

√
7 r
(
3 I

√
7− 21− 28r

)
= 0

• Values of r that satisfy the indicial equation

r ∈
{
0, 3 I

√
7

28 − 3
4

}
• Each term in the series must be 0, giving the recursion relation

−I
(
k + r + 7

4

)
ak+1(k + 1 + r)

√
7 + (−3k−3r−3)ak+1

4 + 2(k + r + 2) ak
(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = 4ak
(
2k2+4kr+2r2+5k+5r+2

)
3+4 I

√
7 k2+8 I

√
7 kr+4 I

√
7 r2+11 I

√
7 k+11 I

√
7 r+7 I

√
7+3k+3r

• Recursion relation for r = 0

ak+1 = 4ak
(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

]
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• Revert the change of variables u = I
√
7

4 + x+ 1
4[

y(x) =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k
, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

]
• Recursion relation for r = 3 I

√
7

28 − 3
4

ak+1 =
4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√

7
28 − 3

4

)
+ 205 I

√
7

28 +3k

• Solution for r = 3 I
√
7

28 − 3
4[

y(u) =
∞∑
k=0

aku
k+ 3 I

√
7

28 − 3
4 , ak+1 =

4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√

7
28 − 3

4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
• Revert the change of variables u = I

√
7

4 + x+ 1
4[

y(x) =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k+ 3 I
√
7

28 − 3
4
, ak+1 =

4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k)
+
(

∞∑
k=0

bk
(

I
√
7

4 + x+ 1
4

)k+ 3 I
√
7

28 − 3
4

)
, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k , bk+1 =

4bk
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√

7
28 − 3

4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.095 (sec)
Leaf size : 77� �
dsolve((2*x^2+x+1)*diff(diff(y(x),x),x)+(1+7*x)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

([
1
2 , 2
]
,

[(
7
√
7− 3i

)√
7

28

]
,
1
2 + i(−4x− 1)

√
7

14

)

+ c2
(
i
√
7 + 4x+ 1

)− 3
4+

3i
√
7

28
(
i
√
7− 4x− 1

)− 3
4−

3i
√
7

28 (x+ 1)

Mathematica DSolve solution

Solving time : 3.459 (sec)
Leaf size : 102� �
DSolve[{(1+x+2*x^2)*D[y[x],{x,2}]+(1+7*x)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

(x+ 1)e
3 arctan

(
4x+1√

7

)
2
√
7

c2
∫ x

1
e
−

3 arctan
(

4K[1]+1√
7

)
2
√
7

(K[1]+1)2 4
√

2K[1]2 +K[1] + 1
dK[1] + c1


(2x2 + x+ 1)3/4
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2.1.495 problem 511

Solved as second order ode using Kovacic algorithm . . . . . . . . .3298
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3302
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3303
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3304
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3304

Internal problem ID [9343]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 511
Date solved : Thursday, December 12, 2024 at 10:11:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(3 + x) y′′ + (1 + 2x) y′ − (2− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.214 (sec)

Writing the ode as

(3 + x) y′′ + (1 + 2x) y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3 + x

B = 1 + 2x (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35
4 (3 + x)2

(6)

Comparing the above to (5) shows that

s = 35
t = 4(3 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

35
4 (3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.935: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(3 + x)2. There is a pole at x = −3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4 (3 + x)2

For the pole at x = −3 let b be the coefficient of 1
(3+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35

4 (3 + x)2



chapter 2. book solved problems 3300

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35
4 (3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−3 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −5

2 then

d = α−
∞ −

(
α−
c1

)
= −5

2 −
(
−5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 5
2 (3 + x) + (−) (0)

= − 5
2 (3 + x)

= − 5
2 (3 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2 (3 + x)

)
(0) +

((
5

2 (3 + x)2
)
+
(
− 5
2 (3 + x)

)2

−
(

35
4 (3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 5

2(3+x)dx

= 1
(3 + x)5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+2x
3+x

dx

= z1e
−x+ 5 ln(3+x)

2

= z1
(
(3 + x)5/2 e−x

)
Which simplifies to

y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+2x

3+x
dx

(y1)2
dx

= y1

∫
e−2x+5 ln(3+x)

(y1)2
dx

= y1

(
x(x5 + 18x4 + 135x3 + 540x2 + 1215x+ 1458) e−2x+5 ln(3+x)e2x

6 (3 + x)5
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
x(x5 + 18x4 + 135x3 + 540x2 + 1215x+ 1458) e−2x+5 ln(3+x)e2x

6 (3 + x)5
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 3)
(

d2

dx2y(x)
)
+ (2x+ 1)

(
d
dx
y(x)

)
− (−x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x+3 −

(2x+1)
(

d
dx

y(x)
)

x+3

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x+3 + (x−2)y(x)
x+3 = 0

� Check to see if x0 = −3 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x+3 , P3(x) = x−2

x+3

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= −5

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 = −3 is a regular singular point
x0 = −3

• Multiply by denominators

(x+ 3)
(

d2

dx2y(x)
)
+ (2x+ 1)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (2u− 5)

(
d
du
y(u)

)
+ (u− 5) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1
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u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−6 + r)u−1+r + (a1(1 + r) (−5 + r) + a0(−5 + 2r))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 5 + r) + ak(2k + 2r − 5) + ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term must be 0
a1(1 + r) (−5 + r) + a0(−5 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 5 + r) + 2akk + 2akr − 5ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k − 4 + r) + 2ak+1(k + 1) + 2rak+1 − 5ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2rak+1+ak−3ak+1

(k+2+r)(k−4+r)

• Recursion relation for r = 0
ak+2 = −2kak+1+ak−3ak+1

(k+2)(k−4)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4
ak+2 = −2kak+1+ak−3ak+1

(k+2)(k−4)

• Recursion relation for r = 6
ak+2 = −2kak+1+ak+9ak+1

(k+8)(k+2)

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −2kak+1+ak+9ak+1

(k+8)(k+2) , 7a1 + 7a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k+6 , ak+2 = −2kak+1+ak+9ak+1
(k+8)(k+2) , 7a1 + 7a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 33� �
dsolve((x+3)*diff(diff(y(x),x),x)+(2*x+1)*diff(y(x),x)-(-x+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x

(
x(6 + x)

(
x2 + 9x+ 27

) (
x2 + 3x+ 9

)
c2 + c1

)
Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 29� �
DSolve[{(3+x)*D[y[x],{x,2}]+(1+2*x)*D[y[x],x]-(2-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

6e
−x−3(c2(x+ 3)6 + 6c1

)
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2.1.496 problem 512

Solved as second order ode using Kovacic algorithm . . . . . . . . .3305
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3309
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3310
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3310
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3311

Internal problem ID [9344]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 512
Date solved : Thursday, December 12, 2024 at 10:11:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 3xy′ +
(
2x2 + 4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as

y′′ + 3xy′ +
(
2x2 + 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 3x (3)
C = 2x2 + 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.937: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
1 dx

= z1e
− 3x2

4

= z1
(
e− 3x2

4

)
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Which simplifies to

y1 =
(
x2 − 1

)
e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

1 dx

(y1)2
dx

= y1

∫
e−

3x2
2

(y1)2
dx

= y1

(∫ e− 3x2
2 e2x2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 − 1
)
e−x2

)
+ c2

((
x2 − 1

)
e−x2

(∫ e− 3x2
2 e2x2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 3x
(

d
dx
y(x)

)
+ (2x2 + 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 4a0 + (6a3 + 7a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(3k + 4) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 4a0 = 0, 6a3 + 7a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −2a0, a3 = −7a1

6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 3akk + 4ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + 3ak+2(k + 2) + 4ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −3kak+2+2ak+10ak+2

k2+7k+12 , a2 = −2a0, a3 = −7a1
6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.041 (sec)
Leaf size : 45� �
dsolve(diff(diff(y(x),x),x)+3*diff(y(x),x)*x+(2*x^2+4)*y(x) = 0,

y(x),singsol=all)� �
y = −2 e−x2

2 c1x+ e−x2(x− 1) (x+ 1)
(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)
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Mathematica DSolve solution

Solving time : 0.192 (sec)
Leaf size : 63� �
DSolve[{D[y[x],{x,2}]+3*x*D[y[x],x]+(4+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x2
(√

2πc2
(
x2 − 1

)
erfi
(

x√
2

)
+ 4c1

(
x2 − 1

)
− 2c2e

x2
2 x

)
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2.1.497 problem 513

Solved as second order ode using Kovacic algorithm . . . . . . . . .3312
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3316
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3318
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3318
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3319

Internal problem ID [9345]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 513
Date solved : Thursday, December 12, 2024 at 10:11:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2 + 4x) y′′ − 4y′ − (6 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.256 (sec)

Writing the ode as

(2 + 4x) y′′ − 4y′ + (−4x− 6) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2 + 4x
B = −4 (3)
C = −4x− 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(1 + 2x)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (1 + 2x)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(1 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.939: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (1 + 2x)2. There is a pole at x = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 8x+ 6
(1 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
1 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(1 + 2x)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
1 + 2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4

2+4x dx

= z1e
ln(1+2x)

2

= z1
(√

1 + 2x
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −4

2+4x dx

(y1)2
dx

= y1

∫
eln(1+2x)

(y1)2
dx

= y1
(
x e2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
x e2x

))
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(2 + 4x)
(

d2

dx2y(x)
)
− 4 d

dx
y(x)− (6 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x+3)y(x)
2x+1 +

2
(

d
dx

y(x)
)

2x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear



chapter 2. book solved problems 3317

d2

dx2y(x)−
2
(

d
dx

y(x)
)

2x+1 − (2x+3)y(x)
2x+1 = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

2x+1 , P3(x) = −2x+3
2x+1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators

(2x+ 1)
(

d2

dx2y(x)
)
− 2 d

dx
y(x) + (−2x− 3) y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (−2u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r)− 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}
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• Each term must be 0
2a1(1 + r) (−1 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r)− 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak+1+ak

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y(x) =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve((4*x+2)*diff(diff(y(x),x),x)-4*diff(y(x),x)-(4*x+6)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2exx
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Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 29� �
DSolve[{(2+4*x)*D[y[x],{x,2}]-4*D[y[x],x]-(6+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x− 1

2
(
c2e

2x+1x+ c1
)
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2.1.498 problem 514

Solved as second order ode using Kovacic algorithm . . . . . . . . .3320
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3324
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3325
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3325
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3326

Internal problem ID [9346]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 514
Date solved : Thursday, December 12, 2024 at 10:11:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 3xy′ +
(
2x2 + 5

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

y′′ − 3xy′ +
(
2x2 + 5

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −3x (3)
C = 2x2 + 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 26
4 (6)

Comparing the above to (5) shows that

s = x2 − 26
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 13
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.941: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 13
2x − 169

4x3 − 2197
4x5 − 142805

16x7 − 2599051
16x9 − 101362989

32x11 − 2070701061
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 26
4

= Q+ R

4

=
(
x2

4 − 13
2

)
+ (0)

= x2

4 − 13
2

We see that the coefficient of the term 1
x
in the quotient is −13

2 . Now b can be found.

b =
(
−13

2

)
− (0)

= −13
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−13
2

1
2

− 1
)

= −7

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−13

2
1
2

− 1
)

= 6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 13
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −7 6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 6, and since there are no poles then

d = α−
∞

= 6

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 6 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
30x4 + 20x3a5 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(
−x

2

) (
6x5 + 5x4a5 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 13
2

))
= 0

a5x
5 + 2(15 + a4)x4 + (3a3 + 20a5)x3 + 4(a2 + 3a4)x2 + (5a1 + 6a3)x+ 6a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −15, a1 = 0, a2 = 45, a3 = 0, a4 = −15, a5 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x6 − 15x4 + 45x2 − 15

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x6 − 15x4 + 45x2 − 15

)
e
∫
−x

2 dx

=
(
x6 − 15x4 + 45x2 − 15

)
e−x2

4

=
(
x6 − 15x4 + 45x2 − 15

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x
1 dx

= z1e
3x2
4

= z1
(
e 3x2

4

)
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Which simplifies to

y1 = ex2
2
(
x6 − 15x4 + 45x2 − 15

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x

1 dx

(y1)2
dx

= y1

∫
e

3x2
2

(y1)2
dx

= y1

(∫ e 3x2
2 e−x2

(x6 − 15x4 + 45x2 − 15)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2

2
(
x6 − 15x4 + 45x2 − 15

))
+ c2

(
ex2

2
(
x6 − 15x4 + 45x2 − 15

)(∫ e 3x2
2 e−x2

(x6 − 15x4 + 45x2 − 15)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 3x
(

d
dx
y(x)

)
+ (2x2 + 5) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2
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◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 5a0 + (6a3 + 2a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak(3k − 5) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 5a0 = 0, 6a3 + 2a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −5a0

2 , a3 = −a1
3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − 3akk + 5ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 − 3ak+2(k + 2) + 5ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 3kak+2−2ak+ak+2

k2+7k+12 , a2 = −5a0
2 , a3 = −a1

3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 62� �
dsolve(diff(diff(y(x),x),x)-3*diff(y(x),x)*x+(2*x^2+5)*y(x) = 0,

y(x),singsol=all)� �
y =

(
x6−15x4+45x2−15

)(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)
ex2

2 −2 ex2
c1x
(
x2−11

) (
x2−3

)
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Mathematica DSolve solution

Solving time : 0.318 (sec)
Leaf size : 95� �
DSolve[{D[y[x],{x,2}]-3*x*D[y[x],x]+(5+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
e

x2
2

(√
2πc2(x6 − 15x4 + 45x2 − 15) erfi

(
x√
2

)
− 2c2e

x2
2 x(x4 − 14x2 + 33) + 1440c1(x6 − 15x4 + 45x2 − 15)

)
1440
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2.1.499 problem 515

Solved as second order ode using Kovacic algorithm . . . . . . . . .3327
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3331
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3332
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3332
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3333

Internal problem ID [9347]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 515
Date solved : Thursday, December 12, 2024 at 10:11:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2y′′ + 5xy′ +
(
2x2 + 4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.228 (sec)

Writing the ode as

2y′′ + 5xy′ +
(
2x2 + 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2
B = 5x (3)
C = 2x2 + 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x2 − 12
16 (6)

Comparing the above to (5) shows that

s = 9x2 − 12
t = 16

Therefore eq. (4) becomes

z′′(x) =
(
9x2

16 − 3
4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.943: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3x

4 − 1
2x − 1

6x3 − 1
9x5 − 5

54x7 − 7
81x9 − 7

81x11 − 22
243x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
4
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 3x
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9x2

16
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 9x2 − 12
16

= Q+ R

16

=
(
9x2

16 − 3
4

)
+ (0)

= 9x2

16 − 3
4

We see that the coefficient of the term 1
x
in the quotient is −3

4 . Now b can be found.

b =
(
−3
4

)
− (0)

= −3
4

Hence

[
√
r]∞ = 3x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
4

3
4

− 1
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

4
3
4

− 1
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x2

16 − 3
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 3x
4 −1 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0, and since there are no poles then

d = α−
∞

= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
3x
4

)
= −3x

4
= −3x

4

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−3x

4

)
(0) +

((
−3
4

)
+
(
−3x

4

)2

−
(
9x2

16 − 3
4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3x

4 dx

= e− 3x2
8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x
2 dx

= z1e
− 5x2

8

= z1
(
e− 5x2

8

)
Which simplifies to

y1 = e−x2
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x

2 dx

(y1)2
dx

= y1

∫
e−

5x2
4

(y1)2
dx

= y1

−
i
√
π
√
3 erf

(
i
√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

e−x2

−
i
√
π
√
3 erf

(
i
√
3x
2

)
3



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
2 d2

dx2y(x) + 5x
(

d
dx
y(x)

)
+ (2x2 + 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−x2 − 2) y(x)−
5x
(

d
dx

y(x)
)

2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5x
(

d
dx

y(x)
)

2 + (x2 + 2) y(x) = 0
• Multiply by denominators

2 d2

dx2y(x) + 5x
(

d
dx
y(x)

)
+ (2x2 + 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k
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◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

4a2 + 4a0 + (12a3 + 9a1)x+
(

∞∑
k=2

(2ak+2(k + 2) (k + 1) + ak(5k + 4) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[4a2 + 4a0 = 0, 12a3 + 9a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0, a3 = −3a1

4

}
• Each term in the series must be 0, giving the recursion relation

(2k2 + 6k + 4) ak+2 + 5akk + 4ak + 2ak−2 = 0
• Shift index using k− >k + 2(

2(k + 2)2 + 6k + 16
)
ak+4 + 5ak+2(k + 2) + 4ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −5kak+2+2ak+14ak+2

2(k2+7k+12) , a2 = −a0, a3 = −3a1
4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 22� �
dsolve(2*diff(diff(y(x),x),x)+5*diff(y(x),x)*x+(2*x^2+4)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2

(
c1 + erf

(
i
√
3x
2

)
c2

)
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Mathematica DSolve solution

Solving time : 0.077 (sec)
Leaf size : 42� �
DSolve[{2*D[y[x],{x,2}]+5*x*D[y[x],x]+(4+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3e
−x2

(
√
3πc2erfi

(√
3x
2

)
+ 3c1

)
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2.1.500 problem 516

Solved as second order ode using Kovacic algorithm . . . . . . . . .3334
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3336
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3337
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3337
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3337

Internal problem ID [9348]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 516
Date solved : Thursday, December 12, 2024 at 10:11:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.095 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.945: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.036 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(2+4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.1.501 problem 517

Solved as second order ode using Kovacic algorithm . . . . . . . . .3338
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3340
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3341
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3341
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3341

Internal problem ID [9349]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 517
Date solved : Thursday, December 12, 2024 at 10:11:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.098 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.947: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.033 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(2+4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.1.502 problem 518

Solved as second order ode using Kovacic algorithm . . . . . . . . .3342
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3346
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3348
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3349
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3349

Internal problem ID [9350]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 518
Date solved : Thursday, December 12, 2024 at 10:11:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + x+ 1
)
y′′ + x

(
11x2 + 11x+ 9

)
y′ +

(
7x2 + 10x+ 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.089 (sec)

Writing the ode as(
2x4 + 2x3 + 2x2) y′′ + (11x3 + 11x2 + 9x

)
y′ +

(
7x2 + 10x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 2x3 + 2x2

B = 11x3 + 11x2 + 9x (3)
C = 7x2 + 10x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 21x4 + 18x3 + 27x2 − 2x− 3

t = 16
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.949: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at
x = −1

2 +
i
√
3

2 of order 2. There is a pole at x = −1
2 −

i
√
3

2 of order 2. Since there is no
odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 5

24 +
i
√
3

24(
x+ 1

2 −
i
√
3

2

)2 +
− 5

24 −
i
√
3

24(
x+ 1

2 +
i
√
3

2

)2 +
−1

8 −
43i

√
3

72

x+ 1
2 −

i
√
3

2

+
−1

8 +
43i

√
3

72

x+ 1
2 +

i
√
3

2

− 3
16x2 + 1

4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 +

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

6 + 6i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

6 + 6i
√
3

12

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 −

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
6− 6i

√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
6− 6i

√
3

12

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

−1
2 +

i
√
3

2 2 0 1
2 +

√
6+6i

√
3

12
1
2 −

√
6+6i

√
3

12

−1
2 −

i
√
3

2 2 0 1
2 +

√
6−6i

√
3

12
1
2 −

√
6−6i

√
3

12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
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α+
∞ = 7

4 then

d = α+
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

+ (0)

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

= 7x2 + 3x+ 1
4x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

4x2 −
1
2 +

√
6+6i

√
3

12(
x+ 1

2 −
i
√
3

2

)2 −
1
2 +

√
6−6i

√
3

12(
x+ 1

2 +
i
√
3

2

)2
+

(
1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)2

−
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x+
1
2+

√
6+6i

√
3

12
x+1

2− i
√
3

2
+

1
2+

√
6−6i

√
3

12
x+1

2+ i
√
3

2

)
dx

= 2
(
x2 + x+ 1

)3/4
x1/4√2 e−

√
3 arctan

(
(2x+1)

√
3

3

)
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+11x2+9x
2x4+2x3+2x2 dx

= z1e
−

ln
(
x2+x+1

)
4 −

√
3 arctan

(
(2x+1)

√
3

3

)
6 − 9 ln(x)

4

= z1

 e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

(x2 + x+ 1)1/4 x9/4
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Which simplifies to

y1 =
2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+11x2+9x

2x4+2x3+2x2 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 − 9 ln(x)

2

(y1)2
dx

= y1

∫ e−
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 − 9 ln(x)

2 x4e
2
√
3 arctan

(
(2x+1)

√
3

3

)
3

8x2 + 8x+ 8 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2


+c2

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

∫ e−
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 − 9 ln(x)

2 x4e
2
√

3 arctan
(

(2x+1)
√
3

3

)
3

8x2 + 8x+ 8 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) −
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1) +
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2+11x+9

2x(x2+x+1) , P3(x) = 7x2+10x+6
2x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 9
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (3 + 2r)xr + (a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r))x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r + 3) + ak−1(2k + 2r + 3) (k + r + 1) + ak−2(2k + 2r + 3) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2,−3

2

}
• Each term must be 0

a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (2+r)a0
3+r

• Each term in the series must be 0, giving the recursion relation
2
(
k + r + 3

2

)
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r + 2ak − ak−2 + ak−1) = 0

• Shift index using k− >k + 2
2
(
k + 7

2 + r
)
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r + 2ak+2 − ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −kak+kak+1+rak+rak+1+ak+3ak+1
k+4+r

• Recursion relation for r = −2
ak+2 = −kak+kak+1−ak+ak+1

k+2

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

, a1 = −a0
3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0, bk+2 = −kbk+kbk+1− 1
2 bk+

3
2 bk+1

k+ 5
2

, b1 = − b0
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 4.031 (sec)
Leaf size : 229� �
dsolve(2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(11*x^2+11*x+9)*diff(y(x),x)+(7*x^2+10*x+6)*y(x) = 0,

y(x),singsol=all)� �
y

=

(
2x+ i

√
3 + 1

) 5
√
3+3i

6
√
3+6i

(
i
√
3− 2x− 1

) 64i
√
3+2368(√

3+i
)3(

i−
√
3
)4(

13
√
3+9i

)
e−

√
3 arctan

(
(2x+1)

√
3

3

)
6

(
HeunG

(√
3+i

i−
√
3 , 0, 0,

5
2 ,

1
2 ,

5
√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c1
√
x+HeunG

(
√
3+i

i−
√
3 ,−

64(
i
√
3−1

)3(
−i+

√
3
)4 , 12 , 3, 32 , 5

√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c2x

)
x5/2 (x2 + x+ 1)1/4

Mathematica DSolve solution

Solving time : 1.061 (sec)
Leaf size : 93� �
DSolve[{2*x^2*(1+x+x^2)*D[y[x],{x,2}]+x*(9+11*x+11*x^2)*D[y[x],x]+(6+10*x+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
x2 + x+ 1e−

arctan
(

2x+1√
3

)
√
3

c2
∫ x

1
e

arctan
(

2K[1]+1√
3

)
√
3√

K[1](K[1]2+K[1]+1)3/2
dK[1] + c1


x2
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2.1.503 problem 519

Solved as second order ode using Kovacic algorithm . . . . . . . . .3350
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3355
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3356
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3357
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3357

Internal problem ID [9351]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 519
Date solved : Thursday, December 12, 2024 at 10:11:25 AM
CAS classification :
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

3x2y′′ + 2x
(
−2x2 + x+ 1

)
y′ +

(
−8x2 + 2x

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.459 (sec)

Writing the ode as

3x2y′′ +
(
−4x3 + 2x2 + 2x

)
y′ +

(
−8x2 + 2x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = −4x3 + 2x2 + 2x (3)
C = −8x2 + 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 4x3 + 15x2 − 4x− 2
9x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 4x3 + 15x2 − 4x− 2
t = 9x2
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Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 4x3 + 15x2 − 4x− 2

9x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.951: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 9x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 4x2

9 − 4x
9 + 5

3 − 2
9x2 − 4

9x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2x

3 − 1
3 + 7

6x + 1
4x2 − 17

16x3 − 31
32x4 + 85

64x5 + 353
128x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 2
3

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= −1
3 + 2x

3 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

9 − 4
9x+ 4

9x
2

This shows that the coefficient of 1 in the above is 1
9 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 4x3 + 15x2 − 4x− 2
9x2

= Q+ R

9x2

=
(
4
9x

2 − 4
9x+ 5

3

)
+
(
−4x− 2

9x2

)
= 4x2

9 − 4x
9 + 5

3 + −4x− 2
9x2

We see that the coefficient of the term x in the quotient is 5
3 . Now b can be found.

b =
(
5
3

)
−
(
1
9

)
= 14

9
Hence

[
√
r]∞ = −1

3 + 2x
3

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 14
9
2
3
− 1
)

= 2
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

14
9
2
3
− 1
)

= −5
3



chapter 2. book solved problems 3353

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 4x3 + 15x2 − 4x− 2
9x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2
3

1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 −1
3 +

2x
3

2
3 −5

3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2

3 then

d = α+
∞ −

(
α+
c1

)
= 2

3 −
(
2
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 2
3x +

(
−1
3 + 2x

3

)
= 2

3x − 1
3 + 2x

3
= 2

3x − 1
3 + 2x

3

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

2
3x − 1

3 + 2x
3

)
(0) +

((
− 2
3x2 + 2

3

)
+
(

2
3x − 1

3 + 2x
3

)2

−
(
4x4 − 4x3 + 15x2 − 4x− 2

9x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

3x−
1
3+

2x
3
)
dx

= x2/3e
x(x−1)

3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x3+2x2+2x

3x2 dx

= z1e
x2
3 −x

3−
ln(x)

3

= z1

(
e

x(x−1)
3

x1/3

)

Which simplifies to

y1 = x1/3e
2x(x−1)

3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x3+2x2+2x

3x2 dx

(y1)2
dx

= y1

∫
e

2x2
3 − 2x

3 − 2 ln(x)
3

(y1)2
dx

= y1

(∫ e 2x2
3 − 2x

3 − 2 ln(x)
3 e−

4x(x−1)
3

x2/3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3e

2x(x−1)
3

)
+ c2

(
x1/3e

2x(x−1)
3

(∫ e 2x2
3 − 2x

3 − 2 ln(x)
3 e−

4x(x−1)
3

x2/3 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
+ 2x(−2x2 + x+ 1)

(
d
dx
y(x)

)
+ (−8x2 + 2x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2(4x−1)y(x)
3x +

2
(
2x2−x−1

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(
2x2−x−1

)(
d
dx

y(x)
)

3x − 2(4x−1)y(x)
3x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2
(
2x2−x−1

)
3x , P3(x) = −2(4x−1)

3x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3
(

d2

dx2y(x)
)
x+ (−4x2 + 2x+ 2)

(
d
dx
y(x)

)
+ (2− 8x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−1 + 3r)x−1+r + (a1(1 + r) (2 + 3r) + 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (3k + 2 + 3r) + 2ak(k + 1 + r)− 4ak−1(k + 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r) + 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1 + r) (3kak+1 + 3rak+1 + 2ak − 4ak−1 + 2ak+1) = 0

• Shift index using k− >k + 1
(k + r + 2) (3(k + 1) ak+2 + 3rak+2 + 2ak+1 − 4ak + 2ak+2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2(−ak+1+2ak)

3k+5+3r

• Recursion relation for r = 0
ak+2 = 2(−ak+1+2ak)

3k+5

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2(−ak+1+2ak)

3k+5 , 2a1 + 2a0 = 0
]

• Recursion relation for r = 1
3

ak+2 = 2(−ak+1+2ak)
3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = 2(−ak+1+2ak)
3k+6 , 4a1 + 8a0

3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = 2(−ak+1+2ak)

3k+5 , 2a1 + 2a0 = 0, bk+2 = 2(−bk+1+2bk)
3k+6 , 4b1 + 8b0

3 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
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-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.385 (sec)
Leaf size : 38� �
dsolve(3*x^2*diff(diff(y(x),x),x)+2*x*(-2*x^2+x+1)*diff(y(x),x)+(-8*x^2+2*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

1/3e
2x(x−1)

3 + c2HeunB
(
−1
3 ,

√
6
3 ,−7

3 ,
4
√
6

9 ,−
√
6x
3

)

Mathematica DSolve solution

Solving time : 0.548 (sec)
Leaf size : 53� �
DSolve[{3*x^2*D[y[x],{x,2}]+2*x*(1+x-2*x^2)*D[y[x],x]+(2*x-8*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e

2
3 (x−1)x 3

√
x

(
c2

∫ x

1

e−
2
3 (K[1]−1)K[1]

K[1]4/3 dK[1] + c1

)
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2.1.504 problem 520

Solved as second order ode using Kovacic algorithm . . . . . . . . .3358
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3363
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3365
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3365
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3365

Internal problem ID [9352]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 520
Date solved : Thursday, December 12, 2024 at 10:11:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

12x2(1 + x) y′′ + x
(
3x2 + 35x+ 11

)
y′ −

(
−5x2 − 10x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.418 (sec)

Writing the ode as(
12x3 + 12x2) y′′ + (3x3 + 35x2 + 11x

)
y′ +

(
5x2 + 10x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 12x3 + 12x2

B = 3x3 + 35x2 + 11x (3)
C = 5x2 + 10x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x4 − 30x3 − 197x2 − 190x− 95
576 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 9x4 − 30x3 − 197x2 − 190x− 95

t = 576
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
9x4 − 30x3 − 197x2 − 190x− 95

576 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.953: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 576(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
64 − 95

576x2 − 7
64 (1 + x)2

− 1
12 (1 + x)

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 95

576 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 19

24
α−
c = 1

2 −
√
1 + 4b = 5

24
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

8 − 1
3x − 29

24x2 − 193
72x3 − 3017

216x4 − 40009
648x5 − 642029

1944x6 − 10350493
5832x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
8

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
8 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

64
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x4 − 30x3 − 197x2 − 190x− 95
576x4 + 1152x3 + 576x2

= Q+ R

576x4 + 1152x3 + 576x2

=
(

1
64

)
+
(
−48x3 − 206x2 − 190x− 95
576x4 + 1152x3 + 576x2

)
= 1

64 + −48x3 − 206x2 − 190x− 95
576x4 + 1152x3 + 576x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −48. Dividing this by leading coefficient in t which is 576 gives − 1

12 . Now b can be
found.

b =
(
− 1
12

)
− (0)

= − 1
12
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Hence

[
√
r]∞ = 1

8

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(− 1
12
1
8

− 0
)

= −1
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
− 1

12
1
8

− 0
)

= 1
3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x4 − 30x3 − 197x2 − 190x− 95
576 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
8

1
8

0 2 0 19
24

5
24

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
8 −1

3
1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
8 + 8x + 5

24x + (−)
(
1
8

)
= 1

8 + 8x + 5
24x − 1

8
= 1

8 + 8x + 5
24x − 1

8
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
8 + 8x + 5

24x − 1
8

)
(0) +

((
− 1
8 (1 + x)2

− 5
24x2

)
+
(

1
8 + 8x + 5

24x − 1
8

)2

−
(
9x4 − 30x3 − 197x2 − 190x− 95

576 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

8+8x+
5

24x−
1
8

)
dx

= x5/24(1 + x)1/8 e−x
8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+35x2+11x

12x3+12x2 dx

= z1e
−x

8−
11 ln(x)

24 − 7 ln(1+x)
8

= z1

(
e−x

8

x11/24 (1 + x)7/8

)

Which simplifies to

y1 =
e−x

4

x1/4 (1 + x)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+35x2+11x

12x3+12x2 dx

(y1)2
dx

= y1

∫
e−

x
4−

11 ln(x)
12 − 7 ln(1+x)

4

(y1)2
dx

= y1

(∫
e−x

4−
11 ln(x)

12 − 7 ln(1+x)
4

√
x (1 + x)3/2 ex

2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

4

x1/4 (1 + x)3/4

)
+ c2

(
e−x

4

x1/4 (1 + x)3/4

(∫
e−x

4−
11 ln(x)

12 − 7 ln(1+x)
4

√
x (1 + x)3/2 ex

2 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

12x2(x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 35x+ 11)

(
d
dx
y(x)

)
− (−5x2 − 10x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+10x−1

)
y(x)

12(x+1)x2 −
(
3x2+35x+11

)(
d
dx

y(x)
)

12x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+35x+11

)(
d
dx

y(x)
)

12x(x+1) +
(
5x2+10x−1

)
y(x)

12(x+1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3x2+35x+11

12x(x+1) , P3(x) = 5x2+10x−1
12(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

12x2(x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 35x+ 11)

(
d
dx
y(x)

)
+ (5x2 + 10x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(12u3 − 24u2 + 12u)
(

d2

du2y(u)
)
+ (3u3 + 26u2 − 50u+ 21)

(
d
du
y(u)

)
+ (5u2 − 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(3 + 4r)u−1+r + (3a1(1 + r) (7 + 4r)− 2a0(3 + 4r) (1 + 3r))ur + (3a2(2 + r) (11 + 4r)− 2a1(7 + 4r) (4 + 3r) + 2a0r(7 + 6r))u1+r +
(

∞∑
k=2

(3ak+1(k + 1 + r) (4k + 7 + 4r)− 2ak(4k + 4r + 3) (3k + 3r + 1) + 2ak−1(k + r − 1) (6k + 1 + 6r) + ak−2(3k − 1 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

4

}
• The coefficients of each power of u must be 0

[3a1(1 + r) (7 + 4r)− 2a0(3 + 4r) (1 + 3r) = 0, 3a2(2 + r) (11 + 4r)− 2a1(7 + 4r) (4 + 3r) + 2a0r(7 + 6r) = 0]
• Solve for the dependent coefficient(s){

a1 = 2a0
(
12r2+13r+3

)
3(4r2+11r+7) , a2 = 2a0

(
54r3+135r2+101r+24

)
9(4r3+23r2+41r+22)

}
• Each term in the series must be 0, giving the recursion relation

12(−2ak + ak−1 + ak+1) k2 + (24(−2ak + ak−1 + ak+1) r − 26ak + 3ak−2 − 10ak−1 + 33ak+1) k + 12(−2ak + ak−1 + ak+1) r2 + (−26ak + 3ak−2 − 10ak−1 + 33ak+1) r − 6ak − ak−2 − 2ak−1 + 21ak+1 = 0
• Shift index using k− >k + 2

12(−2ak+2 + ak+1 + ak+3) (k + 2)2 + (24(−2ak+2 + ak+1 + ak+3) r − 26ak+2 + 3ak − 10ak+1 + 33ak+3) (k + 2) + 12(−2ak+2 + ak+1 + ak+3) r2 + (−26ak+2 + 3ak − 10ak+1 + 33ak+3) r − 6ak+2 − ak − 2ak+1 + 21ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −12k2ak+1−24k2ak+2+24krak+1−48krak+2+12r2ak+1−24r2ak+2+3kak+38kak+1−122kak+2+3rak+38rak+1−122rak+2+5ak+26ak+1−154ak+2
3(4k2+8kr+4r2+27k+27r+45)

• Recursion relation for r = 0
ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45) , a1 = 2a0
7 , a2 = 8a0

33

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2
3(4k2+27k+45) , a1 = 2a0

7 , a2 = 8a0
33

]
• Recursion relation for r = −3

4

ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11
4 ak+ 17

4 ak+1−76ak+2
3(4k2+21k+27)

• Solution for r = −3
4[

y(u) =
∞∑
k=0

aku
k− 3

4 , ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11
4 ak+ 17

4 ak+1−76ak+2
3(4k2+21k+27) , a1 = 0, a2 = a0

8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
3
4 , ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11

4 ak+ 17
4 ak+1−76ak+2

3(4k2+21k+27) , a1 = 0, a2 = a0
8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
3
4

)
, ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45) , a1 = 2a0
7 , a2 = 8a0

33 , bk+3 = −12k2bk+1−24k2bk+2+3kbk+20kbk+1−86kbk+2+ 11
4 bk+ 17

4 bk+1−76bk+2
3(4k2+21k+27) , b1 = 0, b2 = b0

8

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.647 (sec)
Leaf size : 43� �
dsolve(12*x^2*(x+1)*diff(diff(y(x),x),x)+x*(3*x^2+35*x+11)*diff(y(x),x)-(-5*x^2-10*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x
4
(
HeunC

(1
4 ,

7
12 ,−

3
4 ,−

1
12 ,

1
2 ,−x

)
x7/12c2 +HeunC

(1
4 ,−

7
12 ,−

3
4 ,−

1
12 ,

1
2 ,−x

)
c1
)

(x+ 1)3/4 x1/4

Mathematica DSolve solution

Solving time : 0.703 (sec)
Leaf size : 61� �
DSolve[{12*x^2*(1+x)*D[y[x],{x,2}]+x*(11+35*x+3*x^2)*D[y[x],x]-(1-10*x-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−x/4

(
c2
∫ x

1
e
K[1]
4

K[1]5/12 4
√

K[1] + 1
dK[1] + c1

)
4
√
x(x+ 1)3/4
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2.1.505 problem 521

Solved as second order ode using Kovacic algorithm . . . . . . . . .3366
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3368
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3369
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3369
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3369

Internal problem ID [9353]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 521
Date solved : Thursday, December 12, 2024 at 10:11:26 AM
CAS classification : [[_2nd_order, _missing_x]]

Solve

y′′ + 3y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.227 (sec)

Writing the ode as

y′′ + 3y′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 3 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7
4 (6)

Comparing the above to (5) shows that

s = −7
t = 4

Therefore eq. (4) becomes

z′′(x) = −7z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.955: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −7
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

7x
2

)
Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
1 dx

= z1e
− 3x

2

= z1
(
e− 3x

2

)
Which simplifies to

y1 = e− 3x
2 cos

(√
7x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 3

1 dx

(y1)2
dx

= y1

∫
e−3x

(y1)2
dx

= y1

2
√
7 tan

(√
7x
2

)
7


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− 3x

2 cos
(√

7x
2

))
+ c2

e− 3x
2 cos

(√
7x
2

)2
√
7 tan

(√
7x
2

)
7



Will add steps showing solving for IC soon.

–6

–4

–2

0

2

4

6

y’(x)

–6 –4 –2 0 2 4 6

y(x)

Figure 2.2: Slope field plot
y′′ + 3y′ + 4y = 0

Maple step by step solution

Let’s solve
d2

dx2y(x) + 3 d
dx
y(x) + 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Characteristic polynomial of ODE

r2 + 3r + 4 = 0
• Use quadratic formula to solve for r

r = (−3)±
(√

−7
)

2

• Roots of the characteristic polynomial

r =
(
−3

2 −
I
√
7

2 ,−3
2 +

I
√
7

2

)
• 1st solution of the ODE

y1(x) = e− 3x
2 cos

(√
7x
2

)
• 2nd solution of the ODE
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y2(x) = e− 3x
2 sin

(√
7x
2

)
• General solution of the ODE

y(x) = C1y1(x) + C2y2(x)
• Substitute in solutions

y(x) = C1 e− 3x
2 cos

(√
7x
2

)
+ C2 e− 3x

2 sin
(√

7x
2

)
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 28� �
dsolve(diff(diff(y(x),x),x)+3*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = e− 3x

2

(
c1 sin

(√
7x
2

)
+ c2 cos

(√
7x
2

))

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 42� �
DSolve[{D[y[x],{x,2}]+3*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−3x/2

(
c2 cos

(√
7x
2

)
+ c1 sin

(√
7x
2

))
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2.1.506 problem 522

Solved as second order ode using Kovacic algorithm . . . . . . . . .3370
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3375
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3377
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3377
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3377

Internal problem ID [9354]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 522
Date solved : Thursday, December 12, 2024 at 10:11:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

18x2(1 + x) y′′ + 3x
(
x2 + 11x+ 5

)
y′ −

(
−5x2 − 2x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as(
18x3 + 18x2) y′′ + (3x3 + 33x2 + 15x

)
y′ +

(
5x2 + 2x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 18x3 + 18x2

B = 3x3 + 33x2 + 15x (3)
C = 5x2 + 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 18x3 − 45x2 − 18x− 27
144 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = x4 − 18x3 − 45x2 − 18x− 27

t = 144
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 − 18x3 − 45x2 − 18x− 27

144 (x2 + x)2
)
z(x) (7)



chapter 2. book solved problems 3371

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.957: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
144 − 35

144 (1 + x)2
− 7

18 (1 + x) +
1
4x − 3

16x2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

12 − 5
6x − 53

12x2 − 523
12x3 − 6659

12x4 − 94267
12x5 − 1432421

12x6 − 22802941
12x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
12

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
12 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

144
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 − 18x3 − 45x2 − 18x− 27
144x4 + 288x3 + 144x2

= Q+ R

144x4 + 288x3 + 144x2

=
(

1
144

)
+
(
−20x3 − 46x2 − 18x− 27
144x4 + 288x3 + 144x2

)
= 1

144 + −20x3 − 46x2 − 18x− 27
144x4 + 288x3 + 144x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −20. Dividing this by leading coefficient in t which is 144 gives − 5

36 . Now b can be
found.

b =
(
− 5
36

)
− (0)

= − 5
36
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Hence

[
√
r]∞ = 1

12

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(− 5
36
1
12

− 0
)

= −5
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
− 5

36
1
12

− 0
)

= 5
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 18x3 − 45x2 − 18x− 27
144 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
12

5
12

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
12 −5

6
5
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

6 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 5

6 −
(
5
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 7
12 (1 + x) +

1
4x + (−)

(
1
12

)
= 7

12 (1 + x) +
1
4x − 1

12

= 7
12 + 12x + 1

4x − 1
12

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

7
12 (1 + x) +

1
4x − 1

12

)
(0) +

((
− 7
12 (1 + x)2

− 1
4x2

)
+
(

7
12 (1 + x) +

1
4x − 1

12

)2

−
(
x4 − 18x3 − 45x2 − 18x− 27

144 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

12(1+x)+
1
4x−

1
12

)
dx

= (1 + x)7/12 x1/4e− x
12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+33x2+15x

18x3+18x2 dx

= z1e
− x

12−
5 ln(1+x)

12 − 5 ln(x)
12

= z1

(
e− x

12

(1 + x)5/12 x5/12

)

Which simplifies to

y1 =
(1 + x)1/6 e−x

6

x1/6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+33x2+15x

18x3+18x2 dx

(y1)2
dx

= y1

∫
e−

x
6−

5 ln(1+x)
6 − 5 ln(x)

6

(y1)2
dx

= y1

(∫ e−x
6−

5 ln(1+x)
6 − 5 ln(x)

6 x1/3ex
3

(1 + x)1/3
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x)1/6 e−x

6

x1/6

)
+ c2

(
(1 + x)1/6 e−x

6

x1/6

(∫ e−x
6−

5 ln(1+x)
6 − 5 ln(x)

6 x1/3ex
3

(1 + x)1/3
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

18x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x(x2 + 11x+ 5)

(
d
dx
y(x)

)
− (−5x2 − 2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+2x−1

)
y(x)

18(x+1)x2 −
(
x2+11x+5

)(
d
dx

y(x)
)

6x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+11x+5

)(
d
dx

y(x)
)

6x(x+1) +
(
5x2+2x−1

)
y(x)

18(x+1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = x2+11x+5

6x(x+1) , P3(x) = 5x2+2x−1
18(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5
6

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

18x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x(x2 + 11x+ 5)

(
d
dx
y(x)

)
+ (5x2 + 2x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(18u3 − 36u2 + 18u)
(

d2

du2y(u)
)
+ (3u3 + 24u2 − 42u+ 15)

(
d
du
y(u)

)
+ (5u2 − 8u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(−1 + 6r)u−1+r + (3a1(1 + r) (5 + 6r)− 2a0(1 + 3r) (−1 + 6r))ur + (3a2(2 + r) (11 + 6r)− 2a1(4 + 3r) (5 + 6r) + 2a0(9r2 + 3r − 4))u1+r +
(

∞∑
k=2

(
3ak+1(k + 1 + r) (6k + 5 + 6r)− 2ak(3k + 3r + 1) (6k + 6r − 1) + 2ak−1

(
9(k − 1)2 + 18(k − 1) r + 9r2 + 3k − 7 + 3r

)
+ ak−2(3k − 1 + 3r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−1 + 6r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 16
}

• The coefficients of each power of u must be 0
[3a1(1 + r) (5 + 6r)− 2a0(1 + 3r) (−1 + 6r) = 0, 3a2(2 + r) (11 + 6r)− 2a1(4 + 3r) (5 + 6r) + 2a0(9r2 + 3r − 4) = 0]

• Solve for the dependent coefficient(s){
a1 = 2a0

(
18r2+3r−1

)
3(6r2+11r+5) , a2 = 2a0

(
81r3+126r2+21r+4

)
9(6r3+29r2+45r+22)

}
• Each term in the series must be 0, giving the recursion relation

18(−2ak + ak−1 + ak+1) k2 + 3(12(−2ak + ak−1 + ak+1) r − 2ak + ak−2 − 10ak−1 + 11ak+1) k + 18(−2ak + ak−1 + ak+1) r2 + 3(−2ak + ak−2 − 10ak−1 + 11ak+1) r + 2ak − ak−2 + 4ak−1 + 15ak+1 = 0
• Shift index using k− >k + 2

18(−2ak+2 + ak+1 + ak+3) (k + 2)2 + 3(12(−2ak+2 + ak+1 + ak+3) r − 2ak+2 + ak − 10ak+1 + 11ak+3) (k + 2) + 18(−2ak+2 + ak+1 + ak+3) r2 + 3(−2ak+2 + ak − 10ak+1 + 11ak+3) r + 2ak+2 − ak + 4ak+1 + 15ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −18k2ak+1−36k2ak+2+36krak+1−72krak+2+18r2ak+1−36r2ak+2+3kak+42kak+1−150kak+2+3rak+42rak+1−150rak+2+5ak+16ak+1−154ak+2
3(6k2+12kr+6r2+35k+35r+51)

• Recursion relation for r = 0
ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51) , a1 = −2a0
15 , a2 =

4a0
99

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2
3(6k2+35k+51) , a1 = −2a0

15 , a2 =
4a0
99

]
• Recursion relation for r = 1

6

ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11
2 ak+ 47

2 ak+1−180ak+2
3(6k2+37k+57)

• Solution for r = 1
6[

y(u) =
∞∑
k=0

aku
k+ 1

6 , ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11
2 ak+ 47

2 ak+1−180ak+2
3(6k2+37k+57) , a1 = 0, a2 = a0

12

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
1
6 , ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11

2 ak+ 47
2 ak+1−180ak+2

3(6k2+37k+57) , a1 = 0, a2 = a0
12

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+
1
6

)
, ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51) , a1 = −2a0
15 , a2 =

4a0
99 , bk+3 = −18k2bk+1−36k2bk+2+3kbk+48kbk+1−162kbk+2+ 11

2 bk+ 47
2 bk+1−180bk+2

3(6k2+37k+57) , b1 = 0, b2 = b0
12

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.530 (sec)
Leaf size : 38� �
dsolve(18*x^2*(x+1)*diff(diff(y(x),x),x)+3*x*(x^2+11*x+5)*diff(y(x),x)-(-5*x^2-2*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x
6
(√

x HeunC
(1
6 ,

1
2 ,−

1
6 ,−

5
36 ,

1
4 ,−x

)
c2 +HeunC

(1
6 ,−

1
2 ,−

1
6 ,−

5
36 ,

1
4 ,−x

)
c1
)

x1/6

Mathematica DSolve solution

Solving time : 0.857 (sec)
Leaf size : 73� �
DSolve[{18*x^2*(1+x)*D[y[x],{x,2}]+3*x*(5+11*x+x^2)*D[y[x],x]-(1-2*x-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

e−x/6

c2
∫ x

1

e
K[1]
6

3

√
K[1]

K[1] + 1
K[1]5/6(K[1]+1)5/6 dK[1] + c1


6

√
x

x+ 1
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2.1.507 problem 523

Solved as second order ode using Kovacic algorithm . . . . . . . . .3378
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3382
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3384
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3384
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3385

Internal problem ID [9355]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 523
Date solved : Thursday, December 12, 2024 at 10:11:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + x(3 + 2x) y′ − (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.279 (sec)

Writing the ode as

2x2y′′ +
(
2x2 + 3x

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 2x2 + 3x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x+ 5
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 + 4x+ 5
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x+ 5

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.959: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 5

16x2 + 1
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
4x + 1

4x2 − 1
8x3 + 1

16x5 − 3
64x6 − 1

128x7 + 11
256x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 4x+ 5
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
4x+ 5
16x2

)
= 1

4 + 4x+ 5
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
2
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
2
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 4x+ 5
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1

)
= −1

4 −
(
−1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
4x + (−)

(
1
2

)
= − 1

4x − 1
2

= − 1
4x − 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4x − 1

2

)
(0) +

((
1
4x2

)
+
(
− 1
4x − 1

2

)2

−
(
4x2 + 4x+ 5

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
4x−

1
2
)
dx

= e−x
2

x1/4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+3x

2x2 dx

= z1e
−x

2−
3 ln(x)

4

= z1

(
e−x

2

x3/4

)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+3x

2x2 dx

(y1)2
dx

= y1

∫
e−x− 3 ln(x)

2

(y1)2
dx

= y1

(
√
x ex −

√
π erfi

(√
x
)

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

(
√
x ex −

√
π erfi

(√
x
)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ x(2x+ 3)

(
d
dx
y(x)

)
− (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
2x2 −

(2x+3)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+3)

(
d
dx

y(x)
)

2x + (x−1)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x+3
2x , P3(x) = x−1

2x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ x(2x+ 3)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r − 1) + ak−1(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r − 1

2

)
(ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − ak

k+1

]
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• Recursion relation for r = 1
2

ak+1 = − ak
k+ 5

2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
k+ 5

2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − ak

k+1 , bk+1 = − bk
k+ 5

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.112 (sec)
Leaf size : 52� �
dsolve(2*x^2*diff(diff(y(x),x),x)+x*(2*x+3)*diff(y(x),x)-(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = −

3
(
2c1(−x)3/2 + e−x

(
xc1

√
π erf

(√
−x
)
− 4c2

√
x
√
−x

3

))
4
√
−xx3/2
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Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 33� �
DSolve[{2*x^2*D[y[x],{x,2}]+x*(3+2*x)*D[y[x],x]-(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−x
(
c2x

3/2L
3
2
− 3

2
(x) + c1

)
x
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2.1.508 problem 524

Solved as second order ode using Kovacic algorithm . . . . . . . . .3386
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3390
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3392
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3392
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3393

Internal problem ID [9356]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 524
Date solved : Thursday, December 12, 2024 at 10:11:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + x(5 + x) y′ − (2− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.299 (sec)

Writing the ode as

2x2y′′ +
(
x2 + 5x

)
y′ + (3x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = x2 + 5x (3)
C = 3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 14x+ 21
16x2 (6)

Comparing the above to (5) shows that

s = x2 − 14x+ 21
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 14x+ 21

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.961: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 21

16x2 − 7
8x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 − 7
4x − 7

2x2 − 49
2x3 − 196

x4 − 1715
x5 − 31899

2x6 − 309729
2x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 14x+ 21
16x2

= Q+ R

16x2

=
(

1
16

)
+
(
−14x+ 21

16x2

)
= 1

16 + −14x+ 21
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −14. Dividing this by leading coefficient in t which is 16 gives −7

8 . Now b can be found.

b =
(
−7
8

)
− (0)

= −7
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
8

1
4

− 0
)

= −7
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

8
1
4

− 0
)

= 7
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 14x+ 21
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4 −7

4
7
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

4 then

d = α−
∞ −

(
α+
c1

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 7
4x + (−)

(
1
4

)
= 7

4x − 1
4

= −x− 7
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
4x − 1

4

)
(0) +

((
− 7
4x2

)
+
(

7
4x − 1

4

)2

−
(
x2 − 14x+ 21

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

4x−
1
4
)
dx

= x7/4e−x
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+5x
2x2 dx

= z1e
−x

4−
5 ln(x)

4

= z1

(
e−x

4

x5/4

)

Which simplifies to
y1 =

√
x e−x

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+5x

2x2 dx

(y1)2
dx

= y1

∫
e−

x
2−

5 ln(x)
2

(y1)2
dx

= y1

− 2 ex
2

5x5/2 − 2 ex
2

15x3/2 − 2 ex
2

15
√
x
−

i
√
π
√
2 erf

(
i
√
2
√
x

2

)
15


Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−x
2
)
+ c2

√
x e−x

2

− 2 ex
2

5x5/2 − 2 ex
2

15x3/2 − 2 ex
2

15
√
x
−

i
√
π
√
2 erf

(
i
√
2
√
x

2

)
15



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ x(5 + x)

(
d
dx
y(x)

)
− (−3x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−2)y(x)
2x2 −

(5+x)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+x)

(
d
dx

y(x)
)

2x + (3x−2)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = 5+x

2x , P3(x) = 3x−2
2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ x(5 + x)

(
d
dx
y(x)

)
+ (3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 2) (2k + 2r − 1) + ak−1(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2, 12

}
• Each term in the series must be 0, giving the recursion relation

2
((
k + r − 1

2

)
ak + ak−1

2

)
(k + r + 2) = 0

• Shift index using k− >k + 1
2
((
k + 1

2 + r
)
ak+1 + ak

2

)
(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2k+1+2r

• Recursion relation for r = −2
ak+1 = − ak

2k−3

• Solution for r = −2
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[
y(x) =

∞∑
k=0

akx
k−2, ak+1 = − ak

2k−3

]
• Recursion relation for r = 1

2

ak+1 = − ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
2k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − ak

2k−3 , bk+1 = − bk
2k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 52� �
dsolve(2*x^2*diff(diff(y(x),x),x)+x*(x+5)*diff(y(x),x)-(2-3*x)*y(x) = 0,

y(x),singsol=all)� �
y =

ie−x
2 erf

(
i
√
x
√
2

2

)√
2x5/2√π c2 + c1x

5/2e−x
2 + 2c2(x2 + x+ 3)

x2
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Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 70� �
DSolve[{2*x^2*D[y[x],{x,2}]+x*(5+x)*D[y[x],x]-(2-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

15

(
−2c2(x2 + x+ 3)

x2 + 15c1e−x/2√x+
√
2c2e−x/2√−xΓ

(
1
2 ,−

x

2

))
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2.1.509 problem 525

Solved as second order ode using Kovacic algorithm . . . . . . . . .3394
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3398
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3400
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3400
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3400

Internal problem ID [9357]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 525
Date solved : Thursday, December 12, 2024 at 10:11:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2y′′ + x(1 + x) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.402 (sec)

Writing the ode as

3x2y′′ +
(
x2 + x

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = x2 + x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2x+ 7
36x2 (6)

Comparing the above to (5) shows that

s = x2 + 2x+ 7
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2x+ 7

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.963: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 1

18x + 7
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 1
6x + 1

2x2 − 1
2x3 − 1

4x4 + 7
4x5 − 7

4x6 − 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2x+ 7
36x2

= Q+ R

36x2

=
(

1
36

)
+
(
2x+ 7
36x2

)
= 1

36 + 2x+ 7
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 2. Dividing this by leading coefficient in t which is 36 gives 1

18 . Now b can be found.

b =
(

1
18

)
− (0)

= 1
18

Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
18
1
6
− 0
)

= 1
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
18
1
6
− 0
)

= −1
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2x+ 7
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

1
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

6 then

d = α−
∞ −

(
α−
c1

)
= −1

6 −
(
−1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
6x + (−)

(
1
6

)
= − 1

6x − 1
6

= −1 + x

6x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6x − 1

6

)
(0) +

((
1
6x2

)
+
(
− 1
6x − 1

6

)2

−
(
x2 + 2x+ 7

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6x−

1
6
)
dx

= e−x
6

x1/6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
3x2 dx

= z1e
−x

6−
ln(x)

6

= z1

(
e−x

6

x1/6

)

Which simplifies to

y1 =
e−x

3

x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

3x2 dx

(y1)2
dx

= y1

∫
e−

x
3−

ln(x)
3

(y1)2
dx

= y1

(∫
e−x

3−
ln(x)

3 x2/3e 2x
3 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

3

x1/3

)
+ c2

(
e−x

3

x1/3

(∫
e−x

3−
ln(x)

3 x2/3e 2x
3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
3x2 −

(x+1)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

3x − y(x)
3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
3x , P3(x) = − 1

3x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (k + r − 1) + ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−1

3

}
• Each term in the series must be 0, giving the recursion relation

3
((
k + r + 1

3

)
ak + ak−1

3

)
(k + r − 1) = 0

• Shift index using k− >k + 1
3
((
k + 4

3 + r
)
ak+1 + ak

3

)
(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

3k+4+3r

• Recursion relation for r = 1
ak+1 = − ak

3k+7

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − ak

3k+7

]
• Recursion relation for r = −1

3

ak+1 = − ak
3k+3

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+1 = − ak
3k+3

]
• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k− 1

3

)
, ak+1 = − ak

3k+7 , bk+1 = − bk
3k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.743 (sec)
Leaf size : 30� �
dsolve(3*x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)-y(x) = 0,

y(x),singsol=all)� �
y =

e−x
6
(
x1/6WhittakerM

(
−1

6 ,
2
3 ,

x
3

)
c1 + e−x

6 c2
)

x1/3

Mathematica DSolve solution

Solving time : 0.027 (sec)
Leaf size : 50� �
DSolve[{3*x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−x/3
(
c2x

2/3 − 3 3
√
3c1(−x)2/3Γ

(4
3 ,−

x
3

))
x
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2.1.510 problem 526

Solved as second order ode using Kovacic algorithm . . . . . . . . .3401
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3404
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3406
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3406
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3406

Internal problem ID [9358]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 526
Date solved : Thursday, December 12, 2024 at 10:11:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ − xy′ + (1− 2x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.232 (sec)

Writing the ode as

2x2y′′ − xy′ + (1− 2x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = −x (3)
C = 1− 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3 + 16x
16x2 (6)

Comparing the above to (5) shows that

s = −3 + 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−3 + 16x

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.965: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
x
− 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1− 16x
16x2 = 0

Solving for ω gives

ω = 1 + 4
√
x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+4

√
x

4x dx

= x1/4e2
√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
2x2 dx

= z1e
ln(x)

4

= z1
(
x1/4)

Which simplifies to

y1 =
√
x e2

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

2x2 dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(
−e−4

√
x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e2
√
x
)
+ c2

(√
x e2

√
x

(
−e−4

√
x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x−1)y(x)
2x2 +

d
dx

y(x)
2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
2x − (2x−1)y(x)

2x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

2x , P3(x) = −2x−1
2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1)− 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 1

2

)
(k + r − 1) ak − 2ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r) ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

(2k+1+2r)(k+r)

• Recursion relation for r = 1
ak+1 = 2ak

(2k+3)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = 2ak

(2k+3)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = 2ak
(2k+2)

(
k+ 1

2
)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
(2k+2)

(
k+ 1

2
)
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = 2ak

(2k+3)(k+1) , bk+1 = 2bk
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(2*x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x+(1-2*x)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x
(
c1 sinh

(
2
√
x
)
+ c2 cosh

(
2
√
x
))

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 41� �
DSolve[{2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+(1-2*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−2

√
x
√
x
(
2c1e4

√
x − c2

)
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2.1.511 problem 527

Solved as second order ode using Kovacic algorithm . . . . . . . . .3407
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3412
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3413
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3414
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3414

Internal problem ID [9359]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 527
Date solved : Thursday, December 12, 2024 at 10:11:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2y′′ + x(1 + x) y′ − (1 + 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.604 (sec)

Writing the ode as

3x2y′′ +
(
x2 + x

)
y′ + (−3x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = x2 + x (3)
C = −3x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 38x+ 7
36x2 (6)

Comparing the above to (5) shows that

s = x2 + 38x+ 7
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 38x+ 7

36x2

)
z(x) (7)



chapter 2. book solved problems 3408

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.967: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 19

18x + 7
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 19
6x − 59

2x2 + 1121
2x3 − 53041

4x4 + 1404613
4x5 − 39845827

4x6 + 1184064097
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 38x+ 7
36x2

= Q+ R

36x2

=
(

1
36

)
+
(
38x+ 7
36x2

)
= 1

36 + 38x+ 7
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 38. Dividing this by leading coefficient in t which is 36 gives 19

18 . Now b can be found.

b =
(
19
18

)
− (0)

= 19
18

Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 19
18
1
6
− 0
)

= 19
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

19
18
1
6
− 0
)

= −19
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 38x+ 7
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

19
6 −19

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 19

6 then

d = α+
∞ −

(
α+
c1

)
= 19

6 −
(
7
6

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 7
6x +

(
1
6

)
= 7

6x + 1
6

= 7 + x

6x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

7
6x + 1

6

)
(2x+ a1) +

((
− 7
6x2

)
+
(

7
6x + 1

6

)2

−
(
x2 + 38x+ 7

36x2

))
= 0

(−a1 + 20)x− 2a0 + 7a1
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 70, a1 = 20}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 20x+ 70



chapter 2. book solved problems 3411

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 20x+ 70

)
e
∫ ( 7

6x+
1
6
)
dx

=
(
x2 + 20x+ 70

)
ex

6+
7 ln(x)

6

=
(
x2 + 20x+ 70

)
x7/6ex

6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
3x2 dx

= z1e
−x

6−
ln(x)

6

= z1

(
e−x

6

x1/6

)

Which simplifies to
y1 =

(
x2 + 20x+ 70

)
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

3x2 dx

(y1)2
dx

= y1

∫
e−

x
3−

ln(x)
3

(y1)2
dx

= y1

(∫ e−x
3−

ln(x)
3

(x2 + 20x+ 70)2 x2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((
x2 + 20x+ 70

)
x
)
+ c2

((
x2 + 20x+ 70

)
x

(∫ e−x
3−

ln(x)
3

(x2 + 20x+ 70)2 x2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− (3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (3x+1)y(x)
3x2 −

(x+1)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

3x − (3x+1)y(x)
3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
3x , P3(x) = −3x+1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (−3x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (k + r − 1) + ak−1(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 3r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
1,−1

3

}
• Each term in the series must be 0, giving the recursion relation

3
(
k + r + 1

3

)
(k + r − 1) ak + ak−1(k − 4 + r) = 0

• Shift index using k− >k + 1
3
(
k + 4

3 + r
)
(k + r) ak+1 + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(3k+4+3r)(k+r)

• Recursion relation for r = 1 ; series terminates at k = 2
ak+1 = − ak(k−2)

(3k+7)(k+1)

• Apply recursion relation for k = 0
a1 = 2a0

7

• Apply recursion relation for k = 1
a2 = a1

20

• Express in terms of a0
a2 = a0

70

• Terminating series solution of the ODE for r = 1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1 + 2

7x+ 1
70x

2)
• Recursion relation for r = −1

3

ak+1 = − ak
(
k− 10

3
)

(3k+3)
(
k− 1

3
)

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+1 = − ak
(
k− 10

3
)

(3k+3)
(
k− 1

3
)
]

• Combine solutions and rename parameters[
y(x) = a0 ·

(
1 + 2

7x+ 1
70x

2)+ ( ∞∑
k=0

bkx
k− 1

3

)
, bk+1 = − bk

(
k− 10

3
)

(3k+3)
(
k− 1

3
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
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<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.063 (sec)
Leaf size : 41� �
dsolve(3*x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)-(3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−
x
3 hypergeom

(
[3] ,

[
−1

3

]
, x3
)
+ 70c1

(
x4/3 + 2x7/3

7 + x10/3

70

)
x1/3

Mathematica DSolve solution

Solving time : 0.244 (sec)
Leaf size : 78� �
DSolve[{3*x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-(1+3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)→ c1x

(
x2 +20x+70

)
−

c2x(x2 + 20x+ 70) Γ
(2
3 ,

x
3

)
1680 3

√
3

+ c2e
−x/3(x3 + 19x2 + 54x− 18)

1680 3
√
x
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2.1.512 problem 528

Solved as second order ode using Kovacic algorithm . . . . . . . . .3415
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3419
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3420
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3421
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3421

Internal problem ID [9360]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 528
Date solved : Thursday, December 12, 2024 at 10:11:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(3 + x) y′′ + x(1 + 5x) y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as (
2x3 + 6x2) y′′ + (5x2 + x

)
y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 6x2

B = 5x2 + x (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 30x− 35
16 (x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 30x− 35

t = 16
(
x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 30x− 35
16 (x2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.969: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144x2 + 7

36 (3 + x)2
− 5

108x + 5
108 (3 + x)

For the pole at x = −3 let b be the coefficient of 1
(3+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 35

144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 30x− 35

16 (x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 30x− 35
16 (x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−3 2 0 7
6 −1

6

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
6 (3 + x) +

5
12x + (−) (0)

= − 1
6 (3 + x) +

5
12x

= x+ 5
4x (3 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6 (3 + x) +

5
12x

)
(0) +

((
1

6 (3 + x)2
− 5

12x2

)
+
(
− 1
6 (3 + x) +

5
12x

)2

−
(
−3x2 − 30x− 35
16 (x2 + 3x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6(3+x)+

5
12x

)
dx

= x5/12

(3 + x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2+x

2x3+6x2 dx

= z1e
− ln(x)

12 − 7 ln(3+x)
6

= z1

(
1

x1/12 (3 + x)7/6

)

Which simplifies to

y1 =
x1/3

(3 + x)4/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2+x

2x3+6x2 dx

(y1)2
dx

= y1

∫
e−

ln(x)
6 − 7 ln(3+x)

3

(y1)2
dx

= y1

(∫ e−
ln(x)

6 − 7 ln(3+x)
3 (3 + x)8/3

x2/3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

(3 + x)4/3

)
+ c2

(
x1/3

(3 + x)4/3

(∫ e−
ln(x)

6 − 7 ln(3+x)
3 (3 + x)8/3

x2/3 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 3)
(

d2

dx2y(x)
)
+ x(5x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2x2(x+3) −

(5x+1)
(

d
dx

y(x)
)

2x(x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5x+1)

(
d
dx

y(x)
)

2x(x+3) + (x+1)y(x)
2x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x+1
2x(x+3) , P3(x) = x+1

2x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 7
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators

2x2(x+ 3)
(

d2

dx2y(x)
)
+ x(5x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(2u3 − 12u2 + 18u)
(

d2

du2y(u)
)
+ (5u2 − 29u+ 42)

(
d
du
y(u)

)
+ (u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

6a0r(4 + 3r)u−1+r + (6a1(1 + r) (7 + 3r)− a0(12r2 + 17r + 2))ur +
(

∞∑
k=1

(6ak+1(k + r + 1) (3k + 7 + 3r)− ak(12k2 + 24kr + 12r2 + 17k + 17r + 2) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
6r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• Each term must be 0

6a1(1 + r) (7 + 3r)− a0(12r2 + 17r + 2) = 0
• Each term in the series must be 0, giving the recursion relation

2(−6ak + ak−1 + 9ak+1) k2 + (4(−6ak + ak−1 + 9ak+1) r − 17ak − ak−1 + 60ak+1) k + 2(−6ak + ak−1 + 9ak+1) r2 + (−17ak − ak−1 + 60ak+1) r − 2ak + 42ak+1 = 0
• Shift index using k− >k + 1

2(−6ak+1 + ak + 9ak+2) (k + 1)2 + (4(−6ak+1 + ak + 9ak+2) r − 17ak+1 − ak + 60ak+2) (k + 1) + 2(−6ak+1 + ak + 9ak+2) r2 + (−17ak+1 − ak + 60ak+2) r − 2ak+1 + 42ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−12k2ak+1+4krak−24krak+1+2r2ak−12r2ak+1+3kak−41kak+1+3rak−41rak+1+ak−31ak+1
6(3k2+6kr+3r2+16k+16r+20)

• Recursion relation for r = 0
ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20) , 42a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k , ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1
6(3k2+16k+20) , 42a1 − 2a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −2k2ak−12k2ak+1− 7
3kak−9kak+1+ 5

9ak+
7
3ak+1

6(3k2+8k+4)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −2k2ak−12k2ak+1− 7
3kak−9kak+1+ 5

9ak+
7
3ak+1

6(3k2+8k+4) ,−6a1 − 2a0
3 = 0

]
• Revert the change of variables u = x+ 3[

y(x) =
∞∑
k=0

ak(x+ 3)k−
4
3 , ak+2 = −2k2ak−12k2ak+1− 7

3kak−9kak+1+ 5
9ak+

7
3ak+1

6(3k2+8k+4) ,−6a1 − 2a0
3 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
4
3

)
, ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20) , 42a1 − 2a0 = 0, bk+2 = −2k2bk−12k2bk+1− 7
3kbk−9kbk+1+ 5

9 bk+
7
3 bk+1

6(3k2+8k+4) ,−6b1 − 2b0
3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.102 (sec)
Leaf size : 36� �
dsolve(2*x^2*(x+3)*diff(diff(y(x),x),x)+x*(1+5*x)*diff(y(x),x)+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = c1

√
x hypergeom

([
1, 32

]
,

[
7
6

]
,−x

3

)
+ c2x

1/3

(x+ 3)
(
1 + x

3

)1/3
Mathematica DSolve solution

Solving time : 0.113 (sec)
Leaf size : 50� �
DSolve[{2*x^2*(3+x)*D[y[x],{x,2}]+x*(1+5*x)*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x
(
6 3
√
3c2 6

√
xHypergeometric2F1

(
−1

3 ,
1
6 ,

7
6 ,−

x
3

)
+ c1

)
(x+ 3)4/3
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2.1.513 problem 529

Solved as second order ode using Kovacic algorithm . . . . . . . . .3422
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3426
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3427
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3428
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3428

Internal problem ID [9361]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 529
Date solved : Thursday, December 12, 2024 at 10:11:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(4 + x) y′′ − x(1− 3x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.532 (sec)

Writing the ode as

x2(4 + x) y′′ +
(
3x2 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(4 + x)
B = 3x2 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 6x− 7
4 (x2 + 4x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 6x− 7

t = 4
(
x2 + 4x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 6x− 7
4 (x2 + 4x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.971: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 4x)2. There is a pole at x = 0 of order 2. There is a pole at x = −4 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
128 (4 + x) −

5
128x + 65

64 (4 + x)2
− 7

64x2

For the pole at x = −4 let b be the coefficient of 1
(4+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 65
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

8
α−
c = 1

2 −
√
1 + 4b = −5

8
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = − 7

64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 6x− 7

4 (x2 + 4x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 6x− 7
4 (x2 + 4x)2

pole c location pole order [
√
r]c α+

c α−
c

−4 2 0 13
8 −5

8

0 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 5
8 (4 + x) +

1
8x + (−) (0)

= − 5
8 (4 + x) +

1
8x

= − x− 1
2x (4 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
8 (4 + x) +

1
8x

)
(0) +

((
5

8 (4 + x)2
− 1

8x2

)
+
(
− 5
8 (4 + x) +

1
8x

)2

−
(
3x2 − 6x− 7
4 (x2 + 4x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 5
8(4+x)+

1
8x

)
dx

= x1/8

(4 + x)5/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2−x
x2(4+x) dx

= z1e
ln(x)

8 − 13 ln(4+x)
8

= z1

(
x1/8

(4 + x)13/8

)

Which simplifies to

y1 =
x1/4

(4 + x)9/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2−x

x2(4+x) dx

(y1)2
dx

= y1

∫
e

ln(x)
4 − 13 ln(4+x)

4

(y1)2
dx

= y1

(∫ e
ln(x)

4 − 13 ln(4+x)
4 (4 + x)9/2√

x
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

(4 + x)9/4

)
+ c2

(
x1/4

(4 + x)9/4

(∫ e
ln(x)

4 − 13 ln(4+x)
4 (4 + x)9/2√

x
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x+ 4)
(

d2

dx2y(x)
)
− x(1− 3x)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x2(x+4) −

(3x−1)
(

d
dx

y(x)
)

x(x+4)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x−1)

(
d
dx

y(x)
)

x(x+4) + y(x)
x2(x+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−1
x(x+4) , P3(x) = 1

x2(x+4)

]
◦ (x+ 4) · P2(x) is analytic at x = −4

((x+ 4) · P2(x))
∣∣∣∣
x=−4

= 13
4

◦ (x+ 4)2 · P3(x) is analytic at x = −4(
(x+ 4)2 · P3(x)

) ∣∣∣∣
x=−4

= 0

◦ x = −4is a regular singular point
Check to see if x0 is a regular singular point
x0 = −4

• Multiply by denominators

x2(x+ 4)
(

d2

dx2y(x)
)
+ x(3x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 4 so that the regular singular point is at u = 0

(u3 − 8u2 + 16u)
(

d2

du2y(u)
)
+ (3u2 − 25u+ 52)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(9 + 4r)u−1+r + (4a1(1 + r) (13 + 4r)− a0(8r2 + 17r − 1))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (4k + 13 + 4r)− ak(8k2 + 16kr + 8r2 + 17k + 17r − 1) + ak−1(k + r − 1) (k + 1 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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4r(9 + 4r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0,−9

4

}
• Each term must be 0

4a1(1 + r) (13 + 4r)− a0(8r2 + 17r − 1) = 0
• Each term in the series must be 0, giving the recursion relation

(−8ak + ak−1 + 16ak+1) k2 + (2(−8ak + ak−1 + 16ak+1) r − 17ak + 68ak+1) k + (−8ak + ak−1 + 16ak+1) r2 + 17(−ak + 4ak+1) r + ak − ak−1 + 52ak+1 = 0
• Shift index using k− >k + 1

(−8ak+1 + ak + 16ak+2) (k + 1)2 + (2(−8ak+1 + ak + 16ak+2) r − 17ak+1 + 68ak+2) (k + 1) + (−8ak+1 + ak + 16ak+2) r2 + 17(−ak+1 + 4ak+2) r + ak+1 − ak + 52ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−8k2ak+1+2krak−16krak+1+r2ak−8r2ak+1+2kak−33kak+1+2rak−33rak+1−24ak+1
4(4k2+8kr+4r2+25k+25r+34)

• Recursion relation for r = 0
ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34) , 52a1 + a0 = 0
]

• Revert the change of variables u = x+ 4[
y(x) =

∞∑
k=0

ak(x+ 4)k , ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1
4(4k2+25k+34) , 52a1 + a0 = 0

]
• Recursion relation for r = −9

4

ak+2 = −k2ak−8k2ak+1− 5
2kak+3kak+1+ 9

16ak+
39
4 ak+1

4(4k2+7k−2)

• Solution for r = −9
4[

y(u) =
∞∑
k=0

aku
k− 9

4 , ak+2 = −k2ak−8k2ak+1− 5
2kak+3kak+1+ 9

16ak+
39
4 ak+1

4(4k2+7k−2) ,−20a1 − 5a0
4 = 0

]
• Revert the change of variables u = x+ 4[

y(x) =
∞∑
k=0

ak(x+ 4)k−
9
4 , ak+2 = −k2ak−8k2ak+1− 5

2kak+3kak+1+ 9
16ak+

39
4 ak+1

4(4k2+7k−2) ,−20a1 − 5a0
4 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 4)k
)
+
(

∞∑
k=0

bk(x+ 4)k−
9
4

)
, ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34) , 52a1 + a0 = 0, bk+2 = −k2bk−8k2bk+1− 5
2kbk+3kbk+1+ 9

16 bk+
39
4 bk+1

4(4k2+7k−2) ,−20b1 − 5b0
4 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer
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-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.166 (sec)
Leaf size : 27� �
dsolve(x^2*(x+4)*diff(diff(y(x),x),x)-x*(-3*x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1x

1/4

(x+ 4)9/4
+ c2 hypergeom

(
[1, 3] ,

[
7
4

]
,−x

4

)
x

Mathematica DSolve solution

Solving time : 0.149 (sec)
Leaf size : 89� �
DSolve[{x^2*(4+x)*D[y[x],{x,2}]-x*(1-3*x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→

4
√
x

(
−10c2 arctan

(
4

√
x

x+ 4

)
+ 10c2arctanh

(
4

√
x

x+ 4

)
+ c2

4
√
x+ 4x7/4 + 9c2 4

√
x+ 4x3/4 + 2c1

)
2(x+ 4)9/4
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2.1.514 problem 530

Solved as second order ode using Kovacic algorithm . . . . . . . . .3429
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3432
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3434
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3434
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3434

Internal problem ID [9362]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 530
Date solved : Thursday, December 12, 2024 at 10:11:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + 5xy′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

2x2y′′ + 5xy′ + (1 + x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 5x (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3− 8x
16x2 (6)

Comparing the above to (5) shows that

s = −3− 8x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−3− 8x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.973: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
2x − 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1 + 8x
16x2 = 0

Solving for ω gives

ω = 1 + 2
√
2
√
−x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+2

√
2
√
−x

4x dx

= x1/4e
√
2
√
−x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x
2x2 dx

= z1e
− 5 ln(x)

4

= z1

(
1

x5/4

)

Which simplifies to

y1 =
e
√
2
√
−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x

2x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(x)
2

(y1)2
dx

= y1

−

√
2
√
−x
(
1− e−2

√
2
√
−x
)

2
√
x


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
2
√
−x

x

)
+ c2

e
√
2
√
−x

x

−

√
2
√
−x
(
1− e−2

√
2
√
−x
)

2
√
x



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ 5x

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2x2 −

5
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)

2x + (x+1)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = 5

2x , P3(x) = x+1
2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ 5x

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r + 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
(
k + r + 1

2

)
ak + ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 3

2 + r
)
ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+2+r)(2k+3+2r)

• Recursion relation for r = −1
ak+1 = − ak

(k+1)(2k+1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − ak

(k+1)(2k+1)

]
• Recursion relation for r = −1

2

ak+1 = − ak(
k+ 3

2
)
(2k+2)
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• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = − ak(
k+ 3

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = − ak

(k+1)(2k+1) , bk+1 = − bk(
k+ 3

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 29� �
dsolve(2*x^2*diff(diff(y(x),x),x)+5*diff(y(x),x)*x+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

c1 sin
(√

x
√
2
)
+ c2 cos

(√
x
√
2
)

x

Mathematica DSolve solution

Solving time : 0.104 (sec)
Leaf size : 60� �
DSolve[{2*x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1ei

√
2
√
x + i

√
2c2e−i

√
2
√
x

2x
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2.1.515 problem 531

Solved as second order ode using Kovacic algorithm . . . . . . . . .3435
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3439
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3441
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3441
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3442

Internal problem ID [9363]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 531
Date solved : Thursday, December 12, 2024 at 10:11:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2y′′ + x(10− x) y′ − (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.384 (sec)

Writing the ode as

6x2y′′ +
(
−x2 + 10x

)
y′ + (−x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x2

B = −x2 + 10x (3)
C = −x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 28
144x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 28
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 28

144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.975: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
144 + 7

36x2 + 1
36x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

12 + 1
6x + 1

x2 − 2
x3 − 2

x4 + 28
x5 − 56

x6 − 272
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
12

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
12 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

144
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 28
144x2

= Q+ R

144x2

=
(

1
144

)
+
(
4x+ 28
144x2

)
= 1

144 + 4x+ 28
144x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 144 gives 1

36 . Now b can be found.

b =
(

1
36

)
− (0)

= 1
36

Hence

[
√
r]∞ = 1

12

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
36
1
12

− 0
)

= 1
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
36
1
12

− 0
)

= −1
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 28
144x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
12

1
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

6 then

d = α−
∞ −

(
α−
c1

)
= −1

6 −
(
−1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
6x + (−)

(
1
12

)
= − 1

6x − 1
12

= −2 + x

12x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6x − 1

12

)
(0) +

((
1
6x2

)
+
(
− 1
6x − 1

12

)2

−
(
x2 + 4x+ 28

144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6x−

1
12
)
dx

= e− x
12

x1/6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+10x

6x2 dx

= z1e
x
12−

5 ln(x)
6

= z1

(
e x

12

x5/6

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+10x

6x2 dx

(y1)2
dx

= y1

∫
e

x
6−

5 ln(x)
3

(y1)2
dx

= y1

(∫
ex

6−
5 ln(x)

3 x2dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(∫
ex

6−
5 ln(x)

3 x2dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

6x2
(

d2

dx2y(x)
)
+ x(10− x)

(
d
dx
y(x)

)
− (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x+2)y(x)
6x2 +

(−10+x)
(

d
dx

y(x)
)

6x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−10+x)

(
d
dx

y(x)
)

6x − (x+2)y(x)
6x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −−10+x
6x , P3(x) = −x+2

6x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2
(

d2

dx2y(x)
)
− x(−10 + x)

(
d
dx
y(x)

)
+ (−x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

2a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(2ak(k + r + 1) (3k + 3r − 1)− ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

6(k + r + 1)
(
k − 1

3 + r
)
ak − ak−1(k + r) = 0

• Shift index using k− >k + 1
6(k + 2 + r)

(
k + 2

3 + r
)
ak+1 − ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

2(k+2+r)(3k+2+3r)

• Recursion relation for r = −1
ak+1 = akk

2(k+1)(3k−1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = akk

2(k+1)(3k−1)

]
• Recursion relation for r = 1

3
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ak+1 =
ak
(
k+ 4

3
)

2
(
k+ 7

3
)
(3k+3)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 =
ak
(
k+ 4

3
)

2
(
k+ 7

3
)
(3k+3)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+1 = akk

2(k+1)(3k−1) , bk+1 =
bk
(
k+ 4

3
)

2
(
k+ 7

3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.097 (sec)
Leaf size : 27� �
dsolve(6*x^2*diff(diff(y(x),x),x)+x*(10-x)*diff(y(x),x)-(x+2)*y(x) = 0,

y(x),singsol=all)� �
y =

c2x
5/6 + c1WhittakerM

(
−1

6 ,
2
3 ,

x
6

)
e x

12x

x11/6
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Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 38� �
DSolve[{6*x^2*D[y[x],{x,2}]+x*(10-x)*D[y[x],x]-(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

3
√
xL

4
3
− 4

3

(x
6

)
+ 6 3

√
6c1
x
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2.1.516 problem 532

Solved as second order ode using Kovacic algorithm . . . . . . . . .3443
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3447
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3449
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3449
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3450

Internal problem ID [9364]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 532
Date solved : Thursday, December 12, 2024 at 10:11:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(3 + 4x) y′′ + x(11 + 4x) y′ − (3 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.371 (sec)

Writing the ode as (
4x3 + 3x2) y′′ + (4x2 + 11x

)
y′ + (−3− 4x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 3x2

B = 4x2 + 11x (3)
C = −3− 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 48x2 + 8x+ 91
4 (4x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = 48x2 + 8x+ 91

t = 4
(
4x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
48x2 + 8x+ 91
4 (4x2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.977: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(4x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3

4 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 28
9
(
x+ 3

4

)2 + 176
27
(
x+ 3

4

) − 176
27x + 91

36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 91
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

6
α−
c = 1

2 −
√
1 + 4b = −7

6
For the pole at x = −3

4 let b be the coefficient of 1(
x+ 3

4
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 28
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

3
α−
c = 1

2 −
√
1 + 4b = −4

3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 48x2 + 8x+ 91

4 (4x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 48x2 + 8x+ 91
4 (4x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 13
6 −7

6

−3
4 2 0 7

3 −4
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−5
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 7
6x − 4

3
(
x+ 3

4

) + (−) (0)

= − 7
6x − 4

3
(
x+ 3

4

)
= −7− 20x

8x2 + 6x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 7
6x − 4

3
(
x+ 3

4

)) (2x+ a1) +

( 7
6x2 + 4

3
(
x+ 3

4

)2
)

+
(
− 7
6x − 4

3
(
x+ 3

4

))2

−
(
48x2 + 8x+ 91
4 (4x2 + 3x)2

) = 0

12a1x− 8x+ 32a0 − 7a1
x (3 + 4x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

7
48 , a1 =

2
3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 2
3x+ 7

48

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 2

3x+ 7
48

)
e
∫ (

− 7
6x−

4
3
(
x+3

4
)
)
dx

=
(
x2 + 2

3x+ 7
48

)
e−

4 ln(3+4x)
3 − 7 ln(x)

6

=
x2 + 2

3x+ 7
48

(3 + 4x)4/3 x7/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x2+11x
4x3+3x2 dx

= z1e
4 ln(3+4x)

3 − 11 ln(x)
6

= z1

(
(3 + 4x)4/3

x11/6

)

Which simplifies to

y1 =
x2 + 2

3x+ 7
48

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x2+11x

4x3+3x2 dx

(y1)2
dx

= y1

∫
e

8 ln(3+4x)
3 − 11 ln(x)

3

(y1)2
dx

= y1

(∫ e
8 ln(3+4x)

3 − 11 ln(x)
3 x6(

x2 + 2
3x+ 7

48

)2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 2

3x+ 7
48

x3

)
+ c2

(
x2 + 2

3x+ 7
48

x3

(∫ e
8 ln(3+4x)

3 − 11 ln(x)
3 x6(

x2 + 2
3x+ 7

48

)2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(3 + 4x)
(

d2

dx2y(x)
)
+ x(11 + 4x)

(
d
dx
y(x)

)
− (3 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2 −

(11+4x)
(

d
dx

y(x)
)

x(3+4x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(11+4x)

(
d
dx

y(x)
)

x(3+4x) − y(x)
x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11+4x
x(3+4x) , P3(x) = − 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 11
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(3 + 4x)
(

d2

dx2y(x)
)
+ x(11 + 4x)

(
d
dx
y(x)

)
+ (−3− 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 3) (3k + 3r − 1) + 4ak−1(k + r) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3, 13

}
• Each term in the series must be 0, giving the recursion relation

3(k + r + 3)
(
k − 1

3 + r
)
ak + 4ak−1(k + r) (k − 2 + r) = 0

• Shift index using k− >k + 1
3(k + 4 + r)

(
k + 2

3 + r
)
ak+1 + 4ak(k + r + 1) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −4ak(k+r+1)(k+r−1)

(k+4+r)(3k+2+3r)

• Recursion relation for r = −3 ; series terminates at k = 2
ak+1 = −4ak(k−2)(k−4)

(k+1)(3k−7)

• Apply recursion relation for k = 0
a1 = 32a0

7

• Apply recursion relation for k = 1
a2 = 3a1

2

• Express in terms of a0
a2 = 48a0

7

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(48
7 x

2 + 32
7 x+ 1

)
• Recursion relation for r = 1

3

ak+1 = −4ak
(
k+ 4

3
)(
k− 2

3
)(

k+ 13
3
)
(3k+3)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 = −4ak
(
k+ 4

3
)(
k− 2

3
)(

k+ 13
3
)
(3k+3)

]
• Combine solutions and rename parameters
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[
y(x) = a0 ·

(48
7 x

2 + 32
7 x+ 1

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, bk+1 = −4bk

(
k+ 4

3
)(
k− 2

3
)(

k+ 13
3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.172 (sec)
Leaf size : 41� �
dsolve(x^2*(4*x+3)*diff(diff(y(x),x),x)+x*(11+4*x)*diff(y(x),x)-(4*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1(48x2 + 32x+ 7)

x3 + c2 hypergeom
(
[3, 5] ,

[
13
3

]
,−4x

3

)
(4x+ 3)11/3 x1/3
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Mathematica DSolve solution

Solving time : 0.473 (sec)
Leaf size : 367� �
DSolve[{x^2*(3+4*x)*D[y[x],{x,2}]+x*(11+4*x)*D[y[x],x]-(3+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
12 3

√
2
√
3c2(48x2 + 32x+ 7) arctan

( √
3

3
√
4x+ 3

2 22/3 3
√
x+

3
√
4x+ 3

)
+ 384c2(4x+ 3)2/3x10/3 + 576c2(4x+ 3)2/3x7/3 + 600c2(4x+ 3)2/3x4/3 − 192 3

√
2c2x log

(
2 3
√
2x2/3 + 22/3 3

√
4x+ 3 3

√
x+ (4x+ 3)2/3

)
− 42 3

√
2c2 log

(
2 3
√
2x2/3 + 22/3 3

√
4x+ 3 3

√
x+ (4x+ 3)2/3

)
+ 48c1x2 + 12 3

√
2c2(48x2 + 32x+ 7) log

(
3
√
4x+ 3− 22/3 3

√
x
)
− 288 3

√
2c2x2 log

(
2 3
√
2x2/3 + 22/3 3

√
4x+ 3 3

√
x+ (4x+ 3)2/3

)
+ 32c1x+ 168c2(4x+ 3)2/3 3

√
x+ 7c1

48x3
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2.1.517 problem 533

Solved as second order ode using Kovacic algorithm . . . . . . . . .3451
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3455
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3456
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3457
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3457

Internal problem ID [9365]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 533
Date solved : Thursday, December 12, 2024 at 10:11:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + 3x) y′′ + x(4 + 11x) y′ − (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.217 (sec)

Writing the ode as (
6x3 + 4x2) y′′ + (11x2 + 4x

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x3 + 4x2

B = 11x2 + 4x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −35
16 (2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −35
t = 16(2 + 3x)2

Therefore eq. (4) becomes

z′′(x) =
(
− 35
16 (2 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.979: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(2 + 3x)2. There is a pole at x = −2

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144

(
x+ 2

3

)2
For the pole at x = −2

3 let b be the coefficient of 1(
x+ 2

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 35

16 (2 + 3x)2
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Since the gcd(s, t) = 1. This gives b = − 35
144 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

12
α−
∞ = 1

2 −
√
1 + 4b = 5

12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 35
16 (2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−2
3 2 0 7

12
5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
12

5
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

12 then

d = α−
∞ −

(
α−
c1

)
= 5

12 −
(

5
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 5
12
(
x+ 2

3

) + (−) (0)

= 5
12
(
x+ 2

3

)
= 5

8 + 12x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)



chapter 2. book solved problems 3454

Substituting the above in eq. (1A) gives

(0) + 2
(

5
12
(
x+ 2

3

)) (0) +

(− 5
12
(
x+ 2

3

)2
)

+
(

5
12
(
x+ 2

3

))2

−
(
− 35
16 (2 + 3x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 5

12
(
x+2

3
)dx

= (2 + 3x)5/12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x2+4x
6x3+4x2 dx

= z1e
− ln(x)

2 − 5 ln(2+3x)
12

= z1

(
1

√
x (2 + 3x)5/12

)

Which simplifies to

y1 =
1√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x2+4x

6x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)− 5 ln(2+3x)

6

(y1)2
dx

= y1
(
2 e− ln(x)− 5 ln(2+3x)

6 x(2 + 3x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√
x

)
+ c2

(
1√
x

(
2 e− ln(x)− 5 ln(2+3x)

6 x(2 + 3x)
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 11x)

(
d
dx
y(x)

)
− (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
2(3x+2)x2 −

(4+11x)
(

d
dx

y(x)
)

2x(3x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4+11x)

(
d
dx

y(x)
)

2x(3x+2) + (x−1)y(x)
2(3x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4+11x
2x(3x+2) , P3(x) = x−1

2(3x+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 11x)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−1(2k + 2r − 1) (3k − 2 + 3r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
((3k

2 + 3r
2 − 1

)
ak−1 + ak

(
k + r + 1

2

)) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 1
4
((3k

2 + 1
2 +

3r
2

)
ak + ak+1

(
k + 3

2 + r
)) (

k + r + 1
2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − (3k+3r+1)ak

2k+3+2r

• Recursion relation for r = −1
2

ak+1 = −
(
3k− 1

2
)
ak

2k+2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = −
(
3k− 1

2
)
ak

2k+2

]
• Recursion relation for r = 1

2

ak+1 = −
(
3k+ 5

2
)
ak

2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = −
(
3k+ 5

2
)
ak

2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = −

(
3k− 1

2
)
ak

2k+2 , bk+1 = −
(
3k+ 5

2
)
bk

2k+4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 19� �
dsolve(2*x^2*(2+3*x)*diff(diff(y(x),x),x)+x*(4+11*x)*diff(y(x),x)-(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = c2(2 + 3x)1/6 + c1√

x

Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 32� �
DSolve[{2*x^2*(2+3*x)*D[y[x],{x,2}]+x*(4+11*x)*D[y[x],x]-(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

6
√
6x+ 4 + 25/6c1√

x
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2.1.518 problem 534

Solved as second order ode using Kovacic algorithm . . . . . . . . .3458
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3462
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3464
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3464
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3465

Internal problem ID [9366]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 534
Date solved : Thursday, December 12, 2024 at 10:11:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(2 + x) y′′ + 5x(1− x) y′ − (2− 8x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.842 (sec)

Writing the ode as

x2(2 + x) y′′ +
(
−5x2 + 5x

)
y′ + (8x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(2 + x)
B = −5x2 + 5x (3)
C = 8x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 126x+ 21
4 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 126x+ 21

t = 4
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 126x+ 21
4 (x2 + 2x)2

)
z(x) (7)



chapter 2. book solved problems 3459

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.981: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 285
16 (2 + x)2

+ 147
16 (2 + x) −

147
16x + 21

16x2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 285
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 19

4
α−
c = 1

2 −
√
1 + 4b = −15

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 126x+ 21

4 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 126x+ 21
4 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 19
4 −15

4

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

2 −
(
−9
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 15
4 (2 + x) −

3
4x + (−) (0)

= − 15
4 (2 + x) −

3
4x

= − 3(3x+ 1)
2x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(
− 15
4 (2 + x) −

3
4x

)(
4x3 + 3x2a3 + 2a2x+ a1

)
+
((

15
4 (2 + x)2

+ 3
4x2

)
+
(
− 15
4 (2 + x) −

3
4x

)2

−
(
3x2 − 126x+ 21
4 (x2 + 2x)2

))
= 0

3(4 + a3)x3 + (8a2 + 3a3)x2 + (15a1 − 2a2)x+ 24a0 − 3a1
x (2 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
40 , a1 =

1
5 , a2 =

3
2 , a3 = −4

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 4x3 + 3
2x

2 + 1
5x+ 1

40

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 4x3 + 3

2x
2 + 1

5x+ 1
40

)
e
∫ (

− 15
4(2+x)−

3
4x

)
dx

=
(
x4 − 4x3 + 3

2x
2 + 1

5x+ 1
40

)
e−

15 ln(2+x)
4 − 3 ln(x)

4

= 40x4 − 160x3 + 60x2 + 8x+ 1
40 (2 + x)15/4 x3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−5x2+5x
x2(2+x) dx

= z1e
15 ln(2+x)

4 − 5 ln(x)
4

= z1

(
(2 + x)15/4

x5/4

)

Which simplifies to

y1 =
40x4 − 160x3 + 60x2 + 8x+ 1

40x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−5x2+5x

x2(2+x) dx

(y1)2
dx

= y1

∫
e

15 ln(2+x)
2 − 5 ln(x)

2

(y1)2
dx

= y1

−
10x5/2√2 + x

(
−8x5

√
x (2 + x) + 4200 ln

(√
x(2+x)−x

x

)
x4 − 4200 ln

(
x+
√

x(2+x)
x

)
x4 − 328x4

√
x (2 + x)− 16800 ln

(√
x(2+x)−x

x

)
x3 + 16800 ln

(
x+
√

x(2+x)
x

)
x3 + 13974

√
x (2 + x)x3 + 6300 ln

(√
x(2+x)−x

x

)
x2 − 6300 ln

(
x+
√

x(2+x)
x

)
x2 − 26734x2

√
x (2 + x) + 840 ln

(√
x(2+x)−x

x

)
x− 840 ln

(
x+
√

x(2+x)
x

)
x+ 805

√
x (2 + x)x+ 105 ln

(√
x(2+x)−x

x

)
− 105 ln

(
x+
√

x(2+x)
x

)
+ 105

√
x (2 + x)

)
√

x (2 + x)
(
−
√

x (2 + x) + x
)2

(40x4 − 160x3 + 60x2 + 8x+ 1)
(
x+

√
x (2 + x)

)2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
40x4 − 160x3 + 60x2 + 8x+ 1

40x2

)

+c2

40x4 − 160x3 + 60x2 + 8x+ 1
40x2

−
10x5/2√2 + x

(
−8x5

√
x (2 + x) + 4200 ln

(√
x(2+x)−x

x

)
x4 − 4200 ln

(
x+
√

x(2+x)
x

)
x4 − 328x4

√
x (2 + x)− 16800 ln

(√
x(2+x)−x

x

)
x3 + 16800 ln

(
x+
√

x(2+x)
x

)
x3 + 13974

√
x (2 + x)x3 + 6300 ln

(√
x(2+x)−x

x

)
x2 − 6300 ln

(
x+
√

x(2+x)
x

)
x2 − 26734x2

√
x (2 + x) + 840 ln

(√
x(2+x)−x

x

)
x− 840 ln

(
x+
√

x(2+x)
x

)
x+ 805

√
x (2 + x)x+ 105 ln

(√
x(2+x)−x

x

)
− 105 ln

(
x+
√

x(2+x)
x

)
+ 105

√
x (2 + x)

)
√

x (2 + x)
(
−
√

x (2 + x) + x
)2

(40x4 − 160x3 + 60x2 + 8x+ 1)
(
x+

√
x (2 + x)

)2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x(1− x)

(
d
dx
y(x)

)
− (2− 8x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(4x−1)y(x)
(x+2)x2 +

5(x−1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
5(x−1)

(
d
dx

y(x)
)

x(x+2) + 2(4x−1)y(x)
(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 5(x−1)
x(x+2) , P3(x) = 2(4x−1)

(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −15
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x2(x+ 2)
(

d2

dx2y(x)
)
− 5x(x− 1)

(
d
dx
y(x)

)
+ (8x− 2) y(x) = 0
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• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u3 − 4u2 + 4u)
(

d2

du2y(u)
)
+ (−5u2 + 25u− 30)

(
d
du
y(u)

)
+ (8u− 18) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(−17 + 2r)u−1+r + (2a1(1 + r) (−15 + 2r)− a0(4r2 − 29r + 18))ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (2k − 15 + 2r)− ak(4k2 + 8kr + 4r2 − 29k − 29r + 18) + ak−1(k − 3 + r) (k − 5 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−17 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 172

}
• Each term must be 0

2a1(1 + r) (−15 + 2r)− a0(4r2 − 29r + 18) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + ak−1 + 4ak+1) k2 + ((−8ak + 2ak−1 + 8ak+1) r + 29ak − 8ak−1 − 26ak+1) k + (−4ak + ak−1 + 4ak+1) r2 + (29ak − 8ak−1 − 26ak+1) r − 18ak + 15ak−1 − 30ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + ak + 4ak+2) (k + 1)2 + ((−8ak+1 + 2ak + 8ak+2) r + 29ak+1 − 8ak − 26ak+2) (k + 1) + (−4ak+1 + ak + 4ak+2) r2 + (29ak+1 − 8ak − 26ak+2) r − 18ak+1 + 15ak − 30ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−4k2ak+1+2krak−8krak+1+r2ak−4r2ak+1−6kak+21kak+1−6rak+21rak+1+8ak+7ak+1
2(2k2+4kr+2r2−9k−9r−26)

• Recursion relation for r = 0
ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26) ,−30a1 − 18a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1
2(2k2−9k−26) ,−30a1 − 18a0 = 0

]
• Recursion relation for r = 17

2
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ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117
4 ak− 207

2 ak+1
2(2k2+25k+42)

• Solution for r = 17
2[

y(u) =
∞∑
k=0

aku
k+ 17

2 , ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117
4 ak− 207

2 ak+1
2(2k2+25k+42) , 38a1 − 121a0

2 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k+
17
2 , ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117

4 ak− 207
2 ak+1

2(2k2+25k+42) , 38a1 − 121a0
2 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k+
17
2

)
, ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26) ,−30a1 − 18a0 = 0, bk+2 = −k2bk−4k2bk+1+11kbk−47kbk+1+ 117
4 bk− 207

2 bk+1
2(2k2+25k+42) , 38b1 − 121b0

2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.168 (sec)
Leaf size : 113� �
dsolve(x^2*(x+2)*diff(diff(y(x),x),x)+5*x*(1-x)*diff(y(x),x)-(2-8*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1(40x4 − 160x3 + 60x2 + 8x+ 1)

x2

+
4c2
(
1050x3/2(x4 − 4x3 + 3

2x
2 + 1

5x+ 1
40

)
arcsinh

(√
x
√
2

2

)
+
√
x+ 2x2(x5 + 41x4 − 6987

4 x3 + 13367
4 x2 − 805

8 x− 105
8

))
(−2− x)3/4

(x+ 2)3/4 x7/2
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Mathematica DSolve solution

Solving time : 0.258 (sec)
Leaf size : 114� �
DSolve[{x^2*(2+x)*D[y[x],{x,2}]+5*x*(1-x)*D[y[x],x]-(2-8*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
1050c2(40x4 − 160x3 + 60x2 + 8x+ 1) arctanh

(
1√
x

x+2

)
+ 2c1(40x4 − 160x3 + 60x2 + 8x+ 1) + 5c2

√
x
√
x+ 2(8x5 + 328x4 − 13974x3 + 26734x2 − 805x− 105)

80x2
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2.1.519 problem 535

Solved as second order ode using Kovacic algorithm . . . . . . . . .3466
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3470
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3472
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3472
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3472

Internal problem ID [9367]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 535
Date solved : Thursday, December 12, 2024 at 10:11:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

8x2(−x2 + 1
)
y′′ + 2x

(
−13x2 + 1

)
y′ +

(
−9x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.388 (sec)

Writing the ode as(
−8x4 + 8x2) y′′ + (−26x3 + 2x

)
y′ +

(
−9x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −8x4 + 8x2

B = −26x3 + 2x (3)
C = −9x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7x4 − 26x2 − 15
64 (x3 − x)2

(6)

Comparing the above to (5) shows that

s = −7x4 − 26x2 − 15

t = 64
(
x3 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−7x4 − 26x2 − 15

64 (x3 − x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.983: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(x3 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order
2. There is a pole at x = −1 of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4x− 4 − 15

64x2 − 3
16 (x− 1)2

− 3
16 (x+ 1)2

− 1
4 (x+ 1)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
For the pole at x = 1 let b be the coefficient of 1

(x−1)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −7x4 − 26x2 − 15

64 (x3 − x)2

Since the gcd(s, t) = 1. This gives b = − 7
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

8
α−
∞ = 1

2 −
√
1 + 4b = 1

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −7x4 − 26x2 − 15
64 (x3 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
8

3
8

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
8

1
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

8 then

d = α+
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 7

8 −
(
7
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
8x + 1

4x− 4 + 1
4x+ 4 + (0)

= 3
8x + 1

4x− 4 + 1
4x+ 4

= 7x2 − 3
8x3 − 8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
8x + 1

4x− 4 + 1
4x+ 4

)
(0) +

((
− 3
8x2 − 1

4 (x− 1)2
− 1

4 (x+ 1)2
)
+
(

3
8x + 1

4x− 4 + 1
4x+ 4

)2

−
(
−7x4 − 26x2 − 15

64 (x3 − x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

8x+
1

4x−4+
1

4x+4

)
dx

= (x− 1)1/4 (x+ 1)1/4 x3/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−26x3+2x
−8x4+8x2 dx

= z1e
− 3 ln(x−1)

4 − 3 ln(x+1)
4 − ln(x)

8

= z1

(
1

(x− 1)3/4 (x+ 1)3/4 x1/8

)

Which simplifies to

y1 =
x1/4(x2 − 1)1/4

(x− 1)3/4 (x+ 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−26x3+2x

−8x4+8x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x−1)
2 − 3 ln(x+1)

2 − ln(x)
4

(y1)2
dx

= y1

(∫ e−
3 ln(x−1)

2 − 3 ln(x+1)
2 − ln(x)

4 (x− 1)3/2 (x+ 1)3/2
√
x
√
x2 − 1

dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4(x2 − 1)1/4

(x− 1)3/4 (x+ 1)3/4

)
+c2

(
x1/4(x2 − 1)1/4

(x− 1)3/4 (x+ 1)3/4

(∫ e−
3 ln(x−1)

2 − 3 ln(x+1)
2 − ln(x)

4 (x− 1)3/2 (x+ 1)3/2
√
x
√
x2 − 1

dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

8x2(−x2 + 1)
(

d2

dx2y(x)
)
+ 2x(−13x2 + 1)

(
d
dx
y(x)

)
+ (−9x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
9x2−1

)
y(x)

8(x2−1)x2 −
(
13x2−1

)(
d
dx

y(x)
)

4x(x2−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2−1

)(
d
dx

y(x)
)

4x(x2−1) +
(
9x2−1

)
y(x)

8(x2−1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 13x2−1

4x(x2−1) , P3(x) = 9x2−1
8(x2−1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

8(x2 − 1)x2
(

d2

dx2y(x)
)
+ 2x(13x2 − 1)

(
d
dx
y(x)

)
+ (9x2 − 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(8u4 − 32u3 + 40u2 − 16u)
(

d2

du2y(u)
)
+ (26u3 − 78u2 + 76u− 24)

(
d
du
y(u)

)
+ (9u2 − 18u+ 8) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−8a0r(1 + 2r)u−1+r + (−8a1(1 + r) (3 + 2r) + 4a0(1 + 2r) (2 + 5r))ur + (−8a2(2 + r) (5 + 2r) + 4a1(3 + 2r) (7 + 5r)− 2a0(16r2 + 23r + 9))u1+r +
(

∞∑
k=2

(
−8ak+1(k + 1 + r) (2k + 2r + 3) + 4ak(2k + 2r + 1) (5k + 5r + 2)− 2ak−1

(
16(k − 1)2 + 32(k − 1) r + 16r2 + 23k − 14 + 23r

)
+ ak−2(2k − 1 + 2r) (4k − 5 + 4r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−8r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• The coefficients of each power of u must be 0

[−8a1(1 + r) (3 + 2r) + 4a0(1 + 2r) (2 + 5r) = 0,−8a2(2 + r) (5 + 2r) + 4a1(3 + 2r) (7 + 5r)− 2a0(16r2 + 23r + 9) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
10r2+9r+2

)
2(2r2+5r+3) , a2 = a0

(
34r3+76r2+41r+5

)
4(2r3+11r2+19r+10)

}
• Each term in the series must be 0, giving the recursion relation

8(5ak + ak−2 − 4ak−1 − 2ak+1) k2 + 2(8(5ak + ak−2 − 4ak−1 − 2ak+1) r + 18ak − 7ak−2 + 9ak−1 − 20ak+1) k + 8(5ak + ak−2 − 4ak−1 − 2ak+1) r2 + 2(18ak − 7ak−2 + 9ak−1 − 20ak+1) r + 8ak + 5ak−2 − 4ak−1 − 24ak+1 = 0
• Shift index using k− >k + 2

8(5ak+2 + ak − 4ak+1 − 2ak+3) (k + 2)2 + 2(8(5ak+2 + ak − 4ak+1 − 2ak+3) r + 18ak+2 − 7ak + 9ak+1 − 20ak+3) (k + 2) + 8(5ak+2 + ak − 4ak+1 − 2ak+3) r2 + 2(18ak+2 − 7ak + 9ak+1 − 20ak+3) r + 8ak+2 + 5ak − 4ak+1 − 24ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+16krak−64krak+1+80krak+2+8r2ak−32r2ak+1+40r2ak+2+18kak−110kak+1+196kak+2+18rak−110rak+1+196rak+2+9ak−96ak+1+240ak+2
8(2k2+4kr+2r2+13k+13r+21)

• Recursion relation for r = 0
ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21) , a1 = a0
3 , a2 =

a0
8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2
8(2k2+13k+21) , a1 = a0

3 , a2 =
a0
8

]
• Recursion relation for r = −1

2

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2
8(2k2+11k+15)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2
8(2k2+11k+15) , a1 = 0, a2 = −a0

16

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
1
2 , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2

8(2k2+11k+15) , a1 = 0, a2 = −a0
16

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
1
2

)
, ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21) , a1 = a0
3 , a2 =

a0
8 , bk+3 = 8k2bk−32k2bk+1+40k2bk+2+10kbk−78kbk+1+156kbk+2+2bk−49bk+1+152bk+2

8(2k2+11k+15) , b1 = 0, b2 = − b0
16

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.148 (sec)
Leaf size : 34� �
dsolve(8*x^2*(-x^2+1)*diff(diff(y(x),x),x)+2*x*(-13*x^2+1)*diff(y(x),x)+(-9*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

x1/4(LegendreQ (−1
8 ,

1
8 ,
√
−x2 + 1

)
c2x

1/8 + c1
)

√
x2 − 1

Mathematica DSolve solution

Solving time : 0.126 (sec)
Leaf size : 47� �
DSolve[{8*x^2*(1-x^2)*D[y[x],{x,2}]+2*x*(1-13*x^2)*D[y[x],x]+(1-9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x
(
4c2 4

√
xHypergeometric2F1

(1
8 ,

1
2 ,

9
8 , x

2)+ c1
)

√
1− x2



chapter 2. book solved problems 3473

2.1.520 problem 536

Solved as second order ode using Kovacic algorithm . . . . . . . . .3473
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3477
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3478
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3478
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3479

Internal problem ID [9368]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 536
Date solved : Thursday, December 12, 2024 at 10:11:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − 2x

(
−x2 + 2

)
y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.386 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 − 4x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 − 4x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 2
(x3 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 2

t =
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 + 2
(x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.985: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
+ 7i

4 (x− i) −
7i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 2
(x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
i 2 0 3

2 −1
2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 2
x
− 1

2 (x− i) −
1

2 (x+ i) + (−) (0)

= 2
x
− 1

2 (x− i) −
1

2 (x+ i)

= x2 + 2
x3 + x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 1

2 (x− i) −
1

2 (x+ i)

)
(0) +

((
− 2
x2 + 1

2 (x− i)2
+ 1

2 (x+ i)2
)
+
(
2
x
− 1

2 (x− i) −
1

2 (x+ i)

)2

−
(

−x2 + 2
(x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 1

2(x−i)−
1

2(x+i)

)
dx

= x2
√
x2 + 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3−4x
x4+x2 dx

= z1e
2 ln(x)−

3 ln
(
x2+1

)
2

= z1

(
x2

(x2 + 1)3/2

)

Which simplifies to

y1 =
x4

(x2 + 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3−4x

x4+x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
−(3x2 + 1) (x2 + 1)3 e4 ln(x)−3 ln

(
x2+1

)
3x7

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4

(x2 + 1)2
)
+ c2

(
x4

(x2 + 1)2

(
−(3x2 + 1) (x2 + 1)3 e4 ln(x)−3 ln

(
x2+1

)
3x7

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− 2x(−x2 + 2)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
x2(x2+1) −

2
(
x2−2

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
x2−2

)(
d
dx

y(x)
)

x(x2+1) + 4y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
(
x2−2

)
x(x2+1) , P3(x) = 4

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ 2x(x2 − 2)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−4 + r)xr + a1r(−3 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 4) + ak−2(k − 2 + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 4}
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• Each term must be 0
a1r(−3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 4) + ak−2(k − 2 + r)) = 0

• Shift index using k− >k + 2
(k + r + 1) (ak+2(k − 2 + r) + ak(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r)

k−2+r

• Recursion relation for r = 1
ak+2 = −ak(k+1)

k−1

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+1)

k−1 , a1 = 0
]

• Recursion relation for r = 4
ak+2 = −ak(k+4)

k+2

• Solution for r = 4[
y(x) =

∞∑
k=0

akx
k+4, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
4+k

)
, ak+2 = −ak(k+1)

k−1 , a1 = 0, bk+2 = − bk(4+k)
k+2 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 26� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-2*x*(-x^2+2)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = x(c1x3 + 3c2x2 + c2)

(x2 + 1)2
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Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 35� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-2*x*(2-x^2)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −−3c1x4 + 3c2x3 + c2x

3 (x2 + 1)2
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2.1.521 problem 537

Solved as second order ode using Kovacic algorithm . . . . . . . . .3480
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3484
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3486
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3486
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3486

Internal problem ID [9369]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 537
Date solved : Thursday, December 12, 2024 at 10:11:39 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x
(
x2 + 3

)
y′′ +

(
−x2 + 2

)
y′ − 8xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as (
x3 + 3x

)
y′′ +

(
−x2 + 2

)
y′ − 8xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + 3x
B = −x2 + 2 (3)
C = −8x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35x4 + 74x2 − 8
4 (x3 + 3x)2

(6)

Comparing the above to (5) shows that

s = 35x4 + 74x2 − 8

t = 4
(
x3 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
35x4 + 74x2 − 8
4 (x3 + 3x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.987: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
3 of order

2. There is a pole at x = −i
√
3 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 85
144

(
x− i

√
3
)2 + 85

144
(
x+ i

√
3
)2 − 187i

√
3

144
(
x− i

√
3
) + 187i

√
3

144
(
x+ i

√
3
) − 2

9x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
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For the pole at x = i
√
3 let b be the coefficient of 1(

x−i
√
3
)2 in the partial fractions decom-

position of r given above. Therefore b = 85
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 17

12
α−
c = 1

2 −
√
1 + 4b = − 5

12
For the pole at x = −i

√
3 let b be the coefficient of 1(

x+i
√
3
)2 in the partial fractions

decomposition of r given above. Therefore b = 85
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 17

12
α−
c = 1

2 −
√
1 + 4b = − 5

12
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35x4 + 74x2 − 8

4 (x3 + 3x)2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35x4 + 74x2 − 8
4 (x3 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2
3

1
3

i
√
3 2 0 17

12 − 5
12

−i
√
3 2 0 17

12 − 5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α+
c1 + α+

c2 + α+
c3

)
= 7

2 −
(
7
2

)
= 0



chapter 2. book solved problems 3483

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
) + (0)

= 2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
)

= 2
3x + 17x

6x2 + 18

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
)) (0) +

(− 2
3x2 − 17

12
(
x− i

√
3
)2 − 17

12
(
x+ i

√
3
)2
)

+
(

2
3x + 17

12
(
x− i

√
3
) + 17

12
(
x+ i

√
3
))2

−
(
35x4 + 74x2 − 8
4 (x3 + 3x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

3x+
17

12
(
x−i

√
3
)+ 17

12
(
x+i

√
3
)
)
dx

= x2/3(x2 + 3
)17/12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+2
x3+3x dx

= z1e
− ln(x)

3 +
5 ln

(
x2+3

)
12

= z1

(
(x2 + 3)5/12

x1/3

)

Which simplifies to

y1 = x1/3(x2 + 3
)11/6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x2+2

x3+3x dx

(y1)2
dx

= y1

∫
e−

2 ln(x)
3 +

5 ln
(
x2+3

)
6

(y1)2
dx

= y1

−x1/3(8x4 + 44x2 + 55) e−
2 ln(x)

3 +
5 ln

(
x2+3

)
6

55 (x2 + 3)8/3


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3(x2+3

)11/6)+c2

x1/3(x2+3
)11/6−x1/3(8x4 + 44x2 + 55) e−

2 ln(x)
3 +

5 ln
(
x2+3

)
6

55 (x2 + 3)8/3



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x2 + 3)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 8y(x)
x2+3 +

(
x2−2

)(
d
dx

y(x)
)

x(x2+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−2

)(
d
dx

y(x)
)

x(x2+3) − 8y(x)
x2+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(x2+3) , P3(x) = − 8

x2+3

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 + 3)
(

d2

dx2y(x)
)
+ (−x2 + 2)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 3r)x−1+r + a1(1 + r) (2 + 3r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (3k + 2 + 3r) + ak−1(k + r + 1) (k − 5 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1)

(
ak−1(k − 5 + r) + 3

(
k + r + 2

3

)
ak+1

)
= 0

• Shift index using k− >k + 1
(k + r + 2)

(
ak(k + r − 4) + 3

(
k + 5

3 + r
)
ak+2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r−4)

3k+5+3r

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = −ak(k−4)

3k+5

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k−4)

3k+5 , 2a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −ak
(
k− 11

3
)

3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak
(
k− 11

3
)

3k+6 , 4a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −ak(−4+k)

3k+5 , 2a1 = 0, bk+2 = − bk
(
k− 11

3
)

3k+6 , 4b1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 32� �
dsolve(x*(x^2+3)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)-8*x*y(x) = 0,

y(x),singsol=all)� �
y = c1x

1/3(x2 + 3
)11/6 + c2(8x4 + 44x2 + 55)

8

Mathematica DSolve solution

Solving time : 0.139 (sec)
Leaf size : 41� �
DSolve[{x*(3+x^2)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]-8*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

3
√
x
(
x2 + 3

)11/6 − 1
55c2

(
8x4 + 44x2 + 55

)
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2.1.522 problem 538

Solved as second order ode using Kovacic algorithm . . . . . . . . .3487
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3491
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3493
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3493
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3493

Internal problem ID [9370]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 538
Date solved : Thursday, December 12, 2024 at 10:11:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(−x2 + 1
)
y′′ + x

(
−19x2 + 7

)
y′ −

(
14x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.374 (sec)

Writing the ode as(
−4x4 + 4x2) y′′ + (−19x3 + 7x

)
y′ +

(
−14x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −4x4 + 4x2

B = −19x3 + 7x (3)
C = −14x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −15x4 − 42x2 + 9
64 (x3 − x)2

(6)

Comparing the above to (5) shows that

s = −15x4 − 42x2 + 9

t = 64
(
x3 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−15x4 − 42x2 + 9

64 (x3 − x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.989: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(x3 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order
2. There is a pole at x = −1 of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
64x2 − 3

16 (x− 1)2
− 3

16 (x+ 1)2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
For the pole at x = 1 let b be the coefficient of 1

(x−1)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −15x4 − 42x2 + 9

64 (x3 − x)2

Since the gcd(s, t) = 1. This gives b = −15
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

8
α−
∞ = 1

2 −
√
1 + 4b = 3

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −15x4 − 42x2 + 9
64 (x3 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 9
8 −1

8

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
8

3
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

8 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 3

8 −
(
3
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 1
8x + 1

4x− 4 + 1
4x+ 4 + (−) (0)

= − 1
8x + 1

4x− 4 + 1
4x+ 4

= 3x2 + 1
8x3 − 8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
8x + 1

4x− 4 + 1
4x+ 4

)
(0) +

((
1
8x2 − 1

4 (x− 1)2
− 1

4 (x+ 1)2
)
+
(
− 1
8x + 1

4x− 4 + 1
4x+ 4

)2

−
(
−15x4 − 42x2 + 9

64 (x3 − x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
8x+

1
4x−4+

1
4x+4

)
dx

= (x− 1)1/4 (x+ 1)1/4

x1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−19x3+7x
−4x4+4x2 dx

= z1e
− 7 ln(x)

8 − 3 ln(x−1)
4 − 3 ln(x+1)

4

= z1

(
1

x7/8 (x− 1)3/4 (x+ 1)3/4

)

Which simplifies to

y1 =
(x2 − 1)1/4

x (x− 1)3/4 (x+ 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−19x3+7x

−4x4+4x2 dx

(y1)2
dx

= y1

∫
e−

7 ln(x)
4 − 3 ln(x−1)

2 − 3 ln(x+1)
2

(y1)2
dx

= y1

(∫ e−
7 ln(x)

4 − 3 ln(x−1)
2 − 3 ln(x+1)

2 x2(x− 1)3/2 (x+ 1)3/2√
x2 − 1

dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 1)1/4

x (x− 1)3/4 (x+ 1)3/4

)
+c2

(
(x2 − 1)1/4

x (x− 1)3/4 (x+ 1)3/4

(∫ e−
7 ln(x)

4 − 3 ln(x−1)
2 − 3 ln(x+1)

2 x2(x− 1)3/2 (x+ 1)3/2√
x2 − 1

dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(−x2 + 1)
(

d2

dx2y(x)
)
+ x(−19x2 + 7)

(
d
dx
y(x)

)
− (14x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
14x2+1

)
y(x)

4(x2−1)x2 −
(
19x2−7

)(
d
dx

y(x)
)

4x(x2−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
19x2−7

)(
d
dx

y(x)
)

4x(x2−1) +
(
14x2+1

)
y(x)

4(x2−1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 19x2−7

4x(x2−1) , P3(x) = 14x2+1
4(x2−1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4(x2 − 1)x2
(

d2

dx2y(x)
)
+ x(19x2 − 7)

(
d
dx
y(x)

)
+ (14x2 + 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u4 − 16u3 + 20u2 − 8u)
(

d2

du2y(u)
)
+ (19u3 − 57u2 + 50u− 12)

(
d
du
y(u)

)
+ (14u2 − 28u+ 15) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−4a0r(1 + 2r)u−1+r + (−4a1(1 + r) (3 + 2r) + 5a0(4r2 + 6r + 3))ur + (−4a2(2 + r) (5 + 2r) + 5a1(4r2 + 14r + 13)− a0(16r2 + 41r + 28))u1+r +
(

∞∑
k=2

(
−4ak+1(k + 1 + r) (2k + 3 + 2r) + 5ak(4k2 + 8kr + 4r2 + 6k + 6r + 3)− ak−1

(
16(k − 1)2 + 32(k − 1) r + 16r2 + 41k − 13 + 41r

)
+ ak−2(k + r) (4k − 1 + 4r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• The coefficients of each power of u must be 0

[−4a1(1 + r) (3 + 2r) + 5a0(4r2 + 6r + 3) = 0,−4a2(2 + r) (5 + 2r) + 5a1(4r2 + 14r + 13)− a0(16r2 + 41r + 28) = 0]
• Solve for the dependent coefficient(s){

a1 = 5a0
(
4r2+6r+3

)
4(2r2+5r+3) , a2 = a0

(
272r4+1352r3+2464r2+1948r+639

)
16(4r4+28r3+71r2+77r+30)

}
• Each term in the series must be 0, giving the recursion relation

4(5ak + ak−2 − 4ak−1 − 2ak+1) k2 + (8(5ak + ak−2 − 4ak−1 − 2ak+1) r + 30ak − ak−2 − 9ak−1 − 20ak+1) k + 4(5ak + ak−2 − 4ak−1 − 2ak+1) r2 + (30ak − ak−2 − 9ak−1 − 20ak+1) r + 15ak − 3ak−1 − 12ak+1 = 0
• Shift index using k− >k + 2

4(5ak+2 + ak − 4ak+1 − 2ak+3) (k + 2)2 + (8(5ak+2 + ak − 4ak+1 − 2ak+3) r + 30ak+2 − ak − 9ak+1 − 20ak+3) (k + 2) + 4(5ak+2 + ak − 4ak+1 − 2ak+3) r2 + (30ak+2 − ak − 9ak+1 − 20ak+3) r + 15ak+2 − 3ak+1 − 12ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = 4k2ak−16k2ak+1+20k2ak+2+8krak−32krak+1+40krak+2+4r2ak−16r2ak+1+20r2ak+2+15kak−73kak+1+110kak+2+15rak−73rak+1+110rak+2+14ak−85ak+1+155ak+2
4(2k2+4kr+2r2+13k+13r+21)

• Recursion relation for r = 0
ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21) , a1 = 5a0
4 , a2 = 213a0

160

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2
4(2k2+13k+21) , a1 = 5a0

4 , a2 = 213a0
160

]
• Recursion relation for r = −1

2

ak+3 =
4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15

2 ak− 105
2 ak+1+105ak+2

4(2k2+11k+15)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+3 =
4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15

2 ak− 105
2 ak+1+105ak+2

4(2k2+11k+15) , a1 = 5a0
4 , a2 = 43a0

32

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
1
2 , ak+3 =

4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15
2 ak− 105

2 ak+1+105ak+2
4(2k2+11k+15) , a1 = 5a0

4 , a2 = 43a0
32

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
1
2

)
, ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21) , a1 = 5a0
4 , a2 = 213a0

160 , bk+3 =
4k2bk−16k2bk+1+20k2bk+2+11kbk−57kbk+1+90kbk+2+ 15

2 bk− 105
2 bk+1+105bk+2

4(2k2+11k+15) , b1 = 5b0
4 , b2 = 43b0

32

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.953 (sec)
Leaf size : 44� �
dsolve(4*x^2*(-x^2+1)*diff(diff(y(x),x),x)+x*(-19*x^2+7)*diff(y(x),x)-(14*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2 LegendreQ
(
−3

8 ,
5
8 ,
√
−x2 + 1

)
+ c1 LegendreP

(
−3

8 ,
5
8 ,
√
−x2 + 1

)
x3/8

√
x2 − 1

Mathematica DSolve solution

Solving time : 0.121 (sec)
Leaf size : 50� �
DSolve[{4*x^2*(1-x^2)*D[y[x],{x,2}]+x*(7-19*x^2)*D[y[x],x]-(1+14*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4c2x5/4Hypergeometric2F1
(1
2 ,

5
8 ,

13
8 , x

2)+ 5c1
5x

√
1− x2
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2.1.523 problem 539

Solved as second order ode using Kovacic algorithm . . . . . . . . .3494
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3498
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3500
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3500
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3500

Internal problem ID [9371]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 539
Date solved : Thursday, December 12, 2024 at 10:11:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(−x2 + 2
)
y′′ + x

(
−11x2 + 1

)
y′ +

(
−5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.424 (sec)

Writing the ode as(
−3x4 + 6x2) y′′ + (−11x3 + x

)
y′ +

(
−5x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −3x4 + 6x2

B = −11x3 + x (3)
C = −5x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x4 − 4x2 − 35
36 (x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = −5x4 − 4x2 − 35

t = 36
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−5x4 − 4x2 − 35
36 (x3 − 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.991: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of

order 2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144x2 − 7

64
(
x−

√
2
)2 − 7

64
(
x+

√
2
)2 + 31

√
2

384
(
x−

√
2
) − 31

√
2

384
(
x+

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
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For the pole at x =
√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
For the pole at x = −

√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −5x4 − 4x2 − 35

36 (x3 − 2x)2

Since the gcd(s, t) = 1. This gives b = − 5
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

6
α−
∞ = 1

2 −
√
1 + 4b = 1

6
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −5x4 − 4x2 − 35
36 (x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12√

2 2 0 7
8

1
8

−
√
2 2 0 7

8
1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
6

1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

6 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 5

6 −
(
5
6

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2
+ (0)

= 7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2

= 5x2 − 7
6x3 − 12x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2

)
(0) +

((
− 7
12x2 − 1

8
(
x−

√
2
)2 − 1

8
(
x+

√
2
)2
)

+
(

7
12x + 1

8x− 8
√
2
+ 1

8x+ 8
√
2

)2

−
(
−5x4 − 4x2 − 35
36 (x3 − 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

12x+
1

8x−8
√
2+

1
8x+8

√
2

)
dx

=
(
x+

√
2
)1/8

x7/12
(
x−

√
2
)1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−11x3+x
−3x4+6x2 dx

= z1e
−

7 ln
(
x2−2

)
8 − ln(x)

12

= z1

(
1

(x2 − 2)7/8 x1/12

)

Which simplifies to

y1 =
√
x

(x2 − 2)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− −11x3+x

−3x4+6x2 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
x2−2

)
4 − ln(x)

6

(y1)2
dx

= y1

∫ e−
7 ln

(
x2−2

)
4 − ln(x)

6 (x2 − 2)3/2

x
dx


Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(x2 − 2)3/4

)
+ c2

 √
x

(x2 − 2)3/4

∫ e−
7 ln

(
x2−2

)
4 − ln(x)

6 (x2 − 2)3/2

x
dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2(−x2 + 2)
(

d2

dx2y(x)
)
+ x(−11x2 + 1)

(
d
dx
y(x)

)
+ (−5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2−1

)
y(x)

3x2(x2−2) −
(
11x2−1

)(
d
dx

y(x)
)

3x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2−1

)(
d
dx

y(x)
)

3x(x2−2) +
(
5x2−1

)
y(x)

3x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2−1

3x(x2−2) , P3(x) = 5x2−1
3x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2(x2 − 2)
(

d2

dx2y(x)
)
+ x(11x2 − 1)

(
d
dx
y(x)

)
+ (5x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 3r) (−1 + 2r)xr − a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(−ak(3k + 3r − 1) (2k + 2r − 1) + ak−2(3k + 3r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

−a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

−6
(

(−k−r+1)ak−2
2 +

(
k + r − 1

2

)
ak
) (

k − 1
3 + r

)
= 0

• Shift index using k− >k + 2

−6
(

(−k−1−r)ak
2 +

(
k + 3

2 + r
)
ak+2

) (
k + 5

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = (k+r+1)ak

2k+3+2r

• Recursion relation for r = 1
2

ak+2 =
(
k+ 3

2
)
ak

2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 =
(
k+ 3

2
)
ak

2k+4 , a1 = 0
]

• Recursion relation for r = 1
3

ak+2 =
(
k+ 4

3
)
ak

2k+ 11
3

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 =
(
k+ 4

3
)
ak

2k+ 11
3

, a1 = 0
]

• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 =

(
k+ 3

2
)
ak

2k+4 , a1 = 0, bk+2 =
(
k+ 4

3
)
bk

2k+ 11
3
, b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.126 (sec)
Leaf size : 35� �
dsolve(3*x^2*(-x^2+2)*diff(diff(y(x),x),x)+x*(-11*x^2+1)*diff(y(x),x)+(-5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x

(−2x2 + 4)3/4
+ c2x

1/3 hypergeom
([

2
3 , 1
]
,

[
11
12

]
,
x2

2

)

Mathematica DSolve solution

Solving time : 0.152 (sec)
Leaf size : 57� �
DSolve[{3*x^2*(2-x^2)*D[y[x],{x,2}]+x*(1-11*x^2)*D[y[x],x]+(1-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c1
√
x− 3 23/4c2 3

√
xHypergeometric2F1

(
− 1

12 ,
1
4 ,

11
12 ,

x2

2

)
(2− x2)3/4
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2.1.524 problem 540

Solved as second order ode using Kovacic algorithm . . . . . . . . .3501
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3505
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3507
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3507
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3507

Internal problem ID [9372]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 540
Date solved : Thursday, December 12, 2024 at 10:11:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 2
)
y′′ − x

(
−7x2 + 12

)
y′ +

(
3x2 + 7

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as (
2x4 + 4x2) y′′ + (7x3 − 12x

)
y′ +

(
3x2 + 7

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 4x2

B = 7x3 − 12x (3)
C = 3x2 + 7

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x4 − 72x2 + 128
16 (x3 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x4 − 72x2 + 128

t = 16
(
x3 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x4 − 72x2 + 128

16 (x3 + 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.993: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x3 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2 of

order 2. There is a pole at x = −i
√
2 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 65

64
(
x− i

√
2
)2 + 65

64
(
x+ i

√
2
)2 + 135i

√
2

128
(
x− i

√
2
) − 135i

√
2

128
(
x+ i

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 65
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

8
α−
c = 1

2 −
√
1 + 4b = −5

8
For the pole at x = −i

√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 65
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

8
α−
c = 1

2 −
√
1 + 4b = −5

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x4 − 72x2 + 128

16 (x3 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x4 − 72x2 + 128
16 (x3 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
i
√
2 2 0 13

8 −5
8

−i
√
2 2 0 13

8 −5
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3

4 −
(
3
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
) + (0)

= 2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
)

= 2
x
− 5x

4x2 + 8

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
)) (0) +

(− 2
x2 + 5

8
(
x− i

√
2
)2 + 5

8
(
x+ i

√
2
)2
)

+
(
2
x
− 5

8
(
x− i

√
2
) − 5

8
(
x+ i

√
2
))2

−
(
−3x4 − 72x2 + 128

16 (x3 + 2x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 5

8
(
x−i

√
2
)− 5

8
(
x+i

√
2
)
)
dx

= x2

(x2 + 2)5/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x3−12x
2x4+4x2 dx

= z1e
3 ln(x)

2 −
13 ln

(
x2+2

)
8

= z1

(
x3/2

(x2 + 2)13/8

)

Which simplifies to

y1 =
x7/2

(x2 + 2)9/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 7x3−12x

2x4+4x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)−

13 ln
(
x2+2

)
4

(y1)2
dx

= y1

∫ e3 ln(x)−
13 ln

(
x2+2

)
4 (x2 + 2)9/2

x7 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x7/2

(x2 + 2)9/4

)
+ c2

 x7/2

(x2 + 2)9/4

∫ e3 ln(x)−
13 ln

(
x2+2

)
4 (x2 + 2)9/2

x7 dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + 2)
(

d2

dx2y(x)
)
− x(−7x2 + 12)

(
d
dx
y(x)

)
+ (3x2 + 7) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+7

)
y(x)

2(x2+2)x2 −
(
7x2−12

)(
d
dx

y(x)
)

2x(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
7x2−12

)(
d
dx

y(x)
)

2x(x2+2) +
(
3x2+7

)
y(x)

2(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 7x2−12

2x(x2+2) , P3(x) = 3x2+7
2(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 7
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ x(7x2 − 12)

(
d
dx
y(x)

)
+ (3x2 + 7) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−7 + 2r)xr + a1(1 + 2r) (−5 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 7) + ak−2(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

7
2

}
• Each term must be 0

a1(1 + 2r) (−5 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(

ak−2(k+r−1)
2 + ak

(
k + r − 7

2

)) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2

4
(

ak(k+r+1)
2 + ak+2

(
k − 3

2 + r
)) (

k + 3
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k−3+2r

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k−2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k−2 , a1 = 0
]

• Recursion relation for r = 7
2

ak+2 = −ak
(
k+ 9

2
)

2k+4

• Solution for r = 7
2[

y(x) =
∞∑
k=0

akx
k+ 7

2 , ak+2 = −ak
(
k+ 9

2
)

2k+4 , a1 = 0
]

• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 7

2

)
, ak+2 = −ak

(
k+ 3

2
)

2k−2 , a1 = 0, bk+2 = − bk
(
k+ 9

2
)

2k+4 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.126 (sec)
Leaf size : 35� �
dsolve(2*x^2*(x^2+2)*diff(diff(y(x),x),x)-x*(-7*x^2+12)*diff(y(x),x)+(3*x^2+7)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

7/2

(2x2 + 4)9/4
+ c2

√
x hypergeom

([
3
4 , 1
]
,

[
−1
2

]
,−x2

2

)

Mathematica DSolve solution

Solving time : 0.163 (sec)
Leaf size : 57� �
DSolve[{2*x^2*(2+x^2)*D[y[x],{x,2}]-x*(12-7*x^2)*D[y[x],x]+(7+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
3c1x3 − 2 4

√
2c2Hypergeometric2F1

(
−3

2 ,−
5
4 ,−

1
2 ,−

x2

2

))
3 (x2 + 2)9/4
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2.1.525 problem 541

Solved as second order ode using Kovacic algorithm . . . . . . . . .3508
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3512
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3513
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3514
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3514

Internal problem ID [9373]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 541
Date solved : Thursday, December 12, 2024 at 10:11:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 2
)
y′′ + x

(
7x2 + 4

)
y′ −

(
−3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.353 (sec)

Writing the ode as (
2x4 + 4x2) y′′ + (7x3 + 4x

)
y′ +

(
3x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 4x2

B = 7x3 + 4x (3)
C = 3x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 + 24
16 (x2 + 2)2

(6)

Comparing the above to (5) shows that

s = −3x2 + 24

t = 16
(
x2 + 2

)2
Therefore eq. (4) becomes

z′′(x) =
(

−3x2 + 24
16 (x2 + 2)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.995: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2)2. There is a pole at x = i

√
2 of order 2. There is a pole at x = −i

√
2 of

order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
64
(
x− i

√
2
)2 − 15

64
(
x+ i

√
2
)2 − 9i

√
2

128
(
x− i

√
2
) + 9i

√
2

128
(
x+ i

√
2
)

For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
For the pole at x = −i

√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 + 24

16 (x2 + 2)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 + 24
16 (x2 + 2)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2 2 0 5

8
3
8

−i
√
2 2 0 5

8
3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
) + (0)

= 3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
)

= 3x
4x2 + 8



chapter 2. book solved problems 3511

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
)) (0) +

(− 3
8
(
x− i

√
2
)2 − 3

8
(
x+ i

√
2
)2
)

+
(

3
8
(
x− i

√
2
) + 3

8
(
x+ i

√
2
))2

−
(

−3x2 + 24
16 (x2 + 2)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

8
(
x−i

√
2
)+ 3

8
(
x+i

√
2
)
)
dx

=
(
−x2 − 2

)3/8
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x3+4x
2x4+4x2 dx

= z1e
− ln(x)

2 −
5 ln

(
x2+2

)
8

= z1

(
1

√
x (x2 + 2)5/8

)

Which simplifies to

y1 =
(−1)3/8

√
x (x2 + 2)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x3+4x

2x4+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)−

5 ln
(
x2+2

)
4

(y1)2
dx

= y1

(∫
−e− ln(x)−

5 ln
(
x2+2

)
4 x

√
x2 + 2 (−1)1/4 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−1)3/8

√
x (x2 + 2)1/4

)
+c2

(
(−1)3/8

√
x (x2 + 2)1/4

(∫
−e− ln(x)−

5 ln
(
x2+2

)
4 x

√
x2 + 2 (−1)1/4 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ x(7x2 + 4)

(
d
dx
y(x)

)
− (−3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2−1

)
y(x)

2(x2+2)x2 −
(
7x2+4

)(
d
dx

y(x)
)

2x(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
7x2+4

)(
d
dx

y(x)
)

2x(x2+2) +
(
3x2−1

)
y(x)

2(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 7x2+4

2x(x2+2) , P3(x) = 3x2−1
2(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ x(7x2 + 4)

(
d
dx
y(x)

)
+ (3x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(

ak−2(k+r−1)
2 + ak

(
k + r + 1

2

)) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2

4
(

ak(k+r+1)
2 + ak+2

(
k + 5

2 + r
)) (

k + 3
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k+5+2r

• Recursion relation for r = −1
2

ak+2 = −ak
(
k+ 1

2
)

2k+4

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = −ak
(
k+ 1

2
)

2k+4 , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k+6

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k+6 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −ak

(
k+ 1

2
)

2k+4 , a1 = 0, bk+2 = − bk
(
k+ 3

2
)

2k+6 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
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<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.086 (sec)
Leaf size : 35� �
dsolve(2*x^2*(x^2+2)*diff(diff(y(x),x),x)+x*(7*x^2+4)*diff(y(x),x)-(-3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2 LegendreQ
(
−1

4 ,
1
4 ,

i
√
2x
2

)
(x2 + 2)1/8 + c1

(x2 + 2)1/4
√
x

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 68� �
DSolve[{2*x^2*(2+x^2)*D[y[x],{x,2}]+x*(4+7*x^2)*D[y[x],x]-(1-3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c2

8
√
x2 + 2Gamma

(3
4

)
Q

1
4
− 1

4

(
ix√
2

)
+ 23/8c1

√
x

4
√
x2 + 2Gamma

(3
4

)



chapter 2. book solved problems 3515

2.1.526 problem 542

Solved as second order ode using Kovacic algorithm . . . . . . . . .3515
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3519
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3521
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3521
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3521

Internal problem ID [9374]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 542
Date solved : Thursday, December 12, 2024 at 10:11:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2x2 + 1
)
y′′ + 5x

(
6x2 + 1

)
y′ −

(
−40x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.556 (sec)

Writing the ode as (
4x4 + 2x2) y′′ + (30x3 + 5x

)
y′ +

(
40x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 2x2

B = 30x3 + 5x (3)
C = 40x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 20x4 + 12x2 + 21
16 (2x3 + x)2

(6)

Comparing the above to (5) shows that

s = 20x4 + 12x2 + 21

t = 16
(
2x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
20x4 + 12x2 + 21
16 (2x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.997: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(2x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2

2 of
order 2. There is a pole at x = − i

√
2

2 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21
16x2 + 5

16
(
x− i

√
2

2

)2 + 5

16
(
x+ i

√
2

2

)2 + 13i
√
2

16
(
x− i

√
2

2

) − 13i
√
2

16
(
x+ i

√
2

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = i
√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = − i

√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 20x4 + 12x2 + 21

16 (2x3 + x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 20x4 + 12x2 + 21
16 (2x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4
i
√
2

2 2 0 5
4 −1

4

− i
√
2

2 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 5

4 −
(
5
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

) + (0)

= 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

)
= 10x2 + 7

8x3 + 4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

)
 (0) +


− 7

4x2 + 1

4
(
x− i

√
2

2

)2 + 1

4
(
x+ i

√
2

2

)2
+

 7
4x − 1

4
(
x− i

√
2

2

) − 1
4
(
x+ i

√
2

2

)
2

−
(
20x4 + 12x2 + 21
16 (2x3 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 7

4x−
1

4
(
x− i

√
2

2

)− 1

4
(
x+ i

√
2

2

)
dx

= 23/4x7/4

2 (2x2 + 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
30x3+5x
4x4+2x2 dx

= z1e
−

5 ln
(
x
(
2x2+1

))
4

= z1

(
1

(2x3 + x)5/4

)

Which simplifies to

y1 =
23/4x3/4

2 (2x2 + 1)5/4 (2x3 + x)1/4
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 30x3+5x

4x4+2x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
2x3+x

)
2

(y1)2
dx

= y1

(∫ (2x2 + 1)5/2
√
2

(2x3 + x)2 x3/2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
23/4x3/4

2 (2x2 + 1)5/4 (2x3 + x)1/4

)
+c2

(
23/4x3/4

2 (2x2 + 1)5/4 (2x3 + x)1/4

(∫ (2x2 + 1)5/2
√
2

(2x3 + x)2 x3/2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 5x(6x2 + 1)

(
d
dx
y(x)

)
− (−40x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
20x2−1

)
y(x)

x2(2x2+1) −
5
(
6x2+1

)(
d
dx

y(x)
)

2x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(
6x2+1

)(
d
dx

y(x)
)

2x(2x2+1) +
(
20x2−1

)
y(x)

x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 5

(
6x2+1

)
2x(2x2+1) , P3(x) = 20x2−1

x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 5x(6x2 + 1)

(
d
dx
y(x)

)
+ (40x2 − 2) y(x) = 0

• Assume series solution for y(x)
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y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + 2r)xr + a1(3 + r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r − 1) + 2ak−2(k + r + 2) (2k + 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2, 12

}
• Each term must be 0

a1(3 + r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

2(k + r + 2)
(
ak−2(2k + 1 + 2r) +

(
k + r − 1

2

)
ak
)
= 0

• Shift index using k− >k + 2
2(k + r + 4)

(
ak(2k + 2r + 5) +

(
k + 3

2 + r
)
ak+2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(2k+2r+5)

2k+3+2r

• Recursion relation for r = −2
ak+2 = −2ak(2k+1)

2k−1

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −2ak(2k+1)

2k−1 , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = −2ak(2k+6)
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −2ak(2k+6)
2k+4 , a1 = 0

]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −2ak(2k+1)

2k−1 , a1 = 0, bk+2 = −2bk(2k+6)
2k+4 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.126 (sec)
Leaf size : 35� �
dsolve(2*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+5*x*(6*x^2+1)*diff(y(x),x)-(-40*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x

(2x2 + 1)3/2
+

c2 hypergeom
([1

4 , 1
]
,
[
−1

4

]
,−2x2)

x2

Mathematica DSolve solution

Solving time : 0.159 (sec)
Leaf size : 52� �
DSolve[{2*x^2*(1+2*x^2)*D[y[x],{x,2}]+5*x*(1+6*x^2)*D[y[x],x]-(2-40*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

5c1x5/2 − 2c2Hypergeometric2F1
(
−5

4 ,−
1
2 ,−

1
4 ,−2x2)

5x2 (2x2 + 1)3/2
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2.1.527 problem 543

Solved as second order ode using Kovacic algorithm . . . . . . . . .3522
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3526
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3528
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3528
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3528

Internal problem ID [9375]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 543
Date solved : Thursday, December 12, 2024 at 10:11:44 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x
(
x2 + 1

)
y′′ +

(
7x2 + 4

)
y′ + 8xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.316 (sec)

Writing the ode as (
x3 + x

)
y′′ +

(
7x2 + 4

)
y′ + 8xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + x

B = 7x2 + 4 (3)
C = 8x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x4 + 14x2 + 8
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 3x4 + 14x2 + 8

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x4 + 14x2 + 8
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.999: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 − 3

16 (x− i)2
− 3

16 (x+ i)2
+ 7i

16 (x− i) −
7i

16 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x4 + 14x2 + 8

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x4 + 14x2 + 8
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
i 2 0 3

4
1
4

−i 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= −1
x
+ 1

4x− 4i +
1

4x+ 4i + (−) (0)

= −1
x
+ 1

4x− 4i +
1

4x+ 4i
= −1

x
+ x

2x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
+ 1

4x− 4i +
1

4x+ 4i

)
(0) +

((
1
x2 − 1

4 (x− i)2
− 1

4 (x+ i)2
)
+
(
−1
x
+ 1

4x− 4i +
1

4x+ 4i

)2

−
(
3x4 + 14x2 + 8
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x
+ 1

4x−4i+
1

4x+4i

)
dx

= (x2 + 1)1/4

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x2+4
x3+x

dx

= z1e
−2 ln(x)−

3 ln
(
x2+1

)
4

= z1

(
1

x2 (x2 + 1)3/4

)

Which simplifies to

y1 =
1

x3
√
x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 7x2+4

x3+x
dx

(y1)2
dx

= y1

∫
e−4 ln(x)−

3 ln
(
x2+1

)
2

(y1)2
dx

= y1

(
x5

√
x2 + 1

− x3

3
√
x2 + 1

+ 4x7
√
x2 + 1

+ 8x9

3
√
x2 + 1

+ x
√
x2 + 1
2 − arcsinh (x)

2

+ x3
√
x2 + 1
3 − 4x5

√
x2 + 1
3 − 8x7

√
x2 + 1
3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x3
√
x2 + 1

)
+ c2

(
1

x3
√
x2 + 1

(
x5

√
x2 + 1

− x3

3
√
x2 + 1

+ 4x7
√
x2 + 1

+ 8x9

3
√
x2 + 1

+ x
√
x2 + 1
2 − arcsinh (x)

2 + x3
√
x2 + 1
3 − 4x5

√
x2 + 1
3 − 8x7

√
x2 + 1
3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x2 + 1)
(

d2

dx2y(x)
)
+ (7x2 + 4)

(
d
dx
y(x)

)
+ 8xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −8y(x)
x2+1 −

(
7x2+4

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
7x2+4

)(
d
dx

y(x)
)

x(x2+1) + 8y(x)
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+4
x(x2+1) , P3(x) = 8

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x(x2 + 1)
(

d2

dx2y(x)
)
+ (7x2 + 4)

(
d
dx
y(x)

)
+ 8xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + r + 4) + ak−1(k + r + 3) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) (ak+1(k + r + 4) + ak−1(k + r + 3)) = 0

• Shift index using k− >k + 1
(k + r + 2) (ak+2(k + 5 + r) + ak(k + r + 4)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+4)

k+5+r

• Recursion relation for r = −3
ak+2 = −ak(k+1)

k+2

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = −ak(k+1)

k+2 ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = −ak(k+4)

k+5

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k+4)

k+5 , 4a1 = 0
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = −ak(k+1)

k+2 ,−2a1 = 0, bk+2 = − bk(4+k)
5+k

, 4b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 32� �
dsolve(x*(x^2+1)*diff(diff(y(x),x),x)+(7*x^2+4)*diff(y(x),x)+8*x*y(x) = 0,

y(x),singsol=all)� �
y = −

√
x2 + 1 c2x+ arcsinh (x) c2 + c1√

x2 + 1x3

Mathematica DSolve solution

Solving time : 0.121 (sec)
Leaf size : 55� �
DSolve[{x*(1+x^2)*D[y[x],{x,2}]+(4+7*x^2)*D[y[x],x]+8*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−c2arctanh
(

x√
x2+1

)
+ c2x

√
x2 + 1 + 2c1

2x3
√
x2 + 1
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2.1.528 problem 544

Solved as second order ode using Kovacic algorithm . . . . . . . . .3529
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3533
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3534
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3535
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3535

Internal problem ID [9376]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 544
Date solved : Thursday, December 12, 2024 at 10:11:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 1
)
y′′ + x

(
8x2 + 3

)
y′ −

(
−4x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.354 (sec)

Writing the ode as (
2x4 + 2x2) y′′ + (8x3 + 3x

)
y′ +

(
4x2 − 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 2x2

B = 8x3 + 3x (3)
C = 4x2 − 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 36x2 + 21
16 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 36x2 + 21

t = 16
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

36x2 + 21
16 (x3 + x)2

)
z(x) (7)



chapter 2. book solved problems 3530

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1001: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order
2. There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
64 (x− i)2

− 15
64 (x+ i)2

+ 27i
64 (x− i) −

27i
64 (x+ i) +

21
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = −15

64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 36x2 + 21
16 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

i 2 0 5
8

3
8

−i 2 0 5
8

3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= − 3
4x + 3

8 (x− i) +
3

8 (x+ i) + (0)

= − 3
4x + 3

8 (x− i) +
3

8 (x+ i)

= − 3
4x (x2 + 1)



chapter 2. book solved problems 3532

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
4x + 3

8 (x− i) +
3

8 (x+ i)

)
(0) +

((
3
4x2 − 3

8 (x− i)2
− 3

8 (x+ i)2
)
+
(
− 3
4x + 3

8 (x− i) +
3

8 (x+ i)

)2

−
(

36x2 + 21
16 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
4x+

3
8(x−i)+

3
8(x+i)

)
dx

= (x2 + 1)3/8

x3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x3+3x
2x4+2x2 dx

= z1e
−

5 ln
(
x2+1

)
8 − 3 ln(x)

4

= z1

(
1

(x2 + 1)5/8 x3/4

)

Which simplifies to

y1 =
1

(x2 + 1)1/4 x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x3+3x

2x4+2x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+1

)
4 − 3 ln(x)

2

(y1)2
dx

= y1

(∫
e−

5 ln
(
x2+1

)
4 − 3 ln(x)

2
√
x2 + 1x3dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x2 + 1)1/4 x3/2

)
+ c2

(
1

(x2 + 1)1/4 x3/2

(∫
e−

5 ln
(
x2+1

)
4 − 3 ln(x)

2
√
x2 + 1x3dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(8x2 + 3)

(
d
dx
y(x)

)
− (−4x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−3

)
y(x)

2x2(x2+1) −
(
8x2+3

)(
d
dx

y(x)
)

2x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
8x2+3

)(
d
dx

y(x)
)

2x(x2+1) +
(
4x2−3

)
y(x)

2x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 8x2+3

2x(x2+1) , P3(x) = 4x2−3
2x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(8x2 + 3)

(
d
dx
y(x)

)
+ (4x2 − 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(2r + 3) (−1 + r)xr + a1(5 + 2r) r x1+r +
(

∞∑
k=2

(ak(2k + 2r + 3) (k + r − 1) + 2ak−2(k + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2r + 3) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−3

2

}
• Each term must be 0

a1(5 + 2r) r = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

2
((
k + r + 3

2

)
ak + ak−2(k + r)

)
(k + r − 1) = 0

• Shift index using k− >k + 2
2
((
k + 7

2 + r
)
ak+2 + ak(k + r + 2)

)
(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(k+r+2)

2k+7+2r

• Recursion relation for r = 1
ak+2 = −2ak(k+3)

2k+9

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −2ak(k+3)

2k+9 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −2ak
(
k+ 1

2
)

2k+4

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = −2ak
(
k+ 1

2
)

2k+4 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −2ak(k+3)

2k+9 , a1 = 0, bk+2 = −2bk
(
k+ 1

2
)

2k+4 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
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-> hypergeometric
-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.148 (sec)
Leaf size : 31� �
dsolve(2*x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(8*x^2+3)*diff(y(x),x)-(-4*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y = c1x hypergeom

([
1, 32

]
,

[
9
4

]
,−x2

)
+ c2

(x2 + 1)1/4 x3/2

Mathematica DSolve solution

Solving time : 0.133 (sec)
Leaf size : 60� �
DSolve[{2*x^2*(1+x^2)*D[y[x],{x,2}]+x*(3+8*x^2)*D[y[x],x]-(3-4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

c2Hypergeometric2F1
(1
4 ,

3
4 ,

5
4 ,−x2)

x
4
√
x2 + 1

+ c1

x3/2 4
√
x2 + 1

+ c2
x
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2.1.529 problem 545

Solved as second order ode using Kovacic algorithm . . . . . . . . .3536
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3540
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3542
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3542
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3543

Internal problem ID [9377]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 545
Date solved : Thursday, December 12, 2024 at 10:11:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ + 3x
(
x2 + 3

)
y′ −

(
−5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.328 (sec)

Writing the ode as

9x2y′′ +
(
3x3 + 9x

)
y′ +

(
5x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = 3x3 + 9x (3)
C = 5x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x2 − 5
36x2 (6)

Comparing the above to (5) shows that

s = x4 − 8x2 − 5
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x2 − 5

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1003: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

36 − 2
9 − 5

36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

6 − 2
3x − 7

4x3 − 7
x5 − 595

16x7 − 889
4x9 − 45647

32x11 − 76811
8x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

36

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 8x2 − 5
36x2

= Q+ R

36x2

=
(
x2

36 − 2
9

)
+
(
− 5
36x2

)
= x2

36 − 2
9 − 5

36x2

We see that the coefficient of the term x in the quotient is −2
9 . Now b can be found.

b =
(
−2
9

)
− (0)

= −2
9

Hence

[
√
r]∞ = x

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−2
9

1
6

− 1
)

= −7
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−2

9
1
6

− 1
)

= 1
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x2 − 5
36x2



chapter 2. book solved problems 3539

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
6 −7

6
1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

6 then

d = α−
∞ −

(
α−
c1

)
= 1

6 −
(
1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
6x + (−)

(x
6

)
= 1

6x − x

6
= 1

6x − x

6
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x − x

6

)
(0) +

((
− 1
6x2 − 1

6

)
+
(

1
6x − x

6

)2

−
(
x4 − 8x2 − 5

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

6x−
x
6
)
dx

= x1/6e−x2
12
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+9x

9x2 dx

= z1e
−x2

12−
ln(x)

2

= z1

(
e−x2

12
√
x

)

Which simplifies to

y1 =
e−x2

6

x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+9x

9x2 dx

(y1)2
dx

= y1

∫
e−

x2
6 −ln(x)

(y1)2
dx

= y1

(∫
e−x2

6 −ln(x)x2/3ex2
3 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x2

6

x1/3

)
+ c2

(
e−x2

6

x1/3

(∫
e−x2

6 −ln(x)x2/3ex2
3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
+ 3x(x2 + 3)

(
d
dx
y(x)

)
− (−5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2−1

)
y(x)

9x2 −
(
x2+3

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+3

)(
d
dx

y(x)
)

3x +
(
5x2−1

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2+3

3x , P3(x) = 5x2−1
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
+ 3x(x2 + 3)

(
d
dx
y(x)

)
+ (5x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(ak(3k + 3r + 1) (3k + 3r − 1) + ak−2(3k + 3r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(3k + 3r − 1) (3akk + 3akr + ak + ak−2) = 0
• Shift index using k− >k + 2

(3k + 3r + 5) (3ak+2(k + 2) + 3ak+2r + ak+2 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
3k+7+3r
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• Recursion relation for r = −1
3

ak+2 = − ak
3k+6

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+2 = − ak
3k+6 , a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − ak
3k+8

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − ak
3k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − ak

3k+6 , a1 = 0, bk+2 = − bk
3k+8 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.061 (sec)
Leaf size : 37� �
dsolve(9*x^2*diff(diff(y(x),x),x)+3*x*(x^2+3)*diff(y(x),x)-(-5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x2
12

(
x1/3WhittakerM

(
1
3 ,

1
6 ,

x2

6

)
c1 + e−x2

12 c2x
)

x4/3
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Mathematica DSolve solution

Solving time : 0.117 (sec)
Leaf size : 61� �
DSolve[{9*x^2*D[y[x],{x,2}]+3*x*(3+x^2)*D[y[x],x]-(1-5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

x2
6

(
2c1x4/3 + 3

√
6c2(−x2)2/3 Γ

(
1
3 ,−

x2

6

))
2x5/3
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2.1.530 problem 546

Solved as second order ode using Kovacic algorithm . . . . . . . . .3544
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3548
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3550
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3550
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3551

Internal problem ID [9378]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 546
Date solved : Thursday, December 12, 2024 at 10:11:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2y′′ + x
(
6x2 + 1

)
y′ +

(
9x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.387 (sec)

Writing the ode as

6x2y′′ +
(
6x3 + x

)
y′ +

(
9x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x2

B = 6x3 + x (3)
C = 9x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 36x4 − 132x2 − 35
144x2 (6)

Comparing the above to (5) shows that

s = 36x4 − 132x2 − 35
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
36x4 − 132x2 − 35

144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1005: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 11
12 − 35

144x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)



chapter 2. book solved problems 3546

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 11
12x − 13

12x3 − 143
72x5 − 130

27x7 − 17017
1296x9 − 597961

15552x11 − 11016863
93312x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 36x4 − 132x2 − 35
144x2

= Q+ R

144x2

=
(
x2

4 − 11
12

)
+
(
− 35
144x2

)
= x2

4 − 11
12 − 35

144x2

We see that the coefficient of the term x in the quotient is −11
12 . Now b can be found.

b =
(
−11
12

)
− (0)

= −11
12

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−11
12
1
2

− 1
)

= −17
12

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−11

12
1
2

− 1
)

= 5
12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 36x4 − 132x2 − 35
144x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −17

12
5
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

12 then

d = α−
∞ −

(
α−
c1

)
= 5

12 −
(

5
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 5
12x + (−)

(x
2

)
= 5

12x − x

2
= 5

12x − x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
12x − x

2

)
(0) +

((
− 5
12x2 − 1

2

)
+
(

5
12x − x

2

)2

−
(
36x4 − 132x2 − 35

144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

12x−
x
2
)
dx

= x5/12e−x2
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x3+x
6x2 dx

= z1e
−x2

4 − ln(x)
12

= z1

(
e−x2

4

x1/12

)

Which simplifies to

y1 = x1/3e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6x3+x

6x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 − ln(x)

6

(y1)2
dx

= y1

(∫ e−x2
2 − ln(x)

6 ex2

x2/3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3e−x2

2

)
+ c2

(
x1/3e−x2

2

(∫ e−x2
2 − ln(x)

6 ex2

x2/3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

6x2
(

d2

dx2y(x)
)
+ x(6x2 + 1)

(
d
dx
y(x)

)
+ (9x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
9x2+1

)
y(x)

6x2 −
(
6x2+1

)(
d
dx

y(x)
)

6x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
6x2+1

)(
d
dx

y(x)
)

6x +
(
9x2+1

)
y(x)

6x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = 6x2+1

6x , P3(x) = 9x2+1
6x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2
(

d2

dx2y(x)
)
+ x(6x2 + 1)

(
d
dx
y(x)

)
+ (9x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−1 + 2r)xr + a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (2k + 2r − 1) + 3ak−2(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

6
((
k − 1

3 + r
)
ak + ak−2

) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2
6
((
k + 5

3 + r
)
ak+2 + ak

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − 3ak

3k+5+3r
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• Recursion relation for r = 1
2

ak+2 = − 3ak
3k+ 13

2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 3ak
3k+ 13

2
, a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − 3ak
3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − 3ak
3k+6 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − 3ak

3k+ 13
2
, a1 = 0, bk+2 = − 3bk

3k+6 , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.117 (sec)
Leaf size : 36� �
dsolve(6*x^2*diff(diff(y(x),x),x)+x*(6*x^2+1)*diff(y(x),x)+(9*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

e−x2
4

(
x11/12e−x2

4 c2 +WhittakerM
(

11
24 ,

1
24 ,

x2

2

)
c1
)

x7/12
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Mathematica DSolve solution

Solving time : 0.126 (sec)
Leaf size : 61� �
DSolve[{6*x^2*D[y[x],{x,2}]+x*(1+6*x^2)*D[y[x],x]+(1+9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

x2
2

(
2c1x11/6 + 12

√
2c2(−x2)11/12 Γ

(
1
12 ,−

x2

2

))
2x3/2
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2.1.531 problem 547

Solved as second order ode using Kovacic algorithm . . . . . . . . .3552
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3556
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3558
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3558
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3558

Internal problem ID [9379]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 547
Date solved : Thursday, December 12, 2024 at 10:11:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(x2 + 1
)
y′′ + 3x

(
13x2 + 3

)
y′ −

(
−25x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.357 (sec)

Writing the ode as (
9x4 + 9x2) y′′ + (39x3 + 9x

)
y′ +

(
25x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x4 + 9x2

B = 39x3 + 9x (3)
C = 25x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −9x4 + 6x2 − 5
36 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −9x4 + 6x2 − 5

t = 36
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−9x4 + 6x2 − 5
36 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1007: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order
2. There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36 (x− i)2

− 5
36 (x+ i)2

− i

12 (x− i) +
i

12x+ 12i −
5

36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = − 5

36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −9x4 + 6x2 − 5

36 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −9x4 + 6x2 − 5
36 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

i 2 0 5
6

1
6

−i 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
6x + 1

6x− 6i +
1

6x+ 6i + (−) (0)

= 1
6x + 1

6x− 6i +
1

6x+ 6i
= 1

6x + x

3x2 + 3
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x + 1

6x− 6i +
1

6x+ 6i

)
(0) +

((
− 1
6x2 − 1

6 (x− i)2
− 1

6 (x+ i)2
)
+
(

1
6x + 1

6x− 6i +
1

6x+ 6i

)2

−
(
−9x4 + 6x2 − 5
36 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

6x+
1

6x−6i+
1

6x+6i

)
dx

=
(
x2 + 1

)1/6 (−x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
39x3+9x
9x4+9x2 dx

= z1e
−

5 ln
(
x2+1

)
6 − ln(x)

2

= z1

(
1

(x2 + 1)5/6
√
x

)

Which simplifies to

y1 =
(−x)1/6

(x2 + 1)2/3
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 39x3+9x

9x4+9x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+1

)
3 −ln(x)

(y1)2
dx

= y1

∫ e−
5 ln

(
x2+1

)
3 −ln(x)(x2 + 1)4/3 x

(−x)1/3
dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−x)1/6

(x2 + 1)2/3
√
x

)
+ c2

 (−x)1/6

(x2 + 1)2/3
√
x

∫ e−
5 ln

(
x2+1

)
3 −ln(x)(x2 + 1)4/3 x

(−x)1/3
dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2(x2 + 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 3)

(
d
dx
y(x)

)
− (−25x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2−1

)
y(x)

9x2(x2+1) −
(
13x2+3

)(
d
dx

y(x)
)

3x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2+3

)(
d
dx

y(x)
)

3x(x2+1) +
(
25x2−1

)
y(x)

9x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 13x2+3

3x(x2+1) , P3(x) = 25x2−1
9x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2(x2 + 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 3)

(
d
dx
y(x)

)
+ (25x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(
ak(3k + 3r + 1) (3k + 3r − 1) + ak−2(3k + 3r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

9
((
k − 1

3 + r
)
ak−2 +

(
k + r + 1

3

)
ak
) (

k − 1
3 + r

)
= 0

• Shift index using k− >k + 2
9
((
k + 5

3 + r
)
ak +

(
k + 7

3 + r
)
ak+2

) (
k + 5

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (3k+3r+5)ak

3k+7+3r

• Recursion relation for r = −1
3

ak+2 = − (3k+4)ak
3k+6

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+2 = − (3k+4)ak
3k+6 , a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − (3k+6)ak
3k+8

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − (3k+6)ak
3k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − (3k+4)ak

3k+6 , a1 = 0, bk+2 = − (3k+6)bk
3k+8 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.217 (sec)
Leaf size : 33� �
dsolve(9*x^2*(x^2+1)*diff(diff(y(x),x),x)+3*x*(13*x^2+3)*diff(y(x),x)-(-25*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = c1

(x2 + 1)2/3 x1/3
+ c2x

1/3 hypergeom
(
[1, 1] ,

[
4
3

]
,−x2

)

Mathematica DSolve solution

Solving time : 0.173 (sec)
Leaf size : 124� �
DSolve[{9*x^2*(1+x^2)*D[y[x],{x,2}]+3*x*(3+13*x^2)*D[y[x],x]-(1-25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
2
√
3c2 arctan

(
√
3x2/3

x2/3+2
3
√
x2 + 1

)
− 2c2 log

(
3
√
x2 + 1− x2/3

)
+ c2 log

(
x4/3 + (x2 + 1)2/3 + 3

√
x2 + 1x2/3

)
+ 4c1

4 3
√
x (x2 + 1)2/3
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2.1.532 problem 548

Solved as second order ode using Kovacic algorithm . . . . . . . . .3559
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3563
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3565
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3565
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3565

Internal problem ID [9380]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 548
Date solved : Thursday, December 12, 2024 at 10:11:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 1
)
y′′ + 4x

(
6x2 + 1

)
y′ −

(
−25x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.315 (sec)

Writing the ode as (
4x4 + 4x2) y′′ + (24x3 + 4x

)
y′ +

(
25x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x2

B = 24x3 + 4x (3)
C = 25x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 6
4 (x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −x2 − 6

t = 4
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 − 6
4 (x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1009: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x− i)2

+ 5
16 (x+ i)2

+ 7i
16 (x− i) −

7i
16 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 6

4 (x2 + 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 6
4 (x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (x− i) −

1
4 (x+ i) + (−) (0)

= − 1
4 (x− i) −

1
4 (x+ i)

= − x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (x− i) −

1
4 (x+ i)

)
(1) +

((
1

4 (x− i)2
+ 1

4 (x+ i)2
)
+
(
− 1
4 (x− i) −

1
4 (x+ i)

)2

−
(

−x2 − 6
4 (x2 + 1)2

))
= 0

(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4(x−i)−

1
4(x+i)

)
dx

= (x) 1
((−x+ i) (x+ i))1/4

= x

(−x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
24x3+4x
4x4+4x2 dx

= z1e
−

5 ln
(
x2+1

)
4 − ln(x)

2

= z1

(
1

(x2 + 1)5/4
√
x

)

Which simplifies to

y1 =
(1
2 −

i
2

)√
x
√
2

(x2 + 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 24x3+4x

4x4+4x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+1

)
2 −ln(x)

(y1)2
dx

= y1

(
i

(
−(x2 + 1)3/2

x
+ x

√
x2 + 1 + arcsinh (x)

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

((1
2 −

i
2

)√
x
√
2

(x2 + 1)3/2

)

+ c2

((1
2 −

i
2

)√
x
√
2

(x2 + 1)3/2

(
i

(
−(x2 + 1)3/2

x
+ x

√
x2 + 1 + arcsinh (x)

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(6x2 + 1)

(
d
dx
y(x)

)
− (−25x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2−1

)
y(x)

4x2(x2+1) −
(
6x2+1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
6x2+1

)(
d
dx

y(x)
)

x(x2+1) +
(
25x2−1

)
y(x)

4x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 6x2+1

x(x2+1) , P3(x) = 25x2−1
4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(6x2 + 1)

(
d
dx
y(x)

)
+ (25x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
((
k + r + 1

2

)
ak−2 +

(
k + r − 1

2

)
ak
) (

k + r + 1
2

)
= 0

• Shift index using k− >k + 2
4
((
k + 5

2 + r
)
ak +

(
k + 3

2 + r
)
ak+2

) (
k + 5

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r+5)ak

2k+3+2r

• Recursion relation for r = −1
2

ak+2 = − (2k+4)ak
2k+2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − (2k+4)ak
2k+2 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − (2k+6)ak
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − (2k+6)ak
2k+4 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − (2k+4)ak

2k+2 , a1 = 0, bk+2 = − bk(2k+6)
2k+4 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.069 (sec)
Leaf size : 34� �
dsolve(4*x^2*(x^2+1)*diff(diff(y(x),x),x)+4*x*(6*x^2+1)*diff(y(x),x)-(-25*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −

√
x2 + 1 c2 + x(arcsinh (x) c2 + c1)√

x (x2 + 1)3/2

Mathematica DSolve solution

Solving time : 0.122 (sec)
Leaf size : 54� �
DSolve[{4*x^2*(1+x^2)*D[y[x],{x,2}]+4*x*(1+6*x^2)*D[y[x],x]-(1-25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2xarctanh
(

x√
x2+1

)
− c2

√
x2 + 1 + c1x

√
x (x2 + 1)3/2
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2.1.533 problem 549

Solved as second order ode using Kovacic algorithm . . . . . . . . .3566
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3570
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3572
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3572
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3572

Internal problem ID [9381]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 549
Date solved : Thursday, December 12, 2024 at 10:11:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

8x2(2x2 + 1
)
y′′ + 2x

(
34x2 + 5

)
y′ −

(
−30x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.570 (sec)

Writing the ode as(
16x4 + 8x2) y′′ + (68x3 + 10x

)
y′ +

(
30x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x4 + 8x2

B = 68x3 + 10x (3)
C = 30x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 132x4 + 148x2 − 7
64 (2x3 + x)2

(6)

Comparing the above to (5) shows that

s = 132x4 + 148x2 − 7

t = 64
(
2x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
132x4 + 148x2 − 7

64 (2x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1011: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(2x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2

2 of
order 2. There is a pole at x = − i

√
2

2 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3

16
(
x− i

√
2

2

)2 − 3

16
(
x+ i

√
2

2

)2 − i
√
2

2
(
x− i

√
2

2

) + i
√
2

2x+ i
√
2
− 7

64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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For the pole at x = i
√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = − i

√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 132x4 + 148x2 − 7

64 (2x3 + x)2

Since the gcd(s, t) = 1. This gives b = 33
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

8
α−
∞ = 1

2 −
√
1 + 4b = −3

8
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 132x4 + 148x2 − 7
64 (2x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
8

1
8

i
√
2

2 2 0 3
4

1
4

− i
√
2

2 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
8 −3

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 11

8 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 11

8 −
(
11
8

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2
+ (0)

= 7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2

= 22x2 + 7
16x3 + 8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2

)
(0) +


− 7

8x2 − 1

4
(
x− i

√
2

2

)2 − 1

4
(
x+ i

√
2

2

)2
+

(
7
8x + 1

4x− 2i
√
2
+ 1

4x+ 2i
√
2

)2

−
(
132x4 + 148x2 − 7

64 (2x3 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

8x+
1

4x−2i
√
2+

1
4x+2i

√
2

)
dx

= 21/4
(
2x2 + 1

)1/4
x7/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
68x3+10x
16x4+8x2 dx

= z1e
−

3 ln
(
2x2+1

)
4 − 5 ln(x)

8

= z1

(
1

(2x2 + 1)3/4 x5/8

)

Which simplifies to

y1 =
x1/421/4√
2x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 68x3+10x

16x4+8x2 dx

(y1)2
dx

= y1

∫
e−

3 ln
(
2x2+1

)
2 − 5 ln(x)

4

(y1)2
dx

= y1

∫ e−
3 ln

(
2x2+1

)
2 − 5 ln(x)

4 (2x2 + 1)
√
2

2
√
x

dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/421/4√
2x2 + 1

)
+ c2

 x1/421/4√
2x2 + 1

∫ e−
3 ln

(
2x2+1

)
2 − 5 ln(x)

4 (2x2 + 1)
√
2

2
√
x

dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

8x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 2x(34x2 + 5)

(
d
dx
y(x)

)
− (−30x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
30x2−1

)
y(x)

8x2(2x2+1) −
(
34x2+5

)(
d
dx

y(x)
)

4x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
34x2+5

)(
d
dx

y(x)
)

4x(2x2+1) +
(
30x2−1

)
y(x)

8x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 34x2+5

4x(2x2+1) , P3(x) = 30x2−1
8x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
8

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

8x2(2x2 + 1)
(

d2

dx2y(x)
)
+ 2x(34x2 + 5)

(
d
dx
y(x)

)
+ (30x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 4r)xr + a1(3 + 2r) (3 + 4r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (4k + 4r − 1) + 2ak−2(2k + 2r + 1) (4k − 5 + 4r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
4

}
• Each term must be 0

a1(3 + 2r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

8
(
k + r + 1

2

) ((
2k + 2r − 5

2

)
ak−2 + ak

(
k + r − 1

4

))
= 0

• Shift index using k− >k + 2
8
(
k + 5

2 + r
) ((

2k + 3
2 + 2r

)
ak + ak+2

(
k + 7

4 + r
))

= 0
• Recursion relation that defines series solution to ODE

ak+2 = −2(4k+4r+3)ak
4k+7+4r

• Recursion relation for r = −1
2

ak+2 = −2(4k+1)ak
4k+5

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = −2(4k+1)ak
4k+5 , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = −2(4k+4)ak
4k+8

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2(4k+4)ak
4k+8 , a1 = 0

]
• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −2(4k+1)ak

4k+5 , a1 = 0, bk+2 = −2(4k+4)bk
4k+8 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.192 (sec)
Leaf size : 46� �
dsolve(8*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+2*x*(34*x^2+5)*diff(y(x),x)-(-30*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2 LegendreQ
(3
8 ,

3
8 ,
√
2x2 + 1

)
+ c1 LegendreP

(3
8 ,

3
8 ,
√
2x2 + 1

)
x1/8

√
2x2 + 1

Mathematica DSolve solution

Solving time : 0.15 (sec)
Leaf size : 54� �
DSolve[{8*x^2*(1+2*x^2)*D[y[x],{x,2}]+2*x*(5+34*x^2)*D[y[x],x]-(1-30*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3c1x3/4 − 4c2Hypergeometric2F1
(
−3

8 ,
1
2 ,

5
8 ,−2x2)

3
√
x
√
2x2 + 1
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2.1.534 problem 550

Solved as second order ode using Kovacic algorithm . . . . . . . . .3573
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3577
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3578
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3579
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3579

Internal problem ID [9382]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 550
Date solved : Thursday, December 12, 2024 at 10:11:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(1 + x) y′′ − x(1− 3x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.194 (sec)

Writing the ode as (
2x3 + 2x2) y′′ + (3x2 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 2x2

B = 3x2 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
16x2 (6)

Comparing the above to (5) shows that

s = −3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
− 3
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1013: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 3

16x2
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Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
16x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
4x + (−) (0)

= 1
4x

= 1
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x

)
(0) +

((
− 1
4x2

)
+
(

1
4x

)2

−
(
− 3
16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

4xdx

= x1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2−x

2x3+2x2 dx

= z1e
− ln(1+x)+ ln(x)

4

= z1

(
x1/4

1 + x

)

Which simplifies to

y1 =
√
x

1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2−x

2x3+2x2 dx

(y1)2
dx

= y1

∫
e−2 ln(1+x)+ ln(x)

2

(y1)2
dx

= y1
(
2 e−2 ln(1+x)+ ln(x)

2 (1 + x)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

1 + x

)
+ c2

( √
x

1 + x

(
2 e−2 ln(1+x)+ ln(x)

2 (1 + x)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 1)
(

d2

dx2y(x)
)
− x(1− 3x)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
2(x+1)x2 −

(3x−1)
(

d
dx

y(x)
)

2x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x−1)

(
d
dx

y(x)
)

2x(x+1) + y(x)
2(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−1
2x(x+1) , P3(x) = 1

2(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

2x2(x+ 1)
(

d2

dx2y(x)
)
+ x(3x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u3 − 4u2 + 2u)
(

d2

du2y(u)
)
+ (3u2 − 7u+ 4)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(1 + r)u−1+r + (2a1(1 + r) (2 + r)− a0(1 + r) (−1 + 4r))ur +
(

∞∑
k=1

(2ak+1(k + r + 1) (k + 2 + r)− ak(k + r + 1) (4k + 4r − 1) + ak−1(k + r − 1) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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2r(1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 0}
• Each term must be 0

2a1(1 + r) (2 + r)− a0(1 + r) (−1 + 4r) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + 2ak−1 + 2ak+1) k2 + ((−8ak + 4ak−1 + 4ak+1) r − 3ak − 3ak−1 + 6ak+1) k + (−4ak + 2ak−1 + 2ak+1) r2 + (−3ak − 3ak−1 + 6ak+1) r + ak + ak−1 + 4ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + 2ak + 2ak+2) (k + 1)2 + ((−8ak+1 + 4ak + 4ak+2) r − 3ak+1 − 3ak + 6ak+2) (k + 1) + (−4ak+1 + 2ak + 2ak+2) r2 + (−3ak+1 − 3ak + 6ak+2) r + ak+1 + ak + 4ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−4k2ak+1+4krak−8krak+1+2r2ak−4r2ak+1+kak−11kak+1+rak−11rak+1−6ak+1
2(k2+2kr+r2+5k+5r+6)

• Recursion relation for r = −1
ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2) , 0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1
2(k2+3k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1
2(k2+5k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1

2(k2+5k+6) , 4a1 + a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1
2(k2+5k+6) , 4a1 + a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2) , 0 = 0, bk+2 = −2k2bk−4k2bk+1+kbk−11kbk+1−6bk+1
2(k2+5k+6) , 4b1 + b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.035 (sec)
Leaf size : 19� �
dsolve(2*x^2*(x+1)*diff(diff(y(x),x),x)-x*(-3*x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2

√
x+ c1x

x+ 1

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 25� �
DSolve[{2*x^2*(1+x)*D[y[x],{x,2}]-x*(1-3*x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

√
x+ 2c2x
x+ 1
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2.1.535 problem 551

Solved as second order ode using Kovacic algorithm . . . . . . . . .3580
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3584
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3585
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3586
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3586

Internal problem ID [9383]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 551
Date solved : Thursday, December 12, 2024 at 10:11:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2(2x2 + 1
)
y′′ + x

(
50x2 + 1

)
y′ +

(
30x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.196 (sec)

Writing the ode as (
12x4 + 6x2) y′′ + (50x3 + x

)
y′ +

(
30x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 12x4 + 6x2

B = 50x3 + x (3)
C = 30x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −35
144x2 (6)

Comparing the above to (5) shows that

s = −35
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
− 35
144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1015: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 35
144x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 35

144x2
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Since the gcd(s, t) = 1. This gives b = − 35
144 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

12
α−
∞ = 1

2 −
√
1 + 4b = 5

12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 35
144x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
12

5
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

12 then

d = α−
∞ −

(
α−
c1

)
= 5

12 −
(

5
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 5
12x + (−) (0)

= 5
12x

= 5
12x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

5
12x

)
(0) +

((
− 5
12x2

)
+
(

5
12x

)2

−
(
− 35
144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 5

12xdx

= x5/12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
50x3+x

12x4+6x2 dx

= z1e
− ln

(
2x2+1

)
− ln(x)

12

= z1

(
1

(2x2 + 1)x1/12

)

Which simplifies to

y1 =
x1/3

2x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 50x3+x

12x4+6x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
2x2+1

)
− ln(x)

6

(y1)2
dx

= y1
(
6x1/3e−2 ln

(
2x2+1

)
− ln(x)

6
(
2x2 + 1

)2)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

2x2 + 1

)
+ c2

(
x1/3

2x2 + 1

(
6x1/3e−2 ln

(
2x2+1

)
− ln(x)

6
(
2x2 + 1

)2))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

6x2(2x2 + 1)
(

d2

dx2y(x)
)
+ x(50x2 + 1)

(
d
dx
y(x)

)
+ (30x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
30x2+1

)
y(x)

6x2(2x2+1) −
(
50x2+1

)(
d
dx

y(x)
)

6x(2x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
50x2+1

)(
d
dx

y(x)
)

6x(2x2+1) +
(
30x2+1

)
y(x)

6x2(2x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 50x2+1

6x(2x2+1) , P3(x) = 30x2+1
6x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2(2x2 + 1)
(

d2

dx2y(x)
)
+ x(50x2 + 1)

(
d
dx
y(x)

)
+ (30x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 3r) (−1 + 2r)xr + a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (2k + 2r − 1) + 2ak−2(3k + 3r − 1) (2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(3k + 3r − 1) (2k + 2r − 1) (ak + 2ak−2) = 0
• Shift index using k− >k + 2

(3k + 3r + 5) (2k + 2r + 3) (ak+2 + 2ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2ak
• Recursion relation for r = 1

2

ak+2 = −2ak
• Solution for r = 1

2[
y(x) =

∞∑
k=0

akx
k+ 1

2 , ak+2 = −2ak, a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −2ak
• Solution for r = 1

3[
y(x) =

∞∑
k=0

akx
k+ 1

3 , ak+2 = −2ak, a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −2ak, a1 = 0, bk+2 = −2bk, b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 24� �
dsolve(6*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+x*(50*x^2+1)*diff(y(x),x)+(30*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

x1/3(c1x1/6 + c2
)

2x2 + 1

Mathematica DSolve solution

Solving time : 0.073 (sec)
Leaf size : 32� �
DSolve[{6*x^2*(1+2*x^2)*D[y[x],{x,2}]+x*(1+50*x^2)*D[y[x],x]+(1+30*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x
(
6c2 6

√
x+ c1

)
2x2 + 1
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2.1.536 problem 552

Solved as second order ode using Kovacic algorithm . . . . . . . . .3587
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3591
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3592
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3592
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3593

Internal problem ID [9384]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 552
Date solved : Thursday, December 12, 2024 at 10:11:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

28x2(1− 3x) y′′ − 7x(5 + 9x) y′ + 7(2 + 9x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.203 (sec)

Writing the ode as(
−84x3 + 28x2) y′′ + (−63x2 − 35x

)
y′ + (63x+ 14) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −84x3 + 28x2

B = −63x2 − 35x (3)
C = 63x+ 14

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 33
64x2 (6)

Comparing the above to (5) shows that

s = 33
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(

33
64x2

)
z(x) (7)



chapter 2. book solved problems 3588

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1017: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 33
64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 33
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

8
α−
c = 1

2 −
√
1 + 4b = −3

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 33

64x2
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Since the gcd(s, t) = 1. This gives b = 33
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

8
α−
∞ = 1

2 −
√
1 + 4b = −3

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 33
64x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 11
8 −3

8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
8 −3

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −3

8 then

d = α−
∞ −

(
α−
c1

)
= −3

8 −
(
−3
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
8x + (−) (0)

= − 3
8x

= − 3
8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
8x

)
(0) +

((
3
8x2

)
+
(
− 3
8x

)2

−
(

33
64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3

8xdx

= 1
x3/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−63x2−35x
−84x3+28x2 dx

= z1e
5 ln(x)

8 −ln(−1+3x)

= z1

(
x5/8

−1 + 3x

)

Which simplifies to

y1 =
x1/4

−1 + 3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −63x2−35x

−84x3+28x2 dx

(y1)2
dx

= y1

∫
e

5 ln(x)
4 −2 ln(−1+3x)

(y1)2
dx

= y1

(
4
√
x e

5 ln(x)
4 −2 ln(−1+3x)(−1 + 3x)2

7

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

−1 + 3x

)
+ c2

(
x1/4

−1 + 3x

(
4
√
x e

5 ln(x)
4 −2 ln(−1+3x)(−1 + 3x)2

7

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

28x2(1− 3x)
(

d2

dx2y(x)
)
− 7x(5 + 9x)

(
d
dx
y(x)

)
+ 7(2 + 9x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2+9x)y(x)
4(3x−1)x2 −

(5+9x)
(

d
dx

y(x)
)

4x(3x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+9x)

(
d
dx

y(x)
)

4x(3x−1) − (2+9x)y(x)
4(3x−1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+9x
4x(3x−1) , P3(x) = − 2+9x

4(3x−1)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4(3x− 1)x2
(

d2

dx2y(x)
)
+ x(5 + 9x)

(
d
dx
y(x)

)
+ (−9x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−1 + 4r) (−2 + r)xr +
(

∞∑
k=1

(−ak(4k + 4r − 1) (k + r − 2) + 3ak−1(4k + 4r − 1) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 4r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
2, 14
}

• Each term in the series must be 0, giving the recursion relation
−4
(
k + r − 1

4

)
(ak − 3ak−1) (k + r − 2) = 0

• Shift index using k− >k + 1
−4
(
k + 3

4 + r
)
(ak+1 − 3ak) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 3ak

• Recursion relation for r = 2
ak+1 = 3ak

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = 3ak

]
• Recursion relation for r = 1

4

ak+1 = 3ak
• Solution for r = 1

4[
y(x) =

∞∑
k=0

akx
k+ 1

4 , ak+1 = 3ak
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+1 = 3ak, bk+1 = 3bk

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.035 (sec)
Leaf size : 23� �
dsolve(28*x^2*(-3*x+1)*diff(diff(y(x),x),x)-7*x*(5+9*x)*diff(y(x),x)+7*(2+9*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2x
1/4

3x− 1
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Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 30� �
DSolve[{28*x^2*(1-3*x)*D[y[x],{x,2}]-7*x*(5+9*x)*D[y[x],x]+7*(2+9*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c2x2 + 7c1 4

√
x

7− 21x
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2.1.537 problem 553

Solved as second order ode using Kovacic algorithm . . . . . . . . .3594
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3598
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3599
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3600
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3600

Internal problem ID [9385]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 553
Date solved : Thursday, December 12, 2024 at 10:11:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

8x2(−x2 + 2
)
y′′ + 2x

(
−21x2 + 10

)
y′ −

(
35x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.199 (sec)

Writing the ode as(
−8x4 + 16x2) y′′ + (−42x3 + 20x

)
y′ +

(
−35x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −8x4 + 16x2

B = −42x3 + 20x (3)
C = −35x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7
64x2 (6)

Comparing the above to (5) shows that

s = −7
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(
− 7
64x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1019: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 7

64x2
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Since the gcd(s, t) = 1. This gives b = − 7
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

8
α−
∞ = 1

2 −
√
1 + 4b = 1

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 7
64x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
8

1
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

8 then

d = α−
∞ −

(
α−
c1

)
= 1

8 −
(
1
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
8x + (−) (0)

= 1
8x

= 1
8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x

)
(0) +

((
− 1
8x2

)
+
(

1
8x

)2

−
(
− 7
64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

8xdx

= x1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−42x3+20x
−8x4+16x2 dx

= z1e
− 5 ln(x)

8 −ln
(
x2−2

)

= z1

(
1

x5/8 (x2 − 2)

)

Which simplifies to

y1 =
1√

x (x2 − 2)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−42x3+20x

−8x4+16x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(x)
4 −2 ln

(
x2−2

)
(y1)2

dx

= y1

(
4x2e−

5 ln(x)
4 −2 ln

(
x2−2

)
(x2 − 2)2

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√

x (x2 − 2)

)
+ c2

(
1√

x (x2 − 2)

(
4x2e−

5 ln(x)
4 −2 ln

(
x2−2

)
(x2 − 2)2

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

8x2(−x2 + 2)
(

d2

dx2y(x)
)
+ 2x(−21x2 + 10)

(
d
dx
y(x)

)
− (35x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
35x2+2

)
y(x)

8x2(x2−2) −
(
21x2−10

)(
d
dx

y(x)
)

4x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
21x2−10

)(
d
dx

y(x)
)

4x(x2−2) +
(
35x2+2

)
y(x)

8x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 21x2−10

4x(x2−2) , P3(x) = 35x2+2
8x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
8

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

8x2(x2 − 2)
(

d2

dx2y(x)
)
+ 2x(21x2 − 10)

(
d
dx
y(x)

)
+ (35x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0(1 + 2r) (−1 + 4r)xr − 2a1(3 + 2r) (3 + 4r)x1+r +
(

∞∑
k=2

(−2ak(2k + 2r + 1) (4k + 4r − 1) + ak−2(2k + 2r + 1) (4k + 4r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(1 + 2r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
4

}
• Each term must be 0

−2a1(3 + 2r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

−(2k + 2r + 1) (4k + 4r − 1) (2ak − ak−2) = 0
• Shift index using k− >k + 2

−(2k + 2r + 5) (4k + 4r + 7) (2ak+2 − ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak
2

• Recursion relation for r = −1
2

ak+2 = ak
2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = ak
2 , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = ak
2

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = ak
2 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = ak

2 , a1 = 0, bk+2 = bk
2 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 22� �
dsolve(8*x^2*(-x^2+2)*diff(diff(y(x),x),x)+2*x*(-21*x^2+10)*diff(y(x),x)-(35*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = c2x

3/4 + c1
(x2 − 2)

√
x

Mathematica DSolve solution

Solving time : 0.085 (sec)
Leaf size : 34� �
DSolve[{8*x^2*(2-x^2)*D[y[x],{x,2}]+2*x*(10-21*x^2)*D[y[x],x]-(2+35*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3c1√
x
+ 4c2 4

√
x

6− 3x2
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2.1.538 problem 554

Solved as second order ode using Kovacic algorithm . . . . . . . . .3601
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3603
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3605
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3605
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3605

Internal problem ID [9386]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 554
Date solved : Thursday, December 12, 2024 at 10:11:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 3x+ 1
)
y′′ − 4x

(
−3x2 − 3x+ 1

)
y′ + 3

(
x2 − x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.144 (sec)

Writing the ode as(
4x4 + 12x3 + 4x2) y′′ + (12x3 + 12x2 − 4x

)
y′ +

(
3x2 − 3x+ 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 12x3 + 4x2

B = 12x3 + 12x2 − 4x (3)
C = 3x2 − 3x+ 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1021: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
12x3+12x2−4x
4x4+12x3+4x2 dx

= z1e
− ln

(
x2+3x+1

)
+ ln(x)

2

= z1

( √
x

x2 + 3x+ 1

)

Which simplifies to

y1 =
√
x

x2 + 3x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 12x3+12x2−4x

4x4+12x3+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2+3x+1

)
+ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

x2 + 3x+ 1

)
+ c2

( √
x

x2 + 3x+ 1(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
− 4x(−3x2 − 3x+ 1)

(
d
dx
y(x)

)
+ 3(x2 − x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3
(
x2−x+1

)
y(x)

4x2(x2+3x+1) −
(
3x2+3x−1

)(
d
dx

y(x)
)

x(x2+3x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+3x−1

)(
d
dx

y(x)
)

x(x2+3x+1) + 3
(
x2−x+1

)
y(x)

4x2(x2+3x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3x2+3x−1

x(x2+3x+1) , P3(x) = 3
(
x2−x+1

)
4x2(x2+3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
+ 4x(3x2 + 3x− 1)

(
d
dx
y(x)

)
+ (3x2 − 3x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + (a1(1 + 2r) (−1 + 2r) + 3a0(1 + 2r) (−1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3) + 3ak−1(2k + 2r − 1) (2k + 2r − 3) + ak−2(2k + 2r − 1) (2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) + 3a0(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = −3a0
• Each term in the series must be 0, giving the recursion relation

(2k + 2r − 1) (2k + 2r − 3) (ak + 3ak−1 + ak−2) = 0
• Shift index using k− >k + 2

(2k + 2r + 3) (2k + 2r + 1) (ak+2 + 3ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −3ak+1 − ak

• Recursion relation for r = 1
2

ak+2 = −3ak+1 − ak

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

• Recursion relation for r = 3
2

ak+2 = −3ak+1 − ak

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = −3ak+1 − ak, a1 = −3a0, bk+2 = −3bk+1 − bk, b1 = −3b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 23� �
dsolve(4*x^2*(x^2+3*x+1)*diff(diff(y(x),x),x)-4*x*(-3*x^2-3*x+1)*diff(y(x),x)+3*(x^2-x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c2x+ c1)
x2 + 3x+ 1

Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 28� �
DSolve[{4*x^2*(1+3*x+x^2)*D[y[x],{x,2}]-4*x*(1-3*x-3*x^2)*D[y[x],x]+3*(1-x+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2x+ c1)

x2 + 3x+ 1
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2.1.539 problem 555

Solved as second order ode using Kovacic algorithm . . . . . . . . .3606
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3610
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3611
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3612
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3612

Internal problem ID [9387]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 555
Date solved : Thursday, December 12, 2024 at 10:11:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(1 + x)2 y′′ − x
(
−11x2 − 10x+ 1

)
y′ +

(
5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.200 (sec)

Writing the ode as

3x2(1 + x)2 y′′ +
(
11x3 + 10x2 − x

)
y′ +

(
5x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2(1 + x)2

B = 11x3 + 10x2 − x (3)
C = 5x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5
36x2 (6)

Comparing the above to (5) shows that

s = −5
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
− 5
36x2

)
z(x) (7)



chapter 2. book solved problems 3607

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1023: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 5

36x2
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Since the gcd(s, t) = 1. This gives b = − 5
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

6
α−
∞ = 1

2 −
√
1 + 4b = 1

6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 5
36x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
6

1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

6 then

d = α−
∞ −

(
α−
c1

)
= 1

6 −
(
1
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
6x + (−) (0)

= 1
6x

= 1
6x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x

)
(0) +

((
− 1
6x2

)
+
(

1
6x

)2

−
(
− 5
36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

6xdx

= x1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+10x2−x

3x2(1+x)2
dx

= z1e
ln(x)

6 −2 ln(1+x)

= z1

(
x1/6

(1 + x)2
)

Which simplifies to

y1 =
x1/3

(1 + x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+10x2−x

3x2(1+x)2
dx

(y1)2
dx

= y1

∫
e

ln(x)
3 −4 ln(1+x)

(y1)2
dx

= y1

(
3x1/3e

ln(x)
3 −4 ln(1+x)(1 + x)4

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

(1 + x)2
)
+ c2

(
x1/3

(1 + x)2

(
3x1/3e

ln(x)
3 −4 ln(1+x)(1 + x)4

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2(x+ 1)2
(

d2

dx2y(x)
)
− x(−11x2 − 10x+ 1)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+1

)
y(x)

3x2(x+1)2 −
(

d
dx

y(x)
)
(11x−1)

3x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
(11x−1)

3x(x+1) +
(
5x2+1

)
y(x)

3x2(x+1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x−1
3x(x+1) , P3(x) = 5x2+1

3x2(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

3x2(x+ 1)2
(

d2

dx2y(x)
)
+ x(x+ 1) (11x− 1)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(3u4 − 6u3 + 3u2)
(

d2

du2y(u)
)
+ (11u3 − 23u2 + 12u)

(
d
du
y(u)

)
+ (5u2 − 10u+ 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0(2 + r) (1 + r)ur + (3a1(3 + r) (2 + r)− a0(2 + r) (5 + 6r))u1+r +
(

∞∑
k=2

(3ak(k + r + 2) (k + r + 1)− ak−1(k + r + 1) (6k − 1 + 6r) + ak−2(3k − 1 + 3r) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
3a1(3 + r) (2 + r)− a0(2 + r) (5 + 6r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(5+6r)

3(3+r)

• Each term in the series must be 0, giving the recursion relation
3(ak + ak−2 − 2ak−1) k2 + (6(ak + ak−2 − 2ak−1) r + 9ak − 4ak−2 − 5ak−1) k + 3(ak + ak−2 − 2ak−1) r2 + (9ak − 4ak−2 − 5ak−1) r + 6ak + ak−2 + ak−1 = 0

• Shift index using k− >k + 2
3(ak+2 + ak − 2ak+1) (k + 2)2 + (6(ak+2 + ak − 2ak+1) r + 9ak+2 − 4ak − 5ak+1) (k + 2) + 3(ak+2 + ak − 2ak+1) r2 + (9ak+2 − 4ak − 5ak+1) r + 6ak+2 + ak + ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3k2ak−6k2ak+1+6krak−12krak+1+3r2ak−6r2ak+1+8kak−29kak+1+8rak−29rak+1+5ak−33ak+1

3(k2+2kr+r2+7k+7r+12)

• Recursion relation for r = −2
ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k2+3k+2)

• Solution for r = −2[
y(u) =

∞∑
k=0

aku
k−2, ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k2+3k+2) , a1 = −7a0
3

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−2 , ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1
3(k2+3k+2) , a1 = −7a0

3

]
• Recursion relation for r = −1

ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1
3(k2+5k+6)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1

3(k2+5k+6) , a1 = −a0
6

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1
3(k2+5k+6) , a1 = −a0

6

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−2
)
+
(

∞∑
k=0

bk(x+ 1)k−1
)
, ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k2+3k+2) , a1 = −7a0
3 , bk+2 = −3k2bk−6k2bk+1+2kbk−17kbk+1−10bk+1

3(k2+5k+6) , b1 = − b0
6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.026 (sec)
Leaf size : 19� �
dsolve(3*x^2*(x+1)^2*diff(diff(y(x),x),x)-x*(-11*x^2-10*x+1)*diff(y(x),x)+(5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = c2x

1/3 + c1x

(x+ 1)2

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 29� �
DSolve[{3*x^2*(1+x)^2*D[y[x],{x,2}]-x*(1-10*x-11*x^2)*D[y[x],x]+(1+5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1 3

√
x+ 3c2x

2(x+ 1)2
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2.1.540 problem 556

Solved as second order ode using Kovacic algorithm . . . . . . . . .3613
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3617
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3618
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3619
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3619

Internal problem ID [9388]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 556
Date solved : Thursday, December 12, 2024 at 10:11:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 2x+ 3
)
y′′ − x

(
−15x2 − 14x+ 3

)
y′ +

(
7x2 + 3

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.208 (sec)

Writing the ode as(
4x4 + 8x3 + 12x2) y′′ + (15x3 + 14x2 − 3x

)
y′ +

(
7x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 8x3 + 12x2

B = 15x3 + 14x2 − 3x (3)
C = 7x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −7
64x2 (6)

Comparing the above to (5) shows that

s = −7
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(
− 7
64x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1025: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
64x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 7

64x2
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Since the gcd(s, t) = 1. This gives b = − 7
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

8
α−
∞ = 1

2 −
√
1 + 4b = 1

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 7
64x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
8

1
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

8 then

d = α−
∞ −

(
α−
c1

)
= 1

8 −
(
1
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
8x + (−) (0)

= 1
8x

= 1
8x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)



chapter 2. book solved problems 3616

Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x

)
(0) +

((
− 1
8x2

)
+
(

1
8x

)2

−
(
− 7
64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

8xdx

= x1/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
15x3+14x2−3x
4x4+8x3+12x2 dx

= z1e
ln(x)

8 −ln
(
x2+2x+3

)

= z1

(
x1/8

x2 + 2x+ 3

)

Which simplifies to

y1 =
x1/4

x2 + 2x+ 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 15x3+14x2−3x

4x4+8x3+12x2 dx

(y1)2
dx

= y1

∫
e

ln(x)
4 −2 ln

(
x2+2x+3

)
(y1)2

dx

= y1

(
4
√
x e

ln(x)
4 −2 ln

(
x2+2x+3

)
(x2 + 2x+ 3)2

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

x2 + 2x+ 3

)
+ c2

(
x1/4

x2 + 2x+ 3

(
4
√
x e

ln(x)
4 −2 ln

(
x2+2x+3

)
(x2 + 2x+ 3)2

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x2 + 2x+ 3)
(

d2

dx2y(x)
)
− x(−15x2 − 14x+ 3)

(
d
dx
y(x)

)
+ (7x2 + 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+3

)
y(x)

4x2(x2+2x+3) −
(
15x2+14x−3

)(
d
dx

y(x)
)

4x(x2+2x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
15x2+14x−3

)(
d
dx

y(x)
)

4x(x2+2x+3) +
(
7x2+3

)
y(x)

4x2(x2+2x+3) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 15x2+14x−3

4x(x2+2x+3) , P3(x) = 7x2+3
4x2(x2+2x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 2x+ 3)
(

d2

dx2y(x)
)
+ x(15x2 + 14x− 3)

(
d
dx
y(x)

)
+ (7x2 + 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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3a0(−1 + 4r) (−1 + r)xr + (3a1(3 + 4r) r + 2a0r(3 + 4r))x1+r +
(

∞∑
k=2

(3ak(4k + 4r − 1) (k + r − 1) + 2ak−1(k + r − 1) (4k + 4r − 1) + ak−2(4k + 4r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3(−1 + 4r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 14
}

• Each term must be 0
3a1(3 + 4r) r + 2a0r(3 + 4r) = 0

• Solve for the dependent coefficient(s)
a1 = −2a0

3

• Each term in the series must be 0, giving the recursion relation
(4k + 4r − 1) (k + r − 1) (3ak + 2ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(4k + 4r + 7) (k + r + 1) (3ak+2 + 2ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak+1

3 − ak
3

• Recursion relation for r = 1
ak+2 = −2ak+1

3 − ak
3

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −2ak+1

3 − ak
3 , a1 = −2a0

3

]
• Recursion relation for r = 1

4

ak+2 = −2ak+1
3 − ak

3

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2ak+1
3 − ak

3 , a1 = −2a0
3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −2ak+1

3 − ak
3 , a1 = −2a0

3 , bk+2 = −2bk+1
3 − bk

3 , b1 = −2b0
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 24� �
dsolve(4*x^2*(x^2+2*x+3)*diff(diff(y(x),x),x)-x*(-15*x^2-14*x+3)*diff(y(x),x)+(7*x^2+3)*y(x) = 0,

y(x),singsol=all)� �
y = c2x

1/4 + c1x

x2 + 2x+ 3

Mathematica DSolve solution

Solving time : 0.095 (sec)
Leaf size : 33� �
DSolve[{4*x^2*(3+2*x+x^2)*D[y[x],{x,2}]-x*(3-14*x-15*x^2)*D[y[x],x]+(3+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1 4

√
x+ 4c2x

3x2 + 6x+ 9
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2.1.541 problem 557

Solved as second order ode using Kovacic algorithm . . . . . . . . .3620
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3624
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3626
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3626
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3626

Internal problem ID [9389]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 557
Date solved : Thursday, December 12, 2024 at 10:11:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 − 2x+ 1
)
y′′ − x(3 + x) y′ + (4 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.344 (sec)

Writing the ode as

x2(x− 1)2 y′′ +
(
−x2 − 3x

)
y′ + (4 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(x− 1)2

B = −x2 − 3x (3)
C = 4 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 10x− 1
4x2 (x− 1)4

(6)

Comparing the above to (5) shows that

s = 7x2 + 10x− 1
t = 4x2(x− 1)4

Therefore eq. (4) becomes

z′′(x) =
(
7x2 + 10x− 1
4x2 (x− 1)4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1027: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2(x− 1)4. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 4.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
2 (x− 1) −

1
4x2 + 7

4 (x− 1)2
− 2

(x− 1)3
+ 4

(x− 1)4
+ 3

2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)
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Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − 3
2 (x− 1) −

1
4x2 + 7

4 (x− 1)2
− 2

(x− 1)3
+ 4

(x− 1)4
+ 3

2x

There is pole in r at x = 1 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 1 gives

[
√
r]c ≈

2
(x− 1)2

− 1
2 (x− 1) +

21
32 − 9x

32 + 53(x− 1)2

256 − 149(x− 1)3

1024 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

2
(x− 1)2

(3B)

The above shows that the coefficient of 1
(x−1)2 is

a = 2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 1. This term becomes 1
(x−1)3 . The coefficient of this term in the sum [

√
r]c is seen to

be 0 and the coefficient of this term r is found from the partial fraction decomposition
from above to be −2. Therefore

b = (−2)− (0)
= −2

Hence

[
√
r]c =

2
(x− 1)2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−2
2 + 2

)
= 1

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−2

2 + 2
)

= 3
2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7x2 + 10x− 1
4x2 (x− 1)4

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 4 2
(x−1)2

1
2

3
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x + 2

(x− 1)2
+ 1

2x− 2 + (−) (0)

= 1
2x + 2

(x− 1)2
+ 1

2x− 2

= 2x2 + x+ 1
2x (x− 1)2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)
(0) +

((
− 1
2x2 − 4

(x− 1)3
− 1

2 (x− 1)2
)
+
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)2

−
(
7x2 + 10x− 1
4x2 (x− 1)4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
2

(x−1)2
+ 1

2x−2

)
dx

=
√
x
√
x− 1 e−

2
x−1
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x
x2(x−1)2

dx

= z1e
3 ln(x)

2 − 2
x−1−

3 ln(x−1)
2

= z1

(
x3/2e−

2
x−1

(x− 1)3/2

)

Which simplifies to

y1 =
x3/2e−

4
x−1
√
x (x− 1)

(x− 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x2−3x

x2(x−1)2
dx

(y1)2
dx

= y1

∫
e3 ln(x)−

4
x−1−3 ln(x−1)

(y1)2
dx

= y1

(
e−4 Ei1

(
− 4
x− 1 − 4

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

)
+ c2

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

(
e−4 Ei1

(
− 4
x− 1 − 4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+4)y(x)
x2(x2−2x+1) +

(x+3)
(

d
dx

y(x)
)

x(x2−2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x(x2−2x+1) + (x+4)y(x)
x2(x2−2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − x+3

x(x2−2x+1) , P3(x) = x+4
x2(x2−2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(
a1(−1 + r)2 − a0(1 + 2r) (−1 + r)

)
x1+r +

(
∞∑
k=2

(
ak(k + r − 2)2 − ak−1(2k − 1 + 2r) (k + r − 2) + ak−2(k + r − 2) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 − a0(1 + 2r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(1+2r)

−1+r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 − 2ak−1) k + (ak + ak−2 − 2ak−1) r − 2ak − 3ak−2 + ak−1) (k + r − 2) = 0

• Shift index using k− >k + 2
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((ak+2 + ak − 2ak+1) (k + 2) + (ak+2 + ak − 2ak+1) r − 2ak+2 − 3ak + ak+1) (k + r) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −kak−2kak+1+rak−2rak+1−ak−3ak+1
k+r

• Recursion relation for r = 2
ak+2 = −kak−2kak+1+ak−7ak+1

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −kak−2kak+1+ak−7ak+1

k+2 , a1 = 5a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 45� �
dsolve(x^2*(x^2-2*x+1)*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(x+4)*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
Ei1
(
− 4x

x−1

)
e−

4x
x−1 c2 + e−

4
x−1 c1

)
x− 1

Mathematica DSolve solution

Solving time : 0.293 (sec)
Leaf size : 54� �
DSolve[{x^2*(1-2*x+x^2)*D[y[x],{x,2}]-x*(3+x)*D[y[x],x]+(4+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−
4x
x−1

√
1− xx2(c2 ExpIntegralEi ( 4x

x−1

)
+ e4c1

)
(x− 1)3/2
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2.1.542 problem 558

Solved as second order ode using Kovacic algorithm . . . . . . . . .3627
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3631
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3632
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3633
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3633

Internal problem ID [9390]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 558
Date solved : Thursday, December 12, 2024 at 10:11:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ + 5x2y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.244 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + 5x2y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = 5x2 (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 24x− 16
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 24x− 16

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 24x− 16
16 (x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1029: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 8x − 1

4x2 − 1
8x + 5

16 (2 + x)2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 24x− 16

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 24x− 16
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 5
4 −1

4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (2 + x) +

1
2x + (−) (0)

= − 1
4 (2 + x) +

1
2x

= x+ 4
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (2 + x) +

1
2x

)
(0) +

((
1

4 (2 + x)2
− 1

2x2

)
+
(
− 1
4 (2 + x) +

1
2x

)2

−
(
−3x2 − 24x− 16
16 (x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
4(2+x)+

1
2x

)
dx

=
√
x

(2 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2

2x3+4x2 dx

= z1e
− 5 ln(2+x)

4

= z1

(
1

(2 + x)5/4

)

Which simplifies to

y1 =
√
x

(2 + x)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2

2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(2+x)
2

(y1)2
dx

= y1

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(2 + x)3/2

)
+ c2

( √
x

(2 + x)3/2

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2(x+2)x2 −

5
(

d
dx

y(x)
)

2(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)

2(x+2) + (x+1)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
2(x+2) , P3(x) = x+1

2(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 5
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (5u2 − 20u+ 20)

(
d
du
y(u)

)
+ (u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(3 + 2r)u−1+r + (4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 5 + 2r)− ak(8k2 + 16kr + 8r2 + 12k + 12r + 1) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term must be 0

4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 12ak − ak−1 + 28ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−12ak − ak−1 + 28ak+1) r − ak + 20ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 12ak+1 − ak + 28ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−12ak+1 − ak + 28ak+2) r − ak+1 + 20ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+3kak−28kak+1+3rak−28rak+1+ak−21ak+1
4(2k2+4kr+2r2+11k+11r+14)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1
4(2k2+11k+14) , 20a1 − a0 = 0

]
• Recursion relation for r = −3

2

ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2) ,−4a1 − a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k−
3
2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1

4(2k2+5k+2) ,−4a1 − a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k−
3
2

)
, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0, bk+2 = −2k2bk−8k2bk+1−3kbk−4kbk+1+bk+3bk+1
4(2k2+5k+2) ,−4b1 − b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 39� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+5*diff(y(x),x)*x^2+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

(√
x+ 2

√
2 c2 − 2 arctanh

(√
2
√
x+2

2

)
c2 + c1

)√
x

(x+ 2)3/2

Mathematica DSolve solution

Solving time : 0.105 (sec)
Leaf size : 55� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}]+5*x^2*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
−2

√
2c2arctanh

(√
x+2√
2

)
+ 2c2

√
x+ 2 + c1

)
(x+ 2)3/2
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2.1.543 problem 559

Solved as second order ode using Kovacic algorithm . . . . . . . . .3634
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3638
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3640
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3640
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3640

Internal problem ID [9391]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 559
Date solved : Thursday, December 12, 2024 at 10:11:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 2
)
y′′ − 2x

(
2x2 + 1

)
y′ +

(
−2x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.406 (sec)

Writing the ode as(
−x4 + 2x2) y′′ + (−4x3 − 2x

)
y′ +

(
−2x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + 2x2

B = −4x3 − 2x (3)
C = −2x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 1
(x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 1

t =
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 1
(x3 − 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1031: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of order

2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 5

16
(
x−

√
2
)2 + 5

16
(
x+

√
2
)2 − 3

√
2

32
(
x−

√
2
) + 3

√
2

32
(
x+

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x =
√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

For the pole at x = −
√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 1
(x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2√

2 2 0 5
4 −1

4

−
√
2 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
) + (0)

= 1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
)

= − 1
x3 − 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
)) (0) +

(− 1
2x2 + 1

4
(
x−

√
2
)2 + 1

4
(
x+

√
2
)2
)

+
(

1
2x − 1

4
(
x−

√
2
) − 1

4
(
x+

√
2
))2

−
(

3x2 − 1
(x3 − 2x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

4
(
x−

√
2
)− 1

4
(
x+

√
2
)
)
dx

=
√
x(

x+
√
2
)1/4 (

x−
√
2
)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x3−2x
−x4+2x2 dx

= z1e
ln(x)

2 −
5 ln

(
x2−2

)
4

= z1

( √
x

(x2 − 2)5/4

)

Which simplifies to

y1 =
x

(x2 − 2)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x3−2x

−x4+2x2 dx

(y1)2
dx

= y1

∫
eln(x)−

5 ln
(
x2−2

)
2

(y1)2
dx

= y1

(
√
x2 − 2 +

√
2 arctan

( √
2√

x2 − 2

))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x2 − 2)3/2

)
+ c2

(
x

(x2 − 2)3/2

(
√
x2 − 2 +

√
2 arctan

( √
2√

x2 − 2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−x2 + 2)
(

d2

dx2y(x)
)
− 2x(2x2 + 1)

(
d
dx
y(x)

)
+ (−2x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
x2−1

)
y(x)

x2(x2−2) −
2
(
2x2+1

)(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(
2x2+1

)(
d
dx

y(x)
)

x(x2−2) + 2
(
x2−1

)
y(x)

x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(
2x2+1

)
x(x2−2) , P3(x) = 2

(
x2−1

)
x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2)
(

d2

dx2y(x)
)
+ 2x(2x2 + 1)

(
d
dx
y(x)

)
+ (2x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0(−1 + r)2 xr − 2a1r2x1+r +
(

∞∑
k=2

(
−2ak(k + r − 1)2 + ak−2(k + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a1r2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2ak(k + r − 1)2 + ak−2(k + r) (k + r − 1) = 0

• Shift index using k− >k + 2
−2ak+2(k + r + 1)2 + ak(k + r + 2) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(k+r+2)

2(k+r+1)

• Recursion relation for r = 1
ak+2 = ak(k+3)

2(k+2)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = ak(k+3)

2(k+2) , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.051 (sec)
Leaf size : 42� �
dsolve(x^2*(-x^2+2)*diff(diff(y(x),x),x)-2*x*(2*x^2+1)*diff(y(x),x)+(-2*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y =

x
(√

2 c2
√
x2 − 2 + 2 arctan

( √
2√

x2−2

)
c2 + c1

)
(x2 − 2)3/2

Mathematica DSolve solution

Solving time : 0.143 (sec)
Leaf size : 58� �
DSolve[{x^2*(2-x^2)*D[y[x],{x,2}]-2*x*(1+2*x^2)*D[y[x],x]+(2-2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
x

(
−
√
2c2arctanh

(√
1− x2

2

)
+ c2

√
2− x2 + c1

)
(2− x2)3/2
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2.1.544 problem 560

Solved as second order ode using Kovacic algorithm . . . . . . . . .3641
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3645
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3647
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3647
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3647

Internal problem ID [9392]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 560
Date solved : Thursday, December 12, 2024 at 10:11:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(5− x) y′ + (9− 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.423 (sec)

Writing the ode as

x2y′′ +
(
x2 − 5x

)
y′ + (9− 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − 5x (3)
C = 9− 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1033: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 + 3
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 3
2x − 5

2x2 + 15
2x3 − 115

4x4 + 495
4x5 − 2285

4x6 + 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
6x− 1
4x2

)
= 1

4 + 6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 6. Dividing this by leading coefficient in t which is 4 gives 3

2 . Now b can be found.

b =
(
3
2

)
− (0)

= 3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
2
− 0
)

= 3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
2
− 0
)

= −3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

3
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2x + 1
2

= 1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x + 1

2

)2

−
(
x2 + 6x− 1

4x2

))
= 0

1− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ ( 1

2x+
1
2
)
dx

= (1 + x) ex
2+

ln(x)
2

= (1 + x)
√
x ex

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−5x

x2 dx

= z1e
−x

2+
5 ln(x)

2

= z1
(
x5/2e−x

2
)

Which simplifies to
y1 = x3(1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2−5x

x2 dx

(y1)2
dx

= y1

∫
e−x+5 ln(x)

(y1)2
dx

= y1

(
− e−x

−1− x
− Ei1 (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x3(1 + x)

)
+ c2

(
x3(1 + x)

(
− e−x

−1− x
− Ei1 (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(5− x)

(
d
dx
y(x)

)
+ (9− 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−9+4x)y(x)
x2 −

(x−5)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x) +
(x−5)

(
d
dx

y(x)
)

x
− (−9+4x)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x−5

x
, P3(x) = −−9+4x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x− 5)

(
d
dx
y(x)

)
+ (9− 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−3 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 3)2 + ak−1(k − 5 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 3)2 + ak−1(k − 5 + r) = 0

• Shift index using k− >k + 1
ak+1(k − 2 + r)2 + ak(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+r−4)

(k−2+r)2

• Recursion relation for r = 3 ; series terminates at k = 1
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ak+1 = −ak(k−1)
(k+1)2

• Apply recursion relation for k = 0
a1 = a0

• Terminating series solution of the ODE for r = 3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (x+ 1)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(5-x)*diff(y(x),x)+(9-4*x)*y(x) = 0,

y(x),singsol=all)� �
y = x3(−e−xc2 + (Ei1 (x) c2 + c1) (x+ 1)

)
Mathematica DSolve solution

Solving time : 0.099 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]-x*(5-x)*D[y[x],x]+(9-4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−xx3(c2ex(x+ 1)ExpIntegralEi(−x) + c1e

x(x+ 1) + c2)
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2.1.545 problem 561

Solved as second order ode using Kovacic algorithm . . . . . . . . .3648
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3652
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3654
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3654
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3654

Internal problem ID [9393]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 561
Date solved : Thursday, December 12, 2024 at 10:11:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + x+ 1
)
y′′ + 12x2(1 + x) y′ +

(
3x2 + 3x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.791 (sec)

Writing the ode as(
4x4 + 4x3 + 4x2) y′′ + (12x3 + 12x2) y′ + (3x2 + 3x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x3 + 4x2

B = 12x3 + 12x2 (3)
C = 3x2 + 3x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 4x− 1
4 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 4x− 1

t = 4
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 4x− 1
4 (x3 + x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1035: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 +
i
√
3

2
of order 2. There is a pole at x = −1

2 −
i
√
3

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
2x − 1

4x2 +
−3

8 −
i
√
3

8(
x+ 1

2 −
i
√
3

2

)2 +
−3

8 +
i
√
3

8(
x+ 1

2 +
i
√
3

2

)2 +
1
4 −

5i
√
3

12

x+ 1
2 −

i
√
3

2

+
1
4 +

5i
√
3

12

x+ 1
2 +

i
√
3

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −3
8 −

i
√
3

8 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

−2− 2i
√
3

4

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

−2− 2i
√
3

4

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −3
8 +

i
√
3

8 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
−2 + 2i

√
3

4

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
−2 + 2i

√
3

4
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 4x− 1
4 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 +

i
√
3

2 2 0 1
2 +

√
−2−2i

√
3

4
1
2 −

√
−2−2i

√
3

4

−1
2 −

i
√
3

2 2 0 1
2 +

√
−2+2i

√
3

4
1
2 −

√
−2+2i

√
3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

+ (−) (0)

= 1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

= 2x2 + 1
2x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

2x2 −
1
2 −

√
−2−2i

√
3

4(
x+ 1

2 −
i
√
3

2

)2 −
1
2 −

√
−2+2i

√
3

4(
x+ 1

2 +
i
√
3

2

)2
+

(
1
2x +

1
2 −

√
−2−2i

√
3

4

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−2+2i

√
3

4

x+ 1
2 +

i
√
3

2

)2

−
(

2x2 − 4x− 1
4 (x3 + x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1
2−

√
−2−2i

√
3

4
x+1

2− i
√
3

2
+

1
2−

√
−2+2i

√
3

4
x+1

2+ i
√
3

2

)
dx

=
(
x2 + x+ 1

)1/4√
x
√
2 e−

√
3 arctan

(
(2x+1)

√
3

3

)
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
12x3+12x2

4x4+4x3+4x2 dx

= z1e
−

3 ln
(
x2+x+1

)
4 −

√
3 arctan

(
(2x+1)

√
3

3

)
2

= z1

e−
√
3 arctan

(
(2x+1)

√
3

3

)
2

(x2 + x+ 1)3/4


Which simplifies to

y1 =
e−

√
3 arctan

(
(2x+1)

√
3

3

)√
x
√
2√

x2 + x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 12x3+12x2

4x4+4x3+4x2 dx

(y1)2
dx

= y1

∫
e
−

3 ln
(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
(y1)2

dx

= y1

∫ e−
3 ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
(x2 + x+ 1) e2

√
3 arctan

(
(2x+1)

√
3

3

)
2x dx


Therefore the solution is

y = c1y1 + c2y2

= c1

e−
√
3 arctan

(
(2x+1)

√
3

3

)√
x
√
2√

x2 + x+ 1


+c2

e−
√
3 arctan

(
(2x+1)

√
3

3

)√
x
√
2√

x2 + x+ 1

∫ e−
3 ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
(x2 + x+ 1) e2

√
3 arctan

(
(2x+1)

√
3

3

)
2x dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 12x2(x+ 1)

(
d
dx
y(x)

)
+ (3x2 + 3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+3x+1

)
y(x)

4x2(x2+x+1) −
3(x+1)

(
d
dx

y(x)
)

x2+x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3(x+1)

(
d
dx

y(x)
)

x2+x+1 +
(
3x2+3x+1

)
y(x)

4x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3(x+1)

x2+x+1 , P3(x) = 3x2+3x+1
4x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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4x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 12x2(x+ 1)

(
d
dx
y(x)

)
+ (3x2 + 3x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 2..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(
a1(1 + 2r)2 + a0(3 + 2r) (1 + 2r)

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−1(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r − 1) (2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 + a0(3 + 2r) (1 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = − (3+2r)a0

1+2r

• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
(ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r − ak

2 − 3ak−2
2 + ak−1

2

)
= 0

• Shift index using k− >k + 2
4
(
k + 3

2 + r
) (

(ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r − ak+2
2 − 3ak

2 + ak+1
2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+2kak+1+2rak+2rak+1+ak+5ak+1

2k+2r+3

• Recursion relation for r = 1
2

ak+2 = −2kak+2kak+1+2ak+6ak+1
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −2kak+2kak+1+2ak+6ak+1
2k+4 , a1 = −2a0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.791 (sec)
Leaf size : 181� �
dsolve(4*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+12*x^2*(x+1)*diff(y(x),x)+(3*x^2+3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y

=

√
i
√
3− 2x− 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
2

√
x
(

−2ix+
√
3−i√

3+2ix+i

)1/4(√
−2ix+

√
3−i√

3+2ix+i

(
−2ix+

√
3−i√

3+2ix+i

) i
√
3

4 hypergeom
([

1, 12 +
i
√
3

2

]
,
[
i
√
3

2 + 3
2

]
, −i

√
3x+x+2

i
√
3x+x+2

)
c2 +

(
−2ix+

√
3−i√

3+2ix+i

)− i
√
3

4
c1

)
(x2 + x+ 1)3/4

Mathematica DSolve solution

Solving time : 1.341 (sec)
Leaf size : 93� �
DSolve[{4*x^2*(1+x+x^2)*D[y[x],{x,2}]+12*x^2*(1+x)*D[y[x],x]+(1+3*x+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
xe

−
√
3 arctan

(
2x+1√

3

)(
c2
∫ x

1
e

√
3 arctan

(
2K[1]+1√

3

)
K[1]

√
K[1]2+K[1]+1dK[1] + c1

)
√
x2 + x+ 1
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2.1.546 problem 562

Solved as second order ode using Kovacic algorithm . . . . . . . . .3655
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3659
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3661
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3661
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3662

Internal problem ID [9394]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 562
Date solved : Thursday, December 12, 2024 at 10:11:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + x+ 1
)
y′′ − x

(
−2x2 − 4x+ 1

)
y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.846 (sec)

Writing the ode as

x2(x2 + x+ 1
)
y′′ +

(
2x3 + 4x2 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(x2 + x+ 1
)

B = 2x3 + 4x2 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 10x2 − 8x− 1
4 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 10x2 − 8x− 1

t = 4
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

10x2 − 8x− 1
4 (x3 + x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1037: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 +
i
√
3

2
of order 2. There is a pole at x = −1

2 −
i
√
3

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
2x − 1

4x2 +
−29

24 −
7i
√
3

24(
x+ 1

2 −
i
√
3

2

)2 +
−29

24 +
7i
√
3

24(
x+ 1

2 +
i
√
3

2

)2 +
3
4 −

41i
√
3

36

x+ 1
2 −

i
√
3

2

+
3
4 +

41i
√
3

36

x+ 1
2 +

i
√
3

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −29
24 −

7i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

−138− 42i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
−138− 42i

√
3

12

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = −29
24 +

7i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

−138 + 42i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
−138 + 42i

√
3

12
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 10x2 − 8x− 1
4 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 +

i
√
3

2 2 0 1
2 +

√
−138−42i

√
3

12
1
2 −

√
−138−42i

√
3

12

−1
2 −

i
√
3

2 2 0 1
2 +

√
−138+42i

√
3

12
1
2 −

√
−138+42i

√
3

12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

+ (−) (0)

= 1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

= 2x2 − 2x+ 1
2x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

2x2 −
1
2 −

√
−138−42i

√
3

12(
x+ 1

2 −
i
√
3

2

)2 −
1
2 −

√
−138+42i

√
3

12(
x+ 1

2 +
i
√
3

2

)2
+

(
1
2x +

1
2 −

√
−138−42i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 −

√
−138+42i

√
3

12

x+ 1
2 +

i
√
3

2

)2

−
(

10x2 − 8x− 1
4 (x3 + x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1
2−

√
−138−42i

√
3

12
x+1

2− i
√
3

2
+

1
2−

√
−138+42i

√
3

12
x+1

2+ i
√
3

2

)
dx

=
(
x2 + x+ 1

)1/4√
x
√
2 e−

7
√
3 arctan

(
(2x+1)

√
3

3

)
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+4x2−x

x2
(
x2+x+1

) dx

= z1e
−

3 ln
(
x2+x+1

)
4 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
6 + ln(x)

2

= z1

√
x e−

7
√
3 arctan

(
(2x+1)

√
3

3

)
6

(x2 + x+ 1)3/4


Which simplifies to

y1 =
x e−

7
√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2√

x2 + x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e

∫
− 2x3+4x2−x

x2
(
x2+x+1

) dx

(y1)2
dx

= y1

∫
e−

3 ln
(
x2+x+1

)
2 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
3 +ln(x)

(y1)2
dx

= y1

∫ e−
3 ln

(
x2+x+1

)
2 −

7
√

3 arctan
(

(2x+1)
√
3

3

)
3 +ln(x)(x2 + x+ 1) e

14
√
3 arctan

(
(2x+1)

√
3

3

)
3

2x2 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

x e−
7
√

3 arctan
(

(2x+1)
√
3

3

)
3

√
2√

x2 + x+ 1


+c2

x e−
7
√

3 arctan
(

(2x+1)
√
3

3

)
3

√
2√

x2 + x+ 1

∫ e−
3 ln

(
x2+x+1

)
2 −

7
√
3 arctan

(
(2x+1)

√
3

3

)
3 +ln(x)(x2 + x+ 1) e

14
√
3 arctan

(
(2x+1)

√
3

3

)
3

2x2 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + x+ 1)
(

d2

dx2y(x)
)
− x(−2x2 − 4x+ 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x2(x2+x+1) −

(
2x2+4x−1

)(
d
dx

y(x)
)

x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+4x−1

)(
d
dx

y(x)
)

x(x2+x+1) + y(x)
x2(x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+4x−1
x(x2+x+1) , P3(x) = 1

x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(2x2 + 4x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + (a1r2 + a0r(3 + r))x1+r +
(

∞∑
k=2

(
ak(k + r − 1)2 + ak−1(k + r − 1) (k + 2 + r) + ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 + a0r(3 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (3+r)a0
r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r − ak − 2ak−2 + 2ak−1) (k + r − 1) = 0

• Shift index using k− >k + 2
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r − ak+2 − 2ak + 2ak+1) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak+kak+1+rak+rak+1+4ak+1

k+r+1

• Recursion relation for r = 1
ak+2 = −kak+kak+1+ak+5ak+1

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −kak+kak+1+ak+5ak+1

k+2 , a1 = −4a0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.658 (sec)
Leaf size : 147� �
dsolve(x^2*(x^2+x+1)*diff(diff(y(x),x),x)-x*(-2*x^2-4*x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y

=
e−

7
√

3 arctan
(

(2x+1)
√
3

3

)
6 x

(
c2
(
2x+ i

√
3 + 1

) 3
4+

7i
√
3

12
(
i
√
3− 2x− 1

)− 1
4−

7i
√
3

12 hypergeom
([

1, 12 +
7i
√
3

6

]
,
[
3
2 +

7i
√
3

6

]
, −i

√
3x+x+2

i
√
3x+x+2

)
+
(
i
√
3− 2x− 1

) 1
4+

7i
√
3

12
(
2x+ i

√
3 + 1

) 1
4−

7i
√
3

12 c1

)
(x2 + x+ 1)3/4
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Mathematica DSolve solution

Solving time : 1.31 (sec)
Leaf size : 90� �
DSolve[{x^2*(1+x+x^2)*D[y[x],{x,2}]-x*(1-4*x-2*x^2)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

xe
−

7 arctan
(

2x+1√
3

)
√

3

c2
∫ x

1
e

7 arctan
(

2K[1]+1√
3

)
√
3

K[1]
√

K[1]2+K[1]+1dK[1] + c1


√
x2 + x+ 1
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2.1.547 problem 563

Solved as second order ode using Kovacic algorithm . . . . . . . . .3663
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3667
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3669
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3669
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3670

Internal problem ID [9395]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 563
Date solved : Thursday, December 12, 2024 at 10:11:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ + 3x
(
−2x2 + 3x+ 5

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.521 (sec)

Writing the ode as

9x2y′′ +
(
−6x3 + 9x2 + 15x

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = −6x3 + 9x2 + 15x (3)
C = −14x2 + 12x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 12x3 + 33x2 − 18x− 9
36x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 12x3 + 33x2 − 18x− 9
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 12x3 + 33x2 − 18x− 9

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1039: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

9 − x

3 + 11
12 − 1

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

3 − 1
2 + 1

x
+ 3

4x2 − 3
4x3 − 27

8x4 − 117
32x5 + 405

64x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
3

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= −1
2 + x

3 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4 − 1
3x+ 1

9x
2

This shows that the coefficient of 1 in the above is 1
4 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 12x3 + 33x2 − 18x− 9
36x2

= Q+ R

36x2

=
(
1
9x

2 − 1
3x+ 11

12

)
+
(
−18x− 9

36x2

)
= x2

9 − x

3 + 11
12 + −18x− 9

36x2

We see that the coefficient of the term x in the quotient is 11
12 . Now b can be found.

b =
(
11
12

)
−
(
1
4

)
= 2

3

Hence

[
√
r]∞ = −1

2 + x

3

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 2
3
1
3
− 1
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

2
3
1
3
− 1
)

= −3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 12x3 + 33x2 − 18x− 9
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 −1
2 +

x
3

1
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
−1
2 + x

3

)
= 1

2x − 1
2 + x

3
= 1

2x − 1
2 + x

3
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2 + x

3

)
(0) +

((
− 1
2x2 + 1

3

)
+
(

1
2x − 1

2 + x

3

)2

−
(
4x4 − 12x3 + 33x2 − 18x− 9

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
2+

x
3
)
dx

=
√
x e

x(x−3)
6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x3+9x2+15x

9x2 dx

= z1e
x2
6 −x

2−
5 ln(x)

6

= z1

(
e

x(x−3)
6

x5/6

)

Which simplifies to

y1 =
e

x(x−3)
3

x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6x3+9x2+15x

9x2 dx

(y1)2
dx

= y1

∫
e

x2
3 −x− 5 ln(x)

3

(y1)2
dx

= y1

(∫
ex2

3 −x− 5 ln(x)
3 x2/3e−

2x(x−3)
3 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e

x(x−3)
3

x1/3

)
+ c2

(
e

x(x−3)
3

x1/3

(∫
ex2

3 −x− 5 ln(x)
3 x2/3e−

2x(x−3)
3 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
+ 3x(−2x2 + 3x+ 5)

(
d
dx
y(x)

)
+ (−14x2 + 12x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
14x2−12x−1

)
y(x)

9x2 +
(
2x2−3x−5

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
2x2−3x−5

)(
d
dx

y(x)
)

3x −
(
14x2−12x−1

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions



chapter 2. book solved problems 3668

[
P2(x) = −2x2−3x−5

3x , P3(x) = −14x2−12x−1
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
− 3x(2x2 − 3x− 5)

(
d
dx
y(x)

)
+ (−14x2 + 12x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r)2 xr +
(
a1(4 + 3r)2 + 3a0(4 + 3r)

)
x1+r +

(
∞∑
k=2

(
ak(3k + 3r + 1)2 + 3ak−1(3k + 3r + 1)− 2ak−2(3k + 3r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

3

• Each term must be 0
a1(4 + 3r)2 + 3a0(4 + 3r) = 0

• Solve for the dependent coefficient(s)
a1 = − 3a0

4+3r

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r + 1)2 + (3k + 3r + 1) (−2ak−2 + 3ak−1) = 0

• Shift index using k− >k + 2
ak+2(3k + 3r + 7)2 + (3k + 3r + 7) (−2ak + 3ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = 2ak−3ak+1
3k+3r+7

• Recursion relation for r = −1
3

ak+2 = 2ak−3ak+1
3k+6

• Solution for r = −1
3[

y(x) =
∞∑
k=0

akx
k− 1

3 , ak+2 = 2ak−3ak+1
3k+6 , a1 = −a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.527 (sec)
Leaf size : 32� �
dsolve(9*x^2*diff(diff(y(x),x),x)+3*x*(-2*x^2+3*x+5)*diff(y(x),x)+(-14*x^2+12*x+1)*y(x) = 0,

y(x),singsol=all)� �

y =
e

x(x−3)
3

((∫ e−
x(x−3)

3
x

dx

)
c2 + c1

)
x1/3



chapter 2. book solved problems 3670

Mathematica DSolve solution

Solving time : 0.521 (sec)
Leaf size : 52� �
DSolve[{9*x^2*D[y[x],{x,2}]+3*x*(5+3*x-2*x^2)*D[y[x],x]+(1+12*x-14*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e

1
3 (x−3)x

(
c2
∫ x

1
eK[1]−K[1]2

3
K[1] dK[1] + c1

)
3
√
x
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2.1.548 problem 564

Solved as second order ode using Kovacic algorithm . . . . . . . . .3671
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3676
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3677
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3678
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3678

Internal problem ID [9396]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 564
Date solved : Thursday, December 12, 2024 at 10:12:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ + x
(
3x2 + 14x+ 5

)
y′ +

(
12x2 + 18x+ 4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.578 (sec)

Writing the ode as(
2x3 + x2) y′′ + (3x3 + 14x2 + 5x

)
y′ +

(
12x2 + 18x+ 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = 3x3 + 14x2 + 5x (3)
C = 12x2 + 18x+ 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x4 − 12x3 − 16x2 − 4x− 1
4 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 9x4 − 12x3 − 16x2 − 4x− 1

t = 4
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
9x4 − 12x3 − 16x2 − 4x− 1

4 (2x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1041: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
16 − 1

4x2 − 15
64
(
x+ 1

2

)2 − 21
16
(
x+ 1

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = −15
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

8
α−
c = 1

2 −
√
1 + 4b = 3

8
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

4 − 7
8x − 19

48x2 − 151
288x3 − 139

192x4 − 11383
10368x5 − 38729

20736x6 − 1212655
373248x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 9

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x4 − 12x3 − 16x2 − 4x− 1
16x4 + 16x3 + 4x2

= Q+ R

16x4 + 16x3 + 4x2

=
(

9
16

)
+
(−21x3 − 73

4 x
2 − 4x− 1

16x4 + 16x3 + 4x2

)
= 9

16 +
−21x3 − 73

4 x
2 − 4x− 1

16x4 + 16x3 + 4x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −21. Dividing this by leading coefficient in t which is 16 gives −21

16 . Now b can be
found.

b =
(
−21
16

)
− (0)

= −21
16
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Hence

[
√
r]∞ = 3

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−21
16
3
4

− 0
)

= −7
8

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−21

16
3
4

− 0
)

= 7
8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x4 − 12x3 − 16x2 − 4x− 1
4 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 2 0 5

8
3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
4 −7

8
7
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

8 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 7

8 −
(
7
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x + 3

8
(
x+ 1

2

) + (−)
(
3
4

)
= 1

2x + 3
8
(
x+ 1

2

) − 3
4

= −3x2 + 2x+ 1
4x2 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 3

8
(
x+ 1

2

) − 3
4

)
(0) +

(− 1
2x2 − 3

8
(
x+ 1

2

)2
)

+
(

1
2x + 3

8
(
x+ 1

2

) − 3
4

)2

−
(
9x4 − 12x3 − 16x2 − 4x− 1

4 (2x2 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
3

8
(
x+1

2
)− 3

4

)
dx

= (1 + 2x)3/8
√
x e− 3x

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3+14x2+5x

2x3+x2 dx

= z1e
− 3x

4 − 5 ln(1+2x)
8 − 5 ln(x)

2

= z1

(
e− 3x

4

(1 + 2x)5/8 x5/2

)

Which simplifies to

y1 =
e− 3x

2

(1 + 2x)1/4 x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3+14x2+5x

2x3+x2 dx

(y1)2
dx

= y1

∫
e−

3x
2 − 5 ln(1+2x)

4 −5 ln(x)

(y1)2
dx

= y1

(∫
e− 3x

2 − 5 ln(1+2x)
4 −5 ln(x)√1 + 2xx4e3xdx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− 3x

2

(1 + 2x)1/4 x2

)
+ c2

(
e− 3x

2

(1 + 2x)1/4 x2

(∫
e− 3x

2 − 5 ln(1+2x)
4 −5 ln(x)√1 + 2xx4e3xdx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 14x+ 5)

(
d
dx
y(x)

)
+ (12x2 + 18x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
6x2+9x+2

)
y(x)

x2(2x+1) −
(
3x2+14x+5

)(
d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+14x+5

)(
d
dx

y(x)
)

x(2x+1) + 2
(
6x2+9x+2

)
y(x)

x2(2x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3x2+14x+5

x(2x+1) , P3(x) = 2
(
6x2+9x+2

)
x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(3x2 + 14x+ 5)

(
d
dx
y(x)

)
+ (12x2 + 18x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(2 + r)2 xr +
(
a1(3 + r)2 + 2a0(3 + r)2

)
x1+r +

(
∞∑
k=2

(
ak(k + r + 2)2 + 2ak−1(k + r + 2)2 + 3ak−2(k + r + 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term must be 0
a1(3 + r)2 + 2a0(3 + r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −2a0

• Each term in the series must be 0, giving the recursion relation
((2k + 2r + 4) ak−1 + ak(k + r + 2) + 3ak−2) (k + r + 2) = 0

• Shift index using k− >k + 2
((2k + 8 + 2r) ak+1 + ak+2(k + r + 4) + 3ak) (k + r + 4) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2rak+1+3ak+8ak+1

k+r+4

• Recursion relation for r = −2
ak+2 = −2kak+1+3ak+4ak+1

k+2

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −2kak+1+3ak+4ak+1

k+2 , a1 = −2a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.538 (sec)
Leaf size : 53� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(3*x^2+14*x+5)*diff(y(x),x)+(12*x^2+18*x+4)*y(x) = 0,

y(x),singsol=all)� �
y

=
e− 3x

2

(
(2x+ 1)1/4HeunC

(
−3

4 ,
1
4 , 0,

21
32 ,−

5
32 , 2x+ 1

)
c2 +HeunC

(
−3

4 ,−
1
4 , 0,

21
32 ,−

5
32 , 2x+ 1

)
c1
)

(2x+ 1)1/4 x2

Mathematica DSolve solution

Solving time : 0.663 (sec)
Leaf size : 61� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]+x*(5+14*x+3*x^2)*D[y[x],x]+(4+18*x+12*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−3x/2

(
c2
∫ x

1
e
3K[1]

2
K[1](2K[1]+1)3/4dK[1] + c1

)
x2 4
√
2x+ 1
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2.1.549 problem 565

Solved as second order ode using Kovacic algorithm . . . . . . . . .3679
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3683
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3685
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3685
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3686

Internal problem ID [9397]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 565
Date solved : Thursday, December 12, 2024 at 10:12:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

16x2y′′ + 4x
(
2x2 + x+ 6

)
y′ +

(
18x2 + 5x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.507 (sec)

Writing the ode as

16x2y′′ +
(
8x3 + 4x2 + 24x

)
y′ +

(
18x2 + 5x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x2

B = 8x3 + 4x2 + 24x (3)
C = 18x2 + 5x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 + 4x3 − 31x2 − 8x− 16
64x2 (6)

Comparing the above to (5) shows that

s = 4x4 + 4x3 − 31x2 − 8x− 16
t = 64x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 + 4x3 − 31x2 − 8x− 16

64x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1043: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

16 + x

16 − 31
64 − 1

4x2 − 1
8x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 + 1
8 − 1

x
+ 1

4x2 − 21
8x3 + 37

16x4 − 377
32x5 + 1137

64x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 1
8 + x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

64 + 1
16x+ 1

16x
2

This shows that the coefficient of 1 in the above is 1
64 . Now we need to find the coefficient

of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 + 4x3 − 31x2 − 8x− 16
64x2

= Q+ R

64x2

=
(

1
16x

2 + 1
16x− 31

64

)
+
(
−8x− 16

64x2

)
= x2

16 + x

16 − 31
64 + −8x− 16

64x2

We see that the coefficient of the term x in the quotient is −31
64 . Now b can be found.

b =
(
−31
64

)
−
(

1
64

)
= −1

2

Hence

[
√
r]∞ = 1

8 + x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
4

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
4

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 + 4x3 − 31x2 − 8x− 16
64x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 1
8 +

x
4 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
8 + x

4

)
= 1

2x − 1
8 − x

4
= 1

2x − 1
8 − x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

8 − x

4

)
(0) +

((
− 1
2x2 − 1

4

)
+
(

1
2x − 1

8 − x

4

)2

−
(
4x4 + 4x3 − 31x2 − 8x− 16

64x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
8−

x
4
)
dx

=
√
x e−

x(x+1)
8
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x3+4x2+24x

16x2 dx

= z1e
−x2

8 −x
8−

3 ln(x)
4

= z1

(
e−

x(x+1)
8

x3/4

)

Which simplifies to

y1 =
e−

x(x+1)
4

x1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x3+4x2+24x

16x2 dx

(y1)2
dx

= y1

∫
e−

x2
4 −x

4−
3 ln(x)

2

(y1)2
dx

= y1

(∫
e−x2

4 −x
4−

3 ln(x)
2

√
x e

x(x+1)
2 dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−

x(x+1)
4

x1/4

)
+ c2

(
e−

x(x+1)
4

x1/4

(∫
e−x2

4 −x
4−

3 ln(x)
2

√
x e

x(x+1)
2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

16x2
(

d2

dx2y(x)
)
+ 4x(2x2 + x+ 6)

(
d
dx
y(x)

)
+ (18x2 + 5x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
18x2+5x+1

)
y(x)

16x2 −
(
2x2+x+6

)(
d
dx

y(x)
)

4x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+x+6

)(
d
dx

y(x)
)

4x +
(
18x2+5x+1

)
y(x)

16x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = 2x2+x+6

4x , P3(x) = 18x2+5x+1
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ 4x(2x2 + x+ 6)

(
d
dx
y(x)

)
+ (18x2 + 5x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 4r)2 xr +
(
a1(5 + 4r)2 + a0(5 + 4r)

)
x1+r +

(
∞∑
k=2

(
ak(4k + 4r + 1)2 + ak−1(4k + 4r + 1) + 2ak−2(4k + 4r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

4

• Each term must be 0
a1(5 + 4r)2 + a0(5 + 4r) = 0

• Solve for the dependent coefficient(s)
a1 = − a0

5+4r

• Each term in the series must be 0, giving the recursion relation
ak(4k + 4r + 1)2 + (4k + 4r + 1) (2ak−2 + ak−1) = 0

• Shift index using k− >k + 2
ak+2(4k + 4r + 9)2 + (4k + 4r + 9) (2ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −2ak+ak+1
4k+4r+9

• Recursion relation for r = −1
4

ak+2 = −2ak+ak+1
4k+8

• Solution for r = −1
4[

y(x) =
∞∑
k=0

akx
k− 1

4 , ak+2 = −2ak+ak+1
4k+8 , a1 = −a0

4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.570 (sec)
Leaf size : 32� �
dsolve(16*x^2*diff(diff(y(x),x),x)+4*x*(2*x^2+x+6)*diff(y(x),x)+(18*x^2+5*x+1)*y(x) = 0,

y(x),singsol=all)� �

y =
e−

x(x+1)
4

((∫ e
x(x+1)

4
x

dx

)
c2 + c1

)
x1/4
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Mathematica DSolve solution

Solving time : 0.487 (sec)
Leaf size : 51� �
DSolve[{16*x^2*D[y[x],{x,2}]+4*x*(6+x+2*x^2)*D[y[x],x]+(1+5*x+18*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

1
4x(x+1)

(
c2
∫ x

1
e
1
4K[1](K[1]+1)

K[1] dK[1] + c1
)

4
√
x
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2.1.550 problem 566

Solved as second order ode using Kovacic algorithm . . . . . . . . .3687
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3692
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3694
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3694
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3694

Internal problem ID [9398]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 566
Date solved : Thursday, December 12, 2024 at 10:12:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(1 + x) y′′ + 3x
(
−x2 + 11x+ 5

)
y′ +

(
−7x2 + 16x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.397 (sec)

Writing the ode as(
9x3 + 9x2) y′′ + (−3x3 + 33x2 + 15x

)
y′ +

(
−7x2 + 16x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x3 + 9x2

B = −3x3 + 33x2 + 15x (3)
C = −7x2 + 16x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 + 6x3 + 3x2 − 18x− 9
36 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = x4 + 6x3 + 3x2 − 18x− 9

t = 36
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 + 6x3 + 3x2 − 18x− 9

36 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1045: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 36(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 − 1

4x2 + 1
9 + 9x + 7

36 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 1
3x − 5

6x2 + 5
6x3 − 7

3x4 + 41
6x5 − 149

6x6 + 277
3x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x4 + 6x3 + 3x2 − 18x− 9
36x4 + 72x3 + 36x2

= Q+ R

36x4 + 72x3 + 36x2

=
(

1
36

)
+
(
4x3 + 2x2 − 18x− 9
36x4 + 72x3 + 36x2

)
= 1

36 + 4x3 + 2x2 − 18x− 9
36x4 + 72x3 + 36x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is 4. Dividing this by leading coefficient in t which is 36 gives 1

9 . Now b can be found.

b =
(
1
9

)
− (0)

= 1
9
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Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
9
1
6
− 0
)

= 1
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
9
1
6
− 0
)

= −1
3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 + 6x3 + 3x2 − 18x− 9
36 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
6 −1

6

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

1
3 −1

3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

3 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
6 (1 + x) +

1
2x +

(
1
6

)
= − 1

6 (1 + x) +
1
2x + 1

6

= − 1
6 + 6x + 1

2x + 1
6

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6 (1 + x) +

1
2x + 1

6

)
(0) +

((
1

6 (1 + x)2
− 1

2x2

)
+
(
− 1
6 (1 + x) +

1
2x + 1

6

)2

−
(
x4 + 6x3 + 3x2 − 18x− 9

36 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
6(1+x)+

1
2x+

1
6

)
dx

=
√
x ex

6

(1 + x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3+33x2+15x

9x3+9x2 dx

= z1e
x
6−

7 ln(1+x)
6 − 5 ln(x)

6

= z1

(
ex

6

(1 + x)7/6 x5/6

)

Which simplifies to

y1 =
ex

3

(1 + x)4/3 x1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3+33x2+15x

9x3+9x2 dx

(y1)2
dx

= y1

∫
e

x
3−

7 ln(1+x)
3 − 5 ln(x)

3

(y1)2
dx

= y1

(∫
ex

3−
7 ln(1+x)

3 − 5 ln(x)
3 (1 + x)8/3 x2/3e− 2x

3 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex

3

(1 + x)4/3 x1/3

)
+ c2

(
ex

3

(1 + x)4/3 x1/3

(∫
ex

3−
7 ln(1+x)

3 − 5 ln(x)
3 (1 + x)8/3 x2/3e− 2x

3 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x(−x2 + 11x+ 5)

(
d
dx
y(x)

)
+ (−7x2 + 16x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
7x2−16x−1

)
y(x)

9x2(x+1) +
(
x2−11x−5

)(
d
dx

y(x)
)

3x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−11x−5

)(
d
dx

y(x)
)

3x(x+1) −
(
7x2−16x−1

)
y(x)

9x2(x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = −x2−11x−5

3x(x+1) , P3(x) = −7x2−16x−1
9x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

9x2(x+ 1)
(

d2

dx2y(x)
)
− 3x(x2 − 11x− 5)

(
d
dx
y(x)

)
+ (−7x2 + 16x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(9u3 − 18u2 + 9u)
(

d2

du2y(u)
)
+ (−3u3 + 42u2 − 60u+ 21)

(
d
du
y(u)

)
+ (−7u2 + 30u− 22) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(4 + 3r)u−1+r + (3a1(1 + r) (7 + 3r)− 2a0(9r2 + 21r + 11))ur + (3a2(2 + r) (10 + 3r)− 2a1(9r2 + 39r + 41) + 3a0(2 + r) (5 + 3r))u1+r +
(

∞∑
k=2

(3ak+1(k + 1 + r) (3k + 3r + 7)− 2ak(9k2 + 18kr + 9r2 + 21k + 21r + 11) + 3ak−1(k + 1 + r) (3k + 2 + 3r)− ak−2(3k + 1 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• The coefficients of each power of u must be 0

[3a1(1 + r) (7 + 3r)− 2a0(9r2 + 21r + 11) = 0, 3a2(2 + r) (10 + 3r)− 2a1(9r2 + 39r + 41) + 3a0(2 + r) (5 + 3r) = 0]
• Solve for the dependent coefficient(s){

a1 = 2a0
(
9r2+21r+11

)
3(3r2+10r+7) , a2 = a0

(
243r4+1593r3+3699r2+3567r+1174

)
9(9r4+78r3+241r2+312r+140)

}
• Each term in the series must be 0, giving the recursion relation

9(−2ak + ak−1 + ak+1) k2 + 3(6(−2ak + ak−1 + ak+1) r − 14ak − ak−2 + 5ak−1 + 10ak+1) k + 9(−2ak + ak−1 + ak+1) r2 + 3(−14ak − ak−2 + 5ak−1 + 10ak+1) r − 22ak − ak−2 + 6ak−1 + 21ak+1 = 0
• Shift index using k− >k + 2

9(−2ak+2 + ak+1 + ak+3) (k + 2)2 + 3(6(−2ak+2 + ak+1 + ak+3) r − 14ak+2 − ak + 5ak+1 + 10ak+3) (k + 2) + 9(−2ak+2 + ak+1 + ak+3) r2 + 3(−14ak+2 − ak + 5ak+1 + 10ak+3) r − 22ak+2 − ak + 6ak+1 + 21ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −9k2ak+1−18k2ak+2+18krak+1−36krak+2+9r2ak+1−18r2ak+2−3kak+51kak+1−114kak+2−3rak+51rak+1−114rak+2−7ak+72ak+1−178ak+2
3(3k2+6kr+3r2+22k+22r+39)

• Recursion relation for r = 0
ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39) , a1 = 22a0
21 , a2 = 587a0

630

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2
3(3k2+22k+39) , a1 = 22a0

21 , a2 = 587a0
630

]
• Recursion relation for r = −4

3

ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2
3(3k2+14k+15)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2
3(3k2+14k+15) , a1 = 2a0

3 , a2 = 7a0
18

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
4
3 , ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2

3(3k2+14k+15) , a1 = 2a0
3 , a2 = 7a0

18

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
4
3

)
, ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39) , a1 = 22a0
21 , a2 = 587a0

630 , bk+3 = −9k2bk+1−18k2bk+2−3kbk+27kbk+1−66kbk+2−3bk+20bk+1−58bk+2
3(3k2+14k+15) , b1 = 2b0

3 , b2 = 7b0
18

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.567 (sec)
Leaf size : 36� �
dsolve(9*x^2*(x+1)*diff(diff(y(x),x),x)+3*x*(-x^2+11*x+5)*diff(y(x),x)+(-7*x^2+16*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 HeunC
(
− 1

3 ,−
4
3 ,0,−

1
9 ,

11
18 ,x+1

)
(x+1)4/3

+ c2HeunC
(
−1

3 ,
4
3 , 0,−

1
9 ,

11
18 , x+ 1

)
x1/3

Mathematica DSolve solution

Solving time : 0.206 (sec)
Leaf size : 50� �
DSolve[{9*x^2*(1+x)*D[y[x],{x,2}]+3*x*(5+11*x-x^2)*D[y[x],x]+(1+16*x-7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

ex/3
(
c1 − 3

√
3ec2Γ

(1
3 ,

x+1
3

))
3
√
x(x+ 1)4/3
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2.1.551 problem 567

Solved as second order ode using Kovacic algorithm . . . . . . . . .3695
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3699
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3700
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3701
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3701

Internal problem ID [9399]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 567
Date solved : Thursday, December 12, 2024 at 10:12:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

36x2(1− 2x) y′′ + 24x(1− 9x) y′ + (1− 70x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.365 (sec)

Writing the ode as(
−72x3 + 36x2) y′′ + (−216x2 + 24x

)
y′ + (1− 70x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −72x3 + 36x2

B = −216x2 + 24x (3)
C = 1− 70x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −32x2 + 48x− 9
36 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = −32x2 + 48x− 9

t = 36
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−32x2 + 48x− 9
36 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1047: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 36(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 7
36
(
x− 1

2

)2 − 1
3
(
x− 1

2

) − 1
4x2 + 1

3x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −32x2 + 48x− 9

36 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −32x2 + 48x− 9
36 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 7

6 −1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 1

6
(
x− 1

2

) + (−) (0)

= 1
2x − 1

6
(
x− 1

2

)
= −3 + 4x

12x2 − 6x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

6
(
x− 1

2

)) (0) +

(− 1
2x2 + 1

6
(
x− 1

2

)2
)

+
(

1
2x − 1

6
(
x− 1

2

))2

−
(
−32x2 + 48x− 9
36 (2x2 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

6
(
x− 1

2
)
)
dx

=
√
x

(−1 + 2x)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−216x2+24x
−72x3+36x2 dx

= z1e
− 7 ln(−1+2x)

6 − ln(x)
3

= z1

(
1

(−1 + 2x)7/6 x1/3

)

Which simplifies to

y1 =
x1/6

(−1 + 2x)4/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−216x2+24x

−72x3+36x2 dx

(y1)2
dx

= y1

∫
e−

7 ln(−1+2x)
3 − 2 ln(x)

3

(y1)2
dx

= y1

3(−1 + 2x)1/3 +
ln
(
(−1 + 2x)2/3 − (−1 + 2x)1/3 + 1

)
2

−
√
3 arctan


(
−1 + 2(−1 + 2x)1/3

)√
3

3

− ln
(
(−1 + 2x)1/3 + 1

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/6

(−1 + 2x)4/3

)

+c2

 x1/6

(−1 + 2x)4/3

3(−1+2x)1/3+
ln
(
(−1 + 2x)2/3 − (−1 + 2x)1/3 + 1

)
2 −

√
3 arctan


(
−1 + 2(−1 + 2x)1/3

)√
3

3

−ln
(
(−1+2x)1/3+1

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

36x2(−2x+ 1)
(

d2

dx2y(x)
)
+ 24x(1− 9x)

(
d
dx
y(x)

)
+ (1− 70x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−1+70x)y(x)
36x2(2x−1) −

2(−1+9x)
(

d
dx

y(x)
)

3x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2(−1+9x)

(
d
dx

y(x)
)

3x(2x−1) + (−1+70x)y(x)
36x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(−1+9x)
3x(2x−1) , P3(x) = −1+70x

36x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
36

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

36x2(2x− 1)
(

d2

dx2y(x)
)
+ 24x(−1 + 9x)

(
d
dx
y(x)

)
+ (−1 + 70x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 6r)2 xr +
(

∞∑
k=1

(
−ak(6k + 6r − 1)2 + 2ak−1(6k + 1 + 6r) (6k + 6r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 6r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

6

• Each term in the series must be 0, giving the recursion relation
−36

((
−2k − 2r − 1

3

)
ak−1 + ak

(
k + r − 1

6

)) (
k + r − 1

6

)
= 0

• Shift index using k− >k + 1
−36

((
−2k − 7

3 − 2r
)
ak + ak+1

(
k + 5

6 + r
)) (

k + 5
6 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2(6k+6r+7)ak

6k+6r+5

• Recursion relation for r = 1
6

ak+1 = 2(6k+8)ak
6k+6

• Solution for r = 1
6[

y(x) =
∞∑
k=0

akx
k+ 1

6 , ak+1 = 2(6k+8)ak
6k+6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
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-> hypergeometric
-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.214 (sec)
Leaf size : 93� �
dsolve(36*x^2*(1-2*x)*diff(diff(y(x),x),x)+24*x*(1-9*x)*diff(y(x),x)+(1-70*x)*y(x) = 0,

y(x),singsol=all)� �
y

=
x1/6

(
2
√
3 arctan

( √
3 (2x−1)1/3

−2+(2x−1)1/3

)
c2 − 2 ln

(
1 + (2x− 1)1/3

)
c2 + ln

(
1− (2x− 1)1/3 + (2x− 1)2/3

)
c2 + 6c2(2x− 1)1/3 + 3c1

)
3 (2x− 1)4/3

Mathematica DSolve solution

Solving time : 0.183 (sec)
Leaf size : 111� �
DSolve[{36*x^2*(1-2*x)*D[y[x],{x,2}]+24*x*(1-9*x)*D[y[x],x]+(1-70*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→

6
√
x

(
−2

√
3c2 arctan

(
2

3
√
1− 2x+1√

3

)
+ 6c2 3

√
1− 2x+ 2c2 log

( 3
√
1− 2x− 1

)
− c2 log

(
(1− 2x)2/3 + 3

√
1− 2x+ 1

)
+ 2c1

)
2(1− 2x)4/3
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2.1.552 problem 568

Solved as second order ode using Kovacic algorithm . . . . . . . . .3702
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3706
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3707
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3708
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3708

Internal problem ID [9400]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 568
Date solved : Thursday, December 12, 2024 at 10:12:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − x(3− x) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
x2 − 3x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = x2 − 3x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 10x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 10x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 10x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1049: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
1 + x

− 1
4x2 − 2

x
+ 2

(1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 10x− 1

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 10x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1
0 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
1 + x

+ 1
2x + (−) (0)

= − 1
1 + x

+ 1
2x

= − x− 1
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

+ 1
2x

)
(1) +

((
1

(1 + x)2
− 1

2x2

)
+
(
− 1
1 + x

+ 1
2x

)2

−
(
−x2 − 10x− 1
4 (x2 + x)2

))
= 0

1 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ (

− 1
1+x

+ 1
2x

)
dx

= (x− 1) e
ln(x)

2 −ln(1+x)

= (x− 1)
√
x

1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−3x
x2(1+x) dx

= z1e
3 ln(x)

2 −2 ln(1+x)

= z1

(
x3/2

(1 + x)2
)

Which simplifies to

y1 =
x2(x− 1)
(1 + x)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2−3x

x2(1+x) dx

(y1)2
dx

= y1

∫
e3 ln(x)−4 ln(1+x)

(y1)2
dx

= y1

(
− 4
x− 1 + ln (x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2(x− 1)
(1 + x)3

)
+ c2

(
x2(x− 1)
(1 + x)3

(
− 4
x− 1 + ln (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− x(−x+ 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
(x+1)x2 −

(x−3)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x−3)

(
d
dx

y(x)
)

x(x+1) + 4y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−3
x(x+1) , P3(x) = 4

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(x− 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (u2 − 5u+ 4)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(3 + r)u−1+r + (a1(1 + r) (4 + r)− a0(2r2 + 3r − 4))ur +
(

∞∑
k=1

(
ak+1(k + 1 + r) (k + 4 + r)− ak(2k2 + 4kr + 2r2 + 3k + 3r − 4) + ak−1(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r)− a0(2r2 + 3r − 4) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 4 + r)− ak(2k2 + 4kr + 2r2 + 3k + 3r − 4) + ak−1(k + r − 1)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 5 + r)− ak+1

(
2(k + 1)2 + 4(k + 1) r + 2r2 + 3k − 1 + 3r

)
+ ak(k + r)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−7kak+1−7rak+1−ak+1

(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = −k2ak−2k2ak+1−6kak+5kak+1+9ak+2ak+1

(k−1)(k+2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 1

ak+2 = −k2ak−2k2ak+1−6kak+5kak+1+9ak+2ak+1
(k−1)(k+2)

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1

(k+2)(k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1

(k+2)(k+5) , 4a1 + 4a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1
(k+2)(k+5) , 4a1 + 4a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 30� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-x*(3-x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = (c2(x− 1) ln (x) + c1x− c1 − 4c2)x2

(x+ 1)3

Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 33� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-x*(3-x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c1(x− 1) + c2(x− 1) log(x)− 4c2)

(x+ 1)3
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2.1.553 problem 569

Solved as second order ode using Kovacic algorithm . . . . . . . . .3709
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3713
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3714
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3714
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3715

Internal problem ID [9401]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 569
Date solved : Thursday, December 12, 2024 at 10:12:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ − x(5− 4x) y′ + (9− 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as (
−2x3 + x2) y′′ + (4x2 − 5x

)
y′ + (9− 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = 4x2 − 5x (3)
C = 9− 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8x− 1
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 8x− 1

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(

8x− 1
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1051: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
x
− 1

4x2 + 3
4
(
x− 1

2

)2 − 1
x− 1

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 8x− 1
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x − 1

2
(
x− 1

2

) + (0)

= 1
2x − 1

2
(
x− 1

2

)
= − 1

2x (−1 + 2x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2
(
x− 1

2

)) (0) +

(− 1
2x2 + 1

2
(
x− 1

2

)2
)

+
(

1
2x − 1

2
(
x− 1

2

))2

−
(

8x− 1
4 (2x2 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

2
(
x− 1

2
)
)
dx

=
√
x√

−1 + 2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x2−5x

−2x3+x2 dx

= z1e
− 3 ln(−1+2x)

2 + 5 ln(x)
2

= z1

(
x5/2

(−1 + 2x)3/2

)

Which simplifies to

y1 =
x3

(−1 + 2x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x2−5x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e−3 ln(−1+2x)+5 ln(x)

(y1)2
dx

= y1(2x− ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3

(−1 + 2x)2
)
+ c2

(
x3

(−1 + 2x)2
(2x− ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
− x(5− 4x)

(
d
dx
y(x)

)
+ (9− 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−9+4x)y(x)
x2(2x−1) +

(−5+4x)
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−5+4x)

(
d
dx

y(x)
)

x(2x−1) + (−9+4x)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − −5+4x
x(2x−1) , P3(x) = −9+4x

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
− x(−5 + 4x)

(
d
dx
y(x)

)
+ (−9 + 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 3)2 + 2ak−1(k + r − 2) (k + r − 3)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 3)2 + 2ak−1(k + r − 2) (k + r − 3) = 0

• Shift index using k− >k + 1
−ak+1(k + r − 2)2 + 2ak(k + r − 1) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)

k+r−2

• Recursion relation for r = 3
ak+1 = 2ak(k+2)

k+1

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = 2ak(k+2)

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 26� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)-x*(5-4*x)*diff(y(x),x)+(9-4*x)*y(x) = 0,

y(x),singsol=all)� �
y = x3(2c2x− c2 ln (x) + c1)

(2x− 1)2
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Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 29� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]-x*(5-4*x)*D[y[x],x]+(9-4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x3(−2c2x+ c2 log(x) + c1)

(1− 2x)2
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2.1.554 problem 570

Solved as second order ode using Kovacic algorithm . . . . . . . . .3716
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3720
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3721
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3722
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3722

Internal problem ID [9402]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 570
Date solved : Thursday, December 12, 2024 at 10:12:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ + x2y′ + (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.249 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + x2y′ + (1− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = x2 (3)
C = 1− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 8x− 16
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 5x2 + 8x− 16

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
5x2 + 8x− 16
16 (x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1053: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (2 + x)2

− 1
4x2 − 3

8 (2 + x) +
3
8x

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 8x− 16

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 8x− 16
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
4

1
4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

4 −
(
5
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (2 + x) +

1
2x + (0)

= 3
4 (2 + x) +

1
2x

= 5x+ 4
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (2 + x) +

1
2x

)
(0) +

((
− 3
4 (2 + x)2

− 1
2x2

)
+
(

3
4 (2 + x) +

1
2x

)2

−
(
5x2 + 8x− 16
16 (x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4(2+x)+
1
2x

)
dx

=
√
x (2 + x)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2

2x3+4x2 dx

= z1e
− ln(2+x)

4

= z1

(
1

(2 + x)1/4

)

Which simplifies to
y1 =

√
2 + x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2

2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

ln(2+x)
2

(y1)2
dx

= y1

 1√
2 + x

−

√
2 arctanh

(√
2+x

√
2

2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(√

2 + x
√
x
)
+ c2

√
2 + x

√
x

 1√
2 + x

−

√
2 arctanh

(√
2+x

√
2

2

)
2


Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x−1)y(x)
2x2(x+2) −

d
dx

y(x)
2(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
2(x+2) −

(x−1)y(x)
2x2(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
2(x+2) , P3(x) = − x−1

2x2(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (1− x) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (u2 − 4u+ 4)

(
d
du
y(u)

)
+ (3− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(−1 + 2r)u−1+r + (4a1(1 + r) (1 + 2r)− a0(8r2 − 4r − 3))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (2k + 2r + 1)− ak(8k2 + 16kr + 8r2 − 4k − 4r − 3) + ak−1(2k + 2r − 1) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
4a1(1 + r) (1 + 2r)− a0(8r2 − 4r − 3) = 0

• Each term in the series must be 0, giving the recursion relation
2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r + 4ak − 5ak−1 + 12ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (4ak − 5ak−1 + 12ak+1) r + 3ak + 2ak−1 + 4ak+1 = 0

• Shift index using k− >k + 1
2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r + 4ak+1 − 5ak + 12ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (4ak+1 − 5ak + 12ak+2) r + 3ak+1 + 2ak + 4ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1−kak−12kak+1−rak−12rak+1−ak−ak+1

4(2k2+4kr+2r2+7k+7r+6)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6) , 4a1 + 3a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1
4(2k2+7k+6) , 4a1 + 3a0 = 0

]
• Recursion relation for r = 1

2

ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1
4(2k2+9k+10)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1
4(2k2+9k+10) , 12a1 + 3a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+
1
2 , ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1

4(2k2+9k+10) , 12a1 + 3a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k+
1
2

)
, ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6) , 4a1 + 3a0 = 0, bk+2 = −2k2bk−8k2bk+1+kbk−20kbk+1−bk−9bk+1
4(2k2+9k+10) , 12b1 + 3b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.041 (sec)
Leaf size : 50� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+diff(y(x),x)*x^2+(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x (x+ 2) +

c2
(
(x+ 2) arctanh

(√
2
√
x+2

2

)
−
√
2
√
x+ 2

)√
x

√
x+ 2

Mathematica DSolve solution

Solving time : 0.14 (sec)
Leaf size : 65� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}]+x^2*D[y[x],x]+(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
2
(
c1
√
x+ 2 + c2

)
−

√
2c2

√
x+ 2arctanh

(√
x+2√
2

))
2 4
√
2
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2.1.555 problem 571

Solved as second order ode using Kovacic algorithm . . . . . . . . .3723
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3727
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3729
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3729
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3729

Internal problem ID [9403]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 571
Date solved : Thursday, December 12, 2024 at 10:12:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(1 + x) y′′ − x(6− x) y′ + (8− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.240 (sec)

Writing the ode as (
2x3 + 2x2) y′′ + (x2 − 6x

)
y′ + (8− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 2x2

B = x2 − 6x (3)
C = 8− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 − 20x− 4
16 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 5x2 − 20x− 4

t = 16
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
5x2 − 20x− 4
16 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1055: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (1 + x) −

1
4x2 + 21

16 (1 + x)2
− 3

4x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 − 20x− 4

16 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 − 20x− 4
16 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
4 −3

4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= −1

4 −
(
−1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
4 (1 + x) +

1
2x + (−) (0)

= − 3
4 (1 + x) +

1
2x

= − x− 2
4x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
4 (1 + x) +

1
2x

)
(0) +

((
3

4 (1 + x)2
− 1

2x2

)
+
(
− 3
4 (1 + x) +

1
2x

)2

−
(
5x2 − 20x− 4
16 (x2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
4(1+x)+

1
2x

)
dx

=
√
x

(1 + x)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−6x

2x3+2x2 dx

= z1e
3 ln(x)

2 − 7 ln(1+x)
4

= z1

(
x3/2

(1 + x)7/4

)

Which simplifies to

y1 =
x2

(1 + x)5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2−6x

2x3+2x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)−

7 ln(1+x)
2

(y1)2
dx

= y1

(
2(1 + x)3/2

3 + 2
√
1 + x+ ln

(√
1 + x− 1

)
− ln

(
1 +

√
1 + x

))

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x2

(1 + x)5/2

)

+ c2

(
x2

(1 + x)5/2

(
2(1 + x)3/2

3 + 2
√
1 + x+ ln

(√
1 + x− 1

)
− ln

(
1 +

√
1 + x

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x+ 1)
(

d2

dx2y(x)
)
− x(−x+ 6)

(
d
dx
y(x)

)
+ (8− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−8+x)y(x)
2x2(x+1) −

(−6+x)
(

d
dx

y(x)
)

2x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−6+x)

(
d
dx

y(x)
)

2x(x+1) − (−8+x)y(x)
2x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −6+x
2x(x+1) , P3(x) = − −8+x

2x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

2x2(x+ 1)
(

d2

dx2y(x)
)
+ x(−6 + x)

(
d
dx
y(x)

)
+ (8− x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u3 − 4u2 + 2u)
(

d2

du2y(u)
)
+ (u2 − 8u+ 7)

(
d
du
y(u)

)
+ (9− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(5 + 2r)u−1+r + (a1(1 + r) (7 + 2r)− a0(4r2 + 4r − 9))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (2k + 7 + 2r)− ak(4k2 + 8kr + 4r2 + 4k + 4r − 9) + ak−1(2k − 1 + 2r) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−5

2

}
• Each term must be 0

a1(1 + r) (7 + 2r)− a0(4r2 + 4r − 9) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + 2ak−1 + 2ak+1) k2 + ((−8ak + 4ak−1 + 4ak+1) r − 4ak − 5ak−1 + 9ak+1) k + (−4ak + 2ak−1 + 2ak+1) r2 + (−4ak − 5ak−1 + 9ak+1) r + 9ak + 2ak−1 + 7ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + 2ak + 2ak+2) (k + 1)2 + ((−8ak+1 + 4ak + 4ak+2) r − 4ak+1 − 5ak + 9ak+2) (k + 1) + (−4ak+1 + 2ak + 2ak+2) r2 + (−4ak+1 − 5ak + 9ak+2) r + 9ak+1 + 2ak + 7ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−4k2ak+1+4krak−8krak+1+2r2ak−4r2ak+1−kak−12kak+1−rak−12rak+1−ak+ak+1
2k2+4kr+2r2+13k+13r+18

• Recursion relation for r = 0
ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18 , 7a1 + 9a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1
2k2+13k+18 , 7a1 + 9a0 = 0

]
• Recursion relation for r = −5

2

ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1
2k2+3k−2

• Solution for r = −5
2[

y(u) =
∞∑
k=0

aku
k− 5

2 , ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1
2k2+3k−2 ,−3a1 − 6a0 = 0

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−
5
2 , ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1

2k2+3k−2 ,−3a1 − 6a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
5
2

)
, ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18 , 7a1 + 9a0 = 0, bk+2 = −2k2bk−4k2bk+1−11kbk+8kbk+1+14bk+6bk+1
2k2+3k−2 ,−3b1 − 6b0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.047 (sec)
Leaf size : 52� �
dsolve(2*x^2*(x+1)*diff(diff(y(x),x),x)-x*(-x+6)*diff(y(x),x)+(8-x)*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(

2
√
x+1 c2x
3 +

(
ln
(√

x+ 1− 1
)
− ln

(√
x+ 1 + 1

)
+ 8

√
x+1
3

)
c2 + c1

)
(x+ 1)5/2

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 50� �
DSolve[{2*x^2*(1+x)*D[y[x],{x,2}]-x*(6-x)*D[y[x],x]+(8-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

x2(−6c2arctanh
(√

x+ 1
)
+ 2c2

√
x+ 1(x+ 4) + 3c1

)
3(x+ 1)5/2
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2.1.556 problem 572

Solved as second order ode using Kovacic algorithm . . . . . . . . .3730
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3734
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3735
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3736
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3736

Internal problem ID [9404]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 572
Date solved : Thursday, December 12, 2024 at 10:12:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ + x(5 + 9x) y′ + (4 + 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.265 (sec)

Writing the ode as (
2x3 + x2) y′′ + (9x2 + 5x

)
y′ + (4 + 3x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = 9x2 + 5x (3)
C = 4 + 3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x2 + 6x− 1
4 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 21x2 + 6x− 1

t = 4
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x2 + 6x− 1
4 (2x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1057: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16
(
x+ 1

2

)2 − 5
2
(
x+ 1

2

) − 1
4x2 + 5

2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x2 + 6x− 1

4 (2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x2 + 6x− 1
4 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

−1
2 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

4 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x + 5

4
(
x+ 1

2

) + (0)

= 1
2x + 5

4
(
x+ 1

2

)
= 1 + 7x

4x2 + 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 5

4
(
x+ 1

2

)) (0) +

(− 1
2x2 − 5

4
(
x+ 1

2

)2
)

+
(

1
2x + 5

4
(
x+ 1

2

))2

−
(
21x2 + 6x− 1
4 (2x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
5

4
(
x+1

2
)
)
dx

=
√
x (1 + 2x)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
9x2+5x
2x3+x2 dx

= z1e
− 5 ln(x)

2 + ln(1+2x)
4

= z1

(
(1 + 2x)1/4

x5/2

)

Which simplifies to

y1 =
(1 + 2x)3/2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 9x2+5x

2x3+x2 dx

(y1)2
dx

= y1

∫
e−5 ln(x)+ ln(1+2x)

2

(y1)2
dx

= y1

(
− ln

(√
1 + 2x+ 1

)
+ 2

3 (1 + 2x)3/2
+ 2√

1 + 2x
+ ln

(√
1 + 2x− 1

))

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
(1 + 2x)3/2

x2

)

+c2

(
(1 + 2x)3/2

x2

(
− ln

(√
1 + 2x+1

)
+ 2
3 (1 + 2x)3/2

+ 2√
1 + 2x

+ln
(√

1 + 2x−1
)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(5 + 9x)

(
d
dx
y(x)

)
+ (3x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x+4)y(x)
x2(2x+1) −

(5+9x)
(

d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+9x)

(
d
dx

y(x)
)

x(2x+1) + (3x+4)y(x)
x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+9x
x(2x+1) , P3(x) = 3x+4

x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(5 + 9x)

(
d
dx
y(x)

)
+ (3x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 2)2 + ak−1(k + r + 2) (2k − 1 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r + 2) + ak−1(2k − 1 + 2r)) = 0

• Shift index using k− >k + 1
(k + r + 3) (ak+1(k + r + 3) + ak(2k + 2r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(2k+2r+1)

k+r+3

• Recursion relation for r = −2
ak+1 = −ak(2k−3)

k+1

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+1 = −ak(2k−3)

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 73� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(5+9*x)*diff(y(x),x)+(3*x+4)*y(x) = 0,

y(x),singsol=all)� �
y

=
c2
(
x+ 1

2

)2 ln (√2x+ 1− 1
)
− c2

(
x+ 1

2

)2 ln (√2x+ 1 + 1
)
+ c2

(
x+ 2

3

)√
2x+ 1 + 4c1

(
x+ 1

2

)2
x2
√
2x+ 1

Mathematica DSolve solution

Solving time : 0.133 (sec)
Leaf size : 56� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]+x*(5+9*x)*D[y[x],x]+(4+3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

2c2
(
−3(2x+ 1)3/2arctanh

(√
2x+ 1

)
+ 6x+ 4

)
+ 3c1(2x+ 1)3/2

3x2
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2.1.557 problem 573

Solved as second order ode using Kovacic algorithm . . . . . . . . .3737
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3741
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3742
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3743
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3743

Internal problem ID [9405]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 573
Date solved : Thursday, December 12, 2024 at 10:12:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ − x(5 + 4x) y′ + (9 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.297 (sec)

Writing the ode as (
−2x3 + x2) y′′ + (−4x2 − 5x

)
y′ + (9 + 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = −4x2 − 5x (3)
C = 9 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 32x2 + 56x− 1
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 32x2 + 56x− 1

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
32x2 + 56x− 1
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1059: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 13
x

− 1
4x2 + 35

4
(
x− 1

2

)2 − 13
x− 1

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 32x2 + 56x− 1

4 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 32x2 + 56x− 1
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 7

2 −5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= −1− (−2)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 5

2
(
x− 1

2

) + (−) (0)

= 1
2x − 5

2
(
x− 1

2

)
= −1− 8x

4x2 − 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 5

2
(
x− 1

2

)) (1) +

(− 1
2x2 + 5

2
(
x− 1

2

)2
)

+
(

1
2x − 5

2
(
x− 1

2

))2

−
(
32x2 + 56x− 1
4 (2x2 − x)2

) = 0

−1 + 8a0
x (−1 + 2x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
8

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

8

)
e
∫ ( 1

2x−
5

2
(
x− 1

2
)
)
dx

=
(
x+ 1

8

)
e

ln(x)
2 − 5 ln(−1+2x)

2

=
(
x+ 1

8

)√
x

(−1 + 2x)5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2−5x
−2x3+x2 dx

= z1e
5 ln(x)

2 − 7 ln(−1+2x)
2

= z1

(
x5/2

(−1 + 2x)7/2

)

Which simplifies to

y1 =
x3(x+ 1

8

)
(−1 + 2x)6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2−5x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e5 ln(x)−7 ln(−1+2x)

(y1)2
dx

= y1

(
32x3

3 − 44x2 + 203x
2 − 64 ln (x)− 3125

16 (1 + 8x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3(x+ 1

8

)
(−1 + 2x)6

)
+ c2

(
x3(x+ 1

8

)
(−1 + 2x)6

(
32x3

3 − 44x2 + 203x
2 − 64 ln (x)− 3125

16 (1 + 8x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
− x(5 + 4x)

(
d
dx
y(x)

)
+ (4x+ 9) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (4x+9)y(x)
x2(2x−1) −

(5+4x)
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+4x)

(
d
dx

y(x)
)

x(2x−1) − (4x+9)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+4x
x(2x−1) , P3(x) = − 4x+9

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
+ x(5 + 4x)

(
d
dx
y(x)

)
+ (−4x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 3)2 + 2ak−1(k + 1 + r) (k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 3)2 + 2ak−1(k + 1 + r) (k − 2 + r) = 0

• Shift index using k− >k + 1
−ak+1(k − 2 + r)2 + 2ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)(k+r−1)

(k−2+r)2

• Recursion relation for r = 3
ak+1 = 2ak(k+5)(k+2)

(k+1)2

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = 2ak(k+5)(k+2)

(k+1)2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �



chapter 2. book solved problems 3743

Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 54� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)-x*(5+4*x)*diff(y(x),x)+(4*x+9)*y(x) = 0,

y(x),singsol=all)� �
y =

x3(−6c2
(
x+ 1

8

)
ln (x) + c2x

4 − 4c2x3 + 9c2x2 +
(
8c1 + 609c2

512

)
x+ c1 − 9375c2

4096

)
(2x− 1)6

Mathematica DSolve solution

Solving time : 0.157 (sec)
Leaf size : 63� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]-x*(5+4*x)*D[y[x],x]+(9+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−x3(c2(4096x4 − 16384x3 + 36864x2 + 4872x− 9375)− 48c1(8x+ 1)− 3072c2(8x+ 1) log(x))
384(1− 2x)6
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2.1.558 problem 574

Solved as second order ode using Kovacic algorithm . . . . . . . . .3744
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3748
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3750
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3750
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3750

Internal problem ID [9406]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 574
Date solved : Thursday, December 12, 2024 at 10:12:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x) y′′ + x(7 + x) y′ + (9− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.307 (sec)

Writing the ode as (
−x3 + x2) y′′ + (x2 + 7x

)
y′ + (9− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = x2 + 7x (3)
C = 9− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 82x− 1
4 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 82x− 1

t = 4
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 82x− 1
4 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1061: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 20
(−1 + x)2

− 1
4x2 + 20

x
− 20

−1 + x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1 let b be the coefficient of 1

(−1+x)2 in the partial fractions decomposition
of r given above. Therefore b = 20. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

α−
c = 1

2 −
√
1 + 4b = −4



chapter 2. book solved problems 3746

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 82x− 1

4 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 82x− 1
4 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 2 0 5 −4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
(
−7
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 4

−1 + x
+ (−) (0)

= 1
2x − 4

−1 + x

= − 1 + 7x
2x (−1 + x)



chapter 2. book solved problems 3747

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(

1
2x − 4

−1 + x

)(
4x3 + 3x2a3 + 2a2x+ a1

)
+
((

− 1
2x2 + 4

(−1 + x)2
)
+
(

1
2x − 4

−1 + x

)2

−
(
−x2 + 82x− 1
4 (x2 − x)2

))
= 0

(a3 − 16)x3 + (4a2 − 9a3)x2 + (9a1 − 4a2)x+ 16a0 − a1
x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 16, a2 = 36, a3 = 16}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 + 16x3 + 36x2 + 16x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 + 16x3 + 36x2 + 16x+ 1

)
e
∫ ( 1

2x−
4

−1+x

)
dx

=
(
x4 + 16x3 + 36x2 + 16x+ 1

)
e

ln(x)
2 −4 ln(−1+x)

= (x4 + 16x3 + 36x2 + 16x+ 1)
√
x

(−1 + x)4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+7x

−x3+x2 dx

= z1e
− 7 ln(x)

2 +4 ln(−1+x)

= z1

(
(−1 + x)4

x7/2

)

Which simplifies to

y1 =
x4 + 16x3 + 36x2 + 16x+ 1

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2+7x

−x3+x2 dx

(y1)2
dx

= y1

∫
e−7 ln(x)+8 ln(−1+x)

(y1)2
dx

= y1

(
ln (x)−

20
(
−2x3 − 15

2 x
2 − 14

3 x− 5
12

)
x4 + 16x3 + 36x2 + 16x+ 1

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 + 16x3 + 36x2 + 16x+ 1

x3

)
+ c2

(
x4 + 16x3 + 36x2 + 16x+ 1

x3

(
ln (x)−

20
(
−2x3 − 15

2 x
2 − 14

3 x− 5
12

)
x4 + 16x3 + 36x2 + 16x+ 1

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(1− x)
(

d2

dx2y(x)
)
+ x(7 + x)

(
d
dx
y(x)

)
+ (9− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−9)y(x)
x2(x−1) +

(7+x)
(

d
dx

y(x)
)

x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(7+x)

(
d
dx

y(x)
)

x(x−1) + (x−9)y(x)
x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 7+x
x(x−1) , P3(x) = x−9

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 1)
(

d2

dx2y(x)
)
− x(7 + x)

(
d
dx
y(x)

)
+ (x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 3)2 + ak−1(k − 2 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r + 3)2 + ak−1(k − 2 + r)2 = 0

• Shift index using k− >k + 1
−ak+1(k + 4 + r)2 + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)2

(k+4+r)2

• Recursion relation for r = −3 ; series terminates at k = 4

ak+1 = ak(k−4)2

(k+1)2

• Apply recursion relation for k = 0
a1 = 16a0

• Apply recursion relation for k = 1
a2 = 9a1

4

• Express in terms of a0
a2 = 36a0

• Apply recursion relation for k = 2
a3 = 4a2

9

• Express in terms of a0
a3 = 16a0

• Apply recursion relation for k = 3
a4 = a3

16

• Express in terms of a0
a4 = a0

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (x4 + 16x3 + 36x2 + 16x+ 1)
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 72� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)+x*(7+x)*diff(y(x),x)+(9-x)*y(x) = 0,

y(x),singsol=all)� �
y

= 3c2(x4 + 16x3 + 36x2 + 16x+ 1) ln (x) + c1x
4 + (16c1 + 120c2)x3 + (36c1 + 450c2)x2 + (16c1 + 280c2)x+ c1 + 25c2

x3

Mathematica DSolve solution

Solving time : 0.146 (sec)
Leaf size : 78� �
DSolve[{x^2*(1-x)*D[y[x],{x,2}]+x*(7+x)*D[y[x],x]+(9-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ 5c2(24x3 + 90x2 + 56x+ 5) + 3c1(x4 + 16x3 + 36x2 + 16x+ 1) + 3c2(x4 + 16x3 + 36x2 + 16x+ 1) log(x)
3x3
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2.1.559 problem 575

Solved as second order ode using Kovacic algorithm . . . . . . . . .3751
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3755
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3757
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3757
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3757

Internal problem ID [9407]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 575
Date solved : Thursday, December 12, 2024 at 10:12:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x
(
−x2 + 1

)
y′ +

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as

x2y′′ +
(
x3 − x

)
y′ +

(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 − x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 4x2 − 1
4x2 (6)

Comparing the above to (5) shows that

s = x4 − 4x2 − 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 4x2 − 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1063: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 1− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1
x
− 5

4x3 − 5
2x5 − 105

16x7 − 155
8x9 − 1965

32x11 − 3265
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 4x2 − 1
4x2

= Q+ R

4x2

=
(
x2

4 − 1
)
+
(
− 1
4x2

)
= x2

4 − 1− 1
4x2

We see that the coefficient of the term x in the quotient is −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 4x2 − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
2

)
= 1

2x − x

2
= 1

2x − x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

2

)
(0) +

((
− 1
2x2 − 1

2

)
+
(

1
2x − x

2

)2

−
(
x4 − 4x2 − 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
2
)
dx

=
√
x e−x2

4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−x
x2 dx

= z1e
−x2

4 + ln(x)
2

= z1
(√

x e−x2
4

)
Which simplifies to

y1 = x e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3−x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 +ln(x)

(y1)2
dx

= y1

−
Ei1
(
−x2

2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x2

2

)
+ c2

x e−x2
2

−
Ei1
(
−x2

2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(−x2 + 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+1

)
y(x)

x2 −
(
x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−1

)(
d
dx

y(x)
)

x
+
(
x2+1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2−1

x
, P3(x) = x2+1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 − 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
k+r+1
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• Recursion relation for r = 1
ak+2 = − ak

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x^2+1)*diff(y(x),x)+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x e−x2

2

(
c1 + c2 Ei1

(
−x2

2

))

Mathematica DSolve solution

Solving time : 0.021 (sec)
Leaf size : 35� �
DSolve[{x^2*D[y[x],{x,2}]-x*(1-x^2)*D[y[x],x]+(1+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

2 x

(
c1 ExpIntegralEi

(
x2

2

)
+ 2c2

)
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2.1.560 problem 576

Solved as second order ode using Kovacic algorithm . . . . . . . . .3758
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3762
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3763
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3763
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3764

Internal problem ID [9408]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 576
Date solved : Thursday, December 12, 2024 at 10:12:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − 3x

(
−x2 + 1

)
y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.384 (sec)

Writing the ode as (
x4 + x2) y′′ + (3x3 − 3x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 3x3 − 3x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x4 − 10x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 3x4 − 10x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x4 − 10x2 − 1
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1065: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ i

4x− 4i −
i

4 (x+ i) −
1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x4 − 10x2 − 1

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x4 − 10x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x − 1

2 (x− i) −
1

2 (x+ i) + (−) (0)

= 1
2x − 1

2 (x− i) −
1

2 (x+ i)

= 1
2x − x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2 (x− i) −
1

2 (x+ i)

)
(0) +

((
− 1
2x2 + 1

2 (x− i)2
+ 1

2 (x+ i)2
)
+
(

1
2x − 1

2 (x− i) −
1

2 (x+ i)

)2

−
(
3x4 − 10x2 − 1
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

2(x−i)−
1

2(x+i)

)
dx

=
√
x√

x2 + 1
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3−3x
x4+x2 dx

= z1e
−

3 ln
(
x2+1

)
2 + 3 ln(x)

2

= z1

(
x3/2

(x2 + 1)3/2

)

Which simplifies to

y1 =
x2

(x2 + 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3−3x

x4+x2 dx

(y1)2
dx

= y1

∫
e−3 ln

(
x2+1

)
+3 ln(x)

(y1)2
dx

= y1

(
x2

2 + ln (x)
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2

(x2 + 1)2
)
+ c2

(
x2

(x2 + 1)2
(
x2

2 + ln (x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− 3x(−x2 + 1)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
x2(x2+1) −

3
(
x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(
x2−1

)(
d
dx

y(x)
)

x(x2+1) + 4y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
(
x2−1

)
x(x2+1) , P3(x) = 4

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ 3x(x2 − 1)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr + a1(−1 + r)2 x1+r +
(

∞∑
k=2

(
ak(k + r − 2)2 + ak−2(k + r − 2) (k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 2) + ak−2(k + r)) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k + r) + ak(k + r + 2)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)

k+r

• Recursion relation for r = 2
ak+2 = −ak(k+4)

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 27� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-3*x*(-x^2+1)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
c1 + c2

(
x2

2 + ln (x)
))

(x2 + 1)2
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Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 36� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-3*x*(1-x^2)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c2x2 + 2c2 log(x) + 2c1)

2 (x2 + 1)2
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2.1.561 problem 577

Solved as second order ode using Kovacic algorithm . . . . . . . . .3765
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3769
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3771
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3771
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3771

Internal problem ID [9409]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 577
Date solved : Thursday, December 12, 2024 at 10:12:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.302 (sec)

Writing the ode as

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 2x3 (3)
C = 3x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x2 − 4
16x2 (6)

Comparing the above to (5) shows that

s = x4 − 8x2 − 4
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x2 − 4

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1067: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

16 − 1
2 − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 − 1
x
− 5

2x3 − 10
x5 − 105

2x7 − 310
x9 − 1965

x11 − 13060
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

16

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 8x2 − 4
16x2

= Q+ R

16x2

=
(
x2

16 − 1
2

)
+
(
− 1
4x2

)
= x2

16 − 1
2 − 1

4x2

We see that the coefficient of the term x in the quotient is −1
2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
4

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
4

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 8x2 − 4
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
4 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
4

)
= 1

2x − x

4
= 1

2x − x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

4

)
(0) +

((
− 1
2x2 − 1

4

)
+
(

1
2x − x

4

)2

−
(
x4 − 8x2 − 4

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
4
)
dx

=
√
x e−x2

8
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3
4x2 dx

= z1e
−x2

8

= z1
(
e−x2

8

)
Which simplifies to

y1 = e−x2
4
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3

4x2 dx

(y1)2
dx

= y1

∫
e−

x2
4

(y1)2
dx

= y1

−
Ei1
(
−x2

4

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

4
√
x
)
+ c2

e−x2
4
√
x

−
Ei1
(
−x2

4

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 2
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+1

)
y(x)

4x2 −
x
(

d
dx

y(x)
)

2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

2 +
(
3x2+1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x

2 , P3(x) = 3x2+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 2
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 ·
(

d
dx
y(x)

)
to series expansion

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1) = 0

• Shift index using k− >k + 2
ak+2(2k + 2r + 3)2 + ak(2k + 2r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

2k+2r+3
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• Recursion relation for r = 1
2

ak+2 = − ak
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
2k+4 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(4*x^2*diff(diff(y(x),x),x)+2*diff(y(x),x)*x^3+(3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x e−x2

4

(
c1 + c2 Ei1

(
−x2

4

))

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 39� �
DSolve[{4*x^2*D[y[x],{x,2}]+2*x^3*D[y[x],x]+(1+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

4
√
x

(
c2 ExpIntegralEi

(
x2

4

)
+ 2c1

)
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2.1.562 problem 578

Solved as second order ode using Kovacic algorithm . . . . . . . . .3772
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3776
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3777
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3777
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3777

Internal problem ID [9410]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 578
Date solved : Thursday, December 12, 2024 at 10:12:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−2x2 + 1

)
y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.281 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 − x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 − x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 1
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1069: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− i)2

− 3
16 (x+ i)2

− 5i
16 (x− i) +

5i
16 (x+ i) −

1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3
4

1
4

−i 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x + 1

4x− 4i +
1

4x+ 4i + (−) (0)

= 1
2x + 1

4x− 4i +
1

4x+ 4i
= 1

2x + x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

4x− 4i +
1

4x+ 4i

)
(0) +

((
− 1
2x2 − 1

4 (x− i)2
− 1

4 (x+ i)2
)
+
(

1
2x + 1

4x− 4i +
1

4x+ 4i

)2

−
(

2x2 − 1
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1

4x−4i+
1

4x+4i

)
dx

=
√
x
(
x2 + 1

)1/4
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3−x
x4+x2 dx

= z1e
ln(x)

2 −
3 ln

(
x2+1

)
4

= z1

( √
x

(x2 + 1)3/4

)

Which simplifies to

y1 =
x√

x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3−x

x4+x2 dx

(y1)2
dx

= y1

∫
eln(x)−

3 ln
(
x2+1

)
2

(y1)2
dx

= y1

(
− arctanh

(
1√

x2 + 1

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x√

x2 + 1

)
+ c2

(
x√

x2 + 1

(
− arctanh

(
1√

x2 + 1

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−2x2 + 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x2(x2+1) −

(
2x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2−1

)(
d
dx

y(x)
)

x(x2+1) + y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2−1
x(x2+1) , P3(x) = 1

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 − 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 1
• Each term must be 0

a1r
2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 1) + ak−2(k − 2 + r)) = 0

• Shift index using k− >k + 2
(k + r + 1) (ak+2(k + r + 1) + ak(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r)

k+r+1

• Recursion relation for r = 1
ak+2 = −ak(k+1)

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+1)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 25� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-2*x^2+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y =

x
(
arctanh

(
1√

x2+1

)
c2 + c1

)
√
x2 + 1

Mathematica DSolve solution

Solving time : 0.095 (sec)
Leaf size : 33� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(1-2*x^2)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

x
(
c1 − c2arctanh

(√
x2 + 1

))
√
x2 + 1
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2.1.563 problem 579

Solved as second order ode using Kovacic algorithm . . . . . . . . .3778
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3782
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3784
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3784
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3785

Internal problem ID [9411]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 579
Date solved : Thursday, December 12, 2024 at 10:12:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + 2
)
y′′ + 7x3y′ +

(
3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.356 (sec)

Writing the ode as (
2x4 + 4x2) y′′ + 7x3y′ +

(
3x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 4x2

B = 7x3 (3)
C = 3x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x4 − 16
16 (x3 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x4 − 16

t = 16
(
x3 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−3x4 − 16
16 (x3 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1071: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x3 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
2 of

order 2. There is a pole at x = −i
√
2 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 7

64
(
x− i

√
2
)2 − 7

64
(
x+ i

√
2
)2 − 9i

√
2

128
(
x− i

√
2
) + 9i

√
2

128
(
x+ i

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
For the pole at x = −i

√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x4 − 16

16 (x3 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x4 − 16
16 (x3 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i
√
2 2 0 7

8
1
8

−i
√
2 2 0 7

8
1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3

4 −
(
3
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2
+ (0)

= 1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2

= 1
2x + x

4x2 + 8

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2

)
(0) +

((
− 1
2x2 − 1

8
(
x− i

√
2
)2 − 1

8
(
x+ i

√
2
)2
)

+
(

1
2x + 1

8x− 8i
√
2
+ 1

8x+ 8i
√
2

)2

−
(

−3x4 − 16
16 (x3 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1

8x−8i
√
2+

1
8x+8i

√
2

)
dx

=
(
x2 + 2

)1/8√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x3

2x4+4x2 dx

= z1e
−

7 ln
(
x2+2

)
8

= z1

(
1

(x2 + 2)7/8

)

Which simplifies to

y1 =
√
x

(x2 + 2)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 7x3

2x4+4x2 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
x2+2

)
4

(y1)2
dx

= y1

(∫ 1
(x2 + 2)1/4 x

dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(x2 + 2)3/4

)
+ c2

( √
x

(x2 + 2)3/4

(∫ 1
(x2 + 2)1/4 x

dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ 7
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
3x2+1

)
y(x)

2(x2+2)x2 −
7x
(

d
dx

y(x)
)

2(x2+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
7x
(

d
dx

y(x)
)

2(x2+2) +
(
3x2+1

)
y(x)

2(x2+2)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 7x

2(x2+2) , P3(x) = 3x2+1
2(x2+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + 2)
(

d2

dx2y(x)
)
+ 7
(

d
dx
y(x)

)
x3 + (3x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 ·
(

d
dx
y(x)

)
to series expansion

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 ·
(

d
dx
y(x)

)
=

∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

4
(

ak−2(k+r−1)
2 +

(
k + r − 1

2

)
ak
) (

k + r − 1
2

)
= 0

• Shift index using k− >k + 2

4
(

ak(k+r+1)
2 +

(
k + 3

2 + r
)
ak+2

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k+2r+3

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k+4 , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 3.029 (sec)
Leaf size : 81� �
dsolve(2*x^2*(x^2+2)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x^3+(3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y

=

√
x

(
23/4c1 + ln

(
−
√
2 (2x2 + 4)1/4 + 2

)
c2 − ln

(√
2 (2x2 + 4)1/4 + 2

)
c2 + 2arctan

(√
2
(
2x2+4

)1/4
2

)
c2

)
21/4

2 (x2 + 2)3/4
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Mathematica DSolve solution

Solving time : 0.156 (sec)
Leaf size : 77� �
DSolve[{2*x^2*(2+x^2)*D[y[x],{x,2}]+7*x^3*D[y[x],x]+(1+3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
x

(
23/4c2 arctan

(
4
√
x2 + 2
4
√
2

)
− 23/4c2arctanh

(
4
√
x2 + 2
4
√
2

)
+ 2c1

)
2 (x2 + 2)3/4
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2.1.564 problem 580

Solved as second order ode using Kovacic algorithm . . . . . . . . .3786
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3790
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3791
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3791
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3792

Internal problem ID [9412]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 580
Date solved : Thursday, December 12, 2024 at 10:12:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−4x2 + 1

)
y′ +

(
2x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.322 (sec)

Writing the ode as (
x4 + x2) y′′ + (4x3 − x

)
y′ +

(
2x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 4x3 − x (3)
C = 2x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −6x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −6x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−6x2 − 1
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1073: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 5

16 (x− i)2
+ 5

16 (x+ i)2
+ 3i

16 (x− i) −
3i

16 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −6x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x − 1

4 (x− i) −
1

4 (x+ i) + (0)

= 1
2x − 1

4 (x− i) −
1

4 (x+ i)

= 1
2x3 + 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

4 (x− i) −
1

4 (x+ i)

)
(0) +

((
− 1
2x2 + 1

4 (x− i)2
+ 1

4 (x+ i)2
)
+
(

1
2x − 1

4 (x− i) −
1

4 (x+ i)

)2

−
(

−6x2 − 1
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1

4(x−i)−
1

4(x+i)

)
dx

=
√
x

(x2 + 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x3−x
x4+x2 dx

= z1e
−

5 ln
(
x2+1

)
4 + ln(x)

2

= z1

( √
x

(x2 + 1)5/4

)

Which simplifies to

y1 =
x

(x2 + 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x3−x

x4+x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+1

)
2 +ln(x)

(y1)2
dx

= y1

(√
x2 + 1− arctanh

(
1√

x2 + 1

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(x2 + 1)3/2

)
+ c2

(
x

(x2 + 1)3/2

(√
x2 + 1− arctanh

(
1√

x2 + 1

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−4x2 + 1)

(
d
dx
y(x)

)
+ (2x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
2x2+1

)
y(x)

x2(x2+1) −
(
4x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
4x2−1

)(
d
dx

y(x)
)

x(x2+1) +
(
2x2+1

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 4x2−1

x(x2+1) , P3(x) = 2x2+1
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(4x2 − 1)

(
d
dx
y(x)

)
+ (2x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2(k + r)) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak(k + r + 2)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+2)
k+r+1

• Recursion relation for r = 1
ak+2 = −ak(k+3)

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+3)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.052 (sec)
Leaf size : 35� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-4*x^2+1)*diff(y(x),x)+(2*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y =

x
(√

x2 + 1 c2 − arctanh
(

1√
x2+1

)
c2 + c1

)
(x2 + 1)3/2
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Mathematica DSolve solution

Solving time : 0.11 (sec)
Leaf size : 45� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(1-4*x^2)*D[y[x],x]+(1+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

x
(
−c2arctanh

(√
x2 + 1

)
+ c2

√
x2 + 1 + c1

)
(x2 + 1)3/2



chapter 2. book solved problems 3793

2.1.565 problem 581

Solved as second order ode using Kovacic algorithm . . . . . . . . .3793
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3797
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3798
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3799
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3799

Internal problem ID [9413]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 581
Date solved : Thursday, December 12, 2024 at 10:12:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 4
)
y′′ + 3x

(
3x2 + 8

)
y′ +

(
−9x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.381 (sec)

Writing the ode as(
4x4 + 16x2) y′′ + (9x3 + 24x

)
y′ +

(
−9x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 16x2

B = 9x3 + 24x (3)
C = −9x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 153x4 + 704x2 − 256
64 (x3 + 4x)2

(6)

Comparing the above to (5) shows that

s = 153x4 + 704x2 − 256

t = 64
(
x3 + 4x

)2
Therefore eq. (4) becomes

z′′(x) =
(
153x4 + 704x2 − 256

64 (x3 + 4x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1075: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64(x3 + 4x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2i of order
2. There is a pole at x = −2i of order 2. Since there is no odd order pole larger than 2
and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 39

256 (x− 2i)2
− 39

256 (x+ 2i)2
− 377i

512 (x− 2i) +
377i

512 (x+ 2i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 2i let b be the coefficient of 1

(x−2i)2 in the partial fractions decomposition
of r given above. Therefore b = − 39

256 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

16
α−
c = 1

2 −
√
1 + 4b = 3

16
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For the pole at x = −2i let b be the coefficient of 1
(x+2i)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 39
256 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

16
α−
c = 1

2 −
√
1 + 4b = 3

16

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 153x4 + 704x2 − 256

64 (x3 + 4x)2

Since the gcd(s, t) = 1. This gives b = 153
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 17

8
α−
∞ = 1

2 −
√
1 + 4b = −9

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 153x4 + 704x2 − 256
64 (x3 + 4x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

2i 2 0 13
16

3
16

−2i 2 0 13
16

3
16

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 17
8 −9

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 17

8 then

d = α+
∞ −

(
α+
c1 + α+

c2 + α+
c3

)
= 17

8 −
(
17
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i) + (0)

= 1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i)

= 1
2x + 13x

8x2 + 32
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i)

)
(0) +

((
− 1
2x2 − 13

16 (x− 2i)2
− 13

16 (x+ 2i)2
)
+
(

1
2x + 13

16 (x− 2i) +
13

16 (x+ 2i)

)2

−
(
153x4 + 704x2 − 256

64 (x3 + 4x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
13

16(x−2i)+
13

16(x+2i)

)
dx

=
(
x2 + 4

)13/16√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
9x3+24x
4x4+16x2 dx

= z1e
−

3 ln
(
x2+4

)
16 − 3 ln(x)

4

= z1

(
1

(x2 + 4)3/16 x3/4

)

Which simplifies to

y1 =
(x2 + 4)5/8

x1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 9x3+24x

4x4+16x2 dx

(y1)2
dx

= y1

∫
e−

3 ln
(
x2+4

)
8 − 3 ln(x)

2

(y1)2
dx

= y1

∫ e−
3 ln

(
x2+4

)
8 − 3 ln(x)

2
√
x

(x2 + 4)5/4
dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 4)5/8

x1/4

)
+ c2

(x2 + 4)5/8

x1/4

∫ e−
3 ln

(
x2+4

)
8 − 3 ln(x)

2
√
x

(x2 + 4)5/4
dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 4)
(

d2

dx2y(x)
)
+ 3x(3x2 + 8)

(
d
dx
y(x)

)
+ (−9x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
9x2−1

)
y(x)

4x2(x2+4) −
3
(
3x2+8

)(
d
dx

y(x)
)

4x(x2+4)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(
3x2+8

)(
d
dx

y(x)
)

4x(x2+4) −
(
9x2−1

)
y(x)

4x2(x2+4) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 3

(
3x2+8

)
4x(x2+4) , P3(x) = − 9x2−1

4x2(x2+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 4)
(

d2

dx2y(x)
)
+ 3x(3x2 + 8)

(
d
dx
y(x)

)
+ (−9x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m



chapter 2. book solved problems 3798

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 4r)2 xr + a1(5 + 4r)2 x1+r +
(

∞∑
k=2

(
ak(4k + 4r + 1)2 + ak−2(4k + 4r + 1) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

4

• Each term must be 0
a1(5 + 4r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

16
(

ak−2(k−3+r)
4 +

(
k + r + 1

4

)
ak
) (

k + r + 1
4

)
= 0

• Shift index using k− >k + 2

16
(

ak(k+r−1)
4 +

(
k + 9

4 + r
)
ak+2

) (
k + 9

4 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r−1)

4k+4r+9

• Recursion relation for r = −1
4

ak+2 = −ak
(
k− 5

4
)

4k+8

• Solution for r = −1
4[

y(x) =
∞∑
k=0

akx
k− 1

4 , ak+2 = −ak
(
k− 5

4
)

4k+8 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
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-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius

-> hypergeometric
-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.169 (sec)
Leaf size : 66� �
dsolve(4*x^2*(x^2+4)*diff(diff(y(x),x),x)+3*x*(3*x^2+8)*diff(y(x),x)+(-9*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y

=
c2(x2 + 4)5/8

(
x2 hypergeom

([
1, 1, 138

]
, [2, 2] ,−x2

4

)
− 32γ

5 + 64 ln(2)
5 − 64 ln(x)

5 − 32Ψ
( 5
8
)

5

)
23/4 + c1(x2 + 4)5/8 − 1024c2

25

x1/4

Mathematica DSolve solution

Solving time : 0.404 (sec)
Leaf size : 198� �
DSolve[{4*x^2*(4+x^2)*D[y[x],{x,2}]+3*x*(8+3*x^2)*D[y[x],x]+(1-9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c2

(
5 23/4(x2 + 4)5/8 arctan

(
8
√
x2 + 4
4
√
2

)
+ 5 4

√
2(x2 + 4)5/8 arctan

(
√
2−

4
√
x2 + 4

23/4
8
√
x2 + 4

)
− 5 23/4(x2 + 4)5/8 arctanh

(
8
√
x2 + 4
4
√
2

)
+ 5 4

√
2(x2 + 4)5/8 arctanh

(
2

4
√
2 8
√
x2 + 4

√
2

4
√
x2 + 4+2

)
+ 16

)
+ 80c1(x2 + 4)5/8

80 4
√
x
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2.1.566 problem 582

Solved as second order ode using Kovacic algorithm . . . . . . . . .3800
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3804
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3806
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3806
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3807

Internal problem ID [9414]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 582
Date solved : Thursday, December 12, 2024 at 10:12:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(x2 + 3
)
y′′ + x

(
11x2 + 3

)
y′ +

(
5x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.356 (sec)

Writing the ode as (
3x4 + 9x2) y′′ + (11x3 + 3x

)
y′ +

(
5x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x4 + 9x2

B = 11x3 + 3x (3)
C = 5x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x4 + 18x2 − 81
36 (x3 + 3x)2

(6)

Comparing the above to (5) shows that

s = −5x4 + 18x2 − 81

t = 36
(
x3 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−5x4 + 18x2 − 81

36 (x3 + 3x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1077: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x3 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = i

√
3 of

order 2. There is a pole at x = −i
√
3 of order 2. Since there is no odd order pole larger

than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 − 5

36
(
x− i

√
3
)2 − 5

36
(
x+ i

√
3
)2 − 7i

√
3

108
(
x− i

√
3
) + 7i

√
3

108
(
x+ i

√
3
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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For the pole at x = i
√
3 let b be the coefficient of 1(

x−i
√
3
)2 in the partial fractions decom-

position of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
For the pole at x = −i

√
3 let b be the coefficient of 1(

x+i
√
3
)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −5x4 + 18x2 − 81

36 (x3 + 3x)2

Since the gcd(s, t) = 1. This gives b = − 5
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

6
α−
∞ = 1

2 −
√
1 + 4b = 1

6
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −5x4 + 18x2 − 81
36 (x3 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i
√
3 2 0 5

6
1
6

−i
√
3 2 0 5

6
1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
6

1
6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

6 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 5

6 −
(
5
6

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3
+ (0)

= 1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3

= 1
2x + x

3x2 + 9

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3

)
(0) +

((
− 1
2x2 − 1

6
(
x− i

√
3
)2 − 1

6
(
x+ i

√
3
)2
)

+
(

1
2x + 1

6x− 6i
√
3
+ 1

6x+ 6i
√
3

)2

−
(
−5x4 + 18x2 − 81

36 (x3 + 3x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
1

6x−6i
√
3+

1
6x+6i

√
3

)
dx

=
(
x2 + 3

)1/6√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+3x
3x4+9x2 dx

= z1e
−

5 ln
(
x2+3

)
6 − ln(x)

6

= z1

(
1

(x2 + 3)5/6 x1/6

)

Which simplifies to

y1 =
x1/3

(x2 + 3)2/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 11x3+3x

3x4+9x2 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
x2+3

)
3 − ln(x)

3

(y1)2
dx

= y1

∫ e−
5 ln

(
x2+3

)
3 − ln(x)

3 (x2 + 3)4/3

x2/3 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

(x2 + 3)2/3

)
+ c2

 x1/3

(x2 + 3)2/3

∫ e−
5 ln

(
x2+3

)
3 − ln(x)

3 (x2 + 3)4/3

x2/3 dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2(x2 + 3)
(

d2

dx2y(x)
)
+ x(11x2 + 3)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
5x2+1

)
y(x)

3x2(x2+3) −
(
11x2+3

)(
d
dx

y(x)
)

3x(x2+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+3

)(
d
dx

y(x)
)

3x(x2+3) +
(
5x2+1

)
y(x)

3x2(x2+3) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2+3

3x(x2+3) , P3(x) = 5x2+1
3x2(x2+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2(x2 + 3)
(

d2

dx2y(x)
)
+ x(11x2 + 3)

(
d
dx
y(x)

)
+ (5x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr + a1(2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 1)2 + ak−2(3k + 3r − 1) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

9
(

ak−2(k+r−1)
3 +

(
k − 1

3 + r
)
ak
) (

k − 1
3 + r

)
= 0

• Shift index using k− >k + 2

9
(

ak(k+r+1)
3 +

(
k + 5

3 + r
)
ak+2

) (
k + 5

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

3k+3r+5

• Recursion relation for r = 1
3

ak+2 = −ak
(
k+ 4

3
)

3k+6

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak
(
k+ 4

3
)

3k+6 , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.324 (sec)
Leaf size : 100� �
dsolve(3*x^2*(x^2+3)*diff(diff(y(x),x),x)+x*(11*x^2+3)*diff(y(x),x)+(5*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y

=

(
arctan

( (
9x2+27

)1/3√3
6+(9x2+27)1/3

)√
3 c2 + ln

(
3− (9x2 + 27)1/3

)
c2 −

ln
((

9x2+27
)2/3+3

(
9x2+27

)1/3+9
)
c2

2 + 331/3c1
)
32/3x1/3

9 (x2 + 3)2/3
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Mathematica DSolve solution

Solving time : 0.089 (sec)
Leaf size : 94� �
DSolve[{3*x^2*(3+x^2)*D[y[x],x]+x*(3+11*x^2)*D[y[x],x]+(1+5*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c1 exp

(
1
3RootSum

[
3#13 + 11#12 + 9#1+ 3&, 3#12

log(x−#1)−4#1 log(x−#1)+9 log(x−#1)
9#12

+22#1+9
&
])

3
√
x

y(x) → 0
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2.1.567 problem 583

Solved as second order ode using Kovacic algorithm . . . . . . . . .3808
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3812
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3814
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3814
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3814

Internal problem ID [9415]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 583
Date solved : Thursday, December 12, 2024 at 10:12:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ − 3x
(
−2x2 + 7

)
y′ +

(
2x2 + 25

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.317 (sec)

Writing the ode as

9x2y′′ +
(
6x3 − 21x

)
y′ +

(
2x2 + 25

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = 6x3 − 21x (3)
C = 2x2 + 25

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 24x2 − 9
36x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 24x2 − 9
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 24x2 − 9

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1079: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

9 − 2
3 − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

3 − 1
x
− 15

8x3 − 45
8x5 − 2835

128x7 − 12555
128x9 − 477495

1024x11 − 2380185
1024x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
3

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

3 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

9

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 24x2 − 9
36x2

= Q+ R

36x2

=
(
x2

9 − 2
3

)
+
(
− 1
4x2

)
= x2

9 − 2
3 − 1

4x2

We see that the coefficient of the term x in the quotient is −2
3 . Now b can be found.

b =
(
−2
3

)
− (0)

= −2
3

Hence

[
√
r]∞ = x

3

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−2
3

1
3

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−2

3
1
3

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 24x2 − 9
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
3 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
3

)
= 1

2x − x

3
= 1

2x − x

3
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

3

)
(0) +

((
− 1
2x2 − 1

3

)
+
(

1
2x − x

3

)2

−
(
4x4 − 24x2 − 9

36x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
3
)
dx

=
√
x e−x2

6
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x3−21x

9x2 dx

= z1e
−x2

6 + 7 ln(x)
6

= z1
(
x7/6e−x2

6

)
Which simplifies to

y1 = x5/3e−x2
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6x3−21x

9x2 dx

(y1)2
dx

= y1

∫
e−

x2
3 + 7 ln(x)

3

(y1)2
dx

= y1

−
Ei1
(
−x2

3

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x5/3e−x2

3

)
+ c2

x5/3e−x2
3

−
Ei1
(
−x2

3

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
− 3x(−2x2 + 7)

(
d
dx
y(x)

)
+ (2x2 + 25) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
2x2+25

)
y(x)

9x2 −
(
2x2−7

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2−7

)(
d
dx

y(x)
)

3x +
(
2x2+25

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = 2x2−7

3x , P3(x) = 2x2+25
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 25
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
+ 3x(2x2 − 7)

(
d
dx
y(x)

)
+ (2x2 + 25) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−5 + 3r)2 xr + a1(−2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 5)2 + 2ak−2(3k + 3r − 5)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−5 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 5

3

• Each term must be 0
a1(−2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 5)2 + 2ak−2(3k + 3r − 5) = 0

• Shift index using k− >k + 2
ak+2(3k + 3r + 1)2 + 2ak(3k + 3r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 2ak

3k+3r+1
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• Recursion relation for r = 5
3

ak+2 = − 2ak
3k+6

• Solution for r = 5
3[

y(x) =
∞∑
k=0

akx
k+ 5

3 , ak+2 = − 2ak
3k+6 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 25� �
dsolve(9*x^2*diff(diff(y(x),x),x)-3*x*(-2*x^2+7)*diff(y(x),x)+(2*x^2+25)*y(x) = 0,

y(x),singsol=all)� �
y = x5/3e−x2

3

(
c1 + c2 Ei1

(
−x2

3

))

Mathematica DSolve solution

Solving time : 0.097 (sec)
Leaf size : 39� �
DSolve[{9*x^2*D[y[x],{x,2}]-3*x*(7-2*x^2)*D[y[x],x]+(25+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

3 x5/3
(
c2 ExpIntegralEi

(
x2

3

)
+ 2c1

)
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2.1.568 problem 584

Solved as second order ode using Kovacic algorithm . . . . . . . . .3815
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3819
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3821
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3821
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3821

Internal problem ID [9416]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 584
Date solved : Thursday, December 12, 2024 at 10:12:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x
(
−x2 + 1

)
y′ +

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.298 (sec)

Writing the ode as

x2y′′ +
(
x3 − x

)
y′ +

(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 − x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 4x2 − 1
4x2 (6)

Comparing the above to (5) shows that

s = x4 − 4x2 − 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 4x2 − 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1081: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 1− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1
x
− 5

4x3 − 5
2x5 − 105

16x7 − 155
8x9 − 1965

32x11 − 3265
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 4x2 − 1
4x2

= Q+ R

4x2

=
(
x2

4 − 1
)
+
(
− 1
4x2

)
= x2

4 − 1− 1
4x2

We see that the coefficient of the term x in the quotient is −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 1
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 1
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 4x2 − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
2

)
= 1

2x − x

2
= 1

2x − x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − x

2

)
(0) +

((
− 1
2x2 − 1

2

)
+
(

1
2x − x

2

)2

−
(
x4 − 4x2 − 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
x
2
)
dx

=
√
x e−x2

4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−x
x2 dx

= z1e
−x2

4 + ln(x)
2

= z1
(√

x e−x2
4

)
Which simplifies to

y1 = x e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3−x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 +ln(x)

(y1)2
dx

= y1

−
Ei1
(
−x2

2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x2

2

)
+ c2

x e−x2
2

−
Ei1
(
−x2

2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(−x2 + 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+1

)
y(x)

x2 −
(
x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−1

)(
d
dx

y(x)
)

x
+
(
x2+1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2−1

x
, P3(x) = x2+1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 − 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
k+r+1
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• Recursion relation for r = 1
ak+2 = − ak

k+2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x^2+1)*diff(y(x),x)+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x e−x2

2

(
c1 + c2 Ei1

(
−x2

2

))

Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 35� �
DSolve[{x^2*D[y[x],{x,2}]-x*(1-x^2)*D[y[x],x]+(1+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x2

2 x

(
c1 ExpIntegralEi

(
x2

2

)
+ 2c2

)



chapter 2. book solved problems 3822

2.1.569 problem 585

Solved as second order ode using Kovacic algorithm . . . . . . . . .3822
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3826
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3827
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3827
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3828

Internal problem ID [9417]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 585
Date solved : Thursday, December 12, 2024 at 10:12:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ + 3xy′ + (1 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as (
−2x3 + x2) y′′ + 3xy′ + (1 + 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = 3x (3)
C = 1 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 32x2 + 16x− 1
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 32x2 + 16x− 1

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
32x2 + 16x− 1
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1083: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
x
− 1

4x2 + 15
4
(
x− 1

2

)2 − 3
x− 1

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 32x2 + 16x− 1

4 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 32x2 + 16x− 1
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1
2 2 0 5

2 −3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x − 3

2
(
x− 1

2

) + (−) (0)

= 1
2x − 3

2
(
x− 1

2

)
= −1− 4x

4x2 − 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 3

2
(
x− 1

2

)) (0) +

(− 1
2x2 + 3

2
(
x− 1

2

)2
)

+
(

1
2x − 3

2
(
x− 1

2

))2

−
(
32x2 + 16x− 1
4 (2x2 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
3

2
(
x− 1

2
)
)
dx

=
√
x

(−1 + 2x)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x

−2x3+x2 dx

= z1e
3 ln(−1+2x)

2 − 3 ln(x)
2

= z1

(
(−1 + 2x)3/2

x3/2

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e3 ln(−1+2x)−3 ln(x)

(y1)2
dx

= y1

(
8x3

3 + 6x+ 1
2 − 6x2 − ln (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
8x3

3 + 6x+ 1
2 − 6x2 − ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ (4x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (4x+1)y(x)
x2(2x−1) +

3
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
3
(

d
dx

y(x)
)

x(2x−1) − (4x+1)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 3
x(2x−1) , P3(x) = − 4x+1

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
− 3x

(
d
dx
y(x)

)
+ (−4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(1 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 1)2 + 2ak−1(k + r) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−(1 + r)2 = 0
• Values of r that satisfy the indicial equation

r = −1
• Each term in the series must be 0, giving the recursion relation

−ak(k + r + 1)2 + 2ak−1(k + r) (k − 3 + r) = 0
• Shift index using k− >k + 1

−ak+1(k + 2 + r)2 + 2ak(k + r + 1) (k + r − 2) = 0
• Recursion relation that defines series solution to ODE

ak+1 = 2ak(k+r+1)(k+r−2)
(k+2+r)2

• Recursion relation for r = −1 ; series terminates at k = 3
ak+1 = 2akk(k−3)

(k+1)2

• Apply recursion relation for k = 0
a1 = 0

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = 0

• Apply recursion relation for k = 2
a3 = −4a2

9

• Express in terms of a0
a3 = 0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · 0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 31� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)+3*diff(y(x),x)*x+(4*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = 3c2 ln (x) + (−8x3 + 18x2 − 18x) c2 + c1

x
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Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 36� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]+3*x*D[y[x],x]+(1+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −2

3c2
(
4x2 − 9x+ 9

)
+ c1

x
+ c2 log(x)

x
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2.1.570 problem 586

Solved as second order ode using Kovacic algorithm . . . . . . . . .3829
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3833
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3834
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3835
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3835

Internal problem ID [9418]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 586
Date solved : Thursday, December 12, 2024 at 10:12:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(1 + x) y′′ + (1− x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.262 (sec)

Writing the ode as (
x2 + x

)
y′′ + (1− x) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + x

B = 1− x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 10x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 10x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 10x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1085: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
1 + x

− 1
4x2 − 2

x
+ 2

(1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 10x− 1

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 10x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1
0 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
1 + x

+ 1
2x + (−) (0)

= − 1
1 + x

+ 1
2x

= − x− 1
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

+ 1
2x

)
(1) +

((
1

(1 + x)2
− 1

2x2

)
+
(
− 1
1 + x

+ 1
2x

)2

−
(
−x2 − 10x− 1
4 (x2 + x)2

))
= 0

1 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ (

− 1
1+x

+ 1
2x

)
dx

= (x− 1) e
ln(x)

2 −ln(1+x)

= (x− 1)
√
x

1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−x
x2+x

dx

= z1e
− ln(x)

2 +ln(1+x)

= z1

(
1 + x√

x

)

Which simplifies to
y1 = x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−x

x2+x
dx

(y1)2
dx

= y1

∫
e− ln(x)+2 ln(1+x)

(y1)2
dx

= y1

(
ln (x)− 4

x− 1

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x− 1) + c2

(
x− 1

(
ln (x)− 4

x− 1

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x+ 1)
(

d2

dx2y(x)
)
+ (1− x)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x(x+1) +

(x−1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−1)

(
d
dx

y(x)
)

x(x+1) + y(x)
x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x−1
x(x+1) , P3(x) = 1

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)
(

d2

dx2y(x)
)
+ (1− x)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (2− u)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)2

(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1

ak+1 = ak(k−1)2
(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 1[

y(x) = a0
(
−x

2 +
1
2

)]
• Recursion relation for r = 3

ak+1 = ak(k+2)2
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = ak(k+2)2

(k+4)(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+3 , ak+1 = ak(k+2)2
(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0
(
−x

2 +
1
2

)
+
(

∞∑
k=0

bk(x+ 1)k+3
)
, bk+1 = bk(k+2)2

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 20� �
dsolve(x*(x+1)*diff(diff(y(x),x),x)+(1-x)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2(x− 1) ln (x)− 4c2 + c1(x− 1)

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 23� �
DSolve[{x*(1+x)*D[y[x],{x,2}]+(1-x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 1) + c2((x− 1) log(x)− 4)
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2.1.571 problem 587

Solved as second order ode using Kovacic algorithm . . . . . . . . .3836
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3840
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3841
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3841
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3842

Internal problem ID [9419]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 587
Date solved : Thursday, December 12, 2024 at 10:12:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x) y′′ − x(3− 5x) y′ + (4− 5x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as (
−x3 + x2) y′′ + (5x2 − 3x

)
y′ + (4− 5x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = 5x2 − 3x (3)
C = 4− 5x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 − 6x− 1
4 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = 15x2 − 6x− 1

t = 4
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 − 6x− 1
4 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1087: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(−1 + x)2

− 1
4x2 − 2

x
+ 2

−1 + x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 1 let b be the coefficient of 1

(−1+x)2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 − 6x− 1

4 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 − 6x− 1
4 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x + 2

−1 + x
+ (0)

= 1
2x + 2

−1 + x

= −1 + 5x
2x (−1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 2

−1 + x

)
(0) +

((
− 1
2x2 − 2

(−1 + x)2
)
+
(

1
2x + 2

−1 + x

)2

−
(
15x2 − 6x− 1
4 (x2 − x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
2

−1+x

)
dx

=
√
x (−1 + x)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2−3x
−x3+x2 dx

= z1e
3 ln(x)

2 +ln(−1+x)

= z1
(
x3/2(−1 + x)

)
Which simplifies to

y1 = x2(−1 + x)3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2−3x

−x3+x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)+2 ln(−1+x)

(y1)2
dx

= y1

(
ln (x)− 1

3 (−1 + x)3
− 1

−1 + x
+ 1

2 (−1 + x)2
− ln (−1 + x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2(−1 + x)3

)
+ c2

(
x2(−1 + x)3

(
ln (x)− 1

3 (−1 + x)3
− 1

−1 + x
+ 1

2 (−1 + x)2
− ln (−1 + x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(1− x)
(

d2

dx2y(x)
)
− x(3− 5x)

(
d
dx
y(x)

)
+ (4− 5x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−4+5x)y(x)
x2(x−1) +

(−3+5x)
(

d
dx

y(x)
)

x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−3+5x)

(
d
dx

y(x)
)

x(x−1) + (−4+5x)y(x)
x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −−3+5x
x(x−1) , P3(x) = −4+5x

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 1)
(

d2

dx2y(x)
)
− x(−3 + 5x)

(
d
dx
y(x)

)
+ (−4 + 5x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−2 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 2)2 + ak−1(k + r − 2) (k − 6 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 2)2 + ak−1(k + r − 2) (k − 6 + r) = 0

• Shift index using k− >k + 1
−ak+1(k + r − 1)2 + ak(k + r − 1) (k + r − 5) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)

k+r−1

• Recursion relation for r = 2 ; series terminates at k = 3
ak+1 = ak(k−3)

k+1

• Apply recursion relation for k = 0
a1 = −3a0

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = 3a0

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

• Terminating series solution of the ODE for r = 2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (−x3 + 3x2 − 3x+ 1)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 47� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)-x*(3-5*x)*diff(y(x),x)+(4-5*x)*y(x) = 0,

y(x),singsol=all)� �
y = x2

(
c1(x− 1)3 + c2

(
−(x− 1)3 ln (x− 1) + (x− 1)3 ln (x)− x2 + 5x

2 − 11
6

))
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Mathematica DSolve solution

Solving time : 0.112 (sec)
Leaf size : 76� �
DSolve[{x^2*(1-x)*D[y[x],{x,2}]-x*(3-5*x)*D[y[x],x]+(4-5*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

6x
2(6c1x3 − 18c1x2 − 6c2x2 + 18c1x+ 15c2x− 6c2(x− 1)3 log(x− 1)

+ 6c2(x− 1)3 log(x)− 6c1 − 11c2
)
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2.1.572 problem 588

Solved as second order ode using Kovacic algorithm . . . . . . . . .3843
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3847
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3849
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3849
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3849

Internal problem ID [9420]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 588
Date solved : Thursday, December 12, 2024 at 10:12:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
9x2 + 1

)
y′ +

(
25x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.352 (sec)

Writing the ode as (
x4 + x2) y′′ + (−9x3 − x

)
y′ +

(
25x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = −9x3 − x (3)
C = 25x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x4 − 98x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −x4 − 98x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x4 − 98x2 − 1

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1089: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
(x− i)2

+ 6
(x+ i)2

+ 6i
x− i

− 6i
x+ i

− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x4 − 98x2 − 1

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x4 − 98x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3 −2
−i 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
−7
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
2x − 2

x− i
− 2

x+ i
+ (−) (0)

= 1
2x − 2

x− i
− 2

x+ i

= 1
2x − 4x

x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(

1
2x − 2

x− i
− 2

x+ i

)(
4x3 + 3x2a3 + 2a2x+ a1

)
+
((

− 1
2x2 + 2

(x− i)2
+ 2

(x+ i)2
)
+
(

1
2x − 2

x− i
− 2

x+ i

)2

−
(
−x4 − 98x2 − 1

4 (x3 + x)2
))

= 0

(x2 + 1) (x4a3 + 4(4 + a2)x3 + 9(a1 + a3)x2 + 4(4a0 + a2)x+ a1)
x (x+ i)2 (−x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0, a2 = −4, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 4x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 4x2 + 1

)
e
∫ ( 1

2x−
2

x−i
− 2

x+i

)
dx

=
(
x4 − 4x2 + 1

)
e−2 ln

(
x2+1

)
+ ln(x)

2

= (x4 − 4x2 + 1)
√
x

(x2 + 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−9x3−x
x4+x2 dx

= z1e
2 ln
(
x2+1

)
+ ln(x)

2

= z1
((

x2 + 1
)2√

x
)

Which simplifies to
y1 = x5 − 4x3 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−9x3−x

x4+x2 dx

(y1)2
dx

= y1

∫
e4 ln

(
x2+1

)
+ln(x)

(y1)2
dx

= y1

(
−6x2 + 3

x4 − 4x2 + 1 + ln (x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x5 − 4x3 + x

)
+ c2

(
x5 − 4x3 + x

(
−6x2 + 3

x4 − 4x2 + 1 + ln (x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(9x2 + 1)

(
d
dx
y(x)

)
+ (25x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2+1

)
y(x)

x2(x2+1) +
(
9x2+1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
9x2+1

)(
d
dx

y(x)
)

x(x2+1) +
(
25x2+1

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − 9x2+1

x(x2+1) , P3(x) = 25x2+1
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(9x2 + 1)

(
d
dx
y(x)

)
+ (25x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k − 7 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r − 1)2 + ak−2(k − 7 + r)2 = 0
• Shift index using k− >k + 2

ak+2(k + 1 + r)2 + ak(k + r − 5)2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r−5)2

(k+1+r)2

• Recursion relation for r = 1 ; series terminates at k = 4

ak+2 = −ak(k−4)2

(k+2)2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −ak(k−4)2

(k+2)2 , a1 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 41� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(9*x^2+1)*diff(y(x),x)+(25*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x

(
c2
(
x4 − 4x2 + 1

)
ln (x) + c1x

4 + (−4c1 − 6c2)x2 + c1 + 3c2
)

Mathematica DSolve solution

Solving time : 0.127 (sec)
Leaf size : 43� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(1+9*x^2)*D[y[x],x]+(1+25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x5 − 4x3 + x

)
+ c2x

(
−6x2 +

(
x4 − 4x2 + 1

)
log(x) + 3

)
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2.1.573 problem 589

Solved as second order ode using Kovacic algorithm . . . . . . . . .3850
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3855
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3856
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3857
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3857

Internal problem ID [9421]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 589
Date solved : Thursday, December 12, 2024 at 10:12:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2y′′ + 3x
(
−x2 + 1

)
y′ +

(
7x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.096 (sec)

Writing the ode as

9x2y′′ +
(
−3x3 + 3x

)
y′ +

(
7x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x2

B = −3x3 + 3x (3)
C = 7x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 36x2 − 9
36x2 (6)

Comparing the above to (5) shows that

s = x4 − 36x2 − 9
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 36x2 − 9

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1091: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

36 − 1− 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

6 − 3
x
− 111

4x3 − 999
2x5 − 180819

16x7 − 2292705
8x9 − 249239511

32x11 − 3548540907
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

36
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 36x2 − 9
36x2

= Q+ R

36x2

=
(
x2

36 − 1
)
+
(
− 1
4x2

)
= x2

36 − 1− 1
4x2

We see that the coefficient of the term x in the quotient is −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = x

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
6

− 1
)

= −7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
6

− 1
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 36x2 − 9
36x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2



chapter 2. book solved problems 3853

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
6 −7

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
1
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
6

)
= 1

2x − x

6
= 1

2x − x

6

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x − x

6

)
(2x+ a1) +

((
− 1
2x2 − 1

6

)
+
(

1
2x − x

6

)2

−
(
x4 − 36x2 − 9

36x2

))
= 0

x2a1 + 2(6 + a0)x+ 3a1
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −6, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 6
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 6

)
e
∫ ( 1

2x−
x
6
)
dx

=
(
x2 − 6

)
e−x2

12+
ln(x)

2

=
(
x2 − 6

)√
x e−x2

12

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3+3x

9x2 dx

= z1e
x2
12−

ln(x)
6

= z1

(
ex2

12

x1/6

)

Which simplifies to
y1 = x1/3(x2 − 6

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3+3x

9x2 dx

(y1)2
dx

= y1

∫
e

x2
6 − ln(x)

3

(y1)2
dx

= y1

(∫ ex2
6 − ln(x)

3

x2/3 (x2 − 6)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/3(x2 − 6

))
+ c2

(
x1/3(x2 − 6

)(∫ ex2
6 − ln(x)

3

x2/3 (x2 − 6)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2
(

d2

dx2y(x)
)
+ 3x(−x2 + 1)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+1

)
y(x)

9x2 +
(
x2−1

)(
d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−1

)(
d
dx

y(x)
)

3x +
(
7x2+1

)
y(x)

9x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x2−1

3x , P3(x) = 7x2+1
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2
(

d2

dx2y(x)
)
− 3x(x2 − 1)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr + a1(2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 1)2 − ak−2(3k − 13 + 3r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(−1 + 3r)2 = 0
• Values of r that satisfy the indicial equation

r = 1
3

• Each term must be 0
a1(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 1)2 + (−3k + 13− 3r) ak−2 = 0

• Shift index using k− >k + 2
ak+2(3k + 5 + 3r)2 + ak(−3k − 3r + 7) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(3k+3r−7)

(3k+5+3r)2

• Recursion relation for r = 1
3 ; series terminates at k = 2

ak+2 = ak(3k−6)
(3k+6)2

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = ak(3k−6)
(3k+6)2 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.044 (sec)
Leaf size : 19� �
dsolve(9*x^2*diff(diff(y(x),x),x)+3*x*(-x^2+1)*diff(y(x),x)+(7*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −x1/3(x2 − 6) (c1 − c2)

6

Mathematica DSolve solution

Solving time : 0.448 (sec)
Leaf size : 53� �
DSolve[{9*x^2*D[y[x],{x,2}]+3*x*(1-x^2)*D[y[x],x]+(1+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

72
3
√
x

(
c2
(
x2 − 6

)
ExpIntegralEi

(
x2

6

)
+ 72c1

(
x2 − 6

)
− 6c2e

x2
6

)
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2.1.574 problem 590

Solved as second order ode using Kovacic algorithm . . . . . . . . .3858
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3862
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3863
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3864
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3864

Internal problem ID [9422]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 590
Date solved : Thursday, December 12, 2024 at 10:12:19 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x
(
x2 + 1

)
y′′ +

(
−x2 + 1

)
y′ − 8xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.403 (sec)

Writing the ode as (
x3 + x

)
y′′ +

(
−x2 + 1

)
y′ − 8xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3 + x

B = −x2 + 1 (3)
C = −8x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35x4 + 22x2 − 1
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 35x4 + 22x2 − 1

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
35x4 + 22x2 − 1

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1093: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
− 15i

4 (x− i) +
15i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35x4 + 22x2 − 1

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35x4 + 22x2 − 1
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α+
c1 + α+

c2 + α+
c3

)
= 7

2 −
(
7
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
2x + 3

2 (x− i) +
3

2 (x+ i) + (0)

= 1
2x + 3

2 (x− i) +
3

2 (x+ i)

= 1
2x + 3x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 3

2 (x− i) +
3

2 (x+ i)

)
(0) +

((
− 1
2x2 − 3

2 (x− i)2
− 3

2 (x+ i)2
)
+
(

1
2x + 3

2 (x− i) +
3

2 (x+ i)

)2

−
(
35x4 + 22x2 − 1

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
3

2(x−i)+
3

2(x+i)

)
dx

=
(
x2 + 1

)3/2√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+1
x3+x

dx

= z1e
ln

(
x2+1

)
2 − ln(x)

2

= z1

(√
x2 + 1√

x

)

Which simplifies to

y1 =
(
x2 + 1

)2
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+1

x3+x
dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
−ln(x)

(y1)2
dx

= y1

(
1

4 (x2 + 1)2
+ 1

2x2 + 2 − ln (x2 + 1)
2 + ln (x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 + 1
)2)+ c2

((
x2 + 1

)2( 1
4 (x2 + 1)2

+ 1
2x2 + 2 − ln (x2 + 1)

2 + ln (x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x2 + 1)
(

d2

dx2y(x)
)
+ (−x2 + 1)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 8y(x)
x2+1 +

(
x2−1

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−1

)(
d
dx

y(x)
)

x(x2+1) − 8y(x)
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−1
x(x2+1) , P3(x) = − 8

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 + 1)
(

d2

dx2y(x)
)
+ (−x2 + 1)

(
d
dx
y(x)

)
− 8xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + ak−1(k + r + 1) (k − 5 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
((ak−1 + ak+1) k − 5ak−1 + ak+1) (k + 1) = 0

• Shift index using k− >k + 1
((ak + ak+2) (k + 1)− 5ak + ak+2) (k + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k−4)

k+2

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = −ak(k−4)

k+2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k−4)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 48� �
dsolve(x*(x^2+1)*diff(diff(y(x),x),x)+(-x^2+1)*diff(y(x),x)-8*x*y(x) = 0,

y(x),singsol=all)� �
y = c1

(
x2 + 1

)2 + c2

(
−(x2 + 1)2 ln (x2 + 1)

2 +
(
x2 + 1

)2 ln (x) + x2

2 + 3
4

)

Mathematica DSolve solution

Solving time : 0.115 (sec)
Leaf size : 55� �
DSolve[{x*(1+x^2)*D[y[x],{x,2}]+(1-x^2)*D[y[x],x]-8*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x2 + 1

)2 + 1
4c2
(
2x2 + 4

(
x2 + 1

)2 log(x)− 2
(
x2 + 1

)2 log (x2 + 1
)
+ 3
)
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2.1.575 problem 591

Solved as second order ode using Kovacic algorithm . . . . . . . . .3865
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3870
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3871
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3872
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3872

Internal problem ID [9423]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 591
Date solved : Thursday, December 12, 2024 at 10:12:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 2x
(
−x2 + 4

)
y′ +

(
7x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.743 (sec)

Writing the ode as

4x2y′′ +
(
−2x3 + 8x

)
y′ +

(
7x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −2x3 + 8x (3)
C = 7x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 40x2 − 4
16x2 (6)

Comparing the above to (5) shows that

s = x4 − 40x2 − 4
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 40x2 − 4

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1095: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

16 − 5
2 − 1

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

4 − 5
x
− 101

2x3 − 1010
x5 − 50601

2x7 − 710030
x9 − 21351501

x11 − 672670100
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

16

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 40x2 − 4
16x2

= Q+ R

16x2

=
(
x2

16 − 5
2

)
+
(
− 1
4x2

)
= x2

16 − 5
2 − 1

4x2

We see that the coefficient of the term x in the quotient is −5
2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
4

− 1
)

= −11
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
4

− 1
)

= 9
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 40x2 − 4
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
4 −11

2
9
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 9

2 then

d = α−
∞ −

(
α+
c1

)
= 9

2 −
(
1
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(x
4

)
= 1

2x − x

4
= 1

2x − x

4
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(

1
2x − x

4

)(
4x3 + 3a3x2 + 2a2x+ a1

)
+
((

− 1
2x2 − 1

4

)
+
(

1
2x − x

4

)2

−
(
x4 − 40x2 − 4

16x2

))
= 0

x4a3 + 2(16 + a2)x3 + 3(a1 + 6a3)x2 + 4(a0 + 2a2)x+ 2a1
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 32, a1 = 0, a2 = −16, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 − 16x2 + 32
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 − 16x2 + 32

)
e
∫ ( 1

2x−
x
4
)
dx

=
(
x4 − 16x2 + 32

)
e−x2

8 + ln(x)
2

=
(
x4 − 16x2 + 32

)√
x e−x2

8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+8x

4x2 dx

= z1e
x2
8 −ln(x)

= z1

(
ex2

8

x

)

Which simplifies to

y1 =
x4 − 16x2 + 32√

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+8x

4x2 dx

(y1)2
dx

= y1

∫
e

x2
4 −2 ln(x)

(y1)2
dx

= y1

(∫ ex2
4 −2 ln(x)x

(x4 − 16x2 + 32)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 − 16x2 + 32√

x

)
+ c2

(
x4 − 16x2 + 32√

x

(∫ ex2
4 −2 ln(x)x

(x4 − 16x2 + 32)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 2x(−x2 + 4)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+1

)
y(x)

4x2 +
(
x2−4

)(
d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2−4

)(
d
dx

y(x)
)

2x +
(
7x2+1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x2−4

2x , P3(x) = 7x2+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 2x(x2 − 4)

(
d
dx
y(x)

)
+ (7x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r)2 xr + a1(3 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 1)2 − ak−2(2k − 11 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r)2 = 0
• Values of r that satisfy the indicial equation

r = −1
2

• Each term must be 0
a1(3 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 1)2 + (−2k + 11− 2r) ak−2 = 0

• Shift index using k− >k + 2
ak+2(2k + 5 + 2r)2 + ak(−2k − 2r + 7) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(2k+2r−7)

(2k+5+2r)2

• Recursion relation for r = −1
2 ; series terminates at k = 4

ak+2 = ak(2k−8)
(2k+4)2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = ak(2k−8)
(2k+4)2 , a1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.143 (sec)
Leaf size : 24� �
dsolve(4*x^2*diff(diff(y(x),x),x)+2*x*(-x^2+4)*diff(y(x),x)+(7*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = (x4 − 16x2 + 32) (c1 + 2c2)

32
√
x

Mathematica DSolve solution

Solving time : 0.189 (sec)
Leaf size : 68� �
DSolve[{4*x^2*D[y[x],{x,2}]+2*x*(4-x^2)*D[y[x],x]+(1+7*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c2(x4 − 16x2 + 32)ExpIntegralEi

(
x2

4

)
− 4c2e

x2
4 (x2 − 12) + 2048c1(x4 − 16x2 + 32)

2048
√
x
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2.1.576 problem 592

Solved as second order ode using Kovacic algorithm . . . . . . . . .3873
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3877
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3878
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3879
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3879

Internal problem ID [9424]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 592
Date solved : Thursday, December 12, 2024 at 10:12:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 8x2y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.192 (sec)

Writing the ode as (
4x3 + 4x2) y′′ + 8x2y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 8x2 (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)



chapter 2. book solved problems 3874

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1097: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x2

4x3+4x2 dx

= z1e
− ln(1+x)

= z1

(
1

1 + x

)

Which simplifies to

y1 =
√
x

1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x2

4x3+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln(1+x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

1 + x

)
+ c2

( √
x

1 + x
(ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 8x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
4x2 −

2
(

d
dx

y(x)
)

x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x+1 + y(x)
4x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
x+1 , P3(x) = 1

4x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 8x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (8u2 − 16u+ 8)

(
d
du
y(u)

)
+ uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert u · y(u) to series expansion

u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(1 + r)u−1+r + (4a1(1 + r) (2 + r)− 8a0r(1 + r))ur +
(

∞∑
k=1

(
4ak+1(k + r + 1) (k + 2 + r)− 8ak(k + r) (k + r + 1) + ak−1(2k − 1 + 2r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
4a1(1 + r) (2 + r)− 8a0r(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(2k − 1 + 2r)2 − 8(k + r + 1)

((
−k

2 −
r
2 − 1

)
ak+1 + ak(k + r)

)
= 0

• Shift index using k− >k + 1
ak(2k + 2r + 1)2 − 8(k + 2 + r)

((
−k

2 −
3
2 −

r
2

)
ak+2 + ak+1(k + r + 1)

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+4kak−24kak+1+4rak−24rak+1+ak−16ak+1

4(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+1)(k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+1)(k+2) , 0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak
4(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1
4(k+2)(k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1

4(k+2)(k+3) , 8a1 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1
4(k+2)(k+3) , 8a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+1)(k+2) , 0 = 0, bk+2 = −4k2bk−8k2bk+1+4kbk−24kbk+1+bk−16bk+1
4(k+2)(k+3) , 8b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 19� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+8*diff(y(x),x)*x^2+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

√
x (c2 ln (x) + c1)

x+ 1

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 24� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+8*x^2*D[y[x],x]+(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2 log(x) + c1)

x+ 1
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2.1.577 problem 593

Solved as second order ode using Kovacic algorithm . . . . . . . . .3880
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3884
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3885
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3886
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3886

Internal problem ID [9425]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 593
Date solved : Thursday, December 12, 2024 at 10:12:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(3 + x) y′′ + 3x(3 + 7x) y′ + (3 + 4x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.248 (sec)

Writing the ode as (
9x3 + 27x2) y′′ + (21x2 + 9x

)
y′ + (3 + 4x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x3 + 27x2

B = 21x2 + 9x (3)
C = 3 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1099: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
21x2+9x
9x3+27x2 dx

= z1e
− ln(x)

6 −ln(3+x)

= z1

(
1

x1/6 (3 + x)

)

Which simplifies to

y1 =
x1/3

3 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 21x2+9x

9x3+27x2 dx

(y1)2
dx

= y1

∫
e−

ln(x)
3 −2 ln(3+x)

(y1)2
dx

= y1

(
ln (x) + x2

9 + 3x + 2x
3 + x

+ 3
3 + x

− 2 ln (3 + x)x
3 − 2 ln (3 + x)

+ 2 ln (3 + x) (3 + x)
3 − x

3 − 2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

3 + x

)
+c2

(
x1/3

3 + x

(
ln (x)+ x2

9 + 3x+
2x

3 + x
+ 3
3 + x

− 2 ln (3 + x)x
3 −2 ln (3+x)+2 ln (3 + x) (3 + x)

3 −x

3−2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2(x+ 3)
(

d2

dx2y(x)
)
+ 3x(7x+ 3)

(
d
dx
y(x)

)
+ (3 + 4x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3+4x)y(x)
9x2(x+3) −

(7x+3)
(

d
dx

y(x)
)

3x(x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(7x+3)

(
d
dx

y(x)
)

3x(x+3) + (3+4x)y(x)
9x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x+3
3x(x+3) , P3(x) = 3+4x

9x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 2

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators

9x2(x+ 3)
(

d2

dx2y(x)
)
+ 3x(7x+ 3)

(
d
dx
y(x)

)
+ (3 + 4x) y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(9u3 − 54u2 + 81u)
(

d2

du2y(u)
)
+ (21u2 − 117u+ 162)

(
d
du
y(u)

)
+ (−9 + 4u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m



chapter 2. book solved problems 3885

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

81a0r(1 + r)u−1+r + (81a1(1 + r) (2 + r)− 9a0(1 + r) (1 + 6r))ur +
(

∞∑
k=1

(
81ak+1(k + r + 1) (k + 2 + r)− 9ak(k + r + 1) (6k + 6r + 1) + ak−1(3k − 1 + 3r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
81r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
81a1(1 + r) (2 + r)− 9a0(1 + r) (1 + 6r) = 0

• Each term in the series must be 0, giving the recursion relation
81ak+1(k + r + 1) (k + 2 + r)− 54

(
k + r + 1

6

)
(k + r + 1) ak + ak−1(3k − 1 + 3r)2 = 0

• Shift index using k− >k + 1
81ak+2(k + 2 + r) (k + 3 + r)− 54

(
k + 7

6 + r
)
(k + 2 + r) ak+1 + ak(3k + 3r + 2)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −9k2ak−54k2ak+1+18krak−108krak+1+9r2ak−54r2ak+1+12kak−171kak+1+12rak−171rak+1+4ak−126ak+1

81(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2) , 0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k−1 , ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1
81(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1
81(k+2)(k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1

81(k+2)(k+3) , 162a1 − 9a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k , ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1
81(k+2)(k+3) , 162a1 − 9a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 3)k−1
)
+
(

∞∑
k=0

bk(x+ 3)k
)
, ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2) , 0 = 0, bk+2 = −9k2bk−54k2bk+1+12kbk−171kbk+1+4bk−126bk+1
81(k+2)(k+3) , 162b1 − 9b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.044 (sec)
Leaf size : 19� �
dsolve(9*x^2*(x+3)*diff(diff(y(x),x),x)+3*x*(3+7*x)*diff(y(x),x)+(4*x+3)*y(x) = 0,

y(x),singsol=all)� �
y = x1/3(c2 ln (x) + c1)

x+ 3

Mathematica DSolve solution

Solving time : 0.059 (sec)
Leaf size : 24� �
DSolve[{9*x^2*(3+x)*D[y[x],{x,2}]+3*x*(3+7*x)*D[y[x],x]+(3+4*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x(c2 log(x) + c1)

x+ 3
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2.1.578 problem 594

Solved as second order ode using Kovacic algorithm . . . . . . . . .3887
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3891
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3892
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3892
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3893

Internal problem ID [9426]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 594
Date solved : Thursday, December 12, 2024 at 10:12:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 2
)
y′′ − x

(
3x2 + 2

)
y′ +

(
−x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.202 (sec)

Writing the ode as(
−x4 + 2x2) y′′ + (−3x3 − 2x

)
y′ +

(
−x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + 2x2

B = −3x3 − 2x (3)
C = −x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1101: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3−2x
−x4+2x2 dx

= z1e
ln(x)

2 −ln
(
x2−2

)

= z1

( √
x

x2 − 2

)

Which simplifies to

y1 =
x

x2 − 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3−2x

−x4+2x2 dx

(y1)2
dx

= y1

∫
eln(x)−2 ln

(
x2−2

)
(y1)2

dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

x2 − 2

)
+ c2

(
x

x2 − 2(ln (x))
)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−x2 + 2)
(

d2

dx2y(x)
)
− x(3x2 + 2)

(
d
dx
y(x)

)
+ (−x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x2 −

(
3x2+2

)(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
3x2+2

)(
d
dx

y(x)
)

x(x2−2) + y(x)
x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x2+2
x(x2−2) , P3(x) = 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2)
(

d2

dx2y(x)
)
+ x(3x2 + 2)

(
d
dx
y(x)

)
+ (x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0(−1 + r)2 xr − 2a1r2x1+r +
(

∞∑
k=2

(
−2ak(k + r − 1)2 + ak−2(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a1r2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2
(
ak − ak−2

2

)
(k + r − 1)2 = 0

• Shift index using k− >k + 2
−2
(
ak+2 − ak

2

)
(k + r + 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

2

• Recursion relation for r = 1
ak+2 = ak

2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = ak

2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 19� �
dsolve(x^2*(-x^2+2)*diff(diff(y(x),x),x)-x*(3*x^2+2)*diff(y(x),x)+(-x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c1)

x2 − 2
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Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 23� �
DSolve[{x^2*(2-x^2)*D[y[x],{x,2}]-x*(2+3*x^2)*D[y[x],x]+(2-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −x(c2 log(x) + c1)

x2 − 2
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2.1.579 problem 595

Solved as second order ode using Kovacic algorithm . . . . . . . . .3894
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3898
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3899
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3899
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3900

Internal problem ID [9427]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 595
Date solved : Thursday, December 12, 2024 at 10:12:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

16x2(x2 + 1
)
y′′ + 8x

(
9x2 + 1

)
y′ +

(
49x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.257 (sec)

Writing the ode as(
16x4 + 16x2) y′′ + (72x3 + 8x

)
y′ +

(
49x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x4 + 16x2

B = 72x3 + 8x (3)
C = 49x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1103: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
72x3+8x

16x4+16x2 dx

= z1e
− ln(x)

4 −ln
(
x2+1

)

= z1

(
1

x1/4 (x2 + 1)

)

Which simplifies to

y1 =
x1/4

x2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 72x3+8x

16x4+16x2 dx

(y1)2
dx

= y1

∫
e−

ln(x)
2 −2 ln

(
x2+1

)
(y1)2

dx

= y1

(
x4

2x2 + 2 + x2

x2 + 1 + 1
2x2 + 2 − ln

(
x2 + 1

)
x2 − ln

(
x2 + 1

)
+ ln (x)

+ ln
(
x2 + 1

) (
x2 + 1

)
− x2

2 − 1
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4

x2 + 1

)
+c2

(
x1/4

x2 + 1

(
x4

2x2 + 2+
x2

x2 + 1+
1

2x2 + 2−ln
(
x2+1

)
x2−ln

(
x2+1

)
+ln (x)+ln

(
x2+1

) (
x2+1

)
−x2

2 −1
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

16x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x(9x2 + 1)

(
d
dx
y(x)

)
+ (49x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
49x2+1

)
y(x)

16x2(x2+1) −
(
9x2+1

)(
d
dx

y(x)
)

2x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
9x2+1

)(
d
dx

y(x)
)

2x(x2+1) +
(
49x2+1

)
y(x)

16x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 9x2+1

2x(x2+1) , P3(x) = 49x2+1
16x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x(9x2 + 1)

(
d
dx
y(x)

)
+ (49x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 4r)2 xr + a1(3 + 4r)2 x1+r +
(

∞∑
k=2

(
ak(4k + 4r − 1)2 + ak−2(4k + 4r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

4

• Each term must be 0
a1(3 + 4r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(4k + 4r − 1)2 (ak + ak−2) = 0

• Shift index using k− >k + 2
(4k + 4r + 7)2 (ak+2 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak

• Recursion relation for r = 1
4

ak+2 = −ak

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −ak, a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.063 (sec)
Leaf size : 21� �
dsolve(16*x^2*(x^2+1)*diff(diff(y(x),x),x)+8*x*(9*x^2+1)*diff(y(x),x)+(49*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x1/4(c2 ln (x) + c1)

x2 + 1
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Mathematica DSolve solution

Solving time : 0.065 (sec)
Leaf size : 26� �
DSolve[{16*x^2*(1+x^2)*D[y[x],{x,2}]+8*x*(1+9*x^2)*D[y[x],x]+(1+49*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x(c2 log(x) + c1)

x2 + 1
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2.1.580 problem 596

Solved as second order ode using Kovacic algorithm . . . . . . . . .3901
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3905
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3906
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3906
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3906

Internal problem ID [9428]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 596
Date solved : Thursday, December 12, 2024 at 10:12:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(4 + 3x) y′′ − x(4− 3x) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.200 (sec)

Writing the ode as (
3x3 + 4x2) y′′ + (3x2 − 4x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x3 + 4x2

B = 3x2 − 4x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1105: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2−4x
3x3+4x2 dx

= z1e
ln(x)

2 −ln(4+3x)

= z1

( √
x

4 + 3x

)

Which simplifies to

y1 =
x

4 + 3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2−4x

3x3+4x2 dx

(y1)2
dx

= y1

∫
eln(x)−2 ln(4+3x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

4 + 3x

)
+ c2

(
x

4 + 3x(ln (x))
)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(3x+ 4)
(

d2

dx2y(x)
)
− x(4− 3x)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 4y(x)
x2(3x+4) −

(3x−4)
(

d
dx

y(x)
)

x(3x+4)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x−4)

(
d
dx

y(x)
)

x(3x+4) + 4y(x)
x2(3x+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−4
x(3x+4) , P3(x) = 4

x2(3x+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(3x+ 4)
(

d2

dx2y(x)
)
+ x(3x− 4)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

4a0(−1 + r)2 xr +
(

∞∑
k=1

(
4ak(k + r − 1)2 + 3ak−1(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 1
• Each term in the series must be 0, giving the recursion relation

(k + r − 1)2 (4ak + 3ak−1) = 0
• Shift index using k− >k + 1

(k + r)2 (4ak+1 + 3ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = −3ak
4

• Recursion relation for r = 1
ak+1 = −3ak

4

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = −3ak

4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 19� �
dsolve(x^2*(3*x+4)*diff(diff(y(x),x),x)-x*(4-3*x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c1)

3x+ 4

Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 22� �
DSolve[{x^2*(4+3*x)*D[y[x],{x,2}]-x*(4-3*x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2 log(x) + c1)

3x+ 4
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2.1.581 problem 597

Solved as second order ode using Kovacic algorithm . . . . . . . . .3907
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3911
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3912
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3912
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3913

Internal problem ID [9429]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 597
Date solved : Thursday, December 12, 2024 at 10:12:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 3x+ 1
)
y′′ + 8x2(3 + 2x) y′ +

(
9x2 + 3x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.198 (sec)

Writing the ode as(
4x4 + 12x3 + 4x2) y′′ + (16x3 + 24x2) y′ + (9x2 + 3x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 12x3 + 4x2

B = 16x3 + 24x2 (3)
C = 9x2 + 3x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1107: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
16x3+24x2

4x4+12x3+4x2 dx

= z1e
− ln

(
x2+3x+1

)

= z1

(
1

x2 + 3x+ 1

)

Which simplifies to

y1 =
√
x

x2 + 3x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 16x3+24x2

4x4+12x3+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2+3x+1

)
(y1)2

dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

x2 + 3x+ 1

)
+ c2

( √
x

x2 + 3x+ 1(ln (x))
)

Will add steps showing solving for IC soon.



chapter 2. book solved problems 3911

Maple step by step solution

Let’s solve

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
+ 8x2(2x+ 3)

(
d
dx
y(x)

)
+ (9x2 + 3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
9x2+3x+1

)
y(x)

4x2(x2+3x+1) −
2(2x+3)

(
d
dx

y(x)
)

x2+3x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2(2x+3)

(
d
dx

y(x)
)

x2+3x+1 +
(
9x2+3x+1

)
y(x)

4x2(x2+3x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2(2x+3)

x2+3x+1 , P3(x) = 9x2+3x+1
4x2(x2+3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 3x+ 1)
(

d2

dx2y(x)
)
+ 8x2(2x+ 3)

(
d
dx
y(x)

)
+ (9x2 + 3x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 2..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 2r)2 xr +
(
a1(1 + 2r)2 + 3a0(1 + 2r)2

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r − 1)2 + 3ak−1(2k + 2r − 1)2 + ak−2(2k + 2r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 + 3a0(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −3a0

• Each term in the series must be 0, giving the recursion relation
(2k + 2r − 1)2 (ak + 3ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(2k + 2r + 3)2 (ak+2 + 3ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3ak+1 − ak

• Recursion relation for r = 1
2

ak+2 = −3ak+1 − ak

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.060 (sec)
Leaf size : 24� �
dsolve(4*x^2*(x^2+3*x+1)*diff(diff(y(x),x),x)+8*x^2*(2*x+3)*diff(y(x),x)+(9*x^2+3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y =

√
x (c2 ln (x) + c1)
x2 + 3x+ 1
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Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 29� �
DSolve[{4*x^2*(1+3*x+x^2)*D[y[x],{x,2}]+8*x^2*(3+2*x)*D[y[x],x]+(1+3*x+9*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2 log(x) + c1)
x2 + 3x+ 1
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2.1.582 problem 598

Solved as second order ode using Kovacic algorithm . . . . . . . . .3914
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3918
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3919
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3919
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3920

Internal problem ID [9430]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 598
Date solved : Thursday, December 12, 2024 at 10:12:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− x)2 y′′ − x
(
−3x2 + 2x+ 1

)
y′ +

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.204 (sec)

Writing the ode as

x2(−1 + x)2 y′′ +
(
3x3 − 2x2 − x

)
y′ +

(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(−1 + x)2

B = 3x3 − 2x2 − x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1109: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x3−2x2−x

x2(−1+x)2
dx

= z1e
ln(x)

2 −2 ln(−1+x)

= z1

( √
x

(−1 + x)2
)

Which simplifies to

y1 =
x

(−1 + x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x3−2x2−x

x2(−1+x)2
dx

(y1)2
dx

= y1

∫
eln(x)−4 ln(−1+x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(−1 + x)2
)
+ c2

(
x

(−1 + x)2
(ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(1− x)2
(

d2

dx2y(x)
)
− x(−3x2 + 2x+ 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+1

)
y(x)

x2(x−1)2 −
(

d
dx

y(x)
)
(3x+1)

x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
(3x+1)

x(x−1) +
(
x2+1

)
y(x)

x2(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x+1
x(x−1) , P3(x) = x2+1

x2(x−1)2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 1)2
(

d2

dx2y(x)
)
+ x(x− 1) (3x+ 1)

(
d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r
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Rewrite ODE with series expansions

a0(−1 + r)2 xr + (−2a0r2 + a1r
2)x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 − 2ak−1(k + r − 1)2 + ak−2(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a0r2 + a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 2a0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1)2 (ak − 2ak−1 + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1)2 (ak+2 − 2ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = 2ak+1 − ak
• Recursion relation for r = 1

ak+2 = 2ak+1 − ak
• Solution for r = 1[

y(x) =
∞∑
k=0

akx
k+1, ak+2 = 2ak+1 − ak, a1 = 2a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x^2*(1-x)^2*diff(diff(y(x),x),x)-x*(-3*x^2+2*x+1)*diff(y(x),x)+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c1)

(x− 1)2
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Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 20� �
DSolve[{x^2*(1-x)^2*D[y[x],{x,2}]-x*(1+2*x-3*x^2)*D[y[x],x]+(1+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2 log(x) + c1)

(x− 1)2
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2.1.583 problem 599

Solved as second order ode using Kovacic algorithm . . . . . . . . .3921
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3925
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3926
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3926
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3927

Internal problem ID [9431]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 599
Date solved : Thursday, December 12, 2024 at 10:12:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

9x2(x2 + x+ 1
)
y′′ + 3x

(
13x2 + 7x+ 1

)
y′ +

(
25x2 + 4x+ 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.310 (sec)

Writing the ode as(
9x4 + 9x3 + 9x2) y′′ + (39x3 + 21x2 + 3x

)
y′ +

(
25x2 + 4x+ 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9x4 + 9x3 + 9x2

B = 39x3 + 21x2 + 3x (3)
C = 25x2 + 4x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1111: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
39x3+21x2+3x
9x4+9x3+9x2 dx

= z1e
− ln(x)

6 −ln
(
x2+x+1

)

= z1

(
1

x1/6 (x2 + x+ 1)

)

Which simplifies to

y1 =
x1/3

x2 + x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 39x3+21x2+3x

9x4+9x3+9x2 dx

(y1)2
dx

= y1

∫
e−

ln(x)
3 −2 ln

(
x2+x+1

)
(y1)2

dx

= y1

(
2x− 19

24 + (x− 1)2 − x5

3 (x2 + x+ 1) −
x4

3 (x2 + x+ 1) −
x3

3 (x2 + x+ 1)

+ x2

3x2 + 3x+ 3 + x

3x2 + 3x+ 3 + 1
3x2 + 3x+ 3 + x3

3 − x2 + ln (x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/3

x2 + x+ 1

)
+c2

(
x1/3

x2 + x+ 1

(
2x− 19

24+(x−1)2− x5

3 (x2 + x+ 1)−
x4

3 (x2 + x+ 1)−
x3

3 (x2 + x+ 1)+
x2

3x2 + 3x+ 3+
x

3x2 + 3x+ 3+
1

3x2 + 3x+ 3+
x3

3 −x2+ln (x)
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

9x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 7x+ 1)

(
d
dx
y(x)

)
+ (25x2 + 4x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
25x2+4x+1

)
y(x)

9x2(x2+x+1) −
(
13x2+7x+1

)(
d
dx

y(x)
)

3x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2+7x+1

)(
d
dx

y(x)
)

3x(x2+x+1) +
(
25x2+4x+1

)
y(x)

9x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 13x2+7x+1

3x(x2+x+1) , P3(x) = 25x2+4x+1
9x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

9x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ 3x(13x2 + 7x+ 1)

(
d
dx
y(x)

)
+ (25x2 + 4x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + 3r)2 xr +
(
a1(2 + 3r)2 + a0(2 + 3r)2

)
x1+r +

(
∞∑
k=2

(
ak(3k + 3r − 1)2 + ak−1(3k + 3r − 1)2 + ak−2(3k + 3r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 + a0(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −a0

• Each term in the series must be 0, giving the recursion relation
(3k + 3r − 1)2 (ak + ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(3k + 3r + 5)2 (ak+2 + ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak+1 − ak

• Recursion relation for r = 1
3

ak+2 = −ak+1 − ak

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak+1 − ak, a1 = −a0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 22� �
dsolve(9*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+3*x*(13*x^2+7*x+1)*diff(y(x),x)+(25*x^2+4*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = x1/3(c2 ln (x) + c1)

x2 + x+ 1
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Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 27� �
DSolve[{9*x^2*(1+x+x^2)*D[y[x],{x,2}]+3*x*(1+7*x+13*x^2)*D[y[x],x]+(1+4*x+25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

3
√
x(c2 log(x) + c1)
x2 + x+ 1
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2.1.584 problem 600

Solved as second order ode using Kovacic algorithm . . . . . . . . .3928
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3932
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3934
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3934
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3934

Internal problem ID [9432]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 600
Date solved : Thursday, December 12, 2024 at 10:12:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ − x(4− 7x) y′ − (5− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + (7x2 − 4x

)
y′ + (3x− 5) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = 7x2 − 4x (3)
C = 3x− 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 32x+ 128
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 32x+ 128

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 32x+ 128

16 (x2 + 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1113: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 45
16 (2 + x)2

+ 2
x2 − 5

2x + 5
2 (2 + x)

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 32x+ 128

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 32x+ 128
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 9
4 −5

4

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 5
4 (2 + x) +

2
x
+ (0)

= − 5
4 (2 + x) +

2
x

= 3x+ 16
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
4 (2 + x) +

2
x

)
(0) +

((
5

4 (2 + x)2
− 2

x2

)
+
(
− 5
4 (2 + x) +

2
x

)2

−
(
−3x2 − 32x+ 128

16 (x2 + 2x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 5
4(2+x)+

2
x

)
dx

= x2

(2 + x)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x2−4x
2x3+4x2 dx

= z1e
ln(x)

2 − 9 ln(2+x)
4

= z1

( √
x

(2 + x)9/4

)

Which simplifies to

y1 =
x5/2

(2 + x)7/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x2−4x

2x3+4x2 dx

(y1)2
dx

= y1

∫
eln(x)−

9 ln(2+x)
2

(y1)2
dx

= y1

−11(2+x)5/2
8 + 10(2+x)3/2

3 − 5
√
2+x
2

x3 −
5
√
2 arctanh

(√
2+x

√
2

2

)
16


Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x5/2

(2 + x)7/2

)

+ c2

 x5/2

(2 + x)7/2

−11(2+x)5/2
8 + 10(2+x)3/2

3 − 5
√
2+x
2

x3 −
5
√
2 arctanh

(√
2+x

√
2

2

)
16



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
− x(4− 7x)

(
d
dx
y(x)

)
− (5− 3x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−5)y(x)
2(x+2)x2 −

(−4+7x)
(

d
dx

y(x)
)

2x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−4+7x)

(
d
dx

y(x)
)

2x(x+2) + (3x−5)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −4+7x
2x(x+2) , P3(x) = 3x−5

2(x+2)x2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 9
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ x(−4 + 7x)

(
d
dx
y(x)

)
+ (3x− 5) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (7u2 − 32u+ 36)

(
d
du
y(u)

)
+ (3u− 11) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(7 + 2r)u−1+r + (4a1(1 + r) (9 + 2r)− a0(8r2 + 24r + 11))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 9 + 2r)− ak(8k2 + 16kr + 8r2 + 24k + 24r + 11) + ak−1(2k + 1 + 2r) (k + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

2

}
• Each term must be 0

4a1(1 + r) (9 + 2r)− a0(8r2 + 24r + 11) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 24ak + ak−1 + 44ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−24ak + ak−1 + 44ak+1) r − 11ak + 36ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 24ak+1 + ak + 44ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−24ak+1 + ak + 44ak+2) r − 11ak+1 + 36ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+5kak−40kak+1+5rak−40rak+1+3ak−43ak+1
4(2k2+4kr+2r2+15k+15r+22)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22) , 36a1 − 11a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1
4(2k2+15k+22) , 36a1 − 11a0 = 0

]
• Recursion relation for r = −7

2

ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1
4(2k2+k−6)

• Solution for r = −7
2[

y(u) =
∞∑
k=0

aku
k− 7

2 , ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1
4(2k2+k−6) ,−20a1 − 25a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k−
7
2 , ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1

4(2k2+k−6) ,−20a1 − 25a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k−
7
2

)
, ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22) , 36a1 − 11a0 = 0, bk+2 = −2k2bk−8k2bk+1−9kbk+16kbk+1+10bk−bk+1
4(2k2+k−6) ,−20b1 − 25b0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 55� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)-x*(4-7*x)*diff(y(x),x)-(5-3*x)*y(x) = 0,

y(x),singsol=all)� �
y =

15 arctanh
(√

2
√
x+2

2

)
c2x

3 + 33c2
√
2
(
x2 + 52

33x+ 32
33

)√
x+ 2 + c1x

3

(x+ 2)7/2
√
x

Mathematica DSolve solution

Solving time : 0.16 (sec)
Leaf size : 92� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}]-x*(4-7*x)*D[y[x],x]-(5-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ −
15
√
2c2x3arctanh

(√
x+2√
2

)
− 48c1x3 + 66c2

√
x+ 2x2 + 104c2

√
x+ 2x+ 64c2

√
x+ 2

48
√
x(x+ 2)7/2
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2.1.585 problem 601

Solved as second order ode using Kovacic algorithm . . . . . . . . .3935
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3939
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3941
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3941
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3941

Internal problem ID [9433]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 601
Date solved : Thursday, December 12, 2024 at 10:12:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 2x) y′′ + x(8− 9x) y′ + (6− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.257 (sec)

Writing the ode as (
−2x3 + x2) y′′ + (−9x2 + 8x

)
y′ + (6− 3x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + x2

B = −9x2 + 8x (3)
C = 6− 3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x2 − 20x+ 24
4 (2x2 − x)2

(6)

Comparing the above to (5) shows that

s = 21x2 − 20x+ 24

t = 4
(
2x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x2 − 20x+ 24
4 (2x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1115: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
x2 + 19

x
+ 77

16
(
x− 1

2

)2 − 19
x− 1

2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = 1
2 let b be the coefficient of 1(

x− 1
2
)2 in the partial fractions decomposition

of r given above. Therefore b = 77
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

4
α−
c = 1

2 −
√
1 + 4b = −7

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x2 − 20x+ 24

4 (2x2 − x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x2 − 20x+ 24
4 (2x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2
1
2 2 0 11

4 −7
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

4 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 7

4 −
(
3
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= −2
x
+ 11

4
(
x− 1

2

) + (0)

= −2
x
+ 11

4
(
x− 1

2

)
= 4 + 3x

4x2 − 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−2
x
+ 11

4
(
x− 1

2

)) (1) +

( 2
x2 − 11

4
(
x− 1

2

)2
)

+
(
−2
x
+ 11

4
(
x− 1

2

))2

−
(
21x2 − 20x+ 24
4 (2x2 − x)2

) = 0

4− 3a0
x (−1 + 2x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

4
3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 4

3

)
e
∫ (

− 2
x
+ 11

4
(
x− 1

2
)
)
dx

=
(
x+ 4

3

)
e−2 ln(x)+ 11 ln(−1+2x)

4

=
(
x+ 4

3

)
(−1 + 2x)11/4

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−9x2+8x
−2x3+x2 dx

= z1e
−4 ln(x)+ 7 ln(−1+2x)

4

= z1

(
(−1 + 2x)7/4

x4

)

Which simplifies to

y1 =
(−1 + 2x)9/2 (4 + 3x)

3x6

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−9x2+8x

−2x3+x2 dx

(y1)2
dx

= y1

∫
e−8 ln(x)+ 7 ln(−1+2x)

2

(y1)2
dx

= y1

(
−(231x3 − 198x2 + 66x− 8)x8e−8 ln(x)+ 7 ln(−1+2x)

2

385 (4 + 3x) (−1 + 2x)8

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−1 + 2x)9/2 (4 + 3x)

3x6

)

+ c2

(
(−1 + 2x)9/2 (4 + 3x)

3x6

(
−(231x3 − 198x2 + 66x− 8)x8e−8 ln(x)+ 7 ln(−1+2x)

2

385 (4 + 3x) (−1 + 2x)8

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−2x+ 1)
(

d2

dx2y(x)
)
+ x(8− 9x)

(
d
dx
y(x)

)
+ (6− 3x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3(x−2)y(x)
x2(2x−1) −

(−8+9x)
(

d
dx

y(x)
)

x(2x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−8+9x)

(
d
dx

y(x)
)

x(2x−1) + 3(x−2)y(x)
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −8+9x
x(2x−1) , P3(x) = 3(x−2)

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 8

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x− 1)
(

d2

dx2y(x)
)
+ x(−8 + 9x)

(
d
dx
y(x)

)
+ (3x− 6) y(x) = 0

• Assume series solution for y(x)
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y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(6 + r) (1 + r)xr +
(

∞∑
k=1

(−ak(k + r + 6) (k + r + 1) + ak−1(k + 2 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(6 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−6,−1}

• Each term in the series must be 0, giving the recursion relation
2(k + 2 + r)

(
k + r − 1

2

)
ak−1 − ak(k + r + 6) (k + r + 1) = 0

• Shift index using k− >k + 1
2(k + r + 3)

(
k + 1

2 + r
)
ak − ak+1(k + 7 + r) (k + 2 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r+3)(2k+2r+1)ak

(k+7+r)(k+2+r)

• Recursion relation for r = −6 ; series terminates at k = 3
ak+1 = (k−3)(2k−11)ak

(k+1)(k−4)

• Apply recursion relation for k = 0
a1 = −33a0

4

• Apply recursion relation for k = 1
a2 = −3a1

• Express in terms of a0
a2 = 99a0

4

• Apply recursion relation for k = 2
a3 = −7a2

6

• Express in terms of a0
a3 = −231a0

8

• Terminating series solution of the ODE for r = −6 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
−231

8 x3 + 99
4 x

2 − 33
4 x+ 1

)
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• Recursion relation for r = −1
ak+1 = (k+2)(2k−1)ak

(k+6)(k+1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = (k+2)(2k−1)ak

(k+6)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
−231

8 x3 + 99
4 x

2 − 33
4 x+ 1

)
+
(

∞∑
k=0

bkx
k−1
)
, bk+1 = (k+2)(2k−1)bk

(k+6)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 43� �
dsolve(x^2*(1-2*x)*diff(diff(y(x),x),x)+x*(8-9*x)*diff(y(x),x)+(6-3*x)*y(x) = 0,

y(x),singsol=all)� �
y =

48c1
(
x− 1

2

)4 (
x+ 4

3

)√
2x− 1 + 231c2

(
x3 − 6

7x
2 + 2

7x− 8
231

)
x6

Mathematica DSolve solution

Solving time : 0.173 (sec)
Leaf size : 49� �
DSolve[{x^2*(1-2*x)*D[y[x],{x,2}]+x*(8-9*x)*D[y[x],x]+(6-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(231x3 − 198x2 + 66x− 8) + 385c1(3x+ 4)(1− 2x)9/2

1155x6
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2.1.586 problem 602

Solved as second order ode using Kovacic algorithm . . . . . . . . .3942
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3946
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3948
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3948
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3948

Internal problem ID [9434]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 602
Date solved : Thursday, December 12, 2024 at 10:12:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ + x

(
10x2 + 3

)
y′ −

(
−14x2 + 15

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as (
x4 + x2) y′′ + (10x3 + 3x

)
y′ +

(
14x2 − 15

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 10x3 + 3x (3)
C = 14x2 − 15

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 24x4 + 66x2 + 63
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 24x4 + 66x2 + 63

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
24x4 + 66x2 + 63

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1117: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 63
4x2 + 21

16 (x− i)2
+ 21

16 (x+ i)2
+ 99i

16 (x− i) −
99i

16 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 63
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

2
α−
c = 1

2 −
√
1 + 4b = −7

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 24x4 + 66x2 + 63

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 24x4 + 66x2 + 63
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 9
2 −7

2

i 2 0 7
4 −3

4

−i 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 3− (3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 9
2x − 3

4 (x− i) −
3

4 (x+ i) + (0)

= 9
2x − 3

4 (x− i) −
3

4 (x+ i)

= 9
2x − 3x

2x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

9
2x − 3

4 (x− i) −
3

4 (x+ i)

)
(0) +

((
− 9
2x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
)
+
(

9
2x − 3

4 (x− i) −
3

4 (x+ i)

)2

−
(
24x4 + 66x2 + 63

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 9

2x−
3

4(x−i)−
3

4(x+i)

)
dx

= x9/2

(x2 + 1)3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
10x3+3x
x4+x2 dx

= z1e
− 3 ln(x)

2 −
7 ln

(
x2+1

)
4

= z1

(
1

x3/2 (x2 + 1)7/4

)

Which simplifies to

y1 =
x3

(x2 + 1)5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 10x3+3x

x4+x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)−

7 ln
(
x2+1

)
2

(y1)2
dx

= y1

−(x2 + 1)5/2

8x8 + (x2 + 1)5/2

16x6 − (x2 + 1)5/2

64x4 − (x2 + 1)5/2

128x2 + (x2 + 1)3/2

128 + 3
√
x2 + 1
128

−
3 arctanh

(
1√

x2+1

)
128


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3

(x2 + 1)5/2

)

+c2

 x3

(x2 + 1)5/2

−(x2 + 1)5/2

8x8 +(x2 + 1)5/2

16x6 − (x2 + 1)5/2

64x4 − (x2 + 1)5/2

128x2 +(x2 + 1)3/2

128 +3
√
x2 + 1
128 −

3 arctanh
(

1√
x2+1

)
128



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(10x2 + 3)

(
d
dx
y(x)

)
− (−14x2 + 15) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
14x2−15

)
y(x)

x2(x2+1) −
(
10x2+3

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
10x2+3

)(
d
dx

y(x)
)

x(x2+1) +
(
14x2−15

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 10x2+3

x(x2+1) , P3(x) = 14x2−15
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −15

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(10x2 + 3)

(
d
dx
y(x)

)
+ (14x2 − 15) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(5 + r) (−3 + r)xr + a1(6 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 5) (k + r − 3) + ak−2(k + r + 5) (k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−5, 3}

• Each term must be 0
a1(6 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 5) (ak(k + r − 3) + ak−2(k + r)) = 0

• Shift index using k− >k + 2
(k + r + 7) (ak+2(k + r − 1) + ak(k + r + 2)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)

k+r−1

• Recursion relation for r = −5
ak+2 = −ak(k−3)

k−6

• Series not valid for r = −5 , division by 0 in the recursion relation at k = 6
ak+2 = −ak(k−3)

k−6

• Recursion relation for r = 3
ak+2 = −ak(k+5)

k+2

• Solution for r = 3
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[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = −ak(k+5)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.057 (sec)
Leaf size : 59� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(10*x^2+3)*diff(y(x),x)-(-14*x^2+15)*y(x) = 0,

y(x),singsol=all)� �
y =

arctanh
(

1√
x2+1

)
c2x

8 − c2(x2 + 2)
(
x4 − 8

3x
2 − 8

3

)√
x2 + 1 + c1x

8

(x2 + 1)5/2 x5

Mathematica DSolve solution

Solving time : 0.159 (sec)
Leaf size : 75� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]+x*(3+10*x^2)*D[y[x],x]-(15-14*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2
(√

x2 + 1(3x6 − 2x4 − 24x2 − 16)− 3x8arctanh
(√

x2 + 1
))

+ 128c1x8

128x5 (x2 + 1)5/2
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2.1.587 problem 603

Solved as second order ode using Kovacic algorithm . . . . . . . . .3949
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3953
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3955
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3955
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3955

Internal problem ID [9435]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 603
Date solved : Thursday, December 12, 2024 at 10:12:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−2x2 + 1
)
y′′ + x

(
−13x2 + 7

)
y′ − 14x2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.344 (sec)

Writing the ode as (
−2x4 + x2) y′′ + (−13x3 + 7x

)
y′ − 14x2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x4 + x2

B = −13x3 + 7x (3)
C = −14x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x4 − 68x2 + 35
4 (2x3 − x)2

(6)

Comparing the above to (5) shows that

s = 5x4 − 68x2 + 35

t = 4
(
2x3 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
5x4 − 68x2 + 35
4 (2x3 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1119: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x3 − x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2
2 of order

2. There is a pole at x = −
√
2
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4x2 + 9

64
(
x−

√
2
2

)2 + 9

64
(
x+

√
2
2

)2 − 279
√
2

64
(
x−

√
2
2

) + 279
√
2

64
(
x+

√
2
2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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For the pole at x =
√
2
2 let b be the coefficient of 1(

x−
√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
For the pole at x = −

√
2
2 let b be the coefficient of 1(

x+
√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x4 − 68x2 + 35

4 (2x3 − x)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x4 − 68x2 + 35
4 (2x3 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2
√
2
2 2 0 9

8 −1
8

−
√
2
2 2 0 9

8 −1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= −1

4 −
(
−1
4

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

) + (−) (0)

= − 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

)
= −x2 + 5

4x3 − 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

− 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

)
 (0) +


 5
2x2 − 9

8
(
x−

√
2
2

)2 − 9

8
(
x+

√
2
2

)2
+

− 5
2x + 9

8
(
x−

√
2
2

) + 9
8
(
x+

√
2
2

)
2

−
(
5x4 − 68x2 + 35
4 (2x3 − x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫− 5

2x+
9

8
(
x−

√
2
2

)+ 9

8
(
x+

√
2

2

)
dx

=
(
2x−

√
2
)9/8 (2x+

√
2
)9/8

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−13x3+7x
−2x4+x2 dx

= z1e
ln

(
2x2−1

)
8 − 7 ln(x)

2

= z1

(
(2x2 − 1)1/8

x7/2

)

Which simplifies to

y1 =
2(2x2 − 1)5/4 21/8

x6
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−13x3+7x

−2x4+x2 dx

(y1)2
dx

= y1

∫
e

ln
(
2x2−1

)
4 −7 ln(x)

(y1)2
dx

= y1

(5x4 − 20x2 + 8)x7e
ln

(
2x2−1

)
4 −7 ln(x)23/4

120 (2x2 − 1)3/2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
2(2x2 − 1)5/4 21/8

x6

)

+ c2

2(2x2 − 1)5/4 21/8
x6

(5x4 − 20x2 + 8)x7e
ln

(
2x2−1

)
4 −7 ln(x)23/4

120 (2x2 − 1)3/2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−2x2 + 1)
(

d2

dx2y(x)
)
+ x(−13x2 + 7)

(
d
dx
y(x)

)
− 14x2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −14y(x)
2x2−1 −

(
13x2−7

)(
d
dx

y(x)
)

x(2x2−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
13x2−7

)(
d
dx

y(x)
)

x(2x2−1) + 14y(x)
2x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 13x2−7
x(2x2−1) , P3(x) = 14

2x2−1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
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x0 = 0
• Multiply by denominators

x(2x2 − 1)
(

d2

dx2y(x)
)
+ (13x2 − 7)

(
d
dx
y(x)

)
+ 14xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(6 + r)x−1+r − a1(1 + r) (7 + r)xr +
(

∞∑
k=1

(−ak+1(k + r + 1) (k + 7 + r) + ak−1(2k + 5 + 2r) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−6, 0}

• Each term must be 0
−a1(1 + r) (7 + r) = 0

• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
((

k + r + 5
2

)
ak−1 − ak+1(k+7+r)

2

)
= 0

• Shift index using k− >k + 1

2(k + r + 2)
((

k + 7
2 + r

)
ak − ak+2(k+8+r)

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = (2k+2r+7)ak

k+8+r

• Recursion relation for r = −6
ak+2 = (2k−5)ak

k+2

• Solution for r = −6[
y(x) =

∞∑
k=0

akx
k−6, ak+2 = (2k−5)ak

k+2 , 5a1 = 0
]

• Recursion relation for r = 0
ak+2 = (2k+7)ak

k+8
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• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = (2k+7)ak

k+8 ,−7a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−6
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = (2k−5)ak

k+2 , 5a1 = 0, bk+2 = (2k+7)bk
k+8 ,−7b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 35� �
dsolve(x^2*(-2*x^2+1)*diff(diff(y(x),x),x)+x*(-13*x^2+7)*diff(y(x),x)-14*x^2*y(x) = 0,

y(x),singsol=all)� �
y = c1(2x2 − 1)5/4 + 5c2x4 − 20c2x2 + 8c2

x6

Mathematica DSolve solution

Solving time : 0.147 (sec)
Leaf size : 43� �
DSolve[{x^2*(1-2*x^2)*D[y[x],{x,2}]+x*(7-13*x^2)*D[y[x],x]-14*x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 15c1(1− 2x2)5/4 + c2(−5x4 + 20x2 − 8)

15x6
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2.1.588 problem 604

Solved as second order ode using Kovacic algorithm . . . . . . . . .3956
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3960
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3961
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3961
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3962

Internal problem ID [9436]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 604
Date solved : Thursday, December 12, 2024 at 10:12:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 4x(1 + 2x) y′ − (1 + 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.258 (sec)

Writing the ode as (
4x3 + 4x2) y′′ + (8x2 + 4x

)
y′ + (−3x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 8x2 + 4x (3)
C = −3x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x+ 4
4x (1 + x)2

(6)

Comparing the above to (5) shows that

s = 3x+ 4
t = 4x(1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

3x+ 4
4x (1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1121: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (1 + x)2

− 1
1 + x

+ 1
x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x+ 4

4x (1 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x+ 4
4x (1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
−1 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
+ 1

2 + 2x + (0)

= 1
x
+ 1

2 + 2x
= 1

x
+ 1

2 + 2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
+ 1

2 + 2x

)
(0) +

((
− 1
x2 − 1

2 (1 + x)2
)
+
(
1
x
+ 1

2 + 2x

)2

−
(

3x+ 4
4x (1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
+ 1

2+2x

)
dx

=
√
1 + xx

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x2+4x
4x3+4x2 dx

= z1e
− ln(x(1+x))

2

= z1

(
1√

x (1 + x)

)

Which simplifies to

y1 =
√
1 + xx√
x (1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x2+4x

4x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x(1+x))

(y1)2
dx

= y1

(
ln (1 + x)− 1

x
− ln (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

( √
1 + xx√
x (1 + x)

)
+ c2

( √
1 + xx√
x (1 + x)

(
ln (1 + x)− 1

x
− ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
− (3x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (3x+1)y(x)
4x2(x+1) −

(2x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x(x+1) − (3x+1)y(x)
4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x(x+1) , P3(x) = − 3x+1

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
+ (−3x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (8u2 − 12u+ 4)

(
d
du
y(u)

)
+ (−3u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r2u−1+r +
(
4a1(1 + r)2 − 2a0(4r2 + 2r − 1)

)
ur +

(
∞∑
k=1

(
4ak+1(k + 1 + r)2 − 2ak(4k2 + 8kr + 4r2 + 2k + 2r − 1) + ak−1(2k + 1 + 2r) (2k − 3 + 2r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
4a1(1 + r)2 − 2a0(4r2 + 2r − 1) = 0

• Each term in the series must be 0, giving the recursion relation
(4k2 − 4k − 3) ak−1 + (−8k2 − 4k + 2) ak + 4ak+1(k + 1)2 = 0

• Shift index using k− >k + 1(
4(k + 1)2 − 4k − 7

)
ak +

(
−8(k + 1)2 − 4k − 2

)
ak+1 + 4ak+2(k + 2)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2

• Recursion relation for r = 0
ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2 , 4a1 + 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1
4(k+2)2 , 4a1 + 2a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 26� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+4*x*(2*x+1)*diff(y(x),x)-(3*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = c1x+ ln (x) c2x− ln (x+ 1) c2x+ c2√

x
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Mathematica DSolve solution

Solving time : 0.069 (sec)
Leaf size : 32� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(1+2*x)*D[y[x],x]-(1+3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x+ c2(−x log(x) + x log(x+ 1)− 1)√

x
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2.1.589 problem 605

Solved as second order ode using Kovacic algorithm . . . . . . . . .3963
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3967
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3968
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3969
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3969

Internal problem ID [9437]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 605
Date solved : Thursday, December 12, 2024 at 10:12:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + 3x) y′′ + x(4 + 21x) y′ − (1− 9x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as (
6x3 + 4x2) y′′ + (21x2 + 4x

)
y′ + (9x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x3 + 4x2

B = 21x2 + 4x (3)
C = 9x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −27x− 48
16x (2 + 3x)2

(6)

Comparing the above to (5) shows that

s = −27x− 48
t = 16x(2 + 3x)2

Therefore eq. (4) becomes

z′′(x) =
(

−27x− 48
16x (2 + 3x)2

)
z(x) (7)



chapter 2. book solved problems 3964

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1123: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x(2 + 3x)2. There is a pole at x = 0 of order 1. There is a pole at x = −2

3 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
4x + 5

16
(
x+ 2

3

)2 + 3
4
(
x+ 2

3

)
For the pole at x = −2

3 let b be the coefficient of 1(
x+ 2

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −27x− 48

16x (2 + 3x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −27x− 48
16x (2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
−2

3 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

4
(
x+ 2

3

) + (0)

= 1
x
− 1

4
(
x+ 2

3

)
= 8 + 9x

12x2 + 8x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

4
(
x+ 2

3

)) (0) +

(− 1
x2 + 1

4
(
x+ 2

3

)2
)

+
(
1
x
− 1

4
(
x+ 2

3

))2

−
(

−27x− 48
16x (2 + 3x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

4
(
x+2

3
)
)
dx

= x

(2 + 3x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
21x2+4x
6x3+4x2 dx

= z1e
− ln(x)

2 − 5 ln(2+3x)
4

= z1

(
1

√
x (2 + 3x)5/4

)

Which simplifies to

y1 =
√
x

(2 + 3x)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 21x2+4x

6x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)− 5 ln(2+3x)

2

(y1)2
dx

= y1

−
√
2 + 3x
x

−
3
√
2 arctanh

(√
2+3x

√
2

2

)
2


Therefore the solution is
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y = c1y1 + c2y2

= c1

( √
x

(2 + 3x)3/2

)
+ c2

 √
x

(2 + 3x)3/2

−
√
2 + 3x
x

−
3
√
2 arctanh

(√
2+3x

√
2

2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 21x)

(
d
dx
y(x)

)
− (1− 9x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−1+9x)y(x)
2(3x+2)x2 −

(4+21x)
(

d
dx

y(x)
)

2x(3x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4+21x)

(
d
dx

y(x)
)

2x(3x+2) + (−1+9x)y(x)
2(3x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4+21x
2x(3x+2) , P3(x) = −1+9x

2(3x+2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(3x+ 2)
(

d2

dx2y(x)
)
+ x(4 + 21x)

(
d
dx
y(x)

)
+ (−1 + 9x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r



chapter 2. book solved problems 3968

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + 3ak−1(2k + 2r + 1) (k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
((

k + r − 1
2

)
ak + 3ak−1(k+r)

2

) (
k + r + 1

2

)
= 0

• Shift index using k− >k + 1

4
((

k + r + 1
2

)
ak+1 + 3ak(k+r+1)

2

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = −3ak(k+r+1)

2k+2r+1

• Recursion relation for r = −1
2

ak+1 = −3ak
(
k+ 1

2
)

2k

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = −3ak
(
k+ 1

2
)

2k

]
• Recursion relation for r = 1

2

ak+1 = −3ak
(
k+ 3

2
)

2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = −3ak
(
k+ 3

2
)

2k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = −3ak

(
k+ 1

2
)

2k , bk+1 = −3bk
(
k+ 3

2
)

2k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.091 (sec)
Leaf size : 48� �
dsolve(2*x^2*(2+3*x)*diff(diff(y(x),x),x)+x*(4+21*x)*diff(y(x),x)-(1-9*x)*y(x) = 0,

y(x),singsol=all)� �
y =

√
2
√
2 + 3x c2 + c1x+ 3 arctanh

(√
2
√
2+3x
2

)
c2x

(2 + 3x)3/2
√
x

Mathematica DSolve solution

Solving time : 0.128 (sec)
Leaf size : 64� �
DSolve[{2*x^2*(2+3*x)*D[y[x],{x,2}]+x*(4+21*x)*D[y[x],x]-(1-9*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −
3
√
2c2xarctanh

(√
3x
2 + 1

)
− 2c1x+ 2c2

√
3x+ 2

2
√
x(3x+ 2)3/2
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2.1.590 problem 606

Solved as second order ode using Kovacic algorithm . . . . . . . . .3970
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3974
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3976
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3976
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3976

Internal problem ID [9438]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 606
Date solved : Thursday, December 12, 2024 at 10:12:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(2 + x) y′ − (2− 3x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.299 (sec)

Writing the ode as

x2y′′ +
(
x2 + 2x

)
y′ + (3x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + 2x (3)
C = 3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 8x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 8x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 8x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1125: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 2
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 2
x
− 2

x2 − 8
x3 − 36

x4 − 176
x5 − 912

x6 − 4928
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 8x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−8x+ 8

4x2

)
= 1

4 + −8x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −8. Dividing this by leading coefficient in t which is 4 gives −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 0
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 0
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 8x+ 8
4x2



chapter 2. book solved problems 3973

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −2 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2 then

d = α−
∞ −

(
α+
c1

)
= 2− (2)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 2
x
+ (−)

(
1
2

)
= 2

x
− 1

2
= −x− 4

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 1

2

)
(0) +

((
− 2
x2

)
+
(
2
x
− 1

2

)2

−
(
x2 − 8x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 1

2
)
dx

= x2e−x
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+2x

x2 dx

= z1e
−x

2−ln(x)

= z1

(
e−x

2

x

)

Which simplifies to
y1 = x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+2x

x2 dx

(y1)2
dx

= y1

∫
e−x−2 ln(x)

(y1)2
dx

= y1

(
− ex
3x3 − ex

6x2 − ex
6x − Ei1 (−x)

6

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x

)
+ c2

(
x e−x

(
− ex
3x3 − ex

6x2 − ex
6x − Ei1 (−x)

6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x+ 2)

(
d
dx
y(x)

)
− (−3x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−2)y(x)
x2 −

(x+2)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+2)

(
d
dx

y(x)
)

x
+ (3x−2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+2

x
, P3(x) = 3x−2

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 2)

(
d
dx
y(x)

)
+ (3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 1) + ak−1(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r − 1) + ak−1) = 0

• Shift index using k− >k + 1
(k + r + 3) (ak+1(k + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+r

• Recursion relation for r = −2
ak+1 = − ak

k−2

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+1 = − ak

k−2

• Recursion relation for r = 1
ak+1 = − ak

k+1

• Solution for r = 1
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[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 40� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+2)*diff(y(x),x)-(2-3*x)*y(x) = 0,

y(x),singsol=all)� �
y = Ei1 (−x) e−xc2x

3 + e−xc1x
3 + c2(x2 + x+ 2)

x2

Mathematica DSolve solution

Solving time : 0.087 (sec)
Leaf size : 46� �
DSolve[{x^2*D[y[x],{x,2}]+x*(2+x)*D[y[x],x]-(2-3*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2(x3 ExpIntegralEi(x)− ex(x2 + x+ 2)) + 6c1x3)

6x2
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2.1.591 problem 607

Solved as second order ode using Kovacic algorithm . . . . . . . . .3977
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3981
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3982
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3983
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3983

Internal problem ID [9439]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 607
Date solved : Thursday, December 12, 2024 at 10:12:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 4x(3 + 8x) y′ − (5− 49x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as (
4x3 + 4x2) y′′ + (32x2 + 12x

)
y′ + (49x− 5) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 32x2 + 12x (3)
C = 49x− 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 8x+ 8
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 8x+ 8

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 8x+ 8
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1127: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −6
x
+ 2

x2 + 6
1 + x

+ 15
4 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 8x+ 8

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 8x+ 8
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 5
2 −3

2

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2 (1 + x) +

2
x
+ (−) (0)

= − 3
2 (1 + x) +

2
x

= x+ 4
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (1 + x) +

2
x

)
(0) +

((
3

2 (1 + x)2
− 2

x2

)
+
(
− 3
2 (1 + x) +

2
x

)2

−
(
−x2 − 8x+ 8
4 (x2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2(1+x)+

2
x

)
dx

= x2

(1 + x)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
32x2+12x
4x3+4x2 dx

= z1e
− 5 ln(1+x)

2 − 3 ln(x)
2

= z1

(
1

(1 + x)5/2 x3/2

)

Which simplifies to

y1 =
√
x

(1 + x)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 32x2+12x

4x3+4x2 dx

(y1)2
dx

= y1

∫
e−5 ln(1+x)−3 ln(x)

(y1)2
dx

= y1

(
−3
x
− 3

2x2 − 1
3x3 + ln (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(1 + x)4
)
+ c2

( √
x

(1 + x)4
(
−3
x
− 3

2x2 − 1
3x3 + ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(3 + 8x)

(
d
dx
y(x)

)
− (5− 49x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−5+49x)y(x)
4(x+1)x2 −

(3+8x)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3+8x)

(
d
dx

y(x)
)

x(x+1) + (−5+49x)y(x)
4(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3+8x
x(x+1) , P3(x) = −5+49x

4(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(3 + 8x)

(
d
dx
y(x)

)
+ (−5 + 49x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (32u2 − 52u+ 20)

(
d
du
y(u)

)
+ (−54 + 49u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(4 + r)u−1+r + (4a1(1 + r) (5 + r)− 2a0(4r2 + 22r + 27))ur +
(

∞∑
k=1

(
4ak+1(k + 1 + r) (k + 5 + r)− 2ak(4k2 + 8kr + 4r2 + 22k + 22r + 27) + ak−1(2k + 5 + 2r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−4, 0}

• Each term must be 0
4a1(1 + r) (5 + r)− 2a0(4r2 + 22r + 27) = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + 5 + r)− 2ak(4k2 + 8kr + 4r2 + 22k + 22r + 27) + ak−1(2k + 5 + 2r)2 = 0

• Shift index using k− >k + 1
4ak+2(k + 2 + r) (k + 6 + r)− 2ak+1

(
4(k + 1)2 + 8(k + 1) r + 4r2 + 22k + 49 + 22r

)
+ ak(2k + 2r + 7)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+28kak−60kak+1+28rak−60rak+1+49ak−106ak+1

4(k+2+r)(k+6+r)

• Recursion relation for r = −4
ak+2 = −4k2ak−8k2ak+1−4kak+4kak+1+ak+6ak+1

4(k−2)(k+2)

• Series not valid for r = −4 , division by 0 in the recursion relation at k = 2

ak+2 = −4k2ak−8k2ak+1−4kak+4kak+1+ak+6ak+1
4(k−2)(k+2)

• Recursion relation for r = 0
ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1

4(k+2)(k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1

4(k+2)(k+6) , 20a1 − 54a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1
4(k+2)(k+6) , 20a1 − 54a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.060 (sec)
Leaf size : 40� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+4*x*(3+8*x)*diff(y(x),x)-(5-49*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

3 + 6 ln (x) c2x3 − 18c2x2 − 9c2x− 2c2
(x+ 1)4 x5/2

Mathematica DSolve solution

Solving time : 0.086 (sec)
Leaf size : 52� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(3+8*x)*D[y[x],x]-(5-49*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 6c1x3 + 6c2x3 log(x)− 18c2x2 − 9c2x− 2c2

6x5/2(x+ 1)4
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2.1.592 problem 608

Solved as second order ode using Kovacic algorithm . . . . . . . . .3984
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3988
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3990
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3990
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3990

Internal problem ID [9440]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 608
Date solved : Thursday, December 12, 2024 at 10:12:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − x(3 + 10x) y′ + 30xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−10x2 − 3x

)
y′ + 30xy = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −10x2 − 3x (3)
C = 30x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −48x+ 15
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −48x+ 15

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−48x+ 15
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1129: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x2 − 39

2x + 39
2 (1 + x) +

63
4 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 63
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

2
α−
c = 1

2 −
√
1 + 4b = −7

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −48x+ 15
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 9
2 −7

2

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 7
2 (1 + x) +

5
2x + (0)

= − 7
2 (1 + x) +

5
2x

= − 2x− 5
2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 7
2 (1 + x) +

5
2x

)
(1) +

((
7

2 (1 + x)2
− 5

2x2

)
+
(
− 7
2 (1 + x) +

5
2x

)2

−
(
−48x+ 15
4 (x2 + x)2

))
= 0

5 + 2a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −5

2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 5
2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 5

2

)
e
∫ (

− 7
2(1+x)+

5
2x

)
dx

=
(
x− 5

2

)
e

5 ln(x)
2 − 7 ln(1+x)

2

=
(
x− 5

2

)
x5/2

(1 + x)7/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x2−3x
x2(1+x) dx

= z1e
3 ln(x)

2 + 7 ln(1+x)
2

= z1
(
x3/2(1 + x)7/2

)
Which simplifies to

y1 = x5 − 5
2x

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x2−3x

x2(1+x) dx

(y1)2
dx

= y1

∫
e3 ln(x)+7 ln(1+x)

(y1)2
dx

= y1

(
x− 1

25x4 − 52
125x3 − 1354

625x2 − 27708
3125x + 12 ln (x)− 823543

6250 (2x− 5)

)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
x5 − 5

2x
4
)

+ c2

(
x5 − 5

2x
4
(
x− 1

25x4 − 52
125x3 − 1354

625x2 − 27708
3125x + 12 ln (x)− 823543

6250 (2x− 5)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− x(10x+ 3)

(
d
dx
y(x)

)
+ 30xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 30y(x)
x(x+1) +

(10x+3)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(10x+3)

(
d
dx

y(x)
)

x(x+1) + 30y(x)
x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 10x+3
x(x+1) , P3(x) = 30

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −7

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)
(

d2

dx2y(x)
)
+ (−10x− 3)

(
d
dx
y(x)

)
+ 30y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (−10u+ 7)

(
d
du
y(u)

)
+ 30y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−8 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k − 7 + r) + ak(k + r − 5) (k + r − 6))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−8 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 8}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 7 + r) + ak(k + r − 5) (k + r − 6) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)(k+r−6)

(k+1+r)(k−7+r)

• Recursion relation for r = 0 ; series terminates at k = 5
ak+1 = ak(k−5)(k−6)

(k+1)(k−7)

• Apply recursion relation for k = 0
a1 = −30a0

7

• Apply recursion relation for k = 1
a2 = −5a1

3

• Express in terms of a0
a2 = 50a0

7

• Apply recursion relation for k = 2
a3 = −4a2

5

• Express in terms of a0
a3 = −40a0

7

• Apply recursion relation for k = 3
a4 = −3a3

8

• Express in terms of a0
a4 = 15a0

7

• Apply recursion relation for k = 4
a5 = −2a4

15

• Express in terms of a0
a5 = −2a0

7

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 30

7 u+ 50
7 u

2 − 40
7 u

3 + 15
7 u

4 − 2
7u

5)
• Revert the change of variables u = x+ 1[

y(x) = a0
(5
7x

4 − 2
7x

5)]
• Recursion relation for r = 8

ak+1 = ak(k+3)(k+2)
(k+9)(k+1)

• Solution for r = 8[
y(u) =

∞∑
k=0

aku
k+8, ak+1 = ak(k+3)(k+2)

(k+9)(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+8 , ak+1 = ak(k+3)(k+2)
(k+9)(k+1)

]



chapter 2. book solved problems 3990

• Combine solutions and rename parameters[
y(x) = a0

(5
7x

4 − 2
7x

5)+ ( ∞∑
k=0

bk(x+ 1)k+8
)
, bk+1 = bk(k+3)(k+2)

(k+9)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 65� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-x*(10*x+3)*diff(y(x),x)+30*x*y(x) = 0,

y(x),singsol=all)� �
y = 3c2x4

(
x− 5

2

)
ln (x) + c2x

6

4 + (16c1 − 5c2)x5

8

+ (−80c1 − 299c2)x4

16 + 5c2x3 + 5c2x2

4 + c2x

4 + c2
40

Mathematica DSolve solution

Solving time : 0.101 (sec)
Leaf size : 68� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-x*(3+10*x)*D[y[x],x]+30*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x5 − 5x4

2

)
+ 1

20c2
(
20x6 − 50x5 − 1495x4 + 120(2x− 5)x4 log(x) + 400x3 + 100x2 + 20x+ 2

)
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2.1.593 problem 609

Solved as second order ode using Kovacic algorithm . . . . . . . . .3991
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .3995
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3997
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .3997
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .3997

Internal problem ID [9441]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 609
Date solved : Thursday, December 12, 2024 at 10:12:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(1 + x) y′ − 3(3 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.339 (sec)

Writing the ode as

x2y′′ +
(
x2 + x

)
y′ + (−3x− 9) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = −3x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 14x+ 35
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 14x+ 35
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 14x+ 35

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1131: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 35

4x2 + 7
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 7
2x − 7

2x2 + 49
2x3 − 735

4x4 + 5831
4x5 − 48363

4x6 + 415373
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 14x+ 35
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
14x+ 35

4x2

)
= 1

4 + 14x+ 35
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 14. Dividing this by leading coefficient in t which is 4 gives 7

2 . Now b can be found.

b =
(
7
2

)
− (0)

= 7
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 7
2
1
2
− 0
)

= 7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

7
2
1
2
− 0
)

= −7
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 14x+ 35
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

7
2 −7

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α+
c1

)
= 7

2 −
(
7
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 7
2x +

(
1
2

)
= 1

2 + 7
2x

= x+ 7
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 7

2x

)
(0) +

((
− 7
2x2

)
+
(
1
2 + 7

2x

)2

−
(
x2 + 14x+ 35

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
7
2x
)
dx

= x7/2ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to
y1 = x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
−e−x

6x6 + e−x

30x5 − e−x

120x4 + e−x

360x3 − e−x

720x2 + e−x

720x − Ei1 (x)
720

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x3)+ c2

(
x3
(
−e−x

6x6 + e−x

30x5 − e−x

120x4 + e−x

360x3 − e−x

720x2 + e−x

720x − Ei1 (x)
720

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
− 3(x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3(x+3)y(x)
x2 −

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
− 3(x+3)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+1

x
, P3(x) = −3(x+3)

x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (−3x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r + 3) (k + r − 3) + ak−1(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 3}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r − 3) + ak−1(k − 4 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 4 + r) (k − 2 + r) + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(k+4+r)(k−2+r)

• Recursion relation for r = −3 ; series terminates at k = 6
ak+1 = − ak(k−6)

(k+1)(k−5)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 5
ak+1 = − ak(k−6)

(k+1)(k−5)

• Recursion relation for r = 3
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ak+1 = − akk
(k+7)(k+1)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = − akk

(k+7)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 50� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)-3*(x+3)*y(x) = 0,

y(x),singsol=all)� �
y = −c2(x5 − x4 + 2x3 − 6x2 + 24x− 120) e−x + x6(Ei1 (x) c2 + c1)

x3

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 60� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-3*(3+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

−x(exx6 ExpIntegralEi(−x) + x5 − x4 + 2x3 − 6x2 + 24x− 120)
720x3 + c1x

3
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2.1.594 problem 610

Solved as second order ode using Kovacic algorithm . . . . . . . . .3998
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4002
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4004
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4004
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4004

Internal problem ID [9442]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 610
Date solved : Thursday, December 12, 2024 at 10:12:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ + x(9 + 13x) y′ + (7 + 5x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as (
2x3 + x2) y′′ + (13x2 + 9x

)
y′ + (7 + 5x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = 13x2 + 9x (3)
C = 7 + 5x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 77x2 + 86x+ 35
4 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 77x2 + 86x+ 35

t = 4
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
77x2 + 86x+ 35
4 (2x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1133: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −27
2x + 35

4x2 + 45
16
(
x+ 1

2

)2 + 27
2
(
x+ 1

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 77x2 + 86x+ 35

4 (2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 77
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

4
α−
∞ = 1

2 −
√
1 + 4b = −7

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 77x2 + 86x+ 35
4 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

−1
2 2 0 9

4 −5
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
4 −7

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −7

4 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −7

4 −
(
−15

4

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 5
2x − 5

4
(
x+ 1

2

) + (−) (0)

= − 5
2x − 5

4
(
x+ 1

2

)
= −5− 15x

4x2 + 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 5
2x − 5

4
(
x+ 1

2

)) (2x+ a1) +

( 5
2x2 + 5

4
(
x+ 1

2

)2
)

+
(
− 5
2x − 5

4
(
x+ 1

2

))2

−
(
77x2 + 86x+ 35
4 (2x2 + x)2

) = 0

(11a1 − 8)x+ 26a0 − 5a1
2x2 + x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

20
143 , a1 =

8
11

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 8
11x+ 20

143

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 8

11x+ 20
143

)
e
∫ (

− 5
2x−

5
4
(
x+1

2
)
)
dx

=
(
x2 + 8

11x+ 20
143

)
e−

5 ln(1+2x)
4 − 5 ln(x)

2

=
x2 + 8

11x+ 20
143

(1 + 2x)5/4 x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
13x2+9x
2x3+x2 dx

= z1e
5 ln(1+2x)

4 − 9 ln(x)
2

= z1

(
(1 + 2x)5/4

x9/2

)

Which simplifies to

y1 =
x2 + 8

11x+ 20
143

x7

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 13x2+9x

2x3+x2 dx

(y1)2
dx

= y1

∫
e

5 ln(1+2x)
2 −9 ln(x)

(y1)2
dx

= y1

(
143(1 + 2x) (35x3 − 45x2 + 36x− 20)x9e

5 ln(1+2x)
2 −9 ln(x)

315 (143x2 + 104x+ 20)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 8

11x+ 20
143

x7

)
+ c2

(
x2 + 8

11x+ 20
143

x7

(
143(1 + 2x) (35x3 − 45x2 + 36x− 20)x9e

5 ln(1+2x)
2 −9 ln(x)

315 (143x2 + 104x+ 20)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(9 + 13x)

(
d
dx
y(x)

)
+ (7 + 5x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (7+5x)y(x)
x2(2x+1) −

(9+13x)
(

d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(9+13x)

(
d
dx

y(x)
)

x(2x+1) + (7+5x)y(x)
x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 9+13x
x(2x+1) , P3(x) = 7+5x

x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 9

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 7

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
+ x(9 + 13x)

(
d
dx
y(x)

)
+ (7 + 5x) y(x) = 0

• Assume series solution for y(x)
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y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + r) (1 + r)xr +
(

∞∑
k=1

(ak(k + r + 7) (k + r + 1) + ak−1(k + 4 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7,−1}

• Each term in the series must be 0, giving the recursion relation
2(k + 4 + r)

(
k + r − 1

2

)
ak−1 + ak(k + r + 7) (k + r + 1) = 0

• Shift index using k− >k + 1
2(k + r + 5)

(
k + 1

2 + r
)
ak + ak+1(k + 8 + r) (k + 2 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − (k+r+5)(2k+2r+1)ak

(k+8+r)(k+2+r)

• Recursion relation for r = −7 ; series terminates at k = 2
ak+1 = − (k−2)(2k−13)ak

(k+1)(k−5)

• Apply recursion relation for k = 0
a1 = 26a0

5

• Apply recursion relation for k = 1
a2 = 11a1

8

• Express in terms of a0
a2 = 143a0

20

• Terminating series solution of the ODE for r = −7 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(143
20 x

2 + 26
5 x+ 1

)
• Recursion relation for r = −1

ak+1 = − (k+4)(2k−1)ak
(k+7)(k+1)

• Solution for r = −1
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[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − (k+4)(2k−1)ak

(k+7)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(143

20 x
2 + 26

5 x+ 1
)
+
(

∞∑
k=0

bkx
k−1
)
, bk+1 = − (4+k)(2k−1)bk

(k+7)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 50� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(9+13*x)*diff(y(x),x)+(5*x+7)*y(x) = 0,

y(x),singsol=all)� �
y =

280c2
(
x+ 1

2

)3 (
x3 − 9

7x
2 + 36

35x− 4
7

)√
2x+ 1 + 143c1x2 + 104c1x+ 20c1

x7

Mathematica DSolve solution

Solving time : 0.132 (sec)
Leaf size : 58� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]+x*(9+13*x)*D[y[x],x]+(7+5*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(13x(11x+ 8) + 20)

143x7 + c2(35x3 − 45x2 + 36x− 20) (2x+ 1)7/2
315x7
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2.1.595 problem 611

Solved as second order ode using Kovacic algorithm . . . . . . . . .4005
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4009
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4010
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4010
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4011

Internal problem ID [9443]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 611
Date solved : Thursday, December 12, 2024 at 10:12:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + 2x) y′′ − 2x(4− x) y′ − (7 + 5x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.247 (sec)

Writing the ode as (
8x3 + 4x2) y′′ + (2x2 − 8x

)
y′ + (−5x− 7) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 8x3 + 4x2

B = 2x2 − 8x (3)
C = −5x− 7

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 33x2 + 132x+ 60
16 (2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 33x2 + 132x+ 60

t = 16
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
33x2 + 132x+ 60
16 (2x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1135: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −27
4x + 15

4x2 + 9
64
(
x+ 1

2

)2 + 27
4
(
x+ 1

2

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 9
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

8
α−
c = 1

2 −
√
1 + 4b = −1

8
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 33x2 + 132x+ 60

16 (2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 33
64 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

8
α−
∞ = 1

2 −
√
1 + 4b = −3

8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 33x2 + 132x+ 60
16 (2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

−1
2 2 0 9

8 −1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
8 −3

8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −3

8 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= −3

8 −
(
−3
8

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2x + 9

8
(
x+ 1

2

) + (−) (0)

= − 3
2x + 9

8
(
x+ 1

2

)
= − 3(x+ 2)

4x (1 + 2x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x + 9

8
(
x+ 1

2

)) (0) +

( 3
2x2 − 9

8
(
x+ 1

2

)2
)

+
(
− 3
2x + 9

8
(
x+ 1

2

))2

−
(
33x2 + 132x+ 60
16 (2x2 + x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2x+

9
8
(
x+1

2
)
)
dx

= (1 + 2x)9/8

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2−8x
8x3+4x2 dx

= z1e
ln(x)− 9 ln(1+2x)

8

= z1

(
x

(1 + 2x)9/8

)

Which simplifies to

y1 =
1√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2−8x

8x3+4x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)−

9 ln(1+2x)
4

(y1)2
dx

= y1

(
2(1 + 2x) (5x3 − 10x2 − 40x− 16) e2 ln(x)−

9 ln(1+2x)
4

35x2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√
x

)
+ c2

(
1√
x

(
2(1 + 2x) (5x3 − 10x2 − 40x− 16) e2 ln(x)−

9 ln(1+2x)
4

35x2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(2x+ 1)
(

d2

dx2y(x)
)
− 2x(4− x)

(
d
dx
y(x)

)
− (7 + 5x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (7+5x)y(x)
4x2(2x+1) −

(−4+x)
(

d
dx

y(x)
)

2(2x+1)x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−4+x)

(
d
dx

y(x)
)

2(2x+1)x − (7+5x)y(x)
4x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −4+x
2(2x+1)x , P3(x) = − 7+5x

4x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −7
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(2x+ 1)
(

d2

dx2y(x)
)
+ 2x(−4 + x)

(
d
dx
y(x)

)
+ (−5x− 7) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(1 + 2r) (−7 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 7) + ak−1(2k − 1 + 2r) (4k − 9 + 4r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
7
2

}
• Each term in the series must be 0, giving the recursion relation

8
(
k − 9

4 + r
) (

k + r − 1
2

)
ak−1 + 4

(
k + r − 7

2

)
ak
(
k + r + 1

2

)
= 0

• Shift index using k− >k + 1
8
(
k − 5

4 + r
) (

k + r + 1
2

)
ak + 4

(
k − 5

2 + r
)
ak+1

(
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − (4k+4r−5)(2k+2r+1)ak

(2k−5+2r)(2k+3+2r)

• Recursion relation for r = −1
2

ak+1 = − 2(4k−7)kak
(2k−6)(2k+2)

• Series not valid for r = −1
2 , division by 0 in the recursion relation at k = 3

ak+1 = − 2(4k−7)kak
(2k−6)(2k+2)

• Recursion relation for r = 7
2

ak+1 = − (4k+9)(2k+8)ak
(2k+2)(2k+10)

• Solution for r = 7
2[

y(x) =
∞∑
k=0

akx
k+ 7

2 , ak+1 = − (4k+9)(2k+8)ak
(2k+2)(2k+10)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.038 (sec)
Leaf size : 34� �
dsolve(4*x^2*(2*x+1)*diff(diff(y(x),x),x)-2*x*(-x+4)*diff(y(x),x)-(5*x+7)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 + c2
(
5x3−10x2−40x−16

)
(2x+1)5/4√
x
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Mathematica DSolve solution

Solving time : 0.099 (sec)
Leaf size : 47� �
DSolve[{4*x^2*(1+2*x)*D[y[x],{x,2}]-2*x*(4-x)*D[y[x],x]-(7+5*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

2c2
(
5x3−10x2−40x−16

)
(2x+1)5/4 + 35c1

35
√
x
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2.1.596 problem 612

Solved as second order ode using Kovacic algorithm . . . . . . . . .4012
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4016
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4018
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4018
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4018

Internal problem ID [9444]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 612
Date solved : Thursday, December 12, 2024 at 10:12:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2(3 + x) y′′ − x(15 + x) y′ − 20y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.268 (sec)

Writing the ode as (
3x3 + 9x2) y′′ + (−x2 − 15x

)
y′ − 20y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x3 + 9x2

B = −x2 − 15x (3)
C = −20

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 450x+ 1215
36 (x2 + 3x)2

(6)

Comparing the above to (5) shows that

s = 7x2 + 450x+ 1215

t = 36
(
x2 + 3x

)2
Therefore eq. (4) becomes

z′′(x) =
(
7x2 + 450x+ 1215

36 (x2 + 3x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1137: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x2 + 3x)2. There is a pole at x = 0 of order 2. There is a pole at x = −3 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 10
9 (3 + x) −

2
9 (3 + x)2

− 10
9x + 15

4x2

For the pole at x = −3 let b be the coefficient of 1
(3+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 7x2 + 450x+ 1215

36 (x2 + 3x)2

Since the gcd(s, t) = 1. This gives b = 7
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

6
α−
∞ = 1

2 −
√
1 + 4b = −1

6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7x2 + 450x+ 1215
36 (x2 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−3 2 0 2
3

1
3

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

6 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= −1

6 −
(
−7
6

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
9 + 3x − 3

2x + (−) (0)

= 1
9 + 3x − 3

2x
= − 7x+ 27

6x (3 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
9 + 3x − 3

2x

)
(1) +

((
− 1
3 (3 + x)2

+ 3
2x2

)
+
(

1
9 + 3x − 3

2x

)2

−
(
7x2 + 450x+ 1215

36 (x2 + 3x)2
))

= 0

−27 + 7a0
3x (3 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

27
7

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 27
7

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 27

7

)
e
∫ ( 1

9+3x−
3
2x

)
dx

=
(
x+ 27

7

)
e−

3 ln(x)
2 + ln(3+x)

3

=
(
x+ 27

7

)
(3 + x)1/3

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−15x
3x3+9x2 dx

= z1e
5 ln(x)

6 − 2 ln(3+x)
3

= z1

(
x5/6

(3 + x)2/3

)

Which simplifies to

y1 =
7x+ 27

7x2/3 (3 + x)1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−15x

3x3+9x2 dx

(y1)2
dx

= y1

∫
e

5 ln(x)
3 − 4 ln(3+x)

3

(y1)2
dx

= y1

(
21(3 + x)5/3 (x2 − 36x− 243) e

5 ln(x)
3 − 4 ln(3+x)

3

4 (7x+ 27)x5/3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
7x+ 27

7x2/3 (3 + x)1/3

)

+ c2

(
7x+ 27

7x2/3 (3 + x)1/3

(
21(3 + x)5/3 (x2 − 36x− 243) e

5 ln(x)
3 − 4 ln(3+x)

3

4 (7x+ 27)x5/3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3x2(x+ 3)
(

d2

dx2y(x)
)
− x(15 + x)

(
d
dx
y(x)

)
− 20y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 20y(x)
3x2(x+3) +

(15+x)
(

d
dx

y(x)
)

3x(x+3)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(15+x)

(
d
dx

y(x)
)

3x(x+3) − 20y(x)
3x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 15+x
3x(x+3) , P3(x) = − 20

3x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 4
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators

3x2(x+ 3)
(

d2

dx2y(x)
)
− x(15 + x)

(
d
dx
y(x)

)
− 20y(x) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(3u3 − 18u2 + 27u)
(

d2

du2y(u)
)
+ (−u2 − 9u+ 36)

(
d
du
y(u)

)
− 20y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

9a0r(1 + 3r)u−1+r + (9a1(1 + r) (4 + 3r)− a0(18r2 − 9r + 20))ur +
(

∞∑
k=1

(9ak+1(k + 1 + r) (3k + 4 + 3r)− ak(18k2 + 36kr + 18r2 − 9k − 9r + 20) + ak−1(k + r − 1) (3k − 7 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
9r(1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

3

}
• Each term must be 0

9a1(1 + r) (4 + 3r)− a0(18r2 − 9r + 20) = 0
• Each term in the series must be 0, giving the recursion relation

3(−6ak + ak−1 + 9ak+1) k2 + (6(−6ak + ak−1 + 9ak+1) r + 9ak − 10ak−1 + 63ak+1) k + 3(−6ak + ak−1 + 9ak+1) r2 + (9ak − 10ak−1 + 63ak+1) r − 20ak + 7ak−1 + 36ak+1 = 0
• Shift index using k− >k + 1

3(−6ak+1 + ak + 9ak+2) (k + 1)2 + (6(−6ak+1 + ak + 9ak+2) r + 9ak+1 − 10ak + 63ak+2) (k + 1) + 3(−6ak+1 + ak + 9ak+2) r2 + (9ak+1 − 10ak + 63ak+2) r − 20ak+1 + 7ak + 36ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −3k2ak−18k2ak+1+6krak−36krak+1+3r2ak−18r2ak+1−4kak−27kak+1−4rak−27rak+1−29ak+1
9(3k2+6kr+3r2+13k+13r+14)

• Recursion relation for r = 0
ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14) , 36a1 − 20a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k , ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1
9(3k2+13k+14) , 36a1 − 20a0 = 0

]
• Recursion relation for r = −1

3

ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5
3ak−22ak+1

9(3k2+11k+10)

• Solution for r = −1
3[

y(u) =
∞∑
k=0

aku
k− 1

3 , ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5
3ak−22ak+1

9(3k2+11k+10) , 18a1 − 25a0 = 0
]

• Revert the change of variables u = x+ 3[
y(x) =

∞∑
k=0

ak(x+ 3)k−
1
3 , ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5

3ak−22ak+1
9(3k2+11k+10) , 18a1 − 25a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
1
3

)
, ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14) , 36a1 − 20a0 = 0, bk+2 = −3k2bk−18k2bk+1−6kbk−15kbk+1+ 5
3 bk−22bk+1

9(3k2+11k+10) , 18b1 − 25b0 = 0
]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.054 (sec)
Leaf size : 31� �
dsolve(3*x^2*(x+3)*diff(diff(y(x),x),x)-x*(15+x)*diff(y(x),x)-20*y(x) = 0,

y(x),singsol=all)� �
y =

c1(x2 − 36x− 243) + c2(7x+27)
(x+3)1/3

x2/3

Mathematica DSolve solution

Solving time : 0.127 (sec)
Leaf size : 43� �
DSolve[{3*x^2*(3+x)*D[y[x],{x,2}]-x*(15+x)*D[y[x],x]-20*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
21c2(x2 − 36x− 243) + 4c1(7x+27)

3
√
x+ 3

28x2/3
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2.1.597 problem 613

Solved as second order ode using Kovacic algorithm . . . . . . . . .4019
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4023
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4025
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4025
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4025

Internal problem ID [9445]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 613
Date solved : Thursday, December 12, 2024 at 10:12:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + x(1− 10x) y′ − (9− 10x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.292 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−10x2 + x

)
y′ + (10x− 9) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −10x2 + x (3)
C = 10x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 80x2 − 28x+ 35
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 80x2 − 28x+ 35

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
80x2 − 28x+ 35

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1139: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4x2 + 49

2 (1 + x) +
143

4 (1 + x)2
− 49

2x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 143
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 13

2
α−
c = 1

2 −
√
1 + 4b = −11

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 35

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 80x2 − 28x+ 35

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 20. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

α−
∞ = 1

2 −
√
1 + 4b = −4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 80x2 − 28x+ 35
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 13
2 −11

2

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5 −4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 5− (4)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 13
2 (1 + x) −

5
2x + (0)

= 13
2 (1 + x) −

5
2x

= 8x− 5
2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

13
2 (1 + x) −

5
2x

)
(1) +

((
− 13
2 (1 + x)2

+ 5
2x2

)
+
(

13
2 (1 + x) −

5
2x

)2

−
(
80x2 − 28x+ 35

4 (x2 + x)2
))

= 0

−5− 8a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −5

8

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 5
8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 5

8

)
e
∫ ( 13

2(1+x)−
5
2x

)
dx

=
(
x− 5

8

)
e

13 ln(1+x)
2 − 5 ln(x)

2

=
(
x− 5

8

)
(1 + x)13/2

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x2+x
x2(1+x) dx

= z1e
11 ln(1+x)

2 − ln(x)
2

= z1

(
(1 + x)11/2√

x

)

Which simplifies to

y1 =
(1 + x)12

(
x− 5

8

)
x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x2+x

x2(1+x) dx

(y1)2
dx

= y1

∫
e11 ln(1+x)−ln(x)

(y1)2
dx

= y1

(
−8 e11 ln(1+x)−ln(x)x(715x4 + 572x3 + 234x2 + 52x+ 5)

6435 (8x− 5) (1 + x)23
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x)12

(
x− 5

8

)
x3

)

+ c2

(
(1 + x)12

(
x− 5

8

)
x3

(
−8 e11 ln(1+x)−ln(x)x(715x4 + 572x3 + 234x2 + 52x+ 5)

6435 (8x− 5) (1 + x)23
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ x(1− 10x)

(
d
dx
y(x)

)
− (9− 10x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−9+10x)y(x)
(x+1)x2 +

(−1+10x)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−1+10x)

(
d
dx

y(x)
)

x(x+1) + (−9+10x)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −−1+10x
x(x+1) , P3(x) = −9+10x

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −11

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
− x(−1 + 10x)

(
d
dx
y(x)

)
+ (−9 + 10x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−10u2 + 21u− 11)

(
d
du
y(u)

)
+ (−19 + 10u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−12 + r)u−1+r + (a1(1 + r) (−11 + r)− a0(2r2 − 23r + 19))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 11 + r)− ak(2k2 + 4kr + 2r2 − 23k − 23r + 19) + ak−1(k − 2 + r) (k − 11 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−12 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 12}

• Each term must be 0
a1(1 + r) (−11 + r)− a0(2r2 − 23r + 19) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 23ak − 13ak−1 − 10ak+1) k + (−2ak + ak−1 + ak+1) r2 + (23ak − 13ak−1 − 10ak+1) r − 19ak + 22ak−1 − 11ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 23ak+1 − 13ak − 10ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (23ak+1 − 13ak − 10ak+2) r − 19ak+1 + 22ak − 11ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−11kak+19kak+1−11rak+19rak+1+10ak+2ak+1

k2+2kr+r2−8k−8r−20

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−11kak+19kak+1+10ak+2ak+1

k2−8k−20

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 10

ak+2 = −k2ak−2k2ak+1−11kak+19kak+1+10ak+2ak+1
k2−8k−20

• Recursion relation for r = 12
ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1

k2+16k+28

• Solution for r = 12[
y(u) =

∞∑
k=0

aku
k+12, ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1

k2+16k+28 , 13a1 − 31a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+12 , ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1
k2+16k+28 , 13a1 − 31a0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 82� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+x*(1-10*x)*diff(y(x),x)-(9-10*x)*y(x) = 0,

y(x),singsol=all)� �
y

= 8c2x13 + 91c2x12 + 468c2x11 + 1430c2x10 + 2860c2x9 + 3861c2x8 + 3432c2x7 + 1716c2x6 + 715c1x4 + 572c1x3 + 234c1x2 + 52c1x+ 5c1
x3

Mathematica DSolve solution

Solving time : 0.126 (sec)
Leaf size : 51� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+x*(1-10*x)*D[y[x],x]-(9-10*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 6435c1(x+ 1)12(8x− 5)− 8c2(715x4 + 572x3 + 234x2 + 52x+ 5)

51480x3
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2.1.598 problem 614

Solved as second order ode using Kovacic algorithm . . . . . . . . .4026
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4030
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4032
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4032
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4032

Internal problem ID [9446]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 614
Date solved : Thursday, December 12, 2024 at 10:12:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + 3x2y′ − (6− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.247 (sec)

Writing the ode as

x2(1 + x) y′′ + 3x2y′ + (x− 6) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = 3x2 (3)
C = x− 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 20x+ 24
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 20x+ 24

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 20x+ 24

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1141: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −7
x
+ 3

4 (1 + x)2
+ 6

x2 + 7
1 + x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 20x+ 24

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 20x+ 24
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 3
2 (1 + x) −

2
x
+ (−) (0)

= 3
2 (1 + x) −

2
x

= − x+ 4
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2 (1 + x) −

2
x

)
(1) +

((
− 3
2 (1 + x)2

+ 2
x2

)
+
(

3
2 (1 + x) −

2
x

)2

−
(
−x2 + 20x+ 24

4 (x2 + x)2
))

= 0

−4 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 4) e
∫ ( 3

2(1+x)−
2
x

)
dx

= (x+ 4) e
3 ln(1+x)

2 −2 ln(x)

= (x+ 4) (1 + x)3/2

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2

x2(1+x) dx

= z1e
− 3 ln(1+x)

2

= z1

(
1

(1 + x)3/2

)

Which simplifies to

y1 =
x+ 4
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2

x2(1+x) dx

(y1)2
dx

= y1

∫
e−3 ln(1+x)

(y1)2
dx

= y1

(
ln (1 + x)− 1

18 (1 + x)2
+ 14

27 (1 + x) +
256

27 (x+ 4)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 4
x2

)
+ c2

(
x+ 4
x2

(
ln (1 + x)− 1

18 (1 + x)2
+ 14

27 (1 + x) +
256

27 (x+ 4)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x2( d

dx
y(x)

)
− (−x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (−6+x)y(x)
(x+1)x2 −

3
(

d
dx

y(x)
)

x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x+1 + (−6+x)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x+1 , P3(x) = −6+x

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ 3x2( d

dx
y(x)

)
+ (−6 + x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (3u2 − 6u+ 3)

(
d
du
y(u)

)
+ (−7 + u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(2 + r)u−1+r + (a1(1 + r) (3 + r)− a0(2r2 + 4r + 7))ur +
(

∞∑
k=1

(
ak+1(k + r + 1) (k + 3 + r)− ak(2k2 + 4kr + 2r2 + 4k + 4r + 7) + ak−1(k + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• Each term must be 0
a1(1 + r) (3 + r)− a0(2r2 + 4r + 7) = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(k + r)2 + ak+1(k + r + 1) (k + 3 + r)− 2

(
k2 + (2r + 2) k + r2 + 2r + 7

2

)
ak = 0

• Shift index using k− >k + 1
ak(k + r + 1)2 + ak+2(k + r + 2) (k + 4 + r)− 2

(
(k + 1)2 + (2r + 2) (k + 1) + r2 + 2r + 7

2

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1+2kak−8kak+1+2rak−8rak+1+ak−13ak+1

(k+r+2)(k+4+r)

• Recursion relation for r = −2
ak+2 = −k2ak−2k2ak+1−2kak+ak−5ak+1

k(k+2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 0

ak+2 = −k2ak−2k2ak+1−2kak+ak−5ak+1
k(k+2)

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1

(k+2)(k+4)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1

(k+2)(k+4) , 3a1 − 7a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1
(k+2)(k+4) , 3a1 − 7a0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 45� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+3*diff(y(x),x)*x^2-(-x+6)*y(x) = 0,

y(x),singsol=all)� �
y =

c1(x+ 4) +
c2
(
6(x+4)(x+1)2 ln(x+1)+60x2+129x+68

)
(x+1)2

x2

Mathematica DSolve solution

Solving time : 0.113 (sec)
Leaf size : 49� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+3*x^2*D[y[x],x]-(6-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2
(
60x2+129x+68

)
(x+1)2 + 6c1(x+ 4) + 6c2(x+ 4) log(x+ 1)

6x2



chapter 2. book solved problems 4033

2.1.599 problem 615

Solved as second order ode using Kovacic algorithm . . . . . . . . .4033
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4037
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4039
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4039
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4039

Internal problem ID [9447]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 615
Date solved : Thursday, December 12, 2024 at 10:12:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + 2x) y′′ − 2x(3 + 14x) y′ + (6 + 100x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.246 (sec)

Writing the ode as (
2x3 + x2) y′′ + (−28x2 − 6x

)
y′ + (6 + 100x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + x2

B = −28x2 − 6x (3)
C = 6 + 100x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 24x2 − 16x+ 6
(2x2 + x)2

(6)

Comparing the above to (5) shows that

s = 24x2 − 16x+ 6

t =
(
2x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
24x2 − 16x+ 6

(2x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1143: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1

2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 20(
x+ 1

2

)2 + 40
x+ 1

2
− 40

x
+ 6

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 20. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

α−
c = 1

2 −
√
1 + 4b = −4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 24x2 − 16x+ 6

(2x2 + x)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 24x2 − 16x+ 6
(2x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2
−1

2 2 0 5 −4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 3− (3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= −2
x
+ 5

x+ 1
2
+ (0)

= −2
x
+ 5

x+ 1
2

= −2 + 6x
2x2 + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)



chapter 2. book solved problems 4036

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−2
x
+ 5

x+ 1
2

)
(0) +

((
2
x2 − 5(

x+ 1
2

)2
)

+
(
−2
x
+ 5

x+ 1
2

)2

−
(
24x2 − 16x+ 6

(2x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 2
x
+ 5

x+1
2

)
dx

= (1 + 2x)5

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−28x2−6x
2x3+x2 dx

= z1e
4 ln(1+2x)+3 ln(x)

= z1
(
(1 + 2x)4 x3)

Which simplifies to
y1 = (1 + 2x)9 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−28x2−6x

2x3+x2 dx

(y1)2
dx

= y1

∫
e8 ln(1+2x)+6 ln(x)

(y1)2
dx

= y1

(
−(2016x4 + 672x3 + 144x2 + 18x+ 1) e8 ln(1+2x)+6 ln(x)

20160 (1 + 2x)17 x6

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(1+2x)9 x

)
+c2

(
(1+2x)9 x

(
−(2016x4 + 672x3 + 144x2 + 18x+ 1) e8 ln(1+2x)+6 ln(x)

20160 (1 + 2x)17 x6

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 4037

Maple step by step solution

Let’s solve

x2(2x+ 1)
(

d2

dx2y(x)
)
− 2x(3 + 14x)

(
d
dx
y(x)

)
+ (6 + 100x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(3+50x)y(x)
x2(2x+1) +

2(3+14x)
(

d
dx

y(x)
)

x(2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(3+14x)

(
d
dx

y(x)
)

x(2x+1) + 2(3+50x)y(x)
x2(2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −2(3+14x)
x(2x+1) , P3(x) = 2(3+50x)

x2(2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(2x+ 1)
(

d2

dx2y(x)
)
− 2x(3 + 14x)

(
d
dx
y(x)

)
+ (6 + 100x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(−1 + r) (−6 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 6) + 2ak−1(k + r − 6) (k − 11 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 6}

• Each term in the series must be 0, giving the recursion relation
(k + r − 6) ((2k + 2r − 22) ak−1 + ak(k + r − 1)) = 0

• Shift index using k− >k + 1
(k + r − 5) ((2k + 2r − 20) ak + ak+1(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −2(k+r−10)ak

k+r

• Recursion relation for r = 1 ; series terminates at k = 9
ak+1 = −2(k−9)ak

k+1

• Recursion relation that defines the terminating series solution of the ODE for r = 1[
y(x) =

8∑
k=0

akx
k+1, ak+1 = −2(k−9)ak

k+1

]
• Recursion relation for r = 6 ; series terminates at k = 4

ak+1 = −2(k−4)ak
k+6

• Apply recursion relation for k = 0
a1 = 4a0

3

• Apply recursion relation for k = 1
a2 = 6a1

7

• Express in terms of a0
a2 = 8a0

7

• Apply recursion relation for k = 2
a3 = a2

2

• Express in terms of a0
a3 = 4a0

7

• Apply recursion relation for k = 3
a4 = 2a3

9

• Express in terms of a0
a4 = 8a0

63

• Terminating series solution of the ODE for r = 6 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4)
• Combine solutions and rename parameters[

y(x) =
(

8∑
k=0

akx
k+1
)
+ b0 ·

(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4) , ak+1 = −2(k−9)ak
k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 62� �
dsolve(x^2*(2*x+1)*diff(diff(y(x),x),x)-2*x*(3+14*x)*diff(y(x),x)+(6+100*x)*y(x) = 0,

y(x),singsol=all)� �
y = 8c2x10+36c2x9+72c2x8+84c2x7+63c2x6+2016c1x5+672c1x4+144c1x3+18c1x2+c1x

Mathematica DSolve solution

Solving time : 0.097 (sec)
Leaf size : 44� �
DSolve[{x^2*(1+2*x)*D[y[x],{x,2}]-2*x*(3+14*x)*D[y[x],x]+(6+100*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x(2x+ 1)9 − c2x(2016x4 + 672x3 + 144x2 + 18x+ 1)

20160
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2.1.600 problem 616

Solved as second order ode using Kovacic algorithm . . . . . . . . .4040
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4044
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4046
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4046
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4046

Internal problem ID [9448]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 616
Date solved : Thursday, December 12, 2024 at 10:12:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − x(6 + 11x) y′ + (6 + 32x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−11x2 − 6x

)
y′ + (6 + 32x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −11x2 − 6x (3)
C = 6 + 32x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 + 4x+ 24
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 15x2 + 4x+ 24

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 + 4x+ 24
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1145: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
x2 + 11

1 + x
− 11

x
+ 35

4 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 + 4x+ 24

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 + 4x+ 24
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 7
2 −5

2

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 7
2 (1 + x) −

2
x
+ (0)

= 7
2 (1 + x) −

2
x

= 3x− 4
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
2 (1 + x) −

2
x

)
(1) +

((
− 7
2 (1 + x)2

+ 2
x2

)
+
(

7
2 (1 + x) −

2
x

)2

−
(
15x2 + 4x+ 24
4 (x2 + x)2

))
= 0

−4− 3a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −4

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 4

3

)
e
∫ ( 7

2(1+x)−
2
x

)
dx

=
(
x− 4

3

)
e−2 ln(x)+ 7 ln(1+x)

2

=
(
x− 4

3

)
(1 + x)7/2

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−11x2−6x
x2(1+x) dx

= z1e
3 ln(x)+ 5 ln(1+x)

2

= z1
(
x3(1 + x)5/2

)
Which simplifies to

y1 = x(1 + x)6
(
x− 4

3

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−11x2−6x

x2(1+x) dx

(y1)2
dx

= y1

∫
e6 ln(x)+5 ln(1+x)

(y1)2
dx

= y1

(
−3 e6 ln(x)+5 ln(1+x)(35x3 + 42x2 + 21x+ 4)

140 (3x− 4)x6 (1 + x)11
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x(1 + x)6

(
x− 4

3

))
+ c2

(
x(1 + x)6

(
x− 4

3

)(
−3 e6 ln(x)+5 ln(1+x)(35x3 + 42x2 + 21x+ 4)

140 (3x− 4)x6 (1 + x)11
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− x(6 + 11x)

(
d
dx
y(x)

)
+ (6 + 32x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2(3+16x)y(x)
(x+1)x2 +

(6+11x)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(6+11x)

(
d
dx

y(x)
)

x(x+1) + 2(3+16x)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6+11x
x(x+1) , P3(x) = 2(3+16x)

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −5

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
− x(6 + 11x)

(
d
dx
y(x)

)
+ (6 + 32x) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−11u2 + 16u− 5)

(
d
du
y(u)

)
+ (−26 + 32u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−6 + r)u−1+r + (a1(1 + r) (−5 + r)− 2a0(r2 − 9r + 13))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 5 + r)− 2ak(k2 + 2kr + r2 − 9k − 9r + 13) + ak−1(k − 5 + r) (k − 9 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term must be 0
a1(1 + r) (−5 + r)− 2a0(r2 − 9r + 13) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + 2((−2ak + ak−1 + ak+1) r + 9ak − 7ak−1 − 2ak+1) k + (−2ak + ak−1 + ak+1) r2 + 2(9ak − 7ak−1 − 2ak+1) r − 26ak + 45ak−1 − 5ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + 2((−2ak+1 + ak + ak+2) r + 9ak+1 − 7ak − 2ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + 2(9ak+1 − 7ak − 2ak+2) r − 26ak+1 + 45ak − 5ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−12kak+14kak+1−12rak+14rak+1+32ak−10ak+1

k2+2kr+r2−2k−2r−8

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−12kak+14kak+1+32ak−10ak+1

k2−2k−8

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4

ak+2 = −k2ak−2k2ak+1−12kak+14kak+1+32ak−10ak+1
k2−2k−8

• Recursion relation for r = 6
ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1

k2+10k+16

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1

k2+10k+16 , 7a1 + 10a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+6 , ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1
k2+10k+16 , 7a1 + 10a0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 45� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-x*(6+11*x)*diff(y(x),x)+(6+32*x)*y(x) = 0,

y(x),singsol=all)� �
y = 3c1x8 + 14c1x7 + 21c1x6 + 35c2x4 + 42c2x3 + 21c2x2 + 4c2x

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 45� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-x*(6+11*x)*D[y[x],x]+(6+32*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3c1x(x+ 1)6(3x− 4)− 1
140c2x

(
35x3 + 42x2 + 21x+ 4

)
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2.1.601 problem 617

Solved as second order ode using Kovacic algorithm . . . . . . . . .4047
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4051
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4052
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4053
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4053

Internal problem ID [9449]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 617
Date solved : Thursday, December 12, 2024 at 10:12:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(1 + x) y′′ + 4x(1 + 4x) y′ − (49 + 27x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as(
4x3 + 4x2) y′′ + (16x2 + 4x

)
y′ + (−27x− 49) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 + 4x2

B = 16x2 + 4x (3)
C = −27x− 49

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35x2 + 80x+ 48
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = 35x2 + 80x+ 48

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
35x2 + 80x+ 48

4 (x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1147: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 12
x2 + 3

4 (1 + x)2
+ 4

1 + x
− 4

x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 12. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 4

α−
c = 1

2 −
√
1 + 4b = −3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 35x2 + 80x+ 48

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 35x2 + 80x+ 48
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

0 2 0 4 −3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 7

2 −
(
7
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2 (1 + x) +

4
x
+ (0)

= − 1
2 (1 + x) +

4
x

= 7x+ 8
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (1 + x) +

4
x

)
(0) +

((
1

2 (1 + x)2
− 4

x2

)
+
(
− 1
2 (1 + x) +

4
x

)2

−
(
35x2 + 80x+ 48

4 (x2 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(1+x)+

4
x

)
dx

= x4
√
1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
16x2+4x
4x3+4x2 dx

= z1e
− ln(x)

2 − 3 ln(1+x)
2

= z1

(
1

√
x (1 + x)3/2

)

Which simplifies to

y1 =
x7/2

(1 + x)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 16x2+4x

4x3+4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)−3 ln(1+x)

(y1)2
dx

= y1

(
−(7x+ 6) (1 + x)3 e− ln(x)−3 ln(1+x)

42x6

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x7/2

(1 + x)2
)
+ c2

(
x7/2

(1 + x)2

(
−(7x+ 6) (1 + x)3 e− ln(x)−3 ln(1+x)

42x6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(4x+ 1)

(
d
dx
y(x)

)
− (49 + 27x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (49+27x)y(x)
4x2(x+1) −

(4x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4x+1)

(
d
dx

y(x)
)

x(x+1) − (49+27x)y(x)
4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x+1
x(x+1) , P3(x) = − 49+27x

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4x2(x+ 1)
(

d2

dx2y(x)
)
+ 4x(4x+ 1)

(
d
dx
y(x)

)
+ (−27x− 49) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (16u2 − 28u+ 12)

(
d
du
y(u)

)
+ (−27u− 22) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(2 + r)u−1+r + (4a1(1 + r) (3 + r)− 2a0(4r2 + 10r + 11))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (k + 3 + r)− 2ak(4k2 + 8kr + 4r2 + 10k + 10r + 11) + ak−1(2k + 7 + 2r) (2k − 5 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• Each term must be 0
4a1(1 + r) (3 + r)− 2a0(4r2 + 10r + 11) = 0

• Each term in the series must be 0, giving the recursion relation
4(−2ak + ak−1 + ak+1) k2 + 4(2(−2ak + ak−1 + ak+1) r − 5ak + ak−1 + 4ak+1) k + 4(−2ak + ak−1 + ak+1) r2 + 4(−5ak + ak−1 + 4ak+1) r − 22ak − 35ak−1 + 12ak+1 = 0

• Shift index using k− >k + 1
4(−2ak+1 + ak + ak+2) (k + 1)2 + 4(2(−2ak+1 + ak + ak+2) r − 5ak+1 + ak + 4ak+2) (k + 1) + 4(−2ak+1 + ak + ak+2) r2 + 4(−5ak+1 + ak + 4ak+2) r − 22ak+1 − 35ak + 12ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+12kak−36kak+1+12rak−36rak+1−27ak−50ak+1

4(k2+2kr+r2+6k+6r+8)

• Recursion relation for r = −2
ak+2 = −4k2ak−8k2ak+1−4kak−4kak+1−35ak−10ak+1

4(k2+2k)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 0

ak+2 = −4k2ak−8k2ak+1−4kak−4kak+1−35ak−10ak+1
4(k2+2k)

• Recursion relation for r = 0
ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1

4(k2+6k+8)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1

4(k2+6k+8) , 12a1 − 22a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1
4(k2+6k+8) , 12a1 − 22a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 26� �
dsolve(4*x^2*(x+1)*diff(diff(y(x),x),x)+4*x*(4*x+1)*diff(y(x),x)-(49+27*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

7 + 7c2x+ 6c2
(x+ 1)2 x7/2

Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 36� �
DSolve[{4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(1+4*x)*D[y[x],x]-(49+27*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 42c1x7 − 7c2x− 6c2

42x7/2(x+ 1)2
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2.1.602 problem 618

Solved as second order ode using Kovacic algorithm . . . . . . . . .4054
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4058
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4059
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4060
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4060

Internal problem ID [9450]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 618
Date solved : Thursday, December 12, 2024 at 10:12:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−2x2 + 7

)
y′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.342 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 − 7x

)
y′ + 12y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 − 7x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −30x2 + 15
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −30x2 + 15

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−30x2 + 15
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1149: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 45
16 (x− i)2

+ 45
16 (x+ i)2

+ 75i
16 (x− i) −

75i
16 (x+ i) +

15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 45

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −30x2 + 15
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

i 2 0 9
4 −5

4

−i 2 0 9
4 −5

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 5
2x − 5

4 (x− i) −
5

4 (x+ i) + (0)

= 5
2x − 5

4 (x− i) −
5

4 (x+ i)

= 5
2x (x2 + 1)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
2x − 5

4 (x− i) −
5

4 (x+ i)

)
(0) +

((
− 5
2x2 + 5

4 (x− i)2
+ 5

4 (x+ i)2
)
+
(

5
2x − 5

4 (x− i) −
5

4 (x+ i)

)2

−
(
−30x2 + 15
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

2x−
5

4(x−i)−
5

4(x+i)

)
dx

= x5/2

(x2 + 1)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3−7x
x4+x2 dx

= z1e
7 ln(x)

2 −
9 ln

(
x2+1

)
4

= z1

(
x7/2

(x2 + 1)9/4

)

Which simplifies to

y1 =
x6

(x2 + 1)7/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3−7x

x4+x2 dx

(y1)2
dx

= y1

∫
e7 ln(x)−

9 ln
(
x2+1

)
2

(y1)2
dx

= y1

−(x2 + 1)7/2

4x4 − 3(x2 + 1)7/2

8x2 + 3(x2 + 1)5/2

8 + 5(x2 + 1)3/2

8 + 15
√
x2 + 1
8

−
15 arctanh

(
1√

x2+1

)
8
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x6

(x2 + 1)7/2

)

+c2

 x6

(x2 + 1)7/2

−(x2 + 1)7/2

4x4 − 3(x2 + 1)7/2

8x2 +3(x2 + 1)5/2

8 +5(x2 + 1)3/2

8 +15
√
x2 + 1
8 −

15 arctanh
(

1√
x2+1

)
8



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−2x2 + 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 12y(x)
x2(x2+1) −

(
2x2−7

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2−7

)(
d
dx

y(x)
)

x(x2+1) + 12y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2−7
x(x2+1) , P3(x) = 12

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 12

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 − 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−6 + r)xr + a1(−1 + r) (−5 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 6) + ak−2(k + r − 2) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 6}

• Each term must be 0
a1(−1 + r) (−5 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 6) + ak−2(k + r − 1)) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k − 4 + r) + ak(k + r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

k−4+r

• Recursion relation for r = 2
ak+2 = −ak(k+3)

k−2

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+2 = −ak(k+3)

k−2

• Recursion relation for r = 6
ak+2 = −ak(k+7)

k+2

• Solution for r = 6[
y(x) =

∞∑
k=0

akx
k+6, ak+2 = −ak(k+7)

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.054 (sec)
Leaf size : 56� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-2*x^2+7)*diff(y(x),x)+12*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
−15 arctanh

(
1√

x2+1

)
c2x

4 + c2(8x4 − 9x2 − 2)
√
x2 + 1 + c1x

4
)

(x2 + 1)7/2

Mathematica DSolve solution

Solving time : 0.149 (sec)
Leaf size : 88� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(7-2*x^2)*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
−15c2x6arctanh

(√
x2 + 1

)
− 2c2

√
x2 + 1x2 + 8x6(c2√x2 + 1 + c1

)
− 9c2

√
x2 + 1x4

8 (x2 + 1)7/2
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2.1.603 problem 619

Solved as second order ode using Kovacic algorithm . . . . . . . . .4061
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4065
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4067
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4067
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4067

Internal problem ID [9451]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 619
Date solved : Thursday, December 12, 2024 at 10:12:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x
(
−x2 + 7

)
y′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.317 (sec)

Writing the ode as

x2y′′ +
(
x3 − 7x

)
y′ + 12y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 − 7x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 12x2 + 15
4x2 (6)

Comparing the above to (5) shows that

s = x4 − 12x2 + 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x4 − 12x2 + 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1151: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2

4 − 3 + 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
x
− 21

4x3 − 63
2x5 − 3465

16x7 − 13041
8x9 − 417501

32x11 − 1744659
16x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x4 − 12x2 + 15
4x2

= Q+ R

4x2

=
(
x2

4 − 3
)
+
(

15
4x2

)
= x2

4 − 3 + 15
4x2

We see that the coefficient of the term x in the quotient is −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1
2

− 1
)

= −7
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1
2

− 1
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x4 − 12x2 + 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −7

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 5
2x + (−)

(x
2

)
= 5

2x − x

2
= 5

2x − x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
2x − x

2

)
(0) +

((
− 5
2x2 − 1

2

)
+
(

5
2x − x

2

)2

−
(
x4 − 12x2 + 15

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

2x−
x
2
)
dx

= x5/2e−x2
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−7x

x2 dx

= z1e
−x2

4 + 7 ln(x)
2

= z1
(
x7/2e−x2

4

)
Which simplifies to

y1 = x6e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3−7x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 +7 ln(x)

(y1)2
dx

= y1

− ex2
2

4x4 − ex2
2

8x2 −
Ei1
(
−x2

2

)
16


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x6e−x2

2

)
+ c2

x6e−x2
2

− ex2
2

4x4 − ex2
2

8x2 −
Ei1
(
−x2

2

)
16



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(−x2 + 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2 −

(
x2−7

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−7

)(
d
dx

y(x)
)

x
+ 12y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions
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[
P2(x) = x2−7

x
, P3(x) = 12

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 12

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 − 7)

(
d
dx
y(x)

)
+ 12y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−6 + r)xr + a1(−1 + r) (−5 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 6) + ak−2(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 6}

• Each term must be 0
a1(−1 + r) (−5 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 6) + ak−2) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k − 4 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k−4+r

• Recursion relation for r = 2
ak+2 = − ak

k−2

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+2 = − ak

k−2

• Recursion relation for r = 6
ak+2 = − ak

k+2
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• Solution for r = 6[
y(x) =

∞∑
k=0

akx
k+6, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 47� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(-x^2+7)*diff(y(x),x)+12*y(x) = 0,

y(x),singsol=all)� �
y = x2

(
Ei1
(
−x2

2

)
e−x2

2 c2x
4 + e−x2

2 c1x
4 + 2c2x2 + 4c2

)

Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 61� �
DSolve[{x^2*D[y[x],{x,2}]-x*(7-x^2)*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

16c2e
−x2

2 x6 ExpIntegralEi
(
x2

2

)
− 1

8c2
(
x2 + 2

)
x2 + c1e

−x2
2 x6
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2.1.604 problem 620

Solved as second order ode using Kovacic algorithm . . . . . . . . .4068
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4073
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4074
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4075
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4075

Internal problem ID [9452]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 620
Date solved : Thursday, December 12, 2024 at 10:12:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
2x2 + 1

)
y′ −

(
−10x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.379 (sec)

Writing the ode as

x2y′′ +
(
2x3 + x

)
y′ +

(
10x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x3 + x (3)
C = 10x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 − 32x2 + 3
4x2 (6)

Comparing the above to (5) shows that

s = 4x4 − 32x2 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 − 32x2 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1153: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2 − 8 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x− 4

x
− 61

8x3 − 61
2x5 − 19337

128x7 − 26779
32x9 − 5083557

1024x11 − 7896633
256x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 − 32x2 + 3
4x2

= Q+ R

4x2

=
(
x2 − 8

)
+
(

3
4x2

)
= x2 − 8 + 3

4x2

We see that the coefficient of the term x in the quotient is −8. Now b can be found.

b = (−8)− (0)
= −8

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−8
1 − 1

)
= −9

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−8

1 − 1
)

= 7
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 − 32x2 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x −9
2

7
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

2 then

d = α−
∞ −

(
α+
c1

)
= 7

2 −
(
3
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
2x + (−) (x)

= 3
2x − x

= 3
2x − x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

3
2x − x

)
(2x+ a1) +

((
− 3
2x2 − 1

)
+
(

3
2x − x

)2

−
(
4x4 − 32x2 + 3

4x2

))
= 0

2x2a1 + (4a0 + 8)x+ 3a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2

)
e
∫ ( 3

2x−x
)
dx

=
(
x2 − 2

)
e−x2

2 + 3 ln(x)
2

=
(
x2 − 2

)
x3/2e−x2

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+x

x2 dx

= z1e
−x2

2 − ln(x)
2

= z1

(
e−x2

2
√
x

)

Which simplifies to

y1 = x e−x2(
x2 − 2

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+x

x2 dx

(y1)2
dx

= y1

∫
e−x2−ln(x)

(y1)2
dx

= y1

(∫ e−x2−ln(x)e2x2

x2 (x2 − 2)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x2(

x2 − 2
))

+ c2

(
x e−x2(

x2 − 2
)(∫ e−x2−ln(x)e2x2

x2 (x2 − 2)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(2x2 + 1)

(
d
dx
y(x)

)
− (−10x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
10x2−1

)
y(x)

x2 −
(
2x2+1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+1

)(
d
dx

y(x)
)

x
+
(
10x2−1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2x2+1

x
, P3(x) = 10x2−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(2x2 + 1)

(
d
dx
y(x)

)
+ (10x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr + a1(2 + r) r x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 1) + 2ak−2(k + 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 1}
• Each term must be 0

a1(2 + r) r = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 1) (k + r − 1) + 2ak−2(k + 3 + r) = 0
• Shift index using k− >k + 2

ak+2(k + 3 + r) (k + r + 1) + 2ak(k + r + 5) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 2ak(k+r+5)
(k+3+r)(k+r+1)

• Recursion relation for r = −1
ak+2 = −2ak(k+4)

(k+2)k

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −2ak(k+4)

(k+2)k , a1 = 0
]

• Recursion relation for r = 1
ak+2 = − 2ak(k+6)

(k+4)(k+2)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − 2ak(k+6)

(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −2ak(4+k)

(k+2)k , a1 = 0, bk+2 = − 2bk(k+6)
(4+k)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
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<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed
<- Kovacics algorithm successful`� �

Maple dsolve solution

Solving time : 0.047 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(2*x^2+1)*diff(y(x),x)-(-10*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −e−x2

x(x2 − 2) (c1 − 2c2)
2

Mathematica DSolve solution

Solving time : 0.141 (sec)
Leaf size : 68� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1+2*x^2)*D[y[x],x]-(1-10*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−x2
(
c2(x2 − 2)x2 ExpIntegralEi (x2) + 4c1x4 − x2

(
c2e

x2 + 8c1
)
+ c2e

x2
)

4x
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2.1.605 problem 621

Solved as second order ode using Kovacic algorithm . . . . . . . . .4076
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4080
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4082
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4082
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4082

Internal problem ID [9453]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 621
Date solved : Thursday, December 12, 2024 at 10:12:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
−2x2 + 1

)
y′ − 4

(
2x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.310 (sec)

Writing the ode as

x2y′′ +
(
−2x3 + x

)
y′ +

(
−8x2 − 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x3 + x (3)
C = −8x2 − 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x4 + 24x2 + 15
4x2 (6)

Comparing the above to (5) shows that

s = 4x4 + 24x2 + 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x4 + 24x2 + 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1155: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = x2 + 6 + 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x+ 3

x
− 21

8x3 + 63
8x5 − 3465

128x7 + 13041
128x9 − 417501

1024x11 + 1744659
1024x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x4 + 24x2 + 15
4x2

= Q+ R

4x2

=
(
x2 + 6

)
+
(

15
4x2

)
= x2 + 6 + 15

4x2

We see that the coefficient of the term x in the quotient is 6. Now b can be found.

b = (6)− (0)
= 6

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
6
1 − 1

)
= 5

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−6
1 − 1

)
= −7

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x4 + 24x2 + 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x 5
2 −7

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1

)
= 5

2 −
(
5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 5
2x + (x)

= 5
2x + x

= 5
2x + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

5
2x + x

)
(0) +

((
− 5
2x2 + 1

)
+
(

5
2x + x

)2

−
(
4x4 + 24x2 + 15

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 5

2x+x
)
dx

= x5/2ex2
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+x

x2 dx

= z1e
x2
2 − ln(x)

2

= z1

(
ex2

2
√
x

)

Which simplifies to

y1 = x2ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+x

x2 dx

(y1)2
dx

= y1

∫
ex

2−ln(x)

(y1)2
dx

= y1

(
−e−x2

4x4 + e−x2

4x2 − Ei1 (x2)
4

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex2

)
+ c2

(
x2ex2

(
−e−x2

4x4 + e−x2

4x2 − Ei1 (x2)
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(−2x2 + 1)

(
d
dx
y(x)

)
− 4(2x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4
(
2x2+1

)
y(x)

x2 +
(
2x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
2x2−1

)(
d
dx

y(x)
)

x
− 4

(
2x2+1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x2−1

x
, P3(x) = −4

(
2x2+1

)
x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(2x2 − 1)

(
d
dx
y(x)

)
+ (−8x2 − 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 2ak−2(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term must be 0
a1(3 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r − 2)− 2ak−2) = 0

• Shift index using k− >k + 2
(k + r + 4) (ak+2(k + r)− 2ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2ak

k+r

• Recursion relation for r = −2
ak+2 = 2ak

k−2
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• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 2ak

k−2

• Recursion relation for r = 2
ak+2 = 2ak

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 2ak

k+2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 39� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-2*x^2+1)*diff(y(x),x)-4*(2*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = ex2 Ei1 (x2) c2x4 + c1x

4ex2 − c2x
2 + c2

x2

Mathematica DSolve solution

Solving time : 0.086 (sec)
Leaf size : 46� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1-2*x^2)*D[y[x],x]-4*(1+2*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

c2
(
ex

2
x4 ExpIntegralEi (−x2) + x2 − 1

)
4x2 + c1e

x2
x2
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2.1.606 problem 622

Solved as second order ode using Kovacic algorithm . . . . . . . . .4083
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4088
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4089
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4090
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4090

Internal problem ID [9454]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 622
Date solved : Thursday, December 12, 2024 at 10:12:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
−3x2 + 1

)
y′ − 4

(
−3x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.622 (sec)

Writing the ode as

x2y′′ +
(
−3x3 + x

)
y′ +

(
12x2 − 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −3x3 + x (3)
C = 12x2 − 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x4 − 60x2 + 15
4x2 (6)

Comparing the above to (5) shows that

s = 9x4 − 60x2 + 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
9x4 − 60x2 + 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1157: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9x2

4 − 15 + 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3x

2 − 5
x
− 85

12x3 − 425
18x5 − 41225

432x7 − 278375
648x9 − 1787125

864x11 − 40534375
3888x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 3x
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 9x4 − 60x2 + 15
4x2

= Q+ R

4x2

=
(
9x2

4 − 15
)
+
(

15
4x2

)
= 9x2

4 − 15 + 15
4x2

We see that the coefficient of the term x in the quotient is −15. Now b can be found.

b = (−15)− (0)
= −15

Hence

[
√
r]∞ = 3x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−15

3
2

− 1
)

= −11
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−15

3
2

− 1
)

= 9
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x4 − 60x2 + 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 3x
2 −11

2
9
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 9

2 then

d = α−
∞ −

(
α+
c1

)
= 9

2 −
(
5
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 5
2x + (−)

(
3x
2

)
= 5

2x − 3x
2

= 5
2x − 3x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

5
2x − 3x

2

)
(2x+ a1) +

((
− 5
2x2 − 3

2

)
+
(

5
2x − 3x

2

)2

−
(
9x4 − 60x2 + 15

4x2

))
= 0

3x2a1 + 6(2 + a0)x+ 5a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2

)
e
∫ ( 5

2x−
3x
2
)
dx

=
(
x2 − 2

)
e− 3x2

4 + 5 ln(x)
2

=
(
x2 − 2

)
x5/2e− 3x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x3+x

x2 dx

= z1e
3x2
4 − ln(x)

2

= z1

(
e 3x2

4
√
x

)

Which simplifies to
y1 =

(
x2 − 2

)
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x3+x

x2 dx

(y1)2
dx

= y1

∫
e

3x2
2 −ln(x)

(y1)2
dx

= y1

(∫ e 3x2
2 −ln(x)

(x2 − 2)2 x4
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((
x2 − 2

)
x2)+ c2

((
x2 − 2

)
x2

(∫ e 3x2
2 −ln(x)

(x2 − 2)2 x4
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(−3x2 + 1)

(
d
dx
y(x)

)
− 4(−3x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4
(
3x2−1

)
y(x)

x2 +
(
3x2−1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
3x2−1

)(
d
dx

y(x)
)

x
+ 4

(
3x2−1

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −3x2−1

x
, P3(x) = 4

(
3x2−1

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− (3x2 − 1)x

(
d
dx
y(x)

)
+ (12x2 − 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 3ak−2(k − 6 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(2 + r) (−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−2, 2}
• Each term must be 0

a1(3 + r) (−1 + r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 2) (k + r − 2)− 3ak−2(k − 6 + r) = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r)− 3ak(k + r − 4) = 0
• Recursion relation that defines series solution to ODE

ak+2 = 3ak(k+r−4)
(k+4+r)(k+r)

• Recursion relation for r = −2 ; series terminates at k = 6
ak+2 = 3ak(k−6)

(k+2)(k−2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 3ak(k−6)

(k+2)(k−2)

• Recursion relation for r = 2 ; series terminates at k = 2
ak+2 = 3ak(k−2)

(k+6)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = 3ak(k−2)

(k+6)(k+2) , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 19� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-3*x^2+1)*diff(y(x),x)-4*(-3*x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = −x2(x2 − 2) (c1 − c2)

2

Mathematica DSolve solution

Solving time : 0.14 (sec)
Leaf size : 89� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1-3*x^2)*D[y[x],x]-4*(1-3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

64

(
27c2

(
x2 − 2

)
x2 ExpIntegralEi

(
3x2

2

)
+ 64c1x4 − 2x2

(
9c2e

3x2
2 + 64c1

)
+ 24c2e

3x2
2 + 8c2e

3x2
2

x2

)
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2.1.607 problem 623

Solved as second order ode using Kovacic algorithm . . . . . . . . .4091
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4095
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4096
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4097
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4097

Internal problem ID [9455]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 623
Date solved : Thursday, December 12, 2024 at 10:12:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ + x

(
11x2 + 5

)
y′ + 24x2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.434 (sec)

Writing the ode as (
x4 + x2) y′′ + (11x3 + 5x

)
y′ + 24x2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 11x3 + 5x (3)
C = 24x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x4 + 6x2 + 15
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 3x4 + 6x2 + 15

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x4 + 6x2 + 15
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1159: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
+ 9i

4 (x− i) −
9i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x4 + 6x2 + 15

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x4 + 6x2 + 15
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= − 3
2x + 3

2 (x− i) +
3

2 (x+ i) + (0)

= − 3
2x + 3

2 (x− i) +
3

2 (x+ i)

= − 3
2x + 3x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x + 3

2 (x− i) +
3

2 (x+ i)

)
(0) +

((
3
2x2 − 3

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 3
2x + 3

2 (x− i) +
3

2 (x+ i)

)2

−
(
3x4 + 6x2 + 15
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2x+

3
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+5x
x4+x2 dx

= z1e
− 5 ln(x)

2 −
3 ln

(
x2+1

)
2

= z1

(
1

x5/2 (x2 + 1)3/2

)

Which simplifies to

y1 =
1
x4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+5x

x4+x2 dx

(y1)2
dx

= y1

∫
e−5 ln(x)−3 ln

(
x2+1

)
(y1)2

dx

= y1

(
−(x2 + 1) (2x2 + 1)x5e−5 ln(x)−3 ln

(
x2+1

)
4

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x4

)
+ c2

(
1
x4

(
−(x2 + 1) (2x2 + 1)x5e−5 ln(x)−3 ln

(
x2+1

)
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(11x2 + 5)

(
d
dx
y(x)

)
+ 24x2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −24y(x)
x2+1 −

(
11x2+5

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+5

)(
d
dx

y(x)
)

x(x2+1) + 24y(x)
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x2+5
x(x2+1) , P3(x) = 24

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 + 1)
(

d2

dx2y(x)
)
+ (11x2 + 5)

(
d
dx
y(x)

)
+ 24xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(4 + r)x−1+r + a1(1 + r) (5 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 5 + r) + ak−1(k + 5 + r) (k + 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−4, 0}

• Each term must be 0
a1(1 + r) (5 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 5 + r) (ak+1(k + r + 1) + ak−1(k + 3 + r)) = 0

• Shift index using k− >k + 1
(k + r + 6) (ak+2(k + 2 + r) + ak(k + r + 4)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+4)

k+2+r

• Recursion relation for r = −4
ak+2 = − akk

k−2

• Series not valid for r = −4 , division by 0 in the recursion relation at k = 2
ak+2 = − akk

k−2

• Recursion relation for r = 0
ak+2 = −ak(k+4)

k+2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −ak(k+4)

k+2 , 5a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 28� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(11*x^2+5)*diff(y(x),x)+24*x^2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

4 + 2c2x2 + c2

(x2 + 1)2 x4

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 36� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]+x*(5+11*x^2)*D[y[x],x]+24*x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −−4c1x4 + 2c2x2 + c2

4x4 (x2 + 1)2
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2.1.608 problem 624

Solved as second order ode using Kovacic algorithm . . . . . . . . .4098
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4102
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4103
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4104
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4104

Internal problem ID [9456]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 624
Date solved : Thursday, December 12, 2024 at 10:12:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 1
)
y′′ + 8xy′ −

(
−x2 + 35

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.408 (sec)

Writing the ode as (
4x4 + 4x2) y′′ + 8xy′ +

(
x2 − 35

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x2

B = 8x (3)
C = x2 − 35

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x4 + 22x2 + 35
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = −x4 + 22x2 + 35

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x4 + 22x2 + 35

4 (x3 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1161: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
+ 21i

4 (x− i) −
21i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x4 + 22x2 + 35

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x4 + 22x2 + 35
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 5
2x + 3

2 (x− i) +
3

2 (x+ i) + (−) (0)

= − 5
2x + 3

2 (x− i) +
3

2 (x+ i)

= − 5
2x + 3x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2x + 3

2 (x− i) +
3

2 (x+ i)

)
(0) +

((
5
2x2 − 3

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 5
2x + 3

2 (x− i) +
3

2 (x+ i)

)2

−
(
−x4 + 22x2 + 35

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 5
2x+

3
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x

4x4+4x2 dx

= z1e
− ln(x)+

ln
(
x2+1

)
2

= z1

(√
x2 + 1
x

)

Which simplifies to

y1 =
(x2 + 1)2

x7/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 8x

4x4+4x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)+ln

(
x2+1

)
(y1)2

dx

= y1

(
1

x2 + 1 − 1
4 (x2 + 1)2

+ ln (x2 + 1)
2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

x7/2

)
+ c2

(
(x2 + 1)2

x7/2

(
1

x2 + 1 − 1
4 (x2 + 1)2

+ ln (x2 + 1)
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
− (−x2 + 35) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−35

)
y(x)

4x2(x2+1) −
2
(

d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x(x2+1) +
(
x2−35

)
y(x)

4x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

(x2+1)x , P3(x) = x2−35
4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −35
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 8x

(
d
dx
y(x)

)
+ (x2 − 35) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + 2r) (−5 + 2r)xr + a1(9 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 7) (2k + 2r − 5) + ak−2(2k + 2r − 5)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−7

2 ,
5
2

}
• Each term must be 0

a1(9 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k − 5

2 + r
) ((

k − 5
2 + r

)
ak−2 + ak

(
k + r + 7

2

))
= 0

• Shift index using k− >k + 2
4
(
k − 1

2 + r
) ((

k − 1
2 + r

)
ak + ak+2

(
k + 11

2 + r
))

= 0
• Recursion relation that defines series solution to ODE

ak+2 = − (2k+2r−1)ak
2k+11+2r

• Recursion relation for r = −7
2 ; series terminates at k = 4

ak+2 = − (2k−8)ak
2k+4

• Solution for r = −7
2[

y(x) =
∞∑
k=0

akx
k− 7

2 , ak+2 = − (2k−8)ak
2k+4 , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − (2k+4)ak
2k+16

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − (2k+4)ak
2k+16 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 7

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − (2k−8)ak

2k+4 , a1 = 0, bk+2 = − (2k+4)bk
2k+16 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 42� �
dsolve(4*x^2*(x^2+1)*diff(diff(y(x),x),x)+8*diff(y(x),x)*x-(-x^2+35)*y(x) = 0,

y(x),singsol=all)� �
y =

(x2 + 1)2 c2 ln (x2 + 1) +
(
2x2 + 3

2

)
c2 + c1(x2 + 1)2

x7/2

Mathematica DSolve solution

Solving time : 0.112 (sec)
Leaf size : 53� �
DSolve[{4*x^2*(1+x^2)*D[y[x],{x,2}]+8*x*D[y[x],x]-(35-x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1(x2 + 1)2 + c2(4x2 + 3) + 2c2(x2 + 1)2 log (x2 + 1)

4x7/2
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2.1.609 problem 625

Solved as second order ode using Kovacic algorithm . . . . . . . . .4105
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4109
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4110
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4111
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4111

Internal problem ID [9457]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 625
Date solved : Thursday, December 12, 2024 at 10:12:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ − x

(
−x2 + 5

)
y′ −

(
25x2 + 7

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.397 (sec)

Writing the ode as (
x4 + x2) y′′ + (x3 − 5x

)
y′ +

(
−25x2 − 7

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = x3 − 5x (3)
C = −25x2 − 7

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 99x4 + 150x2 + 63
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 99x4 + 150x2 + 63

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
99x4 + 150x2 + 63

4 (x3 + x)2
)
z(x) (7)



chapter 2. book solved problems 4106

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1163: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 63
4x2 + 3

4 (x− i)2
+ 3

4 (x+ i)2
− 15i

4 (x− i) +
15i

4 (x+ i)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 63
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

2
α−
c = 1

2 −
√
1 + 4b = −7

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 99x4 + 150x2 + 63

4 (x3 + x)2

Since the gcd(s, t) = 1. This gives b = 99
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 11

2
α−
∞ = 1

2 −
√
1 + 4b = −9

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 99x4 + 150x2 + 63
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 9
2 −7

2

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 11
2 −9

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −9

2 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= −9

2 −
(
−9
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 7
2x − 1

2 (x− i) −
1

2 (x+ i) + (−) (0)

= − 7
2x − 1

2 (x− i) −
1

2 (x+ i)

= − 7
2x − x

x2 + 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 7
2x − 1

2 (x− i) −
1

2 (x+ i)

)
(0) +

((
7
2x2 + 1

2 (x− i)2
+ 1

2 (x+ i)2
)
+
(
− 7
2x − 1

2 (x− i) −
1

2 (x+ i)

)2

−
(
99x4 + 150x2 + 63

4 (x3 + x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 7
2x−

1
2(x−i)−

1
2(x+i)

)
dx

= 1
x7/2

√
x2 + 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3−5x
x4+x2 dx

= z1e
−

3 ln
(
x2+1

)
2 + 5 ln(x)

2

= z1

(
x5/2

(x2 + 1)3/2

)

Which simplifies to

y1 =
1

(x2 + 1)2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x3−5x

x4+x2 dx

(y1)2
dx

= y1

∫
e−3 ln

(
x2+1

)
+5 ln(x)

(y1)2
dx

= y1

(
x3(4x2 + 5) (x2 + 1)3 e−3 ln

(
x2+1

)
+5 ln(x)

40

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

(x2 + 1)2 x

)
+ c2

(
1

(x2 + 1)2 x

(
x3(4x2 + 5) (x2 + 1)3 e−3 ln

(
x2+1

)
+5 ln(x)

40

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
− x(−x2 + 5)

(
d
dx
y(x)

)
− (25x2 + 7) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
25x2+7

)
y(x)

x2(x2+1) −
(
x2−5

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2−5

)(
d
dx

y(x)
)

x(x2+1) −
(
25x2+7

)
y(x)

x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = x2−5

x(x2+1) , P3(x) = − 25x2+7
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −7

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(x2 − 5)

(
d
dx
y(x)

)
+ (−25x2 − 7) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−7 + r)xr + a1(2 + r) (−6 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 7) + ak−2(k + 3 + r) (k + r − 7))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 7}

• Each term must be 0
a1(2 + r) (−6 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 7) (ak(k + r + 1) + ak−2(k + 3 + r)) = 0

• Shift index using k− >k + 2
(k + r − 5) (ak+2(k + 3 + r) + ak(k + r + 5)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+5)

k+3+r

• Recursion relation for r = −1
ak+2 = −ak(k+4)

k+2

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

• Recursion relation for r = 7
ak+2 = −ak(k+12)

k+10

• Solution for r = 7[
y(x) =

∞∑
k=0

akx
k+7, ak+2 = −ak(k+12)

k+10 , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+7
)
, ak+2 = −ak(4+k)

k+2 , a1 = 0, bk+2 = − bk(k+12)
k+10 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 29� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)-x*(-x^2+5)*diff(y(x),x)-(25*x^2+7)*y(x) = 0,

y(x),singsol=all)� �
y = 4c2x10 + 5c2x8 + c1

x (x2 + 1)2

Mathematica DSolve solution

Solving time : 0.087 (sec)
Leaf size : 37� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]-x*(5-x^2)*D[y[x],x]-(7+25*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(4x2 + 5)x8 + 40c1

40x (x2 + 1)2
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2.1.610 problem 626

Solved as second order ode using Kovacic algorithm . . . . . . . . .4112
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4116
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4117
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4118
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4118

Internal problem ID [9458]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 626
Date solved : Thursday, December 12, 2024 at 10:12:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 + 1
)
y′′ + x

(
2x2 + 5

)
y′ − 21y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.412 (sec)

Writing the ode as (
x4 + x2) y′′ + (2x3 + 5x

)
y′ − 21y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4 + x2

B = 2x3 + 5x (3)
C = −21

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 78x2 + 99
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 78x2 + 99

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

78x2 + 99
4 (x3 + x)2

)
z(x) (7)



chapter 2. book solved problems 4113

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1165: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 21
16 (x− i)2

+ 21
16 (x+ i)2

+ 219i
16 (x− i) −

219i
16 (x+ i) +

99
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 99
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

2
α−
c = 1

2 −
√
1 + 4b = −9

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 21

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 78x2 + 99
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 11
2 −9

2

i 2 0 7
4 −3

4

−i 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 1− (−1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 9
2x + 7

4 (x− i) +
7

4 (x+ i) + (−) (0)

= − 9
2x + 7

4 (x− i) +
7

4 (x+ i)

= − 9
2x + 7x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 9
2x + 7

4 (x− i) +
7

4 (x+ i)

)
(2x+ a1) +

((
9
2x2 − 7

4 (x− i)2
− 7

4 (x+ i)2
)
+
(
− 9
2x + 7

4 (x− i) +
7

4 (x+ i)

)2

−
(

78x2 + 99
4 (x3 + x)2

))
= 0

(2xa0 − 16x− 9a1) (x2 + 1)
(x+ i)2 (−x+ i)2 x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 8

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 8

)
e
∫ (

− 9
2x+

7
4(x−i)+

7
4(x+i)

)
dx

=
(
x2 + 8

)
e

7 ln
(
x2+1

)
4 − 9 ln(x)

2

= (x2 + 8) (x2 + 1)7/4

x9/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3+5x
x4+x2 dx

= z1e
3 ln

(
x2+1

)
4 − 5 ln(x)

2

= z1

(
(x2 + 1)3/4

x5/2

)

Which simplifies to

y1 =
(x2 + 1)5/2 (x2 + 8)

x7

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3+5x

x4+x2 dx

(y1)2
dx

= y1

∫
e

3 ln
(
x2+1

)
2 −5 ln(x)

(y1)2
dx

= y1

−(35x6 + 140x4 + 168x2 + 64)x5e
3 ln

(
x2+1

)
2 −5 ln(x)

35 (x2 + 1)4 (x2 + 8)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)5/2 (x2 + 8)

x7

)

+ c2

(x2 + 1)5/2 (x2 + 8)
x7

−(35x6 + 140x4 + 168x2 + 64)x5e
3 ln

(
x2+1

)
2 −5 ln(x)

35 (x2 + 1)4 (x2 + 8)



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 + 5)

(
d
dx
y(x)

)
− 21y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 21y(x)
x2(x2+1) −

(
2x2+5

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
2x2+5

)(
d
dx

y(x)
)

x(x2+1) − 21y(x)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+5
x(x2+1) , P3(x) = − 21

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −21

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 + 1)
(

d2

dx2y(x)
)
+ x(2x2 + 5)

(
d
dx
y(x)

)
− 21y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + r) (−3 + r)xr + a1(8 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 7) (k + r − 3) + ak−2(k − 2 + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7, 3}

• Each term must be 0
a1(8 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 7) (k + r − 3) + ak−2(k − 2 + r) (k + r − 1) = 0

• Shift index using k− >k + 2
ak+2(k + 9 + r) (k + r − 1) + ak(k + r) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r)(k+r+1)

(k+9+r)(k+r−1)

• Recursion relation for r = −7 ; series terminates at k = 6
ak+2 = −ak(k−7)(k−6)

(k+2)(k−8)

• Solution for r = −7[
y(x) =

∞∑
k=0

akx
k−7, ak+2 = −ak(k−7)(k−6)

(k+2)(k−8) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = −ak(k+3)(k+4)

(k+12)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = −ak(k+3)(k+4)

(k+12)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−7
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = −ak(k−7)(k−6)

(k+2)(k−8) , a1 = 0, bk+2 = − bk(k+3)(4+k)
(k+12)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.035 (sec)
Leaf size : 41� �
dsolve(x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(2*x^2+5)*diff(y(x),x)-21*y(x) = 0,

y(x),singsol=all)� �
y =

c1(x2 + 1)5/2 (x2 + 8) + 35c2
(
x6 + 4x4 + 24

5 x
2 + 64

35

)
x7

Mathematica DSolve solution

Solving time : 0.162 (sec)
Leaf size : 52� �
DSolve[{x^2*(1+x^2)*D[y[x],{x,2}]+x*(5+2*x^2)*D[y[x],x]-21*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 35c1(x2 + 1)5/2 (x2 + 8)− c2(35x6 + 140x4 + 168x2 + 64)

35x7
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2.1.611 problem 627

Solved as second order ode using Kovacic algorithm . . . . . . . . .4119
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4123
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4124
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4125
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4125

Internal problem ID [9459]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 627
Date solved : Thursday, December 12, 2024 at 10:12:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2(x2 + 1
)
y′′ + 4x

(
x2 + 2

)
y′ −

(
x2 + 15

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.303 (sec)

Writing the ode as (
4x4 + 4x2) y′′ + (4x3 + 8x

)
y′ +

(
−x2 − 15

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x4 + 4x2

B = 4x3 + 8x (3)
C = −x2 − 15

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 10x2 + 15
4 (x3 + x)2

(6)

Comparing the above to (5) shows that

s = 10x2 + 15

t = 4
(
x3 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

10x2 + 15
4 (x3 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1167: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = i of order 2.
There is a pole at x = −i of order 2. Since there is no odd order pole larger than 2 and the
order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of
order 2 then necessary conditions for case two are met. Since pole order is not larger than
2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x− i)2

+ 5
16 (x+ i)2

+ 35i
16 (x− i) −

35i
16 (x+ i) +

15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = i let b be the coefficient of 1

(x−i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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For the pole at x = −i let b be the coefficient of 1
(x+i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 10x2 + 15
4 (x3 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (−)[

√
r]∞

= − 3
2x + 5

4 (x− i) +
5

4 (x+ i) + (−) (0)

= − 3
2x + 5

4 (x− i) +
5

4 (x+ i)

= − 3
2x + 5x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x + 5

4 (x− i) +
5

4 (x+ i)

)
(0) +

((
3
2x2 − 5

4 (x− i)2
− 5

4 (x+ i)2
)
+
(
− 3
2x + 5

4 (x− i) +
5

4 (x+ i)

)2

−
(

10x2 + 15
4 (x3 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2x+

5
4(x−i)+

5
4(x+i)

)
dx

= (x2 + 1)5/4

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x3+8x
4x4+4x2 dx

= z1e
ln

(
x2+1

)
4 −ln(x)

= z1

(
(x2 + 1)1/4

x

)

Which simplifies to

y1 =
(x2 + 1)3/2

x5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x3+8x

4x4+4x2 dx

(y1)2
dx

= y1

∫
e

ln
(
x2+1

)
2 −2 ln(x)

(y1)2
dx

= y1

−(3x2 + 2)x2e
ln

(
x2+1

)
2 −2 ln(x)

3 (x2 + 1)2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)3/2

x5/2

)
+ c2

(x2 + 1)3/2

x5/2

−(3x2 + 2)x2e
ln

(
x2+1

)
2 −2 ln(x)

3 (x2 + 1)2


Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(x2 + 2)

(
d
dx
y(x)

)
− (x2 + 15) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
x2+15

)
y(x)

4x2(x2+1) −
(
x2+2

)(
d
dx

y(x)
)

x(x2+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+2

)(
d
dx

y(x)
)

x(x2+1) −
(
x2+15

)
y(x)

4x2(x2+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = x2+2

x(x2+1) , P3(x) = − x2+15
4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −15
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2(x2 + 1)
(

d2

dx2y(x)
)
+ 4x(x2 + 2)

(
d
dx
y(x)

)
+ (−x2 − 15) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(5 + 2r) (−3 + 2r)xr + a1(7 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 3) + ak−2(2k + 2r − 3) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
3
2

}
• Each term must be 0

a1(7 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
((
k − 5

2 + r
)
ak−2 +

(
k + r + 5

2

)
ak
) (

k + r − 3
2

)
= 0

• Shift index using k− >k + 2
4
((
k − 1

2 + r
)
ak +

(
k + 9

2 + r
)
ak+2

) (
k + 1

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r−1)ak

2k+9+2r

• Recursion relation for r = −5
2

ak+2 = − (2k−6)ak
2k+4

• Solution for r = −5
2[

y(x) =
∞∑
k=0

akx
k− 5

2 , ak+2 = − (2k−6)ak
2k+4 , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − (2k+2)ak
2k+12

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − (2k+2)ak
2k+12 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − (2k−6)ak

2k+4 , a1 = 0, bk+2 = − (2k+2)bk
2k+12 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.067 (sec)
Leaf size : 27� �
dsolve(4*x^2*(x^2+1)*diff(diff(y(x),x),x)+4*x*(x^2+2)*diff(y(x),x)-(x^2+15)*y(x) = 0,

y(x),singsol=all)� �
y = c2(x2 + 1)3/2 + 3c1x2 + 2c1

x5/2

Mathematica DSolve solution

Solving time : 0.115 (sec)
Leaf size : 39� �
DSolve[{4*x^2*(1+x^2)*D[y[x],{x,2}]+4*x*(2+x^2)*D[y[x],x]-(15+x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 3c1(x2 + 1)3/2 − c2(3x2 + 2)

3x5/2
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2.1.612 problem 628

Solved as second order ode using Kovacic algorithm . . . . . . . . .4126
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4130
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4131
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4132
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4132

Internal problem ID [9460]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 628
Date solved : Thursday, December 12, 2024 at 10:12:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2(t+ 1) y′
t2 + 2t− 1 + 2y

t2 + 2t− 1 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as

y′′ + (−2t− 2) y′
t2 + 2t− 1 + 2y

t2 + 2t− 1 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = −2t− 2
t2 + 2t− 1 (3)

C = 2
t2 + 2t− 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6
(t2 + 2t− 1)2

(6)

Comparing the above to (5) shows that

s = 6

t =
(
t2 + 2t− 1

)2
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Therefore eq. (4) becomes

z′′(t) =
(

6
(t2 + 2t− 1)2

)
z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1169: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (t2 + 2t− 1)2. There is a pole at t =

√
2 − 1 of order 2. There is a pole at

t = −1−
√
2 of order 2. Since there is no odd order pole larger than 2 and the order at

∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2
then necessary conditions for case two are met. Since pole order is not larger than 2 and
the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4
(
t−

√
2 + 1

)2 + 3
4
(
t+ 1 +

√
2
)2 − 3

√
2

8
(
t−

√
2 + 1

) + 3
√
2

8
(
t+ 1 +

√
2
)

For the pole at t =
√
2− 1 let b be the coefficient of 1(

t−
√
2+1

)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at t = −1−
√
2 let b be the coefficient of 1(

t+1+
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6
(t2 + 2t− 1)2

pole c location pole order [
√
r]c α+

c α−
c√

2− 1 2 0 3
2 −1

2

−1−
√
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
) + (−) (0)

= − 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
)

= t+ 1− 2
√
2

t2 + 2t− 1
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
)) (0) +

( 1
2
(
t−

√
2 + 1

)2 − 3
2
(
t+ 1 +

√
2
)2
)

+
(
− 1
2
(
t−

√
2 + 1

) + 3
2
(
t+ 1 +

√
2
))2

−
(

6
(t2 + 2t− 1)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2
(
t−

√
2+1

)+ 3
2
(
t+1+

√
2
)
)
dt

=
(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2

−2t−2
t2+2t−1

1 dt

= z1e
ln

(
t2+2t−1

)
2

= z1
(√

t2 + 2t− 1
)

Which simplifies to

y1 =
√
t2 + 2t− 1

(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−

−2t−2
t2+2t−1

1 dt

(y1)2
dt

= y1

∫
eln
(
t2+2t−1

)
(y1)2

dt

= y1

( √
2(

t+ 1 +
√
2
)2 − 1

t+ 1 +
√
2

)

Therefore the solution is



chapter 2. book solved problems 4130

y = c1y1 + c2y2

= c1

(√
t2 + 2t− 1

(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

)

+ c2

(√
t2 + 2t− 1

(
t+ 1 +

√
2
)3/2√

t−
√
2 + 1

( √
2(

t+ 1 +
√
2
)2 − 1

t+ 1 +
√
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

d2

dt2
y(t)−

2(t+1)
(

d
dt
y(t)

)
t2+2t−1 + 2y(t)

t2+2t−1 = 0
• Highest derivative means the order of the ODE is 2

d2

dt2
y(t)

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = − 2(t+1)
t2+2t−1 , P3(t) = 2

t2+2t−1

]
◦
(
t+

√
2 + 1

)
· P2(t) is analytic at t = −

√
2− 1((

t+
√
2 + 1

)
· P2(t)

) ∣∣∣∣
t=−

√
2−1

= 0

◦
(
t+

√
2 + 1

)2 · P3(t) is analytic at t = −
√
2− 1((

t+
√
2 + 1

)2 · P3(t)
) ∣∣∣∣

t=−
√
2−1

= 0

◦ t = −
√
2− 1is a regular singular point

Check to see if t0 is a regular singular point
t0 = −

√
2− 1

• Multiply by denominators

(t2 + 2t− 1)
(

d2

dt2
y(t)

)
+ (−2t− 2)

(
d
dt
y(t)

)
+ 2y(t) = 0

• Change variables using t = u−
√
2− 1 so that the regular singular point is at u = 0(

u2 − 2u
√
2
) (

d2

du2y(u)
)
+
(
−2u+ 2

√
2
) (

d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2
√
2 (r − 2) ra0ur−1 +

(
∞∑
k=0

(
−2

√
2 (k + r − 1) (k + 1 + r) ak+1 + ak(k + r − 1) (k + r − 2)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2

√
2 (r − 2) r = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation(
−2ak+1(k + 1 + r)

√
2 + ak(k + r − 2)

)
(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−2)

√
2

4(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2

ak+1 = ak(k−2)
√
2

4(k+1)

• Apply recursion relation for k = 0
a1 = −a0

√
2

2

• Apply recursion relation for k = 1
a2 = −a1

√
2

8

• Express in terms of a0
a2 = a0

8

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1− u

√
2

2 + u2

8

)
• Revert the change of variables u = t+

√
2 + 1[

y(t) = a0
(

(−2t−2)
√
2

8 + t2

8 + t
4 +

3
8

)]
• Recursion relation for r = 2

ak+1 = akk
√
2

4(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

√
2

4(k+3)

]
• Revert the change of variables u = t+

√
2 + 1[

y(t) =
∞∑
k=0

ak
(
t+

√
2 + 1

)k+2
, ak+1 = akk

√
2

4(k+3)

]
• Combine solutions and rename parameters[

y(t) = a0
(

(−2t−2)
√
2

8 + t2

8 + t
4 +

3
8

)
+
(

∞∑
k=0

bk
(
t+

√
2 + 1

)k+2
)
, bk+1 = bkk

√
2

4(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 15� �
dsolve(diff(diff(y(t),t),t)-2*(t+1)/(t^2+2*t-1)*diff(y(t),t)+2/(t^2+2*t-1)*y(t) = 0,

y(t),singsol=all)� �
y = c2t

2 + c1t+ c1 + c2

Mathematica DSolve solution

Solving time : 0.299 (sec)
Leaf size : 64� �
DSolve[{D[y[t],{t,2}]-2*(t+1)/(t^2+2*t-1)*D[y[t],t]+2/(t^2+2*t-1)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

√
t2 + 2t− 1

(
c1
(
t2 − 2

(√
2− 1

)
t− 2

√
2 + 3

)
+ c2(t+ 1)

)
√
−t2 − 2t+ 1
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2.1.613 problem 629

Solved as second order ode using Kovacic algorithm . . . . . . . . .4133
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4135
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4136
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4136
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4136

Internal problem ID [9461]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 629
Date solved : Thursday, December 12, 2024 at 10:12:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4ty′ +
(
4t2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.091 (sec)

Writing the ode as

y′′ − 4ty′ +
(
4t2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4t (3)
C = 4t2 − 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1171: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain a
solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4t
1 dt

= z1e
t2

= z1
(
et2
)

Which simplifies to

y1 = et2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt
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Substituting gives

y2 = y1

∫
e
∫
−−4t

1 dt

(y1)2
dt

= y1

∫
e2t

2

(y1)2
dt

= y1(t)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
et2
)
+ c2

(
et2(t)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dt2
y(t)− 4t

(
d
dt
y(t)

)
+ (4t2 − 2) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..2

tm · y(t) =
∞∑

k=max(0,−m)
akt

k+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=max(0,−m)+m

ak−mt
k

◦ Convert t ·
(

d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

akk t
k

◦ Convert d2

dt2
y(t) to series expansion

d2

dt2
y(t) =

∞∑
k=2

akk(k − 1) tk−2

◦ Shift index using k− >k + 2
d2

dt2
y(t) =

∞∑
k=0

ak+2(k + 2) (k + 1) tk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1) t+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2) tk
)

= 0

• The coefficients of each power of t must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(t) =

∞∑
k=0

akt
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(t),t),t)-4*t*diff(y(t),t)+(4*t^2-2)*y(t) = 0,

y(t),singsol=all)� �
y = et2(c2t+ c1)

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 18� �
DSolve[{D[y[t],{t,2}]-4*t*D[y[t],t]+(4*t^2-2)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → et

2(c2t+ c1)
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2.1.614 problem 630

Solved as second order ode using Kovacic algorithm . . . . . . . . .4137
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4141
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4142
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4142
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4142

Internal problem ID [9462]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 630
Date solved : Thursday, December 12, 2024 at 10:12:48 AM
CAS classification : [_Gegenbauer]

Solve (
−t2 + 1

)
y′′ − 2ty′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as (
−t2 + 1

)
y′′ − 2ty′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −t2 + 1
B = −2t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2t2 − 3
(t2 − 1)2

(6)

Comparing the above to (5) shows that

s = 2t2 − 3

t =
(
t2 − 1

)2
Therefore eq. (4) becomes

z′′(t) =
(

2t2 − 3
(t2 − 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1173: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 − 1)2. There is a pole at t = 1 of order 2. There is a pole at t = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
4 (t− 1) −

1
4 (t+ 1)2

− 1
4 (t− 1)2

− 5
4 (t+ 1)

For the pole at t = 1 let b be the coefficient of 1
(t−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at t = −1 let b be the coefficient of 1

(t+1)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2t2 − 3

(t2 − 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2t2 − 3
(t2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

t− c2

)
+ (+)[

√
r]∞

= 1
2t− 2 + 1

2t+ 2 + (0)

= 1
2t− 2 + 1

2t+ 2
= t

t2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2t− 2 + 1

2t+ 2

)
(1) +

((
− 1
2 (t− 1)2

− 1
2 (t+ 1)2

)
+
(

1
2t− 2 + 1

2t+ 2

)2

−
(

2t2 − 3
(t2 − 1)2

))
= 0

− 2a0
t2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

= (t) e
∫ ( 1

2t−2+
1

2t+2

)
dt

= (t)
√

(t− 1) (t+ 1)
= t

√
t2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t

−t2+1 dt

= z1e
− ln(t−1)

2 − ln(t+1)
2

= z1

(
1√

t− 1
√
t+ 1

)
Which simplifies to

y1 =
t
√
t2 − 1√

t− 1
√
t+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2t

−t2+1 dt

(y1)2
dt

= y1

∫
e− ln(t−1)−ln(t+1)

(y1)2
dt

= y1

(
− ln (t+ 1)

2 + 1
t
+ ln (t− 1)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
t
√
t2 − 1√

t− 1
√
t+ 1

)
+ c2

(
t
√
t2 − 1√

t− 1
√
t+ 1

(
− ln (t+ 1)

2 + 1
t
+ ln (t− 1)

2

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 4141

Maple step by step solution

Let’s solve

(−t2 + 1)
(

d2

dt2
y(t)

)
− 2t

(
d
dt
y(t)

)
+ 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = 2y(t)

t2−1 −
2
(

d
dt
y(t)

)
t

t2−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

2
(

d
dt
y(t)

)
t

t2−1 − 2y(t)
t2−1 = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = 2t
t2−1 , P3(t) = − 2

t2−1

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1

• Multiply by denominators

(t2 − 1)
(

d2

dt2
y(t)

)
+ 2t

(
d
dt
y(t)

)
− 2y(t) = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = t+ 1
[y(t) = −a0t]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve((-t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = −c2 ln (t+ 1) t

2 + c2 ln (t− 1) t
2 + c1t+ c2

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 33� �
DSolve[{(1-t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1t−

1
2c2(t log(1− t)− t log(t+ 1) + 2)
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2.1.615 problem 631

Solved as second order ode using Kovacic algorithm . . . . . . . . .4143
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4147
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4147
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4147
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4147

Internal problem ID [9463]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 631
Date solved : Thursday, December 12, 2024 at 10:12:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
t2 + 1

)
y′′ − 2ty′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.312 (sec)

Writing the ode as (
t2 + 1

)
y′′ − 2ty′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2 + 1
B = −2t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(t2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
t2 + 1

)2
Therefore eq. (4) becomes

z′′(t) =
(
− 3
(t2 + 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1175: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 + 1)2. There is a pole at t = i of order 2. There is a pole at t = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (t− i)2

+ 3
4 (t+ i)2

+ 3i
4 (t− i) −

3i
4 (t+ i)

For the pole at t = i let b be the coefficient of 1
(t−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at t = −i let b be the coefficient of 1

(t+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(t2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
2 (t− i) +

3
2 (t+ i) + (−) (0)

= − 1
2 (t− i) +

3
2 (t+ i)

= t− 2i
t2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (t− i) +

3
2 (t+ i)

)
(0) +

((
1

2 (t− i)2
− 3

2 (t+ i)2
)
+
(
− 1
2 (t− i) +

3
2 (t+ i)

)2

−
(
− 3
(t2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(t−i)+

3
2(t+i)

)
dt

= (t2 + 1)3/2

(it+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t
t2+1 dt

= z1e
ln

(
t2+1

)
2

= z1
(√

t2 + 1
)

Which simplifies to

y1 =
(t2 + 1)2

(it+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2t

t2+1 dt

(y1)2
dt

= y1

∫
eln
(
t2+1

)
(y1)2

dt

= y1

(
− t

(t+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(t2 + 1)2

(it+ 1)2

)
+ c2

(
(t2 + 1)2

(it+ 1)2
(
− t

(t+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve((t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = c2t

2 + c1t− c2

Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 21� �
DSolve[{(1+t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c2t− c1(t− i)2
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2.1.616 problem 632

Solved as second order ode using Kovacic algorithm . . . . . . . . .4148
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4152
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4153
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4154
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4154

Internal problem ID [9464]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 632
Date solved : Thursday, December 12, 2024 at 10:12:49 AM
CAS classification : [_Gegenbauer]

Solve (
−t2 + 1

)
y′′ − 2ty′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.313 (sec)

Writing the ode as (
−t2 + 1

)
y′′ − 2ty′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −t2 + 1
B = −2t (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6t2 − 7
(t2 − 1)2

(6)

Comparing the above to (5) shows that

s = 6t2 − 7

t =
(
t2 − 1

)2
Therefore eq. (4) becomes

z′′(t) =
(

6t2 − 7
(t2 − 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1176: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 − 1)2. There is a pole at t = 1 of order 2. There is a pole at t = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (t+ 1)2

+ 13
4 (t− 1) −

13
4 (t+ 1) −

1
4 (t− 1)2

For the pole at t = 1 let b be the coefficient of 1
(t−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at t = −1 let b be the coefficient of 1

(t+1)2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 6t2 − 7

(t2 − 1)2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6t2 − 7
(t2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3− (1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

t− c2

)
+ (+)[

√
r]∞

= 1
2t− 2 + 1

2t+ 2 + (0)

= 1
2t− 2 + 1

2t+ 2
= t

t2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 2 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = t2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2t− 2 + 1

2t+ 2

)
(2t+ a1) +

((
− 1
2 (t− 1)2

− 1
2 (t+ 1)2

)
+
(

1
2t− 2 + 1

2t+ 2

)2

−
(

6t2 − 7
(t2 − 1)2

))
= 0

−4a1t− 6a0 − 2
t2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

3 , a1 = 0
}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t2 − 1
3

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t2 − 1

3

)
e
∫ ( 1

2t−2+
1

2t+2

)
dt

=
(
t2 − 1

3

)√
(t− 1) (t+ 1)

= (3t2 − 1)
√
t2 − 1

3
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2t

−t2+1 dt

= z1e
− ln(t−1)

2 − ln(t+1)
2

= z1

(
1√

t− 1
√
t+ 1

)

Which simplifies to

y1 =
(3t2 − 1)

√
t2 − 1

3
√
t− 1

√
t+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2t

−t2+1 dt

(y1)2
dt

= y1

∫
e− ln(t−1)−ln(t+1)

(y1)2
dt

= y1

(
9t

4
(
t2 − 1

3

) − 9 ln (t+ 1)
8 + 9 ln (t− 1)

8

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(3t2 − 1)

√
t2 − 1

3
√
t− 1

√
t+ 1

)
+c2

(
(3t2 − 1)

√
t2 − 1

3
√
t− 1

√
t+ 1

(
9t

4
(
t2 − 1

3

)− 9 ln (t+ 1)
8 +9 ln (t− 1)

8

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−t2 + 1)
(

d2

dt2
y(t)

)
− 2t

(
d
dt
y(t)

)
+ 6y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = 6y(t)

t2−1 −
2
(

d
dt
y(t)

)
t

t2−1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

2
(

d
dt
y(t)

)
t

t2−1 − 6y(t)
t2−1 = 0

� Check to see if t0 is a regular singular point
◦ Define functions[

P2(t) = 2t
t2−1 , P3(t) = − 6

t2−1

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1

• Multiply by denominators

(t2 − 1)
(

d2

dt2
y(t)

)
+ 2t

(
d
dt
y(t)

)
− 6y(t) = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 6y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 3) (k + r − 2)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 3) (k − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+3)(k−2)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k+3)(k−2)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −3a0

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 3a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 3u+ 3

2u
2)

• Revert the change of variables u = t+ 1[
y(t) = a0

(
3t2
2 − 1

2

)]
Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 44� �
dsolve((-t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+6*y(t) = 0,

y(t),singsol=all)� �
y = c2(3t2 − 1) ln (t− 1)

2 + (−3t2 + 1) c2 ln (t+ 1)
2 − 3c1t2 + 3c2t+ c1

Mathematica DSolve solution

Solving time : 0.035 (sec)
Leaf size : 55� �
DSolve[{(1-t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+6*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2c1
(
3t2 − 1

)
− 1

4c2
((
3t2 − 1

)
log(1− t) +

(
1− 3t2

)
log(t+ 1) + 6t

)
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2.1.617 problem 633

Solved as second order ode using Kovacic algorithm . . . . . . . . .4155
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4160
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4161
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4161
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4162

Internal problem ID [9465]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 633
Date solved : Thursday, December 12, 2024 at 10:12:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2t+ 1) y′′ − 4(t+ 1) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

(2t+ 1) y′′ + (−4t− 4) y′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t+ 1
B = −4t− 4 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4t2 + 2
(2t+ 1)2

(6)

Comparing the above to (5) shows that

s = 4t2 + 2
t = (2t+ 1)2

Therefore eq. (4) becomes

z′′(t) =
(

4t2 + 2
(2t+ 1)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1178: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (2t+ 1)2. There is a pole at t = −1

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
t+ 1

2

)2 − 1
t+ 1

2

For the pole at t = −1
2 let b be the coefficient of 1(

t+ 1
2
)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2t +
1
2t2 − 1

4t3 + 3
32t4 − 3

64t5 + 1
32t6 − 1

64t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4t2 + 2
4t2 + 4t+ 1

= Q+ R

4t2 + 4t+ 1

= (1) +
(

−4t+ 1
4t2 + 4t+ 1

)
= 1 + −4t+ 1

4t2 + 4t+ 1
Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4t2 + 2
(2t+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2
(
t+ 1

2

) + (1)

= − 1
2
(
t+ 1

2

) + 1

= 2t
2t+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
t+ 1

2

) + 1
)
(0) +

( 1
2
(
t+ 1

2

)2
)

+
(
− 1
2
(
t+ 1

2

) + 1
)2

−
(

4t2 + 2
(2t+ 1)2

) = 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2
(
t+1

2
)+1

)
dt

= et√
2t+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4t−4
2t+1 dt

= z1e
t+ ln(2t+1)

2

= z1
(√

2t+ 1 et
)

Which simplifies to
y1 = e2t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−4t−4

2t+1 dt

(y1)2
dt

= y1

∫
e2t+ln(2t+1)

(y1)2
dt

= y1

(
−(t+ 1) e2t+ln(2t+1)e−4t

2t+ 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2t
)
+ c2

(
e2t
(
−(t+ 1) e2t+ln(2t+1)e−4t

2t+ 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(2t+ 1)
(

d2

dt2
y(t)

)
− 4(t+ 1)

(
d
dt
y(t)

)
+ 4y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −4y(t)

2t+1 +
4(t+1)

(
d
dt
y(t)

)
2t+1

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

4(t+1)
(

d
dt
y(t)

)
2t+1 + 4y(t)

2t+1 = 0
� Check to see if t0 = −1

2 is a regular singular point
◦ Define functions[

P2(t) = −4(t+1)
2t+1 , P3(t) = 4

2t+1

]
◦
(
t+ 1

2

)
· P2(t) is analytic at t = −1

2((
t+ 1

2

)
· P2(t)

) ∣∣∣∣
t=− 1

2

= −1

◦
(
t+ 1

2

)2 · P3(t) is analytic at t = −1
2((

t+ 1
2

)2 · P3(t)
) ∣∣∣∣

t=− 1
2

= 0

◦ t = −1
2 is a regular singular point

Check to see if t0 = −1
2 is a regular singular point

t0 = −1
2

• Multiply by denominators

(2t+ 1)
(

d2

dt2
y(t)

)
+ (−4t− 4)

(
d
dt
y(t)

)
+ 4y(t) = 0

• Change variables using t = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+ (−4u− 2)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (k + r − 1)− 4ak(k + r − 1))uk+r

)
= 0



chapter 2. book solved problems 4161

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
2(ak+1(k + 1 + r)− 2ak) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

k+1+r

• Recursion relation for r = 0
ak+1 = 2ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 2ak

k+1

]
• Revert the change of variables u = t+ 1

2[
y(t) =

∞∑
k=0

ak
(
t+ 1

2

)k
, ak+1 = 2ak

k+1

]
• Recursion relation for r = 2

ak+1 = 2ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = 2ak

k+3

]
• Revert the change of variables u = t+ 1

2[
y(t) =

∞∑
k=0

ak
(
t+ 1

2

)k+2
, ak+1 = 2ak

k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak
(
t+ 1

2

)k)+
(

∞∑
k=0

bk
(
t+ 1

2

)k+2
)
, ak+1 = 2ak

k+1 , bk+1 = 2bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve((2*t+1)*diff(diff(y(t),t),t)-4*(t+1)*diff(y(t),t)+4*y(t) = 0,

y(t),singsol=all)� �
y = c2e2t + c1t+ c1



chapter 2. book solved problems 4162

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 23� �
DSolve[{(2*t+1)*D[y[t],{t,2}]-4*(t+1)*D[y[t],t]+4*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1e

2t+1 − c2(t+ 1)
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2.1.618 problem 634

Solved as second order ode using Kovacic algorithm . . . . . . . . .4163
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4165
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4167
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4167
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4167

Internal problem ID [9466]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 634
Date solved : Thursday, December 12, 2024 at 10:12:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ + ty′ +
(
t2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.178 (sec)

Writing the ode as

t2y′′ + ty′ +
(
t2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = t (3)

C = t2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1180: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t
t2 dt

= z1e
− ln(t)

2

= z1

(
1√
t

)

Which simplifies to

y1 =
cos (t)√

t
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

t2 dt

(y1)2
dt

= y1

∫
e− ln(t)

(y1)2
dt

= y1(tan (t))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (t)√

t

)
+ c2

(
cos (t)√

t
(tan (t))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + t

(
d
dt
y(t)

)
+
(
t2 − 1

4

)
y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = −

(
4t2−1

)
y(t)

4t2 −
d
dt
y(t)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) +

d
dt
y(t)
t

+
(
4t2−1

)
y(t)

4t2 = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = 1

t
, P3(t) = 4t2−1

4t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= −1
4

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

4
(

d2

dt2
y(t)

)
t2 + 4t

(
d
dt
y(t)

)
+ (4t2 − 1) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
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◦ Convert tm · y(t) to series expansion form = 0..2

tm · y(t) =
∞∑
k=0

akt
k+r+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert t ·
(

d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r) tr + a1(3 + 2r) (1 + 2r) t1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(t) =
∞∑
k=0

akt
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k− 1

2

)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.065 (sec)
Leaf size : 17� �
dsolve(t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+(t^2-1/4)*y(t) = 0,

y(t),singsol=all)� �
y = sin (t) c1 + c2 cos (t)√

t

Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 39� �
DSolve[{t^2*D[y[t],{t,2}]+t*D[y[t],t]+(t^2-1/4)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−it(2c1 − ic2e

2it)
2
√
t
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2.1.619 problem 635

Solved as second order ode using Kovacic algorithm . . . . . . . . .4168
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4172
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4172
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4172
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4172

Internal problem ID [9467]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 635
Date solved : Thursday, December 12, 2024 at 10:12:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2ty′
t2 + 1 + 2y

t2 + 1 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.302 (sec)

Writing the ode as

y′′ − 2ty′
t2 + 1 + 2y

t2 + 1 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = − 2t
t2 + 1 (3)

C = 2
t2 + 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(t2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
t2 + 1

)2
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Therefore eq. (4) becomes

z′′(t) =
(
− 3
(t2 + 1)2

)
z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1182: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (t2 + 1)2. There is a pole at t = i of order 2. There is a pole at t = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (t− i)2

+ 3
4 (t+ i)2

+ 3i
4 (t− i) −

3i
4 (t+ i)

For the pole at t = i let b be the coefficient of 1
(t−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at t = −i let b be the coefficient of 1
(t+i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(t2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
2 (t− i) +

3
2 (t+ i) + (−) (0)

= − 1
2 (t− i) +

3
2 (t+ i)

= t− 2i
t2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (t− i) +

3
2 (t+ i)

)
(0) +

((
1

2 (t− i)2
− 3

2 (t+ i)2
)
+
(
− 1
2 (t− i) +

3
2 (t+ i)

)2

−
(
− 3
(t2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2(t−i)+

3
2(t+i)

)
dt

= (t2 + 1)3/2

(it+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2

− 2t
t2+1
1 dt

= z1e
ln

(
t2+1

)
2

= z1
(√

t2 + 1
)

Which simplifies to

y1 =
(t2 + 1)2

(it+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−

− 2t
t2+1
1 dt

(y1)2
dt

= y1

∫
eln
(
t2+1

)
(y1)2

dt

= y1

(
− t

(t+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(t2 + 1)2

(it+ 1)2

)
+ c2

(
(t2 + 1)2

(it+ 1)2
(
− t

(t+ i)2
))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 4172

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(t),t),t)-2*t/(t^2+1)*diff(y(t),t)+2/(t^2+1)*y(t) = 0,

y(t),singsol=all)� �
y = c2t

2 + c1t− c2

Mathematica DSolve solution

Solving time : 0.059 (sec)
Leaf size : 21� �
DSolve[{D[y[t],{t,2}]-2*t/(1+t^2)*D[y[t],t]+2/(1+t^2)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c2t− c1(t− i)2
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2.1.620 problem 636

Solved as second order ode using Kovacic algorithm . . . . . . . . .4173
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4177
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4178
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4179
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4179

Internal problem ID [9468]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 636
Date solved : Thursday, December 12, 2024 at 10:12:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ +
(
t2 + 2t+ 1

)
y′ − (4 + 4t) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.303 (sec)

Writing the ode as

y′′ + (1 + t)2 y′ + (−4− 4t) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = (1 + t)2 (3)
C = −4− 4t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 + 4t3 + 6t2 + 24t+ 21
4 (6)

Comparing the above to (5) shows that

s = t4 + 4t3 + 6t2 + 24t+ 21
t = 4

Therefore eq. (4) becomes

z′′(t) =
(
21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2
)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1183: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
2∑

i=0

ait
i (8)

Let a be the coefficient of tv = t2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t2

2 + t+ 1
2 + 5

t
− 5

t2
+ 5

t3
− 30

t4
+ 105

t5
+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

ait
i

= 1
2t

2 + t+ 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t1 = t in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4t
4 + t3 + 3

2t
2 + t+ 1

4

This shows that the coefficient of t in the above is 1. Now we need to find the coefficient
of t in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of t in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 + 4t3 + 6t2 + 24t+ 21
4

= Q+ R

4

=
(
21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2
)
+ (0)

= 21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2

We see that the coefficient of the term 1
t
in the quotient is 6. Now b can be found.

b = (6)− (1)
= 5

Hence

[
√
r]∞ = 1

2t
2 + t+ 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
5
1
2
− 2
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−5

1
2
− 2
)

= −6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 1
2t

2 + t+ 1
2 4 −6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c



chapter 2. book solved problems 4176

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4, and since there are no poles, then

d = α+
∞

= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(
1
2t

2 + t+ 1
2

)
= 1

2t
2 + t+ 1

2

= (1 + t)2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 4 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t4 + a3t
3 + a2t

2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12t2 + 6ta3 + 2a2

)
+ 2
(
1
2t

2 + t+ 1
2

)(
4t3 + 3t2a3 + 2ta2 + a1

)
+
(
(1 + t) +

(
1
2t

2 + t+ 1
2

)2

−
(
21
4 + 6t+ 1

4t
4 + t3 + 3

2t
2
))

= 0

(−a3 + 4) t4 + 2(2− a2 + a3) t3 + 3(4− a1 + a3) t2 + 2(−2a0 − a1 + a2 + 3a3) t− 4a0 + a1 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 5, a1 = 8, a2 = 6, a3 = 4}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t4 + 4t3 + 6t2 + 8t+ 5

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t4 + 4t3 + 6t2 + 8t+ 5

)
e
∫ ( 1

2 t
2+t+ 1

2
)
dt

=
(
t4 + 4t3 + 6t2 + 8t+ 5

)
e

(1+t)3
6

= (1 + t)
(
t3 + 3t2 + 3t+ 5

)
e

(1+t)3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
(1+t)2

1 dt

= z1e
− (1+t)3

6

= z1

(
e−

(1+t)3
6

)
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Which simplifies to
y1 = (1 + t)

(
t3 + 3t2 + 3t+ 5

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− (1+t)2

1 dt

(y1)2
dt

= y1

∫
e−

(1+t)3
3

(y1)2
dt

= y1

(∫ e−
(1+t)3

3

(1 + t)2 (t3 + 3t2 + 3t+ 5)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(1 + t)

(
t3 + 3t2 + 3t+ 5

))
+ c2

(
(1 + t)

(
t3 + 3t2 + 3t+ 5

)(∫ e−
(1+t)3

3

(1 + t)2 (t3 + 3t2 + 3t+ 5)2
dt

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dt2
y(t) + (t2 + 2t+ 1)

(
d
dt
y(t)

)
− (4t+ 4) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = −(t2 + 2t+ 1)

(
d
dt
y(t)

)
+ (4t+ 4) y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) + (t2 + 2t+ 1)

(
d
dt
y(t)

)
+ (−4t− 4) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑

k=max(0,−m)
akt

k+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=max(0,−m)+m

ak−mt
k

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2
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tm ·
(

d
dt
y(t)

)
=

∞∑
k=max(0,1−m)

akk t
k−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m) tk

◦ Convert d2

dt2
y(t) to series expansion

d2

dt2
y(t) =

∞∑
k=2

akk(k − 1) tk−2

◦ Shift index using k− >k + 2
d2

dt2
y(t) =

∞∑
k=0

ak+2(k + 2) (k + 1) tk

Rewrite ODE with series expansions

2a2 + a1 − 4a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak+1(k + 1) + 2ak(k − 2) + ak−1(k − 5)) tk
)

= 0

• Each term must be 0
2a2 + a1 − 4a0 = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (2ak + ak−1 + ak+1 + 3ak+2) k − 4ak − 5ak−1 + ak+1 + 2ak+2 = 0

• Shift index using k− >k + 1
(k + 1)2 ak+3 + (2ak+1 + ak + ak+2 + 3ak+3) (k + 1)− 4ak+1 − 5ak + ak+2 + 2ak+3 = 0

• Recursion relation that defines the series solution to the ODE[
y(t) =

∞∑
k=0

akt
k, ak+3 = −akk+2ak+1k+kak+2−4ak−2ak+1+2ak+2

k2+5k+6 , 2a2 + a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
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<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.416 (sec)
Leaf size : 60� �
dsolve(diff(diff(y(t),t),t)+(t^2+2*t+1)*diff(y(t),t)-(4*t+4)*y(t) = 0,

y(t),singsol=all)� �
y = (t+ 1)

(
t3 + 3t2 + 3t+ 5

)c2

∫ e−
t
(
t2+3t+3

)
3

(t+ 1)2 (t3 + 3t2 + 3t+ 5)2
dt

+ c1


Mathematica DSolve solution

Solving time : 0.428 (sec)
Leaf size : 132� �
DSolve[{D[y[t],{t,2}]+(t^2+2*t+1)*D[y[t],t]-(4+4*t)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

36e
− 1

3 t
(
t2+3t+3

)(
−3c2

(
t3 + 3t2 + 3t+ 4

)
+ 32/3c2e

1
3 (t+1)3 3

√
(t+ 1)3

(
t3 + 3t2 + 3t+ 5

)
Γ
(
2
3 ,

1
3(t+ 1)3

)
+ 36c1e

t3
3 +t2+t

(
t4 + 4t3 + 6t2 + 8t+ 5

))
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2.1.621 problem 638

Solved as second order ode using Kovacic algorithm . . . . . . . . .4180
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4184
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4186
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4186
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4186

Internal problem ID [9469]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 638
Date solved : Thursday, December 12, 2024 at 10:12:52 AM
CAS classification : [_Laguerre]

Solve

2ty′′ + (1− 2t) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

2ty′′ + (1− 2t) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t
B = 1− 2t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4t2 + 4t− 3
16t2 (6)

Comparing the above to (5) shows that

s = 4t2 + 4t− 3
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
4t2 + 4t− 3

16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1185: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

16t2 + 1
4t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
4t −

1
4t2 + 1

8t3 − 1
8t4 + 1

8t5 − 9
64t6 + 21

128t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4t2 + 4t− 3
16t2

= Q+ R

16t2

=
(
1
4

)
+
(
4t− 3
16t2

)
= 1

4 + 4t− 3
16t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
2
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
2
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4t2 + 4t− 3
16t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

4 then

d = α+
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= 1
4t +

(
1
2

)
= 1

2 + 1
4t

= 1
2 + 1

4t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

4t

)
(0) +

((
− 1
4t2

)
+
(
1
2 + 1

4t

)2

−
(
4t2 + 4t− 3

16t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2+
1
4t
)
dt

= t1/4e t
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
1−2t
2t dt

= z1e
t
2−

ln(t)
4

= z1

(
e t

2

t1/4

)

Which simplifies to
y1 = et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 1−2t

2t dt

(y1)2
dt

= y1

∫
et−

ln(t)
2

(y1)2
dt

= y1
(√

π erf
(√

t
))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
et
)
+ c2

(
et
(√

π erf
(√

t
)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t+ (1− 2t)

(
d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

2t +
(2t−1)

(
d
dt
y(t)

)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(2t−1)
(

d
dt
y(t)

)
2t − y(t)

2t = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = −2t−1

2t , P3(t) = − 1
2t

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= 1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t+ (1− 2t)

(
d
dt
y(t)

)
− y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−1 + 2r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 2r + 1)− ak(2k + 2r + 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2(ak+1(k + 1 + r)− ak)

(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = ak

k+1

]
• Recursion relation for r = 1

2

ak+1 = ak
k+ 3

2

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+1 = ak
k+ 3

2

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+1 = ak

k+1 , bk+1 = bk
k+ 3

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.049 (sec)
Leaf size : 15� �
dsolve(2*t*diff(diff(y(t),t),t)+(-2*t+1)*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = et

(
erf
(√

t
)
c1 + c2

)
Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 21� �
DSolve[{2*t*D[y[t],{t,2}]+(1-2*t)*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → et

(
c1 − c2Γ

(
1
2 , t
))
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2.1.622 problem 639

Solved as second order ode using Kovacic algorithm . . . . . . . . .4187
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4192
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4193
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4194
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4194

Internal problem ID [9470]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 639
Date solved : Thursday, December 12, 2024 at 10:12:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2ty′′ + (1 + t) y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.507 (sec)

Writing the ode as

2ty′′ + (1 + t) y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t
B = 1 + t (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 18t− 3
16t2 (6)

Comparing the above to (5) shows that

s = t2 + 18t− 3
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 18t− 3

16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1187: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 9

8t −
3

16t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 9
4t −

21
2t2 + 189

2t3 − 1071
t4

+ 13608
t5

− 370629
2t6 + 5288409

2t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 18t− 3
16t2

= Q+ R

16t2

=
(

1
16

)
+
(
18t− 3
16t2

)
= 1

16 + 18t− 3
16t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 18. Dividing this by leading coefficient in t which is 16 gives 9

8 . Now b can be found.

b =
(
9
8

)
− (0)

= 9
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 9
8
1
4
− 0
)

= 9
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

9
8
1
4
− 0
)

= −9
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 18t− 3
16t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

9
4 −9

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 9

4 then

d = α+
∞ −

(
α−
c1

)
= 9

4 −
(
1
4

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= 1
4t +

(
1
4

)
= 1

4t +
1
4

= 1 + t

4t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 2 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
4t +

1
4

)
(2t+ a1) +

((
− 1
4t2

)
+
(

1
4t +

1
4

)2

−
(
t2 + 18t− 3

16t2

))
= 0

(−a1 + 6) t− 2a0 + a1
2t = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = 6}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t2 + 6t+ 3
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t2 + 6t+ 3

)
e
∫ ( 1

4t+
1
4
)
dt

=
(
t2 + 6t+ 3

)
e t

4+
ln(t)
4

=
(
t2 + 6t+ 3

)
t1/4e t

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
1+t
2t dt

= z1e
− t

4−
ln(t)
4

= z1

(
e− t

4

t1/4

)

Which simplifies to
y1 = t2 + 6t+ 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 1+t

2t dt

(y1)2
dt

= y1

∫
e−

t
2−

ln(t)
2

(y1)2
dt

= y1

(∫ e− t
2−

ln(t)
2

(t2 + 6t+ 3)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
t2 + 6t+ 3

)
+ c2

(
t2 + 6t+ 3

(∫ e− t
2−

ln(t)
2

(t2 + 6t+ 3)2
dt

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t+ (t+ 1)

(
d
dt
y(t)

)
− 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

t
−

(t+1)
(

d
dt
y(t)

)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(t+1)
(

d
dt
y(t)

)
2t − y(t)

t
= 0

� Check to see if t0 = 0 is a regular singular point
◦ Define functions[

P2(t) = t+1
2t , P3(t) = −1

t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t+ (t+ 1)

(
d
dt
y(t)

)
− 2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−1 + 2r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + ak(k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = − ak(k−2)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = 2a0

• Apply recursion relation for k = 1
a2 = a1

6

• Express in terms of a0
a2 = a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(t) = a0 ·

(
1 + 2t+ 1

3t
2)

• Recursion relation for r = 1
2

ak+1 = − ak
(
k− 3

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+1 = − ak
(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(t) = a0 ·
(
1 + 2t+ 1

3t
2)+ ( ∞∑

k=0
bkt

k+ 1
2

)
, bk+1 = − bk

(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 56� �
dsolve(2*t*diff(diff(y(t),t),t)+(t+1)*diff(y(t),t)-2*y(t) = 0,

y(t),singsol=all)� �
y = c1

√
π
(
t2 + 6t+ 3

)
erf
(√

2
√
t

2

)
+ 5c1

(√
t+ t3/2

5

)√
2 e− t

2 + c2
(
t2 + 6t+ 3

)
Mathematica DSolve solution

Solving time : 0.244 (sec)
Leaf size : 71� �
DSolve[{2*t*D[y[t],{t,2}]+(1+t)*D[y[t],t]-2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

24

(√
2πc2

(
t2 + 6t+ 3

)
erf
(√

t√
2

)
+ 24c1

(
t2 + 6t+ 3

)
+ 2c2e−t/2√t(t+ 5)

)
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2.1.623 problem 640

Solved as second order ode using Kovacic algorithm . . . . . . . . .4195
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4198
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4200
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4200
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4200

Internal problem ID [9471]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 640
Date solved : Thursday, December 12, 2024 at 10:12:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2t2y′′ − ty′ + (1 + t) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

2t2y′′ − ty′ + (1 + t) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t2

B = −t (3)
C = 1 + t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3− 8t
16t2 (6)

Comparing the above to (5) shows that

s = −3− 8t
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
−3− 8t
16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1189: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16t2. There is a pole at t = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16t2 − 1

2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(t)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
t− c

= 1
2

(
1

(t− (0))

)
= 1

2t
Now we search for a monic polynomial p(t) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(t) is found let

φ = θ + p′

p

= 1
2t

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2t +
1 + 8t
16t2 = 0

Solving for ω gives

ω = 1 + 2
√
2
√
−t

4t
Therefore the first solution to the ode z′′ = rz is

z1(t) = e
∫
ω dt

= e
∫ 1+2

√
2
√
−t

4t dt

= t1/4e
√
2
√
−t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t
2t2 dt

= z1e
ln(t)
4

= z1
(
t1/4
)

Which simplifies to

y1 =
√
t e

√
2
√
−t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −t

2t2 dt

(y1)2
dt

= y1

∫
e

ln(t)
2

(y1)2
dt

= y1

−

√
2
√
−t
(
1− e−2

√
2
√
−t
)

2
√
t


Therefore the solution is

y = c1y1 + c2y2

= c1
(√

t e
√
2
√
−t
)
+ c2

√
t e

√
2
√
−t

−

√
2
√
−t
(
1− e−2

√
2
√
−t
)

2
√
t



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t2 − t

(
d
dt
y(t)

)
+ (t+ 1) y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = − (t+1)y(t)

2t2 +
d
dt
y(t)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

d
dt
y(t)
2t + (t+1)y(t)

2t2 = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − 1

2t , P3(t) = t+1
2t2
]

◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 1
2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t2 − t

(
d
dt
y(t)

)
+ (t+ 1) y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm · y(t) to series expansion form = 0..1

tm · y(t) =
∞∑
k=0

akt
k+r+m

◦ Shift index using k− >k −m

tm · y(t) =
∞∑

k=m

ak−mt
k+r

◦ Convert t ·
(

d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r) tr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1) + ak−1) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 1

2

)
(k + r − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(2k+1+2r)(k+r)

• Recursion relation for r = 1
ak+1 = − ak

(2k+3)(k+1)

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak

(2k+3)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = − ak
(2k+2)

(
k+ 1

2
)

• Solution for r = 1
2
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[
y(t) =

∞∑
k=0

akt
k+ 1

2 , ak+1 = − ak
(2k+2)

(
k+ 1

2
)
]

• Combine solutions and rename parameters[
y(t) =

(
∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+1 = − ak

(2k+3)(k+1) , bk+1 = − bk
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 29� �
dsolve(2*t^2*diff(diff(y(t),t),t)-t*diff(y(t),t)+(t+1)*y(t) = 0,

y(t),singsol=all)� �
y =

√
t
(
c1 sin

(√
2
√
t
)
+ c2 cos

(√
2
√
t
))

Mathematica DSolve solution

Solving time : 0.102 (sec)
Leaf size : 62� �
DSolve[{2*t^2*D[y[t],{t,2}]-t*D[y[t],t]+(1+t)*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
−i

√
2
√
t
√
t
(
2c1e2i

√
2
√
t + i

√
2c2
)
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2.1.624 problem 641

Solved as second order ode using Kovacic algorithm . . . . . . . . .4201
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4205
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4207
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4207
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4207

Internal problem ID [9472]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 641
Date solved : Thursday, December 12, 2024 at 10:12:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2t2y′′ +
(
t2 − t

)
y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as

2t2y′′ +
(
t2 − t

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t2

B = t2 − t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t− 3
16t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t− 3
t = 16t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t− 3

16t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1191: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 − 3

16t2 − 1
8t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 − 1
4t −

1
2t2 − 1

2t3 − 1
t4

− 2
t5

− 9
2t6 − 21

2t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t− 3
16t2

= Q+ R

16t2

=
(

1
16

)
+
(
−2t− 3
16t2

)
= 1

16 + −2t− 3
16t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder R
is −2. Dividing this by leading coefficient in t which is 16 gives −1

8 . Now b can be found.

b =
(
−1
8

)
− (0)

= −1
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
8

1
4

− 0
)

= −1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

8
1
4

− 0
)

= 1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t− 3
16t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4 −1

4
1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= 1
4t + (−)

(
1
4

)
= 1

4t −
1
4

= −t− 1
4t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4t −

1
4

)
(0) +

((
− 1
4t2

)
+
(

1
4t −

1
4

)2

−
(
t2 − 2t− 3

16t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

4t−
1
4
)
dt

= t1/4e− t
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2−t
2t2 dt

= z1e
− t

4+
ln(t)
4

= z1
(
t1/4e− t

4

)
Which simplifies to

y1 =
√
t e− t

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2−t

2t2 dt

(y1)2
dt

= y1

∫
e−

t
2+

ln(t)
2

(y1)2
dt

= y1

(
−i

√
π
√
2 erf

(
i
√
2
√
t

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

t e− t
2

)
+ c2

(
√
t e− t

2

(
−i

√
π
√
2 erf

(
i
√
2
√
t

2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dt2
y(t)

)
t2 + (t2 − t)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t)

2t2 −
(t−1)

(
d
dt
y(t)

)
2t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(t−1)
(

d
dt
y(t)

)
2t + y(t)

2t2 = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = t−1

2t , P3(t) = 1
2t2
]

◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −1
2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 1
2

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators

2
(

d2

dt2
y(t)

)
t2 + t(t− 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r) tr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1) + ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
((
k + r − 1

2

)
ak + ak−1

2

)
(k + r − 1) = 0

• Shift index using k− >k + 1
2
((
k + 1

2 + r
)
ak+1 + ak

2

)
(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2k+1+2r

• Recursion relation for r = 1
ak+1 = − ak

2k+3

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak

2k+3

]
• Recursion relation for r = 1

2

ak+1 = − ak
2k+2

• Solution for r = 1
2[

y(t) =
∞∑
k=0

akt
k+ 1

2 , ak+1 = − ak
2k+2

]
• Combine solutions and rename parameters
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[
y(t) =

(
∞∑
k=0

akt
k+1
)
+
(

∞∑
k=0

bkt
k+ 1

2

)
, ak+1 = − ak

2k+3 , bk+1 = − bk
2k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.028 (sec)
Leaf size : 47� �
dsolve(2*t^2*diff(diff(y(t),t),t)+(t^2-t)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y =

e− t
2

(
23/4 erf

(√
2
√
−t

2

)√
π c1t+ 4c2

√
t
√
−t
)

4
√
−t

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 46� �
DSolve[{2*t^2*D[y[t],{t,2}]+(t^2-t)*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−t/2

(
c2
√
t+

√
2c1

√
−tΓ

(
1
2 ,−

t

2

))
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2.1.625 problem 642

Solved as second order ode using Kovacic algorithm . . . . . . . . .4208
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4212
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4214
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4214
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4214

Internal problem ID [9473]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 642
Date solved : Thursday, December 12, 2024 at 10:12:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ +
(
−t2 + t

)
y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.257 (sec)

Writing the ode as

t2y′′ +
(
−t2 + t

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 + t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1193: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4t2 − 1
2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2t +

1
2t2 + 1

2t3 + 1
4t4 − 1

4t5 − 3
4t6 − 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−2t+ 3

4t2

)
= 1

4 + −2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 2t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= − 1
2t +

(
1
2

)
= 1

2 − 1
2t

= t− 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2t

)
(0) +

((
1
2t2

)
+
(
1
2 − 1

2t

)2

−
(
t2 − 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2−
1
2t
)
dt

= e t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2+t

t2 dt

= z1e
t
2−

ln(t)
2

= z1

(
e t

2
√
t

)

Which simplifies to

y1 =
et
t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2+t

t2 dt

(y1)2
dt

= y1

∫
et−ln(t)

(y1)2
dt

= y1
(
−(1 + t) t et−ln(t)e−2t)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
et
t

)
+ c2

(
et
t

(
−(1 + t) t et−ln(t)e−2t))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + (−t2 + t)

(
d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

t2
+

(t−1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(t−1)
(

d
dt
y(t)

)
t

− y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t−1

t
, P3(t) = − 1

t2

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= −1

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 − t(t− 1)

(
d
dt
y(t)

)
− y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r) tr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1)− ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y(t) =

∞∑
k=0

akt
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 1

ak+1 = ak
k+3

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k−1
)
+
(

∞∑
k=0

bkt
k+1
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve(t^2*diff(diff(y(t),t),t)+(-t^2+t)*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = etc2 + c1t+ c1

t

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 23� �
DSolve[{t^2*D[y[t],{t,2}]+(t-t^2)*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c2e

t − c1(t+ 1)
t
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2.1.626 problem 643

Solved as second order ode using Kovacic algorithm . . . . . . . . .4215
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4219
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4221
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4221
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4221

Internal problem ID [9474]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 643
Date solved : Thursday, December 12, 2024 at 10:12:56 AM
CAS classification : [_Lienard]

Solve

ty′′ −
(
t2 + 2

)
y′ + ty = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.314 (sec)

Writing the ode as

ty′′ +
(
−t2 − 2

)
y′ + ty = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −t2 − 2 (3)
C = t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 − 2t2 + 8
4t2 (6)

Comparing the above to (5) shows that

s = t4 − 2t2 + 8
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t4 − 2t2 + 8

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1195: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = t2

4 − 1
2 + 2

t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
1∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t

2 − 1
2t +

7
4t3 + 7

4t5 − 21
16t7 − 119

16t9 − 189
32t11 + 791

32t13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

ait
i

= t

2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = t2

4

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 − 2t2 + 8
4t2

= Q+ R

4t2

=
(
t2

4 − 1
2

)
+
(
2
t2

)
= t2

4 − 1
2 + 2

t2

We see that the coefficient of the term t in the quotient is −1
2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = t

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 1
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 1
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t4 − 2t2 + 8
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 t
2 −1 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (+)[

√
r]∞

= −1
t
+
(
t

2

)
= −1

t
+ t

2
= −1

t
+ t

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
t
+ t

2

)
(0) +

((
1
t2

+ 1
2

)
+
(
−1
t
+ t

2

)2

−
(
t4 − 2t2 + 8

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
t
+ t

2
)
dt

= e t2
4

t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−2

t
dt

= z1e
t2
4 +ln(t)

= z1
(
t e t2

4

)
Which simplifies to

y1 = e t2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2−2

t
dt

(y1)2
dt

= y1

∫
e

t2
2 +2 ln(t)

(y1)2
dt

= y1

−t e− t2
2 +

√
π
√
2 erf

(√
2 t
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e t2

2

)
+ c2

e t2
2

−t e− t2
2 +

√
π
√
2 erf

(√
2 t
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t− (t2 + 2)

(
d
dt
y(t)

)
+ ty(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −y(t) +

(
t2+2

)(
d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(
t2+2

)(
d
dt
y(t)

)
t

+ y(t) = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions
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[
P2(t) = − t2+2

t
, P3(t) = 1

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −2

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t2 − 2)

(
d
dt
y(t)

)
+ ty(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t · y(t) to series expansion

t · y(t) =
∞∑
k=0

akt
k+r+1

◦ Shift index using k− >k − 1

t · y(t) =
∞∑
k=1

ak−1t
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−3 + r) t−1+r + a1(1 + r) (−2 + r) tr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r)− ak−1(k − 2 + r)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k − 2 + r) (ak+1(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+2(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = ak
k+2+r

• Recursion relation for r = 0
ak+2 = ak

k+2

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+2 = ak

k+2 ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = ak

k+5

• Solution for r = 3[
y(t) =

∞∑
k=0

akt
k+3, ak+2 = ak

k+5 , 4a1 = 0
]

• Combine solutions and rename parameters[
y(t) =

(
∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+3
)
, ak+2 = ak

k+2 ,−2a1 = 0, bk+2 = bk
5+k

, 4b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 34� �
dsolve(t*diff(diff(y(t),t),t)-(t^2+2)*diff(y(t),t)+y(t)*t = 0,

y(t),singsol=all)� �
y =

(
−c2

√
π
√
2 erf

(√
2 t
2

)
+ c1

)
e t2

2 + 2c2t

Mathematica DSolve solution

Solving time : 0.118 (sec)
Leaf size : 52� �
DSolve[{t*D[y[t],{t,2}]-(t^2+2)*D[y[t],t]+t*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

√
π

2 c2e
t2
2 erf

(
t√
2

)
+ c1e

t2
2 − c2t
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2.1.627 problem 644

Solved as second order ode using Kovacic algorithm . . . . . . . . .4222
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4226
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4228
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4228
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4228

Internal problem ID [9475]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 644
Date solved : Thursday, December 12, 2024 at 10:12:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ + t(t+ 1) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.252 (sec)

Writing the ode as

t2y′′ +
(
t2 + t

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = t2 + t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 2t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 + 2t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 2t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1197: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4t2 + 1
2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2t +

1
2t2 − 1

2t3 + 1
4t4 + 1

4t5 − 3
4t6 + 3

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 2t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
2t+ 3
4t2

)
= 1

4 + 2t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 2t+ 3
4t2



chapter 2. book solved problems 4225

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= − 1
2t + (−)

(
1
2

)
= − 1

2t −
1
2

= −t+ 1
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2t −

1
2

)
(0) +

((
1
2t2

)
+
(
− 1
2t −

1
2

)2

−
(
t2 + 2t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
2t−

1
2
)
dt

= e− t
2

√
t
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2+t
t2 dt

= z1e
− t

2−
ln(t)
2

= z1

(
e− t

2
√
t

)

Which simplifies to

y1 =
e−t

t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2+t

t2 dt

(y1)2
dt

= y1

∫
e−t−ln(t)

(y1)2
dt

= y1
(
(−1 + t) t e−t−ln(t)e2t

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−t

t

)
+ c2

(
e−t

t

(
(−1 + t) t e−t−ln(t)e2t

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + t(t+ 1)

(
d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = y(t)

t2
−

(t+1)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(t+1)
(

d
dt
y(t)

)
t

− y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = t+1

t
, P3(t) = − 1

t2

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= −1

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 + t(t+ 1)

(
d
dt
y(t)

)
− y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r) tr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1) + ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y(t) =

∞∑
k=0

akt
k−1, ak+1 = − ak

k+1

]
• Recursion relation for r = 1

ak+1 = − ak
k+3

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak

k+3

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k−1
)
+
(

∞∑
k=0

bkt
k+1
)
, ak+1 = − ak

k+1 , bk+1 = − bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 20� �
dsolve(t^2*diff(diff(y(t),t),t)+t*(t+1)*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c2e−t + c1(t− 1)

t

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 26� �
DSolve[{t^2*D[y[t],{t,2}]+t*(t+1)*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → e−t(c1et(t− 1) + c2)

t
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2.1.628 problem 645

Solved as second order ode using Kovacic algorithm . . . . . . . . .4229
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4233
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4235
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4235
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4235

Internal problem ID [9476]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 645
Date solved : Thursday, December 12, 2024 at 10:12:57 AM
CAS classification : [_Laguerre]

Solve

ty′′ − (4 + t) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.296 (sec)

Writing the ode as

ty′′ + (−4− t) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −4− t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 24
4t2 (6)

Comparing the above to (5) shows that

s = t2 + 24
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 24
4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1199: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 6

t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 6
t2

− 36
t4

+ 432
t6

− 6480
t8

+ 108864
t10

− 1959552
t12

+ 36951552
t14

+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 24
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
6
t2

)
= 1

4 + 6
t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 24
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= −2
t
+ (−)

(
1
2

)
= −2

t
− 1

2
= −4 + t

2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 2 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
t
− 1

2

)
(2t+ a1) +

((
2
t2

)
+
(
−2
t
− 1

2

)2

−
(
t2 + 24
4t2

))
= 0

(a1 − 6) t+ 2a0 − 4a1
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 12, a1 = 6}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t2 + 6t+ 12
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t2 + 6t+ 12

)
e
∫ (

− 2
t
− 1

2
)
dt

=
(
t2 + 6t+ 12

)
e− t

2−2 ln(t)

= (t2 + 6t+ 12) e− t
2

t2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−4−t

t
dt

= z1e
t
2+2 ln(t)

= z1
(
t2e t

2

)
Which simplifies to

y1 = t2 + 6t+ 12

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−4−t

t
dt

(y1)2
dt

= y1

∫
et+4 ln(t)

(y1)2
dt

= y1

(
(t2 − 6t+ 12) et+4 ln(t)

(t2 + 6t+ 12) t4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
t2 + 6t+ 12

)
+ c2

(
t2 + 6t+ 12

(
(t2 − 6t+ 12) et+4 ln(t)

(t2 + 6t+ 12) t4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t− (t+ 4)

(
d
dt
y(t)

)
+ 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −2y(t)

t
+

(t+4)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dt2
y(t)−

(t+4)
(

d
dt
y(t)

)
t

+ 2y(t)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+4

t
, P3(t) = 2

t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −4

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t− 4)

(
d
dt
y(t)

)
+ 2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 0..1

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−5 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 4 + r)− ak(k + r − 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−5 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 4 + r)− ak(k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−2)

(k+1+r)(k−4+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

(k+1)(k−4)

• Apply recursion relation for k = 0
a1 = a0

2

• Apply recursion relation for k = 1
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a2 = a1
6

• Express in terms of a0
a2 = a0

12

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(t) = a0 ·

(
1 + 1

2t+
1
12t

2)
• Recursion relation for r = 5

ak+1 = ak(k+3)
(k+6)(k+1)

• Solution for r = 5[
y(t) =

∞∑
k=0

akt
k+5, ak+1 = ak(k+3)

(k+6)(k+1)

]
• Combine solutions and rename parameters[

y(t) = a0 ·
(
1 + 1

2t+
1
12t

2)+ ( ∞∑
k=0

bkt
5+k

)
, bk+1 = bk(k+3)

(k+6)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(t*diff(diff(y(t),t),t)-(4+t)*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = c1

(
t2 + 6t+ 12

)
+ c2et

(
t2 − 6t+ 12

)
Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 85� �
DSolve[{t*D[y[t],{t,2}]-(4+t)*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

2et/2
√
t
(
(c2t2 − 6ic1t+ 12c2) cosh

(
t
2

)
+ i(c1(t2 + 12) + 6ic2t) sinh

(
t
2

))
√
π
√
−it
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2.1.629 problem 646

Solved as second order ode using Kovacic algorithm . . . . . . . . .4236
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4240
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4242
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4242
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4242

Internal problem ID [9477]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 646
Date solved : Thursday, December 12, 2024 at 10:12:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ +
(
t2 − 3t

)
y′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.284 (sec)

Writing the ode as

t2y′′ +
(
t2 − 3t

)
y′ + 3y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = t2 − 3t (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 − 6t+ 3
4t2 (6)

Comparing the above to (5) shows that

s = t2 − 6t+ 3
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 − 6t+ 3

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1201: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

2t +
3
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
2t −

3
2t2 − 9

2t3 − 63
4t4 − 243

4t5 − 999
4t6 − 4293

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 − 6t+ 3
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
−6t+ 3

4t2

)
= 1

4 + −6t+ 3
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is −6. Dividing this by leading coefficient in t which is 4 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 0
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 0
)

= 3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 − 6t+ 3
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3

2
3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

t− c1

)
+ (−)[

√
r]∞

= 3
2t + (−)

(
1
2

)
= 3

2t −
1
2

= −t− 3
2t

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2t −

1
2

)
(0) +

((
− 3
2t2

)
+
(

3
2t −

1
2

)2

−
(
t2 − 6t+ 3

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 3

2t−
1
2
)
dt

= t3/2e− t
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t2−3t

t2 dt

= z1e
− t

2+
3 ln(t)

2

= z1
(
t3/2e− t

2

)
Which simplifies to

y1 = t3e−t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t2−3t

t2 dt

(y1)2
dt

= y1

∫
e−t+3 ln(t)

(y1)2
dt

= y1

(
− et
2t2 − et

2t −
Ei1 (−t)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
t3e−t

)
+ c2

(
t3e−t

(
− et
2t2 − et

2t −
Ei1 (−t)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 + (t2 − 3t)

(
d
dt
y(t)

)
+ 3y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −3y(t)

t2
−

(−3+t)
(

d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(−3+t)
(

d
dt
y(t)

)
t

+ 3y(t)
t2

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = −3+t

t
, P3(t) = 3

t2

]
◦ t · P2(t) is analytic at t = 0
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(t · P2(t))
∣∣∣∣
t=0

= −3

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 3

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 + (−3 + t) t

(
d
dt
y(t)

)
+ 3y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r) (−3 + r) tr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 3) + ak−1(k + r − 1)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 3}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 3) + ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k − 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k−2+r

• Recursion relation for r = 1
ak+1 = − ak

k−1

• Series not valid for r = 1 , division by 0 in the recursion relation at k = 1
ak+1 = − ak

k−1

• Recursion relation for r = 3
ak+1 = − ak

k+1

• Solution for r = 3[
y(t) =

∞∑
k=0

akt
k+3, ak+1 = − ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 34� �
dsolve(t^2*diff(diff(y(t),t),t)+(t^2-3*t)*diff(y(t),t)+3*y(t) = 0,

y(t),singsol=all)� �
y = t

(
e−t Ei1 (−t) c2t2 + e−tc1t

2 + c2t+ c2
)

Mathematica DSolve solution

Solving time : 0.026 (sec)
Leaf size : 41� �
DSolve[{t^2*D[y[t],{t,2}]+(t^2-3*t)*D[y[t],t]+3*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
−t
(
c1t

3 ExpIntegralEi(t) + 2c2t3 − c1e
t(t+ 1)t

)
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2.1.630 problem 647

Solved as second order ode using Kovacic algorithm . . . . . . . . .4243
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4247
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4249
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4249
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4249

Internal problem ID [9478]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 647
Date solved : Thursday, December 12, 2024 at 10:12:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

ty′′ + ty′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.269 (sec)

Writing the ode as

ty′′ + ty′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = t (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t− 8
4t (6)

Comparing the above to (5) shows that

s = t− 8
t = 4t

Therefore eq. (4) becomes

z′′(t) =
(
t− 8
4t

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1203: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t. There is a pole at t = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at t = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)

Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 2
t
− 4

t2
− 16

t3
− 80

t4
− 448

t5
− 2688

t6
− 16896

t7
+ . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t− 8
4t

= Q+ R

4t

=
(
1
4

)
+
(
−2
t

)
= 1

4 − 2
t

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is −8. Dividing this by leading coefficient in t which is 4 gives −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 0
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 0
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t− 8
4t

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −2 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2 then

d = α−
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+ (−)[

√
r]∞

= 1
t
+ (−)

(
1
2

)
= 1

t
− 1

2
= 1

t
− 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
t
− 1

2

)
(1) +

((
− 1
t2

)
+
(
1
t
− 1

2

)2

−
(
t− 8
4t

))
= 0

2 + a0
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −2}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = −2 + t

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

= (−2 + t) e
∫ ( 1

t
− 1

2
)
dt

= (−2 + t) e− t
2+ln(t)

= (−2 + t) t e− t
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t
t
dt

= z1e
− t

2

= z1
(
e− t

2

)
Which simplifies to

y1 = e−t(−2 + t) t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

t
dt

(y1)2
dt

= y1

∫
e−t

(y1)2
dt

= y1

(
−et(−t+ 1)

2 (2− t) t − Ei1 (−t)
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−t(−2 + t) t

)
+ c2

(
e−t(−2 + t) t

(
−et(−t+ 1)

2 (2− t) t − Ei1 (−t)
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t+ t

(
d
dt
y(t)

)
+ 2y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = −2y(t)

t
− d

dt
y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) + d

dt
y(t) + 2y(t)

t
= 0

� Check to see if t0 = 0 is a regular singular point
◦ Define functions[

P2(t) = 1, P3(t) = 2
t

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 0
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◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ t

(
d
dt
y(t)

)
+ 2y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t ·

(
d
dt
y(t)

)
to series expansion

t ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) tk+r

Rewrite ODE with series expansions

a0r(−1 + r) t−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak(k + r + 2)) tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+2)

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = −ak(k+2)

(k+1)k

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+1 = −ak(k+2)

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak(k+3)
(k+2)(k+1)

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = − ak(k+3)

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

akt
k

)
+
(

∞∑
k=0

bkt
k+1
)
, ak+1 = −ak(k+2)

(k+1)k , bk+1 = − bk(k+3)
(k+2)(k+1)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 35� �
dsolve(t*diff(diff(y(t),t),t)+t*diff(y(t),t)+2*y(t) = 0,

y(t),singsol=all)� �
y = tc2e−t(t− 2) Ei1 (−t) + c1e−t(t− 2) t+ c2(t− 1)

Mathematica DSolve solution

Solving time : 0.097 (sec)
Leaf size : 51� �
DSolve[{t*D[y[t],{t,2}]+t*D[y[t],t]+2*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

2e
−t
(
c2(t− 2)tExpIntegralEi(t) + 2c1t2 − t

(
c2e

t + 4c1
)
+ c2e

t
)
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2.1.631 problem 648

Solved as second order ode using Kovacic algorithm . . . . . . . . .4250
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4255
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4256
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4257
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4257

Internal problem ID [9479]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 648
Date solved : Thursday, December 12, 2024 at 10:12:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

ty′′ +
(
−t2 + 1

)
y′ + 4ty = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.714 (sec)

Writing the ode as

ty′′ +
(
−t2 + 1

)
y′ + 4ty = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t

B = −t2 + 1 (3)
C = 4t

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t4 − 20t2 − 1
4t2 (6)

Comparing the above to (5) shows that

s = t4 − 20t2 − 1
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t4 − 20t2 − 1

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1205: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = t2

4 − 5− 1
4t2

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
1∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ t

2 − 5
t
− 101

4t3 − 505
2t5 − 50601

16t7 − 355015
8t9 − 21351501

32t11 − 168167525
16t13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

ait
i

= t

2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = t2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= t4 − 20t2 − 1
4t2

= Q+ R

4t2

=
(
t2

4 − 5
)
+
(
− 1
4t2

)
= t2

4 − 5− 1
4t2

We see that the coefficient of the term t in the quotient is −5. Now b can be found.

b = (−5)− (0)
= −5

Hence

[
√
r]∞ = t

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−5
1
2

− 1
)

= −11
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−5

1
2

− 1
)

= 9
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t4 − 20t2 − 1
4t2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 t
2 −11

2
9
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 9

2 then

d = α−
∞ −

(
α+
c1

)
= 9

2 −
(
1
2

)
= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

t− c1

)
+ (−)[

√
r]∞

= 1
2t + (−)

(
t

2

)
= 1

2t −
t

2
= 1

2t −
t

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 4 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t4 + a3t
3 + a2t

2 + a1t+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12t2 + 6ta3 + 2a2

)
+ 2
(

1
2t −

t

2

)(
4t3 + 3a3t2 + 2a2t+ a1

)
+
((

− 1
2t2 − 1

2

)
+
(

1
2t −

t

2

)2

−
(
t4 − 20t2 − 1

4t2

))
= 0

t4a3 + 2(8 + a2) t3 + 3(a1 + 3a3) t2 + 4(a0 + a2) t+ a1
t

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 8, a1 = 0, a2 = −8, a3 = 0}

Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t4 − 8t2 + 8
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Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t4 − 8t2 + 8

)
e
∫ ( 1

2t−
t
2
)
dt

=
(
t4 − 8t2 + 8

)
e− t2

4 + ln(t)
2

=
(
t4 − 8t2 + 8

)√
t e− t2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2+1

t
dt

= z1e
t2
4 − ln(t)

2

= z1

(
e t2

4
√
t

)

Which simplifies to
y1 = t4 − 8t2 + 8

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2+1

t
dt

(y1)2
dt

= y1

∫
e

t2
2 −ln(t)

(y1)2
dt

= y1

(∫ e t2
2 −ln(t)

(t4 − 8t2 + 8)2
dt

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
t4 − 8t2 + 8

)
+ c2

(
t4 − 8t2 + 8

(∫ e t2
2 −ln(t)

(t4 − 8t2 + 8)2
dt

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t+ (−t2 + 1)

(
d
dt
y(t)

)
+ 4ty(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = −4y(t) +

(
t2−1

)(
d
dt
y(t)

)
t

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t)−

(
t2−1

)(
d
dt
y(t)

)
t

+ 4y(t) = 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t2−1

t
, P3(t) = 4

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= 1

◦ t2 · P3(t) is analytic at t = 0

(t2 · P3(t))
∣∣∣∣
t=0

= 0

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t+ (−t2 + 1)

(
d
dt
y(t)

)
+ 4ty(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert t · y(t) to series expansion

t · y(t) =
∞∑
k=0

akt
k+r+1

◦ Shift index using k− >k − 1

t · y(t) =
∞∑
k=1

ak−1t
k+r

◦ Convert tm ·
(

d
dt
y(t)

)
to series expansion form = 0..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t ·
(

d2

dt2
y(t)

)
to series expansion

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r−1

◦ Shift index using k− >k + 1

t ·
(

d2

dt2
y(t)

)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r) tk+r

Rewrite ODE with series expansions
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a0r
2t−1+r + a1(1 + r)2 tr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 − ak−1(k − 5 + r)

)
tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − ak−1(k − 5) = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 − ak(k − 4) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(k−4)

(k+2)2

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = ak(k−4)

(k+2)2

• Solution for r = 0[
y(t) =

∞∑
k=0

akt
k, ak+2 = ak(k−4)

(k+2)2 , a1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 21� �
dsolve(t*diff(diff(y(t),t),t)+(-t^2+1)*diff(y(t),t)+4*y(t)*t = 0,

y(t),singsol=all)� �
y = (t4 − 8t2 + 8) (c1 + 2c2)

8

Mathematica DSolve solution

Solving time : 0.174 (sec)
Leaf size : 61� �
DSolve[{t*D[y[t],{t,2}]+(1-t^2)*D[y[t],t]+4*t*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 1

128c2
((

t4 − 8t2 + 8
)
ExpIntegralEi

(
t2

2

)
− 2e t2

2
(
t2 − 6

))
+ c1

(
t4 − 8t2 + 8

)
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2.1.632 problem 649

Solved as second order ode using Kovacic algorithm . . . . . . . . .4258
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4262
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4263
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4264
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4264

Internal problem ID [9480]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 649
Date solved : Thursday, December 12, 2024 at 10:13:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

t2y′′ − t(1 + t) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

t2y′′ +
(
−t2 − t

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = t2

B = −t2 − t (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = t2 + 2t− 1
4t2 (6)

Comparing the above to (5) shows that

s = t2 + 2t− 1
t = 4t2

Therefore eq. (4) becomes

z′′(t) =
(
t2 + 2t− 1

4t2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1207: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4t2 + 1
2t

For the pole at t = 0 let b be the coefficient of 1
t2

in the partial fractions decomposition of
r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving ti for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

ait
i

=
0∑

i=0

ait
i (8)
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Let a be the coefficient of tv = t0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2t −

1
2t2 + 1

2t3 − 3
4t4 + 5

4t5 − 9
4t6 + 17

4t7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

ait
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of tv−1 = t−1 = 1
t
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

t
in the above is 0. Now we need to find the coefficient

of 1
t
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
t
in r will be the

coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= t2 + 2t− 1
4t2

= Q+ R

4t2

=
(
1
4

)
+
(
2t− 1
4t2

)
= 1

4 + 2t− 1
4t2

Since the degree of t is 2, then we see that the coefficient of the term t in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = t2 + 2t− 1
4t2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

t− c1

)
+ (+)[

√
r]∞

= 1
2t +

(
1
2

)
= 1

2 + 1
2t

= 1 + t

2t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

2t

)
(0) +

((
− 1
2t2

)
+
(
1
2 + 1

2t

)2

−
(
t2 + 2t− 1

4t2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

2+
1
2t
)
dt

=
√
t e t

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−t2−t

t2 dt

= z1e
t
2+

ln(t)
2

= z1
(√

t e t
2

)
Which simplifies to

y1 = t et

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
−−t2−t

t2 dt

(y1)2
dt

= y1

∫
et+ln(t)

(y1)2
dt

= y1(−Ei1 (t))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
t et
)
+ c2

(
t et(−Ei1 (t))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dt2
y(t)

)
t2 − t(t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) =

(t+1)
(

d
dt
y(t)

)
t

− y(t)
t2

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) + y(t)

t2
−

(t+1)
(

d
dt
y(t)

)
t

= 0
� Check to see if t0 = 0 is a regular singular point

◦ Define functions[
P2(t) = − t+1

t
, P3(t) = 1

t2

]
◦ t · P2(t) is analytic at t = 0

(t · P2(t))
∣∣∣∣
t=0

= −1

◦ t2 · P3(t) is analytic at t = 0
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(t2 · P3(t))
∣∣∣∣
t=0

= 1

◦ t = 0is a regular singular point
Check to see if t0 = 0 is a regular singular point
t0 = 0

• Multiply by denominators(
d2

dt2
y(t)

)
t2 − t(t+ 1)

(
d
dt
y(t)

)
+ y(t) = 0

• Assume series solution for y(t)

y(t) =
∞∑
k=0

akt
k+r

� Rewrite ODE with series expansions
◦ Convert tm ·

(
d
dt
y(t)

)
to series expansion form = 1..2

tm ·
(

d
dt
y(t)

)
=

∞∑
k=0

ak(k + r) tk+r−1+m

◦ Shift index using k− >k + 1−m

tm ·
(

d
dt
y(t)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) tk+r

◦ Convert t2 ·
(

d2

dt2
y(t)

)
to series expansion

t2 ·
(

d2

dt2
y(t)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) tk+r

Rewrite ODE with series expansions

a0(−1 + r)2 tr +
(

∞∑
k=1

(
ak(k + r − 1)2 − ak−1(k + r − 1)

)
tk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+r

• Recursion relation for r = 1
ak+1 = ak

k+1

• Solution for r = 1[
y(t) =

∞∑
k=0

akt
k+1, ak+1 = ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 15� �
dsolve(t^2*diff(diff(y(t),t),t)-t*(t+1)*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �
y = ett(c1 + c2 Ei1 (t))

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 20� �
DSolve[{t^2*D[y[t],{t,2}]-t*(1+t)*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → ett(c1 ExpIntegralEi(−t) + c2)
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2.1.633 problem 650

Solved as second order ode using Kovacic algorithm . . . . . . . . .4265
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4267
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4268
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4268
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4268

Internal problem ID [9481]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 650
Date solved : Thursday, December 12, 2024 at 10:13:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.197 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1209: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2 cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2 cos (2x)

)
+ c2

(
e−x2 cos (2x)

(
tan (2x)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 6a0 + (6a3 + 10a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 3) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 6a0 = 0, 6a3 + 10a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −3a0, a3 = −5a1

3

}
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• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 6ak + 4ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 6ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+7ak+2)

k2+7k+12 , a2 = −3a0, a3 = −5a1
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 24� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+6)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(cos (2x) c1 + sin (2x) c2)

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 37� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x(x+2i)(4c1 − ic2e

4ix)
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2.1.634 problem 651

Solved as second order ode using Kovacic algorithm . . . . . . . . .4269
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4273
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4274
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4275
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4275

Internal problem ID [9482]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 651
Date solved : Thursday, December 12, 2024 at 10:13:02 AM
CAS classification : [_Gegenbauer]

Solve (
−z2 + 1

)
y′′ − 3zy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.411 (sec)

Writing the ode as (
−z2 + 1

)
y′′ − 3zy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −z2 + 1
B = −3z (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7z2 − 10
4 (z2 − 1)2

(6)

Comparing the above to (5) shows that

s = 7z2 − 10

t = 4
(
z2 − 1

)2
Therefore eq. (4) becomes

z′′(z) =
(

7z2 − 10
4 (z2 − 1)2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1211: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(z2 − 1)2. There is a pole at z = 1 of order 2. There is a pole at z = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 17
16 (z + 1) −

3
16 (z − 1)2

+ 17
16 (z − 1) −

3
16 (z + 1)2

For the pole at z = 1 let b be the coefficient of 1
(z−1)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at z = −1 let b be the coefficient of 1
(z+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
z2

in the Laurent series
expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 7z2 − 10

4 (z2 − 1)2

Since the gcd(s, t) = 1. This gives b = 7
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

1 2 {1, 2, 3}
−1 2 {1, 2, 3}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(z)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
z − c

= 1
2

(
1

(z − (1)) +
1

(z − (−1))

)
= 1

2z − 2 + 1
2z + 2

Now we search for a monic polynomial p(z) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(z) is found let

φ = θ + p′

p

= 1
2z − 2 + 1

2z + 2
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Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2z − 2 + 1

2z + 2

)
w + −7z2 + 8

4 (z2 − 1)2
= 0

Solving for ω gives

ω = z + 2
√
2z2 − 2

2 (z − 1) (z + 1)
Therefore the first solution to the ode z′′ = rz is

z1(z) = e
∫
ω dz

= e
∫ z+2

√
2z2−2

2(z−1)(z+1)dz

=
(
z2 − 1

)1/4 2√
2

2

(√
z2 − 1 + z

)√2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
−3z

−z2+1 dz

= z1e
− 3 ln(z−1)

4 − 3 ln(z+1)
4

= z1

(
1

(z − 1)3/4 (z + 1)3/4

)

Which simplifies to

y1 =
(z2 − 1)1/4 2

√
2

2
(√

z2 − 1 + z
)√2

(z − 1)3/4 (z + 1)3/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
− −3z

−z2+1 dz

(y1)2
dz

= y1

∫
e−

3 ln(z−1)
2 − 3 ln(z+1)

2

(y1)2
dz

= y1

−
2−

√
2√2

(√
z2 − 1 + z

)−2
√
2

4


Therefore the solution is

y = c1y1 + c2y2

= c1

(z2 − 1)1/4 2
√
2

2
(√

z2 − 1 + z
)√2

(z − 1)3/4 (z + 1)3/4

+c2

(z2 − 1)1/4 2
√
2

2
(√

z2 − 1 + z
)√2

(z − 1)3/4 (z + 1)3/4

−
2−

√
2√2

(√
z2 − 1 + z

)−2
√
2

4


Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−z2 + 1)
(

d2

dz2
y(z)

)
− 3z

(
d
dz
y(z)

)
+ y(z) = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = y(z)

z2−1 −
3z
(

d
dz

y(z)
)

z2−1

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z) +

3z
(

d
dz

y(z)
)

z2−1 − y(z)
z2−1 = 0

� Check to see if z0 is a regular singular point
◦ Define functions[

P2(z) = 3z
z2−1 , P3(z) = − 1

z2−1

]
◦ (z + 1) · P2(z) is analytic at z = −1

((z + 1) · P2(z))
∣∣∣∣
z=−1

= 3
2

◦ (z + 1)2 · P3(z) is analytic at z = −1(
(z + 1)2 · P3(z)

) ∣∣∣∣
z=−1

= 0

◦ z = −1is a regular singular point
Check to see if z0 is a regular singular point
z0 = −1

• Multiply by denominators

(z2 − 1)
(

d2

dz2
y(z)

)
+ 3z

(
d
dz
y(z)

)
− y(z) = 0

• Change variables using z = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (3u− 3)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 3 + 2r) + ak(k2 + 2kr + r2 + 2k + 2r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−r(1 + 2r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

−2
(
k + r + 3

2

)
(k + 1 + r) ak+1 + (k2 + (2r + 2) k + r2 + 2r − 1) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2+2k+2r−1

)
ak

(2k+3+2r)(k+1+r)

• Recursion relation for r = 0

ak+1 =
(
k2+2k−1

)
ak

(2k+3)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2+2k−1

)
ak

(2k+3)(k+1)

]
• Revert the change of variables u = z + 1[

y(z) =
∞∑
k=0

ak(z + 1)k , ak+1 =
(
k2+2k−1

)
ak

(2k+3)(k+1)

]
• Recursion relation for r = −1

2

ak+1 =
(
k2+k− 7

4
)
ak

(2k+2)
(
k+ 1

2
)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+1 =
(
k2+k− 7

4
)
ak

(2k+2)
(
k+ 1

2
)
]

• Revert the change of variables u = z + 1[
y(z) =

∞∑
k=0

ak(z + 1)k−
1
2 , ak+1 =

(
k2+k− 7

4
)
ak

(2k+2)
(
k+ 1

2
)
]

• Combine solutions and rename parameters[
y(z) =

(
∞∑
k=0

ak(z + 1)k
)
+
(

∞∑
k=0

bk(z + 1)k−
1
2

)
, ak+1 =

(
k2+2k−1

)
ak

(2k+3)(k+1) , bk+1 =
(
k2+k− 7

4
)
bk

(2k+2)
(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.079 (sec)
Leaf size : 45� �
dsolve((-z^2+1)*diff(diff(y(z),z),z)-3*z*diff(y(z),z)+y(z) = 0,

y(z),singsol=all)� �
y(z) =

c2
(
z +

√
z2 − 1

)−√
2 + c1

(
z +

√
z2 − 1

)√2

√
z2 − 1

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 90� �
DSolve[{(1-z^2)*D[y[z],{z,2}]-3*z*D[y[z],z]+y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �

y(z) →

√
2c1 cos

(
2
√
2 arcsin

(√
1−z√
2

))
+
√
πc2

4
√
1− z2Q

1
2
− 1

2+
√
2(z)

√
π

4
√

− (z2 − 1)2
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2.1.635 problem 652

Solved as second order ode using Kovacic algorithm . . . . . . . . .4276
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4280
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4282
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4282
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4282

Internal problem ID [9483]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 652
Date solved : Thursday, December 12, 2024 at 10:13:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4zy′′ + 2(1− z) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.280 (sec)

Writing the ode as

4zy′′ + (−2z + 2) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4z
B = −2z + 2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = z2 + 2z − 3
16z2 (6)

Comparing the above to (5) shows that

s = z2 + 2z − 3
t = 16z2

Therefore eq. (4) becomes

z′′(z) =
(
z2 + 2z − 3

16z2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1213: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16z2. There is a pole at z = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 − 3

16z2 + 1
8z

For the pole at z = 0 let b be the coefficient of 1
z2

in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
0∑

i=0

aiz
i (8)
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Let a be the coefficient of zv = z0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 1
4z − 1

2z2 + 1
2z3 − 1

z4
+ 2

z5
− 9

2z6 + 21
2z7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aiz
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of zv−1 = z−1 = 1
z
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

z
in the above is 0. Now we need to find the coefficient

of 1
z
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
z
in r will be the

coefficient in R of the term in z of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= z2 + 2z − 3
16z2

= Q+ R

16z2

=
(

1
16

)
+
(
2z − 3
16z2

)
= 1

16 + 2z − 3
16z2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder
R is 2. Dividing this by leading coefficient in t which is 16 gives 1

8 . Now b can be found.

b =
(
1
8

)
− (0)

= 1
8

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
8
1
4
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
8
1
4
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = z2 + 2z − 3
16z2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

4 then

d = α+
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

z − c1

)
+ (+)[

√
r]∞

= 1
4z +

(
1
4

)
= 1

4 + 1
4z

= z + 1
4z

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 0 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
4 + 1

4z

)
(0) +

((
− 1
4z2

)
+
(
1
4 + 1

4z

)2

−
(
z2 + 2z − 3

16z2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(z) = pe
∫
ω dz

= e
∫ ( 1

4+
1
4z
)
dz

= z1/4e z
4
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
−2z+2

4z dz

= z1e
z
4−

ln(z)
4

= z1

(
e z

4

z1/4

)

Which simplifies to
y1 = e z

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
−−2z+2

4z dz

(y1)2
dz

= y1

∫
e

z
2−

ln(z)
2

(y1)2
dz

= y1

(
√
π
√
2 erf

(√
2
√
z

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e z

2
)
+ c2

(
e z

2

(
√
π
√
2 erf

(√
2
√
z

2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4z
(

d2

dz2
y(z)

)
+ 2(1− z)

(
d
dz
y(z)

)
− y(z) = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = y(z)

4z +
(z−1)

(
d
dz

y(z)
)

2z

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z)−

(z−1)
(

d
dz

y(z)
)

2z − y(z)
4z = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = − z−1
2z , P3(z) = − 1

4z

]
◦ z · P2(z) is analytic at z = 0
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(z · P2(z))
∣∣∣∣
z=0

= 1
2

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators

4z
(

d2

dz2
y(z)

)
+ (−2z + 2)

(
d
dz
y(z)

)
− y(z) = 0

• Assume series solution for y(z)

y(z) =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm ·

(
d
dz
y(z)

)
to series expansion form = 0..1

zm ·
(

d
dz
y(z)

)
=

∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm ·
(

d
dz
y(z)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z ·
(

d2

dz2
y(z)

)
to series expansion

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r) zk+r

Rewrite ODE with series expansions

2a0r(−1 + 2r) z−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (2k + 2r + 1)− ak(2k + 2r + 1)) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
4
(
k + r + 1

2

) (
ak+1(k + 1 + r)− ak

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

2(k+1+r)

• Recursion relation for r = 0
ak+1 = ak

2(k+1)

• Solution for r = 0[
y(z) =

∞∑
k=0

akz
k, ak+1 = ak

2(k+1)

]
• Recursion relation for r = 1

2

ak+1 = ak
2
(
k+ 3

2
)

• Solution for r = 1
2[

y(z) =
∞∑
k=0

akz
k+ 1

2 , ak+1 = ak
2
(
k+ 3

2
)
]

• Combine solutions and rename parameters
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[
y(z) =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+ 1

2

)
, ak+1 = ak

2(k+1) , bk+1 = bk
2
(
k+ 3

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 22� �
dsolve(4*z*diff(diff(y(z),z),z)+2*(1-z)*diff(y(z),z)-y(z) = 0,

y(z),singsol=all)� �
y(z) = e z

2

(
erf
(√

2
√
z

2

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 34� �
DSolve[{4*z*D[y[z],{z,2}]+2*(1-z)*D[y[z],z]-y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �
y(z) → ez/2

(
c1 −

√
2c2Γ

(
1
2 ,

z

2

))
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2.1.636 problem 653

Solved as second order ode using Kovacic algorithm . . . . . . . . .4283
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4287
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4288
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4288
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4288

Internal problem ID [9484]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 653
Date solved : Thursday, December 12, 2024 at 10:13:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

f ′′ + 2(z − 1) f ′ + 4f = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.280 (sec)

Writing the ode as

f ′′ + (2z − 2) f ′ + 4f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2z − 2 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(z) = fe
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = z2 − 2z − 2
1 (6)

Comparing the above to (5) shows that

s = z2 − 2z − 2
t = 1

Therefore eq. (4) becomes

z′′(z) =
(
z2 − 2z − 2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then f is found using the inverse transfor-
mation

f = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1215: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
1∑

i=0

aiz
i (8)

Let a be the coefficient of zv = z1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ z − 1− 3

2z − 3
2z2 − 21

8z3 − 39
8z4 − 159

16z5 − 339
16z6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aiz
i

= z − 1 (10)

Now we need to find b, where b be the coefficient of zv−1 = z0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = z2 − 2z + 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= z2 − 2z − 2
1

= Q+ R

1
=
(
z2 − 2z − 2

)
+ (0)

= z2 − 2z − 2

We see that the coefficient of the term 1
z
in the quotient is −2. Now b can be found.

b = (−2)− (1)
= −3

Hence

[
√
r]∞ = z − 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1 − 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = z2 − 2z − 2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 z − 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−) (z − 1)
= 1− z

= 1− z

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 1 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = z + a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(1− z) (1) +
(
(−1) + (1− z)2 −

(
z2 − 2z − 2

))
= 0

2 + 2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(z) in eq. (2A) results in

p(z) = z − 1

Therefore the first solution to the ode z′′ = rz is

z1(z) = pe
∫
ω dz

= (z − 1) e
∫
(1−z)dz

= (z − 1) ez− 1
2 z

2

= (z − 1) e−
z(−2+z)

2

The first solution to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
2z−2

1 dz

= z1e
z− 1

2 z
2

= z1
(
e−

z(−2+z)
2

)
Which simplifies to

f1 = e−z(−2+z)(z − 1)

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dz

f 2
1

dz
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Substituting gives

f2 = f1

∫
e
∫
− 2z−2

1 dz

(f1)2
dz

= f1

∫
e−z2+2z

(f1)2
dz

= f1

(
−e(z−1)2−1

z − 1 − i
√
π e−1 erf (i(z − 1))

)

Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−z(−2+z)(z − 1)

)
+ c2

(
e−z(−2+z)(z − 1)

(
−e(z−1)2−1

z − 1 − i
√
π e−1 erf (i(z − 1))

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dz2
f(z) + 2(z − 1)

(
d
dz
f(z)

)
+ 4f(z) = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
f(z)

• Isolate 2nd derivative
d2

dz2
f(z) = −2(z − 1)

(
d
dz
f(z)

)
− 4f(z)

• Group terms with f(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dz2
f(z) + (−2 + 2z)

(
d
dz
f(z)

)
+ 4f(z) = 0

• Assume series solution for f(z)

f(z) =
∞∑
k=0

akz
k

� Rewrite DE with series expansions
◦ Convert zm ·

(
d
dz
f(z)

)
to series expansion form = 0..1

zm ·
(

d
dz
f(z)

)
=

∞∑
k=max(0,1−m)

akk z
k−1+m

◦ Shift index using k− >k + 1−m

zm ·
(

d
dz
f(z)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m) zk

◦ Convert d2

dz2
f(z) to series expansion

d2

dz2
f(z) =

∞∑
k=2

akk(k − 1) zk−2

◦ Shift index using k− >k + 2
d2

dz2
f(z) =

∞∑
k=0

ak+2(k + 2) (k + 1) zk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− 2ak+1(k + 1) + 2ak(k + 2)) zk = 0

• Each term in the series must be 0, giving the recursion relation
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k2ak+2 + (2ak − 2ak+1 + 3ak+2) k + 4ak − 2ak+1 + 2ak+2 = 0
• Recursion relation that defines the series solution to the ODE[

f(z) =
∞∑
k=0

akz
k, ak+2 = −2(akk−ak+1k+2ak−ak+1)

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 42� �
dsolve(diff(diff(f(z),z),z)+2*(z-1)*diff(f(z),z)+4*f(z) = 0,

f(z),singsol=all)� �
f(z) = erf (i(z − 1))

√
π c2(z − 1) e−(z−1)2 + c1e−z(z−2)(z − 1)− ic2

Mathematica DSolve solution

Solving time : 0.206 (sec)
Leaf size : 72� �
DSolve[{D[ f[z],{z,2}]+2*(z-a)*D[ f[z],z]+4*f[z]==0,{}},

f[z],z,IncludeSingularSolutions->True]� �
f(z) → ez(2a−z)

(
−
√
πc2
√

(a− z)2erfi
(√

(a− z)2
)
+ c2e

(a−z)2 − 2ac1 + 2c1z
)
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2.1.637 problem 654

Solved as second order ode using Kovacic algorithm . . . . . . . . .4289
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4293
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4295
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4295
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4295

Internal problem ID [9485]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 654
Date solved : Thursday, December 12, 2024 at 10:13:04 AM
CAS classification : [_Lienard]

Solve

zy′′ − 2y′ + zy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as

zy′′ − 2y′ + zy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = z

B = −2 (3)
C = z

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −z2 + 2
z2

(6)

Comparing the above to (5) shows that

s = −z2 + 2
t = z2

Therefore eq. (4) becomes

z′′(z) =
(
−z2 + 2

z2

)
z(z) (7)
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Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1217: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = z2. There is a pole at z = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 2
z2

For the pole at z = 0 let b be the coefficient of 1
z2

in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
0∑

i=0

aiz
i (8)
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Let a be the coefficient of zv = z0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− i

z2
− i

2z4 − i

2z6 − 5i
8z8 − 7i

8z10 − 21i
16z12 − 33i

16z14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aiz
i

= i (10)

Now we need to find b, where b be the coefficient of zv−1 = z−1 = 1
z
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
z
in the above is 0. Now we need to find the coefficient

of 1
z
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
z
in r will be the

coefficient in R of the term in z of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −z2 + 2
z2

= Q+ R

z2

= (−1) +
(

2
z2

)
= −1 + 2

z2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −z2 + 2
z2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

z − c1

)
+ (−)[

√
r]∞

= −1
z
+ (−) (i)

= −1
z
− i

= −1
z
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 1 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = z + a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
z
− i

)
(1) +

((
1
z2

)
+
(
−1
z
− i

)2

−
(
−z2 + 2

z2

))
= 0

2ia0 − 2
z

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −i}

Substituting these coefficients in p(z) in eq. (2A) results in

p(z) = z − i

Therefore the first solution to the ode z′′ = rz is

z1(z) = pe
∫
ω dz

= (z − i) e
∫ (

− 1
z
−i
)
dz

= (z − i) e− ln(z)−iz

= (z − i) e−iz

z
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
−2
z

dz

= z1e
ln(z)

= z1(z)

Which simplifies to
y1 = (z − i) e−iz

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
−−2

z
dz

(y1)2
dz

= y1

∫
e2 ln(z)

(y1)2
dz

= y1

(
(iz − 1) e2iz
−2z + 2i

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
(z − i) e−iz

)
+ c2

(
(z − i) e−iz

(
(iz − 1) e2iz
−2z + 2i

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

z
(

d2

dz2
y(z)

)
− 2 d

dz
y(z) + y(z) z = 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = −y(z) +

2
(

d
dz

y(z)
)

z

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z)−

2
(

d
dz

y(z)
)

z
+ y(z) = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = −2
z
, P3(z) = 1

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −2
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◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators

z
(

d2

dz2
y(z)

)
− 2 d

dz
y(z) + y(z) z = 0

• Assume series solution for y(z)

y(z) =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert z · y(z) to series expansion

z · y(z) =
∞∑
k=0

akz
k+r+1

◦ Shift index using k− >k − 1

z · y(z) =
∞∑
k=1

ak−1z
k+r

◦ Convert d
dz
y(z) to series expansion

d
dz
y(z) =

∞∑
k=0

ak(k + r) zk+r−1

◦ Shift index using k− >k + 1
d
dz
y(z) =

∞∑
k=−1

ak+1(k + r + 1) zk+r

◦ Convert z ·
(

d2

dz2
y(z)

)
to series expansion

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z ·
(

d2

dz2
y(z)

)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r) zk+r

Rewrite ODE with series expansions

a0r(−3 + r) z−1+r + a1(1 + r) (−2 + r) zr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r) + ak−1) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k − 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k−1)

• Solution for r = 0
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[
y(z) =

∞∑
k=0

akz
k, ak+2 = − ak

(k+2)(k−1) ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = − ak

(k+5)(k+2)

• Solution for r = 3[
y(z) =

∞∑
k=0

akz
k+3, ak+2 = − ak

(k+5)(k+2) , 4a1 = 0
]

• Combine solutions and rename parameters[
y(z) =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+3
)
, ak+2 = − ak

(k+2)(k−1) ,−2a1 = 0, bk+2 = − bk
(5+k)(k+2) , 4b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 23� �
dsolve(z*diff(diff(y(z),z),z)-2*diff(y(z),z)+z*y(z) = 0,

y(z),singsol=all)� �
y(z) = (c1z + c2) cos (z) + sin (z) (c2z − c1)

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 39� �
DSolve[{z*D[y[z],{z,2}]-2*D[y[z],z]+z*y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �
y(z) → −

√
2
π
((c1z + c2) cos(z) + (c2z − c1) sin(z))
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2.1.638 problem 655

Solved as second order ode using Kovacic algorithm . . . . . . . . .4296
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4301
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4302
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4302
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4302

Internal problem ID [9486]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 655
Date solved : Thursday, December 12, 2024 at 10:13:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

zy′′ + (2z − 3) y′ + 4y
z

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.322 (sec)

Writing the ode as

zy′′ + (2z − 3) y′ + 4y
z

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = z

B = 2z − 3 (3)

C = 4
z

Applying the Liouville transformation on the dependent variable gives

z(z) = ye
∫

B
2A dz

Then (2) becomes

z′′(z) = rz(z) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4z2 − 12z − 1
4z2 (6)

Comparing the above to (5) shows that

s = 4z2 − 12z − 1
t = 4z2
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Therefore eq. (4) becomes

z′′(z) =
(
4z2 − 12z − 1

4z2

)
z(z) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse transfor-
mation

y = z(z) e−
∫

B
2A dz

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1219: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4z2. There is a pole at z = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
4z2 − 3

z

For the pole at z = 0 let b be the coefficient of 1
z2

in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving zi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aiz
i

=
0∑

i=0

aiz
i (8)

Let a be the coefficient of zv = z0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 3

2z − 5
4z2 − 15

8z3 − 115
32z4 − 495

64z5 − 2285
128z6 − 11055

256z7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aiz
i

= 1 (10)

Now we need to find b, where b be the coefficient of zv−1 = z−1 = 1
z
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
z
in the above is 0. Now we need to find the coefficient

of 1
z
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
z
in r will be the

coefficient in R of the term in z of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4z2 − 12z − 1
4z2

= Q+ R

4z2

= (1) +
(
−12z − 1

4z2

)
= 1 + −12z − 1

4z2

Since the degree of t is 2, then we see that the coefficient of the term z in the remainder R
is −12. Dividing this by leading coefficient in t which is 4 gives −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1 − 0

)
= −3

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1 − 0
)

= 3
2



chapter 2. book solved problems 4299

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4z2 − 12z − 1
4z2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −3
2

3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

z − c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

z − c1

)
+ (−)[

√
r]∞

= 1
2z + (−) (1)

= 1
2z − 1

= 1
2z − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(z)
of degree d = 1 to solve the ode. The polynomial p(z) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(z) = z + a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2z − 1

)
(1) +

((
− 1
2z2

)
+
(

1
2z − 1

)2

−
(
4z2 − 12z − 1

4z2

))
= 0

1 + 2a0
z

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

2

}
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Substituting these coefficients in p(z) in eq. (2A) results in

p(z) = z − 1
2

Therefore the first solution to the ode z′′ = rz is

z1(z) = pe
∫
ω dz

=
(
z − 1

2

)
e
∫ ( 1

2z−1
)
dz

=
(
z − 1

2

)
e−z+ ln(z)

2

= (−1 + 2z)
√
z e−z

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dz

= z1e
−
∫ 1

2
2z−3

z
dz

= z1e
−z+ 3 ln(z)

2

= z1
(
z3/2e−z

)
Which simplifies to

y1 =
z2e−2z(−1 + 2z)

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dz

y21
dz

Substituting gives

y2 = y1

∫
e
∫
− 2z−3

z
dz

(y1)2
dz

= y1

∫
e−2z+3 ln(z)

(y1)2
dz

= y1

(
−4 Ei1 (−2z)− 4 e2z

−1 + 2z

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
z2e−2z(−1 + 2z)

2

)
+ c2

(
z2e−2z(−1 + 2z)

2

(
−4 Ei1 (−2z)− 4 e2z

−1 + 2z

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

z
(

d2

dz2
y(z)

)
+ (−3 + 2z)

(
d
dz
y(z)

)
+ 4y(z)

z
= 0

• Highest derivative means the order of the ODE is 2
d2

dz2
y(z)

• Isolate 2nd derivative

d2

dz2
y(z) = −4y(z)

z2
−

(−3+2z)
(

d
dz

y(z)
)

z

• Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dz2
y(z) +

(−3+2z)
(

d
dz

y(z)
)

z
+ 4y(z)

z2
= 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = −3+2z
z

, P3(z) = 4
z2

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −3

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 4

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators(
d2

dz2
y(z)

)
z2 + z(−3 + 2z)

(
d
dz
y(z)

)
+ 4y(z) = 0

• Assume series solution for y(z)

y(z) =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm ·

(
d
dz
y(z)

)
to series expansion form = 1..2

zm ·
(

d
dz
y(z)

)
=

∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm ·
(

d
dz
y(z)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z2 ·
(

d2

dz2
y(z)

)
to series expansion

z2 ·
(

d2

dz2
y(z)

)
=

∞∑
k=0

ak(k + r) (k + r − 1) zk+r

Rewrite ODE with series expansions

a0(−2 + r)2 zr +
(

∞∑
k=1

(
ak(k + r − 2)2 + 2ak−1(k + r − 1)

)
zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 + 2ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + r − 1)2 + 2ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r)
(k+r−1)2

• Recursion relation for r = 2
ak+1 = −2ak(k+2)

(k+1)2

• Solution for r = 2[
y(z) =

∞∑
k=0

akz
k+2, ak+1 = −2ak(k+2)

(k+1)2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 36� �
dsolve(z*diff(diff(y(z),z),z)+(2*z-3)*diff(y(z),z)+4/z*y(z) = 0,

y(z),singsol=all)� �
y(z) = 2z2

(
c2e−2z

(
z − 1

2

)
Ei1 (−2z) + c1

(
z − 1

2

)
e−2z + c2

2

)

Mathematica DSolve solution

Solving time : 0.125 (sec)
Leaf size : 47� �
DSolve[{z*D[y[z],{z,2}]+(2*z-3)*D[y[z],z]+4/z*y[z]==0,{}},

y[z],z,IncludeSingularSolutions->True]� �
y(z) → −1

2e
−2zz2

(
4c2(1− 2z) ExpIntegralEi(2z)− 2c1z + 4c2e2z + c1

)
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2.1.639 problem 656

Solved as second order ode using Kovacic algorithm . . . . . . . . .4303
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4307
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4308
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4308
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4309

Internal problem ID [9487]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 656
Date solved : Thursday, December 12, 2024 at 10:13:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.189 (sec)

Writing the ode as

xy′′ + (1− 2x) y′ + (x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1− 2x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1221: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)



chapter 2. book solved problems 4306

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−2x

x
dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−2x

x
dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x

+
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+ (x−1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)+(1-2*x)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 17� �
DSolve[{x*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2 log(x) + c1)
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2.1.640 problem 657

Solved as second order ode using Kovacic algorithm . . . . . . . . .4310
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4312
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4313
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4314
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4314

Internal problem ID [9488]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 657
Date solved : Thursday, December 12, 2024 at 10:13:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.162 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1223: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k+1) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.641 problem 658

Solved as second order ode using Kovacic algorithm . . . . . . . . .4315
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4319
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4320
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4320
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4320

Internal problem ID [9489]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 658
Date solved : Thursday, December 12, 2024 at 10:13:06 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1225: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
4 (x+ 1) +

5
4 (x− 1) −

1
4 (x+ 1)2

− 1
4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 − 3

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2 + 1

2x+ 2

)
(1) +

((
− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(

2x2 − 3
(x2 − 1)2

))
= 0

− 2a0
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2+
1

2x+2

)
dx

= (x)
√

(x− 1) (x+ 1)
= x

√
x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)
Which simplifies to

y1 =
x
√
x2 − 1√

x− 1
√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
1
x
+ ln (x− 1)

2 − ln (x+ 1)
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x
√
x2 − 1√

x− 1
√
x+ 1

)
+ c2

(
x
√
x2 − 1√

x− 1
√
x+ 1

(
1
x
+ ln (x− 1)

2 − ln (x+ 1)
2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 2y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 2

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 1
[y(x) = −a0x]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 25� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = − ln (x+ 1) c2x

2 + c2 ln (x− 1)x
2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 33� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x− 1

2c2(x log(1− x)− x log(x+ 1) + 2)
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2.1.642 problem 659

Solved as second order ode using Kovacic algorithm . . . . . . . . .4321
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4323
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4325
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4325
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4325

Internal problem ID [9490]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 659
Date solved : Thursday, December 12, 2024 at 10:13:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4xy′ +
(
4x2 − 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.184 (sec)

Writing the ode as

4x2y′′ + 4xy′ +
(
4x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 4x (3)
C = 4x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1227: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
4x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 17� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2-1)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.643 problem 660

Solved as second order ode using Kovacic algorithm . . . . . . . . .4326
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4330
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4332
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4332
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4332

Internal problem ID [9491]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 660
Date solved : Thursday, December 12, 2024 at 10:13:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (2x+ 1) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.255 (sec)

Writing the ode as

xy′′ + (−2x− 1) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 1 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 4x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1229: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
x
+ 3

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2x + 1
4x2 + 1

8x3 + 1
32x4 − 1

64x5 − 3
128x6 − 3

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 4x+ 3
4x2

= Q+ R

4x2

= (1) +
(
−4x+ 3

4x2

)
= 1 + −4x+ 3

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 4x+ 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x + (1)

= 1− 1
2x

= 1− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1− 1

2x

)
(0) +

((
1
2x2

)
+
(
1− 1

2x

)2

−
(
4x2 − 4x+ 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

1− 1
2x
)
dx

= ex√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−1

x
dx

= z1e
x+ ln(x)

2

= z1
(√

x ex
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−1

x
dx

(y1)2
dx

= y1

∫
e2x+ln(x)

(y1)2
dx

= y1

(
−(2x+ 1) e2x+ln(x)e−4x

4x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
−(2x+ 1) e2x+ln(x)e−4x

4x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (2x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x

+
(2x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+1)

(
d
dx

y(x)
)

x
+ 2y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+1
x

, P3(x) = 2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x− 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−2 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− 2ak(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− 2ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

k+1+r

• Recursion relation for r = 0
ak+1 = 2ak

k+1

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = 2ak

k+1

]
• Recursion relation for r = 2

ak+1 = 2ak
k+3

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = 2ak

k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = 2ak

k+1 , bk+1 = 2bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve(x*diff(diff(y(x),x),x)-(2*x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = e2xc2 + 2c1x+ c1

Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 25� �
DSolve[{x*D[y[x],{x,2}]-(2*x+1)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

2x − 1
4c2(2x+ 1)
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2.1.644 problem 661

Solved as second order ode using Kovacic algorithm . . . . . . . . .4333
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4337
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4338
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4338
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4338

Internal problem ID [9492]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 661
Date solved : Thursday, December 12, 2024 at 10:13:08 AM
CAS classification : [_erf]

Solve

y′′ + 2xy′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.224 (sec)

Writing the ode as

y′′ + 2xy′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 3
1 (6)

Comparing the above to (5) shows that

s = x2 − 3
t = 1

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 3

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1231: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x− 3

2x − 9
8x3 − 27

16x5 − 405
128x7 − 1701

256x9 − 15309
1024x11 − 72171

2048x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 3
1

= Q+ R

1
=
(
x2 − 3

)
+ (0)

= x2 − 3

We see that the coefficient of the term 1
x
in the quotient is −3. Now b can be found.

b = (−3)− (0)
= −3

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−3

1 − 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−) (x)
= −x

= −x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(−x) (1) +
(
(−1) + (−x)2 −

(
x2 − 3

))
= 0

2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−xdx

= (x) e−x2
2

= x e−x2
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x
1 dx

= z1e
−x2

2

= z1
(
e−x2

2

)
Which simplifies to

y1 = e−x2
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2x

1 dx

(y1)2
dx

= y1

∫
e−x2

(y1)2
dx

= y1

(
−ex2

x
+
√
π erfi (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

x
)
+ c2

(
e−x2

x

(
−ex2

x
+
√
π erfi (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 2x
(

d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + 2ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + 2ak + ak+2) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − 2ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)*x+4*y(x) = 0,

y(x),singsol=all)� �
y = x

(
c2
√
π erfi (x) + c1

)
e−x2 − c2

Mathematica DSolve solution

Solving time : 0.057 (sec)
Leaf size : 51� �
DSolve[{D[y[x],{x,2}]+2*x*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2

(
−
√
πc2

√
x2erfi

(√
x2
)
+ c2e

x2 + 2c1x
)
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2.1.645 problem 662

Solved as second order ode using Kovacic algorithm . . . . . . . . .4339
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4343
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4344
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4344
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4344

Internal problem ID [9493]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 662
Date solved : Thursday, December 12, 2024 at 10:13:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

y′′ + xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1233: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2
(
x2 − 1

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ ex2
2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2
(
x2 − 1

))
+ c2

(
e−x2

2
(
x2 − 1

)(∫ ex2
2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak(k + 3) = 0
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• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak(k+3)

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.043 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+3*y(x) = 0,

y(x),singsol=all)� �
y = (x− 1) (x+ 1)

(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)
e−x2

2 − 2c1x

Mathematica DSolve solution

Solving time : 0.171 (sec)
Leaf size : 65� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x2

2

(√
2πc2

(
x2 − 1

)
erfi
(

x√
2

)
+ 4c1

(
x2 − 1

)
− 2c2e

x2
2 x

)



chapter 2. book solved problems 4345

2.1.646 problem 663

Solved as second order ode using Kovacic algorithm . . . . . . . . .4345
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4349
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4350
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4350
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4350

Internal problem ID [9494]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 663
Date solved : Thursday, December 12, 2024 at 10:13:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − x2y′ − 3xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.294 (sec)

Writing the ode as

y′′ − x2y′ − 3xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = −3x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 + 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 + 8

)
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x(x3 + 8)

4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1235: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 + 2
x
− 4

x4 + 16
x7 − 80

x10 + 448
x13 − 2688

x16 + 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 + 8)
4

= Q+ R

4

=
(
1
4x

4 + 2x
)
+ (0)

= 1
4x

4 + 2x

We see that the coefficient of the term 1
x
in the quotient is 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 2
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 2
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x(x3 + 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 1 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(
x2

2

)
= x2

2

= x2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
x2

2

)
(1) +

(
(x) +

(
x2

2

)2

−
(
x(x3 + 8)

4

))
= 0

−xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫

x2
2 dx

= (x) ex3
6

= x ex3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)
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Which simplifies to

y1 = ex3
3 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1

(∫ e−x3
3

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex3

3 x
)
+ c2

(
ex3

3 x

(∫ e−x3
3

x2 dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x2( d
dx
y(x)

)
− 3xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion
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d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k + 2))xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 − ak−1 + ak+2) = 0

• Shift index using k− >k + 1
(k + 3) ((k + 1) ak+3 − ak + ak+3) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = ak

k+2 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 58� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^2-3*x*y(x) = 0,

y(x),singsol=all)� �
y =

9WhittakerM
(

1
3 ,

5
6 ,

x3

3

)
ex3

6 c2x
3 + 9c1e

x3
3 x2 + 5c2(x3)1/3 32/3(x3 + 2)

9x

Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 51� �
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]-3*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

9e
x3
3

(
9c1x− 32/3c2

3√
x3Γ
(
−1
3 ,

x3

3

))
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2.1.647 problem 664

Solved as second order ode using Kovacic algorithm . . . . . . . . .4351
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4355
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4357
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4357
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4357

Internal problem ID [9495]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 664
Date solved : Thursday, December 12, 2024 at 10:13:10 AM
CAS classification : [_Gegenbauer]

Solve (
−4x2 + 1

)
y′′ − 20xy′ − 16y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as (
−4x2 + 1

)
y′′ − 20xy′ − 16y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −4x2 + 1
B = −20x (3)
C = −16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x2 + 6
(4x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −4x2 + 6

t =
(
4x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−4x2 + 6
(4x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1237: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (4x2 − 1)2. There is a pole at x = 1

2 of order 2. There is a pole at x = −1
2 of order 2.

Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16
(
x+ 1

2

)2 + 7
8
(
x+ 1

2

) + 5
16
(
x− 1

2

)2 − 7
8
(
x− 1

2

)
For the pole at x = 1

2 let b be the coefficient of 1(
x− 1

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −1

2 let b be the coefficient of 1(
x+ 1

2
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −4x2 + 6

(4x2 − 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x2 + 6
(4x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1
2 2 0 5

4 −1
4

−1
2 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

) + (−) (0)

= − 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

)
= − 2x

4x2 − 1
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

)) (1) +

( 1
4
(
x− 1

2

)2 + 1
4
(
x+ 1

2

)2
)

+
(
− 1
4
(
x− 1

2

) − 1
4
(
x+ 1

2

))2

−
(

−4x2 + 6
(4x2 − 1)2

) = 0

4a0
4x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4
(
x− 1

2
)− 1

4
(
x+1

2
)
)
dx

= (x) 1
((2x− 1) (2x+ 1))1/4

= x

(4x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−20x

−4x2+1 dx

= z1e
−

5 ln
(
4x2−1

)
4

= z1

(
1

(4x2 − 1)5/4

)

Which simplifies to

y1 =
x

(4x2 − 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −20x

−4x2+1 dx

(y1)2
dx

= y1

∫
e−

5 ln
(
4x2−1

)
2

(y1)2
dx

= y1

(
(4x2 − 1)3/2

x
− 4x

√
4x2 − 1 + ln

(
x
√
4 +

√
4x2 − 1

)√
4
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

(4x2 − 1)3/2

)

+ c2

(
x

(4x2 − 1)3/2

(
(4x2 − 1)3/2

x
− 4x

√
4x2 − 1 + ln

(
x
√
4 +

√
4x2 − 1

)√
4
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−4x2 + 1)
(

d2

dx2y(x)
)
− 20x

(
d
dx
y(x)

)
− 16y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −16y(x)
4x2−1 −

20x
(

d
dx

y(x)
)

4x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
20x
(

d
dx

y(x)
)

4x2−1 + 16y(x)
4x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 20x
4x2−1 , P3(x) = 16

4x2−1

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= 5
2

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 is a regular singular point
x0 = −1

2

• Multiply by denominators

(4x2 − 1)
(

d2

dx2y(x)
)
+ 20x

(
d
dx
y(x)

)
+ 16y(x) = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

(4u2 − 4u)
(

d2

du2y(u)
)
+ (20u− 10)

(
d
du
y(u)

)
+ 16y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + 2r)u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 5 + 2r) + 4ak(k + r + 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term in the series must be 0, giving the recursion relation

4ak(k + r + 2)2 − 4(k + 1 + r) ak+1
(
k + r + 5

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)2

(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
ak+1 = 2ak(k+2)2

(k+1)(2k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 2ak(k+2)2

(k+1)(2k+5)

]
• Revert the change of variables u = x+ 1

2[
y(x) =

∞∑
k=0

ak
(
x+ 1

2

)k
, ak+1 = 2ak(k+2)2

(k+1)(2k+5)

]
• Recursion relation for r = −3

2

ak+1 =
2ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+1 =
2ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1

2[
y(x) =

∞∑
k=0

ak
(
x+ 1

2

)k− 3
2 , ak+1 =

2ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(
x+ 1

2

)k)+
(

∞∑
k=0

bk
(
x+ 1

2

)k− 3
2

)
, ak+1 = 2ak(k+2)2

(k+1)(2k+5) , bk+1 =
2bk
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.047 (sec)
Leaf size : 48� �
dsolve((-4*x^2+1)*diff(diff(y(x),x),x)-20*diff(y(x),x)*x-16*y(x) = 0,

y(x),singsol=all)� �
y =

2 ln
(
2x+

√
4x2 − 1

)
c2x+ c1x−

√
4x2 − 1 c2

(4x2 − 1)3/2

Mathematica DSolve solution

Solving time : 0.167 (sec)
Leaf size : 68� �
DSolve[{(1-4*x^2)*D[y[x],{x,2}]-20*x*D[y[x],x]-16*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−2c2x arctan
(

2x√
1−4x2

)
− c2

√
1− 4x2 + c1x

4
√
1− 4x2 (4x2 − 1)5/4
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2.1.648 problem 665

Solved as second order ode using Kovacic algorithm . . . . . . . . .4358
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4362
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4364
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4364
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4364

Internal problem ID [9496]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 665
Date solved : Thursday, December 12, 2024 at 10:13:11 AM
CAS classification : [_Gegenbauer]

Solve (
x2 − 1

)
y′′ − 6xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.250 (sec)

Writing the ode as (
x2 − 1

)
y′′ − 6xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = −6x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 15

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

15
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1239: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 15
4 (x− 1) +

15
4 (x+ 1) +

15
4 (x− 1)2

+ 15
4 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 5
2 −3

2

−1 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 3
2 (x− 1) +

5
2 (x+ 1) + (−) (0)

= − 3
2 (x− 1) +

5
2 (x+ 1)

= x− 4
x2 − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)



chapter 2. book solved problems 4361

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)
(0) +

((
3

2 (x− 1)2
− 5

2 (x+ 1)2
)
+
(
− 3
2 (x− 1) +

5
2 (x+ 1)

)2

−
(

15
(x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 3
2(x−1)+

5
2(x+1)

)
dx

= (x+ 1)5/2

(x− 1)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x
x2−1 dx

= z1e
3 ln(x−1)

2 + 3 ln(x+1)
2

= z1
(
(x− 1)3/2 (x+ 1)3/2

)
Which simplifies to

y1 = (x+ 1)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −6x

x2−1 dx

(y1)2
dx

= y1

∫
e3 ln(x−1)+3 ln(x+1)

(y1)2
dx

= y1

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x+ 1)4

)
+ c2

(
(x+ 1)4

(
−x(x2 + 1) e3 ln(x−1)+3 ln(x+1)

(x+ 1)7 (x− 1)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −12y(x)
x2−1 +

6
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
6
(

d
dx

y(x)
)
x

x2−1 + 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− 6x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−6u+ 6)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−4 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 3) + ak(k + r − 3) (k + r − 4))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−4 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 4}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 4)) (k + r − 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−4)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 4
ak+1 = ak(k−4)

2(k+1)

• Apply recursion relation for k = 0
a1 = −2a0

• Apply recursion relation for k = 1
a2 = −3a1

4

• Express in terms of a0
a2 = 3a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

2

• Apply recursion relation for k = 3
a4 = −a3

8

• Express in terms of a0
a4 = a0

16

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 2u+ 3

2u
2 − 1

2u
3 + 1

16u
4)

• Revert the change of variables u = x+ 1[
y(x) = a0(x−1)4

16

]
• Recursion relation for r = 4

ak+1 = akk
2(k+5)

• Solution for r = 4[
y(u) =

∞∑
k=0

aku
k+4, ak+1 = akk

2(k+5)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+4 , ak+1 = akk
2(k+5)

]
• Combine solutions and rename parameters[

y(x) = a0(x−1)4
16 +

(
∞∑
k=0

bk(x+ 1)4+k

)
, bk+1 = bkk

2(5+k)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 25� �
dsolve((x^2-1)*diff(diff(y(x),x),x)-6*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2x

4 + c1x
3 + 6c2x2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.184 (sec)
Leaf size : 45� �
DSolve[{(x^2-1)*D[y[x],{x,2}]-6*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
x2 − 1(c2x(x2 + 1) + c1(x− 1)4)√

1− x2
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2.1.649 problem 666

Solved as second order ode using Kovacic algorithm . . . . . . . . .4365
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4369
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4370
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4371
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4371

Internal problem ID [9497]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 666
Date solved : Thursday, December 12, 2024 at 10:13:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.310 (sec)

Writing the ode as

y′′ + xy′ + (2 + x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x− 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 4x− 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 − x− 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1241: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1− 5
2x − 5

x2 − 65
4x3 − 115

2x4 − 885
4x5 − 1785

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 − 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 − x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 4x− 6
4

= Q+ R

4

=
(
1
4x

2 − x− 3
2

)
+ (0)

= 1
4x

2 − x− 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (1)

= −5
2

Hence

[
√
r]∞ = x

2 − 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 − x− 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 − 1 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 − 1

)
= 1− x

2
= 1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
1− x

2

)
(2x+ a1) +

((
−1
2

)
+
(
1− x

2

)2
−
(
1
4x

2 − x− 3
2

))
= 0

(2 + x) a1 + 4x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = −4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 4x+ 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 4x+ 3

)
e
∫ (

1−x
2
)
dx

=
(
x2 − 4x+ 3

)
ex− 1

4x
2

=
(
x2 − 4x+ 3

)
e−

x(−4+x)
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 =
(
x2 − 4x+ 3

)
e−

x(−2+x)
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ e−x2
2 ex(−2+x)

(x2 − 4x+ 3)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 − 4x+ 3
)
e−

x(−2+x)
2

)
+ c2

((
x2 − 4x+ 3

)
e−

x(−2+x)
2

(∫ e−x2
2 ex(−2+x)

(x2 − 4x+ 3)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2



chapter 2. book solved problems 4370

d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak(k + 2) + ak−1)xk

)
= 0

• Each term must be 0
2a2 + 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + akk + 2ak + ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 + ak+1(k + 1) + 2ak+1 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = −kak+1+ak+3ak+1

k2+5k+6 , 2a2 + 2a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.026 (sec)
Leaf size : 78� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = −

−(x− 3) c2e−
(x−2)2

2

erf

√
2
√
− (x− 2)2

2

− 1

 (x− 1)
√
π

+
√
2
√

− (x− 2)2 c2 + c1e−
(x−2)2

2 (x− 1) (x− 3)

 e−x

Mathematica DSolve solution

Solving time : 0.338 (sec)
Leaf size : 94� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4e
−x2

2 +x− 9
2

(
e5/2

√
2πc2

(
x2 − 4x+ 3

)
erfi
(
x− 2√

2

)
+ 4e9/2c1

(
x2 − 4x+ 3

)
− 2c2e

1
2 (x−3)2+x(x− 2)

)
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2.1.650 problem 667

Solved as second order ode using Kovacic algorithm . . . . . . . . .4372
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4376
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4376
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4377
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4377

Internal problem ID [9498]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 667
Date solved : Thursday, December 12, 2024 at 10:13:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.395 (sec)

Writing the ode as (
2x2 + 1

)
y′′ + 7xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 + 1
B = 7x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 6
4 (2x2 + 1)2

(6)

Comparing the above to (5) shows that

s = 5x2 + 6

t = 4
(
2x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

5x2 + 6
4 (2x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1243: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x2 + 1)2. There is a pole at x = i

√
2

2 of order 2. There is a pole at x = − i
√
2

2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7

64
(
x− i

√
2

2

)2 − 7

64
(
x+ i

√
2

2

)2 − 17i
√
2

64
(
x− i

√
2

2

) + 17i
√
2

64
(
x+ i

√
2

2

)
For the pole at x = i

√
2

2 let b be the coefficient of 1(
x− i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8
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For the pole at x = − i
√
2

2 let b be the coefficient of 1(
x+ i

√
2

2

)2 in the partial fractions decom-

position of r given above. Therefore b = − 7
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

8
α−
c = 1

2 −
√
1 + 4b = 1

8

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 6

4 (2x2 + 1)2

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 6
4 (2x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i
√
2

2 2 0 7
8

1
8

− i
√
2

2 2 0 7
8

1
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 5

4 −
(
1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2
+ (0)

= 1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

= x

4x2 + 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
8x− 4i

√
2
+ 1

8x+ 4i
√
2

)
(1) +


− 1

8
(
x− i

√
2

2

)2 − 1

8
(
x+ i

√
2

2

)2
+

(
1

8x− 4i
√
2
+ 1

8x+ 4i
√
2

)2

−
(

5x2 + 6
4 (2x2 + 1)2

) = 0

− a0
2x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

8x−4i
√
2+

1
8x+4i

√
2

)
dx

= (x)
((

i
√
2− 2x

)(
2x+ i

√
2
))1/8

= x
(
−4x2 − 2

)1/8
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
7x

2x2+1 dx

= z1e
−

7 ln
(
2x2+1

)
8

= z1

(
1

(2x2 + 1)7/8

)

Which simplifies to

y1 =
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 7x

2x2+1 dx

(y1)2
dx

= y1

∫
e−

7 ln
(
2x2+1

)
4

(y1)2
dx

= y1

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

)
+c2

(
27/8x(−4x2 − 2)1/8

(4x2 + 2)7/8

(∫ 21/4(4x2 + 2)7/4

4 (2x2 + 1)7/4 x2 (−4x2 − 2)1/4
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 37� �
dsolve((2*x^2+1)*diff(diff(y(x),x),x)+7*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

c1 LegendreP
(1
4 ,

3
4 , i

√
2x
)
+ c2 LegendreQ

(1
4 ,

3
4 , i

√
2x
)

(2x2 + 1)3/8

Mathematica DSolve solution

Solving time : 0.105 (sec)
Leaf size : 66� �
DSolve[{(1+2*x^2)*D[y[x],{x,2}]+7*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
c2Q

3
4
1
4

(
i
√
2x
)

(2x2 + 1)3/8
+ 2i 4

√
2c1x

(2x2 + 1)3/4Gamma
(1
4

)
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2.1.651 problem 668

Solved as second order ode using Kovacic algorithm . . . . . . . . .4378
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4382
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4383
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4383
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4384

Internal problem ID [9499]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 668
Date solved : Thursday, December 12, 2024 at 10:13:13 AM
CAS classification : [_Lienard]

Solve

4y′′ + xy′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.294 (sec)

Writing the ode as

4y′′ + xy′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4
B = x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 56
64 (6)

Comparing the above to (5) shows that

s = x2 − 56
t = 64

Therefore eq. (4) becomes

z′′(x) =
(
x2

64 − 7
8

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1244: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

8 − 7
2x − 49

x3 − 1372
x5 − 48020

x7 − 1882384
x9 − 79060128

x11 − 3478645632
x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
8
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

8 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

64
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 56
64

= Q+ R

64

=
(
x2

64 − 7
8

)
+ (0)

= x2

64 − 7
8

We see that the coefficient of the term 1
x
in the quotient is −7

8 . Now b can be found.

b =
(
−7
8

)
− (0)

= −7
8

Hence

[
√
r]∞ = x

8

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
8

1
8

− 1
)

= −4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

8
1
8

− 1
)

= 3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

64 − 7
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
8 −4 3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3, and since there are no poles then

d = α−
∞

= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
8

)
= −x

8
= −x

8
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(
−x

8

) (
3x2 + 2xa2 + a1

)
+
((

−1
8

)
+
(
−x

8

)2
−
(
x2

64 − 7
8

))
= 0

6x+ 2a2 +
1
4a2x

2 + 1
2a1x+ 3

4a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = −12, a2 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 − 12x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 − 12x

)
e
∫
−x

8 dx

=
(
x3 − 12x

)
e−x2

16

= x
(
x2 − 12

)
e−x2

16

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
4 dx

= z1e
−x2

16

= z1
(
e−x2

16

)
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Which simplifies to

y1 = e−x2
8 x
(
x2 − 12

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

4 dx

(y1)2
dx

= y1

∫
e−

x2
8

(y1)2
dx

= y1

(∫ ex2
8

x2 (x2 − 12)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

8 x
(
x2 − 12

))
+ c2

(
e−x2

8 x
(
x2 − 12

)(∫ ex2
8

x2 (x2 − 12)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
4 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
x
(

d
dx

y(x)
)

4 − y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

4 + y(x) = 0
• Multiply by denominators

4 d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(4ak+2(k + 2) (k + 1) + ak(k + 4))xk = 0

• Each term in the series must be 0, giving the recursion relation
4(k2 + 3k + 2) ak+2 + ak(k + 4) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak(k+4)

4(k2+3k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 34� �
dsolve(4*diff(diff(y(x),x),x)+diff(y(x),x)*x+4*y(x) = 0,

y(x),singsol=all)� �
y = −

e−x2
8

(
−12 hypergeom

([
−3

2

]
,
[1
2

]
, x

2

8

)
c2 + c1x(x2 − 12)

)
12
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Mathematica DSolve solution

Solving time : 0.152 (sec)
Leaf size : 122� �
DSolve[{4*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
e−

x2
8

(√
2πc2(x2 − 12)x2erfi

(√
x2

2
√
2

)
+ 4

√
x2
(
2
√
2c1x3 − c2e

x2
8 x2 + 8c2e

x2
8 − 24

√
2c1x

))
32
√
x2
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2.1.652 problem 669

Solved as second order ode using Kovacic algorithm . . . . . . . . .4385
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4389
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4390
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4390

Internal problem ID [9500]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 669
Date solved : Thursday, December 12, 2024 at 10:13:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.257 (sec)

Writing the ode as

y′′ + xy′ − 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 18
4 (6)

Comparing the above to (5) shows that

s = x2 + 18
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 9
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1246: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 9
2x − 81

4x3 + 729
4x5 − 32805

16x7 + 413343
16x9 − 11160261

32x11 + 157837977
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 18
4

= Q+ R

4

=
(
x2

4 + 9
2

)
+ (0)

= x2

4 + 9
2

We see that the coefficient of the term 1
x
in the quotient is 9

2 . Now b can be found.

b =
(
9
2

)
− (0)

= 9
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 9
2
1
2
− 1
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

9
2
1
2
− 1
)

= −5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 9
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 4 −5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4, and since there are no poles, then

d = α+
∞

= 4

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 4 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
12x2 + 6xa3 + 2a2

)
+ 2
(x
2

) (
4x3 + 3x2a3 + 2xa2 + a1

)
+
((

1
2

)
+
(x
2

)2
−
(
x2

4 + 9
2

))
= 0

−a3x
3 + (−2a2 + 12)x2 + (−3a1 + 6a3)x− 4a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 3, a1 = 0, a2 = 6, a3 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x4 + 6x2 + 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x4 + 6x2 + 3

)
e
∫

x
2 dx

=
(
x4 + 6x2 + 3

)
ex2

4

=
(
x4 + 6x2 + 3

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to
y1 = x4 + 6x2 + 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

(∫ e−x2
2

(x4 + 6x2 + 3)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x4 + 6x2 + 3

)
+ c2

(
x4 + 6x2 + 3

(∫ e−x2
2

(x4 + 6x2 + 3)2
dx

))

Will add steps showing solving for IC soon.

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.060 (sec)
Leaf size : 47� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = xc1

√
2
(
x2 + 5

)
e−x2

2 +
(
x4 + 6x2 + 3

)(√
π erf

(√
2x
2

)
c1 + c2

)

Mathematica DSolve solution

Solving time : 0.029 (sec)
Leaf size : 43� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x2
2 HermiteH

(
−5, x√

2

)
+ 1

3c2
(
x4 + 6x2 + 3

)
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2.1.653 problem 670

Solved as second order ode using Kovacic algorithm . . . . . . . . .4391
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4395
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4395
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4396
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4396

Internal problem ID [9501]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 670
Date solved : Thursday, December 12, 2024 at 10:13:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4xy′′ − xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

4xy′′ − xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x
B = −x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x− 32
64x (6)

Comparing the above to (5) shows that

s = x− 32
t = 64x

Therefore eq. (4) becomes

z′′(x) =
(
x− 32
64x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1247: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 64x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

8 − 2
x
− 16

x2 − 256
x3 − 5120

x4 − 114688
x5 − 2752512

x6 − 69206016
x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
8

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
8 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

64

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x− 32
64x

= Q+ R

64x

=
(

1
64

)
+
(
− 1
2x

)
= 1

64 − 1
2x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder R
is −32. Dividing this by leading coefficient in t which is 64 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

8

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
8

− 0
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
8

− 0
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x− 32
64x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
8 −2 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2 then

d = α−
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
x
+ (−)

(
1
8

)
= 1

x
− 1

8
= 1

x
− 1

8
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

8

)
(1) +

((
− 1
x2

)
+
(
1
x
− 1

8

)2

−
(
x− 32
64x

))
= 0

8 + a0
4x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −8}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −8 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−8 + x) e
∫ ( 1

x
− 1

8
)
dx

= (−8 + x) e−x
8+ln(x)

= (−8 + x)x e−x
8
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
4x dx

= z1e
x
8

= z1
(
ex

8
)

Which simplifies to
y1 = (−8 + x)x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

4x dx

(y1)2
dx

= y1

∫
e

x
4

(y1)2
dx

= y1

(
− ex

4

256
(
−2 + x

4

) − Ei1
(
−x

4

)
128 − ex

4

64x

)

Therefore the solution is

y = c1y1 + c2y2

= c1((−8 + x)x) + c2

(
(−8 + x)x

(
− ex

4

256
(
−2 + x

4

) − Ei1
(
−x

4

)
128 − ex

4

64x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 33� �
dsolve(4*x*diff(diff(y(x),x),x)-diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

xc2(x− 8) Ei1
(
−x

4

)
16 + c2(x− 4) ex

4

4 + c1x(x− 8)

Mathematica DSolve solution

Solving time : 0.082 (sec)
Leaf size : 43� �
DSolve[{4*x*D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

128c2
(
(x− 8)xExpIntegralEi

(x
4

)
− 4ex/4(x− 4)

)
+ c1(x− 8)x



chapter 2. book solved problems 4397

2.1.654 problem 671

Solved as second order ode using Kovacic algorithm . . . . . . . . .4397
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4401
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4403
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4403
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4404

Internal problem ID [9502]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 671
Date solved : Thursday, December 12, 2024 at 10:13:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

6x2y′′ + x(1 + 18x) y′ + (1 + 12x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.322 (sec)

Writing the ode as

6x2y′′ +
(
18x2 + x

)
y′ + (1 + 12x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 6x2

B = 18x2 + x (3)
C = 1 + 12x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 324x2 − 252x− 35
144x2 (6)

Comparing the above to (5) shows that

s = 324x2 − 252x− 35
t = 144x2

Therefore eq. (4) becomes

z′′(x) =
(
324x2 − 252x− 35

144x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1248: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 144x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 − 35

144x2 − 7
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 35
144 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

12
α−
c = 1

2 −
√
1 + 4b = 5

12
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 −
7

12x − 7
36x2 −

49
648x3 −

245
5832x4 −

343
13122x5 −

66199
3779136x6 −

837949
68024448x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 9

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 324x2 − 252x− 35
144x2

= Q+ R

144x2

=
(
9
4

)
+
(
−252x− 35

144x2

)
= 9

4 + −252x− 35
144x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −252. Dividing this by leading coefficient in t which is 144 gives −7

4 . Now b can be
found.

b =
(
−7
4

)
− (0)

= −7
4

Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−7
4

3
2

− 0
)

= − 7
12

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−7

4
3
2

− 0
)

= 7
12

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 324x2 − 252x− 35
144x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
12

5
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 − 7

12
7
12

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 7

12 then

d = α−
∞ −

(
α+
c1

)
= 7

12 −
(

7
12

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 7
12x + (−)

(
3
2

)
= 7

12x − 3
2

= 7
12x − 3

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

7
12x − 3

2

)
(0) +

((
− 7
12x2

)
+
(

7
12x − 3

2

)2

−
(
324x2 − 252x− 35

144x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 7

12x−
3
2
)
dx

= x7/12e− 3x
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
18x2+x

6x2 dx

= z1e
− 3x

2 − ln(x)
12

= z1

(
e− 3x

2

x1/12

)

Which simplifies to
y1 =

√
x e−3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 18x2+x

6x2 dx

(y1)2
dx

= y1

∫
e−3x− ln(x)

6

(y1)2
dx

= y1

(∫ e−3x− ln(x)
6 e6x

x
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x e−3x)+ c2

(
√
x e−3x

(∫ e−3x− ln(x)
6 e6x

x
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

6x2
(

d2

dx2y(x)
)
+ x(1 + 18x)

(
d
dx
y(x)

)
+ (1 + 12x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (1+12x)y(x)
6x2 −

(1+18x)
(

d
dx

y(x)
)

6x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(1+18x)

(
d
dx

y(x)
)

6x + (1+12x)y(x)
6x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1+18x
6x , P3(x) = 1+12x

6x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

6x2
(

d2

dx2y(x)
)
+ x(1 + 18x)

(
d
dx
y(x)

)
+ (1 + 12x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(3k + 3r − 1) (2k + 2r − 1) + 6ak−1(3k + 3r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term in the series must be 0, giving the recursion relation

6
((
k + r − 1

2

)
ak + 3ak−1

) (
k − 1

3 + r
)
= 0

• Shift index using k− >k + 1
6
((
k + 1

2 + r
)
ak+1 + 3ak

) (
k + 2

3 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − 6ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 = − 6ak
2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 6ak
2k+2

]
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• Recursion relation for r = 1
3

ak+1 = − 6ak
2k+ 5

3

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 = − 6ak
2k+ 5

3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+1 = − 6ak

2k+2 , bk+1 = − 6bk
2k+ 5

3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 40� �
dsolve(6*x^2*diff(diff(y(x),x),x)+x*(1+18*x)*diff(y(x),x)+(1+12*x)*y(x) = 0,

y(x),singsol=all)� �
y =

− c2(−x)5/635/6
3 + x e−3x(c2Γ(56)− c2Γ

(5
6 ,−3x

)
+ c1

)
√
x
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Mathematica DSolve solution

Solving time : 0.094 (sec)
Leaf size : 47� �
DSolve[{6*x^2*D[y[x],{x,2}]+x*(1+18*x)*D[y[x],x]+(1+12*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−3x

(
6
√
3c2x4/3Γ

(
−1

6 ,−3x
)

(−x)5/6 + c1
√
x

)
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Internal problem ID [9503]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 672
Date solved : Thursday, December 12, 2024 at 10:13:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3x2y′′ − x(x+ 8) y′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 3.565 (sec)

Writing the ode as

3x2y′′ +
(
−x2 − 8x

)
y′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x2

B = −x2 − 8x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 16x+ 40
36x2 (6)

Comparing the above to (5) shows that

s = x2 + 16x+ 40
t = 36x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 16x+ 40

36x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1250: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
36 + 10

9x2 + 4
9x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 10
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

3
α−
c = 1

2 −
√
1 + 4b = −2

3
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

6 + 4
3x − 2

x2 + 16
x3 − 140

x4 + 1312
x5 − 12944

x6 + 132736
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
6

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
6 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

36
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 16x+ 40
36x2

= Q+ R

36x2

=
(

1
36

)
+
(
16x+ 40
36x2

)
= 1

36 + 16x+ 40
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 16. Dividing this by leading coefficient in t which is 36 gives 4

9 . Now b can be found.

b =
(
4
9

)
− (0)

= 4
9

Hence

[
√
r]∞ = 1

6

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 4
9
1
6
− 0
)

= 4
3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

4
9
1
6
− 0
)

= −4
3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 16x+ 40
36x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
3 −2

3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
6

4
3 −4

3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4

3 then

d = α+
∞ −

(
α−
c1

)
= 4

3 −
(
−2
3

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 2
3x +

(
1
6

)
= − 2

3x + 1
6

= −4 + x

6x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 2
3x + 1

6

)
(2x+ a1) +

((
2
3x2

)
+
(
− 2
3x + 1

6

)2

−
(
x2 + 16x+ 40

36x2

))
= 0

(−a1 − 2)x− 2a0 − 4a1
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4, a1 = −2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 2x+ 4
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 2x+ 4

)
e
∫ (

− 2
3x+

1
6
)
dx

=
(
x2 − 2x+ 4

)
ex

6−
2 ln(x)

3

= (x2 − 2x+ 4) ex
6

x2/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−8x

3x2 dx

= z1e
x
6+

4 ln(x)
3

= z1
(
x4/3ex

6
)

Which simplifies to
y1 = x2/3ex

3
(
x2 − 2x+ 4

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−8x

3x2 dx

(y1)2
dx

= y1

∫
e

x
3+

8 ln(x)
3

(y1)2
dx

= y1

(∫ ex
3+

8 ln(x)
3 e− 2x

3

x4/3 (x2 − 2x+ 4)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2/3ex

3
(
x2 − 2x+ 4

))
+ c2

(
x2/3ex

3
(
x2 − 2x+ 4

)(∫ ex
3+

8 ln(x)
3 e− 2x

3

x4/3 (x2 − 2x+ 4)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3x2
(

d2

dx2y(x)
)
− x(x+ 8)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x2 +

(x+8)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+8)

(
d
dx

y(x)
)

3x + 2y(x)
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+8
3x , P3(x) = 2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −8
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
− x(x+ 8)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + 3r) (−3 + r)xr +
(

∞∑
k=1

(ak(3k + 3r − 2) (k + r − 3)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + 3r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
3, 23
}

• Each term in the series must be 0, giving the recursion relation
3
(
k + r − 2

3

)
(k + r − 3) ak − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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3
(
k + 1

3 + r
)
(k − 2 + r) ak+1 − ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(3k+1+3r)(k−2+r)

• Recursion relation for r = 3
ak+1 = ak(k+3)

(3k+10)(k+1)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = ak(k+3)

(3k+10)(k+1)

]
• Recursion relation for r = 2

3

ak+1 =
ak
(
k+ 2

3
)

(3k+3)
(
k− 4

3
)

• Solution for r = 2
3[

y(x) =
∞∑
k=0

akx
k+ 2

3 , ak+1 =
ak
(
k+ 2

3
)

(3k+3)
(
k− 4

3
)
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+3
)
+
(

∞∑
k=0

bkx
k+ 2

3

)
, ak+1 = ak(k+3)

(3k+10)(k+1) , bk+1 =
bk
(
k+ 2

3
)

(3k+3)
(
k− 4

3
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.083 (sec)
Leaf size : 38� �
dsolve(3*x^2*diff(diff(y(x),x),x)-x*(x+8)*diff(y(x),x)+6*y(x) = 0,

y(x),singsol=all)� �
y = c2

(
x2/3 − x5/3

2 + x8/3

4

)
ex

3 + c1 hypergeom
(
[3] ,

[
10
3

]
,
x

3

)
x3

Mathematica DSolve solution

Solving time : 0.255 (sec)
Leaf size : 79� �
DSolve[{3*x^2*D[y[x],{x,2}]-x*(x+8)*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x/3x2/3(x2 − 2x+ 4
)
−

c2e
x/3x2/3(x2 − 2x+ 4)Γ

(1
3 ,

x
3

)
6 32/3 + 1

6c2(x− 4)x
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2.1.656 problem 673

Solved as second order ode using Kovacic algorithm . . . . . . . . .4413
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4418
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4419
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4420
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4420

Internal problem ID [9504]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 673
Date solved : Thursday, December 12, 2024 at 10:13:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ − x(1 + 2x) y′ + 2(4x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.727 (sec)

Writing the ode as

2x2y′′ +
(
−2x2 − x

)
y′ + (8x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = −2x2 − x (3)
C = 8x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 60x+ 21
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 60x+ 21
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 60x+ 21

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1252: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 15

4x + 21
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 15
4x − 51

4x2 − 765
8x3 − 3519

4x4 − 144585
16x5 − 6358527

64x6 − 146409525
128x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 60x+ 21
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
−60x+ 21

16x2

)
= 1

4 + −60x+ 21
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −60. Dividing this by leading coefficient in t which is 16 gives −15

4 . Now b can be
found.

b =
(
−15

4

)
− (0)

= −15
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−15
4

1
2

− 0
)

= −15
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−15

4
1
2

− 0
)

= 15
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 60x+ 21
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −15

4
15
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 15

4 then

d = α−
∞ −

(
α+
c1

)
= 15

4 −
(
7
4

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 7
4x + (−)

(
1
2

)
= 7

4x − 1
2

= 7
4x − 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

7
4x − 1

2

)
(2x+ a1) +

((
− 7
4x2

)
+
(

7
4x − 1

2

)2

−
(
4x2 − 60x+ 21

16x2

))
= 0

2(9 + a1)x+ 4a0 + 7a1
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

63
4 , a1 = −9

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 9x+ 63
4
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 9x+ 63

4

)
e
∫ ( 7

4x−
1
2
)
dx

=
(
x2 − 9x+ 63

4

)
e−x

2+
7 ln(x)

4

= (4x2 − 36x+ 63)x7/4e−x
2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−x

2x2 dx

= z1e
x
2+

ln(x)
4

= z1
(
x1/4ex

2
)

Which simplifies to

y1 = x4 − 9x3 + 63
4 x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2−x

2x2 dx

(y1)2
dx

= y1

∫
ex+

ln(x)
2

(y1)2
dx

= y1

(∫ ex+
ln(x)

2(
x4 − 9x3 + 63

4 x
2
)2dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x4 − 9x3 + 63

4 x2
)
+ c2

(
x4 − 9x3 + 63

4 x2

(∫ ex+
ln(x)

2(
x4 − 9x3 + 63

4 x
2
)2dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
− x(2x+ 1)

(
d
dx
y(x)

)
+ 2(4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (4x−1)y(x)
x2 +

(2x+1)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+1)

(
d
dx

y(x)
)

2x + (4x−1)y(x)
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+1
2x , P3(x) = 4x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
− x(2x+ 1)

(
d
dx
y(x)

)
+ (8x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−2 + r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (k + r − 2)− 2ak−1(k − 5 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r) (−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
2,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r + 1

2

)
(k + r − 2) ak − 2ak−1(k − 5 + r) = 0

• Shift index using k− >k + 1
2
(
k + 3

2 + r
)
(k + r − 1) ak+1 − 2ak(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−4)

(2k+3+2r)(k+r−1)

• Recursion relation for r = 2 ; series terminates at k = 2
ak+1 = 2ak(k−2)

(2k+7)(k+1)

• Apply recursion relation for k = 0
a1 = −4a0

7

• Apply recursion relation for k = 1
a2 = −a1

9

• Express in terms of a0
a2 = 4a0

63

• Terminating series solution of the ODE for r = 2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 4

7x+ 4
63x

2)
• Recursion relation for r = −1

2

ak+1 =
2ak
(
k− 9

2
)

(2k+2)
(
k− 3

2
)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 =
2ak
(
k− 9

2
)

(2k+2)
(
k− 3

2
)
]

• Combine solutions and rename parameters[
y(x) = a0 ·

(
1− 4

7x+ 4
63x

2)+ ( ∞∑
k=0

bkx
k− 1

2

)
, bk+1 =

2bk
(
k− 9

2
)

(2k+2)
(
k− 3

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
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-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.079 (sec)
Leaf size : 32� �
dsolve(2*x^2*diff(diff(y(x),x),x)-x*(2*x+1)*diff(y(x),x)+2*(-1+4*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2(4x2 − 36x+ 63)
63 +

c2 hypergeom
([
−9

2

]
,
[
−3

2

]
, x
)

√
x

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 89� �
DSolve[{2*x^2*D[y[x],{x,2}]-x*(1+2*x)*D[y[x],x]+2*(4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x4 − 9x3 + 63x2

4

)
−

4c2
(√

π(−4x2 + 36x− 63)x5/2erfi
(√

x
)
+ 2ex(2x4 − 17x3 + 24x2 + 6x+ 3)

)
945

√
x
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2.1.657 problem 674

Solved as second order ode using Kovacic algorithm . . . . . . . . .4421
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4425
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4427
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4427
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4427

Internal problem ID [9505]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 674
Date solved : Thursday, December 12, 2024 at 10:13:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ − 4x2y′ + (1 + 2x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.283 (sec)

Writing the ode as

4x2y′′ − 4x2y′ + (1 + 2x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 (3)
C = 1 + 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1254: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x − 1

2x2 − 1
2x3 − 3

4x4 − 5
4x5 − 9

4x6 − 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x− 1

4x2

)
= 1

4 + −2x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(0) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 2x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
2
)
dx

=
√
x e−x

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2
4x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2

4x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1(−Ei1 (−x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x(−Ei1 (−x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
− 4x2( d

dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+1)y(x)
4x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− d
dx
y(x) + (2x+1)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = 2x+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x2( d

dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(

∞∑
k=1

(
ak(2k + 2r − 1)2 − 2ak−1(2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 + (−4k − 4r + 6) ak−1 = 0

• Shift index using k− >k + 1
ak+1(2k + 1 + 2r)2 + ak(−4k − 4r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(2k+2r−1)

(2k+1+2r)2

• Recursion relation for r = 1
2

ak+1 = 4akk
(2k+2)2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 4akk
(2k+2)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 17� �
dsolve(4*x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x^2+(2*x+1)*y(x) = 0,

y(x),singsol=all)� �
y = (Ei1 (−x) c2 + c1)

√
x

Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 19� �
DSolve[{4*x^2*D[y[x],{x,2}]-4*x^2*D[y[x],x]+(1+2*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x(c2 ExpIntegralEi(x) + c1)
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2.1.658 problem 675

Solved as second order ode using Kovacic algorithm . . . . . . . . .4428
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4432
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4434
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4434
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4434

Internal problem ID [9506]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 675
Date solved : Thursday, December 12, 2024 at 10:13:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(3− 2x) y′ + (1− 2x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.337 (sec)

Writing the ode as

x2y′′ +
(
−2x2 + 3x

)
y′ + (1− 2x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 + 3x (3)
C = 1− 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x− 1
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 4x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1256: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
4x2 − 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2x − 1
4x2 − 1

8x3 − 3
32x4 − 5

64x5 − 9
128x6 − 17

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 4x− 1
4x2

= Q+ R

4x2

= (1) +
(
−4x− 1

4x2

)
= 1 + −4x− 1

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 4x− 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (1)

= 1
2x − 1

= 1
2x − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

)
(0) +

((
− 1
2x2

)
+
(

1
2x − 1

)2

−
(
4x2 − 4x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−1
)
dx

=
√
x e−x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2+3x

x2 dx

= z1e
x− 3 ln(x)

2

= z1

(
ex
x3/2

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2+3x

x2 dx

(y1)2
dx

= y1

∫
e2x−3 ln(x)

(y1)2
dx

= y1(−Ei1 (−2x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x
(−Ei1 (−2x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(3− 2x)

(
d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (2x−1)y(x)
x2 +

(2x−3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−3)

(
d
dx

y(x)
)

x
− (2x−1)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−3

x
, P3(x) = −2x−1

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− (2x− 3)x

(
d
dx
y(x)

)
+ (−2x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 1)2 − 2ak−1(k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1)2 − 2ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r)2 − 2ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+1)

(k+2+r)2

• Recursion relation for r = −1
ak+1 = 2akk

(k+1)2

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = 2akk

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(-2*x+3)*diff(y(x),x)+(1-2*x)*y(x) = 0,

y(x),singsol=all)� �
y = c2 Ei1 (−2x) + c1

x

Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 19� �
DSolve[{x^2*D[y[x],{x,2}]+x*(3-2*x)*D[y[x],x]+(1-2*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2 ExpIntegralEi(2x) + c1

x
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2.1.659 problem 676

Solved as second order ode using Kovacic algorithm . . . . . . . . .4435
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4439
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4441
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4441
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4441

Internal problem ID [9507]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 676
Date solved : Thursday, December 12, 2024 at 10:13:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(3 + x) y′ + (4− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.342 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 3x

)
y′ + (4− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 3x (3)
C = 4− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 10x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 10x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 10x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1258: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 + 5
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 5
2x − 13

2x2 + 65
2x3 − 819

4x4 + 5785
4x5 − 43797

4x6 + 347425
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 10x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
10x− 1
4x2

)
= 1

4 + 10x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 10. Dividing this by leading coefficient in t which is 4 gives 5

2 . Now b can be found.

b =
(
5
2

)
− (0)

= 5
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
2
1
2
− 0
)

= 5
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
2
1
2
− 0
)

= −5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 10x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

5
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1

)
= 5

2 −
(
1
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2x + 1
2

= 1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x + 1

2

)
(2x+ a1) +

((
− 1
2x2

)
+
(

1
2x + 1

2

)2

−
(
x2 + 10x− 1

4x2

))
= 0

(−a1 + 4)x− 2a0 + a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2, a1 = 4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 4x+ 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 4x+ 2

)
e
∫ ( 1

2x+
1
2
)
dx

=
(
x2 + 4x+ 2

)
ex

2+
ln(x)

2

=
(
x2 + 4x+ 2

)√
x ex

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x

x2 dx

= z1e
x
2+

3 ln(x)
2

= z1
(
x3/2ex

2
)

Which simplifies to
y1 = x2ex

(
x2 + 4x+ 2

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−3x

x2 dx

(y1)2
dx

= y1

∫
ex+3 ln(x)

(y1)2
dx

= y1

(
− e−x(−x− 3)
4 (x2 + 4x+ 2) −

Ei1 (x)
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

(
x2 + 4x+ 2

))
+ c2

(
x2ex

(
x2 + 4x+ 2

)(
− e−x(−x− 3)
4 (x2 + 4x+ 2) −

Ei1 (x)
4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−4+x)y(x)
x2 +

(x+3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x
− (−4+x)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+3

x
, P3(x) = −−4+x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 − ak−1(k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 − ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + r − 1)2 − ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

(k+r−1)2

• Recursion relation for r = 2
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ak+1 = ak(k+3)
(k+1)2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+3)

(k+1)2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 42� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(-x+4)*y(x) = 0,

y(x),singsol=all)� �
y =

(
c2ex

(
x2 + 4x+ 2

)
Ei1 (x) + c1

(
x2 + 4x+ 2

)
ex − c2(x+ 3)

)
x2

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 52� �
DSolve[{x^2*D[y[x],{x,2}]-x*(3+x)*D[y[x],x]+(4-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4x
2(c2ex(x2 + 4x+ 2

)
ExpIntegralEi(−x) + 4c1ex

(
x2 + 4x+ 2

)
+ c2(x+ 3)

)
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2.1.660 problem 677

Solved as second order ode using Kovacic algorithm . . . . . . . . .4442
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4447
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4448
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4448
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4448

Internal problem ID [9508]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 677
Date solved : Thursday, December 12, 2024 at 10:13:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(3− x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.336 (sec)

Writing the ode as

x2y′′ +
(
−x2 + 3x

)
y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 + 3x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1260: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 3

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
2x − 5

2x2 − 15
2x3 − 115

4x4 − 495
4x5 − 2285

4x6 − 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−6x− 1

4x2

)
= 1

4 + −6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −6. Dividing this by leading coefficient in t which is 4 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 0
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 0
)

= 3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3

2
3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −−1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 6x− 1

4x2

))
= 0

1 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−1 + x) e
∫ ( 1

2x−
1
2
)
dx

= (−1 + x) e−x
2+

ln(x)
2

= (−1 + x)
√
x e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+3x

x2 dx

= z1e
x
2−

3 ln(x)
2

= z1

(
ex

2

x3/2

)

Which simplifies to

y1 =
−1 + x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+3x

x2 dx

(y1)2
dx

= y1

∫
ex−3 ln(x)

(y1)2
dx

= y1

(
− ex
−1 + x

− Ei1 (−x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
−1 + x

x

)
+ c2

(
−1 + x

x

(
− ex
−1 + x

− Ei1 (−x)
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(−x+ 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x2 +

(x−3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−3)

(
d
dx

y(x)
)

x
+ y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−3

x
, P3(x) = 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x− 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 1)2 − ak−1(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1)2 − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + 2 + r)2 − ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r)
(k+2+r)2

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = ak(k−1)

(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (1− x)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 28� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(3-x)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2 Ei1 (−x) (x− 1) + exc2 + c1(x− 1)

x

Mathematica DSolve solution

Solving time : 0.08 (sec)
Leaf size : 31� �
DSolve[{x^2*D[y[x],{x,2}]+x*(3-x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(x− 1) ExpIntegralEi(x) + c1(x− 1)− c2e

x

x
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2.1.661 problem 678

Solved as second order ode using Kovacic algorithm . . . . . . . . .4449
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4451
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4453
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4453
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4453

Internal problem ID [9509]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 678
Date solved : Thursday, December 12, 2024 at 10:13:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ −
(
2
√
5− 1

)
xy′ +

(
19
4 − 3x2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.182 (sec)

Writing the ode as

x2y′′ +
(
−2x

√
5 + x

)
y′ +

(
19
4 − 3x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x
√
5 + x (3)

C = 19
4 − 3x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
1 (6)

Comparing the above to (5) shows that

s = 3
t = 1
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Therefore eq. (4) becomes

z′′(x) = 3z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1262: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 3 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−
√
3x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

√
5+x

x2 dx

= z1e
ln(x)

√
5− ln(x)

2

= z1
(
x
√
5− 1

2

)
Which simplifies to

y1 = x
√
5− 1

2 e−
√
3x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

√
5+x

x2 dx

(y1)2
dx

= y1

∫
e
ln(x)

(
2
√
5−1

)
(y1)2

dx

= y1

eln(x)
(
2
√
5−1

)
x1−2

√
5e2

√
3x√3

6


Therefore the solution is

y = c1y1 + c2y2

= c1
(
x
√
5− 1

2 e−
√
3x
)
+ c2

x
√
5− 1

2 e−
√
3x

eln(x)
(
2
√
5−1

)
x1−2

√
5e2

√
3x√3

6



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
−
(
−1 + 2

√
5
)
x
(

d
dx
y(x)

)
+
(19

4 − 3x2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
12x2−19

)
y(x)

4x2 +
(
−1+2

√
5
)(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
−1+2

√
5
)(

d
dx

y(x)
)

x
−
(
12x2−19

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −−1+2

√
5

x
, P3(x) = −12x2−19

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1− 2
√
5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 19
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4
(
−1 + 2

√
5
)
x
(

d
dx
y(x)

)
+ (−12x2 + 19) y(x) = 0
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• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions(
1 + 2

√
5− 2r

) (
−1 + 2

√
5− 2r

)
a0x

r +
(
−1 + 2

√
5− 2r

) (
−3 + 2

√
5− 2r

)
a1x

1+r +
(

∞∑
k=2

((
−2k + 1 + 2

√
5− 2r

) (
−2k − 1 + 2

√
5− 2r

)
ak − 12ak−2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation(
1 + 2

√
5− 2r

) (
−1 + 2

√
5− 2r

)
= 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 +
√
5, 12 +

√
5
}

• Each term must be 0(
−1 + 2

√
5− 2r

) (
−3 + 2

√
5− 2r

)
a1 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−8ak(k + r)

√
5 + (4k2 + 8kr + 4r2 + 19) ak − 12ak−2 = 0

• Shift index using k− >k + 2
−8ak+2(k + 2 + r)

√
5 +

(
4(k + 2)2 + 8(k + 2) r + 4r2 + 19

)
ak+2 − 12ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 12ak

−35+8k
√
5+8

√
5 r−4k2−8kr−4r2+16

√
5−16k−16r

• Recursion relation for r = −1
2 +

√
5

ak+2 = − 12ak
−27+8k

√
5+8

√
5
(
− 1

2+
√
5
)
−4k2−8k

(
− 1

2+
√
5
)
−4
(
− 1

2+
√
5
)2

−16k

• Solution for r = −1
2 +

√
5[

y(x) =
∞∑
k=0

akx
k− 1

2+
√
5, ak+2 = − 12ak

−27+8k
√
5+8

√
5
(
− 1

2+
√
5
)
−4k2−8k

(
− 1

2+
√
5
)
−4
(
− 1

2+
√
5
)2

−16k
, a1 = 0

]
• Recursion relation for r = 1

2 +
√
5

ak+2 = − 12ak
−43+8k

√
5+8

√
5
(

1
2+

√
5
)
−4k2−8k

(
1
2+

√
5
)
−4
(

1
2+

√
5
)2

−16k

• Solution for r = 1
2 +

√
5[

y(x) =
∞∑
k=0

akx
k+ 1

2+
√
5, ak+2 = − 12ak

−43+8k
√
5+8

√
5
(

1
2+

√
5
)
−4k2−8k

(
1
2+

√
5
)
−4
(

1
2+

√
5
)2

−16k
, a1 = 0

]
• Combine solutions and rename parameters
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[
y(x) =

(
∞∑
k=0

akx
k− 1

2+
√
5
)
+
(

∞∑
k=0

bkx
k+ 1

2+
√
5
)
, ak+2 = − 12ak

−27+8k
√
5+8

√
5
(
− 1

2+
√
5
)
−4k2−8k

(
− 1

2+
√
5
)
−4
(
− 1

2+
√
5
)2

−16k
, a1 = 0, bk+2 = − 12bk

−43+8k
√
5+8

√
5
(

1
2+

√
5
)
−4k2−8k

(
1
2+

√
5
)
−4
(

1
2+

√
5
)2

−16k
, b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 29� �
dsolve(x^2*diff(diff(y(x),x),x)-(2*5^(1/2)-1)*x*diff(y(x),x)+(19/4-3*x^2)*y(x) = 0,

y(x),singsol=all)� �
y = x− 1

2+
√
5
(
c1 sinh

(√
3x
)
+ c2 cosh

(√
3x
))

Mathematica DSolve solution

Solving time : 0.117 (sec)
Leaf size : 53� �
DSolve[{x^2*D[y[x],{x,2}]-(2*Sqrt[5]-1)*x*D[y[x],x]+(19/4-3*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

6e
−
√
3xx

√
5− 1

2

(√
3c2e2

√
3x + 6c1

)
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2.1.662 problem 679

Solved as second order ode using Kovacic algorithm . . . . . . . . .4454
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4458
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4460
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4460
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4460

Internal problem ID [9510]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 679
Date solved : Thursday, December 12, 2024 at 10:13:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(x− 3) y′ + (4− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.303 (sec)

Writing the ode as

x2y′′ +
(
x2 − 3x

)
y′ + (4− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − 3x (3)
C = 4− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1264: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x − 1

2x2 − 1
2x3 − 3

4x4 − 5
4x5 − 9

4x6 − 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x− 1

4x2

)
= 1

4 + −2x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(0) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 2x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x−
1
2
)
dx

=
√
x e−x

2



chapter 2. book solved problems 4458

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−3x

x2 dx

= z1e
−x

2+
3 ln(x)

2

= z1
(
x3/2e−x

2
)

Which simplifies to
y1 = x2e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2−3x

x2 dx

(y1)2
dx

= y1

∫
e−x+3 ln(x)

(y1)2
dx

= y1(−Ei1 (−x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2e−x

)
+ c2

(
x2e−x(−Ei1 (−x))

)
Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x− 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−4+x)y(x)
x2 −

(x−3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x−3)

(
d
dx

y(x)
)

x
− (−4+x)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x−3

x
, P3(x) = −−4+x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x− 3)

(
d
dx
y(x)

)
+ (4− x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 + ak−1(k + r − 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 2) + ak−1) = 0

• Shift index using k− >k + 1
(k + r − 1) (ak+1(k + r − 1) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+r−1

• Recursion relation for r = 2
ak+1 = − ak

k+1

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x-3)*diff(y(x),x)+(-x+4)*y(x) = 0,

y(x),singsol=all)� �
y = e−xx2(Ei1 (−x) c2 + c1)

Mathematica DSolve solution

Solving time : 0.06 (sec)
Leaf size : 22� �
DSolve[{x^2*D[y[x],{x,2}]+x*(x-3)*D[y[x],x]+(4-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−xx2(c2 ExpIntegralEi(x) + c1)
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2.1.663 problem 680

Solved as second order ode using Kovacic algorithm . . . . . . . . .4461
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4465
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4467
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4467
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4467

Internal problem ID [9511]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 680
Date solved : Thursday, December 12, 2024 at 10:13:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x2y′ − (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as

x2y′′ + x2y′ + (−x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 (3)
C = −x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1266: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 + 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
x
+ 1

x2 − 2
x3 + 3

x4 − 2
x5 − 6

x6 + 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
4x+ 8
4x2

)
= 1

4 + 4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1

1
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
1
2

)
= −1

x
− 1

2
= −2 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 1

2

)
(0) +

((
1
x2

)
+
(
−1
x
− 1

2

)2

−
(
x2 + 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x
− 1

2
)
dx

= e−x
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2
x2 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2

x2 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1
((
x2 − 2x+ 2

)
ex
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

((
x2 − 2x+ 2

)
ex
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
− (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x+2)y(x)
x2 − d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + d
dx
y(x)− (x+2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1, P3(x) = −x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (−x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + ak−1(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
(k − 1 + r) (ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
ak+1 = − ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − ak

k+1

]
• Recursion relation for r = 2

ak+1 = − ak
k+4

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak

k+4

]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = − ak

k+1 , bk+1 = − bk
4+k

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x^2-(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−x + c2(x2 − 2x+ 2)

x

Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 31� �
DSolve[{x^2*D[y[x],{x,2}]+x^2*D[y[x],x]-(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2ex(x2 − 2x+ 2) + c1)

x
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2.1.664 problem 681

Solved as second order ode using Kovacic algorithm . . . . . . . . .4468
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4472
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4474
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4474
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4474

Internal problem ID [9512]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 681
Date solved : Thursday, December 12, 2024 at 10:13:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 2x2y′ +
(
x− 3

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.248 (sec)

Writing the ode as

x2y′′ + 2x2y′ +
(
x− 3

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 (3)

C = x− 3
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 − 4x+ 3
t = 4x2
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Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x+ 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1268: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1− 1
x
+ 3

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1− 1

2x + 1
4x2 + 1

8x3 + 1
32x4 − 1

64x5 − 3
128x6 − 3

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 − 4x+ 3
4x2

= Q+ R

4x2

= (1) +
(
−4x+ 3

4x2

)
= 1 + −4x+ 3

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1 − 0
)

= 1
2
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 − 4x+ 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 −1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x + (1)

= 1− 1
2x

= 1− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1− 1

2x

)
(0) +

((
1
2x2

)
+
(
1− 1

2x

)2

−
(
4x2 − 4x+ 3

4x2

))
= 0

0 = 0



chapter 2. book solved problems 4472

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

1− 1
2x
)
dx

= ex√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2
x2 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to

y1 =
1√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2

x2 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1

(
−(1 + 2x) e−2x

4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1√
x

)
+ c2

(
1√
x

(
−(1 + 2x) e−2x

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 2x2( d

dx
y(x)

)
+
(
x− 3

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (4x−3)y(x)
4x2 − 2 d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x) + 2 d
dx
y(x) + (4x−3)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2, P3(x) = 4x−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 8x2( d

dx
y(x)

)
+ (4x− 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 3) + 4ak−1(2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r + 1

2

) (
k + r − 3

2

)
ak + 8

(
k + r − 1

2

)
ak−1 = 0

• Shift index using k− >k + 1
4
(
k + 3

2 + r
) (

k + r − 1
2

)
ak+1 + 8

(
k + r + 1

2

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4(2k+2r+1)ak

(2k+3+2r)(2k−1+2r)

• Recursion relation for r = −1
2
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ak+1 = − 8kak
(2k+2)(2k−2)

• Series not valid for r = −1
2 , division by 0 in the recursion relation at k = 1

ak+1 = − 8kak
(2k+2)(2k−2)

• Recursion relation for r = 3
2

ak+1 = − 4(2k+4)ak
(2k+6)(2k+2)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 4(2k+4)ak
(2k+6)(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.035 (sec)
Leaf size : 24� �
dsolve(x^2*diff(diff(y(x),x),x)+2*diff(y(x),x)*x^2+(x-3/4)*y(x) = 0,

y(x),singsol=all)� �
y = 2c2e−2xx+ e−2xc2 + c1√

x

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]+2*x^2*D[y[x],x]+(x-3/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1 − c2e

−2x(2x+ 1)
4
√
x
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2.1.665 problem 682

Solved as second order ode using Kovacic algorithm . . . . . . . . .4475
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4479
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4480
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4481
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4481

Internal problem ID [9513]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 682
Date solved : Thursday, December 12, 2024 at 10:13:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ + x2y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.243 (sec)

Writing the ode as

x2(1 + x) y′′ + x2y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = x2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 8x+ 8
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 + 8x+ 8

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 8x+ 8
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1270: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 2

1 + x
− 1

4 (1 + x)2
− 2

x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 + 8x+ 8

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 8x+ 8
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 1
2

1
2

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2 + 2x − 1

x
+ (−) (0)

= 1
2 + 2x − 1

x

= − x+ 2
2x (1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 + 2x − 1

x

)
(1) +

((
− 1
2 (1 + x)2

+ 1
x2

)
+
(

1
2 + 2x − 1

x

)2

−
(
−x2 + 8x+ 8
4 (x2 + x)2

))
= 0

−2 + a0
x (1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 2) e
∫ ( 1

2+2x−
1
x

)
dx

= (x+ 2) e− ln(x)+ ln(1+x)
2

= (x+ 2)
√
1 + x

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2

x2(1+x) dx

= z1e
− ln(1+x)

2

= z1

(
1√
1 + x

)

Which simplifies to

y1 =
x+ 2
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2

x2(1+x) dx

(y1)2
dx

= y1

∫
e− ln(1+x)

(y1)2
dx

= y1

(
4

x+ 2 + ln (1 + x)
)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 2
x

)
+ c2

(
x+ 2
x

(
4

x+ 2 + ln (1 + x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
(x+1)x2 −

d
dx

y(x)
x+1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x+1 − 2y(x)

(x+1)x2 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 1

x+1 , P3(x) = − 2
(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (u2 − 2u+ 1)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r
2u−1+r +

(
a1(1 + r)2 − 2a0(r2 + 1)

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − 2ak(k2 + 2kr + r2 + 1) + ak−1(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − 2a0(r2 + 1) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − 2ak(k2 + 1) + ak−1(k − 1)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 − 2ak+1

(
(k + 1)2 + 1

)
+ k2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1

(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1

(k+2)2 , a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1−4kak+1−4ak+1
(k+2)2 , a1 − 2a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 27� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)+diff(y(x),x)*x^2-2*y(x) = 0,

y(x),singsol=all)� �
y = c2(x+ 2) ln (x+ 1) + c1x+ 2c1 + 4c2

x

Mathematica DSolve solution

Solving time : 0.089 (sec)
Leaf size : 30� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]+x^2*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x+ 2) + c2(x+ 2) log(x+ 1) + 4c2

x
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2.1.666 problem 683

Solved as second order ode using Kovacic algorithm . . . . . . . . .4482
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4486
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4488
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4488
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4488

Internal problem ID [9514]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 683
Date solved : Thursday, December 12, 2024 at 10:13:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x
(
x2 + 6

)
y′ + 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.433 (sec)

Writing the ode as

x2y′′ +
(
x3 + 6x

)
y′ + 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x3 + 6x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 14
4 (6)

Comparing the above to (5) shows that

s = x2 + 14
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 7
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1272: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 7
2x − 49

4x3 + 343
4x5 − 12005

16x7 + 117649
16x9 − 2470629

32x11 + 27176919
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 14
4

= Q+ R

4

=
(
x2

4 + 7
2

)
+ (0)

= x2

4 + 7
2

We see that the coefficient of the term 1
x
in the quotient is 7

2 . Now b can be found.

b =
(
7
2

)
− (0)

= 7
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 7
2
1
2
− 1
)

= 3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

7
2
1
2
− 1
)

= −4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 7
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 3 −4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3, and since there are no poles, then

d = α+
∞

= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(x
2

) (
3x2 + 2xa2 + a1

)
+
((

1
2

)
+
(x
2

)2
−
(
x2

4 + 7
2

))
= 0

−a2x
2 + (−2a1 + 6)x− 3a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = 3, a2 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 + 3x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 + 3x

)
e
∫

x
2 dx

=
(
x3 + 3x

)
ex2

4

= x
(
x2 + 3

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3+6x

x2 dx

= z1e
−x2

4 −3 ln(x)

= z1

(
e−x2

4

x3

)
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Which simplifies to

y1 =
x2 + 3
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3+6x

x2 dx

(y1)2
dx

= y1

∫
e−

x2
2 −6 ln(x)

(y1)2
dx

= y1

(∫ e−x2
2 −6 ln(x)x4

(x2 + 3)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 + 3
x2

)
+ c2

(
x2 + 3
x2

(∫ e−x2
2 −6 ln(x)x4

(x2 + 3)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x2 + 6)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −6y(x)
x2 −

(
x2+6

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
x2+6

)(
d
dx

y(x)
)

x
+ 6y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x2+6

x
, P3(x) = 6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0
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• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x2 + 6)

(
d
dx
y(x)

)
+ 6y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (2 + r)xr + a1(4 + r) (3 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 3) (k + r + 2) + ak−2(k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−2}

• Each term must be 0
a1(4 + r) (3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r + 2) + ak−2(k − 2 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 5 + r) (k + 4 + r) + ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r)

(k+5+r)(k+4+r)

• Recursion relation for r = −3
ak+2 = − ak(k−3)

(k+2)(k+1)

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = − ak(k−3)

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −2 ; series terminates at k = 2
ak+2 = − ak(k−2)

(k+3)(k+2)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak(k−2)

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−2
)
, ak+2 = − ak(k−3)

(k+2)(k+1) , a1 = 0, bk+2 = − bk(k−2)
(k+3)(k+2) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 35� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x^2+6)*diff(y(x),x)+6*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−
x2
2 hypergeom

(
[2] ,

[1
2

]
, x

2

2

)
+ c1(x2 + 3)x

x3

Mathematica DSolve solution

Solving time : 0.195 (sec)
Leaf size : 65� �
DSolve[{x^2*D[y[x],{x,2}]+x*(6+x^2)*D[y[x],x]+6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2πc2x(x2 + 3) erf

(
x√
2

)
− 12c1x(x2 + 3) + 2c2e−

x2
2 (x2 + 2)

12x3
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2.1.667 problem 684

Solved as second order ode using Kovacic algorithm . . . . . . . . .4489
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4493
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4495
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4495
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4495

Internal problem ID [9515]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 684
Date solved : Thursday, December 12, 2024 at 10:13:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(1− x) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.269 (sec)

Writing the ode as

x2y′′ +
(
−x2 + x

)
y′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 + x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1274: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4x2 − 1
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

2x2 + 1
2x3 + 1

4x4 − 1
4x5 − 3

4x6 − 3
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x+ 3

4x2

)
= 1

4 + −2x+ 3
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x+ 3
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x +

(
1
2

)
= 1

2 − 1
2x

= x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2x

)
(0) +

((
1
2x2

)
+
(
1
2 − 1

2x

)2

−
(
x2 − 2x+ 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
2x
)
dx

= ex
2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+x

x2 dx

= z1e
x
2−

ln(x)
2

= z1

(
ex

2
√
x

)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+x

x2 dx

(y1)2
dx

= y1

∫
ex−ln(x)

(y1)2
dx

= y1
(
−(1 + x)x ex−ln(x)e−2x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x

(
−(1 + x)x ex−ln(x)e−2x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(1− x)

(
d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2 +

(
d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
(x−1)

x
− y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−1

x
, P3(x) = − 1

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x− 1)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 1

ak+1 = ak
k+3

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(1-x)*diff(y(x),x)-y(x) = 0,

y(x),singsol=all)� �
y = exc2 + c1x+ c1

x

Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 23� �
DSolve[{x^2*D[y[x],{x,2}]+x*(1-x)*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

x − c1(x+ 1)
x
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2.1.668 problem 685

Solved as second order ode using Kovacic algorithm . . . . . . . . .4496
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4500
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4502
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4502
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4502

Internal problem ID [9516]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 685
Date solved : Thursday, December 12, 2024 at 10:13:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(x+ 3) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.300 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 3x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 3x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1276: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 + 3
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 3
2x − 5

2x2 + 15
2x3 − 115

4x4 + 495
4x5 − 2285

4x6 + 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
6x− 1
4x2

)
= 1

4 + 6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 6. Dividing this by leading coefficient in t which is 4 gives 3

2 . Now b can be found.

b =
(
3
2

)
− (0)

= 3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
2
− 0
)

= 3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
2
− 0
)

= −3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

3
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2x + 1
2

= 1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x + 1

2

)2

−
(
x2 + 6x− 1

4x2

))
= 0

1− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ ( 1

2x+
1
2
)
dx

= (1 + x) ex
2+

ln(x)
2

= (1 + x)
√
x ex

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x

x2 dx

= z1e
x
2+

3 ln(x)
2

= z1
(
x3/2ex

2
)

Which simplifies to
y1 = x2ex(1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−3x

x2 dx

(y1)2
dx

= y1

∫
ex+3 ln(x)

(y1)2
dx

= y1

(
− e−x

−1− x
− Ei1 (x)

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex(1 + x)

)
+ c2

(
x2ex(1 + x)

(
− e−x

−1− x
− Ei1 (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2 +

(x+3)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x
+ 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+3

x
, P3(x) = 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 − ak−1(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
ak+1(k + r − 1)2 − ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(k+r−1)2

• Recursion relation for r = 2
ak+1 = ak(k+2)

(k+1)2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+2)

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 29� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = x2(c2ex(x+ 1)Ei1 (x) + (x+ 1) c1ex − c2)

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 34� �
DSolve[{x^2*D[y[x],{x,2}]-x*(x+3)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c2ex(x+ 1)ExpIntegralEi(−x) + c1e

x(x+ 1) + c2)
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2.1.669 problem 686

Solved as second order ode using Kovacic algorithm . . . . . . . . .4503
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4507
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4509
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4509
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4509

Internal problem ID [9517]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 686
Date solved : Thursday, December 12, 2024 at 10:13:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x2y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

x2y′′ − x2y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 8
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1278: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)



chapter 2. book solved problems 4505

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x2 − 4

x4 + 16
x6 − 80

x8 + 448
x10 − 2688

x12 + 16896
x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(

2
x2

)
= 1

4 + 2
x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
1
2

)
= −1

x
− 1

2
= −2 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 1

2

)
(1) +

((
1
x2

)
+
(
−1
x
− 1

2

)2

−
(
x2 + 8
4x2

))
= 0

−2 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

− 1
x
− 1

2
)
dx

= (2 + x) e−x
2−ln(x)

= (2 + x) e−x
2

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to

y1 =
2 + x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
(−2 + x) ex

2 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
2 + x

x

)
+ c2

(
2 + x

x

(
(−2 + x) ex

2 + x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)− d
dx
y(x)− 2y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = − 2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 ·

(
d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k − 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− ak−1(k − 1 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r)− ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(k+2+r)(k−1+r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = ak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = a0

2

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1 + x

2

)
• Recursion relation for r = 2
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ak+1 = ak(k+2)
(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+2)

(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1 + x

2

)
+
(

∞∑
k=0

bkx
k+2
)
, bk+1 = bk(k+2)

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x^2-2*y(x) = 0,

y(x),singsol=all)� �
y = c2(x− 2) ex + c1(x+ 2)

x

Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 72� �
DSolve[{x^2*D[y[x],{x,2}]-x^2*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

2ex/2
(
(c1x+ 2ic2) cosh

(
x
2

)
− (ic2x+ 2c1) sinh

(
x
2

))
√
π
√
−ix

√
x
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2.1.670 problem 687

Solved as second order ode using Kovacic algorithm . . . . . . . . .4510
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4514
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4516
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4516
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4516

Internal problem ID [9518]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 687
Date solved : Thursday, December 12, 2024 at 10:13:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x2y′ − (3x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.336 (sec)

Writing the ode as

x2y′′ − x2y′ + (−3x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 (3)
C = −3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 12x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 12x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 12x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1280: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 + 3
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 3
x
− 7

x2 + 42
x3 − 301

x4 + 2394
x5 − 20342

x6 + 180852
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 12x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
12x+ 8
4x2

)
= 1

4 + 12x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 12. Dividing this by leading coefficient in t which is 4 gives 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
1
2
− 0
)

= 3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3

1
2
− 0
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 12x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 3 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α+
c1

)
= 3− (2)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 2
x
+
(
1
2

)
= 2

x
+ 1

2
= 4 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
+ 1

2

)
(1) +

((
− 2
x2

)
+
(
2
x
+ 1

2

)2

−
(
x2 + 12x+ 8

4x2

))
= 0

4− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 4 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (4 + x) e
∫ ( 2

x
+ 1

2
)
dx

= (4 + x) ex
2+2 ln(x)

= (4 + x)x2ex
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to
y1 = ex(4 + x)x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
−e−x(x3 + 3x2 − 2x+ 2)

24 (4 + x)x3 + Ei1 (x)
24

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex(4 + x)x2)+ c2

(
ex(4 + x)x2

(
−e−x(x3 + 3x2 − 2x+ 2)

24 (4 + x)x3 + Ei1 (x)
24

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
− (3x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (3x+2)y(x)
x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)− d
dx
y(x)− (3x+2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = −3x+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
+ (−3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k + 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− ak−1(k + 2 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r)− ak(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+3)

(k+2+r)(k−1+r)

• Recursion relation for r = −1
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ak+1 = ak(k+2)
(k+1)(k−2)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 2
ak+1 = ak(k+2)

(k+1)(k−2)

• Recursion relation for r = 2
ak+1 = ak(k+5)

(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak(k+5)

(k+4)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 48� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x^2-(2+3*x)*y(x) = 0,

y(x),singsol=all)� �
y = −c2exx3(x+ 4)Ei1 (x) + c1x

3(x+ 4) ex + c2(x3 + 3x2 − 2x+ 2)
x

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 59� �
DSolve[{x^2*D[y[x],{x,2}]-x^2*D[y[x],x]-(3*x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → − 1

24c2e
x(x+ 4)x2 ExpIntegralEi(−x) + c1e

x(x+ 4)x2 − c2(x3 + 3x2 − 2x+ 2)
24x
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2.1.671 problem 688

Solved as second order ode using Kovacic algorithm . . . . . . . . .4517
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4522
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4523
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4523
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4523

Internal problem ID [9519]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 688
Date solved : Thursday, December 12, 2024 at 10:13:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(5− x) y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.379 (sec)

Writing the ode as

x2y′′ +
(
−x2 + 5x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 + 5x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 10x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 10x− 1

4x2

)
z(x) (7)



chapter 2. book solved problems 4518

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1282: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 5

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 5
2x − 13

2x2 − 65
2x3 − 819

4x4 − 5785
4x5 − 43797

4x6 − 347425
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 10x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−10x− 1

4x2

)
= 1

4 + −10x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −10. Dividing this by leading coefficient in t which is 4 gives −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 0
)

= −5
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 0
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 10x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −5

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
1
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −−1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x − 1

2

)
(2x+ a1) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 10x− 1

4x2

))
= 0

(a1 + 4)x+ 2a0 + a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2, a1 = −4}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 4x+ 2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 4x+ 2

)
e
∫ ( 1

2x−
1
2
)
dx

=
(
x2 − 4x+ 2

)
e−x

2+
ln(x)

2

=
(
x2 − 4x+ 2

)√
x e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+5x

x2 dx

= z1e
x
2−

5 ln(x)
2

= z1

(
ex

2

x5/2

)

Which simplifies to

y1 =
x2 − 4x+ 2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2+5x

x2 dx

(y1)2
dx

= y1

∫
ex−5 ln(x)

(y1)2
dx

= y1

(
− ex(x− 3)
4 (x2 − 4x+ 2) −

Ei1 (−x)
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 4x+ 2

x2

)
+ c2

(
x2 − 4x+ 2

x2

(
− ex(x− 3)
4 (x2 − 4x+ 2) −

Ei1 (−x)
4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(5− x)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2 +

(x−5)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−5)

(
d
dx

y(x)
)

x
+ 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−5

x
, P3(x) = 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x− 5)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 2)2 − ak−1(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2)2 − ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + 3 + r)2 − ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r)
(k+3+r)2

• Recursion relation for r = −2 ; series terminates at k = 2
ak+1 = ak(k−2)

(k+1)2

• Apply recursion relation for k = 0
a1 = −2a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

2

• Terminating series solution of the ODE for r = −2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 2x+ 1

2x
2)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 41� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(5-x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = (x2 − 4x+ 2) c2 Ei1 (−x) + c2(x− 3) ex + c1(x2 − 4x+ 2)

x2

Mathematica DSolve solution

Solving time : 0.151 (sec)
Leaf size : 48� �
DSolve[{x^2*D[y[x],{x,2}]+x*(5-x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2(x2 − 4x+ 2)ExpIntegralEi(x) + 4c1(x2 − 4x+ 2)− c2e

x(x− 3)
4x2
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2.1.672 problem 689

Solved as second order ode using Kovacic algorithm . . . . . . . . .4524
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4528
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4530
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4530
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4530

Internal problem ID [9520]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 689
Date solved : Thursday, December 12, 2024 at 10:13:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4x(1− x) y′ + (2x− 9) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.280 (sec)

Writing the ode as

4x2y′′ +
(
−4x2 + 4x

)
y′ + (2x− 9) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 + 4x (3)
C = 2x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1284: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

x
+ 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2+4x

4x2 dx

= z1e
x
2−

ln(x)
2

= z1

(
ex

2
√
x

)

Which simplifies to

y1 =
ex
x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2+4x

4x2 dx

(y1)2
dx

= y1

∫
ex−ln(x)

(y1)2
dx

= y1
(
−
(
x2 + 2x+ 2

)
x ex−ln(x)e−2x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x3/2

)
+ c2

(
ex
x3/2

(
−
(
x2 + 2x+ 2

)
x ex−ln(x)e−2x))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x(1− x)

(
d
dx
y(x)

)
+ (2x− 9) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x−9)y(x)
4x2 +

(
d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
(x−1)

x
+ (2x−9)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x−1

x
, P3(x) = 2x−9

4x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(x− 1)

(
d
dx
y(x)

)
+ (2x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 3) (2k + 2r − 3)− 2ak−1(2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

4
((
k + r + 3

2

)
ak − ak−1

) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
4
((
k + 5

2 + r
)
ak+1 − ak

) (
k − 1

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

2k+5+2r

• Recursion relation for r = −3
2

ak+1 = 2ak
2k+2

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+1 = 2ak
2k+2

]
• Recursion relation for r = 3

2
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ak+1 = 2ak
2k+8

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = 2ak
2k+8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = 2ak

2k+2 , bk+1 = 2bk
2k+8

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 23� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*x*(1-x)*diff(y(x),x)+(2*x-9)*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2(x2 + 2x+ 2)

x3/2

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 30� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*(1-x)*D[y[x],x]+(2*x-9)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2(x2 + 2x+ 2)
x3/2
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2.1.673 problem 690

Solved as second order ode using Kovacic algorithm . . . . . . . . .4531
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4535
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4535
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4535
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4536

Internal problem ID [9521]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 690
Date solved : Thursday, December 12, 2024 at 10:13:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 2x(2 + x) y′ + 2(1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.295 (sec)

Writing the ode as

x2y′′ +
(
2x2 + 4x

)
y′ + (2x+ 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 + 4x (3)
C = 2x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2 + x

x
(6)

Comparing the above to (5) shows that

s = 2 + x

t = x

Therefore eq. (4) becomes

z′′(x) =
(
2 + x

x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1286: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

x
− 1

2x2 + 1
2x3 − 5

8x4 + 7
8x5 − 21

16x6 + 33
16x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 2 + x

x

= Q+ R

x

= (1) +
(
2
x

)
= 1 + 2

x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 2. Dividing this by leading coefficient in t which is 1 gives 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1 − 0

)
= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2
1 − 0

)
= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2 + x

x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1 −1
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Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1 then

d = α+
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+ (1)

= 1 + 1
x

= 1 + 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1 + 1

x

)
(0) +

((
− 1
x2

)
+
(
1 + 1

x

)2

−
(
2 + x

x

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

1+ 1
x

)
dx

= x ex

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+4x

x2 dx

= z1e
−x−2 ln(x)

= z1

(
e−x

x2

)
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Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+4x

x2 dx

(y1)2
dx

= y1

∫
e−2x−4 ln(x)

(y1)2
dx

= y1

(
−e−2x

3x + e−2x

3 − 2x e−2x

3 + 4x2 Ei1 (2x)
3

− 4 Ei1 (2x)x3 − 2 e−2xx2 + x e−2x − 6x Ei1 (2x) + 2 e−2x

3x

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
−e−2x

3x + e−2x

3 − 2x e−2x

3 + 4x2 Ei1 (2x)
3

− 4 Ei1 (2x)x3 − 2 e−2xx2 + x e−2x − 6x Ei1 (2x) + 2 e−2x

3x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 28� �
dsolve(x^2*diff(diff(y(x),x),x)+2*x*(x+2)*diff(y(x),x)+2*y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = 2 Ei1 (2x) c2x− e−2xc2 + c1x

x2
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Mathematica DSolve solution

Solving time : 0.067 (sec)
Leaf size : 32� �
DSolve[{x^2*D[y[x],{x,2}]+2*x*(2+x)*D[y[x],x]+2*(1+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −2c2xExpIntegralEi(−2x) + c1x− c2e

−2x

x2
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2.1.674 problem 691

Solved as second order ode using Kovacic algorithm . . . . . . . . .4537
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4541
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4543
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4543
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4543

Internal problem ID [9522]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 691
Date solved : Thursday, December 12, 2024 at 10:13:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x(1− x) y′ + (1− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as

x2y′′ +
(
x2 − x

)
y′ + (1− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 − x (3)
C = 1− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 2x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1287: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 1

2x − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2x − 1

2x2 + 1
2x3 − 3

4x4 + 5
4x5 − 9

4x6 + 17
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
2x− 1
4x2

)
= 1

4 + 2x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
2x +

(
1
2

)
= 1

2 + 1
2x

= x+ 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

2x

)
(0) +

((
− 1
2x2

)
+
(
1
2 + 1

2x

)2

−
(
x2 + 2x− 1

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
1
2x
)
dx

=
√
x ex

2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−x
x2 dx

= z1e
−x

2+
ln(x)

2

= z1
(√

x e−x
2
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2−x

x2 dx

(y1)2
dx

= y1

∫
e−x+ln(x)

(y1)2
dx

= y1(−Ei1 (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2(x(−Ei1 (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x(1− x)

(
d
dx
y(x)

)
+ (1− x) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (x−1)y(x)
x2 −

(
d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(

d
dx

y(x)
)
(x−1)

x
− (x−1)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x−1

x
, P3(x) = −x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x− 1)

(
d
dx
y(x)

)
+ (1− x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 1)2 + ak−1(k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1)2 + ak−1(k − 2 + r) = 0

• Shift index using k− >k + 1
ak+1(k + r)2 + ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+r−1)

(k+r)2

• Recursion relation for r = 1
ak+1 = − akk

(k+1)2

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − akk

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 13� �
dsolve(x^2*diff(diff(y(x),x),x)-x*(1-x)*diff(y(x),x)+(1-x)*y(x) = 0,

y(x),singsol=all)� �
y = x(Ei1 (x) c2 + c1)

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 17� �
DSolve[{x^2*D[y[x],{x,2}]-x*(1-x)*D[y[x],x]+(1-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c2 ExpIntegralEi(−x) + c1)
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2.1.675 problem 692

Solved as second order ode using Kovacic algorithm . . . . . . . . .4544
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4546
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4548
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4548
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4548

Internal problem ID [9523]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 692
Date solved : Thursday, December 12, 2024 at 10:13:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4x(1 + 2x) y′ + (4x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.139 (sec)

Writing the ode as

4x2y′′ +
(
8x2 + 4x

)
y′ + (4x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 8x2 + 4x (3)
C = 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1289: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
8x2+4x

4x2 dx

= z1e
−x− ln(x)

2

= z1

(
e−x

√
x

)

Which simplifies to

y1 =
e−2x
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e−2x−ln(x)

(y1)2
dx

= y1

(
e−2x−ln(x)x e4x

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−2x
√
x

)
+ c2

(
e−2x
√
x

(
e−2x−ln(x)x e4x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
+ (4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (4x−1)y(x)
4x2 −

(2x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x
+ (4x−1)y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2x+1

x
, P3(x) = 4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x(2x+ 1)

(
d
dx
y(x)

)
+ (4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−1(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
ak
(
k + r + 1

2

)
+ 2ak−1

)
= 0

• Shift index using k− >k + 1
4
(
k + r + 1

2

) (
ak+1

(
k + 3

2 + r
)
+ 2ak

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

2k+3+2r

• Recursion relation for r = −1
2

ak+1 = − 4ak
2k+2

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = − 4ak
2k+2

]
• Recursion relation for r = 1

2

ak+1 = − 4ak
2k+4

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 4ak
2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − 4ak

2k+2 , bk+1 = − 4bk
2k+4

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 16� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*x*(2*x+1)*diff(y(x),x)+(-1+4*x)*y(x) = 0,

y(x),singsol=all)� �
y = c1 + e−2xc2√

x

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 26� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*(1+2*x)*D[y[x],x]+(4*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−2x + c2

2
√
x
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2.1.676 problem 693

Solved as second order ode using Kovacic algorithm . . . . . . . . .4549
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4553
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4553
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4553
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4554

Internal problem ID [9524]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 693
Date solved : Thursday, December 12, 2024 at 10:13:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(4 + x) y′ + (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.296 (sec)

Writing the ode as

x2y′′ +
(
x2 + 4x

)
y′ + (2 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + 4x (3)
C = 2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4 + x

4x (6)

Comparing the above to (5) shows that

s = 4 + x

t = 4x

Therefore eq. (4) becomes

z′′(x) =
(
4 + x

4x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1291: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
x
− 1

x2 + 2
x3 − 5

x4 + 14
x5 − 42

x6 + 132
x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4 + x

4x
= Q+ R

4x

=
(
1
4

)
+
(
1
x

)
= 1

4 + 1
x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1

1
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4 + x

4x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1 then

d = α+
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+
(
1
2

)
= 1

2 + 1
x

= 1
2 + 1

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

x

)
(0) +

((
− 1
x2

)
+
(
1
2 + 1

x

)2

−
(
4 + x

4x

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
1
x

)
dx

= x ex
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+4x

x2 dx

= z1e
−x

2−2 ln(x)

= z1

(
e−x

2

x2

)
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Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+4x

x2 dx

(y1)2
dx

= y1

∫
e−x−4 ln(x)

(y1)2
dx

= y1

(
−e−x

3x + e−x

6 − x e−x

6 + x2 Ei1 (x)
6 −Ei1 (x)x3 − e−xx2 − 6x Ei1 (x) + x e−x + 4 e−x

6x

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
−e−x

3x + e−x

6 − x e−x

6 + x2 Ei1 (x)
6

− Ei1 (x)x3 − e−xx2 − 6x Ei1 (x) + x e−x + 4 e−x

6x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+4)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−xc2 + x(−Ei1 (x) c2 + c1)

x2



chapter 2. book solved problems 4554

Mathematica DSolve solution

Solving time : 0.066 (sec)
Leaf size : 32� �
DSolve[{x^2*D[y[x],{x,2}]+x*(4+x)*D[y[x],x]+(2+x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −c2xExpIntegralEi(−x) + c1x− c2e

−x

x2
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2.1.677 problem 694

Solved as second order ode using Kovacic algorithm . . . . . . . . .4555
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4560
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4561
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4561
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4562

Internal problem ID [9525]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 694
Date solved : Thursday, December 12, 2024 at 10:13:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 9

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.316 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 9

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 9
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1292: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0



chapter 2. book solved problems 4557

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− i

x2 − i

2x4 − i

2x6 − 5i
8x8 − 7i

8x10 − 21i
16x12 − 33i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 2
x2

= Q+ R

x2

= (−1) +
(

2
x2

)
= −1 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (i)

= −1
x
− i

= −1
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

)
(1) +

((
1
x2

)
+
(
−1
x
− i

)2

−
(
−x2 + 2

x2

))
= 0

2ia0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −i}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− i) e
∫ (

− 1
x
−i
)
dx

= (x− i) e− ln(x)−ix

= (x− i) e−ix

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x− i) e−ix

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix− 1) e2ix
−2x+ 2i

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x− i) e−ix

x3/2

)
+ c2

(
(x− i) e−ix

x3/2

(
(ix− 1) e2ix
−2x+ 2i

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 9

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−9

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−9

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−9

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + 2r) (−3 + 2r)xr + a1(5 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 3) (2k + 2r − 3) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
3
2

}
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• Each term must be 0
a1(5 + 2r) (−1 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 9) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 9

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+7

• Recursion relation for r = −3
2

ak+2 = − 4ak
4k2+4k−8

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = − 4ak
4k2+4k−8 , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − 4ak
4k2+28k+40

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − 4ak
4k2+28k+40 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − 4ak

4k2+4k−8 , a1 = 0, bk+2 = − 4bk
4k2+28k+40 , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.073 (sec)
Leaf size : 30� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-9/4)*y(x) = 0,

y(x),singsol=all)� �
y = −c2(−x+ i) e−ix + c1(x+ i) eix

x3/2
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Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 44� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-9/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π
((c1x+ c2) cos(x) + (c2x− c1) sin(x))

x3/2
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2.1.678 problem 695

Solved as second order ode using Kovacic algorithm . . . . . . . . .4563
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4565
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4567
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4567
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4567

Internal problem ID [9526]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 695
Date solved : Thursday, December 12, 2024 at 10:13:35 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.163 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1294: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+2)(k+1) , 0 = 0, bk+2 = − bk
(k+3)(k+2) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.679 problem 696

Solved as second order ode using Kovacic algorithm . . . . . . . . .4568
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4573
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4574
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4575
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4575

Internal problem ID [9527]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 696
Date solved : Thursday, December 12, 2024 at 10:13:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2xy′′ + 5(1− 2x) y′ − 5y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.452 (sec)

Writing the ode as

2xy′′ + (−10x+ 5) y′ − 5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −10x+ 5 (3)
C = −5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 100x2 − 60x+ 5
16x2 (6)

Comparing the above to (5) shows that

s = 100x2 − 60x+ 5
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
100x2 − 60x+ 5

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1296: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 25
4 − 15

4x + 5
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 5

2 − 3
4x − 1

20x2 − 3
200x3 − 1

200x4 − 9
5000x5 − 137

200000x6 − 543
2000000x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 5
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 5
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 25

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 100x2 − 60x+ 5
16x2

= Q+ R

16x2

=
(
25
4

)
+
(
−60x+ 5

16x2

)
= 25

4 + −60x+ 5
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −60. Dividing this by leading coefficient in t which is 16 gives −15

4 . Now b can be
found.

b =
(
−15

4

)
− (0)

= −15
4

Hence

[
√
r]∞ = 5

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−15
4

5
2

− 0
)

= −3
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−15

4
5
2

− 0
)

= 3
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 100x2 − 60x+ 5
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 5
2 −3

4
3
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

4 then

d = α−
∞ −

(
α−
c1

)
= 3

4 −
(
−1
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
4x + (−)

(
5
2

)
= − 1

4x − 5
2

= − 1
4x − 5

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4x − 5

2

)
(1) +

((
1
4x2

)
+
(
− 1
4x − 5

2

)2

−
(
100x2 − 60x+ 5

16x2

))
= 0

−1 + 10a0
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
10

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
10
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

10

)
e
∫ (

− 1
4x−

5
2
)
dx

=
(
x+ 1

10

)
e− 5x

2 − ln(x)
4

= (1 + 10x) e− 5x
2

10x1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−10x+5

2x dx

= z1e
5x
2 − 5 ln(x)

4

= z1

(
e 5x

2

x5/4

)

Which simplifies to

y1 =
1 + 10x
10x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−10x+5

2x dx

(y1)2
dx

= y1

∫
e5x−

5 ln(x)
2

(y1)2
dx

= y1

(∫ 100 e5x−
5 ln(x)

2 x3

(1 + 10x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1 + 10x
10x3/2

)
+ c2

(
1 + 10x
10x3/2

(∫ 100 e5x−
5 ln(x)

2 x3

(1 + 10x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x+ 5(−2x+ 1)

(
d
dx
y(x)

)
− 5y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 5y(x)
2x +

5(2x−1)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
5(2x−1)

(
d
dx

y(x)
)

2x − 5y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −5(2x−1)
2x , P3(x) = − 5

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (−10x+ 5)

(
d
dx
y(x)

)
− 5y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 5 + 2r)− 5ak(2k + 2r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r) ak+1

(
k + r + 5

2

)
− 10ak

(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 5ak(2k+2r+1)

(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
ak+1 = 5ak(2k+1)

(k+1)(2k+5)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = 5ak(2k+1)

(k+1)(2k+5)

]
• Recursion relation for r = −3

2 ; series terminates at k = 1

ak+1 = 5ak(2k−2)(
k− 1

2
)
(2k+2)

• Apply recursion relation for k = 0
a1 = 10a0

• Terminating series solution of the ODE for r = −3
2 . Use reduction of order to find the second linearly independent solution

y(x) = a0 · (1 + 10x)
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+ b0 · (1 + 10x) , ak+1 = 5ak(2k+1)

(k+1)(2k+5)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.071 (sec)
Leaf size : 45� �
dsolve(2*x*diff(diff(y(x),x),x)+5*(1-2*x)*diff(y(x),x)-5*y(x) = 0,

y(x),singsol=all)� �
y = −

10
(√

5 c1
√
π
(
x+ 1

10

)
erfi
(√

5
√
x
)
− e5xc1

√
x−

(
x+ 1

10

)
c2
)

x3/2

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 40� �
DSolve[{2*x*D[y[x],{x,2}]+5*(1-2*x)*D[y[x],x]-5*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2L

3
2
− 1

2
(5x) + c1(10x+ 1)

10
√
5x3/2
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2.1.680 problem 697

Solved as second order ode using Kovacic algorithm . . . . . . . . .4576
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4578
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4580
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4580
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4580

Internal problem ID [9528]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 697
Date solved : Thursday, December 12, 2024 at 10:13:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.178 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1298: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x



chapter 2. book solved problems 4578

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.681 problem 698

Solved as second order ode using Kovacic algorithm . . . . . . . . .4581
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4586
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4587
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4588
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4588

Internal problem ID [9529]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 698
Date solved : Thursday, December 12, 2024 at 10:13:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (x+ n) y′ + (n+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.464 (sec)

Writing the ode as

xy′′ + (x+ n) y′ + (n+ 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x+ n (3)
C = n+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = n2 − 2xn+ x2 − 2n− 4x
4x2 (6)

Comparing the above to (5) shows that

s = n2 − 2xn+ x2 − 2n− 4x
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
n2 − 2xn+ x2 − 2n− 4x

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1300: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 +

1
4n

2 − 1
2n

x2 +
−n

2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 1
4n

2 − 1
2n. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = n

2
α−
c = 1

2 −
√
1 + 4b = 1− n

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2−
1
x
− n

2x−
3n6

2x7−
3n5

2x6−
3n4

2x5−
3n3

2x4−
3n2

2x3−
3n
2x2−

77n5

2x7 −53n4

2x6 −67n3

4x5 −37n2

4x4 −4n
x3−

1075n4

4x7 −491n3

4x6 −93n2

2x5 −13n
x4 −755n3

x7 −435n2

2x6 −45n
x5 −980n2

x7 −161n
x6 −588n

x7 −132
x7 −42

x6−
14
x5−

5
x4−

2
x3−

1
x2+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= n2 − 2xn+ x2 − 2n− 4x
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
(−2n− 4)x+ n2 − 2n

4x2

)
= 1

4 + (−2n− 4)x+ n2 − 2n
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2n− 4. Dividing this by leading coefficient in t which is 4 gives −n

2 − 1. Now b can
be found.

b =
(
−n

2 − 1
)
− (0)

= −n

2 − 1
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−n
2 − 1
1
2

− 0
)

= −n

2 − 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−n

2 − 1
1
2

− 0
)

= n

2 + 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = n2 − 2xn+ x2 − 2n− 4x
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 n
2 1− n

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −n

2 − 1 n
2 + 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = n

2 + 1 then

d = α−
∞ −

(
α+
c1

)
= n

2 + 1−
(n
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= n

2x + (−)
(
1
2

)
= n

2x − 1
2

= n− x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

n

2x − 1
2

)
(1) +

((
− n

2x2

)
+
(

n

2x − 1
2

)2

−
(
n2 − 2xn+ x2 − 2n− 4x

4x2

))
= 0

n+ a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −n}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− n

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− n) e
∫ (

n
2x−

1
2
)
dx

= (x− n) e−x
2+

n ln(x)
2

= −(n− x)xn
2 e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x+n
x

dx

= z1e
−x

2−
n ln(x)

2

= z1
(
x−n

2 e−x
2
)

Which simplifies to
y1 = (x− n) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x+n

x
dx

(y1)2
dx

= y1

∫
e−n ln(x)−x

(y1)2
dx

= y1

(∫ e−n ln(x)−xe2x

(x− n)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
(x− n) e−x

)
+ c2

(
(x− n) e−x

(∫ e−n ln(x)−xe2x

(x− n)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (x+ n)

(
d
dx
y(x)

)
+ (n+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (n+1)y(x)
x

−
(x+n)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+n)

(
d
dx

y(x)
)

x
+ (n+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+n
x
, P3(x) = n+1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= n

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (x+ n)

(
d
dx
y(x)

)
+ (n+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r + n)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r + n) + ak(n+ k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r + n) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1− n}
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• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + n) + ak(n+ k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(n+k+r+1)

(k+1+r)(k+r+n)

• Recursion relation for r = 0
ak+1 = − ak(n+k+1)

(k+1)(k+n)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − ak(n+k+1)

(k+1)(k+n)

]
• Recursion relation for r = 1− n

ak+1 = − ak(k+2)
(k+2−n)(k+1)

• Solution for r = 1− n[
y(x) =

∞∑
k=0

akx
k+1−n, ak+1 = − ak(k+2)

(k+2−n)(k+1)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1−n

)
, ak+1 = − ak(n+k+1)

(k+1)(k+n) , bk+1 = − bk(k+2)
(k+2−n)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 42� �
dsolve(x*diff(diff(y(x),x),x)+(x+n)*diff(y(x),x)+(n+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x(c2x−n+1 hypergeom ([−n] , [−n+ 2] , x)n+ c1(−x+ n))

n

Mathematica DSolve solution

Solving time : 0.724 (sec)
Leaf size : 48� �
DSolve[{x*D[y[x],{x,2}]+(x+n)*D[y[x],x]+(n+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(n− x)

(
c2

∫ x

1

eK[1]K[1]−n

(n−K[1])2dK[1] + c1

)
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2.1.682 problem 699

Solved as second order ode using Kovacic algorithm . . . . . . . . .4589
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4593
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4593
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4594
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4594

Internal problem ID [9530]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 699
Date solved : Thursday, December 12, 2024 at 10:13:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x4y′′ + xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.375 (sec)

Writing the ode as

x4y′′ + xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4

B = x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −10x2 + 1
4x6 (6)

Comparing the above to (5) shows that

s = −10x2 + 1
t = 4x6

Therefore eq. (4) becomes

z′′(x) =
(
−10x2 + 1

4x6

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1302: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x6. There is a pole at x = 0 of order 6. Since there is no odd order pole larger than
2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − 5
2x4 + 1

4x6

There is pole in r at x = 0 of order 6, hence v = 3. Expanding
√
r as Laurent series about

this pole c = 0 gives
[
√
r]c ≈

1
2x3 − 5

2x − 25x
4 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 3 the above becomes

[
√
r]c =

1
2x3 (3B)

The above shows that the coefficient of 1
(x−0)3 is

a = 1
2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x4 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be −5

2 . Therefore

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]c =

1
2x3

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(−5
2

1
2

+ 3
)

= −1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−
−5

2
1
2

+ 3
)

= 4

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −10x2 + 1
4x6

pole c location pole order [
√
r]c α+

c α−
c

0 6 1
2x3 −1 4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1

)
= 1− (−1)
= 2
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x3 − 1

x
+ (−) (0)

= 1
2x3 − 1

x

= 1
2x3 − 1

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
2x3 − 1

x

)
(2x+ a1) +

((
− 3
2x4 + 1

x2

)
+
(

1
2x3 − 1

x

)2

−
(
−10x2 + 1

4x6

))
= 0

(2a0 + 2)x+ a1
x3 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫ ( 1

2x3−
1
x

)
dx

=
(
x2 − 1

)
e−

1
4x2−ln(x)

= (x2 − 1) e−
1

4x2

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x4 dx

= z1e
1

4x2

= z1
(
e

1
4x2
)

Which simplifies to

y1 =
x2 − 1

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x4 dx

(y1)2
dx

= y1

∫
e

1
2x2

(y1)2
dx

= y1

(∫ e
1

2x2 x2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 1

x

)
+ c2

(
x2 − 1

x

(∫ e
1

2x2 x2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.044 (sec)
Leaf size : 50� �
dsolve(x^4*diff(diff(y(x),x),x)+diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y =

c1
√
2
√
π (x− 1) (x+ 1) erfi

(√
2

2x

)
+ c2x

2 + 2 e
1

2x2 c1x− c2

x

Mathematica DSolve solution

Solving time : 0.176 (sec)
Leaf size : 61� �
DSolve[{x^4*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
2πc2(x2 − 1) erfi

(
1√
2x

)
− 4c1(x2 − 1) + 2c2e

1
2x2 x

4x



chapter 2. book solved problems 4595

2.1.683 problem 700

Solved as second order ode using Kovacic algorithm . . . . . . . . .4595
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4600
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4601
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4601
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4602

Internal problem ID [9531]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 700
Date solved : Thursday, December 12, 2024 at 10:13:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.296 (sec)

Writing the ode as

x2y′′ +
(
2x2 + x

)
y′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x2 + x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x+ 15
4x2 (6)

Comparing the above to (5) shows that

s = 4x2 + 4x+ 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x+ 15

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1303: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 1
x
+ 15

4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x + 7
4x2 − 7

8x3 − 35
32x4 + 133

64x5 + 63
128x6 − 1239

256x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 4x+ 15
4x2

= Q+ R

4x2

= (1) +
(
4x+ 15
4x2

)
= 1 + 4x+ 15

4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 4x+ 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
2x + (−) (1)

= − 3
2x − 1

= − 3
2x − 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x − 1

)
(1) +

((
3
2x2

)
+
(
− 3
2x − 1

)2

−
(
4x2 + 4x+ 15

4x2

))
= 0

−3 + 2a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

3
2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 3
2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 3

2

)
e
∫ (

− 3
2x−1

)
dx

=
(
x+ 3

2

)
e−x− 3 ln(x)

2

= (3 + 2x) e−x

2x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2+x

x2 dx

= z1e
−x− ln(x)

2

= z1

(
e−x

√
x

)

Which simplifies to

y1 =
e−2x(3 + 2x)

2x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2+x

x2 dx

(y1)2
dx

= y1

∫
e−2x−ln(x)

(y1)2
dx

= y1

(
(2x2 − 4x+ 3)x e−2x−ln(x)e4x

6 + 4x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−2x(3 + 2x)

2x2

)
+ c2

(
e−2x(3 + 2x)

2x2

(
(2x2 − 4x+ 3)x e−2x−ln(x)e4x

6 + 4x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (2x2 + x)

(
d
dx
y(x)

)
− 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4y(x)
x2 −

(2x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x
− 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2x+1

x
, P3(x) = − 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(2x+ 1)

(
d
dx
y(x)

)
− 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 2) + 2ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2) + 2ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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ak+1(k + 3 + r) (k + r − 1) + 2ak(k + r) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r)
(k+3+r)(k+r−1)

• Recursion relation for r = −2 ; series terminates at k = 2
ak+1 = − 2ak(k−2)

(k+1)(k−3)

• Apply recursion relation for k = 0
a1 = −4a0

3

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 2a0

3

• Terminating series solution of the ODE for r = −2 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 4

3x+ 2
3x

2)
• Recursion relation for r = 2

ak+1 = − 2ak(k+2)
(k+5)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − 2ak(k+2)

(k+5)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− 4

3x+ 2
3x

2)+ ( ∞∑
k=0

bkx
k+2
)
, bk+1 = − 2bk(k+2)

(5+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 31� �
dsolve(x^2*diff(diff(y(x),x),x)+(2*x^2+x)*diff(y(x),x)-4*y(x) = 0,

y(x),singsol=all)� �
y =

c2(2x+ 3) e−2x + 2c1
(
x2 − 2x+ 3

2

)
x2
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Mathematica DSolve solution

Solving time : 0.105 (sec)
Leaf size : 44� �
DSolve[{x^2*D[y[x],{x,2}]+(x+2*x^2)*D[y[x],x]-4*y[x]==2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4

(
2c1e−2x(2x+ 3)

x2 + c2(2x2 − 4x+ 3)
x2 − 2

)
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2.1.684 problem 701

Solved as second order ode using Kovacic algorithm . . . . . . . . .4603
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4607
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4609
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4609
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4609

Internal problem ID [9532]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 701
Date solved : Thursday, December 12, 2024 at 10:13:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
4x3 − 14x2 − 2x

)
y′′ −

(
6x2 − 7x+ 1

)
y′ + (6x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.441 (sec)

Writing the ode as(
4x3 − 14x2 − 2x

)
y′′ +

(
−6x2 + 7x− 1

)
y′ + (6x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x3 − 14x2 − 2x
B = −6x2 + 7x− 1 (3)
C = 6x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −12x4 + 156x3 + 297x2 − 78x− 3
16 (2x3 − 7x2 − x)2

(6)

Comparing the above to (5) shows that

s = −12x4 + 156x3 + 297x2 − 78x− 3

t = 16
(
2x3 − 7x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−12x4 + 156x3 + 297x2 − 78x− 3

16 (2x3 − 7x2 − x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1305: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(2x3 − 7x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at
x = 7

4 +
√
57
4 of order 2. There is a pole at x = 7

4 −
√
57
4 of order 2. Since there is no odd

order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are met.
Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 9
4x − 3

16x2 + 3

4
(
x− 7

4 −
√
57
4

)2 + 3

4
(
x− 7

4 +
√
57
4

)2 +
9
8 −

29
√
57

152

x− 7
4 −

√
57
4

+
9
8 +

29
√
57

152

x− 7
4 +

√
57
4

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 7
4 +

√
57
4 let b be the coefficient of 1(

x− 7
4−

√
57
4

)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 7

4 −
√
57
4 let b be the coefficient of 1(

x− 7
4+

√
57
4

)2 in the partial fractions

decomposition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −12x4 + 156x3 + 297x2 − 78x− 3

16 (2x3 − 7x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −12x4 + 156x3 + 297x2 − 78x− 3
16 (2x3 − 7x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

7
4 +

√
57
4 2 0 3

2 −1
2

7
4 −

√
57
4 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1

4 −
(
−3
4

)
= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

) + (−) (0)

= 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

)
= −6x2 + 7x− 1

8x3 − 28x2 − 4x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2

 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

)
 (1) +


− 1

4x2 + 1

2
(
x− 7

4 −
√
57
4

)2 + 1

2
(
x− 7

4 +
√
57
4

)2
+

 1
4x − 1

2
(
x− 7

4 −
√
57
4

) − 1
2
(
x− 7

4 +
√
57
4

)
2

−
(
−12x4 + 156x3 + 297x2 − 78x− 3

16 (2x3 − 7x2 − x)2
) = 0

32(2x2 − 7x− 1) (6x− 1) (a0 + 1)(
4x− 7 +

√
57
)2 (−4x+ 7 +

√
57
)2

x
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ 1

4x−
1

2
(
x− 7

4−
√
57
4

)− 1

2
(
x− 7

4+
√

57
4

)
dx

= (x− 1) e
2 ln(x)(

7+
√

57
)(

−7+
√

57
)−

(
57+7

√
57

)√
57 ln

(
4x−7−

√
57

)
2
(
399+57

√
57

) +
(
−57+7

√
57

)√
57 ln

(
4x−7+

√
57

)
−798+114

√
57

= (x− 1)x1/4√
4x− 7−

√
57
√

4x− 7 +
√
57

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x2+7x−1

4x3−14x2−2x dx

= z1e
− ln(x)

4 +
ln

(
2x2−7x−1

)
2

= z1

(√
2x2 − 7x− 1

x1/4

)
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Which simplifies to

y1 =
(x− 1)

√
2

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −6x2+7x−1

4x3−14x2−2x dx

(y1)2
dx

= y1

∫
e−

ln(x)
2 +ln

(
2x2−7x−1

)
(y1)2

dx

= y1

(
16x(2x+ 1) e−

ln(x)
2 +ln

(
2x2−7x−1

)
(x− 1) (2x2 − 7x− 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x− 1)

√
2

4

)
+ c2

(
(x− 1)

√
2

4

(
16x(2x+ 1) e−

ln(x)
2 +ln

(
2x2−7x−1

)
(x− 1) (2x2 − 7x− 1)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(4x3 − 14x2 − 2x)
(

d2

dx2y(x)
)
− (6x2 − 7x+ 1)

(
d
dx
y(x)

)
+ (6x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (6x−1)y(x)
2x(2x2−7x−1) +

(
6x2−7x+1

)(
d
dx

y(x)
)

2x(2x2−7x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
6x2−7x+1

)(
d
dx

y(x)
)

2x(2x2−7x−1) + (6x−1)y(x)
2x(2x2−7x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x2−7x+1
2x(2x2−7x−1) , P3(x) = 6x−1

2x(2x2−7x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators

2x(2x2 − 7x− 1)
(

d2

dx2y(x)
)
+ (−6x2 + 7x− 1)

(
d
dx
y(x)

)
+ (6x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r + (−a1(1 + r) (1 + 2r)− a0(14r2 − 21r + 1))xr +
(

∞∑
k=1

(−ak+1(k + 1 + r) (2k + 1 + 2r)− ak(14k2 + 28kr + 14r2 − 21k − 21r + 1) + 2ak−1(k − 2 + r) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
−a1(1 + r) (1 + 2r)− a0(14r2 − 21r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−14ak + 4ak−1 − 2ak+1) k2 + ((−28ak + 8ak−1 − 4ak+1) r + 21ak − 18ak−1 − 3ak+1) k + (−14ak + 4ak−1 − 2ak+1) r2 + (21ak − 18ak−1 − 3ak+1) r − ak + 20ak−1 − ak+1 = 0

• Shift index using k− >k + 1
(−14ak+1 + 4ak − 2ak+2) (k + 1)2 + ((−28ak+1 + 8ak − 4ak+2) r + 21ak+1 − 18ak − 3ak+2) (k + 1) + (−14ak+1 + 4ak − 2ak+2) r2 + (21ak+1 − 18ak − 3ak+2) r − ak+1 + 20ak − ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4k2ak−14k2ak+1+8krak−28krak+1+4r2ak−14r2ak+1−10kak−7kak+1−10rak−7rak+1+6ak+6ak+1

2k2+4kr+2r2+7k+7r+6

• Recursion relation for r = 0
ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6 ,−a1 − a0 = 0
]

• Recursion relation for r = 1
2

ak+2 = 4k2ak−14k2ak+1−6kak−21kak+1+2ak−ak+1
2k2+9k+10

• Solution for r = 1
2
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[
y(x) =

∞∑
k=0

akx
k+ 1

2 , ak+2 = 4k2ak−14k2ak+1−6kak−21kak+1+2ak−ak+1
2k2+9k+10 ,−3a1 + 6a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4k2ak−14k2ak+1−10kak−7kak+1+6ak+6ak+1

2k2+7k+6 ,−a1 − a0 = 0, bk+2 = 4k2bk−14k2bk+1−6kbk−21kbk+1+2bk−bk+1
2k2+9k+10 ,−3b1 + 6b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 21� �
dsolve((4*x^3-14*x^2-2*x)*diff(diff(y(x),x),x)-(6*x^2-7*x+1)*diff(y(x),x)+(6*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = c2

√
x+ c1(x− 1) + 2c2x3/2

Mathematica DSolve solution

Solving time : 9.894 (sec)
Leaf size : 26� �
DSolve[{(4*x^3-14*x^2-2*x)*D[y[x],{x,2}]-(6*x^2-7*x+1)*D[y[x],x]+(6*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 1)− 2c2

√
x(2x+ 1)
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2.1.685 problem 702

Solved as second order ode using Kovacic algorithm . . . . . . . . .4610
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4614
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4616
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4616
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4616

Internal problem ID [9533]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 702
Date solved : Thursday, December 12, 2024 at 10:13:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x2y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as

x2y′′ + x2y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1307: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x



chapter 2. book solved problems 4614

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2
x2 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2

x2 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1
(
−
(
x2 + 2x+ 2

)
e−x
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
−
(
x2 + 2x+ 2

)
e−x
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x2 − d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + d
dx
y(x) + (x−2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1, P3(x) = x−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r) + ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+1)

(k+2+r)(k−1+r)

• Recursion relation for r = −1
ak+1 = − akk

(k+1)(k−2)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 2
ak+1 = − akk

(k+1)(k−2)

• Recursion relation for r = 2
ak+1 = − ak(k+3)

(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak(k+3)

(k+4)(k+1)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 24� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x^2+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = c2e−x(x2 + 2x+ 2) + c1

x

Mathematica DSolve solution

Solving time : 0.054 (sec)
Leaf size : 29� �
DSolve[{x^2*D[y[x],{x,2}]+x^2*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1 − c2e

−x(x2 + 2x+ 2)
x
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2.1.686 problem 703

Solved as second order ode using Kovacic algorithm . . . . . . . . .4617
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4621
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4623
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4623
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4623

Internal problem ID [9534]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 703
Date solved : Thursday, December 12, 2024 at 10:13:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − x2y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.253 (sec)

Writing the ode as

x2y′′ − x2y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1309: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x2 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x2 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1
(
−
(
x2 + 2x+ 2

)
e−x
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x

(
−
(
x2 + 2x+ 2

)
e−x
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x2 + d

dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− d
dx
y(x) + (x−2)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −1, P3(x) = x−2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x2( d

dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2)− ak−1(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r + 1)− ak−1) = 0

• Shift index using k− >k + 1
(k − 1 + r) (ak+1(k + 2 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+2+r

• Recursion relation for r = −1
ak+1 = ak

k+1

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+4

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak

k+4

]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
4+k

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 23� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x^2+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2(x2 + 2x+ 2)

x

Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 28� �
DSolve[{x^2*D[y[x],{x,2}]-x^2*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2(x2 + 2x+ 2)
x
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2.1.687 problem 704

Solved as second order ode using Kovacic algorithm . . . . . . . . .4624
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4628
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4629
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4630
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4630

Internal problem ID [9535]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 704
Date solved : Thursday, December 12, 2024 at 10:13:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1− 4x) y′′ +
(
−1
4x− x2

)
y′ − 5xy

16 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.394 (sec)

Writing the ode as (
−4x3 + x2) y′′ + (−1

4x− x2
)
y′ − 5xy

16 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −4x3 + x2

B = −1
4x− x2 (3)

C = −5x
16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −192x2 − 36x+ 9
64 (4x2 − x)2

(6)

Comparing the above to (5) shows that

s = −192x2 − 36x+ 9

t = 64
(
4x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−192x2 − 36x+ 9

64 (4x2 − x)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1311: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 64(4x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1

4 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
16x + 9

64x2 − 3
16
(
x− 1

4

)2 − 9
16
(
x− 1

4

)
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 9

64 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

=
{
2,−1

2 ,
9
2

}
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For the pole at x = 1
4 let b be the coefficient of 1(

x− 1
4
)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= −192x2 − 36x+ 9

64 (4x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2
{
2,−1

2 ,
9
2

}
1
4 2 {1, 2, 3}

Order of r at ∞ E∞

2 {1, 2, 3}

Using the family {e1, e2, . . . , e∞} given by

e1 = 2, e2 = 1, e∞ = 3

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(3− (2 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
2

(x− (0)) +
1(

x−
(1
4

)))
= 1

x
+ 1

2x− 1
2

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0
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And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
x
+ 1

2x− 1
2

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(
1
x
+ 1

2x− 1
2

)
w + 576x2 − 92x− 9

64x2 (−1 + 4x)2
= 0

Solving for ω gives

ω = 24x− 4 + 5
√
1− 4x

8x (−1 + 4x)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 24x−4+5

√
1−4x

8x(−1+4x) dx

=
(−1 + 4x)1/4

√
x 23/4

(√
1−4x+1√

x

)5/4
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
− 1

4x−x2

−4x3+x2 dx

= z1e
− ln(−1+4x)

4 + ln(x)
8

= z1

(
x1/8

(−1 + 4x)1/4

)

Which simplifies to

y1 =
x1/823/4

(√
1− 4x+ 1

) (√
1−4x+1√

x

)1/4
4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− − 1

4x−x2

−4x3+x2 dx

(y1)2
dx

= y1

∫
e−

ln(−1+4x)
2 + ln(x)

4

(y1)2
dx

= y1

∫ 4 e−
ln(−1+4x)

2 + ln(x)
4
√
2

x1/4
(√

1− 4x+ 1
)2√√

1−4x+1√
x

dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

x1/823/4
(√

1− 4x+ 1
) (√

1−4x+1√
x

)1/4
4

+c2

x1/823/4
(√

1− 4x+ 1
) (√

1−4x+1√
x

)1/4
4

∫ 4 e−
ln(−1+4x)

2 + ln(x)
4
√
2

x1/4
(√

1− 4x+ 1
)2√√

1−4x+1√
x

dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(1− 4x)
(

d2

dx2y(x)
)
+
(
−1

4x− x2) ( d
dx
y(x)

)
− 5xy(x)

16 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 5y(x)
16x(4x−1) −

(4x+1)
(

d
dx

y(x)
)

4x(4x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4x+1)

(
d
dx

y(x)
)

4x(4x−1) + 5y(x)
16x(4x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x+1
4x(4x−1) , P3(x) = 5

16x(4x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

16x(4x− 1)
(

d2

dx2y(x)
)
+ (16x+ 4)

(
d
dx
y(x)

)
+ 5y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m
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◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−4a0r(−5 + 4r)x−1+r +
(

∞∑
k=0

(−4ak+1(k + 1 + r) (4k − 1 + 4r) + ak(8k + 8r − 1) (8k + 8r − 5))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(−5 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 54
}

• Each term in the series must be 0, giving the recursion relation
−16(k + 1 + r)

(
k + r − 1

4

)
ak+1 + 64

(
k + r − 1

8

) (
k + r − 5

8

)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (8k+8r−1)(8k+8r−5)ak

4(k+1+r)(4k−1+4r)

• Recursion relation for r = 0
ak+1 = (8k−1)(8k−5)ak

4(k+1)(4k−1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (8k−1)(8k−5)ak

4(k+1)(4k−1)

]
• Recursion relation for r = 5

4

ak+1 = (8k+9)(8k+5)ak
4
(
k+ 9

4
)
(4k+4)

• Solution for r = 5
4[

y(x) =
∞∑
k=0

akx
k+ 5

4 , ak+1 = (8k+9)(8k+5)ak
4
(
k+ 9

4
)
(4k+4)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 5

4

)
, ak+1 = (8k−1)(8k−5)ak

4(k+1)(4k−1) , bk+1 = (8k+9)(8k+5)bk
4
(
k+ 9

4
)
(4k+4)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 55� �
dsolve(x^2*(1-4*x)*diff(diff(y(x),x),x)+(-1/4*x-x^2)*diff(y(x),x)-5/16*x*y(x) = 0,

y(x),singsol=all)� �
y = −

21/4
(
c1
√
2
(
x−

√
1−4x
2 − 1

2

)√
1 +

√
1− 4x− 2c2x5/4

)
(
1 +

√
1− 4x

)5/4
Mathematica DSolve solution

Solving time : 4.062 (sec)
Leaf size : 111� �
DSolve[{x^2*(1-4*x)*D[y[x],{x,2}]+((1-(5/4))*x-(6-4*(5/4))*x^2)*D[y[x],x]+(5/4)*(1-(5/4))*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

8
√
x 4
√
4x− 1

(
5c1
(√

4x− 1− i
)5/4 + ic2

(√
4x− 1 + i

)5/4)
5 4
√
1− 4x 8

√√
4x− 1− i

8
√√

4x− 1 + i
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2.1.688 problem 705

Solved as second order ode using Kovacic algorithm . . . . . . . . .4631
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4636
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4637
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4638
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4638

Internal problem ID [9536]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 705
Date solved : Thursday, December 12, 2024 at 10:13:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.306 (sec)

Writing the ode as

x2y′′ +
(
x2 + x

)
y′ + (x− 9) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = x− 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x+ 35
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x+ 35
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x+ 35

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1313: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2x + 35
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 17

2x2 + 17
2x3 − 255

4x4 − 833
4x5 + 3213

4x6 + 21709
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x+ 35
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x+ 35

4x2

)
= 1

4 + −2x+ 35
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x+ 35
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−5
2

)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 5
2x +

(
1
2

)
= − 5

2x + 1
2

= −5 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 5
2x + 1

2

)
(2x+ a1) +

((
5
2x2

)
+
(
− 5
2x + 1

2

)2

−
(
x2 − 2x+ 35

4x2

))
= 0

(−a1 − 8)x− 2a0 − 5a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 20, a1 = −8}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 8x+ 20
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 8x+ 20

)
e
∫ (

− 5
2x+

1
2
)
dx

=
(
x2 − 8x+ 20

)
ex

2−
5 ln(x)

2

= (x2 − 8x+ 20) ex
2

x5/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to

y1 =
x2 − 8x+ 20

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
−(x3 + 9x2 + 36x+ 60)x e−x−ln(x)

x2 − 8x+ 20

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 8x+ 20

x3

)
+ c2

(
x2 − 8x+ 20

x3

(
−(x3 + 9x2 + 36x+ 60)x e−x−ln(x)

x2 − 8x+ 20

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (x2 + x)

(
d
dx
y(x)

)
+ (x− 9) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−9)y(x)
x2 −

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
+ (x−9)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+1

x
, P3(x) = x−9

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (x− 9) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r + 3) (k + r − 3) + ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(3 + r) (−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−3, 3}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 3) (k + r − 3) + ak−1(k + r) = 0
• Shift index using k− >k + 1

ak+1(k + 4 + r) (k − 2 + r) + ak(k + r + 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+1)
(k+4+r)(k−2+r)

• Recursion relation for r = −3 ; series terminates at k = 2
ak+1 = − ak(k−2)

(k+1)(k−5)

• Apply recursion relation for k = 0
a1 = −2a0

5

• Apply recursion relation for k = 1
a2 = −a1

8

• Express in terms of a0
a2 = a0

20

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 2

5x+ 1
20x

2)
• Recursion relation for r = 3

ak+1 = − ak(k+4)
(k+7)(k+1)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = − ak(k+4)

(k+7)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− 2

5x+ 1
20x

2)+ ( ∞∑
k=0

bkx
k+3
)
, bk+1 = − bk(4+k)

(k+7)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 38� �
dsolve(x^2*diff(diff(y(x),x),x)+(x^2+x)*diff(y(x),x)+(x-9)*y(x) = 0,

y(x),singsol=all)� �
y = c2(x3 + 9x2 + 36x+ 60) e−x + c1(x2 − 8x+ 20)

x3

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 42� �
DSolve[{x^2*D[y[x],{x,2}]+(x+x^2)*D[y[x],x]+(x-9)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1((x− 8)x+ 20)− c2e

−x(x3 + 9x2 + 36x+ 60)
x3
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2.1.689 problem 706

Solved as second order ode using Kovacic algorithm . . . . . . . . .4639
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4644
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4645
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4645
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4646

Internal problem ID [9537]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 706
Date solved : Thursday, December 12, 2024 at 10:13:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + x(x+ 1) y′ + (3x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.308 (sec)

Writing the ode as

x2y′′ +
(
x2 + x

)
y′ + (3x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x2 + x (3)
C = 3x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 10x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 10x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1315: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 5

2x + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 5
2x − 11

2x2 − 55
2x3 − 671

4x4 − 4565
4x5 − 33231

4x6 − 253275
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 10x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−10x+ 3

4x2

)
= 1

4 + −10x+ 3
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −10. Dividing this by leading coefficient in t which is 4 gives −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 0
)

= −5
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 0
)

= 5
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 10x+ 3
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −5

2
5
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

2 then

d = α−
∞ −

(
α+
c1

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 3
2x + (−)

(
1
2

)
= 3

2x − 1
2

= −−3 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2x − 1

2

)
(1) +

((
− 3
2x2

)
+
(

3
2x − 1

2

)2

−
(
x2 − 10x+ 3

4x2

))
= 0

3 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −3 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−3 + x) e
∫ ( 3

2x−
1
2
)
dx

= (−3 + x) e−x
2+

3 ln(x)
2

= (−3 + x)x3/2e−x
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2+x
x2 dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to
y1 = x e−x(−3 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x2+x

x2 dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
−7 ex
54x − Ei1 (−x)

6 − ex
27 (−3 + x) −

ex
18x2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x(−3 + x)

)
+ c2

(
x e−x(−3 + x)

(
−7 ex
54x − Ei1 (−x)

6 − ex
27 (−3 + x) −

ex
18x2

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 4644

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (3x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−1)y(x)
x2 −

(x+1)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
+ (3x−1)y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = x+1

x
, P3(x) = 3x−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(x+ 1)

(
d
dx
y(x)

)
+ (3x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 1) + ak−1(k + 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r) (−1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 1}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 1) (k + r − 1) + ak−1(k + 2 + r) = 0
• Shift index using k− >k + 1

ak+1(k + 2 + r) (k + r) + ak(k + r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r+3)
(k+2+r)(k+r)

• Recursion relation for r = −1
ak+1 = − ak(k+2)

(k+1)(k−1)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 1
ak+1 = − ak(k+2)

(k+1)(k−1)

• Recursion relation for r = 1
ak+1 = − ak(k+4)

(k+3)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − ak(k+4)

(k+3)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 48� �
dsolve(x^2*diff(diff(y(x),x),x)+x*(x+1)*diff(y(x),x)+(3*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = x2c2e−x(x− 3) Ei1 (−x) + c1x

2(x− 3) e−x + c2(x2 − 2x− 1)
x
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Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 66� �
DSolve[{x^2*D[y[x],{x,2}]+x*(x+1)*D[y[x],x]+(3*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2(x− 3)x2 ExpIntegralEi(x) + 6c1x3 − x2(c2ex + 18c1) + 2c2exx+ c2e

x)
6x
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2.1.690 problem 707

Solved as second order ode using Kovacic algorithm . . . . . . . . .4647
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4651
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4653
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4653
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4653

Internal problem ID [9538]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 707
Date solved : Thursday, December 12, 2024 at 10:13:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ −
(
x2 + 4x

)
y′ + 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.292 (sec)

Writing the ode as

x2y′′ +
(
−x2 − 4x

)
y′ + 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 4x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 8x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 8x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 8x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1317: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 + 2
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x
− 2

x2 + 8
x3 − 36

x4 + 176
x5 − 912

x6 + 4928
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 8x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
8x+ 8
4x2

)
= 1

4 + 8x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 8. Dividing this by leading coefficient in t which is 4 gives 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 0
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 0
)

= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 8x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 2 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α+
c1

)
= 2− (2)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 2
x
+
(
1
2

)
= 1

2 + 2
x

= x+ 4
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 2

x

)
(0) +

((
− 2
x2

)
+
(
1
2 + 2

x

)2

−
(
x2 + 8x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
2
x

)
dx

= x2ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−4x

x2 dx

= z1e
x
2+2 ln(x)

= z1
(
x2ex

2
)

Which simplifies to
y1 = x4ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−4x

x2 dx

(y1)2
dx

= y1

∫
ex+4 ln(x)

(y1)2
dx

= y1

(
−e−x

3x3 + e−x

6x2 − e−x

6x + Ei1 (x)
6

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x4ex

)
+ c2

(
x4ex

(
−e−x

3x3 + e−x

6x2 − e−x

6x + Ei1 (x)
6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− (x2 + 4x)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)
x2 +

(x+4)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+4)

(
d
dx

y(x)
)

x
+ 4y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −x+4

x
, P3(x) = 4

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− x(x+ 4)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−4 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 4)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 4}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 4)− ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k − 3 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k−3+r

• Recursion relation for r = 1
ak+1 = ak

k−2

• Series not valid for r = 1 , division by 0 in the recursion relation at k = 2
ak+1 = ak

k−2

• Recursion relation for r = 4
ak+1 = ak

k+1

• Solution for r = 4[
y(x) =

∞∑
k=0

akx
k+4, ak+1 = ak

k+1

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 35� �
dsolve(x^2*diff(diff(y(x),x),x)-(x^2+4*x)*diff(y(x),x)+4*y(x) = 0,

y(x),singsol=all)� �
y = x

(
ex Ei1 (x) c2x3 + exx3c1 − c2

(
x2 − x+ 2

))
Mathematica DSolve solution

Solving time : 0.024 (sec)
Leaf size : 41� �
DSolve[{x^2*D[y[x],{x,2}]-(x^2+4*x)*D[y[x],x]+4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2e

xx4 − 1
6c1x

(
exx3 ExpIntegralEi(−x) + x2 − x+ 2

)
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2.1.691 problem 708

Solved as second order ode using Kovacic algorithm . . . . . . . . .4654
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4659
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4659
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4659
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4659

Internal problem ID [9539]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 708
Date solved : Thursday, December 12, 2024 at 10:13:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ − (3x+ 2) y′ + (2x− 1) y
x

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.509 (sec)

Writing the ode as

2x2y′′ + (−3x− 2) y′ +
(
2− 1

x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = −3x− 2 (3)

C = 2− 1
x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5x2 + 36x+ 4
16x4 (6)

Comparing the above to (5) shows that

s = 5x2 + 36x+ 4
t = 16x4
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Therefore eq. (4) becomes

z′′(x) =
(
5x2 + 36x+ 4

16x4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1319: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x4. There is a pole at x = 0 of order 4. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
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The partial fraction decomposition of r is

r = 9
4x3 + 1

4x4 + 5
16x2

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

1
2x2 + 9

4x − 19
4 + 171x

8 − 475x2

4 + 11799x3

16 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

1
2x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = 1
2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be 9

4 . Therefore

b =
(
9
4

)
− (0)

= 9
4

Hence

[
√
r]c =

1
2x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

( 9
4
1
2
+ 2
)

= 13
4

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−

9
4
1
2
+ 2
)

= −5
4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 5x2 + 36x+ 4

16x4

Since the gcd(s, t) = 1. This gives b = 5
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

4
α−
∞ = 1

2 −
√
1 + 4b = −1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 5x2 + 36x+ 4
16x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 1
2x2

13
4 −5

4
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

4 then

d = α−
∞ −

(
α−
c1

)
= −1

4 −
(
−5
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x2 − 5

4x + (−) (0)

= − 1
2x2 − 5

4x
= −2− 5x

4x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x2 − 5

4x

)
(1) +

((
1
x3 + 5

4x2

)
+
(
− 1
2x2 − 5

4x

)2

−
(
5x2 + 36x+ 4

16x4

))
= 0

−2 + 5a0
2x2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

2
5

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2
5
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 2

5

)
e
∫ (

− 1
2x2−

5
4x

)
dx

=
(
x+ 2

5

)
e 1

2x−
5 ln(x)

4

= (2 + 5x) e 1
2x

5x5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x−2
2x2 dx

= z1e
− 1

2x+
3 ln(x)

4

= z1
(
x3/4e− 1

2x

)
Which simplifies to

y1 =
2 + 5x
5
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x−2

2x2 dx

(y1)2
dx

= y1

∫
e−

1
x
+ 3 ln(x)

2

(y1)2
dx

= y1

(∫ 25 e− 1
x
+ 3 ln(x)

2 x

(2 + 5x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
2 + 5x
5
√
x

)
+ c2

(
2 + 5x
5
√
x

(∫ 25 e− 1
x
+ 3 ln(x)

2 x

(2 + 5x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.150 (sec)
Leaf size : 35� �
dsolve(2*x^2*diff(diff(y(x),x),x)-(2+3*x)*diff(y(x),x)+(2*x-1)/x*y(x) = 0,

y(x),singsol=all)� �
y =

c2e−
1
x hypergeom

(
[2] ,

[
−1

2

]
, 1
x

)
x5/2 + 5c1x+ 2c1√

x

Mathematica DSolve solution

Solving time : 0.199 (sec)
Leaf size : 70� �
DSolve[{2*x^2*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]+(2*x-1)/x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

2
√
πc2(5x+ 2)erf

(
1√
x

)
3
√
x

+ 2
3c2e

−1/x(x2 − 4x− 2
)
+ c1(5x+ 2)

5
√
x
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2.1.692 problem 709

Solved as second order ode using Kovacic algorithm . . . . . . . . .4660
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4664
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4665
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4666
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4666

Internal problem ID [9540]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 709
Date solved : Thursday, December 12, 2024 at 10:13:46 AM
CAS classification : [_Jacobi]

Solve

x(1− x) y′′ +
(
3
2 − 2x

)
y′ − y

4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.262 (sec)

Writing the ode as (
−x2 + x

)
y′′ +

(
3
2 − 2x

)
y′ − y

4 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = 3
2 − 2x (3)

C = −1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x2 + 4x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −4x2 + 4x− 3

t = 16
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−4x2 + 4x− 3
16 (x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1320: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
8x + 1

−8 + 8x − 3
16 (−1 + x)2

− 3
16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −4x2 + 4x− 3

16 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x2 + 4x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
4x + 1

−4 + 4x + (−) (0)

= 1
4x + 1

−4 + 4x
= 2x− 1

4x (−1 + x)
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x + 1

−4 + 4x

)
(0) +

((
− 1
4x2 − 1

4 (−1 + x)2
)
+
(

1
4x + 1

−4 + 4x

)2

−
(
−4x2 + 4x− 3
16 (x2 − x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x+
1

−4+4x

)
dx

= (x(−1 + x))1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

3
2−2x

−x2+x
dx

= z1e
− 3 ln(x)

4 − ln(−1+x)
4

= z1

(
1

x3/4 (−1 + x)1/4

)

Which simplifies to

y1 =
(x(−1 + x))1/4

x3/4 (−1 + x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

3
2−2x

−x2+x
dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2 − ln(−1+x)

2

(y1)2
dx

= y1

(
ln
(
−1
2 + x+

√
x2 − x

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x(−1 + x))1/4

x3/4 (−1 + x)1/4

)
+ c2

(
(x(−1 + x))1/4

x3/4 (−1 + x)1/4

(
ln
(
−1
2 + x+

√
x2 − x

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(1− x)
(

d2

dx2y(x)
)
+
(3
2 − 2x

) (
d
dx
y(x)

)
− y(x)

4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
4x(x−1) −

(4x−3)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(4x−3)

(
d
dx

y(x)
)

2x(x−1) + y(x)
4x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x−3
2x(x−1) , P3(x) = 1

4x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

4x(x− 1)
(

d2

dx2y(x)
)
+ (8x− 6)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(1 + 2r)x−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 3 + 2r) + ak(2k + 2r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

ak(2k + 2r + 1)2 − 4
(
k + r + 3

2

)
(k + 1 + r) ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r+1)2

2(2k+3+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = ak(2k+1)2

2(2k+3)(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak(2k+1)2

2(2k+3)(k+1)

]
• Recursion relation for r = −1

2

ak+1 = 2akk2
(2k+2)

(
k+ 1

2
)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = 2akk2
(2k+2)

(
k+ 1

2
)
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = ak(2k+1)2

2(2k+3)(k+1) , bk+1 = 2bkk2
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 32� �
dsolve(x*(1-x)*diff(diff(y(x),x),x)+(3/2-2*x)*diff(y(x),x)-1/4*y(x) = 0,

y(x),singsol=all)� �
y =

c2 ln
(
−1 + 2x+ 2

√
x (x− 1)

)
− c2 ln (2) + c1

√
x

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 53� �
DSolve[{x*(1-x)*D[y[x],{x,2}]+(3/2-2*x)*D[y[x],x]-1/4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4c2
√
x− 1arctanh

(√
x−1√
x+1

)
√

−((x− 1)x)
+ c1√

x
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2.1.693 problem 710

Solved as second order ode using Kovacic algorithm . . . . . . . . .4667
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4671
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4671
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4671
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4671

Internal problem ID [9541]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 710
Date solved : Thursday, December 12, 2024 at 10:13:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x(1− x) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as (
−2x2 + 2x

)
y′′ + xy′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x2 + 2x
B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x+ 8
16x (−1 + x)2

(6)

Comparing the above to (5) shows that

s = −3x+ 8
t = 16x(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

−3x+ 8
16x (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1322: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x(−1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
2x + 5

16 (−1 + x)2
− 1

2 (−1 + x)

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4



chapter 2. book solved problems 4669

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x+ 8

16x (−1 + x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x+ 8
16x (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 5

4 −1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 3

4 −
(
3
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

4 (−1 + x) + (0)

= 1
x
− 1

4 (−1 + x)

= 1
x
− 1

−4 + 4x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

4 (−1 + x)

)
(0) +

((
− 1
x2 + 1

4 (−1 + x)2
)
+
(
1
x
− 1

4 (−1 + x)

)2

−
(

−3x+ 8
16x (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

4(−1+x)

)
dx

= x

(−1 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

−2x2+2x dx

= z1e
ln(−1+x)

4

= z1
(
(−1 + x)1/4

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

−2x2+2x dx

(y1)2
dx

= y1

∫
e

ln(−1+x)
2

(y1)2
dx

= y1

(
−
√
−1 + x

x
+ arctan

(√
−1 + x

))
Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
−
√
−1 + x

x
+ arctan

(√
−1 + x

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(2*x*(1-x)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ arctan

(√
x− 1

)
xc2 −

√
x− 1 c2

Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 43� �
DSolve[{2*x*(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4

√
2
(
c2xarctanh

(√
1− x

)
+ c1x− c2

√
1− x

)



chapter 2. book solved problems 4672

2.1.694 problem 711

Solved as second order ode using Kovacic algorithm . . . . . . . . .4672
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4676
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4677
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4678
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4678

Internal problem ID [9542]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 711
Date solved : Thursday, December 12, 2024 at 10:13:47 AM
CAS classification : [_Jacobi]

Solve

2x(1− x) y′′ + (1− 11x) y′ − 10y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as (
−2x2 + 2x

)
y′′ + (1− 11x) y′ − 10y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x2 + 2x
B = 1− 11x (3)
C = −10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 + 66x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −3x2 + 66x− 3

t = 16
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 + 66x− 3
16 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1323: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x − 3

16x2 + 15
4 (−1 + x)2

− 15
4 (−1 + x)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 1 let b be the coefficient of 1

(−1+x)2 in the partial fractions decomposition
of r given above. Therefore b = 15

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 + 66x− 3

16 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 + 66x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

4 −
(
−3
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 3
4x − 3

2 (−1 + x) + (−) (0)

= 3
4x − 3

2 (−1 + x)

= − 3(x+ 1)
4x (−1 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4x − 3

2 (−1 + x)

)
(1) +

((
− 3
4x2 + 3

2 (−1 + x)2
)
+
(

3
4x − 3

2 (−1 + x)

)2

−
(
−3x2 + 66x− 3
16 (x2 − x)2

))
= 0

−3 + 3a0
2x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 3

4x−
3

2(−1+x)

)
dx

= (x+ 1) e−
3 ln(−1+x)

2 + 3 ln(x)
4

= (x+ 1)x3/4

(−1 + x)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−11x

−2x2+2x dx

= z1e
− 5 ln(−1+x)

2 − ln(x)
4

= z1

(
1

(−1 + x)5/2 x1/4

)

Which simplifies to

y1 =
√
x (x+ 1)

(−1 + x)4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−11x

−2x2+2x dx

(y1)2
dx

= y1

∫
e−5 ln(−1+x)− ln(x)

2

(y1)2
dx

= y1

(
2(x2 + 6x+ 1) (−1 + x)5 e−5 ln(−1+x)− ln(x)

2

x+ 1

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (x+ 1)

(−1 + x)4
)
+ c2

(√
x (x+ 1)

(−1 + x)4

(
2(x2 + 6x+ 1) (−1 + x)5 e−5 ln(−1+x)− ln(x)

2

x+ 1

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x(1− x)
(

d2

dx2y(x)
)
+ (1− 11x)

(
d
dx
y(x)

)
− 10y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 5y(x)
x(x−1) −

(11x−1)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(11x−1)

(
d
dx

y(x)
)

2x(x−1) + 5y(x)
x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x−1
2x(x−1) , P3(x) = 5

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x(x− 1)
(

d2

dx2y(x)
)
+ (11x− 1)

(
d
dx
y(x)

)
+ 10y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r + 5) (k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2(k + r + 2) ak

(
k + r + 5

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r+2)ak(2k+2r+5)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0
ak+1 = (k+2)ak(2k+5)

(k+1)(2k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (k+2)ak(2k+5)

(k+1)(2k+1)

]
• Recursion relation for r = 1

2

ak+1 =
(
k+ 5

2
)
ak(2k+6)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
(
k+ 5

2
)
ak(2k+6)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = (k+2)ak(2k+5)

(k+1)(2k+1) , bk+1 =
(
k+ 5

2
)
bk(2k+6)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.036 (sec)
Leaf size : 29� �
dsolve(2*x*(1-x)*diff(diff(y(x),x),x)+(1-11*x)*diff(y(x),x)-10*y(x) = 0,

y(x),singsol=all)� �
y = c1(x2 + 6x+ 1) + c2

√
x (x+ 1)

(x− 1)4

Mathematica DSolve solution

Solving time : 0.096 (sec)
Leaf size : 35� �
DSolve[{2*x*(1-x)*D[y[x],{x,2}]+(1-11*x)*D[y[x],x]-10*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

√
x(x+ 1)− 2c2(x2 + 6x+ 1)

(x− 1)4
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2.1.695 problem 712

Solved as second order ode using Kovacic algorithm . . . . . . . . .4679
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4683
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4685
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4685
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4685

Internal problem ID [9543]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 712
Date solved : Thursday, December 12, 2024 at 10:13:48 AM
CAS classification : [_Jacobi]

Solve

x(1− x) y′′ + (1− 2x) y′
3 + 20y

9 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.270 (sec)

Writing the ode as

(
−x2 + x

)
y′′ +

(
−2x

3 + 1
3

)
y′ + 20y

9 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = −2x
3 + 1

3 (3)

C = 20
9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 72x2 − 72x− 5
36 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = 72x2 − 72x− 5

t = 36
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
72x2 − 72x− 5
36 (x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1325: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
36x2 + 41

18 (−1 + x) −
5

36 (−1 + x)2
− 41

18x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
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For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 72x2 − 72x− 5

36 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 72x2 − 72x− 5
36 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
6

1
6

1 2 0 5
6

1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
6x + 5

6 (−1 + x) + (0)

= 1
6x + 5

6 (−1 + x)

= −1 + 6x
6x (−1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
6x + 5

6 (−1 + x)

)
(1) +

((
− 1
6x2 − 5

6 (−1 + x)2
)
+
(

1
6x + 5

6 (−1 + x)

)2

−
(
72x2 − 72x− 5
36 (x2 − x)2

))
= 0

−1− 6a0
3x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

6

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −1
6 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
−1
6 + x

)
e
∫ ( 1

6x+
5

6(−1+x)

)
dx

=
(
−1
6 + x

)
e

5 ln(−1+x)
6 + ln(x)

6

=
(
−1
6 + x

)
(−1 + x)5/6 x1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
− 2x

3 +1
3

−x2+x
dx

= z1e
− ln(x(−1+x))

6

= z1

(
1

(x (−1 + x))1/6

)

Which simplifies to

y1 =
(−1 + 6x) (−1 + x)5/6 x1/6

6 (x (−1 + x))1/6
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−− 2x

3 +1
3

−x2+x
dx

(y1)2
dx

= y1

∫
e−

ln(x(−1+x))
3

(y1)2
dx

= y1

(
− 54x2/3(−5 + 6x)
5 (−1 + 6x) (−1 + x)2/3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−1 + 6x) (−1 + x)5/6 x1/6

6 (x (−1 + x))1/6

)
+c2

(
(−1 + 6x) (−1 + x)5/6 x1/6

6 (x (−1 + x))1/6

(
− 54x2/3(−5 + 6x)
5 (−1 + 6x) (−1 + x)2/3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(1− x)
(

d2

dx2y(x)
)
+

(−2x+1)
(

d
dx

y(x)
)

3 + 20y(x)
9 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 20y(x)
9x(x−1) −

(2x−1)
(

d
dx

y(x)
)

3x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x−1)

(
d
dx

y(x)
)

3x(x−1) − 20y(x)
9x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x−1
3x(x−1) , P3(x) = − 20

9x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

9x(x− 1)
(

d2

dx2y(x)
)
+ (6x− 3)

(
d
dx
y(x)

)
− 20y(x) = 0
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• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−3a0r(−2 + 3r)x−1+r +
(

∞∑
k=0

(−3ak+1(k + 1 + r) (3k + 1 + 3r) + ak(3k + 3r + 4) (3k + 3r − 5))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3r(−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 23
}

• Each term in the series must be 0, giving the recursion relation
−9(k + 1 + r)

(
k + r + 1

3

)
ak+1 + 9

(
k + r − 5

3

) (
k + 4

3 + r
)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (3k+3r−5)(3k+3r+4)ak

3(k+1+r)(3k+1+3r)

• Recursion relation for r = 0
ak+1 = (3k−5)(3k+4)ak

3(k+1)(3k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = (3k−5)(3k+4)ak

3(k+1)(3k+1)

]
• Recursion relation for r = 2

3 ; series terminates at k = 1

ak+1 = (3k−3)(3k+6)ak
3
(
k+ 5

3
)
(3k+3)

• Apply recursion relation for k = 0
a1 = −6a0

5

• Terminating series solution of the ODE for r = 2
3 . Use reduction of order to find the second linearly independent solution

y(x) = a0 ·
(
−6x

5 + 1
)

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+ b0 ·

(
−6x

5 + 1
)
, ak+1 = (3k−5)(3k+4)ak

3(k+1)(3k+1)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 27� �
dsolve(x*(1-x)*diff(diff(y(x),x),x)+1/3*(1-2*x)*diff(y(x),x)+20/9*y(x) = 0,

y(x),singsol=all)� �
y = c1(6x− 5)x2/3 + c2(6x− 1) (x− 1)2/3

Mathematica DSolve solution

Solving time : 0.08 (sec)
Leaf size : 51� �
DSolve[{x*(1-x)*D[y[x],{x,2}]+1/3*(1-2*x)*D[y[x],x]+20/9*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2

3
√

−((x− 1)x)Q
2
3
1 (2x− 1) + c1x

2/3(6x− 5)
3Gamma

(4
3

)
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2.1.696 problem 713

Solved as second order ode using Kovacic algorithm . . . . . . . . .4686
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4690
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4692
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4692
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4692

Internal problem ID [9544]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 713
Date solved : Thursday, December 12, 2024 at 10:13:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4y′′ + 3(−x2 + 2) y
(−x2 + 1)2

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.231 (sec)

Writing the ode as

4y′′ + (−3x2 + 6) y
(x2 − 1)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4
B = 0 (3)

C = −3x2 + 6
(x2 − 1)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 6
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 6

t = 4
(
x2 − 1

)2
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Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 6
4 (x2 − 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1327: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x+ 1)2

− 9
16 (x+ 1) −

3
16 (x− 1)2

+ 9
16 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4



chapter 2. book solved problems 4688

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 3x2 − 6

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3x2 − 6
4 (x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x− 1) +

3
4 (x+ 1) + (0)

= 3
4 (x− 1) +

3
4 (x+ 1)

= 3x
2x2 − 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x− 1) +

3
4 (x+ 1)

)
(0) +

((
− 3
4 (x− 1)2

− 3
4 (x+ 1)2

)
+
(

3
4 (x− 1) +

3
4 (x+ 1)

)2

−
(

3x2 − 6
4 (x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4(x−1)+
3

4(x+1)

)
dx

=
(
x2 − 1

)3/4
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

=
(
x2 − 1

)3/4
Which simplifies to

y1 =
(
x2 − 1

)3/4
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

=
(
x2 − 1

)3/4 ∫ 1
(x2 − 1)3/2

dx

=
(
x2 − 1

)3/4(−(x− 1) (x+ 1)x
(x2 − 1)3/2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
((

x2 − 1
)3/4)+ c2

((
x2 − 1

)3/4(−(x− 1) (x+ 1)x
(x2 − 1)3/2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4 d2

dx2y(x) + 3
(
−x2+2

)
y(x)

(−x2+1)2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3
(
x2−2

)
y(x)

4(x2−1)2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− 3
(
x2−2

)
y(x)

4(x2−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 3
(
x2−2

)
4(x2−1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 3
16

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

4(x2 − 1)2
(

d2

dx2y(x)
)
+ (−3x2 + 6) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u4 − 16u3 + 16u2)
(

d2

du2y(u)
)
+ (−3u2 + 6u+ 3) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..4
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)ur + (a1(3 + 4r) (1 + 4r)− 2a0(8r2 − 8r − 3))u1+r +
(

∞∑
k=2

(
ak(4k + 4r − 1) (4k + 4r − 3)− 2ak−1

(
8(k − 1)2 + 16(k − 1) r + 8r2 − 8k + 5− 8r

)
+ ak−2(2k + 2r − 3) (2k − 7 + 2r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term must be 0

a1(3 + 4r) (1 + 4r)− 2a0(8r2 − 8r − 3) = 0
• Solve for the dependent coefficient(s)

a1 = 2a0
(
8r2−8r−3

)
16r2+16r+3

• Each term in the series must be 0, giving the recursion relation
4(4ak + ak−2 − 4ak−1) k2 + 4(2(4ak + ak−2 − 4ak−1) r − 4ak − 5ak−2 + 12ak−1) k + 4(4ak + ak−2 − 4ak−1) r2 + 4(−4ak − 5ak−2 + 12ak−1) r + 3ak + 21ak−2 − 26ak−1 = 0

• Shift index using k− >k + 2
4(4ak+2 + ak − 4ak+1) (k + 2)2 + 4(2(4ak+2 + ak − 4ak+1) r − 4ak+2 − 5ak + 12ak+1) (k + 2) + 4(4ak+2 + ak − 4ak+1) r2 + 4(−4ak+2 − 5ak + 12ak+1) r + 3ak+2 + 21ak − 26ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4k2ak−16k2ak+1+8krak−32krak+1+4r2ak−16r2ak+1−4kak−16kak+1−4rak−16rak+1−3ak+6ak+1

16k2+32kr+16r2+48k+48r+35

• Recursion relation for r = 1
4

ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15
4 ak+ak+1

16k2+56k+48

• Solution for r = 1
4[

y(u) =
∞∑
k=0

aku
k+ 1

4 , ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15
4 ak+ak+1

16k2+56k+48 , a1 = −9a0
8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
1
4 , ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15

4 ak+ak+1
16k2+56k+48 , a1 = −9a0

8

]
• Recursion relation for r = 3

4

ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15
4 ak−15ak+1

16k2+72k+80

• Solution for r = 3
4[

y(u) =
∞∑
k=0

aku
k+ 3

4 , ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15
4 ak−15ak+1

16k2+72k+80 , a1 = −3a0
8

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
3
4 , ak+2 = −4k2ak−16k2ak+1+2kak−40kak+1− 15

4 ak−15ak+1
16k2+72k+80 , a1 = −3a0

8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k+
1
4

)
+
(

∞∑
k=0

bk(x+ 1)k+
3
4

)
, ak+2 = −4k2ak−16k2ak+1−2kak−24kak+1− 15

4 ak+ak+1
16k2+56k+48 , a1 = −9a0

8 , bk+2 = −4k2bk−16k2bk+1+2kbk−40kbk+1− 15
4 bk−15bk+1

16k2+72k+80 , b1 = −3b0
8

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 24� �
dsolve(4*diff(diff(y(x),x),x)+3*(-x^2+2)/(-x^2+1)^2*y(x) = 0,

y(x),singsol=all)� �
y = c1

(
x2 − 1

)3/4 + c2
(
x2 − 1

)1/4
x

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 51� �
DSolve[{4*D[y[x],{x,2}]+3*(2-x^2)/(1-x^2)^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
√
x2 − 1

c2Q
1
2
1
2
(x) +

√
2
π
c1x

4
√
1− x2
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2.1.697 problem 714

Solved as second order ode using Kovacic algorithm . . . . . . . . .4693
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4698
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4699
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4699
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4700

Internal problem ID [9545]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 714
Date solved : Thursday, December 12, 2024 at 10:13:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ − 2u′

x
− a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as

u′′ − 2u′

x
− a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = −2
x

(3)

C = −a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1329: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + a2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 1

a x2 − 1
2a3x4 + 1

2a5x6 − 5
8a7x8 + 7

8a9x10 − 21
16a11x12 + 33

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= a2x2 + 2
x2

= Q+ R

x2

=
(
a2
)
+
(

2
x2

)
= 2

x2 + a2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (a)

= −1
x
− a

= −ax− 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− a

)
(1) +

((
1
x2

)
+
(
−1
x
− a

)2

−
(
a2x2 + 2

x2

))
= 0

2aa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

a

)
e
∫ (

− 1
x
−a
)
dx

=
(
x+ 1

a

)
e−ax−ln(x)

= (ax+ 1) e−ax

ax

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
− 2

x
1 dx

= z1e
ln(x)

= z1(x)

Which simplifies to

u1 =
(ax+ 1) e−ax

a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−− 2

x
1 dx

(u1)2
dx

= u1

∫
e2 ln(x)

(u1)2
dx

= u1

(
(ax− 1) e2ax
2a (ax+ 1)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax+ 1) e−ax

a

)
+ c2

(
(ax+ 1) e−ax

a

(
(ax− 1) e2ax
2a (ax+ 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2u(x)−
2
(

d
dx

u(x)
)

x
− a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

−a2u(x)x+
(

d2

dx2u(x)
)
x− 2 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + a1(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {0, 3}
• Each term must be 0

a1(1 + r) (−2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k − 2 + r)− a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + r − 1)− a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = a2ak

(k+2)(k−1)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k−1) ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = a2ak

(k+5)(k+2)

• Solution for r = 3[
u(x) =

∞∑
k=0

akx
k+3, ak+2 = a2ak

(k+5)(k+2) , 4a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k

)
+
(

∞∑
k=0

ckx
k+3
)
, bk+2 = a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = a2ck
(5+k)(k+2) , 4c1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 28� �
dsolve(diff(diff(u(x),x),x)-2/x*diff(u(x),x)-a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1eax(ax− 1) + c2e−ax(ax+ 1)
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Mathematica DSolve solution

Solving time : 0.147 (sec)
Leaf size : 68� �
DSolve[{D[u[x],{x,2}]-2/x*D[u[x],x]-a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �

u(x) →

√
2
π

√
x((iac2x+ c1) sinh(ax)− (ac1x+ ic2) cosh(ax))

a
√
−iax
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2.1.698 problem 715

Solved as second order ode using Kovacic algorithm . . . . . . . . .4701
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4703
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4705
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4705
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4705

Internal problem ID [9546]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 715
Date solved : Thursday, December 12, 2024 at 10:13:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 2u′

x
− a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.146 (sec)

Writing the ode as

u′′ + 2u′

x
− a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 2
x

(3)

C = −a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2

1 (6)

Comparing the above to (5) shows that

s = a2

t = 1
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Therefore eq. (4) becomes

z′′(x) =
(
a2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1331: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = a2 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
a2 x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

2
x
1 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

u1 =
ecsgn(a)ax

x
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The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

2
x
1 dx

(u1)2
dx

= u1

∫
e−2 ln(x)

(u1)2
dx

= u1

(
− e−2 csgn(a)ax

2 csgn (a) a

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
ecsgn(a)ax

x

)
+ c2

(
ecsgn(a)ax

x

(
− e−2 csgn(a)ax

2 csgn (a) a

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

d2

dx2u(x) +
2
(

d
dx

u(x)
)

x
− a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

−a2u(x)x+
(

d2

dx2u(x)
)
x+ 2 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r)− a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− a2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = a2ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = a2ak

(k+1)(k+2)

• Solution for r = −1[
u(x) =

∞∑
k=0

akx
k−1, ak+2 = a2ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = a2ak

(k+2)(k+3)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−1
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = a2bk

(k+1)(k+2) , 0 = 0, ck+2 = a2ck
(k+2)(k+3) , 2c1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(diff(diff(u(x),x),x)+2/x*diff(u(x),x)-a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1 sinh (ax) + c2 cosh (ax)

x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 35� �
DSolve[{D[u[x],{x,2}]+2/x*D[u[x],x]-a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) → 2ac1e−ax + c2e

ax

2ax
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2.1.699 problem 716

Solved as second order ode using Kovacic algorithm . . . . . . . . .4706
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4708
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4710
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4710
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4710

Internal problem ID [9547]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 716
Date solved : Thursday, December 12, 2024 at 10:13:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 2u′

x
+ a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.159 (sec)

Writing the ode as

u′′ + 2u′

x
+ a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 2
x

(3)

C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2

1 (6)

Comparing the above to (5) shows that

s = −a2

t = 1
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Therefore eq. (4) becomes

z′′(x) =
(
−a2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1333: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −a2 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
−a2 x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

2
x
1 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

u1 =
e
√
−a2 x

x
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The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

2
x
1 dx

(u1)2
dx

= u1

∫
e−2 ln(x)

(u1)2
dx

= u1

(√
−a2 e−2

√
−a2 x

2a2

)

Therefore the solution is

u = c1u1 + c2u2

= c1

(
e
√
−a2 x

x

)
+ c2

(
e
√
−a2 x

x

(√
−a2 e−2

√
−a2 x

2a2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

d2

dx2u(x) +
2
(

d
dx

u(x)
)

x
+ a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

a2u(x)x+
(

d2

dx2u(x)
)
x+ 2 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + a2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + a2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − a2ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − a2ak

(k+1)(k+2)

• Solution for r = −1[
u(x) =

∞∑
k=0

akx
k−1, ak+2 = − a2ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − a2ak

(k+2)(k+3)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = − a2ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−1
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = − a2bk

(k+1)(k+2) , 0 = 0, ck+2 = − a2ck
(k+2)(k+3) , 2c1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 21� �
dsolve(diff(diff(u(x),x),x)+2/x*diff(u(x),x)+a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1 sin (ax) + c2 cos (ax)

x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 42� �
DSolve[{D[u[x],{x,2}]+2/x*D[u[x],x]+a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) →

e−iax
(
2c1 − ic2e2iax

a

)
2x
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2.1.700 problem 717

Solved as second order ode using Kovacic algorithm . . . . . . . . .4711
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4716
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4717
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4717
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4718

Internal problem ID [9548]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 717
Date solved : Thursday, December 12, 2024 at 10:13:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 4u′

x
− a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.329 (sec)

Writing the ode as

u′′ + 4u′

x
− a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 4
x

(3)

C = −a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1335: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + a2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 1

a x2 − 1
2a3x4 + 1

2a5x6 − 5
8a7x8 + 7

8a9x10 − 21
16a11x12 + 33

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= a2x2 + 2
x2

= Q+ R

x2

=
(
a2
)
+
(

2
x2

)
= 2

x2 + a2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (a)

= −1
x
− a

= −ax− 1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− a

)
(1) +

((
1
x2

)
+
(
−1
x
− a

)2

−
(
a2x2 + 2

x2

))
= 0

2aa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

a

)
e
∫ (

− 1
x
−a
)
dx

=
(
x+ 1

a

)
e−ax−ln(x)

= (ax+ 1) e−ax

ax

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

4
x
1 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

u1 =
(ax+ 1) e−ax

x3a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

4
x
1 dx

(u1)2
dx

= u1

∫
e−4 ln(x)

(u1)2
dx

= u1

(
(ax− 1) e2ax
2a (ax+ 1)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax+ 1) e−ax

x3a

)
+ c2

(
(ax+ 1) e−ax

x3a

(
(ax− 1) e2ax
2a (ax+ 1)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2u(x) +
4
(

d
dx

u(x)
)

x
− a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = −a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

−a2u(x)x+
(

d2

dx2u(x)
)
x+ 4 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r)− a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−3, 0}
• Each term must be 0

a1(1 + r) (4 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 4 + r)− a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 5 + r)− a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = a2ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = a2ak

(k−1)(k+2)

• Solution for r = −3[
u(x) =

∞∑
k=0

akx
k−3, ak+2 = a2ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = a2ak

(k+2)(k+5)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = a2ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−3
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = a2ck
(5+k)(k+2) , 4c1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 32� �
dsolve(diff(diff(u(x),x),x)+4/x*diff(u(x),x)-a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = c1eax(ax− 1) + c2e−ax(ax+ 1)

x3
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Mathematica DSolve solution

Solving time : 0.143 (sec)
Leaf size : 68� �
DSolve[{D[u[x],{x,2}]+4/x*D[u[x],x]-a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �

u(x) →

√
2
π
((iac2x+ c1) sinh(ax)− (ac1x+ ic2) cosh(ax))

ax5/2
√
−iax
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2.1.701 problem 718

Solved as second order ode using Kovacic algorithm . . . . . . . . .4719
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4724
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4725
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4725
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4726

Internal problem ID [9549]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 718
Date solved : Thursday, December 12, 2024 at 10:13:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ + 4u′

x
+ a2u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.361 (sec)

Writing the ode as

u′′ + 4u′

x
+ a2u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 4
x

(3)

C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −a2x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−a2x2 + 2

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1337: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 − a2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ia− i

a x2 − i

2a3x4 − i

2a5x6 − 5i
8a7x8 − 7i

8a9x10 − 21i
16a11x12 − 33i

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = ia

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= ia (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −a2x2 + 2
x2

= Q+ R

x2

=
(
−a2

)
+
(

2
x2

)
= 2

x2 − a2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = ia

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
ia

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
ia

− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −a2x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 ia 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (ia)

= −1
x
− ia

= −1
x
− ia

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− ia

)
(1) +

((
1
x2

)
+
(
−1
x
− ia

)2

−
(
−a2x2 + 2

x2

))
= 0

2iaa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = − i

a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

a

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− i

a

)
e
∫ (

− 1
x
−ia

)
dx

=
(
x− i

a

)
e− ln(x)−iax

= (ax− i) e−iax

xa

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

4
x
1 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

u1 =
(ax− i) e−iax

x3a

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−

4
x
1 dx

(u1)2
dx

= u1

∫
e−4 ln(x)

(u1)2
dx

= u1

(
(iax− 1) e2iax
2a (−ax+ i)

)
Therefore the solution is

u = c1u1 + c2u2

= c1

(
(ax− i) e−iax

x3a

)
+ c2

(
(ax− i) e−iax

x3a

(
(iax− 1) e2iax
2a (−ax+ i)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2u(x) +
4
(

d
dx

u(x)
)

x
+ a2u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = a2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

a2u(x)x+
(

d2

dx2u(x)
)
x+ 4 d

dx
u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · u(x) to series expansion

x · u(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · u(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
u(x) to series expansion

d
dx
u(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
u(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2u(x)
)

to series expansion

x ·
(

d2

dx2u(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2u(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 4 + r) + a2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−3, 0}
• Each term must be 0

a1(1 + r) (4 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k + 4 + r) + a2ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 5 + r) + a2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − a2ak
(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = − a2ak

(k−1)(k+2)

• Solution for r = −3[
u(x) =

∞∑
k=0

akx
k−3, ak+2 = − a2ak

(k−1)(k+2) ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = − a2ak

(k+2)(k+5)

• Solution for r = 0[
u(x) =

∞∑
k=0

akx
k, ak+2 = − a2ak

(k+2)(k+5) , 4a1 = 0
]

• Combine solutions and rename parameters[
u(x) =

(
∞∑
k=0

bkx
k−3
)
+
(

∞∑
k=0

ckx
k

)
, bk+2 = − a2bk

(k+2)(k−1) ,−2b1 = 0, ck+2 = − a2ck
(5+k)(k+2) , 4c1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.050 (sec)
Leaf size : 33� �
dsolve(diff(diff(u(x),x),x)+4/x*diff(u(x),x)+a^2*u(x) = 0,

u(x),singsol=all)� �
u(x) = (ac1x+ c2) cos (ax) + sin (ax) (ac2x− c1)

x3
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Mathematica DSolve solution

Solving time : 0.13 (sec)
Leaf size : 57� �
DSolve[{D[u[x],{x,2}]+4/x*D[u[x],x]+a^2*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �

u(x) → −

√
2
π
((ac1x+ c2) cos(ax) + (ac2x− c1) sin(ax))

x3/2(ax)3/2
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2.1.702 problem 719

Solved as second order ode using Kovacic algorithm . . . . . . . . .4727
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4732
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4733
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4733
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4734

Internal problem ID [9550]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 719
Date solved : Thursday, December 12, 2024 at 10:13:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − a2y = 6y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.341 (sec)

Writing the ode as

y′′ +
(
−a2 − 6

x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −a2 − 6
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = a2x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = a2x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
a2x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1339: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = a2 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ a+ 3

a x2 − 9
2a3x4 + 27

2a5x6 − 405
8a7x8 + 1701

8a9x10 − 15309
16a11x12 + 72171

16a13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= a (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= a2x2 + 6
x2

= Q+ R

x2

=
(
a2
)
+
(

6
x2

)
= a2 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
a
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
a
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = a2x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 a 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (a)

= −2
x
− a

= −ax− 2
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− a

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− a

)2

−
(
a2x2 + 6

x2

))
= 0

2axa1 + 4aa0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

3
a2

, a1 =
3
a

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 3x
a

+ 3
a2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 3x

a
+ 3

a2

)
e
∫ (

− 2
x
−a
)
dx

=
(
x2 + 3x

a
+ 3

a2

)
e−ax−2 ln(x)

= (a2x2 + 3ax+ 3) e−ax

a2x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (a2x2 + 3ax+ 3) e−ax

a2x2

Which simplifies to

y1 =
(a2x2 + 3ax+ 3) e−ax

a2x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (a2x2 + 3ax+ 3) e−ax

a2x2

∫ 1
(a2x2+3ax+3)2e−2ax

a4x4

dx

= (a2x2 + 3ax+ 3) e−ax

a2x2

(
(a2x2 − 3ax+ 3) e2ax
2a (a2x2 + 3ax+ 3)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(a2x2 + 3ax+ 3) e−ax

a2x2

)
+ c2

(
(a2x2 + 3ax+ 3) e−ax

a2x2

(
(a2x2 − 3ax+ 3) e2ax
2a (a2x2 + 3ax+ 3)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x)− a2y(x) = 6y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
a2x2+6

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
(
a2x2+6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = −a2x2+6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (−a2x2 − 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3)− ak−2a
2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 3)− ak−2a

2 = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r − 1)− aka
2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = aka

2

(k+4+r)(k+r−1)

• Recursion relation for r = −2
ak+2 = aka

2

(k+2)(k−3)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = aka

2

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = aka

2

(k+7)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = aka

2

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

bkx
k−2
)
+
(

∞∑
k=0

ckx
k+3
)
, bk+2 = bka

2

(k+2)(k−3) , b1 = 0, ck+2 = cka
2

(k+7)(k+2) , c1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 48� �
dsolve(diff(diff(y(x),x),x)-a^2*y(x) = 6/x^2*y(x),

y(x),singsol=all)� �
y = c2(a2x2 + 3ax+ 3) e−ax + c1eax(a2x2 − 3ax+ 3)

x2
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Mathematica DSolve solution

Solving time : 0.199 (sec)
Leaf size : 90� �
DSolve[{D[y[x],{x,2}]-a^2*y[x]==6*y[x]/x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
2
π
((a2c2x2 − 3iac1x+ 3c2) cosh(ax) + i(c1(a2x2 + 3) + 3iac2x) sinh(ax))

a2x3/2
√
−iax
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2.1.703 problem 720

Solved as second order ode using Kovacic algorithm . . . . . . . . .4735
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4740
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4741
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4741
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4742

Internal problem ID [9551]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 720
Date solved : Thursday, December 12, 2024 at 10:13:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + n2y = 6y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.443 (sec)

Writing the ode as

y′′ +
(
n2 − 6

x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = n2 − 6
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −n2x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −n2x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−n2x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1341: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −n2 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ in− 3i

n x2 − 9i
2n3x4 − 27i

2n5x6 − 405i
8n7x8 − 1701i

8n9x10 − 15309i
16n11x12 − 72171i

16n13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = in

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= in (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −n2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −n2x2 + 6
x2

= Q+ R

x2

=
(
−n2)+ ( 6

x2

)
= −n2 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = in

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
in

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
in

− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −n2x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 in 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (in)

= −2
x
− in

= −2
x
− in

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− in

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− in

)2

−
(
−n2x2 + 6

x2

))
= 0

(2ina1 − 6)x+ 4ina0 − 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = − 3

n2 , a1 = −3i
n

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix
n

− 3
n2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix

n
− 3

n2

)
e
∫ (

− 2
x
−in

)
dx

=
(
x2 − 3ix

n
− 3

n2

)
e−2 ln(x)−inx

= (n2x2 − 3inx− 3) e−inx

x2n2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (n2x2 − 3inx− 3) e−inx

x2n2

Which simplifies to

y1 =
(n2x2 − 3inx− 3) e−inx

x2n2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (n2x2 − 3inx− 3) e−inx

x2n2

∫ 1
(n2x2−3inx−3)2e−2inx

x4n4

dx

= (n2x2 − 3inx− 3) e−inx

x2n2

(
(in2x2 − 3nx− 3i) e2inx
2n (−n2x2 + 3inx+ 3)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(n2x2 − 3inx− 3) e−inx

x2n2

)
+c2

(
(n2x2 − 3inx− 3) e−inx

x2n2

(
(in2x2 − 3nx− 3i) e2inx
2n (−n2x2 + 3inx+ 3)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + n2y(x) = 6y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
n2x2−6

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
n2x2−6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = n2x2−6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (n2x2 − 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3) + ak−2n
2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 3) + ak−2n

2 = 0
• Shift index using k− >k + 2

ak+2(k + 4 + r) (k + r − 1) + akn
2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = − akn

2

(k+4+r)(k+r−1)

• Recursion relation for r = −2
ak+2 = − akn

2

(k+2)(k−3)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − akn

2

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = − akn

2

(k+7)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = − akn

2

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = − akn

2

(k+2)(k−3) , a1 = 0, bk+2 = − bkn
2

(k+7)(k+2) , b1 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 53� �
dsolve(diff(diff(y(x),x),x)+n^2*y(x) = 6/x^2*y(x),

y(x),singsol=all)� �
y = (c1n2x2 + 3c2nx− 3c1) cos (nx) + sin (nx) (c2n2x2 − 3c1nx− 3c2)

x2
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Mathematica DSolve solution

Solving time : 0.201 (sec)
Leaf size : 79� �
DSolve[{D[y[x],{x,2}]+n^2*y[x]==6*y[x]/x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π

√
x((c2(−n2)x2 + 3c1nx+ 3c2) cos(nx) + (c1(n2x2 − 3) + 3c2nx) sin(nx))

(nx)5/2
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2.1.704 problem 721

Solved as second order ode using Kovacic algorithm . . . . . . . . .4743
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4745
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4747
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4747
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4747

Internal problem ID [9552]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 721
Date solved : Thursday, December 12, 2024 at 10:13:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ −
(
x2 + 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.123 (sec)

Writing the ode as

x2y′′ + xy′ +
(
−x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = −x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1
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Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1343: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
e−x

√
x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

√
x

)
+ c2

(
e−x

√
x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
−
(
x2 + 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
4x2+1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

−
(
4x2+1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = −4x2+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (−4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1)− 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
− 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4ak

4k2+12k+8 , a1 = 0, bk+2 = 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x-(x^2+1/4)*y(x) = 0,

y(x),singsol=all)� �
y = c1 sinh (x) + c2 cosh (x)√

x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 32� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]-(x^2+1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2e2x + 2c1)

2
√
x
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2.1.705 problem 722

Solved as second order ode using Kovacic algorithm . . . . . . . . .4748
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4753
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4754
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4754
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4754

Internal problem ID [9553]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 722
Date solved : Thursday, December 12, 2024 at 10:13:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ + (−9a2 + 4x2) y
4a2 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.364 (sec)

Writing the ode as

x2y′′ + xy′ +
(
−9
4 + x2

a2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = −9
4 + x2

a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2a2 − x2

x2a2
(6)

Comparing the above to (5) shows that

s = 2a2 − x2

t = x2a2
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Therefore eq. (4) becomes

z′′(x) =
(
2a2 − x2

x2a2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1345: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2a2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
a2

+ 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ −33ia13

16x14 − 21ia11
16x12 − 7ia9

8x10 − 5ia7
8x8 − ia5

2x6 − ia3

2x4 − ia

x2 + i

a
+ . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

a

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i

a
(10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = − 1

a2

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 2a2 − x2

x2a2

= Q+ R

x2a2

=
(
− 1
a2

)
+
(

2
x2

)
= − 1

a2
+ 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

a

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
a

− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

i
a

− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2a2 − x2

x2a2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i
a

0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
i

a

)
= −1

x
− i

a

= −ix+ a

xa

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

a

)
(1) +

((
1
x2

)
+
(
−1
x
− i

a

)2

−
(
2a2 − x2

x2a2

))
= 0

2ia0 − 2a
xa

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −ia}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −ia+ x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−ia+ x) e
∫ (

− 1
x
− i

a

)
dx

= (−ia+ x) e− ln(x)− ix
a

= (−ia+ x) e− ix
a

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(−ia+ x) e− ix

a

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
−(ix+ a) a(ia+ x) e 2ix

a

2 (ia− x)2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−ia+ x) e− ix

a

x3/2

)
+ c2

(
(−ia+ x) e− ix

a

x3/2

(
−(ix+ a) a(ia+ x) e 2ix

a

2 (ia− x)2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
−9a2+4x2)y(x)

4a2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
9a2−4x2)y(x)

4a2x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

−
(
9a2−4x2)y(x)

4a2x2 = 0
• Multiply by denominators of the ODE

4
(

d2

dx2y(x)
)
x2a2 + 4

(
d
dx
y(x)

)
x a2 − (9a2 − 4x2) y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

4
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
x2a2 + 4

(
d
dt
y(t)

)
a2 − (9a2 − 4x2) y(t) = 0

• Simplify

4a2
(

d2

dt2
y(t)

)
− 9y(t) a2 + 4y(t)x2 = 0

• Isolate 2nd derivative
d2

dt2
y(t) =

(
9a2−4x2)y(t)

4a2

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

(
9a2−4x2)y(t)

4a2 = 0
• Characteristic polynomial of ODE

r2 − 9a2−4x2

4a2 = 0
• Factor the characteristic polynomial

4r2a2−9a2+4x2

4a2 = 0
• Roots of the characteristic polynomial

r =
(√

9a2−4x2

2a ,−
√
9a2−4x2

2a

)
• 1st solution of the ODE

y1(t) = e
√

9a2−4x2 t
2a

• 2nd solution of the ODE

y2(t) = e−
√

9a2−4x2 t
2a

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)
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• Substitute in solutions

y(t) = C1 e
√

9a2−4x2 t
2a + C2 e−

√
9a2−4x2 t

2a

• Change variables back using t = ln (x)

y(x) = C1 e
√

9a2−4x2 ln(x)
2a + C2 e−

√
9a2−4x2 ln(x)

2a

• Simplify

y(x) = C1 x
√

9a2−4x2
2a + C2 x−

√
9a2−4x2

2a

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.131 (sec)
Leaf size : 37� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+1/4*(-9*a^2+4*x^2)/a^2*y(x) = 0,

y(x),singsol=all)� �
y = (ix+ a) c2e−

ix
a + (−ix+ a) c1e

ix
a

x3/2

Mathematica DSolve solution

Solving time : 0.137 (sec)
Leaf size : 62� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(4*x^2-9*a^2)/(4*a^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π

(
(ac2 + c1x) cos

(
x
a

)
+ (c2x− ac1) sin

(
x
a

))
x
√

x
a
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2.1.706 problem 723

Solved as second order ode using Kovacic algorithm . . . . . . . . .4755
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4760
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4761
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4761
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4762

Internal problem ID [9554]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 723
Date solved : Thursday, December 12, 2024 at 10:13:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.330 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 25

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 25
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1347: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− 3i

x2 − 9i
2x4 − 27i

2x6 − 405i
8x8 − 1701i

8x10 − 15309i
16x12 − 72171i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 6
x2

= Q+ R

x2

= (−1) +
(

6
x2

)
= −1 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (i)

= −2
x
− i

= −2
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− i

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− i

)2

−
(
−x2 + 6

x2

))
= 0

2ixa1 + 4ia0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3, a1 = −3i}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix− 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix− 3

)
e
∫ (

− 2
x
−i
)
dx

=
(
x2 − 3ix− 3

)
e−2 ln(x)−ix

= (x2 − 3ix− 3) e−ix

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x2 − 3ix− 3) e−ix

x5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 3ix− 3) e−ix

x5/2

)
+ c2

(
(x2 − 3ix− 3) e−ix

x5/2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 25

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−25

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−25

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−25

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −25
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 25) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−5 + 2r)xr + a1(7 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
5
2

}
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• Each term must be 0
a1(7 + 2r) (−3 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2(2k + 9 + 2r) (2k − 1 + 2r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(2k+9+2r)(2k−1+2r)

• Recursion relation for r = −5
2

ak+2 = − 4ak
(2k+4)(2k−6)

• Solution for r = −5
2[

y(x) =
∞∑
k=0

akx
k− 5

2 , ak+2 = − 4ak
(2k+4)(2k−6) , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − 4ak
(2k+14)(2k+4)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − 4ak
(2k+14)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − 4ak

(2k+4)(2k−6) , a1 = 0, bk+2 = − 4bk
(2k+14)(2k+4) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.076 (sec)
Leaf size : 43� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-25/4)*y(x) = 0,

y(x),singsol=all)� �
y =

−3c2
(
ix− 1

3x
2 + 1

)
e−ix + 3c1eix

(
ix+ 1

3x
2 − 1

)
x5/2
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Mathematica DSolve solution

Solving time : 0.138 (sec)
Leaf size : 59� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-25/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π
((−c2x

2 + 3c1x+ 3c2) cos(x) + (c1(x2 − 3) + 3c2x) sin(x))
x5/2
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2.1.707 problem 724

Solved as second order ode using Kovacic algorithm . . . . . . . . .4763
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4768
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4769
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4769
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4770

Internal problem ID [9555]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 724
Date solved : Thursday, December 12, 2024 at 10:13:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + qy′ = 2y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.314 (sec)

Writing the ode as

y′′ + qy′ − 2y
x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = q (3)

C = − 2
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = q2x2 + 8
4x2 (6)

Comparing the above to (5) shows that

s = q2x2 + 8
t = 4x2



chapter 2. book solved problems 4764

Therefore eq. (4) becomes

z′′(x) =
(
q2x2 + 8

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1349: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = q2

4 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ q

2 + 2
q x2 − 4

q3x4 + 16
q5x6 − 80

q7x8 + 448
q9x10 − 2688

q11x12 + 16896
q13x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = q

2
From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= q

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = q2

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= q2x2 + 8
4x2

= Q+ R

4x2

=
(
q2

4

)
+
(

2
x2

)
= q2

4 + 2
x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = q

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
q
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

q
2
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = q2x2 + 8
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 q
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(q
2

)
= −1

x
− q

2
= −qx+ 2

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− q

2

)
(1) +

((
1
x2

)
+
(
−1
x
− q

2

)2

−
(
q2x2 + 8

4x2

))
= 0

qa0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

2
q

}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2
q

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 2

q

)
e
∫ (

− 1
x
− q

2
)
dx

=
(
x+ 2

q

)
e−

qx
2 −ln(x)

= (qx+ 2) e− qx
2

qx

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
q
1 dx

= z1e
− qx

2

= z1
(
e−

qx
2

)
Which simplifies to

y1 =
e−qx(qx+ 2)

qx

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− q

1 dx

(y1)2
dx

= y1

∫
e−qx

(y1)2
dx

= y1

(
(qx− 2) eqx
q (qx+ 2)

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−qx(qx+ 2)

qx

)
+ c2

(
e−qx(qx+ 2)

qx

(
(qx− 2) eqx
q (qx+ 2)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + q
(

d
dx
y(x)

)
= 2y(x)

x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −q
(

d
dx
y(x)

)
+ 2y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + q
(

d
dx
y(x)

)
− 2y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = q, P3(x) = − 2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

q
(

d
dx
y(x)

)
x2 + x2

(
d2

dx2y(x)
)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 ·

(
d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 1) (k + r − 2) + qak−1(k − 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + qak−1(k − 1 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k − 1 + r) + qak(k + r) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = − qak(k+r)

(k+2+r)(k−1+r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = − qak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = − qa0

2

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
− qx

2 + 1
)

• Recursion relation for r = 2
ak+1 = − qak(k+2)

(k+4)(k+1)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − qak(k+2)

(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
− qx

2 + 1
)
+
(

∞∑
k=0

bkx
k+2
)
, bk+1 = − qbk(k+2)

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 28� �
dsolve(diff(diff(y(x),x),x)+q*diff(y(x),x) = 2/x^2*y(x),

y(x),singsol=all)� �
y = c2(qx+ 2) e−qx + c1(qx− 2)

x
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Mathematica DSolve solution

Solving time : 0.087 (sec)
Leaf size : 80� �
DSolve[{D[y[x],{x,2}]+q*D[y[x],x]==2*y[x]/x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

qx3/2e−
qx
2
(
2(ic2qx+ 2c1) sinh

(
qx
2

)
− 2(c1qx+ 2ic2) cosh

(
qx
2

))
√
π(−iqx)5/2
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2.1.708 problem 725

Solved as second order ode using Kovacic algorithm . . . . . . . . .4771
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4775
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4777
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4777
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4777

Internal problem ID [9556]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 725
Date solved : Thursday, December 12, 2024 at 10:13:56 AM
CAS classification : [[_Emden, _Fowler]]

Solve

xy′′ + 3y′ + 4x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.323 (sec)

Writing the ode as

xy′′ + 3y′ + 4x3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1351: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ 4x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0



chapter 2. book solved problems 4776

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)
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• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − 4ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − 4bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 21� �
dsolve(x*diff(diff(y(x),x),x)+3*diff(y(x),x)+4*y(x)*x^3 = 0,

y(x),singsol=all)� �
y = c1 sin (x2) + c2 cos (x2)

x2

Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 41� �
DSolve[{x*D[y[x],{x,2}]+3*D[y[x],x]+4*x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−ix2 − ic2e

ix2

4x2
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2.1.709 problem 726

Solved as second order ode using Kovacic algorithm . . . . . . . . .4778
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4782
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4783
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4783
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4784

Internal problem ID [9557]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 726
Date solved : Thursday, December 12, 2024 at 10:13:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(2− x) y′′ + 2xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.247 (sec)

Writing the ode as (
−x3 + 2x2) y′′ + 2xy′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + 2x2

B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 − 2x)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 − 2x)2

)
z(x) (7)



chapter 2. book solved problems 4779

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1353: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (−2 + x)2

+ 3
4x2 − 3

4 (−2 + x) +
3
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 2 let b be the coefficient of 1

(−2+x)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2x + 3

2 (−2 + x) + (−) (0)

= − 1
2x + 3

2 (−2 + x)

= 1 + x

x (−2 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x + 3

2 (−2 + x)

)
(0) +

((
1
2x2 − 3

2 (−2 + x)2
)
+
(
− 1
2x + 3

2 (−2 + x)

)2

−
(

3
(x2 − 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x+

3
2(−2+x)

)
dx

= (−2 + x)3/2√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x

−x3+2x2 dx

= z1e
− ln(x)

2 + ln(−2+x)
2

= z1

(√
−2 + x√

x

)

Which simplifies to

y1 =
(−2 + x)2

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

−x3+2x2 dx

(y1)2
dx

= y1

∫
e− ln(x)+ln(−2+x)

(y1)2
dx

= y1

(
−(x− 1)x e− ln(x)+ln(−2+x)

(−2 + x)3
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(−2 + x)2

x

)
+ c2

(
(−2 + x)2

x

(
−(x− 1)x e− ln(x)+ln(−2+x)

(−2 + x)3
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(−x+ 2)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x2(x−2) +

2
(

d
dx

y(x)
)

x(x−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x(x−2) + 2y(x)
x2(x−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2
x(x−2) , P3(x) = 2

x2(x−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x− 2)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0(1 + r) (−1 + r)xr +
(

∞∑
k=1

(−2ak(k + r + 1) (k + r − 1) + ak−1(k + r − 1) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term in the series must be 0, giving the recursion relation
−2
((
−k

2 −
r
2 + 1

)
ak−1 + ak(k + r + 1)

)
(k + r − 1) = 0
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• Shift index using k− >k + 1
−2
((
−k

2 +
1
2 −

r
2

)
ak + ak+1(k + 2 + r)

)
(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r−1)ak

2(k+2+r)

• Recursion relation for r = −1 ; series terminates at k = 2
ak+1 = (k−2)ak

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− x+ 1

4x
2)

• Recursion relation for r = 1
ak+1 = kak

2(k+3)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = kak

2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− x+ 1

4x
2)+ ( ∞∑

k=0
bkx

k+1
)
, bk+1 = kbk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 19� �
dsolve(x^2*(-x+2)*diff(diff(y(x),x),x)+2*diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2(x− 1)
x
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Mathematica DSolve solution

Solving time : 0.067 (sec)
Leaf size : 24� �
DSolve[{x^2*(2-x)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 2)2 + c2(x− 1)

x
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2.1.710 problem 727

Solved as second order ode using Kovacic algorithm . . . . . . . . .4785
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4789
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4789
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4789
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4789

Internal problem ID [9558]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 727
Date solved : Thursday, December 12, 2024 at 10:13:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.311 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1355: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.07 (sec)
Leaf size : 21� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.711 problem 728

Solved as second order ode using Kovacic algorithm . . . . . . . . .4790
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4793
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4795
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4795
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4795

Internal problem ID [9559]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 728
Date solved : Thursday, December 12, 2024 at 10:13:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − 2(x+ 1) y′ + (x+ 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.167 (sec)

Writing the ode as

xy′′ + (−2x− 2) y′ + (x+ 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 2 (3)
C = x+ 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1356: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2
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Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2

x
dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x
dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1

(
x e2x+2 ln(x)e−2x

3

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x e2x+2 ln(x)e−2x

3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− 2(x+ 1)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+2)y(x)
x

+
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+ (x+2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x+1)
x

, P3(x) = x+2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2− 2x)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + (a1(1 + r) (−2 + r)− 2a0(−1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 2 + r)− 2ak(k + r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r)− 2a0(−1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r)− 2akk − 2akr + 2ak + ak−1 = 0
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• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− 2ak+1(k + 1)− 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2) , 4a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 14� �
dsolve(x*diff(diff(y(x),x),x)-2*(x+1)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = ex

(
c2x

3 + c1
)

Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 23� �
DSolve[{x*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+(x+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3e
x
(
c2x

3 + 3c1
)
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2.1.712 problem 729

Solved as second order ode using Kovacic algorithm . . . . . . . . .4796
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4800
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4801
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4802
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4802

Internal problem ID [9560]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 729
Date solved : Thursday, December 12, 2024 at 10:13:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3xy′′ − 2(3x− 1) y′ + (3x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.168 (sec)

Writing the ode as

3xy′′ + (−6x+ 2) y′ + (3x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x
B = −6x+ 2 (3)
C = 3x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
9x2 (6)

Comparing the above to (5) shows that

s = −2
t = 9x2

Therefore eq. (4) becomes

z′′(x) =
(
− 2
9x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1358: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 9x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 2

9x2
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Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 2
9x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2
3

1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α−
c1

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
3x + (−) (0)

= 1
3x

= 1
3x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
3x

)
(0) +

((
− 1
3x2

)
+
(

1
3x

)2

−
(
− 2
9x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

3xdx

= x1/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6x+2

3x dx

= z1e
x− ln(x)

3

= z1

(
ex
x1/3

)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6x+2

3x dx

(y1)2
dx

= y1

∫
e2x−

2 ln(x)
3

(y1)2
dx

= y1
(
3x e2x−

2 ln(x)
3 e−2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2
(
ex
(
3x e2x−

2 ln(x)
3 e−2x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

3
(

d2

dx2y(x)
)
x− 2(3x− 1)

(
d
dx
y(x)

)
+ (3x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3x−2)y(x)
3x +

2(3x−1)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(3x−1)

(
d
dx

y(x)
)

3x + (3x−2)y(x)
3x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(3x−1)
3x , P3(x) = 3x−2

3x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3
(

d2

dx2y(x)
)
x+ (2− 6x)

(
d
dx
y(x)

)
+ (3x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−1 + 3r)x−1+r + (a1(1 + r) (2 + 3r)− 2a0(1 + 3r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (3k + 2 + 3r)− 2ak(3k + 3r + 1) + 3ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r)− 2a0(1 + 3r) = 0

• Each term in the series must be 0, giving the recursion relation
3
(
k + 2

3 + r
)
(k + 1 + r) ak+1 − 6akk − 6akr − 2ak + 3ak−1 = 0

• Shift index using k− >k + 1
3
(
k + 5

3 + r
)
(k + 2 + r) ak+2 − 6ak+1(k + 1)− 6rak+1 − 2ak+1 + 3ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 6kak+1+6rak+1−3ak+8ak+1

(3k+5+3r)(k+2+r)

• Recursion relation for r = 0
ak+2 = 6kak+1−3ak+8ak+1

(3k+5)(k+2)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 6kak+1−3ak+8ak+1

(3k+5)(k+2) , 2a1 − 2a0 = 0
]

• Recursion relation for r = 1
3

ak+2 = 6kak+1−3ak+10ak+1
(3k+6)

(
k+ 7

3
)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+2 = 6kak+1−3ak+10ak+1
(3k+6)

(
k+ 7

3
) , 4a1 − 4a0 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = 6kak+1−3ak+8ak+1

(3k+5)(k+2) , 2a1 − 2a0 = 0, bk+2 = 6kbk+1−3bk+10bk+1
(3k+6)

(
k+ 7

3
) , 4b1 − 4b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14� �
dsolve(3*x*diff(diff(y(x),x),x)-2*(3*x-1)*diff(y(x),x)+(3*x-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex

(
c1 + c2x

1/3)
Mathematica DSolve solution

Solving time : 0.043 (sec)
Leaf size : 21� �
DSolve[{3*x*D[y[x],{x,2}]-2*(3*x-1)*D[y[x],x]+(3*x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

(
3c2 3

√
x+ c1

)
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2.1.713 problem 730

Solved as second order ode using Kovacic algorithm . . . . . . . . .4803
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4807
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4808
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4809
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4809

Internal problem ID [9561]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 730
Date solved : Thursday, December 12, 2024 at 10:14:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x+ 1) y′′ − (x− 1) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as (
x2 + x

)
y′′ + (1− x) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + x

B = 1− x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 10x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −x2 − 10x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−x2 − 10x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1360: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x+ 1 − 2

x
− 1

4x2 + 2
(x+ 1)2

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 10x− 1

4 (x2 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 10x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1
0 2 0 1

2
1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
x+ 1 + 1

2x + (−) (0)

= − 1
x+ 1 + 1

2x
= − x− 1

2x (x+ 1)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x+ 1 + 1

2x

)
(1) +

((
1

(x+ 1)2
− 1

2x2

)
+
(
− 1
x+ 1 + 1

2x

)2

−
(
−x2 − 10x− 1
4 (x2 + x)2

))
= 0

1 + a0
x (x+ 1) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− 1) e
∫ (

− 1
x+1+

1
2x

)
dx

= (x− 1) e− ln(x+1)+ ln(x)
2

= (x− 1)
√
x

x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−x
x2+x

dx

= z1e
ln(x+1)− ln(x)

2

= z1

(
x+ 1√

x

)

Which simplifies to
y1 = x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−x

x2+x
dx

(y1)2
dx

= y1

∫
e2 ln(x+1)−ln(x)

(y1)2
dx

= y1

(
− 4
x− 1 + ln (x)

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x− 1) + c2

(
x− 1

(
− 4
x− 1 + ln (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x+ 1)
(

d2

dx2y(x)
)
− (x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
x(x+1) +

(x−1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−1)

(
d
dx

y(x)
)

x(x+1) + y(x)
x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x−1
x(x+1) , P3(x) = 1

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)
(

d2

dx2y(x)
)
+ (1− x)

(
d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (2− u)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)2

(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1

ak+1 = ak(k−1)2
(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 1[

y(x) = a0
(
−x

2 +
1
2

)]
• Recursion relation for r = 3

ak+1 = ak(k+2)2
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = ak(k+2)2

(k+4)(k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+3 , ak+1 = ak(k+2)2
(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0
(
−x

2 +
1
2

)
+
(

∞∑
k=0

bk(x+ 1)k+3
)
, bk+1 = bk(k+2)2

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 20� �
dsolve(x*(x+1)*diff(diff(y(x),x),x)-(x-1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2(x− 1) ln (x)− 4c2 + c1(x− 1)

Mathematica DSolve solution

Solving time : 0.073 (sec)
Leaf size : 23� �
DSolve[{x*(x+1)*D[y[x],{x,2}]-(x-1)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 1) + c2((x− 1) log(x)− 4)
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2.1.714 problem 731

Solved as second order ode using Kovacic algorithm . . . . . . . . .4810
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4814
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4815
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4816
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4816

Internal problem ID [9562]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 731
Date solved : Thursday, December 12, 2024 at 10:14:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 2x

)
y′′ − 2(x+ 1) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (−2x− 2) y′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = −2x− 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1362: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x+ 2) −

3
4x + 3

4x2 + 3
4 (x+ 2)2

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
2 −1

2

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x+ 2) +

3
2x + (−) (0)

= − 1
2 (x+ 2) +

3
2x

= x+ 3
x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x+ 2) +

3
2x

)
(0) +

((
1

2 (x+ 2)2
− 3

2x2

)
+
(
− 1
2 (x+ 2) +

3
2x

)2

−
(

3
(x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x+2)+

3
2x

)
dx

= x3/2
√
x+ 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2
x2+2x dx

= z1e
ln(x(x+2))

2

= z1
(√

x (x+ 2)
)

Which simplifies to

y1 =
√

x (x+ 2)x3/2
√
x+ 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x2+2x dx

(y1)2
dx

= y1

∫
eln(x(x+2))

(y1)2
dx

= y1

(
− 1
x2 − 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (x+ 2)x3/2
√
x+ 2

)
+ c2

(√
x (x+ 2)x3/2
√
x+ 2

(
− 1
x2 − 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 + 2x)
(

d2

dx2y(x)
)
− 2(x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x(x+2) +

2(x+1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x(x+2) + 2y(x)
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2(x+1)
x(x+2) , P3(x) = 2

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (−2− 2x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2− 2u)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 2)) (k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 2[
y(x) = a0x2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0x2

4 +
(

∞∑
k=0

bk(x+ 2)k+2
)
, bk+1 = kbk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve((x^2+2*x)*diff(diff(y(x),x),x)-2*(x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2x+ c2

Mathematica DSolve solution

Solving time : 0.055 (sec)
Leaf size : 19� �
DSolve[{(x^2+2*x)*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x

2 − c2(x+ 1)
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2.1.715 problem 732

Solved as second order ode using Kovacic algorithm . . . . . . . . .4817
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4821
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4822
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4823
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4823

Internal problem ID [9563]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 732
Date solved : Thursday, December 12, 2024 at 10:14:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 2x

)
y′′ − 2(x+ 1) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.249 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (−2x− 2) y′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = −2x− 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 3

t =
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

3
(x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1364: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x+ 2)2

+ 3
4 (x+ 2) +

3
4x2 − 3

4x

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 3
(x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
2 −1

2

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x+ 2) +

3
2x + (−) (0)

= − 1
2 (x+ 2) +

3
2x

= x+ 3
x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x+ 2) +

3
2x

)
(0) +

((
1

2 (x+ 2)2
− 3

2x2

)
+
(
− 1
2 (x+ 2) +

3
2x

)2

−
(

3
(x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x+2)+

3
2x

)
dx

= x3/2
√
x+ 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2
x2+2x dx

= z1e
ln(x(x+2))

2

= z1
(√

x (x+ 2)
)

Which simplifies to

y1 =
√

x (x+ 2)x3/2
√
x+ 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x2+2x dx

(y1)2
dx

= y1

∫
eln(x(x+2))

(y1)2
dx

= y1

(
− 1
x2 − 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (x+ 2)x3/2
√
x+ 2

)
+ c2

(√
x (x+ 2)x3/2
√
x+ 2

(
− 1
x2 − 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x2 + 2x)
(

d2

dx2y(x)
)
− 2(x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x(x+2) +

2(x+1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x(x+2) + 2y(x)
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2(x+1)
x(x+2) , P3(x) = 2

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (−2− 2x)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2− 2u)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

((−2k − 2r − 2) ak+1 + ak(k + r − 2)) (k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−2)
2(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k−2)

2(k+1)

• Apply recursion relation for k = 0
a1 = −a0

• Apply recursion relation for k = 1
a2 = −a1

4

• Express in terms of a0
a2 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u+ 1

4u
2)

• Revert the change of variables u = x+ 2[
y(x) = a0x2

4

]
• Recursion relation for r = 2

ak+1 = akk
2(k+3)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = akk

2(k+3)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+2 , ak+1 = akk
2(k+3)

]
• Combine solutions and rename parameters[

y(x) = a0x2

4 +
(

∞∑
k=0

bk(x+ 2)k+2
)
, bk+1 = kbk

2(k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve((x^2+2*x)*diff(diff(y(x),x),x)-2*(x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 + c2x+ c2

Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 19� �
DSolve[{(x^2+2*x)*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x

2 − c2(x+ 1)
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2.1.716 problem 733

Solved as second order ode using Kovacic algorithm . . . . . . . . .4824
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4828
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4828
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4828
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4828

Internal problem ID [9564]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 733
Date solved : Thursday, December 12, 2024 at 10:14:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.307 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1366: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.064 (sec)
Leaf size : 21� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.717 problem 734

Solved as second order ode using Kovacic algorithm . . . . . . . . .4829
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4833
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4833
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4833
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4833

Internal problem ID [9565]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 734
Date solved : Thursday, December 12, 2024 at 10:14:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.304 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)



chapter 2. book solved problems 4830

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1367: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.058 (sec)
Leaf size : 21� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.718 problem 735

Solved as second order ode using Kovacic algorithm . . . . . . . . .4834
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4836
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4837
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4837
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4837

Internal problem ID [9566]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 735
Date solved : Thursday, December 12, 2024 at 10:14:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.094 (sec)

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1368: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2
)
+ c2

(
ex2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 4x
(

d
dx
y(x)

)
+ (4x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.032 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

2(c2x+ c1)



chapter 2. book solved problems 4838

2.1.719 problem 736

Solved as second order ode using Kovacic algorithm . . . . . . . . .4838
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4840
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4841
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4841
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4841

Internal problem ID [9567]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 736
Date solved : Thursday, December 12, 2024 at 10:14:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.095 (sec)

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1370: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2
)
+ c2

(
ex2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 4x
(

d
dx
y(x)

)
+ (4x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0



chapter 2. book solved problems 4841

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.028 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

2(c2x+ c1)
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2.1.720 problem 737

Solved as second order ode using Kovacic algorithm . . . . . . . . .4842
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4847
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4848
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4849
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4849

Internal problem ID [9568]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 737
Date solved : Thursday, December 12, 2024 at 10:14:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(2x− 3) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.392 (sec)

Writing the ode as

(2x− 3) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x− 3
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 8x+ 18
4 (2x− 3)2

(6)

Comparing the above to (5) shows that

s = x2 − 8x+ 18
t = 4(2x− 3)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 8x+ 18
4 (2x− 3)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1372: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(2x− 3)2. There is a pole at x = 3

2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 33

64
(
x− 3

2

)2 − 5
16
(
x− 3

2

)
For the pole at x = 3

2 let b be the coefficient of 1(
x− 3

2
)2 in the partial fractions decomposition

of r given above. Therefore b = 33
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

8
α−
c = 1

2 −
√
1 + 4b = −3

8

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 − 5
8x − 11

16x2 − 1
32x3 + 245

64x4 + 2591
128x5 + 21117

256x6 + 154743
512x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

16

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 8x+ 18
16x2 − 48x+ 36

= Q+ R

16x2 − 48x+ 36

=
(

1
16

)
+
( −5x+ 63

4
16x2 − 48x+ 36

)
= 1

16 +
−5x+ 63

4
16x2 − 48x+ 36

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder R
is −5. Dividing this by leading coefficient in t which is 16 gives − 5

16 . Now b can be found.

b =
(
− 5
16

)
− (0)

= − 5
16
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Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(− 5
16
1
4

− 0
)

= −5
8

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
− 5

16
1
4

− 0
)

= 5
8

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 8x+ 18
4 (2x− 3)2

pole c location pole order [
√
r]c α+

c α−
c

3
2 2 0 11

8 −3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4 −5

8
5
8

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5

8 then

d = α−
∞ −

(
α−
c1

)
= 5

8 −
(
−3
8

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
8
(
x− 3

2

) + (−)
(
1
4

)
= − 3

8
(
x− 3

2

) − 1
4

= − x

4x− 6

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
8
(
x− 3

2

) − 1
4

)
(1) +

( 3
8
(
x− 3

2

)2
)

+
(
− 3
8
(
x− 3

2

) − 1
4

)2

−
(
x2 − 8x+ 18
4 (2x− 3)2

) = 0

a0
2x− 3 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 3
8
(
x− 3

2
)− 1

4

)
dx

= (x) e−x
4−

3 ln(2x−3)
8

= x e−x
4

(2x− 3)3/8

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

2x−3 dx

= z1e
x
4+

3 ln(2x−3)
8

= z1
(
(2x− 3)3/8 ex

4

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

2x−3 dx

(y1)2
dx

= y1

∫
e

x
2+

3 ln(2x−3)
4

(y1)2
dx

= y1

(∫ ex
2+

3 ln(2x−3)
4

x2 dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(∫ ex
2+

3 ln(2x−3)
4

x2 dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(2x− 3)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
2x−3 +

(
d
dx

y(x)
)
x

2x−3

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(

d
dx

y(x)
)
x

2x−3 + y(x)
2x−3 = 0

� Check to see if x0 = 3
2 is a regular singular point

◦ Define functions[
P2(x) = − x

2x−3 , P3(x) = 1
2x−3

]
◦
(
x− 3

2

)
· P2(x) is analytic at x = 3

2((
x− 3

2

)
· P2(x)

) ∣∣∣∣
x= 3

2

= −3
4

◦
(
x− 3

2

)2 · P3(x) is analytic at x = 3
2((

x− 3
2

)2 · P3(x)
) ∣∣∣∣

x= 3
2

= 0

◦ x = 3
2 is a regular singular point

Check to see if x0 = 3
2 is a regular singular point

x0 = 3
2

• Multiply by denominators

(2x− 3)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 3
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+
(
−u− 3

2

) (
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
a0r(−7+4r)u−1+r

2 +
(

∞∑
k=0

(
ak+1(k+1+r)(4k−3+4r)

2 − ak(k + r − 1)
)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(−7+4r)

2 = 0
• Values of r that satisfy the indicial equation

r ∈
{
0, 74
}

• Each term in the series must be 0, giving the recursion relation
2
(
k − 3

4 + r
)
(k + 1 + r) ak+1 − ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)

(4k−3+4r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = 2ak(k−1)

(4k−3)(k+1)

• Apply recursion relation for k = 0
a1 = 2a0

3

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1 + 2u

3

)
• Revert the change of variables u = x− 3

2[
y(x) = 2a0x

3

]
• Recursion relation for r = 7

4

ak+1 =
2ak
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)

• Solution for r = 7
4[

y(u) =
∞∑
k=0

aku
k+ 7

4 , ak+1 =
2ak
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)
]

• Revert the change of variables u = x− 3
2[

y(x) =
∞∑
k=0

ak
(
x− 3

2

)k+ 7
4 , ak+1 =

2ak
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)
]

• Combine solutions and rename parameters[
y(x) = 2a0x

3 +
(

∞∑
k=0

bk
(
x− 3

2

)k+ 7
4

)
, bk+1 =

2bk
(
k+ 3

4
)

(4k+4)
(
k+ 11

4
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
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<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.043 (sec)
Leaf size : 29� �
dsolve((2*x-3)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = 2

(
x− 3

2

)
c1(2x− 3)3/4KummerM

(
3
4 ,

11
4 ,

x

2 − 3
4

)
+ c2x

Mathematica DSolve solution

Solving time : 0.135 (sec)
Leaf size : 63� �
DSolve[{(2*x-3)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2 23/4(2x− 3)

(
c2(2x− 3)3/4L

7
4
− 3

4

(
x

2 − 3
4

)
+ 4

√
2c1x

2x− 3

)
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2.1.721 problem 738

Solved as second order ode using Kovacic algorithm . . . . . . . . .4850
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4854
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4855
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4855
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4855

Internal problem ID [9569]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 738
Date solved : Thursday, December 12, 2024 at 10:14:05 AM
CAS classification : [_Hermite]

Solve

y′′ − xy′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as

y′′ − xy′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 10
4 (6)

Comparing the above to (5) shows that

s = x2 + 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 + 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1374: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 5
2x − 25

4x3 + 125
4x5 − 3125

16x7 + 21875
16x9 − 328125

32x11 + 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 10
4

= Q+ R

4

=
(
x2

4 + 5
2

)
+ (0)

= x2

4 + 5
2

We see that the coefficient of the term 1
x
in the quotient is 5

2 . Now b can be found.

b =
(
5
2

)
− (0)

= 5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
2
1
2
− 1
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
2
1
2
− 1
)

= −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 + 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 2 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2, and since there are no poles, then

d = α+
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 +
(x
2

)
= x

2
= x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(x
2

)
(2x+ a1) +

((
1
2

)
+
(x
2

)2
−
(
x2

4 + 5
2

))
= 0

−a1x− 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 1

)
e
∫

x
2 dx

=
(
x2 + 1

)
ex2

4

=
(
x2 + 1

)
ex2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to

y1 = ex2
2
(
x2 + 1

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

(∫ e−x2
2

(x2 + 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2

2
(
x2 + 1

))
+ c2

(
ex2

2
(
x2 + 1

)(∫ e−x2
2

(x2 + 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k + 3) = 0



chapter 2. book solved problems 4855

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+2 = ak(k+3)

k2+3k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 37� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-3*y(x) = 0,

y(x),singsol=all)� �
y =

(
x2 + 1

)(√
π erf

(√
2x
2

)
c1 + c2

)
ex2

2 +
√
2 c1x

Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 35� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1HermiteH

(
−3, x√

2

)
+ c2e

x2
2
(
x2 + 1

)
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2.1.722 problem 739

Solved as second order ode using Kovacic algorithm . . . . . . . . .4856
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4860
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4860
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4860
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4860

Internal problem ID [9570]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 739
Date solved : Thursday, December 12, 2024 at 10:14:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.293 (sec)

Writing the ode as (
x2 + 1

)
y′′ − xy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 − 6
4 (x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −x2 − 6

t = 4
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

−x2 − 6
4 (x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1376: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (x− i)2

+ 5
16 (x+ i)2

+ 7i
16 (x− i) −

7i
16 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x2 − 6

4 (x2 + 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 − 6
4 (x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 5
4 −1

4

−i 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
−1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (x− i) −

1
4 (x+ i) + (−) (0)

= − 1
4 (x− i) −

1
4 (x+ i)

= − x

2x2 + 2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (x− i) −

1
4 (x+ i)

)
(1) +

((
1

4 (x− i)2
+ 1

4 (x+ i)2
)
+
(
− 1
4 (x− i) −

1
4 (x+ i)

)2

−
(

−x2 − 6
4 (x2 + 1)2

))
= 0

(x2 + 1) a0
(−x+ i)2 (x+ i)2

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ (

− 1
4(x−i)−

1
4(x+i)

)
dx

= (x) 1
((−x+ i) (x+ i))1/4

= x

(−x2 − 1)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

x2+1 dx

= z1e
ln

(
x2+1

)
4

= z1
((

x2 + 1
)1/4)

Which simplifies to

y1 =
(
1
2 − i

2

)
x
√
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x2+1 dx

(y1)2
dx

= y1

∫
e

ln
(
x2+1

)
2

(y1)2
dx

= y1

(
i

(
−(x2 + 1)3/2

x
+ x

√
x2 + 1 + arcsinh (x)

))
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Therefore the solution is

y = c1y1 + c2y2

= c1

((
1
2−

i

2

)
x
√
2
)
+c2

((
1
2−

i

2

)
x
√
2
(
i

(
−(x2 + 1)3/2

x
+x

√
x2 + 1+arcsinh (x)

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 23� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = −

√
x2 + 1 c2 + x(c2 arcsinh (x) + c1)

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 39� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2xarctanh

(
x√

x2 + 1

)
− c2

√
x2 + 1 + c1x
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2.1.723 problem 740

Solved as second order ode using Kovacic algorithm . . . . . . . . .4861
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4865
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4866
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4866
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4866

Internal problem ID [9571]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 740
Date solved : Thursday, December 12, 2024 at 10:14:06 AM
CAS classification : [_Hermite]

Solve

y′′ − xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as

y′′ − xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1377: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = x2 − 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

(∫ ex2
2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 − 1

)
+ c2

(
x2 − 1

(∫ ex2
2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
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ak+2 = ak(k−2)
k2+3k+2

• Apply recursion relation for k = 0
a2 = −a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y(x) = A2x

2 + A1x− a0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.041 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = −2c1e

x2
2 x+ (x− 1) (x+ 1)

(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)

Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 54� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4c2
(√

2π
(
x2 − 1

)
erfi
(

x√
2

)
− 2ex2

2 x

)
+ c1

(
x2 − 1

)
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2.1.724 problem 741

Solved as second order ode using Kovacic algorithm . . . . . . . . .4867
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4871
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4873
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4873
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4873

Internal problem ID [9572]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 741
Date solved : Thursday, December 12, 2024 at 10:14:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
−x2 + 1

)
y′′ − y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.717 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 − 4x− 3
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 − 4x− 3

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
4x2 − 4x− 3
4 (x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1379: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− 1)2

− 7
16 (x+ 1) +

5
16 (x+ 1)2

+ 7
16 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 4x2 − 4x− 3

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 1. Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

1 2 {1, 2, 3}
−1 2 {−1, 2, 5}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = −1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (−1)))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (1)) +
−1

(x− (−1))

)
= 1

2x− 2 − 1
2 (x+ 1)

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

4a0 − 6
(x+ 1)2 (x− 1)

= 0

And solving for p gives
p = x+ 3

2
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Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 3

2
+ 1

2x− 2 − 1
2 (x+ 1)

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 3

2
+ 1

2x− 2 − 1
2 (x+ 1)

)
w + −8x3 − 4x2 + 10x+ 7

4 (x2 − 1)2 (2x+ 3)
= 0

Solving for ω gives

ω = 2
√
5
√

(x− 1) (x+ 1)x+ 2
√
5
√

(x− 1) (x+ 1) + 2x2 + 2x+ 1
2 (2x+ 3) (x− 1) (x+ 1)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 2

√
5
√

(x−1)(x+1) x+2
√
5
√

(x−1)(x+1)+2x2+2x+1
2(2x+3)(x−1)(x+1) dx

=
(x− 1)1/4

√
2x+ 3

(
x+

√
x2 − 1

)√
5

2 51/4

(x+ 1)1/4
√

5
√
x2−1+(2+3x)

√
5

√
x2−1

√
− (2x+3)2

x2−1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1

−x2+1 dx

= z1e
arctanh(x)

2

= z1

(√
x+ 1√
−x2 + 1

)

Which simplifies to

y1 =

√
x+1√
−x2+1

(
x+

√
x2 − 1

)√
5
2
√
2x+ 3 (5x− 5)1/4√

i
(
3
√
5x+5

√
x2−1+2

√
5
)

2x+3 (x+ 1)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −1

−x2+1 dx

(y1)2
dx

= y1

∫
earctanh(x)

(y1)2
dx

= y1

∫ i
√
x+ 1

(
x+

√
x2 − 1

)−√
5 (3√5x+ 5

√
x2 − 1 + 2

√
5
)

(2x+ 3)2
√
5x− 5

dx
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Therefore the solution is

y = c1y1 + c2y2

= c1


√

x+1√
−x2+1

(
x+

√
x2 − 1

)√
5

2
√
2x+ 3 (5x− 5)1/4√

i
(
3
√
5x+5

√
x2−1+2

√
5
)

2x+3 (x+ 1)1/4



+c2


√

x+1√
−x2+1

(
x+

√
x2 − 1

)√
5

2
√
2x+ 3 (5x− 5)1/4√

i
(
3
√
5x+5

√
x2−1+2

√
5
)

2x+3 (x+ 1)1/4

∫ i
√
x+ 1

(
x+

√
x2 − 1

)−√
5 (3√5x+ 5

√
x2 − 1 + 2

√
5
)

(2x+ 3)2
√
5x− 5

dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− d

dx
y(x) + y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2−1 −

d
dx

y(x)
x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x2−1 − y(x)

x2−1 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 1

x2−1 , P3(x) = − 1
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ d

dx
y(x)− y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ d

du
y(u)− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
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d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k − 1 + 2r) + ak(k2 + 2kr + r2 − k − r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + (k2 + (2r − 1) k + r2 − r − 1) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2−k−r−1

)
ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0

ak+1 =
(
k2−k−1

)
ak

(k+1)(2k−1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2−k−1

)
ak

(k+1)(2k−1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 =
(
k2−k−1

)
ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 =
(
k2+2k− 1

4
)
ak(

k+ 5
2
)
(2k+2)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
(
k2+2k− 1

4
)
ak(

k+ 5
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
3
2 , ak+1 =

(
k2+2k− 1

4
)
ak(

k+ 5
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+
3
2

)
, ak+1 =

(
k2−k−1

)
ak

(k+1)(2k−1) , bk+1 =
(
k2+2k− 1

4
)
bk(

k+ 5
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.051 (sec)
Leaf size : 66� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

([√
5
2 − 1

2 ,−
1
2 −

√
5
2

]
,

[
−1
2

]
,
1
2 + x

2

)

+ 2c2
√
2 + 2x hypergeom

([
1−

√
5
2 ,

√
5
2 + 1

]
,

[
5
2

]
,
1
2 + x

2

)
(x+ 1)

Mathematica DSolve solution

Solving time : 4.595 (sec)
Leaf size : 195� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(√
x− 1−

√
x+ 1

)− 1
2−

√
5
2
(√

x− 1 +
√
x+ 1

) 1
2

(√
5−1

) (√
x− 1

−
√
5
√
x+ 1

)c2

∫ x

1

−
2
√

K[1] + 1
(√

K[1]− 1−
√

K[1] + 1
)√5 (√

K[1]− 1 +
√

K[1] + 1
)−√

5

√
1−K[1]

(√
K[1]− 1−

√
5
√
K[1] + 1

)2 dK[1]

+ c1
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2.1.725 problem 742

Solved as second order ode using Kovacic algorithm . . . . . . . . .4874
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4878
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4879
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4880
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4880

Internal problem ID [9573]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 742
Date solved : Thursday, December 12, 2024 at 10:14:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x+ 1)2 y′′ +
(
−x2 + 1

)
y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.213 (sec)

Writing the ode as

x(x+ 1)2 y′′ +
(
−x2 + 1

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(x+ 1)2

B = −x2 + 1 (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1381: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+1
x(x+1)2

dx

= z1e
ln(x+1)− ln(x)

2

= z1

(
x+ 1√

x

)

Which simplifies to
y1 = x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x2+1

x(x+1)2
dx

(y1)2
dx

= y1

∫
e2 ln(x+1)−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 1) + c2(x+ 1(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(x+ 1)2
(

d2

dx2y(x)
)
+ (−x2 + 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x(x+1)2 +

(x−1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x−1)

(
d
dx

y(x)
)

x(x+1) + (x−1)y(x)
x(x+1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x−1
x(x+1) , P3(x) = x−1

x(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)2
(

d2

dx2y(x)
)
− (x− 1) (x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − u2)
(

d2

du2y(u)
)
+ (−u2 + 2u)

(
d
du
y(u)

)
+ (u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0(−1 + r) (−2 + r)ur +
(

∞∑
k=1

(
−ak(k + r − 1) (k + r − 2) + ak−1(k + r − 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 1) (k + r − 2) + ak−1(k + r − 2)2 = 0

• Shift index using k− >k + 1
−ak+1(k + r) (k + r − 1) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+r

• Recursion relation for r = 1
ak+1 = akk

k+1

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+1 = akk

k+1

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+1 , ak+1 = akk
k+1

]
• Recursion relation for r = 2

ak+1 = ak(k+1)
k+2

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak(k+1)

k+2

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = ak(k+1)
k+2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k+1
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+1 = akk

k+1 , bk+1 = bk(k+1)
k+2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve(x*(x+1)^2*diff(diff(y(x),x),x)+(-x^2+1)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = (x+ 1) (c2 ln (x) + c1)

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 17� �
DSolve[{x*(x+1)^2*D[y[x],{x,2}]+(1-x^2)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → (x+ 1)(c2 log(x) + c1)
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2.1.726 problem 743

Solved as second order ode using Kovacic algorithm . . . . . . . . .4881
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4885
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4886
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4886
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4886

Internal problem ID [9574]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 743
Date solved : Thursday, December 12, 2024 at 10:14:09 AM
CAS classification : [[_Emden, _Fowler]]

Solve

2xy′′ − y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.252 (sec)

Writing the ode as

2xy′′ − y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −1 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1383: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1
x
+ 5

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
(
2
√
−x− 1

)
e2

√
−x

(−x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
2x dx

= z1e
ln(x)

4

= z1
(
x1/4)

Which simplifies to

y1 =
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

2x dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

)
+ c2

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x

+
d
dx

y(x)
2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
2x + y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 36� �
dsolve(2*x*diff(diff(y(x),x),x)-diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
2c1

√
x+ c2

)
cos
(
2
√
x
)
− sin

(
2
√
x
) (

−2c2
√
x+ c1

)
Mathematica DSolve solution

Solving time : 0.13 (sec)
Leaf size : 59� �
DSolve[{2*x*D[y[x],{x,2}]-D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

2i
√
x
(
2
√
x+ i

)
+ 1

8c2e
−2i

√
x
(
1 + 2i

√
x
)
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2.1.727 problem 744

Solved as second order ode using Kovacic algorithm . . . . . . . . .4887
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4891
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4891
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4892
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4892

Internal problem ID [9575]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 744
Date solved : Thursday, December 12, 2024 at 10:14:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + xy′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

xy′′ + xy′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x+ 8
4x (6)

Comparing the above to (5) shows that

s = x+ 8
t = 4x

Therefore eq. (4) becomes

z′′(x) =
(
x+ 8
4x

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1385: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x. There is a pole at x = 0 of order 1. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x
− 4

x2 + 16
x3 − 80

x4 + 448
x5 − 2688

x6 + 16896
x7 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x+ 8
4x

= Q+ R

4x

=
(
1
4

)
+
(
2
x

)
= 1

4 + 2
x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 8. Dividing this by leading coefficient in t which is 4 gives 2. Now b can be found.

b = (2)− (0)
= 2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 0
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 0
)

= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x+ 8
4x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 2 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+
(
1
2

)
= 1

x
+ 1

2
= 1

x
+ 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
+ 1

2

)
(1) +

((
− 1
x2

)
+
(
1
x
+ 1

2

)2

−
(
x+ 8
4x

))
= 0

2− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ ( 1

x
+ 1

2
)
dx

= (2 + x) ex
2+ln(x)

= (2 + x)x ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x
dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = (2 + x)x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

x
dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

(
e−x

−8− 4x + Ei1 (x)
2 − e−x

4x

)
Therefore the solution is

y = c1y1 + c2y2

= c1((2 + x)x) + c2

(
(2 + x)x

(
e−x

−8− 4x + Ei1 (x)
2 − e−x

4x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 28� �
dsolve(x*diff(diff(y(x),x),x)+diff(y(x),x)*x-2*y(x) = 0,

y(x),singsol=all)� �
y = −(x+ 1) c2e−x

2 +
(
c1 +

Ei1 (x) c2
2

)
x(x+ 2)

Mathematica DSolve solution

Solving time : 0.087 (sec)
Leaf size : 39� �
DSolve[{x*D[y[x],{x,2}]+x*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x(x+ 2)− 1

2c2e
−x(ex(x+ 2)xExpIntegralEi(−x) + x+ 1)
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2.1.728 problem 745

Solved as second order ode using Kovacic algorithm . . . . . . . . .4893
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4897
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4898
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4898
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4898

Internal problem ID [9576]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 745
Date solved : Thursday, December 12, 2024 at 10:14:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x− 1)2 y′′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.187 (sec)

Writing the ode as

x(x− 1)2 y′′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(x− 1)2

B = 0 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x (x− 1)2

(6)

Comparing the above to (5) shows that

s = 2
t = x(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(

2
x (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1386: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 0
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x(x− 1)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x
− 2

x− 1 + 2
(x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

x− 1 + (0)

= 1
x
− 1

x− 1
= − 1

x (x− 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

x− 1

)
(0) +

((
− 1
x2 + 1

(x− 1)2
)
+
(
1
x
− 1

x− 1

)2

−
(

2
x (x− 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

x−1

)
dx

= x

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x

x− 1

Which simplifies to

y1 =
x

x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x

x− 1

∫ 1
x2

(x−1)2
dx

= x

x− 1

(
x− 1

x
− 2 ln (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

x− 1

)
+ c2

(
x

x− 1

(
x− 1

x
− 2 ln (x)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(x− 1)2
(

d2

dx2y(x)
)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x(x−1)2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− 2y(x)
x(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 2
x(x−1)2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x− 1)2
(

d2

dx2y(x)
)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r + (a1(1 + r) r − 2a0(r2 − r + 1))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r)− 2ak(k2 + 2kr + r2 − k − r + 1) + ak−1(k + r − 1) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
a1(1 + r) r − 2a0(r2 − r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 2ak − 3ak−1 + ak+1) k + (−2ak + ak−1 + ak+1) r2 + (2ak − 3ak−1 + ak+1) r − 2ak + 2ak−1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 2ak+1 − 3ak + ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (2ak+1 − 3ak + ak+2) r − 2ak+1 + 2ak = 0
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• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−kak−2kak+1−rak−2rak+1−2ak+1

k2+2kr+r2+3k+3r+2

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2 ,−2a0 = 0
]

• Recursion relation for r = 1
ak+2 = −k2ak−2k2ak+1+kak−6kak+1−6ak+1

k2+5k+6

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = −k2ak−2k2ak+1+kak−6kak+1−6ak+1

k2+5k+6 , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2 ,−2a0 = 0, bk+2 = −k2bk−2k2bk+1+kbk−6kbk+1−6bk+1
k2+5k+6 , 2b1 − 2b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 27� �
dsolve(x*(x-1)^2*diff(diff(y(x),x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = 2 ln (x) c2x− c2x

2 + c1x+ c2
x− 1

Mathematica DSolve solution

Solving time : 0.057 (sec)
Leaf size : 33� �
DSolve[{x*(x-1)^2*D[y[x],{x,2}]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −c2x

2 − c1x+ 2c2x log(x) + c2
x− 1



chapter 2. book solved problems 4899

2.1.729 problem 746

Solved as second order ode using Kovacic algorithm . . . . . . . . .4899
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4901
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4902
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4902
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4902

Internal problem ID [9577]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 746
Date solved : Thursday, December 12, 2024 at 10:14:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 2xy′ + x2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.188 (sec)

Writing the ode as

y′′ − 2xy′ + x2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2x (3)
C = x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1388: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
1 dx

= z1e
x2
2

= z1
(
ex2

2

)
Which simplifies to

y1 = ex2
2 cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

1 dx

(y1)2
dx

= y1

∫
ex

2

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2

2 cos (x)
)
+ c2

(
ex2

2 cos (x) (tan (x))
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 2x
(

d
dx
y(x)

)
+ x2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y(x) to series expansion

x2 · y(x) =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y(x) =
∞∑
k=2

ak−2x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + (6a3 − 2a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2akk + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 − 2a1 = 0]

• Solve for the dependent coefficient(s){
a2 = 0, a3 = a1

3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − 2akk + ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 2ak+2(k + 2) + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2kak+2−ak+4ak+2

k2+7k+12 , a2 = 0, a3 = a1
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.023 (sec)
Leaf size : 20� �
dsolve(diff(diff(y(x),x),x)-2*diff(y(x),x)*x+x^2*y(x) = 0,

y(x),singsol=all)� �
y = ex2

2 (cos (x) c1 + sin (x) c2)

Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 39� �
DSolve[{D[y[x],{x,2}]-2*x*D[y[x],x]+x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
1
2x(x−2i)(2c1 − ic2e

2ix)
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2.1.730 problem 747

Solved as second order ode using Kovacic algorithm . . . . . . . . .4903
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4908
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4909
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4910
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4910

Internal problem ID [9578]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 747
Date solved : Thursday, December 12, 2024 at 10:14:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x
(
−x2 + 2

)
y′′ −

(
x2 + 4x+ 2

)
((1− x) y′ + y) = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.609 (sec)

Writing the ode as(
−x3 + 2x

)
y′′ +

(
x3 + 3x2 − 2x− 2

)
y′ +

(
−x2 − 4x− 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + 2x
B = x3 + 3x2 − 2x− 2 (3)
C = −x2 − 4x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12
4 (x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12

t = 4
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12

4 (x3 − 2x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1390: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 6
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of order

2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

2x + 3
4x2 + 3

4
(
x−

√
2
)2 + 3

4
(
x+

√
2
)2 +

−5
√
2

8 − 1
2

x−
√
2

+
5
√
2

8 − 1
2

x+
√
2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x =

√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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For the pole at x = −
√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
2x − 1

2x2 − 3
2x3 + 21

4x4 − 43
4x5 + 135

4x6 − 147
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12
4x6 − 16x4 + 16x2

= Q+ R

4x6 − 16x4 + 16x2

=
(
1
4

)
+
(
2x5 − x4 − 16x3 + 20x2 + 24x+ 12

4x6 − 16x4 + 16x2

)
= 1

4 + 2x5 − x4 − 16x3 + 20x2 + 24x+ 12
4x6 − 16x4 + 16x2
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Since the degree of t is 6, then we see that the coefficient of the term x5 in the remainder
R is 2. Dividing this by leading coefficient in t which is 4 gives 1

2 . Now b can be found.

b =
(
1
2

)
− (0)

= 1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12
4 (x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2√
2 2 0 3

2 −1
2

−
√
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1 + α−

c2 + α−
c3

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (+)[

√
r]∞

= 3
2x − 1

2
(
x−

√
2
) − 1

2
(
x+

√
2
) + (1

2

)
= 3

2x − 1
2
(
x−

√
2
) − 1

2
(
x+

√
2
) + 1

2

= x3 + x2 − 2x− 6
2x3 − 4x
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
2x − 1

2
(
x−

√
2
) − 1

2
(
x+

√
2
) + 1

2

)
(0) +

(− 3
2x2 + 1

2
(
x−

√
2
)2 + 1

2
(
x+

√
2
)2
)

+
(

3
2x − 1

2
(
x−

√
2
) − 1

2
(
x+

√
2
) + 1

2

)2

−
(
x6 + 2x5 − 5x4 − 16x3 + 24x2 + 24x+ 12

4 (x3 − 2x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

2x−
1

2
(
x−

√
2
)− 1

2
(
x+

√
2
)+ 1

2

)
dx

= x3/2ex
2√

x+
√
2
√

x−
√
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x3+3x2−2x−2

−x3+2x dx

= z1e
x
2+

ln
(
x2−2

)
2 + ln(x)

2

= z1
(√

x2 − 2
√
x ex

2

)
Which simplifies to

y1 = x2ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x3+3x2−2x−2

−x3+2x dx

(y1)2
dx

= y1

∫
ex+ln

(
x2−2

)
+ln(x)

(y1)2
dx

= y1

(
−(x− 1) ex+ln

(
x2−2

)
+ln(x)e−2x

x3 (x2 − 2)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

)
+ c2

(
x2ex

(
−(x− 1) ex+ln

(
x2−2

)
+ln(x)e−2x

x3 (x2 − 2)

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(−x2 + 2)
(

d2

dx2y(x)
)
− (x2 + 4x+ 2)

(
(1− x)

(
d
dx
y(x)

)
+ y(x)

)
= 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+4x+2

)
y(x)

x(x2−2) +
(
x2+4x+2

)
(x−1)

(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(
x2+4x+2

)
(x−1)

(
d
dx

y(x)
)

x(x2−2) +
(
x2+4x+2

)
y(x)

x(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − (x−1)

(
x2+4x+2

)
x(x2−2) , P3(x) = x2+4x+2

x(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x(x2 − 2)
(

d2

dx2y(x)
)
− (x− 1) (x2 + 4x+ 2)

(
d
dx
y(x)

)
+ (x2 + 4x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + 2a0(1 + r))xr +
(
−2a2(2 + r) r + 2a1(2 + r) + a0(−2 + r)2

)
x1+r +

(
∞∑
k=2

(
−2ak+1(k + r + 1) (k + r − 1) + 2ak(k + r + 1) + ak−1(k − 3 + r)2 − ak−2(k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• The coefficients of each power of x must be 0[
−2a1(1 + r) (−1 + r) + 2a0(1 + r) = 0,−2a2(2 + r) r + 2a1(2 + r) + a0(−2 + r)2 = 0

]
• Solve for the dependent coefficient(s){

a1 = a0
−1+r

, a2 = a0
(
r2−5r+10

)
2(r2+r−2)

}
• Each term in the series must be 0, giving the recursion relation

ak−1(k − 3 + r)2 − 2ak+1(k + r + 1) (k + r − 1) + (2ak − ak−2) k + (2ak − ak−2) r + 2ak + 3ak−2 = 0
• Shift index using k− >k + 2

ak+1(k + r − 1)2 − 2ak+3(k + 3 + r) (k + r + 1) + (2ak+2 − ak) (k + 2) + (2ak+2 − ak) r + 2ak+2 + 3ak = 0
• Recursion relation that defines series solution to ODE

ak+3 = k2ak+1+2krak+1+r2ak+1−akk−2kak+1+2kak+2−akr−2rak+1+2rak+2+ak+ak+1+6ak+2
2(k+3+r)(k+r+1)

• Recursion relation for r = 0
ak+3 = k2ak+1−akk−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+3 = k2ak+1−akk−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1) , a1 = −a0, a2 = −5a0
2

]
• Recursion relation for r = 2

ak+3 = k2ak+1−akk+2kak+1+2kak+2−ak+ak+1+10ak+2
2(k+5)(k+3)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+3 = k2ak+1−akk+2kak+1+2kak+2−ak+ak+1+10ak+2

2(k+5)(k+3) , a1 = a0, a2 = a0
2

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+3 = k2ak+1−kak−2kak+1+2kak+2+ak+ak+1+6ak+2

2(k+3)(k+1) , a1 = −a0, a2 = −5a0
2 , bk+3 = k2bk+1−kbk+2kbk+1+2kbk+2−bk+bk+1+10bk+2

2(5+k)(k+3) , b1 = b0, b2 = b0
2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 17� �
dsolve(x*(-x^2+2)*diff(diff(y(x),x),x)-(x^2+4*x+2)*((1-x)*diff(y(x),x)+y(x)) = 0,

y(x),singsol=all)� �
y = c1(x− 1) + c2exx2

Mathematica DSolve solution

Solving time : 0.117 (sec)
Leaf size : 21� �
DSolve[{x*(2-x^2)*D[y[x],{x,2}]-(x^2+4*x+2)*((1-x)*D[y[x],x]+y[x])==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

xx2 + c2(x− 1)
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2.1.731 problem 748

Solved as second order ode using Kovacic algorithm . . . . . . . . .4911
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4915
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4916
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4917
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4917

Internal problem ID [9579]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 748
Date solved : Thursday, December 12, 2024 at 10:14:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(1 + x) y′′ − (1 + 2x) (xy′ − y) = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.253 (sec)

Writing the ode as

x2(1 + x) y′′ +
(
−2x2 − x

)
y′ + (1 + 2x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(1 + x)
B = −2x2 − x (3)
C = 1 + 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x− 1
4 (x2 + x)2

(6)

Comparing the above to (5) shows that

s = −4x− 1

t = 4
(
x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(

−4x− 1
4 (x2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1392: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (1 + x)2

+ 1
2 + 2x − 1

4x2 − 1
2x

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x− 1
4 (x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2 (1 + x) +

1
2x + (0)

= − 1
2 (1 + x) +

1
2x

= 1
2x (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (1 + x) +

1
2x

)
(0) +

((
1

2 (1 + x)2
− 1

2x2

)
+
(
− 1
2 (1 + x) +

1
2x

)2

−
(

−4x− 1
4 (x2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(1+x)+

1
2x

)
dx

=
√
x√

1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−x
x2(1+x) dx

= z1e
ln(x(1+x))

2

= z1
(√

x (1 + x)
)

Which simplifies to

y1 =
√

x (1 + x)
√
x√

1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2−x

x2(1+x) dx

(y1)2
dx

= y1

∫
eln(x(1+x))

(y1)2
dx

= y1(x+ ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(√
x (1 + x)

√
x√

1 + x

)
+ c2

(√
x (1 + x)

√
x√

1 + x
(x+ ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2(x+ 1)
(

d2

dx2y(x)
)
− (2x+ 1)

(
x
(

d
dx
y(x)

)
− y(x)

)
= 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x+1)y(x)
(x+1)x2 +

(2x+1)
(

d
dx

y(x)
)

x(x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+1)

(
d
dx

y(x)
)

x(x+1) + (2x+1)y(x)
(x+1)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 2x+1
x(x+1) , P3(x) = 2x+1

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x2(x+ 1)
(

d2

dx2y(x)
)
− x(2x+ 1)

(
d
dx
y(x)

)
+ (2x+ 1) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−2u2 + 3u− 1)

(
d
du
y(u)

)
+ (2u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r + (a1(1 + r) (−1 + r)− a0(2r2 − 5r + 1))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− ak(2k2 + 4kr + 2r2 − 5k − 5r + 1) + ak−1(k + r − 2) (k − 3 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− a0(2r2 − 5r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 5ak − 5ak−1) k + (−2ak + ak−1 + ak+1) r2 + (5ak − 5ak−1) r − ak + 6ak−1 − ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 5ak+1 − 5ak) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (5ak+1 − 5ak) r − ak+1 + 6ak − ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−3kak+kak+1−3rak+rak+1+2ak+2ak+1

k2+2kr+r2+2k+2r

• Recursion relation for r = 0
ak+2 = −k2ak−2k2ak+1−3kak+kak+1+2ak+2ak+1

k2+2k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = −k2ak−2k2ak+1−3kak+kak+1+2ak+2ak+1
k2+2k

• Recursion relation for r = 2
ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1

k2+6k+8

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1

k2+6k+8 , 3a1 + a0 = 0
]

• Revert the change of variables u = x+ 1[
y(x) =

∞∑
k=0

ak(x+ 1)k+2 , ak+2 = −k2ak−2k2ak+1+kak−7kak+1−4ak+1
k2+6k+8 , 3a1 + a0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(x^2*(x+1)*diff(diff(y(x),x),x)-(2*x+1)*(diff(y(x),x)*x-y(x)) = 0,

y(x),singsol=all)� �
y = x(c2 ln (x) + c2x+ c1)

Mathematica DSolve solution

Solving time : 0.281 (sec)
Leaf size : 132� �
DSolve[{x^2*(1+x)*D[y[x],{x,2}]-(1+2*x)*(x*D[y[x],x]+y[x])==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

1+
√
2Hypergeometric2F1

(
−1
2 +

√
2−

√
17
2 ,−1

2 +
√
2 +

√
17
2 , 1 + 2

√
2,−x

)
+ c1x

1−
√
2Hypergeometric2F1

(
1
2

(
−1− 2

√
2−

√
17
)
,
1
2

(
−1− 2

√
2 +

√
17
)
, 1

− 2
√
2,−x

)
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2.1.732 problem 749

Solved as second order ode using Kovacic algorithm . . . . . . . . .4918
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4922
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4923
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4923
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4924

Internal problem ID [9580]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 749
Date solved : Thursday, December 12, 2024 at 10:14:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2(2− x)x2y′′ − (4− x)xy′ + (3− x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.255 (sec)

Writing the ode as (
−2x3 + 4x2) y′′ + (x2 − 4x

)
y′ + (3− x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −2x3 + 4x2

B = x2 − 4x (3)
C = 3− x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
16 (−2 + x)2

(6)

Comparing the above to (5) shows that

s = −3
t = 16(−2 + x)2

Therefore eq. (4) becomes

z′′(x) =
(
− 3
16 (−2 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1394: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(−2 + x)2. There is a pole at x = 2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (−2 + x)2

For the pole at x = 2 let b be the coefficient of 1
(−2+x)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 3

16 (−2 + x)2
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Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
16 (−2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

2 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
−8 + 4x + (−) (0)

= 1
−8 + 4x

= 1
−8 + 4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
−8 + 4x

)
(0) +

((
− 1
4 (−2 + x)2

)
+
(

1
−8 + 4x

)2

−
(
− 3
16 (−2 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

−8+4xdx

= (−2 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x2−4x

−2x3+4x2 dx

= z1e
ln(x)

2 − ln(−2+x)
4

= z1

( √
x

(−2 + x)1/4

)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x2−4x

−2x3+4x2 dx

(y1)2
dx

= y1

∫
eln(x)−

ln(−2+x)
2

(y1)2
dx

= y1

(
2 eln(x)−

ln(−2+x)
2 (−2 + x)
x

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(
√
x

(
2 eln(x)−

ln(−2+x)
2 (−2 + x)
x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(−x+ 2)
(

d2

dx2y(x)
)
− x(4− x)

(
d
dx
y(x)

)
+ (−x+ 3) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−3)y(x)
2x2(x−2) +

(−4+x)
(

d
dx

y(x)
)

2x(x−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(−4+x)

(
d
dx

y(x)
)

2x(x−2) + (x−3)y(x)
2x2(x−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − −4+x
2x(x−2) , P3(x) = x−3

2x2(x−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x− 2)
(

d2

dx2y(x)
)
− x(−4 + x)

(
d
dx
y(x)

)
+ (x− 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..3

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−a0(−1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(−ak(2k + 2r − 1) (2k + 2r − 3) + ak−1(2k + 2r − 3) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term in the series must be 0, giving the recursion relation

−4
((
−k

2 −
r
2 + 1

)
ak−1 + ak

(
k + r − 1

2

)) (
k + r − 3

2

)
= 0

• Shift index using k− >k + 1
−4
((
−k

2 +
1
2 −

r
2

)
ak + ak+1

(
k + 1

2 + r
)) (

k + r − 1
2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r−1)ak

2k+1+2r

• Recursion relation for r = 1
2

ak+1 =
(
k− 1

2
)
ak

2k+2

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
(
k− 1

2
)
ak

2k+2

]
• Recursion relation for r = 3

2

ak+1 =
(
k+ 1

2
)
ak

2k+4

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 =
(
k+ 1

2
)
ak

2k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 =

(
k− 1

2
)
ak

2k+2 , bk+1 =
(
k+ 1

2
)
bk

2k+4

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 19� �
dsolve(2*x^2*(-x+2)*diff(diff(y(x),x),x)-x*(-x+4)*diff(y(x),x)+(3-x)*y(x) = 0,

y(x),singsol=all)� �
y = c1

√
x+ c2

√
x (x− 2)
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Mathematica DSolve solution

Solving time : 0.097 (sec)
Leaf size : 41� �
DSolve[{2*(2-x)*x^2*D[y[x],{x,2}]-(4-x)*x*D[y[x],x]+(3-x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

4
√
x− 2

√
x
(
2c2

√
x− 2 + c1

)
4
√
2− x
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2.1.733 problem 750

Solved as second order ode using Kovacic algorithm . . . . . . . . .4925
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4929
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4929
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4929
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4929

Internal problem ID [9581]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 750
Date solved : Thursday, December 12, 2024 at 10:14:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(1− x)x2y′′ + (5x− 4)xy′ + (6− 9x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.224 (sec)

Writing the ode as (
−x3 + x2) y′′ + (5x2 − 4x

)
y′ + (6− 9x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x3 + x2

B = 5x2 − 4x (3)
C = 6− 9x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x+ 4
4x (−1 + x)2

(6)

Comparing the above to (5) shows that

s = −x+ 4
t = 4x(−1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

−x+ 4
4x (−1 + x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1396: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(−1 + x)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
−1 + x

+ 3
4 (−1 + x)2

+ 1
x

For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x+ 4

4x (−1 + x)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x+ 4
4x (−1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x
− 1

2 (−1 + x) + (−) (0)

= 1
x
− 1

2 (−1 + x)

= −2 + x

2 (−1 + x)x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

2 (−1 + x)

)
(0) +

((
− 1
x2 + 1

2 (−1 + x)2
)
+
(
1
x
− 1

2 (−1 + x)

)2

−
(

−x+ 4
4x (−1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

2(−1+x)

)
dx

= x√
−1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2−4x
−x3+x2 dx

= z1e
2 ln(x)+ ln(−1+x)

2

= z1
(
x2√−1 + x

)
Which simplifies to

y1 = x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2−4x

−x3+x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)+ln(−1+x)

(y1)2
dx

= y1

(
ln (x) + 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x3)+ c2

(
x3
(
ln (x) + 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 18� �
dsolve(x^2*(1-x)*diff(diff(y(x),x),x)+(5*x-4)*x*diff(y(x),x)+(6-9*x)*y(x) = 0,

y(x),singsol=all)� �
y = x2(ln (x) c2x+ c1x+ c2)

Mathematica DSolve solution

Solving time : 0.062 (sec)
Leaf size : 24� �
DSolve[{(1-x)*x^2*D[y[x],{x,2}]+(5*x-4)*x*D[y[x],x]+(6-9*x)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2(c1x− c2(x log(x) + 1))
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2.1.734 problem 751

Solved as second order ode using Kovacic algorithm . . . . . . . . .4930
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4934
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4935
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4935
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4936

Internal problem ID [9582]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 751
Date solved : Thursday, December 12, 2024 at 10:14:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ +
(
4x2 + 1

)
y′ + 4x

(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.201 (sec)

Writing the ode as

xy′′ +
(
4x2 + 1

)
y′ +

(
4x3 + 4x

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 4x2 + 1 (3)
C = 4x3 + 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1397: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x2+1

x
dx

= z1e
−x2− ln(x)

2

= z1

(
e−x2

√
x

)

Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x2+1

x
dx

(y1)2
dx

= y1

∫
e−2x2−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(ln (x))

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (4x2 + 1)

(
d
dx
y(x)

)
+ 4x(x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (−4x2 − 4) y(x)−
(
4x2+1

)(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
4x2+1

)(
d
dx

y(x)
)

x
+ (4x2 + 4) y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4x2+1
x

, P3(x) = 4x2 + 4
]

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (4x2 + 1)

(
d
dx
y(x)

)
+ 4x(x2 + 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 1..3

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r + a1(1 + r)2 xr +

(
a2(2 + r)2 + 4a0(1 + r)

)
x1+r +

(
a3(3 + r)2 + 4a1(2 + r)

)
x2+r +

(
∞∑
k=3

(
ak+1(k + 1 + r)2 + 4ak−1(k + r) + 4ak−3

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• The coefficients of each power of x must be 0[
a1(1 + r)2 = 0, a2(2 + r)2 + 4a0(1 + r) = 0, a3(3 + r)2 + 4a1(2 + r) = 0

]
• Solve for the dependent coefficient(s){

a1 = 0, a2 = −4a0(1+r)
r2+4r+4 , a3 = 0

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + 4ak−1k + 4ak−3 = 0
• Shift index using k− >k + 3

ak+4(k + 4)2 + 4ak+2(k + 3) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = −4(kak+2+ak+3ak+2)
(k+4)2

• Recursion relation for r = 0
ak+4 = −4(kak+2+ak+3ak+2)

(k+4)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = −4(kak+2+ak+3ak+2)

(k+4)2 , a1 = 0, a2 = −a0, a3 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+(4*x^2+1)*diff(y(x),x)+4*x*(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.049 (sec)
Leaf size : 21� �
DSolve[{x*D[y[x],{x,2}]+(4*x^2+1)*D[y[x],x]+4*x*(x^2+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2 log(x) + c1)



chapter 2. book solved problems 4937

2.1.735 problem 754

Solved as second order ode using Kovacic algorithm . . . . . . . . .4937
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4941
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4942
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4943
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4943

Internal problem ID [9583]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 754
Date solved : Thursday, December 12, 2024 at 10:14:15 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 12y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.349 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 12y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 12x2 − 13
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 12x2 − 13

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
12x2 − 13
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1399: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− 1)2

− 1
4 (x+ 1)2

− 25
4 (x+ 1) +

25
4 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 12x2 − 13

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 12. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 4

α−
∞ = 1

2 −
√
1 + 4b = −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 12x2 − 13
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 4 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 4 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 4− (1)
= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(

1
2x− 2 + 1

2x+ 2

)(
3x2 + 2xa2 + a1

)
+
((

− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(
12x2 − 13
(x2 − 1)2

))
= 0

−6a2x2 + (−10a1 − 6)x− 12a0 − 2a2
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = 0, a1 = −3

5 , a2 = 0
}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 − 3
5x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 − 3

5x
)
e
∫ ( 1

2x−2+
1

2x+2

)
dx

=
(
x3 − 3

5x
)√

(x− 1) (x+ 1)

= (5x3 − 3x)
√
x2 − 1

5
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)

Which simplifies to

y1 =
(5x3 − 3x)

√
x2 − 1

5
√
x− 1

√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
125x

36
(
x2 − 3

5

) − 25 ln (x+ 1)
8 + 25

9x + 25 ln (x− 1)
8

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(5x3 − 3x)

√
x2 − 1

5
√
x− 1

√
x+ 1

)

+ c2

(
(5x3 − 3x)

√
x2 − 1

5
√
x− 1

√
x+ 1

(
125x

36
(
x2 − 3

5

) − 25 ln (x+ 1)
8 + 25

9x + 25 ln (x− 1)
8

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 12y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 12y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 12y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 12y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 4) (k + r − 3)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 4) (k − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+4)(k−3)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = ak(k+4)(k−3)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −6a0

• Apply recursion relation for k = 1
a2 = −5a1

4

• Express in terms of a0
a2 = 15a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −5a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 6u+ 15

2 u
2 − 5

2u
3)

• Revert the change of variables u = x+ 1[
y(x) = a0

(3
2x− 5

2x
3)]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 55� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+12*y(x) = 0,

y(x),singsol=all)� �
y = c2(5x3 − 3x) ln (x− 1)

24 + (−5x3 + 3x) c2 ln (x+ 1)
24 − 5c1x3

3 + 5c2x2

12 + c1x− c2
9

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 59� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+12*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2c1x
(
5x2 − 3

)
+ c2

(
−5x2

2 − 1
4
(
5x2 − 3

)
x(log(1− x)− log(x+ 1)) + 2

3

)
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2.1.736 problem 755

Solved as second order ode using Kovacic algorithm . . . . . . . . .4944
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4948
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4949
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4949
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4949

Internal problem ID [9584]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 755
Date solved : Thursday, December 12, 2024 at 10:14:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x(x+ 2) y′′ + 2(x+ 1) y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.284 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (2x+ 2) y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = 2x+ 2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 + 4x− 1
(x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 2x2 + 4x− 1

t =
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
2x2 + 4x− 1
(x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1401: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 5
4 (x+ 2) −

1
4 (x+ 2)2

+ 5
4x − 1

4x2

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 + 4x− 1

(x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 + 4x− 1
(x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 1
2

1
2

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x+ 4 + 1

2x + (0)

= 1
2x+ 4 + 1

2x
= x+ 1

x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x+ 4 + 1

2x

)
(1) +

((
− 1
2 (x+ 2)2

− 1
2x2

)
+
(

1
2x+ 4 + 1

2x

)2

−
(
2x2 + 4x− 1
(x2 + 2x)2

))
= 0

2− 2a0
x (x+ 2) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 1

2x+4+
1
2x

)
dx

= (x+ 1)
√

x (x+ 2)
= (x+ 1)

√
x (x+ 2)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x+2
x2+2x dx

= z1e
− ln(x(x+2))

2

= z1

(
1√

x (x+ 2)

)

Which simplifies to
y1 = x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x+2

x2+2x dx

(y1)2
dx

= y1

∫
e− ln(x(x+2))

(y1)2
dx

= y1

(
− ln (x+ 2)

2 + ln (x)
2 + 1

x+ 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 1) + c2

(
x+ 1

(
− ln (x+ 2)

2 + ln (x)
2 + 1

x+ 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x(x+ 2)
(

d2

dx2y(x)
)
+ 2(x+ 1)

(
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
2(x+1)

(
d
dx

y(x)
)

x(x+2) + 2y(x)
x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)− 2y(x)
x(x+2) +

2(x+1)
(

d
dx

y(x)
)

x(x+2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2(x+1)

x(x+2) , P3(x) = − 2
x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (2x+ 2)

(
d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 2
[y(x) = a0(−x− 1)]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 28� �
dsolve(x*(x+2)*diff(diff(y(x),x),x)+2*(x+1)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = −(x+ 1) c2 ln (x+ 2)

2 + c2(x+ 1) ln (x)
2 + c1x+ c1 + c2

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 37� �
DSolve[{x*(x+2)*D[y[x],{x,2}]+2*(x+1)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x+ 1)− 1

2c2((x+ 1) log(−x)− (x+ 1) log(x+ 2) + 2)
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2.1.737 problem 757

Solved as second order ode using Kovacic algorithm . . . . . . . . .4950
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4954
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4956
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4956
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4956

Internal problem ID [9585]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 757
Date solved : Thursday, December 12, 2024 at 10:14:16 AM
CAS classification :
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

x(x+ 2) y′′ + (x+ 1) y′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.269 (sec)

Writing the ode as (
x2 + 2x

)
y′′ + (x+ 1) y′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2x
B = x+ 1 (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 + 30x− 3
4 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = 15x2 + 30x− 3

t = 4
(
x2 + 2x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
15x2 + 30x− 3
4 (x2 + 2x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1403: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x+ 2)2

− 3
16x2 + 33

16x − 33
16 (x+ 2)

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 + 30x− 3

4 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 + 30x− 3
4 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 3
4

1
4

0 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x+ 2) +

3
4x + (0)

= 3
4 (x+ 2) +

3
4x

=
3x
2 + 3

2
x (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x+ 2) +

3
4x

)
(1) +

((
− 3
4 (x+ 2)2

− 3
4x2

)
+
(

3
4 (x+ 2) +

3
4x

)2

−
(
15x2 + 30x− 3
4 (x2 + 2x)2

))
= 0

3− 3a0
x (x+ 2) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 3

4(x+2)+
3
4x

)
dx

= (x+ 1) (x(x+ 2))3/4

= (x+ 1) (x(x+ 2))3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x+1

x2+2x dx

= z1e
− ln(x(x+2))

4

= z1

(
1

(x (x+ 2))1/4

)

Which simplifies to

y1 =
√
x (x+ 2) (x+ 1)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x+1

x2+2x dx

(y1)2
dx

= y1

∫
e−

ln(x(x+2))
2

(y1)2
dx

= y1

(
− 2x2 + 4x+ 1√

x (x+ 2) (x+ 1)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x (x+ 2) (x+ 1)
)
+ c2

(√
x (x+ 2) (x+ 1)

(
− 2x2 + 4x+ 1√

x (x+ 2) (x+ 1)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
− 4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 4y(x)
x(x+2) −

(x+1)
(

d
dx

y(x)
)

x(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x(x+2) − 4y(x)
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x(x+2) , P3(x) = − 4

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

x(x+ 2)
(

d2

dx2y(x)
)
+ (x+ 1)

(
d
dx
y(x)

)
− 4y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− 4y(u) = 0

• Assume series solution for y(u)
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y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k + r + 2) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + ak(k + r + 2) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+2)(k+r−2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k+2)(k−2)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = −4a0

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 2a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (2u2 − 4u+ 1)

• Revert the change of variables u = x+ 2
[y(x) = a0(2x2 + 4x+ 1)]

• Recursion relation for r = 1
2

ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
ak
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+
1
2 , ak+1 =

ak
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters
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[
y(x) = a0(2x2 + 4x+ 1) +

(
∞∑
k=0

bk(x+ 2)k+
1
2

)
, bk+1 =

bk
(
k+ 5

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

Solution is available but has compositions of trig with ln functions of radicals. Attempting a simpler solution
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- linear_1 successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 28� �
dsolve(x*(x+2)*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)-4*y(x) = 0,

y(x),singsol=all)� �
y = c2(x+ 1)

√
x (x+ 2) + 2c1

(
x2 + 2x+ 1

2

)

Mathematica DSolve solution

Solving time : 0.266 (sec)
Leaf size : 73� �
DSolve[{x*(x+2)*D[y[x],{x,2}]+(x+1)*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1 cosh

(
8arctanh

( √
x− 1√

3−
√
x+ 2

))
− ic2 sinh

(
8arctanh

( √
x− 1√

3−
√
x+ 2

))
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2.1.738 problem 758

Solved as second order ode using Kovacic algorithm . . . . . . . . .4957
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4962
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4963
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4963
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4964

Internal problem ID [9586]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 758
Date solved : Thursday, December 12, 2024 at 10:14:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.280 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1405: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

x
(

d
dx

y(x)
)

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
x
(

d
dx

y(x)
)

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.739 problem 759

Solved as second order ode using Kovacic algorithm . . . . . . . . .4965
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4969
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4969
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4969
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4969

Internal problem ID [9587]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 759
Date solved : Thursday, December 12, 2024 at 10:14:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.318 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
(x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −3

t =
(
x2 + 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
(x2 + 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1407: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (x− i)2

+ 3
4 (x+ i)2

+ 3i
4 (x− i) −

3i
4 (x+ i)

For the pole at x = i let b be the coefficient of 1
(x−i)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = −i let b be the coefficient of 1

(x+i)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 3
(x2 + 1)2

pole c location pole order [
√
r]c α+

c α−
c

i 2 0 3
2 −1

2

−i 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
2 (x− i) +

3
2 (x+ i) + (−) (0)

= − 1
2 (x− i) +

3
2 (x+ i)

= x− 2i
x2 + 1

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− i) +

3
2 (x+ i)

)
(0) +

((
1

2 (x− i)2
− 3

2 (x+ i)2
)
+
(
− 1
2 (x− i) +

3
2 (x+ i)

)2

−
(
− 3
(x2 + 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−i)+

3
2(x+i)

)
dx

= (x2 + 1)3/2

(ix+ 1)2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2+1 dx

= z1e
ln

(
x2+1

)
2

= z1
(√

x2 + 1
)

Which simplifies to

y1 =
(x2 + 1)2

(ix+ 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

x2+1 dx

(y1)2
dx

= y1

∫
eln
(
x2+1

)
(y1)2

dx

= y1

(
− x

(x+ i)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 + 1)2

(ix+ 1)2

)
+ c2

(
(x2 + 1)2

(ix+ 1)2
(
− x

(x+ i)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = c2x

2 + c1x− c2

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 21� �
DSolve[{(1+x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x− c1(x− i)2
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2.1.740 problem 760

Solved as second order ode using Kovacic algorithm . . . . . . . . .4970
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4974
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4974
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4974
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4975

Internal problem ID [9588]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 760
Date solved : Thursday, December 12, 2024 at 10:14:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.421 (sec)

Writing the ode as (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x+ 10
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

(6)

Comparing the above to (5) shows that

s = 15x2 − 32x+ 180

t = 4
(
x2 − 2x+ 10

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1408: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 2x+ 10)2. There is a pole at x = 1 + 3i of order 2. There is a pole at
x = 1− 3i of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is
2 then the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 7

36 +
i
24

(x− 1− 3i)2
+

− 7
36 −

i
24

(x− 1 + 3i)2
− 149i

216 (x− 1− 3i) +
149i

216 (x− 1 + 3i)

For the pole at x = 1 + 3i let b be the coefficient of 1
(x−1−3i)2 in the partial fractions

decomposition of r given above. Therefore b = − 7
36 +

i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 + i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 − i

12
For the pole at x = 1− 3i let b be the coefficient of 1

(x−1+3i)2 in the partial fractions
decomposition of r given above. Therefore b = − 7

36 −
i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 − i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 + i

12
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 − 32x+ 180

4 (x2 − 2x+ 10)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

pole c location pole order [
√
r]c α+

c α−
c

1 + 3i 2 0 3
4 +

i
12

1
4 −

i
12

1− 3i 2 0 3
4 −

i
12

1
4 +

i
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i + (0)

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i
= 3x− 4

2x2 − 4x+ 20
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)
(1) +

(( −3
4 −

i
12

(x− 1− 3i)2
+

−3
4 +

i
12

(x− 1 + 3i)2
)
+
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)2

−
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

))
= 0

−
3
(
a0 + 4

3

)
(x2 − 2x+ 10)

(−x+ 1 + 3i)2 (x− 1 + 3i)2
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −4

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 4

3

)
e
∫ ( 3

4+ i
12

x−1−3i+
3
4− i

12
x−1+3i

)
dx

=
(
x− 4

3

)
e

3 ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= (3x− 4) (x2 − 2x+ 10)3/4 e−
arctan

(
x
3− 1

3
)

6

3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2−2x+10 dx

= z1e
−

ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= z1

 e−
arctan

(
x
3− 1

3
)

6

(x2 − 2x+ 10)1/4


Which simplifies to

y1 =
√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2−2x+10 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3

(y1)2
dx

= y1

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)


Therefore the solution is

y = c1y1 + c2y2

= c1

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3


+c2

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.018 (sec)
Leaf size : 31� �
dsolve((x^2-2*x+10)*diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = 3c2

(
x− 4

3

)
(x− 1 + 3i)

1
2−

i
6 (x− 1− 3i)

1
2+

i
6 + c1

(
x2 − 4

3x+ 5
)
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Mathematica DSolve solution

Solving time : 1.038 (sec)
Leaf size : 92� �
DSolve[{(x^2-2*x+10)*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ 1
3(3x

− 4)
√
x2 − 2x+ 10e− 1

3 arctan
(
x−1
3
)(

c2

∫ x

1

9e 1
3 arctan

( 1
3 (K[1]−1)

)
(4− 3K[1])2 (K[1]2 − 2K[1] + 10)3/2

dK[1]

+ c1

)
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2.1.741 problem 761

Solved as second order ode using Kovacic algorithm . . . . . . . . .4976
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4980
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4980
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4980
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4981

Internal problem ID [9589]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 761
Date solved : Thursday, December 12, 2024 at 10:14:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.408 (sec)

Writing the ode as (
x2 − 2x+ 10

)
y′′ + xy′ − 4y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x+ 10
B = x (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

(6)

Comparing the above to (5) shows that

s = 15x2 − 32x+ 180

t = 4
(
x2 − 2x+ 10

)2
Therefore eq. (4) becomes

z′′(x) =
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1409: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 2x+ 10)2. There is a pole at x = 1 + 3i of order 2. There is a pole at
x = 1− 3i of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is
2 then the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 7

36 +
i
24

(x− 1− 3i)2
+

− 7
36 −

i
24

(x− 1 + 3i)2
− 149i

216 (x− 1− 3i) +
149i

216 (x− 1 + 3i)

For the pole at x = 1 + 3i let b be the coefficient of 1
(x−1−3i)2 in the partial fractions

decomposition of r given above. Therefore b = − 7
36 +

i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 + i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 − i

12
For the pole at x = 1− 3i let b be the coefficient of 1

(x−1+3i)2 in the partial fractions
decomposition of r given above. Therefore b = − 7

36 −
i
24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4 − i

12
α−
c = 1

2 −
√
1 + 4b = 1

4 + i

12



chapter 2. book solved problems 4978

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15x2 − 32x+ 180

4 (x2 − 2x+ 10)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

pole c location pole order [
√
r]c α+

c α−
c

1 + 3i 2 0 3
4 +

i
12

1
4 −

i
12

1− 3i 2 0 3
4 −

i
12

1
4 +

i
12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i + (0)

=
3
4 +

i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i
= 3x− 4

2x2 − 4x+ 20
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)
(1) +

(( −3
4 −

i
12

(x− 1− 3i)2
+

−3
4 +

i
12

(x− 1 + 3i)2
)
+
( 3

4 +
i
12

x− 1− 3i +
3
4 −

i
12

x− 1 + 3i

)2

−
(
15x2 − 32x+ 180
4 (x2 − 2x+ 10)2

))
= 0

−
3
(
a0 + 4

3

)
(x2 − 2x+ 10)

(−x+ 1 + 3i)2 (x− 1 + 3i)2
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −4

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 4
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 4

3

)
e
∫ ( 3

4+ i
12

x−1−3i+
3
4− i

12
x−1+3i

)
dx

=
(
x− 4

3

)
e

3 ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= (3x− 4) (x2 − 2x+ 10)3/4 e−
arctan

(
x
3− 1

3
)

6

3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2−2x+10 dx

= z1e
−

ln
(
x2−2x+10

)
4 −

arctan
(
x
3− 1

3
)

6

= z1

 e−
arctan

(
x
3− 1

3
)

6

(x2 − 2x+ 10)1/4


Which simplifies to

y1 =
√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2−2x+10 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3

(y1)2
dx

= y1

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)


Therefore the solution is

y = c1y1 + c2y2

= c1

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3


+c2

√
x2 − 2x+ 10 e−

arctan
(
x
3− 1

3
)

3 (3x− 4)
3

−9(3x2 − 4x+ 15) e−
ln

(
x2−2x+10

)
2 −

arctan
(
x
3− 1

3
)

3 e
2 arctan

(
x
3− 1

3
)

3

410 (3x− 4)



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.016 (sec)
Leaf size : 31� �
dsolve((x^2-2*x+10)*diff(diff(y(x),x),x)+diff(y(x),x)*x-4*y(x) = 0,

y(x),singsol=all)� �
y = 3c2

(
x− 4

3

)
(x− 1 + 3i)

1
2−

i
6 (x− 1− 3i)

1
2+

i
6 + c1

(
x2 − 4

3x+ 5
)
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Mathematica DSolve solution

Solving time : 0.843 (sec)
Leaf size : 92� �
DSolve[{(x^2-2*x+10)*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→ 1
3(3x

− 4)
√
x2 − 2x+ 10e− 1

3 arctan
(
x−1
3
)(

c2

∫ x

1

9e 1
3 arctan

( 1
3 (K[1]−1)

)
(4− 3K[1])2 (K[1]2 − 2K[1] + 10)3/2

dK[1]

+ c1

)
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2.1.742 problem 762

Solved as second order ode using Kovacic algorithm . . . . . . . . .4982
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4986
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4987
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4987
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4987

Internal problem ID [9590]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 762
Date solved : Thursday, December 12, 2024 at 10:14:20 AM
CAS classification : [_Hermite]

Solve

y′′ − xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.285 (sec)

Writing the ode as

y′′ − xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 10
4 (6)

Comparing the above to (5) shows that

s = x2 − 10
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 5
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1410: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 5
2x − 25

4x3 − 125
4x5 − 3125

16x7 − 21875
16x9 − 328125

32x11 − 2578125
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 10
4

= Q+ R

4

=
(
x2

4 − 5
2

)
+ (0)

= x2

4 − 5
2

We see that the coefficient of the term 1
x
in the quotient is −5

2 . Now b can be found.

b =
(
−5
2

)
− (0)

= −5
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−5
2

1
2

− 1
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−5

2
1
2

− 1
)

= 2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 5
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −3 2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 2, and since there are no poles then

d = α−
∞

= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−x

2

)
(2x+ a1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 5
2

))
= 0

a1x+ 2a0 + 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫
−x

2 dx

=
(
x2 − 1

)
e−x2

4

=
(
x2 − 1

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = x2 − 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

(∫ ex2
2

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 − 1

)
+ c2

(
x2 − 1

(∫ ex2
2

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− ak(k − 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak(k − 2) = 0

• Recursion relation; series terminates at k = 2
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ak+2 = ak(k−2)
k2+3k+2

• Apply recursion relation for k = 0
a2 = −a0

• Terminating series solution of the ODE. Use reduction of order to find the second linearly independent solution
y(x) = A2x

2 + A1x− a0

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.042 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = −2c1e

x2
2 x+ (x− 1) (x+ 1)

(
c1
√
2
√
π erfi

(√
2x
2

)
+ c2

)

Mathematica DSolve solution

Solving time : 0.143 (sec)
Leaf size : 54� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4c2
(√

2π
(
x2 − 1

)
erfi
(

x√
2

)
− 2ex2

2 x

)
+ c1

(
x2 − 1

)
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2.1.743 problem 763

Solved as second order ode using Kovacic algorithm . . . . . . . . .4988
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4993
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4994
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .4994
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .4995

Internal problem ID [9591]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 763
Date solved : Thursday, December 12, 2024 at 10:14:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x+ 2) y′′ + xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.286 (sec)

Writing the ode as

(x+ 2) y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x+ 2
B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 12
4 (x+ 2)2

(6)

Comparing the above to (5) shows that

s = x2 + 4x+ 12
t = 4(x+ 2)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 12
4 (x+ 2)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1412: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x+ 2)2. There is a pole at x = −2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

(x+ 2)2

For the pole at x = −2 let b be the coefficient of 1
(x+2)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x2 − 8

x3 + 20
x4 − 32

x5 + 16
x6 + 64

x7 − 80
x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 12
4x2 + 16x+ 16

= Q+ R

4x2 + 16x+ 16

=
(
1
4

)
+
(

8
4x2 + 16x+ 16

)
= 1

4 + 8
4x2 + 16x+ 16

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 12
4 (x+ 2)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
x+ 2 + (−)

(
1
2

)
= − 1

x+ 2 − 1
2

= − 4 + x

2 (x+ 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
x+ 2 − 1

2

)
(1) +

((
1

(x+ 2)2
)
+
(
− 1
x+ 2 − 1

2

)2

−
(
x2 + 4x+ 12
4 (x+ 2)2

))
= 0

a0 − 4
x+ 2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 4}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 4 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (4 + x) e
∫ (

− 1
x+2−

1
2

)
dx

= (4 + x) e−x
2−ln(x+2)

= (4 + x) e−x
2

x+ 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x+2 dx

= z1e
−x

2+ln(x+2)

= z1
(
(x+ 2) e−x

2
)

Which simplifies to
y1 = e−x(4 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x+2 dx

(y1)2
dx

= y1

∫
e−x+2 ln(x+2)

(y1)2
dx

= y1

(
x e−x+2 ln(x+2)e2x

(4 + x) (x+ 2)2
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x(4 + x)

)
+ c2

(
e−x(4 + x)

(
x e−x+2 ln(x+2)e2x

(4 + x) (x+ 2)2
))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x+2 −

x
(

d
dx

y(x)
)

x+2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
x
(

d
dx

y(x)
)

x+2 − y(x)
x+2 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x
x+2 , P3(x) = − 1

x+2

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= −2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators

(x+ 2)
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
− y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = − ak(k+r−1)
(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = − ak(k−1)

(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 2[

y(x) = −a0x
2

]
• Recursion relation for r = 3

ak+1 = − ak(k+2)
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+2)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k+3 , ak+1 = − ak(k+2)
(k+4)(k+1)

]
• Combine solutions and rename parameters[

y(x) = −a0x
2 +

(
∞∑
k=0

bk(x+ 2)k+3
)
, bk+1 = − bk(k+2)

(4+k)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve((x+2)*diff(diff(y(x),x),x)+diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y = c1x+ c2e−x(x+ 4)
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Mathematica DSolve solution

Solving time : 0.171 (sec)
Leaf size : 72� �
DSolve[{(x+2)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −
2
√

2
π
e−x−2√x+ 2(c1(ex+2x+ x+ 4)− ic2((ex+2 − 1)x− 4))√

−i(x+ 2)
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2.1.744 problem 764

Solved as second order ode using Kovacic algorithm . . . . . . . . .4996
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .4999
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4999
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5000
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5000

Internal problem ID [9592]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 764
Date solved : Thursday, December 12, 2024 at 10:14:21 AM
CAS classification : [[_Emden, _Fowler]]

Solve (
x2 + 1

)
y′′ − 6y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.267 (sec)

Writing the ode as (
x2 + 1

)
y′′ − 6y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = 0 (3)
C = −6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6
x2 + 1 (6)

Comparing the above to (5) shows that

s = 6
t = x2 + 1

Therefore eq. (4) becomes

z′′(x) =
(

6
x2 + 1

)
z(x) (7)



chapter 2. book solved problems 4997

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1414: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2 + 1. There is a pole at x = i of order 1. There is a pole at x = −i of order 1.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = i of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 6

x2 + 1
Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6
x2 + 1
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pole c location pole order [
√
r]c α+

c α−
c

i 1 0 0 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 3 then

d = α+
∞ −

(
α−
c1

)
= 3− (1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x− i

+ (0)

= 1
x− i

= 1
x− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
x− i

)
(2x+ a1) +

((
− 1
(x− i)2

)
+
(

1
x− i

)2

−
(

6
x2 + 1

))
= 0

2 + −4x− 2a1
−x+ i

+ −6x2 − 6a1x− 6a0
x2 + 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + ix
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + ix

)
e
∫ 1

x−i
dx

=
(
x2 + ix

)
e

ln
(
x2+1

)
2 +i arctan(x)

= x(x+ i) (ix+ 1)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x(x+ i) (ix+ 1)

Which simplifies to
y1 = ix3 + ix

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= ix3 + ix

∫ 1
(ix3 + ix)2

dx

= ix3 + ix

(
x

2x2 + 2 + 3 arctan (x)
2 + 1

x

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ix3 + ix

)
+ c2

(
ix3 + ix

(
x

2x2 + 2 + 3 arctan (x)
2 + 1

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
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A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 31� �
dsolve((x^2+1)*diff(diff(y(x),x),x)-6*y(x) = 0,

y(x),singsol=all)� �
y = 3xc2(x2 + 1) arctan (x)

2 + c1x
3 + 3c2x2

2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 36� �
DSolve[{(x^2+1)*D[y[x],{x,2}]-6*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

(
x3 + x

)
− 1

2c2
(
3
(
x3 + x

)
arctan(x) + 3x2 + 2

)
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2.1.745 problem 765

Solved as second order ode using Kovacic algorithm . . . . . . . . .5001
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5005
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5005
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5005
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5005

Internal problem ID [9593]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 765
Date solved : Thursday, December 12, 2024 at 10:14:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 + 2

)
y′′ + 3xy′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.392 (sec)

Writing the ode as (
x2 + 2

)
y′′ + 3xy′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 2
B = 3x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 20
4 (x2 + 2)2

(6)

Comparing the above to (5) shows that

s = 7x2 + 20

t = 4
(
x2 + 2

)2
Therefore eq. (4) becomes

z′′(x) =
(

7x2 + 20
4 (x2 + 2)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1415: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 + 2)2. There is a pole at x = i

√
2 of order 2. There is a pole at x = −i

√
2 of

order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16
(
x− i

√
2
)2 − 3

16
(
x+ i

√
2
)2 − 17i

√
2

32
(
x− i

√
2
) + 17i

√
2

32
(
x+ i

√
2
)

For the pole at x = i
√
2 let b be the coefficient of 1(

x−i
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −i
√
2 let b be the coefficient of 1(

x+i
√
2
)2 in the partial fractions

decomposition of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 7x2 + 20

4 (x2 + 2)2

Since the gcd(s, t) = 1. This gives b = 7
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

i
√
2 2 {1, 2, 3}

−i
√
2 2 {1, 2, 3}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1(

x−
(
i
√
2
)) + 1(

x−
(
−i

√
2
)))

= 1
2x− 2i

√
2
+ 1

2x+ 2i
√
2

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1
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Now that p(x) is found let

φ = θ + p′

p

= 1
2x− 2i

√
2
+ 1

2x+ 2i
√
2

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2x− 2i

√
2
+ 1

2x+ 2i
√
2

)
w + 7x2 + 16

4
(√

2 + ix
)2 (

x+ i
√
2
)2 = 0

Solving for ω gives

ω = x+ 2
√
2x2 + 4

2x2 + 4

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ x+2

√
2x2+4

2x2+4 dx

=
(
x2 + 2

)1/4 e√2 arcsinh
(√

2 x
2

)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x

x2+2 dx

= z1e
−

3 ln
(
x2+2

)
4

= z1

(
1

(x2 + 2)3/4

)

Which simplifies to

y1 =
e
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

x2+2 dx

(y1)2
dx

= y1

∫
e−

3 ln
(
x2+2

)
2

(y1)2
dx

= y1

∫ e−2
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

dx
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Therefore the solution is

y = c1y1 + c2y2

= c1

e
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

+ c2

e
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

∫ e−2
√
2 arcsinh

(√
2 x
2

)
√
x2 + 2

dx



Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.094 (sec)
Leaf size : 45� �
dsolve((x^2+2)*diff(diff(y(x),x),x)+3*diff(y(x),x)*x-y(x) = 0,

y(x),singsol=all)� �
y =

c1
(√

x2 + 2 + x
)√2 + c2

(√
x2 + 2 + x

)−√
2

√
x2 + 2

Mathematica DSolve solution

Solving time : 0.158 (sec)
Leaf size : 92� �
DSolve[{(x^2+2)*D[y[x],{x,2}]+3*x*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
23/4c1 cos

(
2
√
2 arcsin

(
1
2

√
2− i

√
2x
))

√
π
√
x2 + 2

+
c2Q

1
2
− 1

2+
√
2

(
ix√
2

)
4
√
x2 + 2
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2.1.746 problem 766

Solved as second order ode using Kovacic algorithm . . . . . . . . .5006
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5011
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5012
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5012
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5013

Internal problem ID [9594]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 766
Date solved : Thursday, December 12, 2024 at 10:14:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

(x− 1) y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

(x− 1) y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1416: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 3

4 (x− 1)2
− 1

2 (x− 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2



chapter 2. book solved problems 5009

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= x− 2
2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1

(
−x ex+ln(x−1)e−2x

x− 1

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−x ex+ln(x−1)e−2x

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x−1 +

x
(

d
dx

y(x)
)

x−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
x
(

d
dx

y(x)
)

x−1 + y(x)
x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators

(x− 1)
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
+ y(x) = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 2}
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak+1(k + 1 + r)− ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y(x) =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 12� �
dsolve((x-1)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = c1x+ exc2
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Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 17� �
DSolve[{(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2x
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2.1.747 problem 769

Solved as second order ode using Kovacic algorithm . . . . . . . . .5014
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5019
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5020
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5021
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5021

Internal problem ID [9595]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 769
Date solved : Thursday, December 12, 2024 at 10:14:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.456 (sec)

Writing the ode as

x2y′′ +
(
5
3x+ x2

)
y′ − y

3 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 5
3x+ x2 (3)

C = −1
3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x2 + 30x+ 7
36x2 (6)

Comparing the above to (5) shows that

s = 9x2 + 30x+ 7
t = 36x2
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Therefore eq. (4) becomes

z′′(x) =
(
9x2 + 30x+ 7

36x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1418: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 7

36x2 + 5
6x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 7
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

6
α−
c = 1

2 −
√
1 + 4b = −1

6
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 5
6x − 1

2x2 + 5
6x3 − 59

36x4 + 385
108x5 − 2681

324x6 + 19525
972x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x2 + 30x+ 7
36x2

= Q+ R

36x2

=
(
1
4

)
+
(
30x+ 7
36x2

)
= 1

4 + 30x+ 7
36x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 30. Dividing this by leading coefficient in t which is 36 gives 5

6 . Now b can be found.

b =
(
5
6

)
− (0)

= 5
6
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 5
6
1
2
− 0
)

= 5
6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

5
6
1
2
− 0
)

= −5
6

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x2 + 30x+ 7
36x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
6 −1

6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

5
6 −5

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

6 then

d = α+
∞ −

(
α−
c1

)
= 5

6 −
(
−1
6

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
6x +

(
1
2

)
= − 1

6x + 1
2

= − 1
6x + 1

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
6x + 1

2

)
(1) +

((
1
6x2

)
+
(
− 1
6x + 1

2

)2

−
(
9x2 + 30x+ 7

36x2

))
= 0

−1− 3a0
3x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −1

3

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 1
3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 1

3

)
e
∫ (

− 1
6x+

1
2
)
dx

=
(
x− 1

3

)
ex

2−
ln(x)

6

= (−1 + 3x) ex
2

3x1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

5
3x+x2

x2 dx

= z1e
−x

2−
5 ln(x)

6

= z1

(
e−x

2

x5/6

)
Which simplifies to

y1 =
−1 + 3x

3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

5
3x+x2

x2 dx

(y1)2
dx

= y1

∫
e−x− 5 ln(x)

3

(y1)2
dx

= y1

(∫ 9 e−x− 5 ln(x)
3 x2

(−1 + 3x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
−1 + 3x

3x

)
+ c2

(
−1 + 3x

3x

(∫ 9 e−x− 5 ln(x)
3 x2

(−1 + 3x)2
dx

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+
(5
3x+ x2) ( d

dx
y(x)

)
− y(x)

3 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
3x2 −

(5+3x)
(

d
dx

y(x)
)

3x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(5+3x)

(
d
dx

y(x)
)

3x − y(x)
3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 5+3x
3x , P3(x) = − 1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

3x2
(

d2

dx2y(x)
)
+ x(5 + 3x)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 1) (3k + 3r − 1) + 3ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

3(k + r + 1)
(
k − 1

3 + r
)
ak + 3ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
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3(k + 2 + r)
(
k + 2

3 + r
)
ak+1 + 3ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak(k+r)

(k+2+r)(3k+2+3r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = − 3ak(k−1)

(k+1)(3k−1)

• Apply recursion relation for k = 0
a1 = −3a0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (1− 3x)

• Recursion relation for r = 1
3

ak+1 = − 3ak
(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

• Solution for r = 1
3[

y(x) =
∞∑
k=0

akx
k+ 1

3 , ak+1 = − 3ak
(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

]
• Combine solutions and rename parameters[

y(x) = a0 · (1− 3x) +
(

∞∑
k=0

bkx
k+ 1

3

)
, bk+1 = − 3bk

(
k+ 1

3
)(

k+ 7
3
)
(3k+3)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.078 (sec)
Leaf size : 29� �
dsolve(x^2*diff(diff(y(x),x),x)+(5/3*x+x^2)*diff(y(x),x)-1/3*y(x) = 0,

y(x),singsol=all)� �
y =

c1x
4/3 hypergeom

(
[2] ,

[7
3

]
, x
)
e−x − 3c2x+ c2

x

Mathematica DSolve solution

Solving time : 0.123 (sec)
Leaf size : 47� �
DSolve[{x^2*D[y[x],{x,2}]+(5/3*x+x^2)*D[y[x],x]-1/3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

−3c1x+ 3c2e−x 3
√
x+ c2(1− 3x)Γ

(1
3 , x
)
+ c1

3x
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2.1.748 problem 770

Solved as second order ode using Kovacic algorithm . . . . . . . . .5022
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5026
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5027
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5027
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5027

Internal problem ID [9596]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 770
Date solved : Thursday, December 12, 2024 at 10:14:24 AM
CAS classification : [[_Emden, _Fowler]]

Solve

2xy′′ − y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.244 (sec)

Writing the ode as

2xy′′ − y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −1 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1420: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16x2 − 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
(
2
√
−x− 1

)
e2

√
−x

(−x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
2x dx

= z1e
ln(x)

4

= z1
(
x1/4)

Which simplifies to

y1 =
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

2x dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

)
+ c2

(
x1/4(2√−x− 1

)
e2

√
−x

(−x)1/4

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x

+
d
dx

y(x)
2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
2x + y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x− d

dx
y(x) + 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 3

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 3
2[

y(x) =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 36� �
dsolve(2*x*diff(diff(y(x),x),x)-diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
2c1

√
x+ c2

)
cos
(
2
√
x
)
− sin

(
2
√
x
) (

−2c2
√
x+ c1

)
Mathematica DSolve solution

Solving time : 0.124 (sec)
Leaf size : 59� �
DSolve[{2*x*D[y[x],{x,2}]-D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

2i
√
x
(
2
√
x+ i

)
+ 1

8c2e
−2i

√
x
(
1 + 2i

√
x
)
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2.1.749 problem 771

Solved as second order ode using Kovacic algorithm . . . . . . . . .5028
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5033
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5034
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5035
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5035

Internal problem ID [9597]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 771
Date solved : Thursday, December 12, 2024 at 10:14:25 AM
CAS classification : [_Laguerre]

Solve

2xy′′ − (3 + 2x) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.362 (sec)

Writing the ode as

2xy′′ + (−3− 2x) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −3− 2x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x+ 21
16x2 (6)

Comparing the above to (5) shows that

s = 4x2 + 4x+ 21
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x+ 21

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1422: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 21

16x2 + 1
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 21
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

4
α−
c = 1

2 −
√
1 + 4b = −3

4
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
4x + 5

4x2 − 5
8x3 − 5

4x4 + 35
16x5 + 105

64x6 − 1005
128x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 4x2 + 4x+ 21
16x2

= Q+ R

16x2

=
(
1
4

)
+
(
4x+ 21
16x2

)
= 1

4 + 4x+ 21
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
2
− 0
)

= 1
4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
2
− 0
)

= −1
4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x2 + 4x+ 21
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
4 −3

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2

1
4 −1

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

4 then

d = α+
∞ −

(
α−
c1

)
= 1

4 −
(
−3
4

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 3
4x +

(
1
2

)
= − 3

4x + 1
2

= − 3
4x + 1

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
4x + 1

2

)
(1) +

((
3
4x2

)
+
(
− 3
4x + 1

2

)2

−
(
4x2 + 4x+ 21

16x2

))
= 0

−3− 2a0
2x = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −3

2

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− 3
2
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x− 3

2

)
e
∫ (

− 3
4x+

1
2
)
dx

=
(
x− 3

2

)
ex

2−
3 ln(x)

4

= (−3 + 2x) ex
2

2x3/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3−2x

2x dx

= z1e
x
2+

3 ln(x)
4

= z1
(
x3/4ex

2
)

Which simplifies to

y1 =
ex(−3 + 2x)

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3−2x

2x dx

(y1)2
dx

= y1

∫
ex+

3 ln(x)
2

(y1)2
dx

= y1

(∫ 4 ex+
3 ln(x)

2 e−2x

(−3 + 2x)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex(−3 + 2x)

2

)
+ c2

(
ex(−3 + 2x)

2

(∫ 4 ex+
3 ln(x)

2 e−2x

(−3 + 2x)2
dx

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 5033

Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x− (2x+ 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
2x +

(2x+3)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x+3)

(
d
dx

y(x)
)

2x + y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x+3
2x , P3(x) = 1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (−2x− 3)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−5 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 3 + 2r)− ak(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 52
}
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• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + r − 3

2

)
ak+1 − 2ak

(
k + r − 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r−1)

(k+1+r)(2k−3+2r)

• Recursion relation for r = 0
ak+1 = ak(2k−1)

(k+1)(2k−3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak(2k−1)

(k+1)(2k−3)

]
• Recursion relation for r = 5

2

ak+1 = ak(2k+4)(
k+ 7

2
)
(2k+2)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+1 = ak(2k+4)(
k+ 7

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+1 = ak(2k−1)

(k+1)(2k−3) , bk+1 = bk(2k+4)(
k+ 7

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.059 (sec)
Leaf size : 24� �
dsolve(2*x*diff(diff(y(x),x),x)-(2*x+3)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

(
[2] ,

[
7
2

]
, x

)
x5/2 −

2c2
(
x− 3

2

)
ex

3

Mathematica DSolve solution

Solving time : 0.126 (sec)
Leaf size : 54� �
DSolve[{2*x*D[y[x],{x,2}]-(3+2*x)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4
(
−
√
πc2e

x(2x− 3)erf
(√

x
)
+ 2c1ex(2x− 3)− 6c2

√
x
)



chapter 2. book solved problems 5036

2.1.750 problem 772

Solved as second order ode using Kovacic algorithm . . . . . . . . .5036
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5040
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5041
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5041
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5042

Internal problem ID [9598]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 772
Date solved : Thursday, December 12, 2024 at 10:14:25 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2y′′ + 3xy′ + (2x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.247 (sec)

Writing the ode as

2x2y′′ + 3xy′ + (2x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 3x (3)
C = 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1424: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16x2 − 1

x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
(
2
√
−x− 1

)
e2

√
−x

(−x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
2x2 dx

= z1e
− 3 ln(x)

4

= z1

(
1

x3/4

)

Which simplifies to

y1 =
(
2
√
−x− 1

)
e2

√
−x

x3/4 (−x)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

2x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2

(y1)2
dx

= y1

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

((
2
√
−x− 1

)
e2

√
−x

x3/4 (−x)1/4

)
+ c2

((
2
√
−x− 1

)
e2

√
−x

x3/4 (−x)1/4

(
e−4

√
−x

8 + e−4
√
−x

8
√
−x− 4

))

Will add steps showing solving for IC soon.



chapter 2. book solved problems 5040

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ (2x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (2x−1)y(x)
2x2 −

3
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

2x + (2x−1)y(x)
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
2x , P3(x) = 2x−1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ (2x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r − 1) + 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
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• Each term in the series must be 0, giving the recursion relation
2(k + r + 1)

(
k + r − 1

2

)
ak + 2ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 1

2 + r
)
ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(k+2+r)(2k+1+2r)

• Recursion relation for r = −1
ak+1 = − 2ak

(k+1)(2k−1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+1 = − 2ak

(k+1)(2k−1)

]
• Recursion relation for r = 1

2

ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 2ak(
k+ 5

2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − 2ak

(k+1)(2k−1) , bk+1 = − 2bk(
k+ 5

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.487 (sec)
Leaf size : 73� �
dsolve(2*x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x+(2*x-1)*y(x) = 0,

y(x),singsol=all)� �
y =

c2

√ (
−2

√
x+i

)
(4x+1)

2
√
x+i

e−2i
√
x + c1

√ (
2
√
x+i

)
(4x+1)

−2
√
x+i

e2i
√
x

x
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Mathematica DSolve solution

Solving time : 0.13 (sec)
Leaf size : 64� �
DSolve[{2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+(2*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−2i
√
x
(
8c1e4i

√
x
(
2
√
x+ i

)
+ c2

(
1 + 2i

√
x
))

8x
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2.1.751 problem 773

Solved as second order ode using Kovacic algorithm . . . . . . . . .5043
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5045
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5047
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5047
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5047

Internal problem ID [9599]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 773
Date solved : Thursday, December 12, 2024 at 10:14:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + 2y′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.092 (sec)

Writing the ode as

xy′′ + 2y′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1426: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

(
e2x
2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x)− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
− y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = −1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x)− xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1



chapter 2. book solved problems 5046

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r)− ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = ak

(k+1)(k+2) , 0 = 0, bk+2 = bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)-x*y(x) = 0,

y(x),singsol=all)� �
y = c1 sinh (x) + c2 cosh (x)

x

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 28� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−x + c2e

x

2x
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2.1.752 problem 774

Solved as second order ode using Kovacic algorithm . . . . . . . . .5048
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5050
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5052
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5052
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5052

Internal problem ID [9600]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 774
Date solved : Thursday, December 12, 2024 at 10:14:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.182 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1428: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions



chapter 2. book solved problems 5051

◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.753 problem 775

Solved as second order ode using Kovacic algorithm . . . . . . . . .5053
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5058
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5059
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5059
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5060

Internal problem ID [9601]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 775
Date solved : Thursday, December 12, 2024 at 10:14:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (x− 6) y′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.319 (sec)

Writing the ode as

xy′′ + (x− 6) y′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x− 6 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 48
4x2 (6)

Comparing the above to (5) shows that

s = x2 + 48
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 48
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1430: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 12

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 12. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 4

α−
c = 1

2 −
√
1 + 4b = −3

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 12
x2 − 144

x4 + 3456
x6 − 103680

x8 + 3483648
x10 − 125411328

x12 + 4729798656
x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 48
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
12
x2

)
= 1

4 + 12
x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 4 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1
2
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

1
2
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 48
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 4 −3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−3)
= 3

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −3
x
+ (−)

(
1
2

)
= −3

x
− 1

2
= −6 + x

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 3 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(6x+ 2a2) + 2
(
−3
x
− 1

2

)(
3x2 + 2a2x+ a1

)
+
((

3
x2

)
+
(
−3
x
− 1

2

)2

−
(
x2 + 48
4x2

))
= 0

(a2 − 12)x2 + 2(a1 − 5a2)x+ 3a0 − 6a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 120, a1 = 60, a2 = 12}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x3 + 12x2 + 60x+ 120
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x3 + 12x2 + 60x+ 120

)
e
∫ (

− 3
x
− 1

2
)
dx

=
(
x3 + 12x2 + 60x+ 120

)
e−x

2−3 ln(x)

= (x3 + 12x2 + 60x+ 120) e−x
2

x3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x−6
x

dx

= z1e
−x

2+3 ln(x)

= z1
(
x3e−x

2
)

Which simplifies to
y1 = e−x

(
x3 + 12x2 + 60x+ 120

)
The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x−6

x
dx

(y1)2
dx

= y1

∫
e−x+6 ln(x)

(y1)2
dx

= y1

(
(x3 − 12x2 + 60x− 120) e−x+6 ln(x)e2x

(x3 + 12x2 + 60x+ 120)x6

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
(
x3 + 12x2 + 60x+ 120

))
+ c2

(
e−x
(
x3 + 12x2 + 60x+ 120

)((x3 − 12x2 + 60x− 120) e−x+6 ln(x)e2x
(x3 + 12x2 + 60x+ 120)x6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−6 + x)

(
d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3y(x)
x

−
(−6+x)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(−6+x)

(
d
dx

y(x)
)

x
− 3y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −6+x
x

, P3(x) = − 3
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−6 + x)

(
d
dx
y(x)

)
− 3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−7 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 6 + r) + ak(k + r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 7}
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• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 6 + r) + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(k+1+r)(k−6+r)

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = − ak(k−3)

(k+1)(k−6)

• Apply recursion relation for k = 0
a1 = −a0

2

• Apply recursion relation for k = 1
a2 = −a1

5

• Express in terms of a0
a2 = a0

10

• Apply recursion relation for k = 2
a3 = −a2

12

• Express in terms of a0
a3 = − a0

120

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(x) = a0 ·

(
1− 1

2x+ 1
10x

2 − 1
120x

3)
• Recursion relation for r = 7

ak+1 = − ak(k+4)
(k+8)(k+1)

• Solution for r = 7[
y(x) =

∞∑
k=0

akx
k+7, ak+1 = − ak(k+4)

(k+8)(k+1)

]
• Combine solutions and rename parameters[

y(x) = a0 ·
(
1− 1

2x+ 1
10x

2 − 1
120x

3)+ ( ∞∑
k=0

bkx
k+7
)
, bk+1 = − bk(4+k)

(k+8)(k+1)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 39� �
dsolve(x*diff(diff(y(x),x),x)+(x-6)*diff(y(x),x)-3*y(x) = 0,

y(x),singsol=all)� �
y = c1

(
x3 − 12x2 + 60x− 120

)
+ c2e−x

(
x3 + 12x2 + 60x+ 120

)
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Mathematica DSolve solution

Solving time : 0.116 (sec)
Leaf size : 98� �
DSolve[{x*D[y[x],{x,2}]+(x-6)*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
2e−x/2√x

(
(c1x3 + 12ic2x2 + 60c1x+ 120ic2) cosh

(
x
2

)
− (12c1(x2 + 10) + ic2x(x2 + 60)) sinh

(
x
2

))
√
π
√
−ix
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2.1.754 problem 776

Solved as second order ode using Kovacic algorithm . . . . . . . . .5061
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5065
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5065
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5065
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5065

Internal problem ID [9602]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 776
Date solved : Thursday, December 12, 2024 at 10:14:28 AM
CAS classification : [[_Emden, _Fowler]]

Solve

x4y′′ + λy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.278 (sec)

Writing the ode as

x4y′′ + λy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4

B = 0 (3)
C = λ

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −λ

x4 (6)

Comparing the above to (5) shows that

s = −λ

t = x4

Therefore eq. (4) becomes

z′′(x) =
(
− λ

x4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1432: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x4. There is a pole at x = 0 of order 4. Since there is no odd order pole larger than
2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − λ

x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

i
√
λ

x2 + . . . (2B)
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Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

i
√
λ

x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = i
√
λ

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be 0. Therefore

b = (0)− (0)
= 0

Hence

[
√
r]c =

i
√
λ

x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
0

i
√
λ
+ 2
)

= 1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
− 0
i
√
λ
+ 2
)

= 1

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − λ

x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 i
√
λ

x2 1 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1

)
= 1− (1)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −i
√
λ

x2 + 1
x
+ (−) (0)

= −i
√
λ

x2 + 1
x

= −i
√
λ+ x

x2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−i

√
λ

x2 + 1
x

)
(0) +

(2i
√
λ

x3 − 1
x2

)
+
(
−i

√
λ

x2 + 1
x

)2

−
(
− λ

x4

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− i
√
λ

x2 + 1
x

)
dx

= x e i
√
λ

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x e i
√
λ

x

Which simplifies to

y1 = x e i
√
λ

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x e i
√
λ

x

∫ 1
x2e 2i

√
λ

x

dx

= x e i
√
λ

x

(
−ie− 2i

√
λ

x

2
√
λ

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e i

√
λ

x

)
+ c2

(
x e i

√
λ

x

(
−ie− 2i

√
λ

x

2
√
λ

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 31� �
dsolve(x^4*diff(diff(y(x),x),x)+lambda*y(x) = 0,

y(x),singsol=all)� �
y = x

(
c1 sinh

(√
−λ

x

)
+ c2 cosh

(√
−λ

x

))

Mathematica DSolve solution

Solving time : 0.125 (sec)
Leaf size : 52� �
DSolve[{x^4*D[y[x],{x,2}]+\[Lambda]*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1xe

i
√
λ

x − ic2xe
− i

√
λ

x

2
√
λ
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2.1.755 problem 777

Solved as second order ode using Kovacic algorithm . . . . . . . . .5066
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5070
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5072
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5072
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5072

Internal problem ID [9603]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 777
Date solved : Thursday, December 12, 2024 at 10:14:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.349 (sec)

Writing the ode as

4x2y′′ + 4xy′ +
(
4x2 − 25

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 4x (3)
C = 4x2 − 25

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 6
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6

x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1433: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− 3i

x2 − 9i
2x4 − 27i

2x6 − 405i
8x8 − 1701i

8x10 − 15309i
16x12 − 72171i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 6
x2

= Q+ R

x2

= (−1) +
(

6
x2

)
= −1 + 6

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (i)

= −2
x
− i

= −2
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− i

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− i

)2

−
(
−x2 + 6

x2

))
= 0

2ixa1 + 4ia0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3, a1 = −3i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix− 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix− 3

)
e
∫ (

− 2
x
−i
)
dx

=
(
x2 − 3ix− 3

)
e−2 ln(x)−ix

= (x2 − 3ix− 3) e−ix

x2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
4x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
(x2 − 3ix− 3) e−ix

x5/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

4x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 3ix− 3) e−ix

x5/2

)
+ c2

(
(x2 − 3ix− 3) e−ix

x5/2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 25) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−25

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−25

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−25

4x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −25
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 25) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−5 + 2r)xr + a1(7 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
5
2

}
• Each term must be 0

a1(7 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(2k + 2r + 5) (2k + 2r − 5) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2(2k + 9 + 2r) (2k − 1 + 2r) + 4ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − 4ak
(2k+9+2r)(2k−1+2r)

• Recursion relation for r = −5
2

ak+2 = − 4ak
(2k+4)(2k−6)

• Solution for r = −5
2[

y(x) =
∞∑
k=0

akx
k− 5

2 , ak+2 = − 4ak
(2k+4)(2k−6) , a1 = 0

]
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• Recursion relation for r = 5
2

ak+2 = − 4ak
(2k+14)(2k+4)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − 4ak
(2k+14)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − 4ak

(2k+4)(2k−6) , a1 = 0, bk+2 = − 4bk
(2k+14)(2k+4) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.077 (sec)
Leaf size : 43� �
dsolve(4*x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2-25)*y(x) = 0,

y(x),singsol=all)� �
y =

−3c2
(
ix− 1

3x
2 + 1

)
e−ix + 3c1eix

(
ix+ 1

3x
2 − 1

)
x5/2

Mathematica DSolve solution

Solving time : 0.114 (sec)
Leaf size : 59� �
DSolve[{4*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2-25)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −

√
2
π
((−c2x

2 + 3c1x+ 3c2) cos(x) + (c1(x2 − 3) + 3c2x) sin(x))
x5/2
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2.1.756 problem 778

Solved as second order ode using Kovacic algorithm . . . . . . . . .5073
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5075
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5077
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5077
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5077

Internal problem ID [9604]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 778
Date solved : Thursday, December 12, 2024 at 10:14:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.196 (sec)

Writing the ode as

x2y′′ + xy′ +
(
36x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = 36x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −36
1 (6)

Comparing the above to (5) shows that

s = −36
t = 1
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Therefore eq. (4) becomes

z′′(x) = −36z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1435: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −36 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (6x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (6x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
tan (6x)

6

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (6x)√

x

)
+ c2

(
cos (6x)√

x

(
tan (6x)

6

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
36x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
144x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
144x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 144x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (144x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r



chapter 2. book solved problems 5076

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 144ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 144ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 144ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 144ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 144ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 144ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 144ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 144ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 144ak

4k2+12k+8 , a1 = 0, bk+2 = − 144bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.056 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(36*x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = c1 sin (6x) + c2 cos (6x)√

x

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(36*x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−6ix(12c1 − ic2e

12ix)
12
√
x
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2.1.757 problem 779

Solved as second order ode using Kovacic algorithm . . . . . . . . .5078
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5082
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5084
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5084
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5084

Internal problem ID [9605]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 779
Date solved : Thursday, December 12, 2024 at 10:14:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.344 (sec)

Writing the ode as

x2y′′ +
(
x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)
C = x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 2

x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1437: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− i

x2 − i

2x4 − i

2x6 − 5i
8x8 − 7i

8x10 − 21i
16x12 − 33i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 2
x2

= Q+ R

x2

= (−1) +
(

2
x2

)
= −1 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (i)

= −1
x
− i

= −1
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− i

)
(1) +

((
1
x2

)
+
(
−1
x
− i

)2

−
(
−x2 + 2

x2

))
= 0

2ia0 − 2
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −i}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x− i

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x− i) e
∫ (

− 1
x
−i
)
dx

= (x− i) e− ln(x)−ix

= (x− i) e−ix

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (x− i) e−ix

x

Which simplifies to

y1 =
(x− i) e−ix

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (x− i) e−ix

x

∫ 1
(x−i)2e−2ix

x2

dx

= (x− i) e−ix

x

(
(ix− 1) e2ix
−2x+ 2i

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x− i) e−ix

x

)
+ c2

(
(x− i) e−ix

x

(
(ix− 1) e2ix
−2x+ 2i

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−2

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
x2−2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = x2−2

x2

]



chapter 2. book solved problems 5083

◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−2 + r)xr + a1(2 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term must be 0
a1(2 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+3+r)(k+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+2)(k−1)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+2)(k−1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+5)(k+2)

• Solution for r = 2
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[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+5)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k−1) , a1 = 0, bk+2 = − bk
(5+k)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.037 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)+(x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = (c1x+ c2) cos (x) + sin (x) (c2x− c1)

x

Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 21� �
DSolve[{x^2*D[y[x],{x,2}]+(x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c1j1(x)− c2y1(x))
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2.1.758 problem 780

Solved as second order ode using Kovacic algorithm . . . . . . . . .5085
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5089
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5091
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5091
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5091

Internal problem ID [9606]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 780
Date solved : Thursday, December 12, 2024 at 10:14:31 AM
CAS classification : [[_Emden, _Fowler]]

Solve

xy′′ + 3y′ + x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.325 (sec)

Writing the ode as

xy′′ + 3y′ + x3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −4x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−4x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1439: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ix− 3i

8x3−
9i

128x7−
27i

1024x11−
405i

32768x15−
1701i

262144x19−
15309i

4194304x23−
72171i

33554432x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −4x4 + 3
4x2

= Q+ R

4x2

=
(
−x2)+ ( 3

4x2

)
= −x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 1
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 1
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (ix)

= − 1
2x − ix

= − 1
2x − ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − ix

)
(0) +

((
1
2x2 − i

)
+
(
− 1
2x − ix

)2

−
(
−4x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−ix

)
dx

= e− ix2
2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e− ix2

2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ieix2

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− ix2

2

x2

)
+ c2

(
e− ix2

2

x2

(
−ieix2

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + x3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = x2]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + ak = 0

• Recursion relation that defines series solution to ODE
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ak+4 = − ak
(k+4+r)(k+6+r)

• Recursion relation for r = −2
ak+4 = − ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 25� �
dsolve(x*diff(diff(y(x),x),x)+3*diff(y(x),x)+y(x)*x^3 = 0,

y(x),singsol=all)� �
y =

c1 sin
(

x2

2

)
+ c2 cos

(
x2

2

)
x2

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 43� �
DSolve[{x*D[y[x],{x,2}]+3*D[y[x],x]+x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

ix2
2

(
2c1 − ic2e

ix2
)

2x2
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2.1.759 problem 781

Solved as second order ode using Kovacic algorithm . . . . . . . . .5092
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5094
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5096
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5096
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5096

Internal problem ID [9607]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 781
Date solved : Thursday, December 12, 2024 at 10:14:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.190 (sec)

Writing the ode as

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 4x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1441: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
x2 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

y1 =
cos (x)
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

x2 dx

(y1)2
dx

= y1

∫
e−4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)
x2

)
+ c2

(
cos (x)
x2 (tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 −
4
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
4
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1
ak+2 = − ak

(k+3)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x2

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x2
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2.1.760 problem 782

Solved as second order ode using Kovacic algorithm . . . . . . . . .5097
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5101
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5103
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5103
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5103

Internal problem ID [9608]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 782
Date solved : Thursday, December 12, 2024 at 10:14:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.332 (sec)

Writing the ode as

16x2y′′ + 32xy′ +
(
x4 − 12

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 16x2

B = 32x (3)
C = x4 − 12

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x4 + 12
16x2 (6)

Comparing the above to (5) shows that

s = −x4 + 12
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−x4 + 12
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1443: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −x2

16 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ ix

4 − 3i
2x3 − 9i

2x7 − 27i
x11 − 405i

2x15 − 1701i
x19 − 15309i

x23 − 144342i
x27 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

4
From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= ix

4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = −x2

16
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −x4 + 12
16x2

= Q+ R

16x2

=
(
−x2

16

)
+
(

3
4x2

)
= −x2

16 + 3
4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = ix

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
4
− 1
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0

i
4
− 1
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x4 + 12
16x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 ix
4 −1

2 −1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−)

(
ix

4

)
= − 1

2x − ix

4
= − 1

2x − ix

4

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − ix

4

)
(0) +

((
1
2x2 − i

4

)
+
(
− 1
2x − ix

4

)2

−
(
−x4 + 12
16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

ix
4
)
dx

= e− ix2
8

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
32x
16x2 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
e− ix2

8

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 32x

16x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1
(
−2ie ix2

4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e− ix2

8

x3/2

)
+ c2

(
e− ix2

8

x3/2

(
−2ie ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

16x2
(

d2

dx2y(x)
)
+ 32x

(
d
dx
y(x)

)
+ (x4 − 12) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x4−12

)
y(x)

16x2 −
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+
(
x4−12

)
y(x)

16x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = x4−12

16x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ 32x

(
d
dx
y(x)

)
+ (x4 − 12) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..4

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

4a0(3 + 2r) (−1 + 2r)xr + 4a1(5 + 2r) (1 + 2r)x1+r + 4a2(7 + 2r) (3 + 2r)x2+r + 4a3(9 + 2r) (5 + 2r)x3+r +
(

∞∑
k=4

(4ak(2k + 2r + 3) (2k + 2r − 1) + ak−4)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(3 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3

2 ,
1
2

}
• The coefficients of each power of x must be 0

[4a1(5 + 2r) (1 + 2r) = 0, 4a2(7 + 2r) (3 + 2r) = 0, 4a3(9 + 2r) (5 + 2r) = 0]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

16
(
k + r + 3

2

) (
k + r − 1

2

)
ak + ak−4 = 0

• Shift index using k− >k + 4
16
(
k + 11

2 + r
) (

k + 7
2 + r

)
ak+4 + ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − ak

4(2k+11+2r)(2k+7+2r)

• Recursion relation for r = −3
2

ak+4 = − ak
4(2k+8)(2k+4)

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+4 = − ak
4(2k+8)(2k+4) , a1 = 0, a2 = 0, a3 = 0

]
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• Recursion relation for r = 1
2

ak+4 = − ak
4(2k+12)(2k+8)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+4 = − ak
4(2k+12)(2k+8) , a1 = 0, a2 = 0, a3 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 3

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a4+k = − ak

4(2k+8)(2k+4) , a1 = 0, a2 = 0, a3 = 0, b4+k = − bk
4(2k+12)(2k+8) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.099 (sec)
Leaf size : 25� �
dsolve(16*x^2*diff(diff(y(x),x),x)+32*diff(y(x),x)*x+(x^4-12)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 sin
(

x2

8

)
+ c2 cos

(
x2

8

)
x3/2

Mathematica DSolve solution

Solving time : 0.089 (sec)
Leaf size : 42� �
DSolve[{16*x^2*D[y[x],{x,2}]+32*x*D[y[x],x]+(x^4-12)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e−

ix2
8

(
c1 − 2ic2e

ix2
4

)
x3/2
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2.1.761 problem 783

Solved as second order ode using Kovacic algorithm . . . . . . . . .5104
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5108
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5109
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5109
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5110

Internal problem ID [9609]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 783
Date solved : Thursday, December 12, 2024 at 10:14:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − x2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.410 (sec)

Writing the ode as

y′′ − x2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 − 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 − 8

)
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x(x3 − 8)

4

)
z(x) (7)



chapter 2. book solved problems 5105

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1445: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −4 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 − 2
x
− 4

x4 − 16
x7 − 80

x10 − 448
x13 − 2688

x16 − 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 − 8)
4

= Q+ R

4

=
(
1
4x

4 − 2x
)
+ (0)

= 1
4x

4 − 2x

We see that the coefficient of the term 1
x
in the quotient is −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 2
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 2
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x(x3 − 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 −3 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x2

2

)
= −x2

2

= −x2

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x2

2

)
(1) +

(
(−x) +

(
−x2

2

)2

−
(
x(x3 − 8)

4

))
= 0

xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x2

2 dx

= (x) e−x3
6

= x e−x3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)



chapter 2. book solved problems 5108

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1


32/3(−1)1/3

(
−3x2(−1)2/3Γ

( 2
3
)

(−x3)2/3
+ 3 31/3(−1)2/3e

x3
3

x
+

3x2(−1)2/3Γ
(

2
3 ,−

x3
3

)
(−x3)2/3

)
9


Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

x


32/3(−1)1/3

(
−3x2(−1)2/3Γ

( 2
3
)

(−x3)2/3
+ 3 31/3(−1)2/3e

x3
3

x
+

3x2(−1)2/3Γ
(

2
3 ,−

x3
3

)
(−x3)2/3

)
9




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x2( d
dx
y(x)

)
+ xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1
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x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1(k − 2))xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−1(k − 2) = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak(k − 1) = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = ak(k−1)

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 56� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^2+x*y(x) = 0,

y(x),singsol=all)� �
y = −

(
−c231/3e

x3
3 − c1x

)
(−x3)2/3 + x3c2

(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
(−x3)2/3
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Mathematica DSolve solution

Solving time : 0.082 (sec)
Leaf size : 41� �
DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x−

c2
3
√
−x3Γ

(
−1

3 ,−
x3

3

)
3 3
√
3
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2.1.762 problem 784

Solved as second order ode using Kovacic algorithm . . . . . . . . .5111
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5115
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5117
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5117
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5117

Internal problem ID [9610]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 784
Date solved : Thursday, December 12, 2024 at 10:14:33 AM
CAS classification : [_Laguerre]

Solve

xy′′ − (x+ 2) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.259 (sec)

Writing the ode as

xy′′ + (−x− 2) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −x− 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 4x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1447: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 + 2

x2 − 1
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 1

x2 + 2
x3 + 3

x4 + 2
x5 − 6

x6 − 28
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 1

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 4x+ 8
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−4x+ 8

4x2

)
= 1

4 + −4x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 4x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1 then

d = α+
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= −1
x
+
(
1
2

)
= 1

2 − 1
x

= x− 2
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

x

)
(0) +

((
1
x2

)
+
(
1
2 − 1

x

)2

−
(
x2 − 4x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
x

)
dx

= ex
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−2

x
dx

= z1e
x
2+ln(x)

= z1
(
x ex

2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x−2

x
dx

(y1)2
dx

= y1

∫
ex+2 ln(x)

(y1)2
dx

= y1

(
−(x2 + 2x+ 2) ex+2 ln(x)e−2x

x2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−(x2 + 2x+ 2) ex+2 ln(x)e−2x

x2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (x+ 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x

+
(x+2)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+2)

(
d
dx

y(x)
)

x
+ 2y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+2
x
, P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−x− 2)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 2)− ak(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]
• Recursion relation for r = 3

ak+1 = ak
k+4

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+1 = ak

k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+3
)
, ak+1 = ak

k+1 , bk+1 = bk
4+k

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 19� �
dsolve(x*diff(diff(y(x),x),x)-(x+2)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = exc1 + c2

(
x2 + 2x+ 2

)
Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 24� �
DSolve[{x*D[y[x],{x,2}]-(x+2)*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2
(
x2 + 2x+ 2

)
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2.1.763 problem 785

Solved as second order ode using Kovacic algorithm . . . . . . . . .5118
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5122
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5123
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5123
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5123

Internal problem ID [9611]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 785
Date solved : Thursday, December 12, 2024 at 10:14:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.260 (sec)

Writing the ode as

y′′ + xy′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6
4 (6)

Comparing the above to (5) shows that

s = x2 − 6
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 3
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1449: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 3
2x − 9

4x3 − 27
4x5 − 405

16x7 − 1701
16x9 − 15309

32x11 − 72171
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 6
4

= Q+ R

4

=
(
x2

4 − 3
2

)
+ (0)

= x2

4 − 3
2

We see that the coefficient of the term 1
x
in the quotient is −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 3
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(1) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 3
2

))
= 0

a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x

2 dx

= (x) e−x2
4

= x e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
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Which simplifies to

y1 = e−x2
2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2 x
)
+ c2

e−x2
2 x

−ex2
2

x
−

i
√
π
√
2 erf

(
i
√
2x
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + x
(

d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x ·

(
d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
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(k + 2) (kak+2 + ak + ak+2) = 0
• Recursion relation that defines the series solution to the ODE[

y(x) =
∞∑
k=0

akx
k, ak+2 = − ak

k+1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 34� �
dsolve(diff(diff(y(x),x),x)+diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y =

(
ic2 erf

(
i
√
2x
2

)
√
π
√
2 + c1

)
x e−x2

2 + 2c2

Mathematica DSolve solution

Solving time : 0.073 (sec)
Leaf size : 69� �
DSolve[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
π

2 c2e
−x2

2
√
x2erfi

(√
x2

√
2

)
+
√
2c1e−

x2
2 x+ c2
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2.1.764 problem 786

Solved as second order ode using Kovacic algorithm . . . . . . . . .5124
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5128
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5129
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5129
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5129

Internal problem ID [9612]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 786
Date solved : Thursday, December 12, 2024 at 10:14:35 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.290 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2x2 − 3
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 2x2 − 3

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

2x2 − 3
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1451: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x− 1)2

− 1
4 (x+ 1)2

+ 5
4 (x− 1) −

5
4 (x+ 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2x2 − 3

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2x2 − 3
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 2 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x− 2 + 1

2x+ 2

)
(1) +

((
− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(

2x2 − 3
(x2 − 1)2

))
= 0

− 2a0
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫ ( 1

2x−2+
1

2x+2

)
dx

= (x)
√

(x− 1) (x+ 1)
= x

√
x2 − 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)
Which simplifies to

y1 =
x
√
x2 − 1√

x− 1
√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
ln (x− 1)

2 − ln (x+ 1)
2 + 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x
√
x2 − 1√

x− 1
√
x+ 1

)
+ c2

(
x
√
x2 − 1√

x− 1
√
x+ 1

(
ln (x− 1)

2 − ln (x+ 1)
2 + 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 2y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 2

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 2y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+2)(k−1)
2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 1
[y(x) = −a0x]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 25� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+2*y(x) = 0,

y(x),singsol=all)� �
y = − ln (x+ 1) c2x

2 + c2 ln (x− 1)x
2 + c1x+ c2

Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 33� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x− 1

2c2(x log(1− x)− x log(x+ 1) + 2)
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2.1.765 problem 787

Solved as second order ode using Kovacic algorithm . . . . . . . . .5130
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5132
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5133
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5133
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5133

Internal problem ID [9613]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 787
Date solved : Thursday, December 12, 2024 at 10:14:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.093 (sec)

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1453: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex2
)
+ c2

(
ex2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− 4x
(

d
dx
y(x)

)
+ (4x2 − 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = a0, a3 = a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 4akk − 2ak + 4ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 4ak+2(k + 2)− 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 2(2kak+2−2ak+5ak+2)

k2+7k+12 , a2 = a0, a3 = a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)*x+(4*x^2-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex

2(c2x+ c1)
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2.1.766 problem 788

Solved as second order ode using Kovacic algorithm . . . . . . . . .5134
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5138
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5140
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5140
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5140

Internal problem ID [9614]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 788
Date solved : Thursday, December 12, 2024 at 10:14:36 AM
CAS classification : [_Gegenbauer]

Solve (
−x2 + 1

)
y′′ − 2xy′ + 30y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.354 (sec)

Writing the ode as (
−x2 + 1

)
y′′ − 2xy′ + 30y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −2x (3)
C = 30

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 30x2 − 31
(x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 30x2 − 31

t =
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
30x2 − 31
(x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1455: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x+ 1)2

− 1
4 (x− 1)2

+ 61
4 (x− 1) −

61
4 (x+ 1)

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
For the pole at x = −1 let b be the coefficient of 1

(x+1)2 in the partial fractions decomposi-
tion of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 30x2 − 31

(x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 30. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 6

α−
∞ = 1

2 −
√
1 + 4b = −5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 30x2 − 31
(x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 1
2

1
2

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 6 −5

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 6 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 6− (1)
= 5

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
2x− 2 + 1

2x+ 2 + (0)

= 1
2x− 2 + 1

2x+ 2
= x

x2 − 1
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 5 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(
20x3 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(

1
2x− 2 + 1

2x+ 2

)(
5x4 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

− 1
2 (x− 1)2

− 1
2 (x+ 1)2

)
+
(

1
2x− 2 + 1

2x+ 2

)2

−
(
30x2 − 31
(x2 − 1)2

))
= 0

−10a4x4 + (−18a3 − 20)x3 + (−24a2 − 12a4)x2 + (−28a1 − 6a3)x− 30a0 − 2a2
x2 − 1 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = 0, a1 =

5
21 , a2 = 0, a3 = −10

9 , a4 = 0
}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x5 − 10
9 x3 + 5

21x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x5 − 10

9 x3 + 5
21x

)
e
∫ ( 1

2x−2+
1

2x+2

)
dx

=
(
x5 − 10

9 x3 + 5
21x

)√
(x− 1) (x+ 1)

= (63x5 − 70x3 + 15x)
√
x2 − 1

63
The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x

−x2+1 dx

= z1e
− ln(x−1)

2 − ln(x+1)
2

= z1

(
1√

x− 1
√
x+ 1

)

Which simplifies to

y1 =
(63x5 − 70x3 + 15x)

√
x2 − 1

63
√
x− 1

√
x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2x

−x2+1 dx

(y1)2
dx

= y1

∫
e− ln(x−1)−ln(x+1)

(y1)2
dx

= y1

(
−

3087
(
−23x3 + 935

63 x
)

1600
(
x4 − 10

9 x
2 + 5

21

) − 3969 ln (x+ 1)
128 + 441

25x + 3969 ln (x− 1)
128

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(63x5 − 70x3 + 15x)

√
x2 − 1

63
√
x− 1

√
x+ 1

)

+ c2

(
(63x5 − 70x3 + 15x)

√
x2 − 1

63
√
x− 1

√
x+ 1

(
−

3087
(
−23x3 + 935

63 x
)

1600
(
x4 − 10

9 x
2 + 5

21

) − 3969 ln (x+ 1)
128

+ 441
25x + 3969 ln (x− 1)

128

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ 30y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 30y(x)
x2−1 −

2
(

d
dx

y(x)
)
x

x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)
x

x2−1 − 30y(x)
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 30

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
+ 2x

(
d
dx
y(x)

)
− 30y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 30y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 6) (k + r − 5)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 6) (k − 5) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+6)(k−5)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 5
ak+1 = ak(k+6)(k−5)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −15a0

• Apply recursion relation for k = 1
a2 = −7a1

2

• Express in terms of a0
a2 = 105a0

2

• Apply recursion relation for k = 2
a3 = −4a2

3

• Express in terms of a0
a3 = −70a0

• Apply recursion relation for k = 3
a4 = −9a3

16

• Express in terms of a0
a4 = 315a0

8

• Apply recursion relation for k = 4
a5 = −a4

5

• Express in terms of a0
a5 = −63a0

8

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 15u+ 105

2 u2 − 70u3 + 315
8 u4 − 63

8 u
5)

• Revert the change of variables u = x+ 1[
y(x) = a0

(
−15

8 x+ 35
4 x

3 − 63
8 x

5)]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 71� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+30*y(x) = 0,

y(x),singsol=all)� �
y =

21c2
(
x4 − 10

9 x
2 + 5

21

)
x ln (x− 1)

640 −
21c2

(
x4 − 10

9 x
2 + 5

21

)
x ln (x+ 1)

640
+ 21c1x5

5 + 21c2x4

320 − 14c1x3

3 − 49c2x2

960 + c1x+ c2
225

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 76� �
DSolve[{(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+30*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

8c1x
(
63x4 − 70x2 + 15

)
+ c2

(
−63x4

8 + 49x2

8 − 1
16
(
63x4 − 70x2 + 15

)
x(log(1− x)− log(x+ 1))− 8

15

)
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2.1.767 problem 789

Solved as second order ode using Kovacic algorithm . . . . . . . . .5141
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5143
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5145
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5145
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5145

Internal problem ID [9615]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 789
Date solved : Thursday, December 12, 2024 at 10:14:37 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.166 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1457: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.768 problem 790

Solved as second order ode using Kovacic algorithm . . . . . . . . .5146
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5150
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5151
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5151
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5152

Internal problem ID [9616]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 790
Date solved : Thursday, December 12, 2024 at 10:14:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (2x+ 1) y′ + (x+ 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.202 (sec)

Writing the ode as

xy′′ + (2x+ 1) y′ + (x+ 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2x+ 1 (3)
C = x+ 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1459: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x+1

x
dx

= z1e
−x− ln(x)

2

= z1

(
e−x

√
x

)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x+1

x
dx

(y1)2
dx

= y1

∫
e−2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ln (x))

)
Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (2x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
x

−
(2x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(2x+1)

(
d
dx

y(x)
)

x
+ (x+1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x+1
x

, P3(x) = x+1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (2x+ 1)

(
d
dx
y(x)

)
+ (x+ 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 + a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 + ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 + a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + 2akk + ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + 2ak+1(k + 1) + ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = −2kak+1+ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = −2kak+1+ak+3ak+1

(k+2)2 , a1 + a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 15� �
dsolve(x*diff(diff(y(x),x),x)+(2*x+1)*diff(y(x),x)+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y = e−x(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.041 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]+(2*x+1)*D[y[x],x]+(x+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2 log(x) + c1)
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2.1.769 problem 791

Solved as second order ode using Kovacic algorithm . . . . . . . . .5153
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5157
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5158
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5158
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5159

Internal problem ID [9617]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 791
Date solved : Thursday, December 12, 2024 at 10:14:38 AM
CAS classification : [_Jacobi]

Solve

2x(x− 1) y′′ − (x+ 1) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.240 (sec)

Writing the ode as (
2x2 − 2x

)
y′′ + (−x− 1) y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2 − 2x
B = −x− 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 + 18x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −3x2 + 18x− 3

t = 16
(
x2 − x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 + 18x− 3
16 (x2 − x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1461: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 + 3

4 (x− 1)2
+ 3

4x − 3
4 (x− 1)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = 1 let b be the coefficient of 1

(x−1)2 in the partial fractions decomposition
of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 + 18x− 3

16 (x2 − x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 + 18x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 3
4x − 1

2 (x− 1) + (−) (0)

= 3
4x − 1

2 (x− 1)

= x− 3
4x (x− 1)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4x − 1

2 (x− 1)

)
(0) +

((
− 3
4x2 + 1

2 (x− 1)2
)
+
(

3
4x − 1

2 (x− 1)

)2

−
(
−3x2 + 18x− 3
16 (x2 − x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4x−
1

2(x−1)

)
dx

= x3/4
√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−1

2x2−2x dx

= z1e
− ln(x)

4 + ln(x−1)
2

= z1

(√
x− 1
x1/4

)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x−1

2x2−2x dx

(y1)2
dx

= y1

∫
e−

ln(x)
2 +ln(x−1)

(y1)2
dx

= y1

(
2(x+ 1) e−

ln(x)
2 +ln(x−1)

x− 1

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(
√
x

(
2(x+ 1) e−

ln(x)
2 +ln(x−1)

x− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x(x− 1)
(

d2

dx2y(x)
)
− (x+ 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − y(x)
2x(x−1) +

(x+1)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

2x(x−1) + y(x)
2x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x+1
2x(x−1) , P3(x) = 1

2x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x(x− 1)
(

d2

dx2y(x)
)
+ (−x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2

(
k + r − 1

2

)
(k + r − 1) ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (2k+2r−1)(k+r−1)ak

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = (2k−1)(k−1)ak

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (x+ 1)

• Recursion relation for r = 1
2

ak+1 =
2k
(
k− 1

2
)
ak(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2k
(
k− 1

2
)
ak(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) = a0 · (x+ 1) +
(

∞∑
k=0

bkx
k+ 1

2

)
, bk+1 =

2k
(
k− 1

2
)
bk(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve(2*x*(x-1)*diff(diff(y(x),x),x)-(x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c2

√
x+ c1x+ c1
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Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 21� �
DSolve[{2*x*(x-1)*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1

√
x− 2c2(x+ 1)
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2.1.770 problem 792

Solved as second order ode using Kovacic algorithm . . . . . . . . .5160
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5162
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5164
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5164
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5164

Internal problem ID [9618]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 792
Date solved : Thursday, December 12, 2024 at 10:14:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + 2y′ + 4xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.175 (sec)

Writing the ode as

xy′′ + 2y′ + 4xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = 4x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1463: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (2x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (2x)

x

)
+ c2

(
cos (2x)

x

(
tan (2x)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + 4xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ 4y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 4

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + 4xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − 4ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − 4ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − 4ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − 4ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − 4ak

(k+1)(k+2) , 0 = 0, bk+2 = − 4bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+4*x*y(x) = 0,

y(x),singsol=all)� �
y = c1 sin (2x) + c2 cos (2x)

x

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+4*x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−2ix − ic2e

2ix

4x
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2.1.771 problem 793

Solved as second order ode using Kovacic algorithm . . . . . . . . .5165
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5167
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5169
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5169
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5169

Internal problem ID [9619]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 793
Date solved : Thursday, December 12, 2024 at 10:14:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (2− 2x) y′ + (x− 2) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.102 (sec)

Writing the ode as

xy′′ + (2− 2x) y′ + (x− 2) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2− 2x (3)
C = x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1465: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2−2x

x
dx

= z1e
x−ln(x)

= z1

(
ex
x

)

Which simplifies to

y1 =
ex
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2−2x

x
dx

(y1)2
dx

= y1

∫
e2x−2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
x

)
+ c2

(
ex
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 2)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−2)y(x)
x

+
2
(

d
dx

y(x)
)
(x−1)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)
(x−1)

x
+ (x−2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x−1)
x

, P3(x) = x−2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 2)

(
d
dx
y(x)

)
+ (x− 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r)− 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 2 + r)− 2ak(k + 1 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r)− 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 2 + r)− 2akk − 2akr − 2ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− 2ak+1(k + 1)− 2rak+1 − 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak+4ak+1

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3) , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0, bk+2 = 2kbk+1−bk+4bk+1
(k+2)(k+3) , 2b1 − 2b0 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve(x*diff(diff(y(x),x),x)+(-2*x+2)*diff(y(x),x)+(x-2)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c1x+ c2)

x

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]+(2-2*x)*D[y[x],x]+(x-2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)

x
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2.1.772 problem 794

Solved as second order ode using Kovacic algorithm . . . . . . . . .5170
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5172
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5174
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5174
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5174

Internal problem ID [9620]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 794
Date solved : Thursday, December 12, 2024 at 10:14:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.184 (sec)

Writing the ode as

x2y′′ + 6xy′ +
(
4x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 6x (3)
C = 4x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1467: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6x
x2 dx

= z1e
−3 ln(x)

= z1

(
1
x3

)

Which simplifies to

y1 =
cos (2x)

x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 6x

x2 dx

(y1)2
dx

= y1

∫
e−6 ln(x)

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (2x)

x3

)
+ c2

(
cos (2x)

x3

(
tan (2x)

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 6x

(
d
dx
y(x)

)
+ (4x2 + 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
2x2+3

)
y(x)

x2 −
6
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
6
(

d
dx

y(x)
)

x
+ 2

(
2x2+3

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 6

x
, P3(x) = 2

(
2x2+3

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 6x

(
d
dx
y(x)

)
+ (4x2 + 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2
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xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (2 + r)xr + a1(4 + r) (3 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 3) (k + r + 2) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−2}

• Each term must be 0
a1(4 + r) (3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r + 2) + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 5 + r) (k + 4 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

(k+5+r)(k+4+r)

• Recursion relation for r = −3
ak+2 = − 4ak

(k+2)(k+1)

• Solution for r = −3[
y(x) =

∞∑
k=0

akx
k−3, ak+2 = − 4ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −2
ak+2 = − 4ak

(k+3)(k+2)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − 4ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−2
)
, ak+2 = − 4ak

(k+1)(k+2) , a1 = 0, bk+2 = − 4bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+6*diff(y(x),x)*x+(4*x^2+6)*y(x) = 0,

y(x),singsol=all)� �
y = c1 sin (2x) + c2 cos (2x)

x3

Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]+6*x*D[y[x],x]+(4*x^2+6)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−2ix − ic2e

2ix

4x3
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2.1.773 problem 795

Solved as second order ode using Kovacic algorithm . . . . . . . . .5175
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5179
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5180
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5180
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5181

Internal problem ID [9621]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 795
Date solved : Thursday, December 12, 2024 at 10:14:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.204 (sec)

Writing the ode as

xy′′ + (1− 2x) y′ + (x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1− 2x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1469: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2



chapter 2. book solved problems 5177

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−2x

x
dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−2x

x
dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x

+
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+ (x−1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)+(1-2*x)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 17� �
DSolve[{x*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2 log(x) + c1)



chapter 2. book solved problems 5182

2.1.774 problem 796

Solved as second order ode using Kovacic algorithm . . . . . . . . .5182
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5186
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5187
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5188
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5188

Internal problem ID [9622]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 796
Date solved : Thursday, December 12, 2024 at 10:14:41 AM
CAS classification : [_Jacobi]

Solve

x(1− x) y′′ +
(
1
2 + 2x

)
y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.335 (sec)

Writing the ode as

(
−x2 + x

)
y′′ +

(
1
2 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = 1
2 + 2x (3)

C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 48x− 3
16 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = 48x− 3

t = 16
(
x2 − x

)2



chapter 2. book solved problems 5183

Therefore eq. (4) becomes

z′′(x) =
(

48x− 3
16 (x2 − x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1471: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 45
16 (−1 + x)2

+ 21
8x − 3

16x2 − 21
8 (−1 + x)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = 1 let b be the coefficient of 1
(−1+x)2 in the partial fractions decomposition

of r given above. Therefore b = 45
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 9

4
α−
c = 1

2 −
√
1 + 4b = −5

4
Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 48x− 3
16 (x2 − x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

1 2 0 9
4 −5

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
4x − 5

4 (−1 + x) + (0)

= 1
4x − 5

4 (−1 + x)

= − 4x+ 1
4x (−1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x − 5

4 (−1 + x)

)
(1) +

((
− 1
4x2 + 5

4 (−1 + x)2
)
+
(

1
4x − 5

4 (−1 + x)

)2

−
(

48x− 3
16 (x2 − x)2

))
= 0

−1 + 4a0
2x (−1 + x) = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 =

1
4

}
Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1
4

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x+ 1

4

)
e
∫ ( 1

4x−
5

4(−1+x)

)
dx

=
(
x+ 1

4

)
e

ln(x)
4 − 5 ln(−1+x)

4

=
(
x+ 1

4

)
x1/4

(−1 + x)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

1
2+2x

−x2+x
dx

= z1e
− ln(x)

4 + 5 ln(−1+x)
4

= z1

(
(−1 + x)5/4

x1/4

)

Which simplifies to

y1 = x+ 1
4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

1
2+2x

−x2+x
dx

(y1)2
dx

= y1

∫
e−

ln(x)
2 + 5 ln(−1+x)

2

(y1)2
dx

= y1

−

√
x
√
−1 + x

(
12 ln

(
−1

2 + x+
√
x (−1 + x)

)
x− 4

√
x (−1 + x)x+ 3 ln

(
−1

2 + x+
√

x (−1 + x)
)
− 26

√
x (−1 + x)

)
√

x (−1 + x) (4x+ 1)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
x+ 1

4

)
+ c2

x

+1
4

−

√
x
√
−1 + x

(
12 ln

(
−1

2 + x+
√
x (−1 + x)

)
x− 4

√
x (−1 + x)x+ 3 ln

(
−1

2 + x+
√
x (−1 + x)

)
− 26

√
x (−1 + x)

)
√

x (−1 + x) (4x+ 1)



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x(1− x)
(

d2

dx2y(x)
)
+
(1
2 + 2x

) (
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − 2y(x)
x(x−1) +

(4x+1)
(

d
dx

y(x)
)

2x(x−1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(4x+1)

(
d
dx

y(x)
)

2x(x−1) + 2y(x)
x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 4x+1
2x(x−1) , P3(x) = 2

x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x(x− 1)
(

d2

dx2y(x)
)
+ (−4x− 1)

(
d
dx
y(x)

)
+ 4y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 1..2
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xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + 2ak(k + r − 1) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + 2ak(k + r − 1) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)(k+r−2)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = 2ak(k−1)(k−2)

(k+1)(2k+1)

• Apply recursion relation for k = 0
a1 = 4a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(x) = a0 · (4x+ 1)

• Recursion relation for r = 1
2

ak+1 =
2ak
(
k− 1

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+1 =
2ak
(
k− 1

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) = a0 · (4x+ 1) +
(

∞∑
k=0

bkx
k+ 1

2

)
, bk+1 =

2bk
(
k− 1

2
)(
k− 3

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 53� �
dsolve(x*(1-x)*diff(diff(y(x),x),x)+(1/2+2*x)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = (−12x− 3) c2 ln

(
−1 + 2x+ 2

√
x (x− 1)

)
+ (4x+ 26) c2

√
x (x− 1) + 4(3c2 ln (2) + c1)

(
x+ 1

4

)

Mathematica DSolve solution

Solving time : 0.181 (sec)
Leaf size : 64� �
DSolve[{x*(1-x)*D[y[x],{x,2}]+(1/2+2*x)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2c2
(√

−((x− 1)x)(2x+ 13)− 6(4x+ 1) arctan
(√

1− x√
x+ 1

))
+ c1

(
x+ 1

4

)
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2.1.775 problem 797

Solved as second order ode using Kovacic algorithm . . . . . . . . .5189
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5193
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5194
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5195
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5195

Internal problem ID [9623]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 797
Date solved : Thursday, December 12, 2024 at 10:14:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4
(
t2 − 3t+ 2

)
y′′ − 2y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.303 (sec)

Writing the ode as (
4t2 − 12t+ 8

)
y′′ − 2y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4t2 − 12t+ 8
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4t2 + 20t− 19
16 (t2 − 3t+ 2)2

(6)

Comparing the above to (5) shows that

s = −4t2 + 20t− 19

t = 16
(
t2 − 3t+ 2

)2
Therefore eq. (4) becomes

z′′(t) =
(
−4t2 + 20t− 19
16 (t2 − 3t+ 2)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1473: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(t2 − 3t+ 2)2. There is a pole at t = 2 of order 2. There is a pole at t = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (t− 2)2

− 3
16 (t− 1)2

+ 3
8 (t− 1) −

3
8 (t− 2)

For the pole at t = 2 let b be the coefficient of 1
(t−2)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at t = 1 let b be the coefficient of 1

(t−1)2 in the partial fractions decomposition
of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −4t2 + 20t− 19

16 (t2 − 3t+ 2)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −4t2 + 20t− 19
16 (t2 − 3t+ 2)2

pole c location pole order [
√
r]c α+

c α−
c

2 2 0 5
4 −1

4

1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (−)[

√
r]∞

= − 1
4 (t− 2) +

3
4 (t− 1) + (−) (0)

= − 1
4 (t− 2) +

3
4 (t− 1)

= 2t− 5
4 (t− 1) (t− 2)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (t− 2) +

3
4 (t− 1)

)
(0) +

((
1

4 (t− 2)2
− 3

4 (t− 1)2
)
+
(
− 1
4 (t− 2) +

3
4 (t− 1)

)2

−
(
−4t2 + 20t− 19
16 (t2 − 3t+ 2)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ (

− 1
4(t−2)+

3
4(t−1)

)
dt

= (t− 1)3/4

(t− 2)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−2

4t2−12t+8 dt

= z1e
− ln(t−1)

4 + ln(t−2)
4

= z1

(
(t− 2)1/4

(t− 1)1/4

)

Which simplifies to
y1 =

√
t− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− −2

4t2−12t+8 dt

(y1)2
dt

= y1

∫
e−

ln(t−1)
2 + ln(t−2)

2

(y1)2
dt

= y1

(
−2

√
t− 2√
t− 1

+
ln
(
−3

2 + t+
√
t2 − 3t+ 2

)√
(t− 1) (t− 2)

√
t− 2

√
t− 1

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

t− 1
)
+ c2

(
√
t− 1

(
−2

√
t− 2√
t− 1

+
ln
(
−3

2 + t+
√
t2 − 3t+ 2

)√
(t− 1) (t− 2)

√
t− 2

√
t− 1

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

4(t2 − 3t+ 2)
(

d2

dt2
y(t)

)
− 2 d

dt
y(t) + y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = − y(t)

4(t2−3t+2) +
d
dt
y(t)

2(t2−3t+2)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)−

d
dt
y(t)

2(t2−3t+2) +
y(t)

4(t2−3t+2) = 0
� Check to see if t0 is a regular singular point

◦ Define functions[
P2(t) = − 1

2(t2−3t+2) , P3(t) = 1
4(t2−3t+2)

]
◦ (t− 1) · P2(t) is analytic at t = 1

((t− 1) · P2(t))
∣∣∣∣
t=1

= 1
2

◦ (t− 1)2 · P3(t) is analytic at t = 1(
(t− 1)2 · P3(t)

) ∣∣∣∣
t=1

= 0

◦ t = 1is a regular singular point
Check to see if t0 is a regular singular point
t0 = 1

• Multiply by denominators

(4t2 − 12t+ 8)
(

d2

dt2
y(t)

)
− 2 d

dt
y(t) + y(t) = 0

• Change variables using t = u+ 1 so that the regular singular point is at u = 0

(4u2 − 4u)
(

d2

du2y(u)
)
− 2 d

du
y(u) + y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r) (2k + 1 + 2r) + ak(2k + 2r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−2r(−1 + 2r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 − 4(k + 1 + r) ak+1

(
k + r + 1

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(2k+2r−1)2

2(k+1+r)(2k+1+2r)

• Recursion relation for r = 0
ak+1 = ak(2k−1)2

2(k+1)(2k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(2k−1)2

2(k+1)(2k+1)

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k , ak+1 = ak(2k−1)2
2(k+1)(2k+1)

]
• Recursion relation for r = 1

2

ak+1 = 2akk2(
k+ 3

2
)
(2k+2)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 = 2akk2(
k+ 3

2
)
(2k+2)

]
• Revert the change of variables u = t− 1[

y(t) =
∞∑
k=0

ak(t− 1)k+
1
2 , ak+1 = 2akk2(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(t) =
(

∞∑
k=0

ak(t− 1)k
)
+
(

∞∑
k=0

bk(t− 1)k+
1
2

)
, ak+1 = ak(2k−1)2

2(k+1)(2k+1) , bk+1 = 2bkk2(
k+ 3

2
)
(2k+2)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.028 (sec)
Leaf size : 56� �
dsolve(4*(t^2-3*t+2)*diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 0,

y(t),singsol=all)� �

y = c1
√
t− 1 +

c2

(
−
(
− ln(2)+ln

(
−3+2t+2

√
(t−1)(t−2)

))√
t2−3t+2

2 + t− 2
)

√
t− 2

Mathematica DSolve solution

Solving time : 0.188 (sec)
Leaf size : 53� �
DSolve[{4*(t^2-3*t+2)*D[y[t],{t,2}]-2*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) →

√
1− t

−2c2arctanh

 1√
t−1
t−2

+ 2c2√
t−1
t−2

+ c1
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2.1.776 problem 798

Solved as second order ode using Kovacic algorithm . . . . . . . . .5196
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5200
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5202
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5202
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5202

Internal problem ID [9624]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 798
Date solved : Thursday, December 12, 2024 at 10:14:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2
(
t2 − 5t+ 6

)
y′′ + (2t− 3) y′ − 8y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.287 (sec)

Writing the ode as (
2t2 − 10t+ 12

)
y′′ + (2t− 3) y′ − 8y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2t2 − 10t+ 12
B = 2t− 3 (3)
C = −8

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

(6)

Comparing the above to (5) shows that

s = 60t2 − 308t+ 381

t = 16
(
t2 − 5t+ 6

)2
Therefore eq. (4) becomes

z′′(t) =
(
60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1475: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(t2 − 5t+ 6)2. There is a pole at t = 3 of order 2. There is a pole at t = 2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16 (t− 2)2

− 29
8 (t− 2) −

3
16 (t− 3)2

+ 29
8 (t− 3)

For the pole at t = 3 let b be the coefficient of 1
(t−3)2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at t = 2 let b be the coefficient of 1

(t−2)2 in the partial fractions decomposition
of r given above. Therefore b = 5

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 60t2 − 308t+ 381

16 (t2 − 5t+ 6)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

pole c location pole order [
√
r]c α+

c α−
c

3 2 0 3
4

1
4

2 2 0 5
4 −1

4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 5

2 then

d = α+
∞ −

(
α−
c1 + α+

c2

)
= 5

2 −
(
3
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

t− c2

)
+ (+)[

√
r]∞

= 1
4t− 12 + 5

4 (t− 2) + (0)

= 1
4t− 12 + 5

4 (t− 2)

= 6t− 17
4 (t− 2) (t− 3)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 1 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(t) = t+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4t− 12 + 5

4 (t− 2)

)
(1) +

((
− 1
4 (t− 3)2

− 5
4 (t− 2)2

)
+
(

1
4t− 12 + 5

4 (t− 2)

)2

−
(
60t2 − 308t+ 381
16 (t2 − 5t+ 6)2

))
= 0

−6a0 − 17
2t2 − 10t+ 12 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives{
a0 = −17

6

}
Substituting these coefficients in p(t) in eq. (2A) results in

p(t) = t− 17
6

Therefore the first solution to the ode z′′ = rz is

z1(t) = pe
∫
ω dt

=
(
t− 17

6

)
e
∫ ( 1

4t−12+
5

4(t−2)

)
dt

=
(
t− 17

6

)
e

ln(t−3)
4 + 5 ln(t−2)

4

=
(
t− 17

6

)
(t− 3)1/4 (t− 2)5/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2t−3

2t2−10t+12 dt

= z1e
− 3 ln(t−3)

4 + ln(t−2)
4

= z1

(
(t− 2)1/4

(t− 3)3/4

)

Which simplifies to

y1 =
(t− 2)3/2 (6t− 17)

6
√
t− 3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 2t−3

2t2−10t+12 dt

(y1)2
dt

= y1

∫
e−

3 ln(t−3)
2 + ln(t−2)

2

(y1)2
dt

= y1

(
24(t− 3)2 (24t2 − 104t+ 111) e−

3 ln(t−3)
2 + ln(t−2)

2

5 (6t− 17) (t− 2)2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
(t− 2)3/2 (6t− 17)

6
√
t− 3

)

+ c2

(
(t− 2)3/2 (6t− 17)

6
√
t− 3

(
24(t− 3)2 (24t2 − 104t+ 111) e−

3 ln(t−3)
2 + ln(t−2)

2

5 (6t− 17) (t− 2)2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2(t2 − 5t+ 6)
(

d2

dt2
y(t)

)
+ (2t− 3)

(
d
dt
y(t)

)
− 8y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative

d2

dt2
y(t) = 4y(t)

t2−5t+6 −
(2t−3)

(
d
dt
y(t)

)
2(t2−5t+6)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dt2
y(t) +

(2t−3)
(

d
dt
y(t)

)
2(t2−5t+6) − 4y(t)

t2−5t+6 = 0
� Check to see if t0 is a regular singular point

◦ Define functions[
P2(t) = 2t−3

2(t2−5t+6) , P3(t) = − 4
t2−5t+6

]
◦ (t− 2) · P2(t) is analytic at t = 2

((t− 2) · P2(t))
∣∣∣∣
t=2

= −1
2

◦ (t− 2)2 · P3(t) is analytic at t = 2(
(t− 2)2 · P3(t)

) ∣∣∣∣
t=2

= 0

◦ t = 2is a regular singular point
Check to see if t0 is a regular singular point
t0 = 2

• Multiply by denominators

(2t2 − 10t+ 12)
(

d2

dt2
y(t)

)
+ (2t− 3)

(
d
dt
y(t)

)
− 8y(t) = 0

• Change variables using t = u+ 2 so that the regular singular point is at u = 0

(2u2 − 2u)
(

d2

du2y(u)
)
+ (2u+ 1)

(
d
du
y(u)

)
− 8y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak(k + r + 2) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r − 1

2

)
ak+1 + 2ak(k + r + 2) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)(k+r−2)

(k+1+r)(2k−1+2r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = 2ak(k+2)(k−2)

(k+1)(2k−1)

• Apply recursion relation for k = 0
a1 = 8a0

• Apply recursion relation for k = 1
a2 = −3a1

• Express in terms of a0
a2 = −24a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−24u2 + 8u+ 1)

• Revert the change of variables u = t− 2
[y(t) = a0(−24t2 + 104t− 111)]

• Recursion relation for r = 3
2

ak+1 =
2ak
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
2ak
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

]
• Revert the change of variables u = t− 2[

y(t) =
∞∑
k=0

ak(t− 2)k+
3
2 , ak+1 =

2ak
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(t) = a0(−24t2 + 104t− 111) +
(

∞∑
k=0

bk(t− 2)k+
3
2

)
, bk+1 =

2bk
(
k+ 7

2
)(
k− 1

2
)(

k+ 5
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.038 (sec)
Leaf size : 35� �
dsolve(2*(t^2-5*t+6)*diff(diff(y(t),t),t)+(2*t-3)*diff(y(t),t)-8*y(t) = 0,

y(t),singsol=all)� �
y = c1(24t2 − 104t+ 111)

24 + c2(6t− 17) (t− 2)3/2√
t− 3

Mathematica DSolve solution

Solving time : 0.467 (sec)
Leaf size : 140� �
DSolve[{2*(t^2-5*t+6)*D[y[t],{t,2}]+(2*t-3)*D[y[t],t]-8*y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t)

→
4
√
2− t 4

√
t− 3(t− 2)5/4

(
5c1(6t− 17)− 24c2

(√
t−2−1

)√
t−3

(
−t2+

(
4
√
t−2−2

)
t−4

√
t−2+7

)(
24t2−104t+111

)(
−t+

√
t−2+2

)3(−t+2
√
t−2+1

) )
30(3− t)3/4
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2.1.777 problem 799

Solved as second order ode using Kovacic algorithm . . . . . . . . .5203
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5207
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5209
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5209
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5209

Internal problem ID [9625]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 799
Date solved : Thursday, December 12, 2024 at 10:14:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

3t(1 + t) y′′ + ty′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.327 (sec)

Writing the ode as (
3t2 + 3t

)
y′′ + ty′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3t2 + 3t
B = t (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7t+ 12
36t (1 + t)2

(6)

Comparing the above to (5) shows that

s = 7t+ 12
t = 36t(1 + t)2

Therefore eq. (4) becomes

z′′(t) =
(

7t+ 12
36t (1 + t)2

)
z(t) (7)
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Equation (7) is now solved. After finding z(t) then y is found using the inverse transfor-
mation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1477: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 36t(1 + t)2. There is a pole at t = 0 of order 1. There is a pole at t = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at t = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
3 (1 + t) −

5
36 (1 + t)2

+ 1
3t

For the pole at t = −1 let b be the coefficient of 1
(1+t)2 in the partial fractions decomposition

of r given above. Therefore b = − 5
36 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

6
α−
c = 1

2 −
√
1 + 4b = 1

6
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

t2
in the Laurent

series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 7t+ 12

36t (1 + t)2

Since the gcd(s, t) = 1. This gives b = 7
36 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

6
α−
∞ = 1

2 −
√
1 + 4b = −1

6
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7t+ 12
36t (1 + t)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
−1 2 0 5

6
1
6

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
6 −1

6

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 7

6 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 7

6 −
(
7
6

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

t− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

t− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

t− c2

)
+ (+)[

√
r]∞

= 1
t
+ 1

6 + 6t + (0)

= 1
t
+ 1

6 + 6t
= 1

t
+ 1

6 + 6t
Now that ω is determined, the next step is find a corresponding minimal polynomial p(t)
of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(t) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
t
+ 1

6 + 6t

)
(0) +

((
− 1
t2

− 1
6 (1 + t)2

)
+
(
1
t
+ 1

6 + 6t

)2

−
(

7t+ 12
36t (1 + t)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(t) = pe
∫
ω dt

= e
∫ ( 1

t
+ 1

6+6t

)
dt

= t(1 + t)1/6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
t

3t2+3t dt

= z1e
− ln(1+t)

6

= z1

(
1

(1 + t)1/6

)

Which simplifies to
y1 = t

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− t

3t2+3t dt

(y1)2
dt

= y1

∫
e−

ln(1+t)
3

(y1)2
dt

= y1

 −2(1 + t)1/3 − 1
3 (1 + t)2/3 + 3 (1 + t)1/3 + 3

+
ln
(
(1 + t)2/3 + (1 + t)1/3 + 1

)
6

−

√
3 arctan

((
1+2(1+t)1/3

)√
3

3

)
3 − 1

3
(
(1 + t)1/3 − 1

) −
ln
(
(1 + t)1/3 − 1

)
3


Therefore the solution is
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y = c1y1 + c2y2

= c1(t) + c2

t

 −2(1 + t)1/3 − 1
3 (1 + t)2/3 + 3 (1 + t)1/3 + 3

+
ln
(
(1 + t)2/3 + (1 + t)1/3 + 1

)
6

−

√
3 arctan

((
1+2(1+t)1/3

)√
3

3

)
3 − 1

3
(
(1 + t)1/3 − 1

) −
ln
(
(1 + t)1/3 − 1

)
3




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

3t(t+ 1)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Highest derivative means the order of the ODE is 2
d2

dt2
y(t)

• Isolate 2nd derivative
d2

dt2
y(t) = y(t)

3t(t+1) −
d
dt
y(t)

3(t+1)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) +

d
dt
y(t)

3(t+1) −
y(t)

3t(t+1) = 0
� Check to see if t0 is a regular singular point

◦ Define functions[
P2(t) = 1

3(t+1) , P3(t) = − 1
3t(t+1)

]
◦ (t+ 1) · P2(t) is analytic at t = −1

((t+ 1) · P2(t))
∣∣∣∣
t=−1

= 1
3

◦ (t+ 1)2 · P3(t) is analytic at t = −1(
(t+ 1)2 · P3(t)

) ∣∣∣∣
t=−1

= 0

◦ t = −1is a regular singular point
Check to see if t0 is a regular singular point
t0 = −1

• Multiply by denominators

3t(t+ 1)
(

d2

dt2
y(t)

)
+ t
(

d
dt
y(t)

)
− y(t) = 0

• Change variables using t = u− 1 so that the regular singular point is at u = 0

(3u2 − 3u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−2 + 3r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (3k + 3r + 1) + ak(3k + 3r + 1) (k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 23
}

• Each term in the series must be 0, giving the recursion relation
3
(
k + r + 1

3

)
((−k − r − 1) ak+1 + ak(k + r − 1)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+1+r

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k−1)

k+1

• Apply recursion relation for k = 0
a1 = −a0

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = t+ 1
[y(t) = −a0t]

• Recursion relation for r = 2
3

ak+1 =
ak
(
k− 1

3
)

k+ 5
3

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+1 =
ak
(
k− 1

3
)

k+ 5
3

]
• Revert the change of variables u = t+ 1[

y(t) =
∞∑
k=0

ak(t+ 1)k+
2
3 , ak+1 =

ak
(
k− 1

3
)

k+ 5
3

]
• Combine solutions and rename parameters[

y(t) = −a0t+
(

∞∑
k=0

bk(t+ 1)k+
2
3

)
, bk+1 =

bk
(
k− 1

3
)

k+ 5
3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.063 (sec)
Leaf size : 67� �
dsolve(3*t*(t+1)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0,

y(t),singsol=all)� �
y = c1t+ 2

√
3 arctan


(
2(t+ 1)1/3 + 1

)√
3

3

 tc2

− ln
(
(t+ 1)2/3 + (t+ 1)1/3 + 1

)
tc2 + 2 ln

(
(t+ 1)1/3 − 1

)
tc2 + 6(t+ 1)2/3 c2

Mathematica DSolve solution

Solving time : 0.179 (sec)
Leaf size : 93� �
DSolve[{3*t*(1+t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t)

→
6c1t− c2

(
2
√
3t arctan

(
2

3
√
t+ 1+1√

3

)
+ 6(t+ 1)2/3 + 2t log

(
3
√
t+ 1− 1

)
− t log

(
(t+ 1)2/3 + 3

√
t+ 1 + 1

))
6 6
√
3
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2.1.778 problem 800

Solved as second order ode using Kovacic algorithm . . . . . . . . .5210
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5213
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5215
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5215
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5215

Internal problem ID [9626]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 800
Date solved : Thursday, December 12, 2024 at 10:14:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
x+ 3

4

)
y

4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as

x2y′′ +
(
x

4 + 3
16

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)

C = x

4 + 3
16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4x− 3
16x2 (6)

Comparing the above to (5) shows that

s = −4x− 3
t = 16x2
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Therefore eq. (4) becomes

z′′(x) =
(
−4x− 3
16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1479: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x − 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.
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pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1 + 4x
16x2 = 0

Solving for ω gives

ω = 1 + 2
√
−x

4x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+2

√
−x

4x dx

= x1/4e
√
−x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x1/4e
√
−x

Which simplifies to

y1 = x1/4e
√
−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x1/4e
√
−x

∫ 1
√
x e2

√
−x

dx

= x1/4e
√
−x

−

√
−x
(
1− e−2

√
−x
)

√
x



Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/4e

√
−x
)
+ c2

x1/4e
√
−x

−

√
−x
(
1− e−2

√
−x
)

√
x



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+
( 3
4+x

)
y(x)

4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (3+4x)y(x)
16x2
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• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + (3+4x)y(x)
16x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 3+4x
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ (3 + 4x) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)xr +
(

∞∑
k=1

(ak(4k + 4r − 1) (4k + 4r − 3) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term in the series must be 0, giving the recursion relation

16
(
k − 3

4 + r
) (

k + r − 1
4

)
ak + 4ak−1 = 0

• Shift index using k− >k + 1
16
(
k + 1

4 + r
) (

k + 3
4 + r

)
ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(4k+1+4r)(4k+3+4r)

• Recursion relation for r = 1
4

ak+1 = − 4ak
(4k+2)(4k+4)

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+1 = − 4ak
(4k+2)(4k+4)

]
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• Recursion relation for r = 3
4

ak+1 = − 4ak
(4k+4)(4k+6)

• Solution for r = 3
4[

y(x) =
∞∑
k=0

akx
k+ 3

4 , ak+1 = − 4ak
(4k+4)(4k+6)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+1 = − 4ak

(4k+2)(4k+4) , bk+1 = − 4bk
(4k+4)(4k+6)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+1/4*(x+3/4)*y(x) = 0,

y(x),singsol=all)� �
y = x1/4(c1 sin (√x

)
+ c2 cos

(√
x
))

Mathematica DSolve solution

Solving time : 0.068 (sec)
Leaf size : 43� �
DSolve[{x^2*D[y[x],{x,2}]+1/4*(x+3/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−i

√
x 4
√
x
(
c1e

2i
√
x + ic2

)
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2.1.779 problem 801

Solved as second order ode using Kovacic algorithm . . . . . . . . .5216
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5218
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5220
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5220
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5220

Internal problem ID [9627]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 801
Date solved : Thursday, December 12, 2024 at 10:14:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ + (x2 − 1) y
4 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.194 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2

4 − 1
4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2

4 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4 (6)

Comparing the above to (5) shows that

s = −1
t = 4



chapter 2. book solved problems 5217

Therefore eq. (4) becomes

z′′(x) = −z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1481: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(x
2

)
Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos
(
x
2

)
√
x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1
(
2 tan

(x
2

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos
(
x
2

)
√
x

)
+ c2

(
cos
(
x
2

)
√
x

(
2 tan

(x
2

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2−1

)
y(x)

4 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − ak

4k2+12k+8 , a1 = 0, bk+2 = − bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+1/4*(x^2-1)*y(x) = 0,

y(x),singsol=all)� �
y =

c1 sin
(
x
2

)
+ c2 cos

(
x
2

)
√
x

Mathematica DSolve solution

Solving time : 0.053 (sec)
Leaf size : 36� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+1/4*(x^2-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

ix
2 (c1 − ic2e

ix)√
x
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2.1.780 problem 802

Solved as second order ode using Kovacic algorithm . . . . . . . . .5221
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5225
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5226
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5226
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5227

Internal problem ID [9628]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 802
Date solved : Thursday, December 12, 2024 at 10:14:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1− 2x) y′ + (x− 1) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.213 (sec)

Writing the ode as

xy′′ + (1− 2x) y′ + (x− 1) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1− 2x (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1483: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1−2x

x
dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1−2x

x
dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ln (x)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x−1)y(x)
x

+
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+ (x−1)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = x−1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2x+ 1)

(
d
dx
y(x)

)
+ (x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r
2x−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + (−2k − 1) ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2)2 + (−2k − 3) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+3ak+1

(k+2)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+3ak+1

(k+2)2 , a1 − a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)+(1-2*x)*diff(y(x),x)+(x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2 ln (x) + c1)
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Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 17� �
DSolve[{x*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+(x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2 log(x) + c1)
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2.1.781 problem 803

Solved as second order ode using Kovacic algorithm . . . . . . . . .5228
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5232
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5234
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5234
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5234

Internal problem ID [9629]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 803
Date solved : Thursday, December 12, 2024 at 10:14:45 AM
CAS classification : [_Laguerre]

Solve

xy′′ − (x+ 1) y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.263 (sec)

Writing the ode as

xy′′ + (−x− 1) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −x− 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2x+ 3
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 2x+ 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 2x+ 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1485: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2x + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

2x2 + 1
2x3 + 1

4x4 − 1
4x5 − 3

4x6 − 3
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 2x+ 3
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−2x+ 3

4x2

)
= 1

4 + −2x+ 3
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 2x+ 3
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = −1

2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2x +

(
1
2

)
= 1

2 − 1
2x

= x− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 − 1

2x

)
(0) +

((
1
2x2

)
+
(
1
2 − 1

2x

)2

−
(
x2 − 2x+ 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2−
1
2x
)
dx

= ex
2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x−1

x
dx

= z1e
x
2+

ln(x)
2

= z1
(√

x ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x−1

x
dx

(y1)2
dx

= y1

∫
ex+ln(x)

(y1)2
dx

= y1

(
−(x+ 1) ex+ln(x)e−2x

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
−(x+ 1) ex+ln(x)e−2x

x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (x+ 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)
x

+
(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+1)

(
d
dx

y(x)
)

x
+ y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+1
x
, P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−x− 1)

(
d
dx
y(x)

)
+ y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−2 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak

k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = ak

k+3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13� �
dsolve(x*diff(diff(y(x),x),x)-(x+1)*diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = exc2 + c1x+ c1

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 19� �
DSolve[{x*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x − c2(x+ 1)
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2.1.782 problem 804

Solved as second order ode using Kovacic algorithm . . . . . . . . .5235
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5239
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5241
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5241
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5241

Internal problem ID [9630]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 804
Date solved : Thursday, December 12, 2024 at 10:14:46 AM
CAS classification : [[_Emden, _Fowler]]

Solve

xy′′ + 3y′ + 4x3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.323 (sec)

Writing the ode as

xy′′ + 3y′ + 4x3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 3 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1487: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
x
dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

x
dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ 4x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)
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• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − 4ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − 4bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 21� �
dsolve(x*diff(diff(y(x),x),x)+3*diff(y(x),x)+4*y(x)*x^3 = 0,

y(x),singsol=all)� �
y = c1 sin (x2) + c2 cos (x2)

x2

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 41� �
DSolve[{x*D[y[x],{x,2}]+3*D[y[x],x]+4*x^3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−ix2 − ic2e

ix2

4x2
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2.1.783 problem 805

Solved as second order ode using Kovacic algorithm . . . . . . . . .5242
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5246
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5246
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5246
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5246

Internal problem ID [9631]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 805
Date solved : Thursday, December 12, 2024 at 10:14:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 1
)
y′′ + 2x

(
−x2 + 1

)
y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.247 (sec)

Writing the ode as (
−x4 + x2) y′′ + (−2x3 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + x2

B = −2x3 + 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
x2 (x2 − 1) (6)

Comparing the above to (5) shows that

s = −2
t = x2(x2 − 1

)
Therefore eq. (4) becomes

z′′(x) =
(
− 2
x2 (x2 − 1)

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1489: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2(x2 − 1). There is a pole at x = 0 of order 2. There is a pole at x = 1 of order
1. There is a pole at x = −1 of order 1. Since there is no odd order pole larger than 2
and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 1 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
x+ 1 − 1

x− 1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 2
x2 (x2 − 1)

pole c location pole order [
√
r]c α+

c α−
c

1 1 0 0 1
0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1− (0)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x− 1 − 1

x
+ (−) (0)

= 1
x− 1 − 1

x

= 1
x2 − x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
x− 1 − 1

x

)
(1) +

((
− 1
(x− 1)2

+ 1
x2

)
+
(

1
x− 1 − 1

x

)2

−
(
− 2
x2 (x2 − 1)

))
= 0

−2a0 + 2
x3 − x

= 0
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Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 1) e
∫ ( 1

x−1−
1
x

)
dx

= (x+ 1) eln(x−1)−ln(x)

= x2 − 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+2x
−x4+x2 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
x2 − 1
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+2x

−x4+x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
− 1
4 (x+ 1) −

ln (x+ 1)
4 − 1

4 (x− 1) +
ln (x− 1)

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 1
x2

)
+ c2

(
x2 − 1
x2

(
− 1
4 (x+ 1) −

ln (x+ 1)
4 − 1

4 (x− 1) +
ln (x− 1)

4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 47� �
dsolve(x^2*(-x^2+1)*diff(diff(y(x),x),x)+2*x*(-x^2+1)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = c2 ln (x− 1) (x2 − 1) + (−x2 + 1) c2 ln (x+ 1) + 2c1x2 − 2c2x− 2c1

2x2

Mathematica DSolve solution

Solving time : 0.093 (sec)
Leaf size : 56� �
DSolve[{x^2*(1-x^2)*D[y[x],{x,2}]+2*x*(1-x^2)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −4c1x2 − c2(x2 − 1) log(1− x) + c2(x2 − 1) log(x+ 1) + 2c2x+ 4c1

4x2
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2.1.784 problem 806

Solved as second order ode using Kovacic algorithm . . . . . . . . .5247
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5251
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5253
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5253
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5253

Internal problem ID [9632]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 806
Date solved : Thursday, December 12, 2024 at 10:14:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2xy′′ + (x− 2) y′ − y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

2xy′′ + (x− 2) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = x− 2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 12
16x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 12
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 12

16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1490: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 3

4x2 + 1
4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 1
2x + 1

x2 − 2
x3 + 2

x4 + 4
x5 − 24

x6 + 48
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 4x+ 12
16x2

= Q+ R

16x2

=
(

1
16

)
+
(
4x+ 12
16x2

)
= 1

16 + 4x+ 12
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
4
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
4
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 4x+ 12
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−)

(
1
4

)
= − 1

2x − 1
4

= −x+ 2
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

4

)
(0) +

((
1
2x2

)
+
(
− 1
2x − 1

4

)2

−
(
x2 + 4x+ 12

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
4
)
dx

= e−x
4

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x−2
2x dx

= z1e
−x

4+
ln(x)

2

= z1
(√

x e−x
4
)

Which simplifies to
y1 = e−x

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x−2

2x dx

(y1)2
dx

= y1

∫
e−

x
2+ln(x)

(y1)2
dx

= y1

(
2(x− 2) e−x

2+ln(x)ex
x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x

2
)
+ c2

(
e−x

2

(
2(x− 2) e−x

2+ln(x)ex
x

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2
(

d2

dx2y(x)
)
x+ (x− 2)

(
d
dx
y(x)

)
− y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
2x −

(x−2)
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(x−2)

(
d
dx

y(x)
)

2x − y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x−2
2x , P3(x) = − 1

2x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ (x− 2)

(
d
dx
y(x)

)
− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

2a0r(−2 + r)x−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (k + r − 1) + ak(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
2
(
ak+1(k + 1 + r) + ak

2

)
(k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2(k+1+r)

• Recursion relation for r = 0
ak+1 = − ak

2(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = − ak

2(k+1)

]
• Recursion relation for r = 2

ak+1 = − ak
2(k+3)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+1 = − ak

2(k+3)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+1 = − ak

2(k+1) , bk+1 = − bk
2(k+3)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 16� �
dsolve(2*x*diff(diff(y(x),x),x)+(x-2)*diff(y(x),x)-y(x) = 0,

y(x),singsol=all)� �
y = c1(x− 2) + e−x

2 c2

Mathematica DSolve solution

Solving time : 0.051 (sec)
Leaf size : 23� �
DSolve[{2*x*D[y[x],{x,2}]+(x-2)*D[y[x],x]-y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−x/2 + 2c2(x− 2)
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2.1.785 problem 807

Solved as second order ode using Kovacic algorithm . . . . . . . . .5254
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5256
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5258
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5258
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5258

Internal problem ID [9633]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 807
Date solved : Thursday, December 12, 2024 at 10:14:48 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.163 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1492: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.042 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.786 problem 808

Solved as second order ode using Kovacic algorithm . . . . . . . . .5259
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5261
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5262
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5262
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5262

Internal problem ID [9634]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 808
Date solved : Thursday, December 12, 2024 at 10:14:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2x2y′ +
(
x4 + 2x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.135 (sec)

Writing the ode as

y′′ + 2x2y′ +
(
x4 + 2x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x2 (3)
C = x4 + 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1494: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2
1 dx

= z1e
−x3

3

= z1
(
e−x3

3

)
Which simplifies to

y1 = e−
x
(
x2+3

)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx



chapter 2. book solved problems 5261

Substituting gives

y2 = y1

∫
e
∫
− 2x2

1 dx

(y1)2
dx

= y1

∫
e−

2x3
3

(y1)2
dx

= y1

e− 2x3
3 e

2x
(
x2+3

)
3

2


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−

x
(
x2+3

)
3

)
+ c2

e−
x
(
x2+3

)
3

e− 2x3
3 e

2x
(
x2+3

)
3

2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 2x2( d
dx
y(x)

)
+ (x4 + 2x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..4

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x2 ·
(

d
dx
y(x)

)
to series expansion

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 ·
(

d
dx
y(x)

)
=

∞∑
k=1

ak−1(k − 1)xk

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions
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2a2 − a0 + (6a3 − a1 + 2a0)x+ (12a4 − a2 + 4a1)x2 + (20a5 − a3 + 6a2)x3 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1)− ak + 2ak−1k + ak−4)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a0 = 0, 6a3 − a1 + 2a0 = 0, 12a4 − a2 + 4a1 = 0, 20a5 − a3 + 6a2 = 0]

• Solve for the dependent coefficient(s){
a2 = a0

2 , a3 =
a1
6 − a0

3 , a4 =
a0
24 −

a1
3 , a5 =

a1
120 −

a0
6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 2ak−1k − ak + ak−4 = 0
• Shift index using k− >k + 4(

(k + 4)2 + 3k + 14
)
ak+6 + 2ak+3(k + 4)− ak+4 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+6 = −2kak+3+ak+8ak+3−ak+4

k2+11k+30 , a2 = a0
2 , a3 =

a1
6 − a0

3 , a4 =
a0
24 −

a1
3 , a5 =

a1
120 −

a0
6

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)*x^2+(x^4+2*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = c1e−

x
(
x2−3

)
3 + c2e−

x
(
x2+3

)
3

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 34� �
DSolve[{D[y[x],{x,2}]+2*x^2*D[y[x],x]+(x^4+2*x-1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
− 1

3x
(
x2+3

)(
c2e

2x + 2c1
)
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2.1.787 problem 809

Solved as second order ode using Kovacic algorithm . . . . . . . . .5263
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5265
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5266
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5266
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5266

Internal problem ID [9635]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 809
Date solved : Thursday, December 12, 2024 at 10:14:49 AM
CAS classification : [[_2nd_order, _missing_x]]

Solve

u′′ + 2u′ + u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.088 (sec)

Writing the ode as

u′′ + 2u′ + u = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1496: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to
u1 = e−x

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx
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Substituting gives

u2 = u1

∫
e
∫
− 2

1 dx

(u1)2
dx

= u1

∫
e−2x

(u1)2
dx

= u1(x)

Therefore the solution is

u = c1u1 + c2u2

= c1
(
e−x
)
+ c2

(
e−x(x)

)
Will add steps showing solving for IC soon.

–6

–4

–2

0

2

4

6

u’(x)

–6 –4 –2 0 2 4 6

u(x)

Figure 2.3: Slope field plot
u′′ + 2u′ + u = 0

Maple step by step solution

Let’s solve
d2

dx2u(x) + 2 d
dx
u(x) + u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
• Characteristic polynomial of ODE

r2 + 2r + 1 = 0
• Factor the characteristic polynomial

(r + 1)2 = 0
• Root of the characteristic polynomial

r = −1
• 1st solution of the ODE

u1(x) = e−x

• Repeated root, multiply u1(x) by x to ensure linear independence
u2(x) = x e−x

• General solution of the ODE
u(x) = C1u1(x) + C2u2(x)

• Substitute in solutions
u(x) = C1 e−x + C2 e−xx
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 14� �
dsolve(diff(diff(u(x),x),x)+2*diff(u(x),x)+u(x) = 0,

u(x),singsol=all)� �
u(x) = e−x(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.023 (sec)
Leaf size : 18� �
DSolve[{D[u[x],{x,2}]+2*D[u[x],x]+u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) → e−x(c2x+ c1)
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2.1.788 problem 810

Solved as second order ode using Kovacic algorithm . . . . . . . . .5267
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5269
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5270
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5270
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5270

Internal problem ID [9636]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 810
Date solved : Thursday, December 12, 2024 at 10:14:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

u′′ − (2x+ 1)u′ +
(
x2 + x− 1

)
u = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.109 (sec)

Writing the ode as

u′′ + (−2x− 1)u′ +
(
x2 + x− 1

)
u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2x− 1 (3)
C = x2 + x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)
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Equation (7) is now solved. After finding z(x) then u is found using the inverse transfor-
mation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1498: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−1

1 dx

= z1e
1
2x

2+ 1
2x

= z1
(
e

x(x+1)
2

)
Which simplifies to

u1 = ex2
2

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx
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Substituting gives

u2 = u1

∫
e
∫
−−2x−1

1 dx

(u1)2
dx

= u1

∫
ex

2+x

(u1)2
dx

= u1

(
ex2+xe−x2

)
Therefore the solution is

u = c1u1 + c2u2

= c1
(
ex2

2

)
+ c2

(
ex2

2

(
ex2+xe−x2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2u(x)− (2x+ 1)
(

d
dx
u(x)

)
+ (x2 + x− 1)u(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2u(x)
• Isolate 2nd derivative

d2

dx2u(x) = (−x2 − x+ 1)u(x) + (2x+ 1)
(

d
dx
u(x)

)
• Group terms with u(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2u(x) + (−2x− 1)
(

d
dx
u(x)

)
+ (x2 + x− 1)u(x) = 0

• Assume series solution for u(x)

u(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · u(x) to series expansion form = 0..2

xm · u(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · u(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert xm ·
(

d
dx
u(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
u(x)

)
=

∞∑
k=max(0,1−m)

akk x
k−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
u(x)

)
=

∞∑
k=max(0,1−m)+m−1

ak+1−m(k + 1−m)xk

◦ Convert d2

dx2u(x) to series expansion

d2

dx2u(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2u(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions
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2a2 − a1 − a0 + (6a3 − 2a2 − 3a1 + a0)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak+1(k + 1)− ak(2k + 1) + ak−1 + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a1 − a0 = 0, 6a3 − 2a2 − 3a1 + a0 = 0]

• Solve for the dependent coefficient(s){
a2 = a1

2 + a0
2 , a3 =

2a1
3

}
• Each term in the series must be 0, giving the recursion relation

k2ak+2 + (−2ak − ak+1 + 3ak+2) k − ak + ak−2 + ak−1 − ak+1 + 2ak+2 = 0
• Shift index using k− >k + 2

(k + 2)2 ak+4 + (−2ak+2 − ak+3 + 3ak+4) (k + 2)− ak+2 + ak + ak+1 − ak+3 + 2ak+4 = 0
• Recursion relation that defines the series solution to the ODE[

u(x) =
∞∑
k=0

akx
k, ak+4 = 2kak+2+kak+3−ak−ak+1+5ak+2+3ak+3

k2+7k+12 , a2 = a1
2 + a0

2 , a3 =
2a1
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 22� �
dsolve(diff(diff(u(x),x),x)-(2*x+1)*diff(u(x),x)+(x^2+x-1)*u(x) = 0,

u(x),singsol=all)� �
u(x) = ex2

2 c1 + c2e
x(x+2)

2

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 24� �
DSolve[{D[u[x],{x,2}]-(2*x+1)*D[u[x],x]+(x^2+x-1)*u[x]==0,{}},

u[x],x,IncludeSingularSolutions->True]� �
u(x) → e

x2
2 (c2ex + c1)
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2.1.789 problem 811

Solved as second order ode using Kovacic algorithm . . . . . . . . .5271
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5275
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5276
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5277
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5277

Internal problem ID [9637]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 811
Date solved : Thursday, December 12, 2024 at 10:14:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2y′ +
(
1 + 2

(1 + 3x)2
)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.171 (sec)

Writing the ode as

y′′ + 2y′ +
(
1 + 2

(1 + 3x)2
)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)

C = 1 + 2
(1 + 3x)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
(1 + 3x)2

(6)

Comparing the above to (5) shows that

s = −2
t = (1 + 3x)2
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Therefore eq. (4) becomes

z′′(x) =
(
− 2
(1 + 3x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1500: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (1 + 3x)2. There is a pole at x = −1

3 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9
(
x+ 1

3

)2
For the pole at x = −1

3 let b be the coefficient of 1(
x+ 1

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 2

(1 + 3x)2

Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 2
(1 + 3x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
3 2 0 2

3
1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

3 then

d = α−
∞ −

(
α−
c1

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
1 + 3x + (−) (0)

= 1
1 + 3x

= 1
1 + 3x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
1 + 3x

)
(0) +

((
− 1
3
(
x+ 1

3

)2
)

+
(

1
1 + 3x

)2

−
(
− 2
(1 + 3x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

1+3xdx

= (1 + 3x)1/3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to

y1 = e−x(1 + 3x)1/3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1
(
(1 + 3x)1/3 e−2xe2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x(1 + 3x)1/3

)
+ c2

(
e−x(1 + 3x)1/3

(
(1 + 3x)1/3 e−2xe2x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + 2 d
dx
y(x) +

(
1 + 2

(3x+1)2

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −3
(
3x2+2x+1

)
y(x)

(3x+1)2 − 2 d
dx
y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) + 2 d
dx
y(x) + 3

(
3x2+2x+1

)
y(x)

(3x+1)2 = 0

� Check to see if x0 = −1
3 is a regular singular point

◦ Define functions[
P2(x) = 2, P3(x) = 3

(
3x2+2x+1

)
(3x+1)2

]
◦
(
x+ 1

3

)
· P2(x) is analytic at x = −1

3((
x+ 1

3

)
· P2(x)

) ∣∣∣∣
x=− 1

3

= 0

◦
(
x+ 1

3

)2 · P3(x) is analytic at x = −1
3((

x+ 1
3

)2 · P3(x)
) ∣∣∣∣

x=− 1
3

= 2
9

◦ x = −1
3 is a regular singular point

Check to see if x0 = −1
3 is a regular singular point

x0 = −1
3

• Multiply by denominators

(3x+ 1)2
(

d2

dx2y(x)
)
+ 2(3x+ 1)2

(
d
dx
y(x)

)
+ (9x2 + 6x+ 3) y(x) = 0

• Change variables using x = u− 1
3 so that the regular singular point is at u = 0

9u2
(

d2

du2y(u)
)
+ 18u2( d

du
y(u)

)
+ (9u2 + 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion

u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r
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Rewrite ODE with series expansions

a0(−1 + 3r) (−2 + 3r)ur + (a1(2 + 3r) (1 + 3r) + 18a0r)u1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (3k + 3r − 2) + 18ak−1(k − 1 + r) + 9ak−2)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

2
3

}
• Each term must be 0

a1(2 + 3r) (1 + 3r) + 18a0r = 0
• Solve for the dependent coefficient(s)

a1 = − 18a0r
9r2+9r+2

• Each term in the series must be 0, giving the recursion relation
9
(
k + r − 2

3

) (
k − 1

3 + r
)
ak + 18ak−1k + 18ak−1r + 9ak−2 − 18ak−1 = 0

• Shift index using k− >k + 2
9
(
k + 4

3 + r
) (

k + 5
3 + r

)
ak+2 + 18ak+1(k + 2) + 18ak+1r + 9ak − 18ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −9(2kak+1+2ak+1r+ak+2ak+1)

(3k+4+3r)(3k+5+3r)

• Recursion relation for r = 1
3

ak+2 = −9
(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6)

• Solution for r = 1
3[

y(u) =
∞∑
k=0

aku
k+ 1

3 , ak+2 = −9
(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6) , a1 = −a0

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k+ 1
3 , ak+2 = −9

(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6) , a1 = −a0

]
• Recursion relation for r = 2

3

ak+2 = −9
(
2kak+1+ak+ 10

3 ak+1
)

(3k+6)(3k+7)

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+2 = −9
(
2kak+1+ak+ 10

3 ak+1
)

(3k+6)(3k+7) , a1 = −a0

]
• Revert the change of variables u = x+ 1

3[
y(x) =

∞∑
k=0

ak
(
x+ 1

3

)k+ 2
3 , ak+2 = −9

(
2kak+1+ak+ 10

3 ak+1
)

(3k+6)(3k+7) , a1 = −a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak
(
x+ 1

3

)k+ 1
3

)
+
(

∞∑
k=0

bk
(
x+ 1

3

)k+ 2
3

)
, ak+2 = −9

(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6) , a1 = −a0, bk+2 = −9
(
2kbk+1+bk+ 10

3 bk+1
)

(3k+6)(3k+7) , b1 = −b0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists



chapter 2. book solved problems 5277

Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 27� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)+(1+2/(3*x+1)^2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x(3x+ 1)1/3

(
(3x+ 1)1/3 c2 + c1

)
Mathematica DSolve solution

Solving time : 0.077 (sec)
Leaf size : 35� �
DSolve[{D[y[x],{x,2}]+2*D[y[x],x]+(1+2/(1+3*x)^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x 3

√
3x+ 1

(
c2

3
√
3x+ 1 + c1

)
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2.1.790 problem 812

Solved as second order ode using Kovacic algorithm . . . . . . . . .5278
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5280
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5281
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5282
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5282

Internal problem ID [9638]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 812
Date solved : Thursday, December 12, 2024 at 10:14:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.161 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1502: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
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Group is reducible or imprimitive
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.042 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.1.791 problem 813

Solved as second order ode using Kovacic algorithm . . . . . . . . .5283
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5287
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5288
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5289
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5289

Internal problem ID [9639]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 813
Date solved : Thursday, December 12, 2024 at 10:14:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2y′
x

− 2y
(1 + x)2

= 0

Solved as second order ode using Kovacic algorithm

Time used: 0.152 (sec)

Writing the ode as

y′′ + 2y′
x

− 2y
(1 + x)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = 2
x

(3)

C = − 2
(1 + x)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
(1 + x)2

(6)

Comparing the above to (5) shows that

s = 2
t = (1 + x)2
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Therefore eq. (4) becomes

z′′(x) =
(

2
(1 + x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1504: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = (1 + x)2. There is a pole at x = −1 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

(1 + x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
(1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
1 + x

+ (−) (0)

= − 1
1 + x

= − 1
1 + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

)
(0) +

((
1

(1 + x)2
)
+
(
− 1
1 + x

)2

−
(

2
(1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

1+x
dx

= 1
1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

2
x
1 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
1

x2 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

2
x
1 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
(1 + x)3

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x2 + x

)
+ c2

(
1

x2 + x

(
(1 + x)3

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
− 2y(x)

(x+1)2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 2

x
, P3(x) = − 2

(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= −2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

x(x+ 1)2
(

d2

dx2y(x)
)
+ 2(x+ 1)2

(
d
dx
y(x)

)
− 2xy(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − u2)
(

d2

du2y(u)
)
+ 2u2( d

du
y(u)

)
+ (−2u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0(1 + r) (−2 + r)ur +
(

∞∑
k=1

(−ak(k + r + 1) (k + r − 2) + ak−1(k + r + 1) (k + r − 2))uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
−(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
−(k + r + 1) (k + r − 2) (ak − ak−1) = 0

• Shift index using k− >k + 1
−(k + r + 2) (k − 1 + r) (ak+1 − ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

• Recursion relation for r = −1
ak+1 = ak

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = ak

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k−1 , ak+1 = ak

]
• Recursion relation for r = 2

ak+1 = ak
• Solution for r = 2[

y(u) =
∞∑
k=0

aku
k+2, ak+1 = ak

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+2 , ak+1 = ak

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+1 = ak, bk+1 = bk

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 29� �
dsolve(diff(diff(y(x),x),x)+2/x*diff(y(x),x)-2/(x+1)^2*y(x) = 0,

y(x),singsol=all)� �
y = (x3 + 3x2 + 3x) c2 + c1

x (x+ 1)

Mathematica DSolve solution

Solving time : 0.05 (sec)
Leaf size : 34� �
DSolve[{D[y[x],{x,2}]+2/x*D[y[x],x]-2/(1+x)^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x(x2 + 3x+ 3) + 3c1

3x(x+ 1)
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2.1.792 problem 815

Solved as second order ode using Kovacic algorithm . . . . . . . . .5290
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5294
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5295
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5295
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5295

Internal problem ID [9640]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 815
Date solved : Thursday, December 12, 2024 at 10:14:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1506: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.213 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.793 problem 816

Solved as second order ode using Kovacic algorithm . . . . . . . . .5296
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5300
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5301
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5301
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5301

Internal problem ID [9641]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 816
Date solved : Thursday, December 12, 2024 at 10:14:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.281 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1508: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.166 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.794 problem 817

Solved as second order ode using Kovacic algorithm . . . . . . . . .5302
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5306
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5307
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5307
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5307

Internal problem ID [9642]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 817
Date solved : Thursday, December 12, 2024 at 10:14:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.266 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1510: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.795 problem 818

Solved as second order ode using Kovacic algorithm . . . . . . . . .5308
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5312
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5313
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5313
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5313

Internal problem ID [9643]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 818
Date solved : Thursday, December 12, 2024 at 10:14:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.281 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1512: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.166 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.796 problem 819

Solved as second order ode using Kovacic algorithm . . . . . . . . .5314
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5318
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5319
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5319
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5319

Internal problem ID [9644]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 819
Date solved : Thursday, December 12, 2024 at 10:14:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.272 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1514: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2



chapter 2. book solved problems 5316

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.168 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.797 problem 820

Solved as second order ode using Kovacic algorithm . . . . . . . . .5320
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5324
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5325
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5325
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5325

Internal problem ID [9645]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 820
Date solved : Thursday, December 12, 2024 at 10:14:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.275 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1516: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.798 problem 821

Solved as second order ode using Kovacic algorithm . . . . . . . . .5326
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5330
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5331
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5331
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5331

Internal problem ID [9646]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 821
Date solved : Thursday, December 12, 2024 at 10:14:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.273 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1518: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.799 problem 822

Solved as second order ode using Kovacic algorithm . . . . . . . . .5332
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5336
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5337
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5337
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5337

Internal problem ID [9647]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 822
Date solved : Thursday, December 12, 2024 at 10:14:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.278 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1520: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.012 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.17 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.800 problem 823

Solved as second order ode using Kovacic algorithm . . . . . . . . .5338
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5342
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5343
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5343
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5343

Internal problem ID [9648]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 823
Date solved : Thursday, December 12, 2024 at 10:14:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1522: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.17 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.801 problem 824

Solved as second order ode using Kovacic algorithm . . . . . . . . .5344
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5348
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5349
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5349
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5349

Internal problem ID [9649]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 824
Date solved : Thursday, December 12, 2024 at 10:14:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.274 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1524: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.024 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.17 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.802 problem 825

Solved as second order ode using Kovacic algorithm . . . . . . . . .5350
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5354
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5355
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5355
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5355

Internal problem ID [9650]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 825
Date solved : Thursday, December 12, 2024 at 10:14:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ − xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.277 (sec)

Writing the ode as

y′′ − xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x− 2
4 (6)

Comparing the above to (5) shows that

s = x2 + 4x− 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
1
4x

2 + x− 1
2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1526: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 + 1− 3
2x + 3

x2 − 33
4x3 + 51

2x4 − 339
4x5 + 591

2x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 + 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4x
2 + x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 4x− 2
4

= Q+ R

4

=
(
1
4x

2 + x− 1
2

)
+ (0)

= 1
4x

2 + x− 1
2

We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (1)

= −3
2

Hence

[
√
r]∞ = x

2 + 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 1
)

= −2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 1
)

= 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x

2 + x− 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 + 1 −2 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2 + 1

)
= −1− x

2
= −1− x

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1− x

2

)
(1) +

((
−1
2

)
+
(
−1− x

2

)2
−
(
1
4x

2 + x− 1
2

))
= 0

−2 + a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 2 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (2 + x) e
∫ (

−1−x
2
)
dx

= (2 + x) e−x− 1
4x

2

= (2 + x) e−
x(4+x)

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
1 dx

= z1e
x2
4

= z1
(
ex2

4

)
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Which simplifies to
y1 = (2 + x) e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

1 dx

(y1)2
dx

= y1

∫
e

x2
2

(y1)2
dx

= y1

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
(2 + x) e−x

)
+ c2

(2 + x) e−x

−e−2+ (2+x)2
2

2 + x
−

i
√
π e−2√2 erf

(
i
√
2 (2+x)
2

)
2



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x)− x
(

d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y(x) =
∞∑
k=1

ak−1x
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
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d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− akk − ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − akk − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak+1(k + 1)− ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+3 = kak+1+ak+ak+1

k2+5k+6 , 2a2 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 51� �
dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y = ic2e−2−x

√
π
√
2 (x+ 2) erf

(
i
√
2 (x+ 2)

2

)
+ 2c2e

x(x+2)
2 + c1e−x(x+ 2)

Mathematica DSolve solution

Solving time : 0.169 (sec)
Leaf size : 78� �
DSolve[{D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−x

(
−
√
2πc2

√
(x+ 2)2erfi

(√
(x+ 2)2√

2

)
+ 2

√
2c1(x+ 2) + 2c2e

1
2 (x+2)2

)
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2.1.803 problem 826

Solved as second order ode using Kovacic algorithm . . . . . . . . .5356
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5358
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5360
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5360
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5360

Internal problem ID [9651]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 826
Date solved : Thursday, December 12, 2024 at 10:14:59 AM
CAS classification : [_Lienard]

Solve

xy′′ + 2y′ + xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.159 (sec)

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1528: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −y(x)−
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
2
(

d
dx

y(x)
)

x
+ y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 2 d

dx
y(x) + xy(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y(x) to series expansion

x · y(x) =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1
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x · y(x) =
∞∑
k=1

ak−1x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + r + 1)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 17� �
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 37� �
DSolve[{x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x
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2.1.804 problem 827

Solved as second order ode using Kovacic algorithm . . . . . . . . .5361
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5364
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5366
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5366
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5366

Internal problem ID [9652]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 827
Date solved : Thursday, December 12, 2024 at 10:15:00 AM
CAS classification : [[_Emden, _Fowler]]

Solve

2x2y′′ + 3xy′ − xy = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.215 (sec)

Writing the ode as

2x2y′′ + 3xy′ − xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x2

B = 3x (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8x− 3
16x2 (6)

Comparing the above to (5) shows that

s = 8x− 3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
8x− 3
16x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1530: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16x2 + 1

2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}
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Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1− 8x
16x2 = 0

Solving for ω gives

ω = 1 + 2
√
2
√
x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+2

√
2
√
x

4x dx

= x1/4e
√
2
√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
2x2 dx

= z1e
− 3 ln(x)

4

= z1

(
1

x3/4

)

Which simplifies to

y1 =
e
√
2
√
x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

2x2 dx

(y1)2
dx

= y1

∫
e−

3 ln(x)
2

(y1)2
dx

= y1

(
−e−2

√
2
√
x
√
2

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
2
√
x

√
x

)
+ c2

(
e
√
2
√
x

√
x

(
−e−2

√
2
√
x
√
2

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
− xy(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
2x −

3
(

d
dx

y(x)
)

2x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

2x − y(x)
2x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
2x , P3(x) = − 1

2x

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

2
(

d2

dx2y(x)
)
x+ 3 d

dx
y(x)− y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert d

dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 3 + 2r)− ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r + 3

2

)
(k + 1 + r) ak+1 − ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

(2k+3+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = ak

(2k+3)(k+1)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = ak

(2k+3)(k+1)

]
• Recursion relation for r = −1

2

ak+1 = ak
(2k+2)

(
k+ 1

2
)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+1 = ak
(2k+2)

(
k+ 1

2
)
]
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• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+1 = ak

(2k+3)(k+1) , bk+1 = bk
(2k+2)

(
k+ 1

2
)
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.071 (sec)
Leaf size : 29� �
dsolve(2*x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x-x*y(x) = 0,

y(x),singsol=all)� �
y =

c1 sinh
(√

x
√
2
)
+ c2 cosh

(√
x
√
2
)

√
x

Mathematica DSolve solution

Solving time : 0.09 (sec)
Leaf size : 56� �
DSolve[{2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]-x*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−
√
2
√
x
(
2c1e2

√
2
√
x −

√
2c2
)

2
√
x



chapter 2. book solved problems 5367

2.1.805 problem 828

Solved as second order ode using Kovacic algorithm . . . . . . . . .5367
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5371
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5373
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5373
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5373

Internal problem ID [9653]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 828
Date solved : Thursday, December 12, 2024 at 10:15:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ +
(
3x2 + 2x

)
y′ − 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.264 (sec)

Writing the ode as

x2y′′ +
(
3x2 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 3x2 + 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9x2 + 12x+ 8
4x2 (6)

Comparing the above to (5) shows that

s = 9x2 + 12x+ 8
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
9x2 + 12x+ 8

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1532: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 + 2

x2 + 3
x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)



chapter 2. book solved problems 5369

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 + 1
x
+ 1

3x2 − 2
9x3 + 1

9x4 − 2
81x5 − 2

81x6 + 28
729x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = 9

4

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= 9x2 + 12x+ 8
4x2

= Q+ R

4x2

=
(
9
4

)
+
(
12x+ 8
4x2

)
= 9

4 + 12x+ 8
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 12. Dividing this by leading coefficient in t which is 4 gives 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
3
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3

3
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 9x2 + 12x+ 8
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−)

(
3
2

)
= −1

x
− 3

2
= −1

x
− 3

2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 3

2

)
(0) +

((
1
x2

)
+
(
−1
x
− 3

2

)2

−
(
9x2 + 12x+ 8

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
x
− 3

2
)
dx

= e− 3x
2

x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2+2x

x2 dx

= z1e
− 3x

2 −ln(x)

= z1

(
e− 3x

2

x

)

Which simplifies to

y1 =
e−3x

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2+2x

x2 dx

(y1)2
dx

= y1

∫
e−3x−2 ln(x)

(y1)2
dx

= y1

(
(9x2 − 6x+ 2)x2e−3x−2 ln(x)e6x

27

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−3x

x2

)
+ c2

(
e−3x

x2

(
(9x2 − 6x+ 2)x2e−3x−2 ln(x)e6x

27

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ (3x2 + 2x)

(
d
dx
y(x)

)
− 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2 −

(3x+2)
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(3x+2)

(
d
dx

y(x)
)

x
− 2y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 3x+2

x
, P3(x) = − 2

x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ x(3x+ 2)

(
d
dx
y(x)

)
− 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 1) + 3ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r + 2) + 3ak−1) = 0

• Shift index using k− >k + 1
(k + r) (ak+1(k + 3 + r) + 3ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak

k+3+r

• Recursion relation for r = −2
ak+1 = − 3ak

k+1

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+1 = − 3ak

k+1

]
• Recursion relation for r = 1

ak+1 = − 3ak
k+4

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+1 = − 3ak

k+4

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − 3ak

k+1 , bk+1 = − 3bk
4+k

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 27� �
dsolve(x^2*diff(diff(y(x),x),x)+(3*x^2+2*x)*diff(y(x),x)-2*y(x) = 0,

y(x),singsol=all)� �
y = c1e−3x + c2(9x2 − 6x+ 2)

x2

Mathematica DSolve solution

Solving time : 0.021 (sec)
Leaf size : 35� �
DSolve[{x^2*D[y[x],{x,2}]+(2*x+3*x^2)*D[y[x],x]-2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(9x2 − 6x+ 2) + 27c2e−3x

27x2
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2.1.806 problem 829

Solved as second order ode using Kovacic algorithm . . . . . . . . .5374
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5378
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5380
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5381
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5381

Internal problem ID [9654]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 829
Date solved : Thursday, December 12, 2024 at 10:15:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(x2 + x+ 1
)
y′′ + x

(
11x2 + 11x+ 9

)
y′ +

(
7x2 + 10x+ 6

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 1.083 (sec)

Writing the ode as(
2x4 + 2x3 + 2x2) y′′ + (11x3 + 11x2 + 9x

)
y′ +

(
7x2 + 10x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x4 + 2x3 + 2x2

B = 11x3 + 11x2 + 9x (3)
C = 7x2 + 10x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

(6)

Comparing the above to (5) shows that

s = 21x4 + 18x3 + 27x2 − 2x− 3

t = 16
(
x3 + x2 + x

)2
Therefore eq. (4) becomes

z′′(x) =
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1534: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 4
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16(x3 + x2 + x)2. There is a pole at x = 0 of order 2. There is a pole at
x = −1

2 +
i
√
3

2 of order 2. There is a pole at x = −1
2 −

i
√
3

2 of order 2. Since there is no
odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for
case one are met. Since there is a pole of order 2 then necessary conditions for case two
are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r =
− 5

24 +
i
√
3

24(
x+ 1

2 −
i
√
3

2

)2 +
− 5

24 −
i
√
3

24(
x+ 1

2 +
i
√
3

2

)2 +
−1

8 −
43i

√
3

72

x+ 1
2 −

i
√
3

2

+
−1

8 +
43i

√
3

72

x+ 1
2 +

i
√
3

2

− 3
16x2 + 1

4x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
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For the pole at x = −1
2 +

i
√
3

2 let b be the coefficient of 1(
x+ 1

2−
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 +

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√

6 + 6i
√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√

6 + 6i
√
3

12

For the pole at x = −1
2 −

i
√
3

2 let b be the coefficient of 1(
x+ 1

2+
i
√
3

2

)2 in the partial fractions

decomposition of r given above. Therefore b = − 5
24 −

i
√
3

24 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
6− 6i

√
3

12

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
6− 6i

√
3

12

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2

Since the gcd(s, t) = 1. This gives b = 21
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

4
α−
∞ = 1

2 −
√
1 + 4b = −3

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 21x4 + 18x3 + 27x2 − 2x− 3
16 (x3 + x2 + x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
4

1
4

−1
2 +

i
√
3

2 2 0 1
2 +

√
6+6i

√
3

12
1
2 −

√
6+6i

√
3

12

−1
2 −

i
√
3

2 2 0 1
2 +

√
6−6i

√
3

12
1
2 −

√
6−6i

√
3

12

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
4 −3

4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying



chapter 2. book solved problems 5377

α+
∞ = 7

4 then

d = α+
∞ −

(
α−
c1 + α+

c2 + α+
c3

)
= 7

4 −
(
7
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+
(
(+)[

√
r]c3 +

α+
c3

x− c3

)
+ (+)[

√
r]∞

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

+ (0)

= 1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

= 7x2 + 3x+ 1
4x (x2 + x+ 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)
(0) +


− 1

4x2 −
1
2 +

√
6+6i

√
3

12(
x+ 1

2 −
i
√
3

2

)2 −
1
2 +

√
6−6i

√
3

12(
x+ 1

2 +
i
√
3

2

)2
+

(
1
4x +

1
2 +

√
6+6i

√
3

12

x+ 1
2 −

i
√
3

2

+
1
2 +

√
6−6i

√
3

12

x+ 1
2 +

i
√
3

2

)2

−
(
21x4 + 18x3 + 27x2 − 2x− 3

16 (x3 + x2 + x)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x+
1
2+

√
6+6i

√
3

12
x+1

2− i
√
3

2
+

1
2+

√
6−6i

√
3

12
x+1

2+ i
√
3

2

)
dx

= 2
(
x2 + x+ 1

)3/4√2x1/4e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
11x3+11x2+9x
2x4+2x3+2x2 dx

= z1e
− 9 ln(x)

4 −
ln

(
x2+x+1

)
4 −

√
3 arctan

(
(2x+1)

√
3

3

)
6

= z1

 e−
√
3 arctan

(
(2x+1)

√
3

3

)
6

x9/4 (x2 + x+ 1)1/4
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Which simplifies to

y1 =
2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 11x3+11x2+9x

2x4+2x3+2x2 dx

(y1)2
dx

= y1

∫
e−

9 ln(x)
2 −

ln
(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3

(y1)2
dx

= y1

∫ e−
9 ln(x)

2 −
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 x4e

2
√
3 arctan

(
(2x+1)

√
3

3

)
3

8x2 + 8x+ 8 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2


+c2

2
√
x2 + x+ 1 e−

√
3 arctan

(
(2x+1)

√
3

3

)
3

√
2

x2

∫ e−
9 ln(x)

2 −
ln

(
x2+x+1

)
2 −

√
3 arctan

(
(2x+1)

√
3

3

)
3 x4e

2
√

3 arctan
(

(2x+1)
√
3

3

)
3

8x2 + 8x+ 8 dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) −
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
11x2+11x+9

)(
d
dx

y(x)
)

2x(x2+x+1) +
(
7x2+10x+6

)
y(x)

2x2(x2+x+1) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 11x2+11x+9

2x(x2+x+1) , P3(x) = 7x2+10x+6
2x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 9
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

2x2(x2 + x+ 1)
(

d2

dx2y(x)
)
+ x(11x2 + 11x+ 9)

(
d
dx
y(x)

)
+ (7x2 + 10x+ 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (3 + 2r)xr + (a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r))x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r + 3) + ak−1(2k + 2r + 3) (k + r + 1) + ak−2(2k + 2r + 3) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2,−3

2

}
• Each term must be 0

a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (2+r)a0
3+r

• Each term in the series must be 0, giving the recursion relation
2
(
k + r + 3

2

)
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r + 2ak − ak−2 + ak−1) = 0

• Shift index using k− >k + 2
2
(
k + 7

2 + r
)
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r + 2ak+2 − ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −kak+kak+1+rak+rak+1+ak+3ak+1
k+4+r

• Recursion relation for r = −2
ak+2 = −kak+kak+1−ak+ak+1

k+2

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

• Solution for r = −3
2[

y(x) =
∞∑
k=0

akx
k− 3

2 , ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

, a1 = −a0
3

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0, bk+2 = −kbk+kbk+1− 1
2 bk+

3
2 bk+1

k+ 5
2

, b1 = − b0
3

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.911 (sec)
Leaf size : 229� �
dsolve(2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(11*x^2+11*x+9)*diff(y(x),x)+(7*x^2+10*x+6)*y(x) = 0,

y(x),singsol=all)� �
y

=

(
2x+ i

√
3 + 1

) 5
√
3+3i

6
√
3+6i

(
i
√
3− 2x− 1

) 64i
√
3+2368(√

3+i
)3(

i−
√
3
)4(

13
√
3+9i

)
e−

√
3 arctan

(
(2x+1)

√
3

3

)
6

(
HeunG

(√
3+i

i−
√
3 , 0, 0,

5
2 ,

1
2 ,

5
√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c1
√
x+HeunG

(
√
3+i

i−
√
3 ,−

64(
i
√
3−1

)3(
−i+

√
3
)4 , 12 , 3, 32 , 5

√
3+3i

3
√
3+3i ,−

2x
1+i

√
3

)
c2x

)
x5/2 (x2 + x+ 1)1/4

Mathematica DSolve solution

Solving time : 1.056 (sec)
Leaf size : 93� �
DSolve[{2*x^2*(1+x+x^2)*D[y[x],{x,2}] + x*(9+11*x+11*x^2)*D[y[x],x] + (6+10*x+7*x^2)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
x2 + x+ 1e−

arctan
(

2x+1√
3

)
√
3

c2
∫ x

1
e

arctan
(

2K[1]+1√
3

)
√
3√

K[1](K[1]2+K[1]+1)3/2
dK[1] + c1


x2
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2.1.807 problem 830

Solved as second order ode using Kovacic algorithm . . . . . . . . .5382
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5386
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5388
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5388
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5388

Internal problem ID [9655]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 830
Date solved : Thursday, December 12, 2024 at 10:15:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ + (1 + x) y′ + 2y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.309 (sec)

Writing the ode as

xy′′ + (1 + x) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1 + x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 6x− 1
4x2 (6)

Comparing the above to (5) shows that

s = x2 − 6x− 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 6x− 1

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1536: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4x2 − 3
2x

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)



chapter 2. book solved problems 5384

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 3
2x − 5

2x2 − 15
2x3 − 115

4x4 − 495
4x5 − 2285

4x6 − 11055
4x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 − 6x− 1
4x2

= Q+ R

4x2

=
(
1
4

)
+
(
−6x− 1

4x2

)
= 1

4 + −6x− 1
4x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −6. Dividing this by leading coefficient in t which is 4 gives −3

2 . Now b can be found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

1
2

− 0
)

= −3
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
1
2

− 0
)

= 3
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 − 6x− 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −3

2
3
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 3

2 then

d = α−
∞ −

(
α+
c1

)
= 3

2 −
(
1
2

)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−)

(
1
2

)
= 1

2x − 1
2

= −−1 + x

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x − 1

2

)
(1) +

((
− 1
2x2

)
+
(

1
2x − 1

2

)2

−
(
x2 − 6x− 1

4x2

))
= 0

1 + a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = −1 + x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (−1 + x) e
∫ ( 1

2x−
1
2
)
dx

= (−1 + x) e−x
2+

ln(x)
2

= (−1 + x)
√
x e−x

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1+x
x

dx

= z1e
−x

2−
ln(x)

2

= z1

(
e−x

2
√
x

)

Which simplifies to
y1 = e−x(−1 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1+x

x
dx

(y1)2
dx

= y1

∫
e−x−ln(x)

(y1)2
dx

= y1

(
− ex
−1 + x

− Ei1 (−x)
)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x(−1 + x)

)
+ c2

(
e−x(−1 + x)

(
− ex
−1 + x

− Ei1 (−x)
))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x+ (x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2y(x)
x

−
(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x) +
(x+1)

(
d
dx

y(x)
)

x
+ 2y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x
, P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (x+ 1)

(
d
dx
y(x)

)
+ 2y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm ·

(
d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 + ak(k + r + 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 + ak(k + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+2)

(k+1)2

• Recursion relation for r = 0
ak+1 = −ak(k+2)

(k+1)2

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+1 = −ak(k+2)

(k+1)2

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 29� �
dsolve(x*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)+2*y(x) = 0,

y(x),singsol=all)� �
y = c2(x− 1) e−x Ei1 (−x) + c1e−x(x− 1) + c2

Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 33� �
DSolve[{x*D[y[x],{x,2}] +(1+x)*D[y[x],x]+2*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x(c2(x− 1) ExpIntegralEi(x) + c1(x− 1)− c2e

x)
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2.1.808 problem 831

Solved as second order ode using Kovacic algorithm . . . . . . . . .5389
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5393
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5395
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5395
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5395

Internal problem ID [9656]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 831
Date solved : Thursday, December 12, 2024 at 10:15:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(x2 − 2x+ 1
)
y′′ − x(3 + x) y′ + (4 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.345 (sec)

Writing the ode as

x2(x− 1)2 y′′ +
(
−x2 − 3x

)
y′ + (4 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2(x− 1)2

B = −x2 − 3x (3)
C = 4 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 7x2 + 10x− 1
4x2 (x− 1)4

(6)

Comparing the above to (5) shows that

s = 7x2 + 10x− 1
t = 4x2(x− 1)4

Therefore eq. (4) becomes

z′′(x) =
(
7x2 + 10x− 1
4x2 (x− 1)4

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1538: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2(x− 1)4. There is a pole at x = 0 of order 2. There is a pole at x = 1 of order 4.
Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
2 (x− 1) +

3
2x − 1

4x2 + 4
(x− 1)4

+ 7
4 (x− 1)2

− 2
(x− 1)3

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)
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Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = − 3
2 (x− 1) +

3
2x − 1

4x2 + 4
(x− 1)4

+ 7
4 (x− 1)2

− 2
(x− 1)3

There is pole in r at x = 1 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 1 gives

[
√
r]c ≈

2
(x− 1)2

− 1
2 (x− 1) +

21
32 − 9x

32 + 53(x− 1)2

256 − 149(x− 1)3

1024 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

2
(x− 1)2

(3B)

The above shows that the coefficient of 1
(x−1)2 is

a = 2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 1. This term becomes 1
(x−1)3 . The coefficient of this term in the sum [

√
r]c is seen to

be 0 and the coefficient of this term r is found from the partial fraction decomposition
from above to be −2. Therefore

b = (−2)− (0)
= −2

Hence

[
√
r]c =

2
(x− 1)2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−2
2 + 2

)
= 1

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−2

2 + 2
)

= 3
2

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 7x2 + 10x− 1
4x2 (x− 1)4

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

1 4 2
(x−1)2

1
2

3
2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α+
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= 1
2x + 2

(x− 1)2
+ 1

2x− 2 + (−) (0)

= 1
2x + 2

(x− 1)2
+ 1

2x− 2

= 2x2 + x+ 1
2x (x− 1)2

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)
(0) +

((
− 1
2x2 − 4

(x− 1)3
− 1

2 (x− 1)2
)
+
(

1
2x + 2

(x− 1)2
+ 1

2x− 2

)2

−
(
7x2 + 10x− 1
4x2 (x− 1)4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2x+
2

(x−1)2
+ 1

2x−2

)
dx

=
√
x− 1

√
x e−

2
x−1
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−3x
x2(x−1)2

dx

= z1e
− 2

x−1−
3 ln(x−1)

2 + 3 ln(x)
2

= z1

(
x3/2e−

2
x−1

(x− 1)3/2

)

Which simplifies to

y1 =
x3/2e−

4
x−1
√
x (x− 1)

(x− 1)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x2−3x

x2(x−1)2
dx

(y1)2
dx

= y1

∫
e−

4
x−1−3 ln(x−1)+3 ln(x)

(y1)2
dx

= y1

(
e−4 Ei1

(
− 4
x− 1 − 4

))
Therefore the solution is

y = c1y1 + c2y2

= c1

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

)
+ c2

(
x3/2e−

4
x−1
√

x (x− 1)
(x− 1)3/2

(
e−4 Ei1

(
− 4
x− 1 − 4

)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+4)y(x)
x2(x2−2x+1) +

(x+3)
(

d
dx

y(x)
)

x(x2−2x+1)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(x+3)

(
d
dx

y(x)
)

x(x2−2x+1) + (x+4)y(x)
x2(x2−2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − x+3

x(x2−2x+1) , P3(x) = x+4
x2(x2−2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

x2(x2 − 2x+ 1)
(

d2

dx2y(x)
)
− x(x+ 3)

(
d
dx
y(x)

)
+ (x+ 4) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(
a1(−1 + r)2 − a0(1 + 2r) (−1 + r)

)
x1+r +

(
∞∑
k=2

(
ak(k + r − 2)2 − ak−1(2k − 1 + 2r) (k + r − 2) + ak−2(k + r − 2) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 − a0(1 + 2r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(1+2r)

−1+r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 − 2ak−1) k + (ak + ak−2 − 2ak−1) r − 2ak − 3ak−2 + ak−1) (k + r − 2) = 0

• Shift index using k− >k + 2
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((ak+2 + ak − 2ak+1) (k + 2) + (ak+2 + ak − 2ak+1) r − 2ak+2 − 3ak + ak+1) (k + r) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −kak−2kak+1+rak−2rak+1−ak−3ak+1
k+r

• Recursion relation for r = 2
ak+2 = −kak−2kak+1+ak−7ak+1

k+2

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = −kak−2kak+1+ak−7ak+1

k+2 , a1 = 5a0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.011 (sec)
Leaf size : 45� �
dsolve(x^2*(x^2-2*x+1)*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(x+4)*y(x) = 0,

y(x),singsol=all)� �
y =

x2
(
Ei1
(
− 4x

x−1

)
e−

4x
x−1 c2 + e−

4
x−1 c1

)
x− 1

Mathematica DSolve solution

Solving time : 0.29 (sec)
Leaf size : 54� �
DSolve[{x^2*(1-2*x+x^2)*D[y[x],{x,2}] -x*(3+x)*D[y[x],x]+(4+x)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

e−
4x
x−1

√
1− xx2(c2 ExpIntegralEi ( 4x

x−1

)
+ e4c1

)
(x− 1)3/2
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2.1.809 problem 832

Solved as second order ode using Kovacic algorithm . . . . . . . . .5396
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5400
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5401
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5402
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5402

Internal problem ID [9657]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 832
Date solved : Thursday, December 12, 2024 at 10:15:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

2x2(2 + x) y′′ + 5x2y′ + (1 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.248 (sec)

Writing the ode as (
2x3 + 4x2) y′′ + 5x2y′ + (1 + x) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x3 + 4x2

B = 5x2 (3)
C = 1 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3x2 − 24x− 16
16 (x2 + 2x)2

(6)

Comparing the above to (5) shows that

s = −3x2 − 24x− 16

t = 16
(
x2 + 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
−3x2 − 24x− 16
16 (x2 + 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1540: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 16(x2 + 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = −2 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 8x − 1

8x − 1
4x2 + 5

16 (2 + x)2

For the pole at x = −2 let b be the coefficient of 1
(2+x)2 in the partial fractions decomposi-

tion of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
For the pole at x = 0 let b be the coefficient of 1

x2 in the partial fractions decomposition
of r given above. Therefore b = −1

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −3x2 − 24x− 16

16 (x2 + 2x)2

Since the gcd(s, t) = 1. This gives b = − 3
16 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

4
α−
∞ = 1

2 −
√
1 + 4b = 1

4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −3x2 − 24x− 16
16 (x2 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−2 2 0 5
4 −1

4

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
4

1
4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

4 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

4 −
(
1
4

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= − 1
4 (2 + x) +

1
2x + (−) (0)

= − 1
4 (2 + x) +

1
2x

= x+ 4
4x (2 + x)
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
4 (2 + x) +

1
2x

)
(0) +

((
1

4 (2 + x)2
− 1

2x2

)
+
(
− 1
4 (2 + x) +

1
2x

)2

−
(
−3x2 − 24x− 16
16 (x2 + 2x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
4(2+x)+

1
2x

)
dx

=
√
x

(2 + x)1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
5x2

2x3+4x2 dx

= z1e
− 5 ln(2+x)

4

= z1

(
1

(2 + x)5/4

)

Which simplifies to

y1 =
√
x

(2 + x)3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 5x2

2x3+4x2 dx

(y1)2
dx

= y1

∫
e−

5 ln(2+x)
2

(y1)2
dx

= y1

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

))

Therefore the solution is

y = c1y1 + c2y2

= c1

( √
x

(2 + x)3/2

)
+ c2

( √
x

(2 + x)3/2

(
2
√
2 + x− 2

√
2 arctanh

(√
2 + x

√
2

2

)))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+1)y(x)
2(x+2)x2 −

5
(

d
dx

y(x)
)

2(x+2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
5
(

d
dx

y(x)
)

2(x+2) + (x+1)y(x)
2(x+2)x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
2(x+2) , P3(x) = x+1

2x2(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 5
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators

2x2(x+ 2)
(

d2

dx2y(x)
)
+ 5x2( d

dx
y(x)

)
+ (x+ 1) y(x) = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (5u2 − 20u+ 20)

(
d
du
y(u)

)
+ (u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m



chapter 2. book solved problems 5401

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(3 + 2r)u−1+r + (4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 5 + 2r)− ak(8k2 + 16kr + 8r2 + 12k + 12r + 1) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term must be 0

4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 12ak − ak−1 + 28ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−12ak − ak−1 + 28ak+1) r − ak + 20ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 12ak+1 − ak + 28ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−12ak+1 − ak + 28ak+2) r − ak+1 + 20ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+3kak−28kak+1+3rak−28rak+1+ak−21ak+1
4(2k2+4kr+2r2+11k+11r+14)

• Recursion relation for r = 0
ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0
]

• Revert the change of variables u = x+ 2[
y(x) =

∞∑
k=0

ak(x+ 2)k , ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1
4(2k2+11k+14) , 20a1 − a0 = 0

]
• Recursion relation for r = −3

2

ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2) ,−4a1 − a0 = 0

]
• Revert the change of variables u = x+ 2[

y(x) =
∞∑
k=0

ak(x+ 2)k−
3
2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1

4(2k2+5k+2) ,−4a1 − a0 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

ak(x+ 2)k
)
+
(

∞∑
k=0

bk(x+ 2)k−
3
2

)
, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0, bk+2 = −2k2bk−8k2bk+1−3kbk−4kbk+1+bk+3bk+1
4(2k2+5k+2) ,−4b1 − b0 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
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Group is reducible, not completely reducible
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 2.599 (sec)
Leaf size : 39� �
dsolve(2*x^2*(x+2)*diff(diff(y(x),x),x)+5*diff(y(x),x)*x^2+y(x)*(x+1) = 0,

y(x),singsol=all)� �
y =

(√
x+ 2

√
2 c2 − 2 arctanh

(√
2
√
x+2

2

)
c2 + c1

)√
x

(x+ 2)3/2

Mathematica DSolve solution

Solving time : 0.107 (sec)
Leaf size : 55� �
DSolve[{2*x^2*(2+x)*D[y[x],{x,2}] +5*x^2*D[y[x],x]+(1+x)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x
(
−2

√
2c2arctanh

(√
x+2√
2

)
+ 2c2

√
x+ 2 + c1

)
(x+ 2)3/2
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2.1.810 problem 833

Solved as second order ode using Kovacic algorithm . . . . . . . . .5403
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5405
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5407
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5407
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5407

Internal problem ID [9658]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 833
Date solved : Thursday, December 12, 2024 at 10:15:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.174 (sec)

Writing the ode as

x2y′′ + 4xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 4x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1542: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
x2 dx

= z1e
−2 ln(x)

= z1

(
1
x2

)

Which simplifies to

y1 =
cos (x)
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x

x2 dx

(y1)2
dx

= y1

∫
e−4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)
x2

)
+ c2

(
cos (x)
x2 (tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 −
4
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
4
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 4

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m



chapter 2. book solved problems 5406

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+3+r)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k+1)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1
ak+2 = − ak

(k+3)(k+2)

• Solution for r = −1[
y(x) =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2

x2

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 37� �
DSolve[{x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 2c1e−ix − ic2e

ix

2x2



chapter 2. book solved problems 5408

2.1.811 problem 834

Solved as second order ode using Kovacic algorithm . . . . . . . . .5408
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5410
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5412
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5412
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5412

Internal problem ID [9659]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 834
Date solved : Thursday, December 12, 2024 at 10:15:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.184 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1544: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.057 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.812 problem 835

Solved as second order ode using Kovacic algorithm . . . . . . . . .5413
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5418
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5419
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5419
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5420

Internal problem ID [9660]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 835
Date solved : Thursday, December 12, 2024 at 10:15:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − xy′ −
(
x2 + 5

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.279 (sec)

Writing the ode as

x2y′′ − xy′ +
(
−x2 − 5

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x (3)

C = −x2 − 5
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 2
x2 (6)

Comparing the above to (5) shows that

s = x2 + 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
x2 + 2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1546: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

x2 − 1
2x4 + 1

2x6 − 5
8x8 + 7

8x10 − 21
16x12 + 33

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= x2 + 2
x2

= Q+ R

x2

= (1) +
(

2
x2

)
= 1 + 2

x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
1 − 0

)
= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
1 − 0

)
= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (1)

= −1
x
− 1

= −1 + x

x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x
− 1
)
(1) +

((
1
x2

)
+
(
−1
x
− 1
)2

−
(
x2 + 2
x2

))
= 0

−2 + 2a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ (

− 1
x
−1
)
dx

= (1 + x) e−x−ln(x)

= (1 + x) e−x

x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to

y1 =
(1 + x) e−x

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
(−1 + x) e2x

2 + 2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(1 + x) e−x

√
x

)
+ c2

(
(1 + x) e−x

√
x

(
(−1 + x) e2x

2 + 2x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− x
(

d
dx
y(x)

)
−
(
x2 + 5

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) =
(
4x2+5

)
y(x)

4x2 +
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x

−
(
4x2+5

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x
, P3(x) = −4x2+5

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −5
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x

(
d
dx
y(x)

)
+ (−4x2 − 5) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−5 + 2r)xr + a1(3 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 5)− 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
5
2

}
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• Each term must be 0
a1(3 + 2r) (−3 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
4
(
k − 5

2 + r
) (

k + r + 1
2

)
ak − 4ak−2 = 0

• Shift index using k− >k + 2
4
(
k − 1

2 + r
) (

k + 5
2 + r

)
ak+2 − 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4ak

(2k−1+2r)(2k+5+2r)

• Recursion relation for r = −1
2

ak+2 = 4ak
(2k−2)(2k+4)

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4ak
(2k−2)(2k+4) , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = 4ak
(2k+4)(2k+10)

• Solution for r = 5
2[

y(x) =
∞∑
k=0

akx
k+ 5

2 , ak+2 = 4ak
(2k+4)(2k+10) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = 4ak

(2k−2)(2k+4) , a1 = 0, bk+2 = 4bk
(2k+4)(2k+10) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.062 (sec)
Leaf size : 25� �
dsolve(x^2*diff(diff(y(x),x),x)-diff(y(x),x)*x-(x^2+5/4)*y(x) = 0,

y(x),singsol=all)� �
y = (x+ 1) c2e−x + exc1(x− 1)√

x
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Mathematica DSolve solution

Solving time : 0.118 (sec)
Leaf size : 53� �
DSolve[{x^2*D[y[x],{x,2}]-x*D[y[x],x]-(x^2+5/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →

√
2
π
((ic2x+ c1) sinh(x)− (c1x+ ic2) cosh(x))

√
−ix
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2.1.813 problem 836

Solved as second order ode using Kovacic algorithm . . . . . . . . .5421
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5423
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5425
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5425
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5425

Internal problem ID [9661]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 836
Date solved : Thursday, December 12, 2024 at 10:15:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.196 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1548: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.055 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.042 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.814 problem 837

Solved as second order ode using Kovacic algorithm . . . . . . . . .5426
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5430
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5432
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5432
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5432

Internal problem ID [9662]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 837
Date solved : Thursday, December 12, 2024 at 10:15:07 AM
CAS classification : [[_Emden, _Fowler]]

Solve

x2y′′ + 3xy′ + 4x4y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.320 (sec)

Writing the ode as

x2y′′ + 3xy′ + 4x4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 3x (3)
C = 4x4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1550: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is −2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x
x2 dx

= z1e
− 3 ln(x)

2

= z1

(
1

x3/2

)

Which simplifies to

y1 =
e−ix2

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x

x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−ix2

x2

)
+ c2

(
e−ix2

x2

(
−ie2ix2

4

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ 3x

(
d
dx
y(x)

)
+ 4x4y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −4x2y(x)−
3
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
3
(

d
dx

y(x)
)

x
+ 4x2y(x) = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 3
x
, P3(x) = 4x2]

◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ 3 d

dx
y(x) + 4x3y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y(x) to series expansion

x3 · y(x) =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y(x) =
∞∑
k=3

ak−3x
k+r

◦ Convert d
dx
y(x) to series expansion

d
dx
y(x) =

∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
d
dx
y(x) =

∞∑
k=−1

ak+1(k + 1 + r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(2 + r)x−1+r + a1(1 + r) (3 + r)xr + a2(2 + r) (4 + r)x1+r + a3(3 + r) (5 + r)x2+r +
(

∞∑
k=3

(ak+1(k + 1 + r) (k + r + 3) + 4ak−3)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• The coefficients of each power of x must be 0
[a1(1 + r) (3 + r) = 0, a2(2 + r) (4 + r) = 0, a3(3 + r) (5 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r + 3) + 4ak−3 = 0

• Shift index using k− >k + 3
ak+4(k + 4 + r) (k + 6 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+4 = − 4ak

(k+4+r)(k+6+r)
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• Recursion relation for r = −2
ak+4 = − 4ak

(k+2)(k+4)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+4 = − 4ak

(k+2)(k+4) , a1 = 0, a2 = 0, a3 = 0
]

• Recursion relation for r = 0
ak+4 = − 4ak

(k+4)(k+6)

• Solution for r = 0[
y(x) =

∞∑
k=0

akx
k, ak+4 = − 4ak

(k+4)(k+6) , a1 = 0, a2 = 0, a3 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k

)
, a4+k = − 4ak

(k+2)(4+k) , a1 = 0, a2 = 0, a3 = 0, b4+k = − 4bk
(4+k)(k+6) , b1 = 0, b2 = 0, b3 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 21� �
dsolve(x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x+4*y(x)*x^4 = 0,

y(x),singsol=all)� �
y = c1 sin (x2) + c2 cos (x2)

x2

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 41� �
DSolve[{x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+4*x^4*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4c1e−ix2 − ic2e

ix2

4x2
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2.1.815 problem 838

Solved as second order ode using Kovacic algorithm . . . . . . . . .5433
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5437
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5438
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5438
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5438

Internal problem ID [9663]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 838
Date solved : Thursday, December 12, 2024 at 10:15:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
x2 + 3

)
y

Solved as second order ode using Kovacic algorithm

Time used: 0.249 (sec)

Writing the ode as

y′′ +
(
−x2 − 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −x2 − 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 3
1 (6)

Comparing the above to (5) shows that

s = x2 + 3
t = 1

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 3

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1552: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x+ 3

2x − 9
8x3 + 27

16x5 − 405
128x7 + 1701

256x9 − 15309
1024x11 + 72171

2048x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 3
1

= Q+ R

1
=
(
x2 + 3

)
+ (0)

= x2 + 3

We see that the coefficient of the term 1
x
in the quotient is 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
1 − 1

)
= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x 1 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 + (x)
= x

= x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(x) (1) +
(
(1) + (x)2 −

(
x2 + 3

))
= 0

−2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
xdx

= (x) ex2
2

= x ex2
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x ex2
2

Which simplifies to

y1 = x ex2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x ex2
2

∫ 1
x2ex2 dx

= x ex2
2

(
−e−x2

x
−
√
π erf (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x ex2

2

)
+ c2

(
x ex2

2

(
−e−x2

x
−

√
π erf (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) = (x2 + 3) y(x)
• Highest derivative means the order of the ODE is 2

d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) + (−x2 − 3) y(x) = 0
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 3a0 + (6a3 − 3a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 3ak − ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 3a0 = 0, 6a3 − 3a1 = 0]

• Solve for the dependent coefficient(s){
a2 = 3a0

2 , a3 = a1
2

}
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• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 3ak − ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 3ak+2 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 3ak+2+ak

k2+7k+12 , a2 =
3a0
2 , a3 = a1

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 30� �
dsolve(diff(diff(y(x),x),x) = (x^2+3)*y(x),

y(x),singsol=all)� �
y = x

(
c2 erf (x)

√
π + c1

)
ex2

2 + e−x2
2 c2

Mathematica DSolve solution

Solving time : 0.092 (sec)
Leaf size : 46� �
DSolve[{D[y[x],{x,2}]==(x^2+3)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

x2
2

(
−
√
πc2e

x2
xerf(x) + c1e

x2
x− c2

)
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2.1.816 problem 839

Solved as second order ode using Kovacic algorithm . . . . . . . . .5439
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5441
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5442
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5442
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5442

Internal problem ID [9664]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 839
Date solved : Thursday, December 12, 2024 at 10:15:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 2xy′ +
(
x2 + 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.107 (sec)

Writing the ode as

y′′ + 2xy′ +
(
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x (3)
C = x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1554: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x
1 dx

= z1e
−x2

2

= z1
(
e−x2

2

)
Which simplifies to

y1 = e−x2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 2x

1 dx

(y1)2
dx

= y1

∫
e−x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2

)
+ c2

(
e−x2

2 (x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 2x
(

d
dx
y(x)

)
+ (x2 + 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + a0 + (6a3 + 3a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(2k + 1) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + a0 = 0, 6a3 + 3a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0

2 , a3 = −a1
2

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 2akk + ak + ak−2 = 0
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• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 2ak+2(k + 2) + ak+2 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2kak+2+ak+5ak+2

k2+7k+12 , a2 = −a0
2 , a3 = −a1

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+2*diff(y(x),x)*x+(x^2+1)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2

2 (c2x+ c1)

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 22� �
DSolve[{D[y[x],{x,2}]+2*x*D[y[x],x]+(x^2+1)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

x2
2 (c2x+ c1)
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2.1.817 problem 840

Solved as second order ode using Kovacic algorithm . . . . . . . . .5443
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5445
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5447
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5447
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5447

Internal problem ID [9665]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 840
Date solved : Thursday, December 12, 2024 at 10:15:09 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.195 (sec)

Writing the ode as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)

C = x2 − 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1556: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
cos (x)√

x
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)√

x

)
+ c2

(
cos (x)√

x
(tan (x))

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
+ x
(

d
dx
y(x)

)
+
(
x2 − 1

4

)
y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−1

)
y(x)

4x2 −
d
dx

y(x)
x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
d
dx

y(x)
x

+
(
4x2−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 1

x
, P3(x) = 4x2−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
+ 4x

(
d
dx
y(x)

)
+ (4x2 − 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = − 4ak
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = − 4ak
4k2+12k+8 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − 4ak
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 4ak
4k2+20k+24 , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − 4ak

4k2+12k+8 , a1 = 0, bk+2 = − 4bk
4k2+20k+24 , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 17� �
dsolve(x^2*diff(diff(y(x),x),x)+diff(y(x),x)*x+(x^2-1/4)*y(x) = 0,

y(x),singsol=all)� �
y = sin (x) c1 + cos (x) c2√

x

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 39� �
DSolve[{x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−ix(2c1 − ic2e

2ix)
2
√
x
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2.1.818 problem 841

Solved as second order ode using Kovacic algorithm . . . . . . . . .5448
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5450
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5452
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5452
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5452

Internal problem ID [9666]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 841
Date solved : Thursday, December 12, 2024 at 10:15:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.130 (sec)

Writing the ode as

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −8x2 + 4x (3)
C = 4x2 − 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1558: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8x2+4x

4x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex√
x

)
+ c2

(
ex√
x
(x)
)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

4x2
(

d2

dx2y(x)
)
+ (−8x2 + 4x)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
4x2−4x−1

)
y(x)

4x2 +
(2x−1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
(2x−1)

(
d
dx

y(x)
)

x
+
(
4x2−4x−1

)
y(x)

4x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = −2x−1

x
, P3(x) = 4x2−4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

4x2
(

d2

dx2y(x)
)
− 4x(2x− 1)

(
d
dx
y(x)

)
+ (4x2 − 4x− 1) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..2

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + (a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1)− 4ak−1(2k + 2r − 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r)− 4a0(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 4a0
3+2r

• Each term in the series must be 0, giving the recursion relation
ak(4k2 + 8kr + 4r2 − 1) + (−8k − 8r + 4) ak−1 + 4ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
4(k + 2)2 + 8(k + 2) r + 4r2 − 1

)
+ (−8k − 12− 8r) ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 4(2kak+1+2rak+1−ak+3ak+1)

4k2+8kr+4r2+16k+16r+15

• Recursion relation for r = −1
2

ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8

• Solution for r = −1
2[

y(x) =
∞∑
k=0

akx
k− 1

2 , ak+2 = 4(2kak+1−ak+2ak+1)
4k2+12k+8 , a1 = 2a0

]
• Recursion relation for r = 1

2

ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24

• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 4(2kak+1−ak+4ak+1)
4k2+20k+24 , a1 = a0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = 4(2kak+1−ak+2ak+1)

4k2+12k+8 , a1 = 2a0, bk+2 = 4(2kbk+1−bk+4bk+1)
4k2+20k+24 , b1 = b0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 15� �
dsolve(4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0,

y(x),singsol=all)� �
y = ex(c2x+ c1)√

x

Mathematica DSolve solution

Solving time : 0.046 (sec)
Leaf size : 21� �
DSolve[{4*x^2*D[y[x],{x,2}]+(-8*x^2+4*x)*D[y[x],x]+(4*x^2-4*x-1)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ex(c2x+ c1)√

x
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2.1.819 problem 843

Solved as second order ode using Kovacic algorithm . . . . . . . . .5453
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5455
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5456
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5456
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5456

Internal problem ID [9667]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 843
Date solved : Thursday, December 12, 2024 at 10:15:10 AM
CAS classification : [[_2nd_order, _quadrature]]

Solve

y′′ = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.078 (sec)

Writing the ode as

y′′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1560: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
∫ 1

1 dx

= 1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2(1(x))

Will add steps showing solving for IC soon.

–6

–4

–2

0

2

4

6

y’(x)

–6 –4 –2 0 2 4 6

y(x)

Figure 2.4: Slope field plot
y′′ = 0

Maple step by step solution

Let’s solve
d2

dx2y(x) = 0
• Highest derivative means the order of the ODE is 2

d2

dx2y(x)
• Characteristic polynomial of ODE

r2 = 0
• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y(x) = C1y1(x) + C2y2(x)

• Substitute in solutions
y(x) = C2x+ C1
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 9� �
dsolve(diff(diff(y(x),x),x) = 0,

y(x),singsol=all)� �
y = c1x+ c2

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12� �
DSolve[{D[y[x],{x,2}]==((4*(1/2)^2-1)/(4*x^2))*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x+ c1
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2.1.820 problem 844

Solved as second order ode using Kovacic algorithm . . . . . . . . .5457
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5461
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5462
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5462
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5462

Internal problem ID [9668]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 844
Date solved : Thursday, December 12, 2024 at 10:15:11 AM
CAS classification :
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

y′′ = 2y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.144 (sec)

Writing the ode as

y′′ − 2y
x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = − 2
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1562: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1
x

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
x

∫ 1
1
x2

dx

= 1
x

(
x3

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x3

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) = 2y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)− 2y(x)
x2 = 0

• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
− 2y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− 2y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 2 = 0

• Factor the characteristic polynomial
(r + 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (−1, 2)

• 1st solution of the ODE
y1(t) = e−t

• 2nd solution of the ODE
y2(t) = e2t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 e−t + C2 e2t

• Change variables back using t = ln (x)
y(x) = C1

x
+ C2 x2

• Simplify
y(x) = C1

x
+ C2 x2



chapter 2. book solved problems 5462

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 15� �
dsolve(diff(diff(y(x),x),x) = 2/x^2*y(x),

y(x),singsol=all)� �
y = c2x

3 + c1
x

Mathematica DSolve solution

Solving time : 0.016 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]==((4*(3/2)^2-1)/(4*x^2))*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

3 + c1
x
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2.1.821 problem 845

Solved as second order ode using Kovacic algorithm . . . . . . . . .5463
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5467
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5468
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5468
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5468

Internal problem ID [9669]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 845
Date solved : Thursday, December 12, 2024 at 10:15:11 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ = 6y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.145 (sec)

Writing the ode as

y′′ − 6y
x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = − 6
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 6
x2 (6)

Comparing the above to (5) shows that

s = 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(

6
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1564: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 6

x2

Since the gcd(s, t) = 1. This gives b = 6. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

α−
∞ = 1

2 −
√
1 + 4b = −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −2 then

d = α−
∞ −

(
α−
c1

)
= −2− (−2)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (0)

= −2
x

= −2
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−2
x

)
(0) +

((
2
x2

)
+
(
−2
x

)2

−
(

6
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 2

x
dx

= 1
x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1
x2

Which simplifies to

y1 =
1
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
x2

∫ 1
1
x4

dx

= 1
x2

(
x5

5

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x2

)
+ c2

(
1
x2

(
x5

5

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) = 6y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)− 6y(x)
x2 = 0

• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
− 6y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 6y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− 6y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 6 = 0

• Factor the characteristic polynomial
(r + 2) (r − 3) = 0

• Roots of the characteristic polynomial
r = (−2, 3)

• 1st solution of the ODE
y1(t) = e−2t

• 2nd solution of the ODE
y2(t) = e3t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 e−2t + C2 e3t

• Change variables back using t = ln (x)
y(x) = C1

x2 + C2 x3

• Simplify
y(x) = C1

x2 + C2 x3
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 15� �
dsolve(diff(diff(y(x),x),x) = 6/x^2*y(x),

y(x),singsol=all)� �
y = c1x

5 + c2
x2

Mathematica DSolve solution

Solving time : 0.016 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]==((4*(5/2)^2-1)/(4*x^2))*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

5 + c1
x2
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2.2 section 2. Solution found using all possible
Kovacic cases

2.2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5470
2.2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5478
2.2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5484
2.2.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5490
2.2.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5496
2.2.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5502
2.2.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5508
2.2.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5515
2.2.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5520
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2.2.1 problem 1

Solved as second order ode using Kovacic algorithm . . . . . . . . .5470
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5475
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5476
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5476
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5477

Internal problem ID [9670]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 1
Date solved : Thursday, December 12, 2024 at 10:15:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
− 3
16x2 − 2

9 (x− 1)2
+ 3

16x (x− 1)

)
y

Solved as second order ode using Kovacic algorithm

Time used: 1.089 (sec)

Writing the ode as

y′′ + (32x2 − 27x+ 27) y
144x2 (x− 1)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 32x2 − 27x+ 27
144x2 (x− 1)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −32x2 + 27x− 27
144 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −32x2 + 27x− 27

t = 144
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−32x2 + 27x− 27

144 (x2 − x)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1566: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 144(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Unable to find solution using case two.

Attempting to find a solution using n = 4.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9 (x− 1)2

− 3
16x + 3

16 (x− 1) −
3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. This shows that b = − 3
16 . Hence

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z
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Where n for case 3 is 4, 6 or 12. For the current case n = 4. Hence the above becomes

Ec = {3, 6, 9}

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. This shows that b = −2
9 . Hence

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Where n for case 3 is 4, 6 or 12. For the current case n = 4. Hence the above becomes

Ec = {4, 5, 6, 7, 8}

Let

E∞ =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z (B1)

Where b is the coefficient of 1
x2 in the Laurent series for r at ∞ given by

r ≈ − 2
9x2 − 37

144x3 − 23
48x4 − 101

144x5 − 133
144x6 − 55

48x7 + · · ·

The above shows that
b = −2

9
The value of n in eq. (B1) for case 3 is 4, 6 or 2.For the current case n = 4. eq. (B1)
simplifies to the following, after removing any duplicate and non integer entries in the set.

E∞ = {4, 5, 6, 7, 8}

The following table summarizes the results found so far for poles and for the order of r at
∞ for case 3 of Kovacic algorithm using n = 4.

pole c location pole order set {Ec}
0 2 {3, 6, 9}
1 2 {4, 5, 6, 7, 8}

Order of r at ∞ set {E∞}
2 {4, 5, 6, 7, 8}

Now that Ec sets for all poles are found and E∞ set is found, the next step is to determine
a non negative integer d using the following

d = n

12

(
e∞ −

∑
c∈Γ

ec

)

Where in the above ec is a distinct element from each corresponding Ec. This means all
possible tuples {ec1 , ec2 , . . . , ecn} are tried in the sum above, where eci is one element of
each Ec found earlier. Using the following family {e1, e2, . . . , e∞} given by

e1 = 3, e2 = 4, e∞ = 7

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = n

12

(
e∞ −

∑
c∈Γ

ec

)

= 4
12(7− (3 + (4)))

= 0
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The following rational function is

θ = n

12
∑
c∈Γ

ec
x− c

= 4
12

(
3

(x− (0)) +
4

(x− (1))

)
= 1

x
+ 4

3x− 3
And

S =
∏
c∈Γ

(x− c)

= x(x− 1)

The polynomial p(x) is now determined. Since the degree of the polynomial is d = 0, then
let

p(x) = 1

The following set of equations are set up in order to determine the coefficients ai (if any)
of the above polynomial

Pn = −p(x)
= −1

Pi−1 = −Sp′i + ((n− i)S ′ − Sθ)Pi − (n− 1)(i+ 1)S2rPi+1 i = n, n− 1, . . . , 0 (1A)

The coefficients ai are solved for from

P−1 = 0 (2A)

By using method of undetermined coefficients. Carrying the above computation in eq. (1A)
gives the following sequence of polynomials Pi (noting that n = 4 and r = −32x2+27x−27

144(x2−x)2 ).

P4 = −p
= −1

P3 =
7x
3 − 1

P2 = −4x2 + 41
12x− 3

4

P1 =
40
9 x3 − 409

72 x2 + 5
2x− 3

8

P0 = −64
27x

4 + 871
216x

3 − 257
96 x2 + 13

16x− 3
32

P−1 = 0

Because P−1 = 0 then z = e
∫
ω is a solution. ω is found by finding a solution to the

equation generated by the following sum
n∑

i=0

Si Pi

(n− i)!ω
i = 0

4∑
i=0

Si Pi

(4− i)!ω
i = 0

Where the Pi are the polynomials found earlier. Computing the above sum gives

−8x4

81 + 871x3

5184 − 257x2

2304 + 13x
384 − 1

256 + x(x− 1) (320x3 − 409x2 + 180x− 27)ω
432

− x2(x− 1)2 (48x2 − 41x+ 9)ω2

24 + x3(x− 1)3
(
7x
3 − 1

)
ω3 − x4(x− 1)4 ω4 = 0
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The solution ω of eq. 3A is found as

ω = 1
12x (x− 1)

7x− 3 +
√

x2 +
(
(x− 1)2 x3

)1/3 − x

+

√√√√√√√−
2
((

−x2 + x+
(
(x−1)2x3

)1/3
2

)√
x2 +

(
(x− 1)2 x3

)1/3 − x+ x2 (x− 1)
)

√
x2 +

(
(x− 1)2 x3

)1/3 − x


(4A)

This ω is used to find a solution to z′′ = rz.

z1(x) = e
∫
ω dx (5A)

Unable to integrate
∫
ωdx. Leaving the integral unevaluated. The first solution to the

original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e
∫
ω dx

Where ω given above. The second solution y2 to the original ode is found using reduction
of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

= e
∫
ω dx

∫
e
∫
−B

A
dx(

e
∫
ω dx
)2 dx

Since B = 0 then the above reduces to

y2 = e
∫
ω dx

∫ (
e
∫
ω dx
)−2

dx

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e
∫
ω dx
)
+ c2

(
e
∫
ω dx

∫ (
e
∫
ω dx
)−2

dx

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) =
(
− 3

16x2 − 2
9(x−1)2 +

3
16x(x−1)

)
y(x)

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
32x2−27x+27

)
y(x)

144x2(x−1)2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
32x2−27x+27

)
y(x)

144x2(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 32x2−27x+27
144x2(x−1)2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

144x2(x− 1)2
(

d2

dx2y(x)
)
+ (32x2 − 27x+ 27) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

9a0(−1 + 4r) (−3 + 4r)xr + (9a1(3 + 4r) (1 + 4r)− 9a0(32r2 − 32r + 3))x1+r +
(

∞∑
k=2

(
9ak(4k + 4r − 1) (4k + 4r − 3)− 9ak−1

(
32(k − 1)2 + 64(k − 1) r + 32r2 − 32k + 35− 32r

)
+ 16ak−2(3k − 7 + 3r) (3k − 8 + 3r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
9(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
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• Each term must be 0
9a1(3 + 4r) (1 + 4r)− 9a0(32r2 − 32r + 3) = 0

• Solve for the dependent coefficient(s)

a1 = a0
(
32r2−32r+3

)
16r2+16r+3

• Each term in the series must be 0, giving the recursion relation
144(ak + ak−2 − 2ak−1) k2 + 144(2(ak + ak−2 − 2ak−1) r − ak − 5ak−2 + 6ak−1) k + 144(ak + ak−2 − 2ak−1) r2 + 144(−ak − 5ak−2 + 6ak−1) r + 27ak + 896ak−2 − 603ak−1 = 0

• Shift index using k− >k + 2
144(ak+2 + ak − 2ak+1) (k + 2)2 + 144(2(ak+2 + ak − 2ak+1) r − ak+2 − 5ak + 6ak+1) (k + 2) + 144(ak+2 + ak − 2ak+1) r2 + 144(−ak+2 − 5ak + 6ak+1) r + 27ak+2 + 896ak − 603ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −144k2ak−288k2ak+1+288krak−576krak+1+144r2ak−288r2ak+1−144kak−288kak+1−144rak−288rak+1+32ak−27ak+1

9(16k2+32kr+16r2+48k+48r+35)

• Recursion relation for r = 1
4

ak+2 = −144k2ak−288k2ak+1−72kak−432kak+1+5ak−117ak+1
9(16k2+56k+48)

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −144k2ak−288k2ak+1−72kak−432kak+1+5ak−117ak+1
9(16k2+56k+48) , a1 = −3a0

8

]
• Recursion relation for r = 3

4

ak+2 = −144k2ak−288k2ak+1+72kak−720kak+1+5ak−405ak+1
9(16k2+72k+80)

• Solution for r = 3
4[

y(x) =
∞∑
k=0

akx
k+ 3

4 , ak+2 = −144k2ak−288k2ak+1+72kak−720kak+1+5ak−405ak+1
9(16k2+72k+80) , a1 = −a0

8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+2 = −144k2ak−288k2ak+1−72kak−432kak+1+5ak−117ak+1

9(16k2+56k+48) , a1 = −3a0
8 , bk+2 = −144k2bk−288k2bk+1+72kbk−720kbk+1+5bk−405bk+1

9(16k2+72k+80) , b1 = − b0
8

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Tetrahedral Galois group A4_SL2.

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.015 (sec)
Leaf size : 30� �
dsolve(diff(diff(y(x),x),x) = (-3/16/x^2-2/9/(x-1)^2+3/16/(x-1)/x)*y(x),

y(x),singsol=all)� �
y =

√
x− 1x1/4

(
c1 LegendreP

(
−1
6 ,

1
3 ,

√
x

)
+ c2 LegendreQ

(
−1
6 ,

1
3 ,

√
x

))
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Mathematica DSolve solution

Solving time : 0.375 (sec)
Leaf size : 550� �
DSolve[{D[y[x],{x,2}]== ( -3/(16*x^2)- 2/(9*(x-1)^2) + 3/(16*x*(x-1))) *y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1 exp

(∫ x

1
Root

[
2048K[1]4 − 3484K[1]3 + 2313K[1]2 − 702K[1]

+
(
20736K[1]8 − 82944K[1]7 + 124416K[1]6 − 82944K[1]5 + 20736K[1]4

)
#14

+
(
−48384K[1]7 + 165888K[1]6 − 207360K[1]5 + 110592K[1]4 − 20736K[1]3

)
#13

+
(
41472K[1]6 − 118368K[1]5 + 120096K[1]4 − 50976K[1]3 + 7776K[1]2

)
#12

+
(
−15360K[1]5 + 34992K[1]4 − 28272K[1]3 + 9936K[1]2 − 1296K[1]

)
#1

+ 81&, 1
]
dK[1]

)
+ c2 exp

(∫ x

1
Root

[
2048K[1]4 − 3484K[1]3 + 2313K[1]2 − 702K[1]

+
(
20736K[1]8 − 82944K[1]7 + 124416K[1]6 − 82944K[1]5 + 20736K[1]4

)
#14

+
(
−48384K[1]7 + 165888K[1]6 − 207360K[1]5 + 110592K[1]4 − 20736K[1]3

)
#13

+
(
41472K[1]6 − 118368K[1]5 + 120096K[1]4 − 50976K[1]3 + 7776K[1]2

)
#12

+
(
−15360K[1]5 + 34992K[1]4 − 28272K[1]3 + 9936K[1]2 − 1296K[1]

)
#1

+ 81&, 1
]
dK[1]

)∫ x

1
exp

(
−2
∫ K[2]

1
Root

[
2048K[1]4 − 3484K[1]3 + 2313K[1]2

−702K[1]+
(
20736K[1]8−82944K[1]7+124416K[1]6−82944K[1]5+20736K[1]4

)
#14+

(
−48384K[1]7+165888K[1]6−207360K[1]5+110592K[1]4−20736K[1]3

)
#13

+
(
41472K[1]6−118368K[1]5+120096K[1]4−50976K[1]3+7776K[1]2

)
#12+

(
−15360K[1]5+34992K[1]4−28272K[1]3+9936K[1]2−1296K[1]

)
#1

+ 81&, 1
]
dK[1]

)
dK[2]
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2.2.2 problem 2

Solved as second order ode using Kovacic algorithm . . . . . . . . .5478
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5482
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5483
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5483
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5483

Internal problem ID [9671]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 2
Date solved : Thursday, December 12, 2024 at 10:15:13 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ = 20y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.154 (sec)

Writing the ode as

y′′ − 20y
x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −20
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 20
x2 (6)

Comparing the above to (5) shows that

s = 20
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
20
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1568: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 20
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 20. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

α−
c = 1

2 −
√
1 + 4b = −4
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 20

x2

Since the gcd(s, t) = 1. This gives b = 20. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

α−
∞ = 1

2 −
√
1 + 4b = −4

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 20
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5 −4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5 −4

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −4 then

d = α−
∞ −

(
α−
c1

)
= −4− (−4)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −4
x
+ (−) (0)

= −4
x

= −4
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−4
x

)
(0) +

((
4
x2

)
+
(
−4
x

)2

−
(
20
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 4

x
dx

= 1
x4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1
x4

Which simplifies to

y1 =
1
x4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
x4

∫ 1
1
x8

dx

= 1
x4

(
x9

9

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x4

)
+ c2

(
1
x4

(
x9

9

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) = 20y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)− 20y(x)
x2 = 0

• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
− 20y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 20y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− 20y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 20 = 0

• Factor the characteristic polynomial
(r + 4) (r − 5) = 0

• Roots of the characteristic polynomial
r = (−4, 5)

• 1st solution of the ODE
y1(t) = e−4t

• 2nd solution of the ODE
y2(t) = e5t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 e−4t + C2 e5t

• Change variables back using t = ln (x)
y(x) = C1

x4 + C2 x5

• Simplify
y(x) = C1

x4 + C2 x5
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 15� �
dsolve(diff(diff(y(x),x),x) = 20/x^2*y(x),

y(x),singsol=all)� �
y = c2x

9 + c1
x4

Mathematica DSolve solution

Solving time : 0.017 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]==((4*(9/2)^2-1)/(4*x^2))*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

9 + c1
x4
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2.2.3 problem 3

Solved as second order ode using Kovacic algorithm . . . . . . . . .5484
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5488
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5489
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5489
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5489

Internal problem ID [9672]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 3
Date solved : Thursday, December 12, 2024 at 10:15:14 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ = 12y
x2

Solved as second order ode using Kovacic algorithm

Time used: 0.145 (sec)

Writing the ode as

y′′ − 12y
x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −12
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 12
x2 (6)

Comparing the above to (5) shows that

s = 12
t = x2



chapter 2. book solved problems 5485

Therefore eq. (4) becomes

z′′(x) =
(
12
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1570: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 12
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 12. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 4

α−
c = 1

2 −
√
1 + 4b = −3
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 12

x2

Since the gcd(s, t) = 1. This gives b = 12. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 4

α−
∞ = 1

2 −
√
1 + 4b = −3

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 12
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 4 −3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 4 −3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −3 then

d = α−
∞ −

(
α−
c1

)
= −3− (−3)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −3
x
+ (−) (0)

= −3
x

= −3
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−3
x

)
(0) +

((
3
x2

)
+
(
−3
x

)2

−
(
12
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3

x
dx

= 1
x3

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1
x3

Which simplifies to

y1 =
1
x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
x3

∫ 1
1
x6

dx

= 1
x3

(
x7

7

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x3

)
+ c2

(
1
x3

(
x7

7

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) = 12y(x)
x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)− 12y(x)
x2 = 0

• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
− 12y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 12y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− 12y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 12 = 0

• Factor the characteristic polynomial
(r + 3) (r − 4) = 0

• Roots of the characteristic polynomial
r = (−3, 4)

• 1st solution of the ODE
y1(t) = e−3t

• 2nd solution of the ODE
y2(t) = e4t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 e−3t + C2 e4t

• Change variables back using t = ln (x)
y(x) = C1

x3 + C2 x4

• Simplify
y(x) = C1

x3 + C2 x4
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 15� �
dsolve(diff(diff(y(x),x),x) = 12/x^2*y(x),

y(x),singsol=all)� �
y = c2x

7 + c1
x3

Mathematica DSolve solution

Solving time : 0.017 (sec)
Leaf size : 18� �
DSolve[{D[y[x],{x,2}]==((4*(7/2)^2-1)/(4*x^2))*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

7 + c1
x3
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2.2.4 problem 4

Solved as second order ode using Kovacic algorithm . . . . . . . . .5490
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5494
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5495
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5495
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5495

Internal problem ID [9673]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 4
Date solved : Thursday, December 12, 2024 at 10:15:14 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ − y

4x2 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.232 (sec)

Writing the ode as

y′′ − y

4x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = − 1
4x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4x2 (6)

Comparing the above to (5) shows that

s = 1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

1
4x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1572: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 +
√
2
2

α−
c = 1

2 −
√
1 + 4b = 1

2 −
√
2
2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 1

4x2
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Since the gcd(s, t) = 1. This gives b = 1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2 +
√
2
2

α−
∞ = 1

2 −
√
1 + 4b = 1

2 −
√
2
2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2 +

√
2
2

1
2 −

√
2
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2 +

√
2
2

1
2 −

√
2
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 −
√
2
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
√
2
2 −

(
1
2 −

√
2
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

=
1
2 −

√
2
2

x
+ (−) (0)

=
1
2 −

√
2
2

x

= −
√
2− 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

√
2
2

x

)
(0) +

(− 1
2 −

√
2
2

x2

)
+
(

1
2 −

√
2
2

x

)2

−
(

1
4x2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2−
√
2
2

x
dx

= x
1
2−

√
2

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x
1
2−

√
2
2

Which simplifies to

y1 = x
1
2−

√
2

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x
1
2−

√
2

2

∫ 1
x1−

√
2
dx

= x
1
2−

√
2

2

(
x
√
2x

√
2−1

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x

1
2−

√
2
2

)
+ c2

(
x

1
2−

√
2
2

(
x
√
2x

√
2−1

2

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x)− y(x)
4x2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Multiply by denominators of the ODE

4x2
(

d2

dx2y(x)
)
− y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

4x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− y(t) = 0

• Simplify
4 d2

dt2
y(t)− 4 d

dt
y(t)− y(t) = 0

• Isolate 2nd derivative
d2

dt2
y(t) = d

dt
y(t) + y(t)

4

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)− d

dt
y(t)− y(t)

4 = 0
• Characteristic polynomial of ODE

r2 − r − 1
4 = 0

• Use quadratic formula to solve for r

r =
1±
(√

2
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

√
2
2 , 12 +

√
2
2

)
• 1st solution of the ODE

y1(t) = e
(

1
2−

√
2

2

)
t

• 2nd solution of the ODE

y2(t) = e
(

1
2+

√
2

2

)
t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions

y(t) = C1 e
(

1
2−

√
2
2

)
t + C2 e

(
1
2+

√
2

2

)
t

• Change variables back using t = ln (x)

y(x) = C1 e
(

1
2−

√
2
2

)
ln(x) + C2 e

(
1
2+

√
2

2

)
ln(x)
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• Simplify

y(x) =
√
x
(
x−

√
2
2 C1 + x

√
2

2 C2
)

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 27� �
dsolve(diff(diff(y(x),x),x)-1/4/x^2*y(x) = 0,

y(x),singsol=all)� �
y =

√
x
(
x

√
2

2 c1 + x−
√

2
2 c2
)

Mathematica DSolve solution

Solving time : 0.026 (sec)
Leaf size : 32� �
DSolve[{D[y[x],{x,2}]-1/(4*x^2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x

1
2−

1√
2

(
c2x

√
2 + c1

)
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2.2.5 problem 5

Solved as second order ode using Kovacic algorithm . . . . . . . . .5496
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5499
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5501
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5501
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5501

Internal problem ID [9674]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 5
Date solved : Thursday, December 12, 2024 at 10:15:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

xy′′ − (2x+ 2) y′ + (2 + x) y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.176 (sec)

Writing the ode as

xy′′ + (−2x− 2) y′ + (2 + x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 2 (3)
C = 2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1574: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2
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Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2

x
dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x
dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1

(
x e2x+2 ln(x)e−2x

3

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x e2x+2 ln(x)e−2x

3

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve(
d2

dx2y(x)
)
x− (2x+ 2)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = − (x+2)y(x)
x

+
2(x+1)

(
d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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d2

dx2y(x)−
2(x+1)

(
d
dx

y(x)
)

x
+ (x+2)y(x)

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x+1)
x

, P3(x) = x+2
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators(
d2

dx2y(x)
)
x+ (−2− 2x)

(
d
dx
y(x)

)
+ (x+ 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 0..1

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x ·
(

d2

dx2y(x)
)

to series expansion

x ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x ·
(

d2

dx2y(x)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + (a1(1 + r) (−2 + r)− 2a0(−1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 2 + r)− 2ak(k + r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r)− 2a0(−1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r)− 2akk − 2akr + 2ak + ak−1 = 0
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• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− 2ak+1(k + 1)− 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2) , 4a1 − 4a0 = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 14� �
dsolve(x*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+(x+2)*y(x) = 0,

y(x),singsol=all)� �
y = ex

(
c2x

3 + c1
)

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 23� �
DSolve[{x*D[y[x],{x,2}]-(2*x+2)*D[y[x],x]+(2+x)*y[x] ==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

3e
x
(
c2x

3 + 3c1
)
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2.2.6 problem 6

Solved as second order ode using Kovacic algorithm . . . . . . . . .5502
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5506
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5507
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5507
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5507

Internal problem ID [9675]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 6
Date solved : Thursday, December 12, 2024 at 10:15:15 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ + y

x2 = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.278 (sec)

Writing the ode as

y′′ + y

x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 1
x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
x2 (6)

Comparing the above to (5) shows that

s = −1
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1576: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + i
√
3

2

α−
c = 1

2 −
√
1 + 4b = 1

2 − i
√
3

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

x2
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Since the gcd(s, t) = 1. This gives b = −1. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2 + i
√
3

2

α−
∞ = 1

2 −
√
1 + 4b = 1

2 − i
√
3

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2 +

i
√
3

2
1
2 −

i
√
3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2 +

i
√
3

2
1
2 −

i
√
3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 −
i
√
3

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 − i
√
3

2 −

(
1
2 − i

√
3

2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

=
1
2 −

i
√
3

2
x

+ (−) (0)

=
1
2 −

i
√
3

2
x

= 1− i
√
3

2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

i
√
3

2
x

)
(0) +

(− 1
2 −

i
√
3

2
x2

)
+
(

1
2 −

i
√
3

2
x

)2

−
(
− 1
x2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2− i
√
3

2
x

dx

= x
1
2−

i
√
3

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x
1
2−

i
√
3

2

Which simplifies to

y1 = x
1
2−

i
√
3

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x
1
2−

i
√
3

2

∫ 1
x1−i

√
3
dx

= x
1
2−

i
√
3

2

(
−ix

√
3xi

√
3−1

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x

1
2−

i
√
3

2

)
+ c2

(
x

1
2−

i
√
3

2

(
−ix

√
3xi

√
3−1

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) + y(x)
x2 = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
+ y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t) + y(t) = 0

• Characteristic polynomial of ODE
r2 − r + 1 = 0

• Use quadratic formula to solve for r

r = 1±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

I
√
3

2 , 12 +
I
√
3

2

)
• 1st solution of the ODE

y1(t) = e t
2 cos

(√
3 t
2

)
• 2nd solution of the ODE

y2(t) = e t
2 sin

(√
3 t
2

)
• General solution of the ODE

y(t) = C1y1(t) + C2y2(t)
• Substitute in solutions

y(t) = C1 e t
2 cos

(√
3 t
2

)
+ C2 e t

2 sin
(√

3 t
2

)
• Change variables back using t = ln (x)

y(x) = C1
√
x cos

(√
3 ln(x)
2

)
+ C2

√
x sin

(√
3 ln(x)
2

)
• Simplify

y(x) =
√
x
(
C1 cos

(√
3 ln(x)
2

)
+ C2 sin

(√
3 ln(x)
2

))
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 29� �
dsolve(diff(diff(y(x),x),x)+1/x^2*y(x) = 0,

y(x),singsol=all)� �
y =

√
x

(
c1 sin

(√
3 ln (x)
2

)
+ c2 cos

(√
3 ln (x)
2

))

Mathematica DSolve solution

Solving time : 0.04 (sec)
Leaf size : 42� �
DSolve[{D[y[x],{x,2}]+1/x^2*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x

(
c1 cos

(
1
2
√
3 log(x)

)
+ c2 sin

(
1
2
√
3 log(x)

))
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2.2.7 problem 7

Solved as second order ode using Kovacic algorithm . . . . . . . . .5508
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5512
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5514
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5514
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5514

Internal problem ID [9676]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 7
Date solved : Thursday, December 12, 2024 at 10:15:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
−x2 + 1

)
y′′ + y′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.687 (sec)

Writing the ode as (
−x2 + 1

)
y′′ + y′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 4x− 3
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 4x− 3

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 4x− 3
4 (x2 − 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1578: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 7
16 (x+ 1) +

7
16 (x− 1) +

5
16 (x− 1)2

− 3
16 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}
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Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= 4x2 + 4x− 3

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 1. Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.

pole c location pole order Ec

1 2 {−1, 2, 5}
−1 2 {1, 2, 3}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (−1 + (1)))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (1)) +
1

(x− (−1))

)
= − 1

2 (x− 1) +
1

2x+ 2

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

4a0 + 6
(x− 1)2 (x+ 1)

= 0

And solving for p gives
p = x− 3

2
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Now that p(x) is found let

φ = θ + p′

p

= 1
x− 3

2
− 1

2 (x− 1) +
1

2x+ 2

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
x− 3

2
− 1

2 (x− 1) +
1

2x+ 2

)
w + −8x3 + 4x2 + 10x− 7

4 (x2 − 1)2 (2x− 3)
= 0

Solving for ω gives

ω = 2
√
5
√
(x− 1) (x+ 1)x− 2

√
5
√
(x− 1) (x+ 1) + 2x2 − 2x+ 1

2 (2x− 3) (x− 1) (x+ 1)
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 2

√
5
√

(x−1)(x+1) x−2
√
5
√

(x−1)(x+1)+2x2−2x+1
2(2x−3)(x−1)(x+1) dx

=
√
2x− 3 (x+ 1)1/4

(
x+

√
x2 − 1

)√
5
2 51/4

(x− 1)1/4
√

5
√
x2−1+(−2+3x)

√
5

√
x2−1

√
− (2x−3)2

x2−1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1

−x2+1 dx

= z1e
− arctanh(x)

2

= z1

 1√
x+1√
−x2+1


Which simplifies to

y1 =
(
x+

√
x2 − 1

)√
5

2
√
2x− 3 (5x+ 5)1/4√

x+1√
−x2+1

√
i
(
3
√
5x+5

√
x2−1−2

√
5
)

2x−3 (x− 1)1/4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

−x2+1 dx

(y1)2
dx

= y1

∫
e− arctanh(x)

(y1)2
dx

= y1

∫ i
(
x+

√
x2 − 1

)−√
5 (3√5x+ 5

√
x2 − 1− 2

√
5
)√

x− 1
(2x− 3)2

√
5x+ 5

dx
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Therefore the solution is

y = c1y1 + c2y2

= c1


(
x+

√
x2 − 1

)√
5

2
√
2x− 3 (5x+ 5)1/4√

x+1√
−x2+1

√
i
(
3
√
5x+5

√
x2−1−2

√
5
)

2x−3 (x− 1)1/4



+c2


(
x+

√
x2 − 1

)√
5
2
√
2x− 3 (5x+ 5)1/4√

x+1√
−x2+1

√
i
(
3
√
5x+5

√
x2−1−2

√
5
)

2x−3 (x− 1)1/4

∫ i
(
x+

√
x2 − 1

)−√
5 (3√5x+ 5

√
x2 − 1− 2

√
5
)√

x− 1
(2x− 3)2

√
5x+ 5

dx




Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

(−x2 + 1)
(

d2

dx2y(x)
)
+ d

dx
y(x) + y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = y(x)
x2−1 +

d
dx

y(x)
x2−1

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x2−1 − y(x)

x2−1 = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = − 1

x2−1 , P3(x) = − 1
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

(x2 − 1)
(

d2

dx2y(x)
)
− d

dx
y(x)− y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
− d

du
y(u)− y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1
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◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(2r − 1)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k2 + 2kr + r2 − k − r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(2r − 1) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + r + 1

2

)
ak+1 + (k2 + (2r − 1) k + r2 − r − 1) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2−k−r−1

)
ak

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0

ak+1 =
(
k2−k−1

)
ak

(k+1)(2k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2−k−1

)
ak

(k+1)(2k+1)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k , ak+1 =
(
k2−k−1

)
ak

(k+1)(2k+1)

]
• Recursion relation for r = 1

2

ak+1 =
(
k2− 5

4
)
ak(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
(
k2− 5

4
)
ak(

k+ 3
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
1
2 , ak+1 =

(
k2− 5

4
)
ak(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+
1
2

)
, ak+1 =

(
k2−k−1

)
ak

(k+1)(2k+1) , bk+1 =
(
k2− 5

4
)
bk(

k+ 3
2
)
(2k+2)

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.049 (sec)
Leaf size : 58� �
dsolve((-x^2+1)*diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = 0,

y(x),singsol=all)� �
y = c1 hypergeom

([√
5
2 − 1

2 ,−
1
2 −

√
5
2

]
,

[
1
2

]
,
1
2 + x

2

)

+ c2
√
2 + 2x hypergeom

([
−
√
5
2 ,

√
5
2

]
,

[
3
2

]
,
1
2 + x

2

)

Mathematica DSolve solution

Solving time : 92.212 (sec)
Leaf size : 198� �
DSolve[{(1-x^2)*D[y[x],{x,2}]+D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(√
x− 1−

√
x+ 1

)− 1
2−

√
5

2
(√

x− 1 +
√
x+ 1

) 1
2

(√
5−1

) (
5
√
x− 1

−
√
5
√
x+ 1

)c2

∫ x

1

−
2
√

1−K[1]
(√

K[1]− 1−
√

K[1] + 1
)√5 (√

K[1]− 1 +
√
K[1] + 1

)−√
5

√
K[1] + 1

(√
5
√
K[1] + 1− 5

√
K[1]− 1

)2 dK[1]

+ c1
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2.2.8 problem 8

Solved as second order ode using Kovacic algorithm . . . . . . . . .5515
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5519
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5519
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5519
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5519

Internal problem ID [9677]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 8
Date solved : Thursday, December 12, 2024 at 10:15:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve (
x2 − x

)
y′′ − xy′ + y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.245 (sec)

Writing the ode as (
x2 − x

)
y′′ − xy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − x

B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x+ 4
4x (x− 1)2

(6)

Comparing the above to (5) shows that

s = −x+ 4
t = 4x(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(

−x+ 4
4x (x− 1)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1580: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 1
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x(x− 1)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of order 2.
Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary
conditions for case one are met. Since there is a pole of order 2 then necessary conditions
for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
x− 1 + 3

4 (x− 1)2
+ 1

x

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= −x+ 4

4x (x− 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x+ 4
4x (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1
1 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x
− 1

2 (x− 1) + (−) (0)

= 1
x
− 1

2 (x− 1)

= x− 2
2x (x− 1)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

2 (x− 1)

)
(0) +

((
− 1
x2 + 1

2 (x− 1)2
)
+
(
1
x
− 1

2 (x− 1)

)2

−
(

−x+ 4
4x (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

2(x−1)

)
dx

= x√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

x2−x
dx

= z1e
ln(x−1)

2

= z1
(√

x− 1
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x2−x
dx

(y1)2
dx

= y1

∫
eln(x−1)

(y1)2
dx

= y1

(
ln (x) + 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
ln (x) + 1

x

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 14� �
dsolve((x^2-x)*diff(diff(y(x),x),x)-diff(y(x),x)*x+y(x) = 0,

y(x),singsol=all)� �
y = ln (x) c2x+ c1x+ c2

Mathematica DSolve solution

Solving time : 0.048 (sec)
Leaf size : 20� �
DSolve[{(x^2-x)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x− c2(x log(x) + 1)
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2.2.9 problem 9

Solved as second order ode using Kovacic algorithm . . . . . . . . .5520
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5524
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5526
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5526
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5527

Internal problem ID [9678]
Book : Collection of Kovacic problems
Section : section 2. Solution found using all possible Kovacic cases
Problem number : 9
Date solved : Thursday, December 12, 2024 at 10:15:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2(−x2 + 2
)
y′′ − x

(
4x2 + 3

)
y′ +

(
−2x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.635 (sec)

Writing the ode as(
−x4 + 2x2) y′′ + (−4x3 − 3x

)
y′ +

(
−2x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + 2x2

B = −4x3 − 3x (3)
C = −2x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 14x2 + 5
4 (x3 − 2x)2

(6)

Comparing the above to (5) shows that

s = 14x2 + 5

t = 4
(
x3 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(

14x2 + 5
4 (x3 − 2x)2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1581: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 6− 2
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x3 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x =

√
2 of order

2. There is a pole at x = −
√
2 of order 2. Since there is no odd order pole larger than 2

and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is
a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 5
16x2 + 33

64
(
x−

√
2
)2 + 33

64
(
x+

√
2
)2 − 43

√
2

128
(
x−

√
2
) + 43

√
2

128
(
x+

√
2
)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

4
α−
c = 1

2 −
√
1 + 4b = −1

4
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For the pole at x =
√
2 let b be the coefficient of 1(

x−
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 33
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

8
α−
c = 1

2 −
√
1 + 4b = −3

8

For the pole at x = −
√
2 let b be the coefficient of 1(

x+
√
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 33
64 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 11

8
α−
c = 1

2 −
√
1 + 4b = −3

8

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 14x2 + 5
4 (x3 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
4 −1

4√
2 2 0 11

8 −3
8

−
√
2 2 0 11

8 −3
8

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2 + α−
c3

)
= 1− (−1)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+
(
(−)[

√
r]c3 +

α−
c3

x− c3

)
+ (−)[

√
r]∞

= − 1
4x − 3

8
(
x−

√
2
) − 3

8
(
x+

√
2
) + (−) (0)

= − 1
4x − 3

8
(
x−

√
2
) − 3

8
(
x+

√
2
)

= −2x2 + 1
2x3 − 4x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
− 1
4x − 3

8
(
x−

√
2
) − 3

8
(
x+

√
2
)) (2x+ a1) +

( 1
4x2 + 3

8
(
x−

√
2
)2 + 3

8
(
x+

√
2
)2
)

+
(
− 1
4x − 3

8
(
x−

√
2
) − 3

8
(
x+

√
2
))2

−
(

14x2 + 5
4 (x3 − 2x)2

) = 0

(2xa0 − 2x+ a1) (x2 − 2)(
x+

√
2
)2 (−x+

√
2
)2

x
= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 + 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 + 1

)
e
∫ (

− 1
4x−

3
8
(
x−

√
2
)− 3

8
(
x+

√
2
)
)
dx

=
(
x2 + 1

)
e−

3 ln
(
x+

√
2
)

8 −
3 ln

(
x−

√
2
)

8 − ln(x)
4

= x2 + 1(
x+

√
2
)3/8 (

x−
√
2
)3/8

x1/4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x3−3x
−x4+2x2 dx

= z1e
−

11 ln
(
x2−2

)
8 + 3 ln(x)

4

= z1

(
x3/4

(x2 − 2)11/8

)

Which simplifies to

y1 =
x5/2 +

√
x

(x2 − 2)11/8
(
x+

√
2
)3/8 (

x−
√
2
)3/8
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x3−3x

−x4+2x2 dx

(y1)2
dx

= y1

∫
e−

11 ln
(
x2−2

)
4 + 3 ln(x)

2

(y1)2
dx

= y1

∫ e−
11 ln

(
x2−2

)
4 + 3 ln(x)

2 (x2 − 2)11/4
(
x+

√
2
)3/4 (

x−
√
2
)3/4(

x5/2 +
√
x
)2 dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
x5/2 +

√
x

(x2 − 2)11/8
(
x+

√
2
)3/8 (

x−
√
2
)3/8

)
+c2

 x5/2 +
√
x

(x2 − 2)11/8
(
x+

√
2
)3/8 (

x−
√
2
)3/8

∫ e−
11 ln

(
x2−2

)
4 + 3 ln(x)

2 (x2 − 2)11/4
(
x+

√
2
)3/4 (

x−
√
2
)3/4(

x5/2 +
√
x
)2 dx



Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2(−x2 + 2)
(

d2

dx2y(x)
)
− x(4x2 + 3)

(
d
dx
y(x)

)
+ (−2x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −2
(
x2−1

)
y(x)

x2(x2−2) −
(
4x2+3

)(
d
dx

y(x)
)

x(x2−2)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
4x2+3

)(
d
dx

y(x)
)

x(x2−2) + 2
(
x2−1

)
y(x)

x2(x2−2) = 0
� Check to see if x0 is a regular singular point

◦ Define functions[
P2(x) = 4x2+3

x(x2−2) , P3(x) = 2
(
x2−1

)
x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x2(x2 − 2)
(

d2

dx2y(x)
)
+ x(4x2 + 3)

(
d
dx
y(x)

)
+ (2x2 − 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d
dx
y(x)

)
to series expansion form = 1..3

xm ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm ·
(

d
dx
y(x)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 2r) (−2 + r)xr − a1(1 + 2r) (−1 + r)x1+r +
(

∞∑
k=2

(−ak(2k + 2r − 1) (k + r − 2) + ak−2(k + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 2r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
2, 12
}

• Each term must be 0
−a1(1 + 2r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2
(
k + r − 1

2

)
(k + r − 2) ak + ak−2(k + r) (k + r − 1) = 0

• Shift index using k− >k + 2
−2
(
k + 3

2 + r
)
(k + r) ak+2 + ak(k + r + 2) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(k+r+2)(k+r+1)

(2k+3+2r)(k+r)

• Recursion relation for r = 2
ak+2 = ak(k+4)(k+3)

(2k+7)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = ak(k+4)(k+3)

(2k+7)(k+2) , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 =
ak
(
k+ 5

2
)(
k+ 3

2
)

(2k+4)
(
k+ 1

2
)
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• Solution for r = 1
2[

y(x) =
∞∑
k=0

akx
k+ 1

2 , ak+2 =
ak
(
k+ 5

2
)(
k+ 3

2
)

(2k+4)
(
k+ 1

2
) , a1 = 0

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = ak(4+k)(k+3)

(2k+7)(k+2) , a1 = 0, bk+2 =
bk
(
k+ 5

2
)(
k+ 3

2
)

(2k+4)
(
k+ 1

2
) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.127 (sec)
Leaf size : 47� �
dsolve(x^2*(-x^2+2)*diff(diff(y(x),x),x)-x*(4*x^2+3)*diff(y(x),x)+(-2*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = c1x

2 hypergeom
([

3
2 , 2
]
,

[
7
4

]
,
x2

2

)
+ c2

√
x (x2 + 1)

(x2 − 2) (−2x2 + 4)3/4
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Mathematica DSolve solution

Solving time : 20.316 (sec)
Leaf size : 86� �
DSolve[{x^2*(2-x^2)*D[y[x],{x,2}] - x*(3+4*x^2)*D[y[x],x] + (2-2*x^2)*y[x] == 0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
23/4c2(x2 + 1)x2Hypergeometric2F1

(
1
4 ,

3
4 ,

7
4 ,

x2

2

)
+ 3c2(2− x2)3/4 x2 + 6c1(x2 + 1)

√
x

6 (2− x2)7/4
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2.3 section 3. Problems from Kovacic related papers
2.3.1 problem Kovacic 1985 paper. page 13. section 3.2, example 1 . . . . . . . . .5529
2.3.2 problem Kovacic 1985 paper. page 14. section 3.2, example 2 . . . . . . . . .5536
2.3.3 problem Kovacic 1985 paper. page 15. Weber equation . . . . . . . . . . . .5544
2.3.4 problem Kovacic 1985 paper. page 19. section 4.2. Example 1 . . . . . . . .5551
2.3.5 problem Kovacic 1985 paper. page 23. section 5.2. Example 1 . . . . . . . .5557
2.3.6 problem Kovacic 1985 paper. page 25. section 5.2. Example 2 . . . . . . . .5565
2.3.7 problem Kovacic 2005 paper. Example 2 . . . . . . . . . . . . . . . . . . . .5573
2.3.8 problem David Saunders 1981 paper. Example 1 . . . . . . . . . . . . . . . .5579
2.3.9 problem David Saunders 1981 paper. Example 3 . . . . . . . . . . . . . . . .5585
2.3.10 problem Carolyn J. Smith 1984 paper. Appendix B examples and

tests. Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5591
2.3.11 problem Carolyn J. Smith 1984 paper. Appendix B examples and

tests. Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5595
2.3.12 problem Carolyn J. Smith 1984 paper. Appendix B examples and

tests. Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5600
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2.3.1 problem Kovacic 1985 paper. page 13. section 3.2,
example 1

Solved as second order ode using Kovacic algorithm . . . . . . . . .5529
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5534
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5534
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5535
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5535

Internal problem ID [9679]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 1985 paper. page 13. section 3.2, example 1
Date solved : Thursday, December 12, 2024 at 10:15:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ = (4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4) y
4x4

Solved as second order ode using Kovacic algorithm

Time used: 0.592 (sec)

Writing the ode as

y′′ +
(
−x2 + 2x− 3− 1

x
− 7

4x2 + 5
x3 − 1

x4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −x2 + 2x− 3− 1
x
− 7

4x2 + 5
x3 − 1

x4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4 (6)

Comparing the above to (5) shows that

s = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
t = 4x4
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Therefore eq. (4) becomes

z′′(x) =
(
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1583: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 6
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x4. There is a pole at x = 0 of order 4. Since there is no odd order pole larger than
2 and the order at ∞ is −2 then the necessary conditions for case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then for
each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series expansion
of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided by

2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c. Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = 3 + x2 − 2x+ 1
x
+ 7

4x2 − 5
x3 + 1

x4
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There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series about

this pole c = 0 gives

[
√
r]c ≈

1
x2 − 5

2x − 9
4 − 41x

8 − 443x2

32 − 3017x3

64 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

1
x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = 1

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the coefficient

of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current pole which is

c = 0. This term becomes 1
x3 . The coefficient of this term in the sum [

√
r]c is seen to be 0

and the coefficient of this term r is found from the partial fraction decomposition from
above to be −5. Therefore

b = (−5)− (0)
= −5

Hence

[
√
r]c =

1
x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−5
1 + 2

)
= −3

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−−5

1 + 2
)

= 7
2

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x− 1 + 1

x
+ 3

2x2 + 15
8x3 − 17

8x4 − 37
8x5 − 85

16x6 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= −1 + x (10)
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Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2 − 2x+ 1

This shows that the coefficient of 1 in the above is 1. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

= Q+ R

4x4

=
(
x2 − 2x+ 3

)
+
(
4x3 + 7x2 − 20x+ 4

4x4

)
= x2 − 2x+ 3 + 4x3 + 7x2 − 20x+ 4

4x4

We see that the coefficient of the term x3 in the quotient is 3. Now b can be found.

b = (3)− (1)
= 2

Hence

[
√
r]∞ = −1 + x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1 − 1

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2
1 − 1

)
= −3

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 1
x2 −3

2
7
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 −1 + x 1
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1

2 then

d = α+
∞ −

(
α+
c1

)
= 1

2 −
(
−3
2

)
= 2
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x2 − 3

2x + (−1 + x)

= 1
x2 − 3

2x − 1 + x

= 1
x2 − 3

2x − 1 + x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(

1
x2 − 3

2x − 1 + x

)
(2x+ a1) +

((
− 2
x3 + 3

2x2 + 1
)
+
(

1
x2 − 3

2x − 1 + x

)2

−
(
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4

))
= 0

−2x3a1 + (−4a0 + 2a1 − 4)x2 + (4a0 − 3a1 + 4)x+ 2a1
x2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −1, a1 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 1

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 1

)
e
∫ ( 1

x2−
3
2x−1+x

)
dx

=
(
x2 − 1

)
ex2

2 −x− 1
x
− 3 ln(x)

2

= (x2 − 1) ex3−2x2−2
2x

x3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (x2 − 1) ex3−2x2−2
2x

x3/2
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Which simplifies to

y1 =
(x2 − 1) ex3−2x2−2

2x

x3/2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (x2 − 1) ex3−2x2−2
2x

x3/2

∫ 1
(x2−1)2e

x3−2x2−2
x

x3

dx

= (x2 − 1) ex3−2x2−2
2x

x3/2

(∫
x3e−x3−2x2−2

x

(x2 − 1)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 1) ex3−2x2−2

2x

x3/2

)
+ c2

(
(x2 − 1) ex3−2x2−2

2x

x3/2

(∫
x3e−x3−2x2−2

x

(x2 − 1)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
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-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

No special function solution was found.
<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 3.691 (sec)
Leaf size : 66� �
dsolve(diff(diff(y(x),x),x) = 1/4*(4*x^6-8*x^5+12*x^4+4*x^3+7*x^2-20*x+4)/x^4*y(x),

y(x),singsol=all)� �

y =
ex3−2x2−2

2x (x2 − 1)
(
c2

(∫
x3e

−x3+2x2+2
x

(x+1)2(x−1)2 dx

)
+ c1

)
x3/2

Mathematica DSolve solution

Solving time : 0.936 (sec)
Leaf size : 79� �
DSolve[{D[y[x],{x,2}]== (4*x^6-8*x^5+12*x^4+4*x^3+7*x^2-20*x+4)/(4*x^4)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) →
e

x2
2 −x− 1

x (x2 − 1)
(
c2
∫ x

1
e
−K[1]2+2K[1]+ 2

K[1]K[1]3

(K[1]2−1)2 dK[1] + c1

)
x3/2
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2.3.2 problem Kovacic 1985 paper. page 14. section 3.2,
example 2

Solved as second order ode using Kovacic algorithm . . . . . . . . .5536
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5541
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5542
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5542
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5543

Internal problem ID [9680]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 1985 paper. page 14. section 3.2, example 2
Date solved : Thursday, December 12, 2024 at 10:15:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(

6
x2 − 1

)
y

Solved as second order ode using Kovacic algorithm

Time used: 0.333 (sec)

Writing the ode as

y′′ +
(
− 6
x2 + 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = − 6
x2 + 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −x2 + 6
x2 (6)

Comparing the above to (5) shows that

s = −x2 + 6
t = x2
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Therefore eq. (4) becomes

z′′(x) =
(
−x2 + 6

x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1584: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 6
x2 − 1

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 6. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

α−
c = 1

2 −
√
1 + 4b = −2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0
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[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ i− 3i

x2 − 9i
2x4 − 27i

2x6 − 405i
8x8 − 1701i

8x10 − 15309i
16x12 − 72171i

16x14 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = i

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= i (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = −1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be the

coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient
in t. Doing long division gives

r = s

t

= −x2 + 6
x2

= Q+ R

x2

= (−1) +
(

6
x2

)
= 6

x2 − 1

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 0. Dividing this by leading coefficient in t which is 1 gives 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = i

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
i
− 0
)

= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
i
− 0
)

= 0
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The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = −x2 + 6
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3 −2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 i 0 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 0 then

d = α−
∞ −

(
α−
c1

)
= 0− (−2)
= 2

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −2
x
+ (−) (i)

= −2
x
− i

= −2
x
− i

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 2 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives

(2) + 2
(
−2
x
− i

)
(2x+ a1) +

((
2
x2

)
+
(
−2
x
− i

)2

−
(
−x2 + 6

x2

))
= 0

2ixa1 + 4ia0 − 6x− 4a1
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = −3, a1 = −3i}
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Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x2 − 3ix− 3

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x2 − 3ix− 3

)
e
∫ (

− 2
x
−i
)
dx

=
(
x2 − 3ix− 3

)
e−2 ln(x)−ix

= (x2 − 3ix− 3) e−ix

x2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= (x2 − 3ix− 3) e−ix

x2

Which simplifies to

y1 =
(x2 − 3ix− 3) e−ix

x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= (x2 − 3ix− 3) e−ix

x2

∫ 1
(x2−3ix−3)2e−2ix

x4

dx

= (x2 − 3ix− 3) e−ix

x2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 3ix− 3) e−ix

x2

)
+ c2

(
(x2 − 3ix− 3) e−ix

x2

(
(ix2 − 3x− 3i) e2ix
−2x2 + 6ix+ 6

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) =
( 6
x2 − 1

)
y(x)

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2−6

)
y(x)

x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
x2−6

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = x2−6

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
+ (x2 − 6) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−3 + r)xr + a1(3 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 3) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 3}

• Each term must be 0
a1(3 + r) (−2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 3) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + r − 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+4+r)(k+r−1)

• Recursion relation for r = −2
ak+2 = − ak

(k+2)(k−3)

• Solution for r = −2[
y(x) =

∞∑
k=0

akx
k−2, ak+2 = − ak

(k+2)(k−3) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = − ak

(k+7)(k+2)

• Solution for r = 3[
y(x) =

∞∑
k=0

akx
k+3, ak+2 = − ak

(k+7)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = − ak

(k+2)(k−3) , a1 = 0, bk+2 = − bk
(k+7)(k+2) , b1 = 0

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.037 (sec)
Leaf size : 41� �
dsolve(diff(diff(y(x),x),x) = (6/x^2-1)*y(x),

y(x),singsol=all)� �
y = (c1x2 + 3c2x− 3c1) cos (x) + sin (x) (c2x2 − 3c1x− 3c2)

x2
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Mathematica DSolve solution

Solving time : 0.031 (sec)
Leaf size : 21� �
DSolve[{D[y[x],{x,2}]== ( (4*(5/2)^2-1)/(4*x^2)-1)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(c1j2(x)− c2y2(x))
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2.3.3 problem Kovacic 1985 paper. page 15. Weber equation

Solved as second order ode using Kovacic algorithm . . . . . . . . .5544
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5548
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5549
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5550
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5550

Internal problem ID [9681]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 1985 paper. page 15. Weber equation
Date solved : Thursday, December 12, 2024 at 10:15:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
x2

4 − 11
2

)
y

Solved as second order ode using Kovacic algorithm

Time used: 0.358 (sec)

Writing the ode as

y′′ +
(
−x2

4 + 11
2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −x2

4 + 11
2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 22
4 (6)

Comparing the above to (5) shows that

s = x2 − 22
t = 4
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Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 11
2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1586: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 11
2x − 121

4x3 − 1331
4x5 − 73205

16x7 − 1127357
16x9 − 37202781

32x11 − 643076643
32x13 + . . . (9)
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Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence

(
[
√
r]∞
)2 = x2

4

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 22
4

= Q+ R

4

=
(
x2

4 − 11
2

)
+ (0)

= x2

4 − 11
2

We see that the coefficient of the term 1
x
in the quotient is −11

2 . Now b can be found.

b =
(
−11

2

)
− (0)

= −11
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−11
2

1
2

− 1
)

= −6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−11

2
1
2

− 1
)

= 5

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2

4 − 11
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −6 5
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Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 5, and since there are no poles then

d = α−
∞

= 5

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 5 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (2A)

Substituting the above in eq. (1A) gives(
20x3 + 12x2a4 + 6xa3 + 2a2

)
+ 2
(
−x

2

) (
5x4 + 4x3a4 + 3x2a3 + 2xa2 + a1

)
+
((

−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 11
2

))
= 0

a4x
4 + 2(10 + a3)x3 + 3(a2 + 4a4)x2 + 2(2a1 + 3a3)x+ 5a0 + 2a2 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0, a1 = 15, a2 = 0, a3 = −10, a4 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x5 − 10x3 + 15x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

=
(
x5 − 10x3 + 15x

)
e
∫
−x

2 dx

=
(
x5 − 10x3 + 15x

)
e−x2

4

= x
(
x4 − 10x2 + 15

)
e−x2

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= x
(
x4 − 10x2 + 15

)
e−x2

4

Which simplifies to

y1 = x
(
x4 − 10x2 + 15

)
e−x2

4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x
(
x4 − 10x2 + 15

)
e−x2

4

∫ 1
x2 (x4 − 10x2 + 15)2 e−x2

2

dx

= x
(
x4 − 10x2 + 15

)
e−x2

4

(∫ ex2
2

x2 (x4 − 10x2 + 15)2
dx

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x
(
x4−10x2+15

)
e−x2

4

)
+c2

(
x
(
x4−10x2+15

)
e−x2

4

(∫ ex2
2

x2 (x4 − 10x2 + 15)2
dx

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) =
(

x2

4 − 11
2

)
y(x)

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
−x2

4 + 11
2

)
y(x) = 0

• Multiply by denominators
4 d2

dx2y(x) + (−x2 + 22) y(x) = 0
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m
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◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

8a2 + 22a0 + (24a3 + 22a1)x+
(

∞∑
k=2

(4ak+2(k + 2) (k + 1) + 22ak − ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[8a2 + 22a0 = 0, 24a3 + 22a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −11a0

4 , a3 = −11a1
12

}
• Each term in the series must be 0, giving the recursion relation

4(k2 + 3k + 2) ak+2 + 22ak − ak−2 = 0
• Shift index using k− >k + 2

4
(
(k + 2)2 + 3k + 8

)
ak+4 + 22ak+2 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −22ak+2+ak

4(k2+7k+12) , a2 = −11a0
4 , a3 = −11a1

12

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 39� �
dsolve(diff(diff(y(x),x),x) = (1/4*x^2-11/2)*y(x),

y(x),singsol=all)� �
y =

(
15 hypergeom

([
−5

2

]
,
[1
2

]
, x

2

2

)
c2 + c1x(x4 − 10x2 + 15)

)
e−x2

4

15

Mathematica DSolve solution

Solving time : 0.025 (sec)
Leaf size : 22� �
DSolve[{D[y[x],{x,2}]== (1/4*x^2-1/2-5)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2 ParabolicCylinderD(−6, ix) + c1 ParabolicCylinderD(5, x)
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2.3.4 problem Kovacic 1985 paper. page 19. section 4.2.
Example 1

Solved as second order ode using Kovacic algorithm . . . . . . . . .5551
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5554
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5556
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5556
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5556

Internal problem ID [9682]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 1985 paper. page 19. section 4.2. Example 1
Date solved : Thursday, December 12, 2024 at 10:15:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
1
x
− 3

16x2

)
y

Solved as second order ode using Kovacic algorithm

Time used: 0.218 (sec)

Writing the ode as

y′′ + (−16x+ 3) y
16x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = −16x+ 3
16x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 16x− 3
16x2 (6)

Comparing the above to (5) shows that

s = 16x− 3
t = 16x2
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Therefore eq. (4) becomes

z′′(x) =
(
16x− 3
16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1588: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
x
− 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at ∞
for case 2 of Kovacic algorithm.
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pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1− 16x
16x2 = 0

Solving for ω gives

ω = 1 + 4
√
x

4x



chapter 2. book solved problems 5554

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+4

√
x

4x dx

= x1/4e2
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x1/4e2
√
x

Which simplifies to

y1 = x1/4e2
√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x1/4e2
√
x

∫ 1√
x e4

√
x
dx

= x1/4e2
√
x

(
−e−4

√
x

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x1/4e2

√
x
)
+ c2

(
x1/4e2

√
x

(
−e−4

√
x

2

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) =
( 1
x
− 3

16x2

)
y(x)

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = (16x−3)y(x)
16x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− (16x−3)y(x)
16x2 = 0



chapter 2. book solved problems 5555

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = −16x−3
16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

16x2
(

d2

dx2y(x)
)
+ (−16x+ 3) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..1

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 4r)xr +
(

∞∑
k=1

(ak(4k + 4r − 1) (4k + 4r − 3)− 16ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
• Each term in the series must be 0, giving the recursion relation

16
(
k − 3

4 + r
) (

k + r − 1
4

)
ak − 16ak−1 = 0

• Shift index using k− >k + 1
16
(
k + 1

4 + r
) (

k + 3
4 + r

)
ak+1 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 16ak

(4k+1+4r)(4k+3+4r)

• Recursion relation for r = 1
4

ak+1 = 16ak
(4k+2)(4k+4)

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+1 = 16ak
(4k+2)(4k+4)

]
• Recursion relation for r = 3

4

ak+1 = 16ak
(4k+4)(4k+6)
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• Solution for r = 3
4[

y(x) =
∞∑
k=0

akx
k+ 3

4 , ak+1 = 16ak
(4k+4)(4k+6)

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+1 = 16ak

(4k+2)(4k+4) , bk+1 = 16bk
(4k+4)(4k+6)

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 25� �
dsolve(diff(diff(y(x),x),x) = (1/x-3/16/x^2)*y(x),

y(x),singsol=all)� �
y = x1/4(c1 sinh (2√x

)
+ c2 cosh

(
2
√
x
))

Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 41� �
DSolve[{D[y[x],{x,2}]== (1/x-3/(16*x^2))*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2e
−2

√
x 4
√
x
(
2c1e4

√
x − c2

)
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2.3.5 problem Kovacic 1985 paper. page 23. section 5.2.
Example 1

Solved as second order ode using Kovacic algorithm . . . . . . . . .5557
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5562
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5563
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5563
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5564

Internal problem ID [9683]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 1985 paper. page 23. section 5.2. Example 1
Date solved : Thursday, December 12, 2024 at 10:15:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
− 3
16x2 − 2

9 (x− 1)2
+ 3

16x (x− 1)

)
y

Solved as second order ode using Kovacic algorithm

Time used: 1.090 (sec)

Writing the ode as

y′′ + (32x2 − 27x+ 27) y
144x2 (x− 1)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 32x2 − 27x+ 27
144x2 (x− 1)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −32x2 + 27x− 27
144 (x2 − x)2

(6)

Comparing the above to (5) shows that

s = −32x2 + 27x− 27

t = 144
(
x2 − x

)2
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Therefore eq. (4) becomes

z′′(x) =
(
−32x2 + 27x− 27

144 (x2 − x)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1590: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 144(x2 − x)2. There is a pole at x = 0 of order 2. There is a pole at x = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Unable to find solution using case two.

Attempting to find a solution using n = 4.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9 (x− 1)2

− 3
16x2 − 3

16x + 3
16 (x− 1)

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. This shows that b = − 3
16 . Hence

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z
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Where n for case 3 is 4, 6 or 12. For the current case n = 4. Hence the above becomes

Ec = {3, 6, 9}

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. This shows that b = −2
9 . Hence

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Where n for case 3 is 4, 6 or 12. For the current case n = 4. Hence the above becomes

Ec = {4, 5, 6, 7, 8}

Let

E∞ =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z (B1)

Where b is the coefficient of 1
x2 in the Laurent series for r at ∞ given by

r ≈ − 2
9x2 − 37

144x3 − 23
48x4 − 101

144x5 − 133
144x6 − 55

48x7 + · · ·

The above shows that
b = −2

9
The value of n in eq. (B1) for case 3 is 4, 6 or 2.For the current case n = 4. eq. (B1)
simplifies to the following, after removing any duplicate and non integer entries in the set.

E∞ = {4, 5, 6, 7, 8}

The following table summarizes the results found so far for poles and for the order of r at
∞ for case 3 of Kovacic algorithm using n = 4.

pole c location pole order set {Ec}
0 2 {3, 6, 9}
1 2 {4, 5, 6, 7, 8}

Order of r at ∞ set {E∞}
2 {4, 5, 6, 7, 8}

Now that Ec sets for all poles are found and E∞ set is found, the next step is to determine
a non negative integer d using the following

d = n

12

(
e∞ −

∑
c∈Γ

ec

)

Where in the above ec is a distinct element from each corresponding Ec. This means all
possible tuples {ec1 , ec2 , . . . , ecn} are tried in the sum above, where eci is one element of
each Ec found earlier. Using the following family {e1, e2, . . . , e∞} given by

e1 = 3, e2 = 4, e∞ = 7

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = n

12

(
e∞ −

∑
c∈Γ

ec

)

= 4
12(7− (3 + (4)))

= 0
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The following rational function is

θ = n

12
∑
c∈Γ

ec
x− c

= 4
12

(
3

(x− (0)) +
4

(x− (1))

)
= 1

x
+ 4

3x− 3
And

S =
∏
c∈Γ

(x− c)

= x(x− 1)

The polynomial p(x) is now determined. Since the degree of the polynomial is d = 0, then
let

p(x) = 1

The following set of equations are set up in order to determine the coefficients ai (if any)
of the above polynomial

Pn = −p(x)
= −1

Pi−1 = −Sp′i + ((n− i)S ′ − Sθ)Pi − (n− 1)(i+ 1)S2rPi+1 i = n, n− 1, . . . , 0 (1A)

The coefficients ai are solved for from

P−1 = 0 (2A)

By using method of undetermined coefficients. Carrying the above computation in eq. (1A)
gives the following sequence of polynomials Pi (noting that n = 4 and r = −32x2+27x−27

144(x2−x)2 ).

P4 = −p
= −1

P3 =
7x
3 − 1

P2 = −4x2 + 41
12x− 3

4

P1 =
40
9 x3 − 409

72 x2 + 5
2x− 3

8

P0 = −64
27x

4 + 871
216x

3 − 257
96 x2 + 13

16x− 3
32

P−1 = 0

Because P−1 = 0 then z = e
∫
ω is a solution. ω is found by finding a solution to the

equation generated by the following sum
n∑

i=0

Si Pi

(n− i)!ω
i = 0

4∑
i=0

Si Pi

(4− i)!ω
i = 0

Where the Pi are the polynomials found earlier. Computing the above sum gives

−8x4

81 + 871x3

5184 − 257x2

2304 + 13x
384 − 1

256 + x(x− 1) (320x3 − 409x2 + 180x− 27)ω
432

− x2(x− 1)2 (48x2 − 41x+ 9)ω2

24 + x3(x− 1)3
(
7x
3 − 1

)
ω3 − x4(x− 1)4 ω4 = 0
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The solution ω of eq. 3A is found as

ω = 1
12x (x− 1)

7x− 3 +
√

x2 +
(
(x− 1)2 x3

)1/3 − x

+

√√√√√√√−
2
((

−x2 + x+
(
(x−1)2x3

)1/3
2

)√
x2 +

(
(x− 1)2 x3

)1/3 − x+ x2 (x− 1)
)

√
x2 +

(
(x− 1)2 x3

)1/3 − x


(4A)

This ω is used to find a solution to z′′ = rz.

z1(x) = e
∫
ω dx (5A)

Unable to integrate
∫
ωdx. Leaving the integral unevaluated. The first solution to the

original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e
∫
ω dx

Where ω given above. The second solution y2 to the original ode is found using reduction
of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

= e
∫
ω dx

∫
e
∫
−B

A
dx(

e
∫
ω dx
)2 dx

Since B = 0 then the above reduces to

y2 = e
∫
ω dx

∫ (
e
∫
ω dx
)−2

dx

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e
∫
ω dx
)
+ c2

(
e
∫
ω dx

∫ (
e
∫
ω dx
)−2

dx

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) =
(
− 3

16x2 − 2
9(x−1)2 +

3
16x(x−1)

)
y(x)

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
32x2−27x+27

)
y(x)

144x2(x−1)2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x) +
(
32x2−27x+27

)
y(x)

144x2(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 32x2−27x+27
144x2(x−1)2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators

144x2(x− 1)2
(

d2

dx2y(x)
)
+ (32x2 − 27x+ 27) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert xm ·
(

d2

dx2y(x)
)

to series expansion form = 2..4

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm ·
(

d2

dx2y(x)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

9a0(−1 + 4r) (−3 + 4r)xr + (9a1(3 + 4r) (1 + 4r)− 9a0(32r2 − 32r + 3))x1+r +
(

∞∑
k=2

(
9ak(4k + 4r − 1) (4k + 4r − 3)− 9ak−1

(
32(k − 1)2 + 64(k − 1) r + 32r2 − 32k + 35− 32r

)
+ 16ak−2(3k − 7 + 3r) (3k − 8 + 3r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
9(−1 + 4r) (−3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
4

}
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• Each term must be 0
9a1(3 + 4r) (1 + 4r)− 9a0(32r2 − 32r + 3) = 0

• Solve for the dependent coefficient(s)

a1 = a0
(
32r2−32r+3

)
16r2+16r+3

• Each term in the series must be 0, giving the recursion relation
144(ak + ak−2 − 2ak−1) k2 + 144(2(ak + ak−2 − 2ak−1) r − ak − 5ak−2 + 6ak−1) k + 144(ak + ak−2 − 2ak−1) r2 + 144(−ak − 5ak−2 + 6ak−1) r + 27ak + 896ak−2 − 603ak−1 = 0

• Shift index using k− >k + 2
144(ak+2 + ak − 2ak+1) (k + 2)2 + 144(2(ak+2 + ak − 2ak+1) r − ak+2 − 5ak + 6ak+1) (k + 2) + 144(ak+2 + ak − 2ak+1) r2 + 144(−ak+2 − 5ak + 6ak+1) r + 27ak+2 + 896ak − 603ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −144k2ak−288k2ak+1+288krak−576krak+1+144r2ak−288r2ak+1−144kak−288kak+1−144rak−288rak+1+32ak−27ak+1

9(16k2+32kr+16r2+48k+48r+35)

• Recursion relation for r = 1
4

ak+2 = −144k2ak−288k2ak+1−72kak−432kak+1+5ak−117ak+1
9(16k2+56k+48)

• Solution for r = 1
4[

y(x) =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −144k2ak−288k2ak+1−72kak−432kak+1+5ak−117ak+1
9(16k2+56k+48) , a1 = −3a0

8

]
• Recursion relation for r = 3

4

ak+2 = −144k2ak−288k2ak+1+72kak−720kak+1+5ak−405ak+1
9(16k2+72k+80)

• Solution for r = 3
4[

y(x) =
∞∑
k=0

akx
k+ 3

4 , ak+2 = −144k2ak−288k2ak+1+72kak−720kak+1+5ak−405ak+1
9(16k2+72k+80) , a1 = −a0

8

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

4

)
, ak+2 = −144k2ak−288k2ak+1−72kak−432kak+1+5ak−117ak+1

9(16k2+56k+48) , a1 = −3a0
8 , bk+2 = −144k2bk−288k2bk+1+72kbk−720kbk+1+5bk−405bk+1

9(16k2+72k+80) , b1 = − b0
8

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Tetrahedral Galois group A4_SL2.

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.014 (sec)
Leaf size : 30� �
dsolve(diff(diff(y(x),x),x) = (-3/16/x^2-2/9/(x-1)^2+3/16/(x-1)/x)*y(x),

y(x),singsol=all)� �
y =

√
x− 1x1/4

(
c1 LegendreP

(
−1
6 ,

1
3 ,

√
x

)
+ c2 LegendreQ

(
−1
6 ,

1
3 ,

√
x

))
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Mathematica DSolve solution

Solving time : 0.369 (sec)
Leaf size : 550� �
DSolve[{D[y[x],{x,2}]== ( -3/(16*x^2) - 2/(9*(x-1)^2) + 3/(16*x*(x-1)) )*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1 exp

(∫ x

1
Root

[
2048K[1]4 − 3484K[1]3 + 2313K[1]2 − 702K[1]

+
(
20736K[1]8 − 82944K[1]7 + 124416K[1]6 − 82944K[1]5 + 20736K[1]4

)
#14

+
(
−48384K[1]7 + 165888K[1]6 − 207360K[1]5 + 110592K[1]4 − 20736K[1]3

)
#13

+
(
41472K[1]6 − 118368K[1]5 + 120096K[1]4 − 50976K[1]3 + 7776K[1]2

)
#12

+
(
−15360K[1]5 + 34992K[1]4 − 28272K[1]3 + 9936K[1]2 − 1296K[1]

)
#1

+ 81&, 1
]
dK[1]

)
+ c2 exp

(∫ x

1
Root

[
2048K[1]4 − 3484K[1]3 + 2313K[1]2 − 702K[1]

+
(
20736K[1]8 − 82944K[1]7 + 124416K[1]6 − 82944K[1]5 + 20736K[1]4

)
#14

+
(
−48384K[1]7 + 165888K[1]6 − 207360K[1]5 + 110592K[1]4 − 20736K[1]3

)
#13

+
(
41472K[1]6 − 118368K[1]5 + 120096K[1]4 − 50976K[1]3 + 7776K[1]2

)
#12

+
(
−15360K[1]5 + 34992K[1]4 − 28272K[1]3 + 9936K[1]2 − 1296K[1]

)
#1

+ 81&, 1
]
dK[1]

)∫ x

1
exp

(
−2
∫ K[2]

1
Root

[
2048K[1]4 − 3484K[1]3 + 2313K[1]2

−702K[1]+
(
20736K[1]8−82944K[1]7+124416K[1]6−82944K[1]5+20736K[1]4

)
#14+

(
−48384K[1]7+165888K[1]6−207360K[1]5+110592K[1]4−20736K[1]3

)
#13

+
(
41472K[1]6−118368K[1]5+120096K[1]4−50976K[1]3+7776K[1]2

)
#12+

(
−15360K[1]5+34992K[1]4−28272K[1]3+9936K[1]2−1296K[1]

)
#1

+ 81&, 1
]
dK[1]

)
dK[2]
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2.3.6 problem Kovacic 1985 paper. page 25. section 5.2.
Example 2

Solved as second order ode using Kovacic algorithm . . . . . . . . .5565
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5570
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5571
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5572
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5572

Internal problem ID [9684]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 1985 paper. page 25. section 5.2. Example 2
Date solved : Thursday, December 12, 2024 at 10:15:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ = −(5x2 + 27) y
36 (x2 − 1)2

Solved as second order ode using Kovacic algorithm

Time used: 108.786 (sec)

Writing the ode as

y′′ + (5x2 + 27) y
36 (x2 − 1)2

= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 5x2 + 27
36 (x2 − 1)2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x2 − 27
36 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −5x2 − 27

t = 36
(
x2 − 1

)2
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Therefore eq. (4) becomes

z′′(x) =
(

−5x2 − 27
36 (x2 − 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1592: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 36(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the
necessary conditions for case one are met. Since there is a pole of order 2 then necessary
conditions for case two are met. Since pole order is not larger than 2 and the order at ∞
is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Unable to find solution using case two.

Attempting to find a solution using n = 4.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 11
72 (x+ 1) +

11
72 (x− 1) −

2
9 (x− 1)2

− 2
9 (x+ 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decomposition

of r given above. This shows that b = −2
9 . Hence

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z
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Where n for case 3 is 4, 6 or 12. For the current case n = 4. Hence the above becomes

Ec = {4, 5, 6, 7, 8}

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decomposi-

tion of r given above. This shows that b = −2
9 . Hence

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Where n for case 3 is 4, 6 or 12. For the current case n = 4. Hence the above becomes

Ec = {4, 5, 6, 7, 8}

Let

E∞ =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z (B1)

Where b is the coefficient of 1
x2 in the Laurent series for r at ∞ given by

r ≈ − 5
36x2 − 37

36x4 − 23
12x6 − 101

36x8 − 133
36x10 − 55

12x12 + · · ·

The above shows that
b = − 5

36
The value of n in eq. (B1) for case 3 is 4, 6 or 2.For the current case n = 4. eq. (B1)
simplifies to the following, after removing any duplicate and non integer entries in the set.

E∞ = {2, 4, 6, 8, 10}

The following table summarizes the results found so far for poles and for the order of r at
∞ for case 3 of Kovacic algorithm using n = 4.

pole c location pole order set {Ec}
1 2 {4, 5, 6, 7, 8}
−1 2 {4, 5, 6, 7, 8}

Order of r at ∞ set {E∞}
2 {2, 4, 6, 8, 10}

Now that Ec sets for all poles are found and E∞ set is found, the next step is to determine
a non negative integer d using the following

d = n

12

(
e∞ −

∑
c∈Γ

ec

)

Where in the above ec is a distinct element from each corresponding Ec. This means all
possible tuples {ec1 , ec2 , . . . , ecn} are tried in the sum above, where eci is one element of
each Ec found earlier. Using the following family {e1, e2, . . . , e∞} given by

e1 = 4, e2 = 4, e∞ = 8

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = n

12

(
e∞ −

∑
c∈Γ

ec

)

= 4
12(8− (4 + (4)))

= 0
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The following rational function is

θ = n

12
∑
c∈Γ

ec
x− c

= 4
12

(
4

(x− (1)) +
4

(x− (−1))

)
= 8x

3x2 − 3
And

S =
∏
c∈Γ

(x− c)

= (x− 1) (x+ 1)

The polynomial p(x) is now determined. Since the degree of the polynomial is d = 0, then
let

p(x) = 1

The following set of equations are set up in order to determine the coefficients ai (if any)
of the above polynomial

Pn = −p(x)
= −1

Pi−1 = −Sp′i + ((n− i)S ′ − Sθ)Pi − (n− 1)(i+ 1)S2rPi+1 i = n, n− 1, . . . , 0 (1A)

The coefficients ai are solved for from

P−1 = 0 (2A)

By using method of undetermined coefficients. Carrying the above computation in eq.
(1A) gives the following sequence of polynomials Pi (noting that n = 4 and r = −5x2−27

36(x2−1)2 ).

P4 = −p
= −1

P3 =
8x
3

P2 = −5x2 − 1
3

P1 =
50
9 x3 + 14

9 x

P0 = −125
54 x4 − 67

27x
2 + 1

18
P−1 = 0

Because P−1 = 0 then z = e
∫
ω is a solution. ω is found by finding a solution to the

equation generated by the following sum
n∑

i=0

Si Pi

(n− i)!ω
i = 0

4∑
i=0

Si Pi

(4− i)!ω
i = 0

Where the Pi are the polynomials found earlier. Computing the above sum gives

(x− 1)2 (x+ 1)2
(
−5x2 − 1

3

)
ω2

2 + 8(x− 1)3 (x+ 1)3 xω3

3
− (x− 1)4 (x+ 1)4 ω4 − 125x4

1296 − 67x2

648 + 1
432 + 25ω x5

27 − 2ω x3

3 − 7ωx
27 = 0
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The solution ω of eq. 3A is found as

(4A)

ω = 1
6x2 − 6

4x+
√

x2 − 1 + (x2 − 1)2/3

+

√√√√√√−
2
((

−x2 + (x2−1)2/3
2 + 1

)√
x2 − 1 + (x2 − 1)2/3 + x3 − x

)
√
x2 − 1 + (x2 − 1)2/3


This ω is used to find a solution to z′′ = rz.

z1(x) = e
∫
ω dx (5A)

Unable to integrate
∫
ωdx. Leaving the integral unevaluated. The first solution to the

original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e
∫
ω dx

Where ω given above. The second solution y2 to the original ode is found using reduction
of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

= e
∫
ω dx

∫
e
∫
−B

A
dx(

e
∫
ω dx
)2 dx

Since B = 0 then the above reduces to

y2 = e
∫
ω dx

∫ (
e
∫
ω dx
)−2

dx

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e
∫
ω dx
)
+ c2

(
e
∫
ω dx

∫ (
e
∫
ω dx
)−2

dx

)

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) = −
(
5x2+27

)
y(x)

36(x2−1)2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) +
(
5x2+27

)
y(x)

36(x2−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 5x2+27
36(x2−1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2
9

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators

36(x2 − 1)2
(

d2

dx2y(x)
)
+ (5x2 + 27) y(x) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(36u4 − 144u3 + 144u2)
(

d2

du2y(u)
)
+ (5u2 − 10u+ 32) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

16a0(−1 + 3r) (−2 + 3r)ur + (16a1(2 + 3r) (1 + 3r)− 2a0(72r2 − 72r + 5))u1+r +
(

∞∑
k=2

(
16ak(3k + 3r − 1) (3k + 3r − 2)− 2ak−1

(
72(k − 1)2 + 144(k − 1) r + 72r2 − 72k + 77− 72r

)
+ ak−2(6k − 13 + 6r) (6k − 17 + 6r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
16(−1 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

2
3

}
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• Each term must be 0
16a1(2 + 3r) (1 + 3r)− 2a0(72r2 − 72r + 5) = 0

• Solve for the dependent coefficient(s)

a1 = a0
(
72r2−72r+5

)
8(9r2+9r+2)

• Each term in the series must be 0, giving the recursion relation
36(4ak + ak−2 − 4ak−1) k2 + 36(2(4ak + ak−2 − 4ak−1) r − 4ak − 5ak−2 + 12ak−1) k + 36(4ak + ak−2 − 4ak−1) r2 + 36(−4ak − 5ak−2 + 12ak−1) r + 32ak + 221ak−2 − 298ak−1 = 0

• Shift index using k− >k + 2
36(4ak+2 + ak − 4ak+1) (k + 2)2 + 36(2(4ak+2 + ak − 4ak+1) r − 4ak+2 − 5ak + 12ak+1) (k + 2) + 36(4ak+2 + ak − 4ak+1) r2 + 36(−4ak+2 − 5ak + 12ak+1) r + 32ak+2 + 221ak − 298ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −36k2ak−144k2ak+1+72krak−288krak+1+36r2ak−144r2ak+1−36kak−144kak+1−36rak−144rak+1+5ak−10ak+1

16(9k2+18kr+9r2+27k+27r+20)

• Recursion relation for r = 1
3

ak+2 = −36k2ak−144k2ak+1−12kak−240kak+1−3ak−74ak+1
16(9k2+33k+30)

• Solution for r = 1
3[

y(u) =
∞∑
k=0

aku
k+ 1

3 , ak+2 = −36k2ak−144k2ak+1−12kak−240kak+1−3ak−74ak+1
16(9k2+33k+30) , a1 = −11a0

48

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
1
3 , ak+2 = −36k2ak−144k2ak+1−12kak−240kak+1−3ak−74ak+1

16(9k2+33k+30) , a1 = −11a0
48

]
• Recursion relation for r = 2

3

ak+2 = −36k2ak−144k2ak+1+12kak−336kak+1−3ak−170ak+1
16(9k2+39k+42)

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+2 = −36k2ak−144k2ak+1+12kak−336kak+1−3ak−170ak+1
16(9k2+39k+42) , a1 = −11a0

96

]
• Revert the change of variables u = x+ 1[

y(x) =
∞∑
k=0

ak(x+ 1)k+
2
3 , ak+2 = −36k2ak−144k2ak+1+12kak−336kak+1−3ak−170ak+1

16(9k2+39k+42) , a1 = −11a0
96

]
• Combine solutions and rename parameters[

y(x) =
(

∞∑
k=0

ak(x+ 1)k+
1
3

)
+
(

∞∑
k=0

bk(x+ 1)k+
2
3

)
, ak+2 = −36k2ak−144k2ak+1−12kak−240kak+1−3ak−74ak+1

16(9k2+33k+30) , a1 = −11a0
48 , bk+2 = −36k2bk−144k2bk+1+12kbk−336kbk+1−3bk−170bk+1

16(9k2+39k+42) , b1 = −11b0
96

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Tetrahedral Galois group A4_SL2.

<- Kovacics algorithm successful`� �
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Maple dsolve solution

Solving time : 0.013 (sec)
Leaf size : 25� �
dsolve(diff(diff(y(x),x),x) = -1/36*(5*x^2+27)/(x^2-1)^2*y(x),

y(x),singsol=all)� �
y =

√
x2 − 1

(
LegendreQ

(
−1
6 ,

1
3 , x

)
c2 + LegendreP

(
−1
6 ,

1
3 , x

)
c1

)

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 38� �
DSolve[{D[y[x],{x,2}]== -(5*x^2+27)/(36*(x^2-1)^2)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
x2 − 1

(
c1P

1
3
− 1

6
(x) + c2Q

1
3
− 1

6
(x)
)
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2.3.7 problem Kovacic 2005 paper. Example 2

Solved as second order ode using Kovacic algorithm . . . . . . . . .5573
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5577
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5578
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5578
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5578

Internal problem ID [9685]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Kovacic 2005 paper. Example 2
Date solved : Thursday, December 12, 2024 at 10:17:13 AM
CAS classification : [[_Emden, _Fowler]]

Solve

y′′ = − y

4x2

Solved as second order ode using Kovacic algorithm

Time used: 0.173 (sec)

Writing the ode as

y′′ + y

4x2 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)

C = 1
4x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)



chapter 2. book solved problems 5574

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1594: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger
than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since
there is a pole of order 2 then necessary conditions for case two are met. Since pole order
is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three
are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= − 1

4x2
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Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

=
√
x

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

=
√
x

∫ 1
x
dx

=
√
x(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x(ln (x))

)
Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve
d2

dx2y(x) = −y(x)
4x2

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) + y(x)
4x2 = 0

• Multiply by denominators of the ODE

4x2
(

d2

dx2y(x)
)
+ y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

4x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ y(t) = 0

• Simplify
4 d2

dt2
y(t)− 4 d

dt
y(t) + y(t) = 0

• Isolate 2nd derivative
d2

dt2
y(t) = d

dt
y(t)− y(t)

4

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t)− d

dt
y(t) + y(t)

4 = 0
• Characteristic polynomial of ODE

r2 − r + 1
4 = 0

• Factor the characteristic polynomial
(2r−1)2

4 = 0
• Root of the characteristic polynomial

r = 1
2

• 1st solution of the ODE
y1(t) = e t

2

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t e t

2

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 e t

2 + C2 t e t
2

• Change variables back using t = ln (x)
y(x) =

√
xC1 + C2 ln (x)

√
x
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• Simplify
y(x) = (ln (x)C2 + C1 )

√
x

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 14� �
dsolve(diff(diff(y(x),x),x) = -1/4/x^2*y(x),

y(x),singsol=all)� �
y = (c2 ln (x) + c1)

√
x

Mathematica DSolve solution

Solving time : 0.029 (sec)
Leaf size : 24� �
DSolve[{D[y[x],{x,2}]== -1/(4*x^2)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2
√
x(c2 log(x) + 2c1)
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2.3.8 problem David Saunders 1981 paper. Example 1

Solved as second order ode using Kovacic algorithm . . . . . . . . .5579
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5583
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5584
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5584
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5584

Internal problem ID [9686]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : David Saunders 1981 paper. Example 1
Date solved : Thursday, December 12, 2024 at 10:17:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ =
(
x2 + 3

)
y

Solved as second order ode using Kovacic algorithm

Time used: 0.251 (sec)

Writing the ode as

y′′ +
(
−x2 − 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −x2 − 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 3
1 (6)

Comparing the above to (5) shows that

s = x2 + 3
t = 1

Therefore eq. (4) becomes

z′′(x) =
(
x2 + 3

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1596: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is −2 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x+ 3

2x − 9
8x3 + 27

16x5 − 405
128x7 + 1701

256x9 − 15309
1024x11 + 72171

2048x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the coefficient
of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10). Hence(

[
√
r]∞
)2 = x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero, then
starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the
coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 + 3
1

= Q+ R

1
=
(
x2 + 3

)
+ (0)

= x2 + 3

We see that the coefficient of the term 1
x
in the quotient is 3. Now b can be found.

b = (3)− (0)
= 3

Hence

[
√
r]∞ = x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
3
1 − 1

)
= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−3
1 − 1

)
= −2

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = x2 + 3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x 1 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α+
∞ = 1, and since there are no poles, then

d = α+
∞

= 1
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω = (+)[
√
r]∞

= 0 + (x)
= x

= x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2(x) (1) +
(
(1) + (x)2 −

(
x2 + 3

))
= 0

−2a0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
xdx

= (x) ex2
2

= x ex2
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x ex2
2

Which simplifies to

y1 = x ex2
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x ex2
2

∫ 1
x2ex2 dx

= x ex2
2

(
−e−x2

x
−
√
π erf (x)

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x ex2

2

)
+ c2

(
x ex2

2

(
−e−x2

x
−

√
π erf (x)

))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) = (x2 + 3) y(x)
• Highest derivative means the order of the ODE is 2

d2

dx2y(x)
• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x) + (−x2 − 3) y(x) = 0
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 3a0 + (6a3 − 3a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 3ak − ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 3a0 = 0, 6a3 − 3a1 = 0]

• Solve for the dependent coefficient(s){
a2 = 3a0

2 , a3 = a1
2

}
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• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 3ak − ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − 3ak+2 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = 3ak+2+ak

k2+7k+12 , a2 =
3a0
2 , a3 = a1

2

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 30� �
dsolve(diff(diff(y(x),x),x) = (x^2+3)*y(x),

y(x),singsol=all)� �
y = x

(
c2 erf (x)

√
π + c1

)
ex2

2 + e−x2
2 c2

Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 46� �
DSolve[{D[y[x],{x,2}]== (x^2+3)*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−

x2
2

(
−
√
πc2e

x2
xerf(x) + c1e

x2
x− c2

)
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2.3.9 problem David Saunders 1981 paper. Example 3

Solved as second order ode using Kovacic algorithm . . . . . . . . .5585
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5589
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5590
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5590
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5590

Internal problem ID [9687]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : David Saunders 1981 paper. Example 3
Date solved : Thursday, December 12, 2024 at 10:17:14 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

x2y′′ = 2y

Solved as second order ode using Kovacic algorithm

Time used: 0.145 (sec)

Writing the ode as

x2y′′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1598: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole larger than
2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there
is a pole of order 2 then necessary conditions for case two are met. Since pole order is not
larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met.
Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 2

x2
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Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1
x

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
x

∫ 1
1
x2

dx

= 1
x

(
x3

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x3

3

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
= 2y(x)

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 2y(x)
x2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)− 2y(x)
x2 = 0

• Multiply by denominators of the ODE

x2
(

d2

dx2y(x)
)
− 2y(x) = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

d
dx
y(x) =

(
d
dt
y(t)

) (
d
dx
t(x)

)
◦ Compute derivative

d
dx
y(x) =

d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule
d2

dx2y(x) =
(

d2

dt2
y(t)

) (
d
dx
t(x)

)2 + ( d2

dx2 t(x)
) (

d
dt
y(t)

)
◦ Compute derivative

d2

dx2y(x) =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− 2y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 2 = 0

• Factor the characteristic polynomial
(r + 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (−1, 2)

• 1st solution of the ODE
y1(t) = e−t

• 2nd solution of the ODE
y2(t) = e2t

• General solution of the ODE
y(t) = C1y1(t) + C2y2(t)

• Substitute in solutions
y(t) = C1 e−t + C2 e2t

• Change variables back using t = ln (x)
y(x) = C1

x
+ C2 x2

• Simplify
y(x) = C1

x
+ C2 x2
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x) = 2*y(x),

y(x),singsol=all)� �
y = c2x

3 + c1
x

Mathematica DSolve solution

Solving time : 0.016 (sec)
Leaf size : 18� �
DSolve[{x^2*D[y[x],{x,2}]== 2*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c2x

3 + c1
x
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2.3.10 problem Carolyn J. Smith 1984 paper. Appendix B
examples and tests. Example 1

Solved as second order ode using Kovacic algorithm . . . . . . . . .5591
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5593
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5594
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5594
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5594

Internal problem ID [9688]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Carolyn J. Smith 1984 paper. Appendix B examples and tests.
Example 1
Date solved : Thursday, December 12, 2024 at 10:17:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.099 (sec)

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1
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Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1600: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = e−x2
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve
d2

dx2y(x) + 4x
(

d
dx
y(x)

)
+ (4x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

akk x
k

◦ Convert d2

dx2y(x) to series expansion

d2

dx2y(x) =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2
d2

dx2y(x) =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]
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• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y(x) =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 16� �
dsolve(diff(diff(y(x),x),x)+4*diff(y(x),x)*x+(4*x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = e−x2(c2x+ c1)

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 20� �
DSolve[{D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → e−x2(c2x+ c1)
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2.3.11 problem Carolyn J. Smith 1984 paper. Appendix B
examples and tests. Example 2

Solved as second order ode using Kovacic algorithm . . . . . . . . .5595
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5597
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5599
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5599
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5599

Internal problem ID [9689]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Carolyn J. Smith 1984 paper. Appendix B examples and tests.
Example 2
Date solved : Thursday, December 12, 2024 at 10:17:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.171 (sec)

Writing the ode as

x2y′′ − 2xy′ +
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1602: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution to
the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

Will add steps showing solving for IC soon.

Maple step by step solution

Let’s solve

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = −
(
x2+2

)
y(x)

x2 +
2
(

d
dx

y(x)
)

x

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

d2

dx2y(x)−
2
(

d
dx

y(x)
)

x
+
(
x2+2

)
y(x)

x2 = 0
� Check to see if x0 = 0 is a regular singular point

◦ Define functions[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators

x2
(

d2

dx2y(x)
)
− 2x

(
d
dx
y(x)

)
+ (x2 + 2) y(x) = 0

• Assume series solution for y(x)

y(x) =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
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◦ Convert xm · y(x) to series expansion form = 0..2

xm · y(x) =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y(x) =
∞∑

k=m

ak−mx
k+r

◦ Convert x ·
(

d
dx
y(x)

)
to series expansion

x ·
(

d
dx
y(x)

)
=

∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 ·
(

d2

dx2y(x)
)

to series expansion

x2 ·
(

d2

dx2y(x)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y(x) =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y(x) =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y(x) =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+1)(k+2) , a1 = 0, bk+2 = − bk
(k+2)(k+3) , b1 = 0

]
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Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 15� �
dsolve(x^2*diff(diff(y(x),x),x)-2*diff(y(x),x)*x+(x^2+2)*y(x) = 0,

y(x),singsol=all)� �
y = x(sin (x) c1 + cos (x) c2)

Mathematica DSolve solution

Solving time : 0.045 (sec)
Leaf size : 33� �
DSolve[{x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−ixx− 1
2ic2e

ixx
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2.3.12 problem Carolyn J. Smith 1984 paper. Appendix B
examples and tests. Example 3

Solved as second order ode using Kovacic algorithm . . . . . . . . .5600
Maple step by step solution . . . . . . . . . . . . . . . . . . . . . .5604
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5605
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . . .5605
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . . .5605

Internal problem ID [9690]
Book : Collection of Kovacic problems
Section : section 3. Problems from Kovacic related papers
Problem number : Carolyn J. Smith 1984 paper. Appendix B examples and tests.
Example 3
Date solved : Thursday, December 12, 2024 at 10:17:16 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

Solve

(x− 2)2 y′′ − (x− 2) y′ − 3y = 0

Solved as second order ode using Kovacic algorithm

Time used: 0.175 (sec)

Writing the ode as

(x− 2)2 y′′ + (−x+ 2) y′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = (x− 2)2

B = −x+ 2 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15
4 (x− 2)2

(6)

Comparing the above to (5) shows that

s = 15
t = 4(x− 2)2
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Therefore eq. (4) becomes

z′′(x) =
(

15
4 (x− 2)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse transfor-
mation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are
3 cases depending on the order of poles of r and the order of r at ∞. The following table
summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.1604: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots
of t = 4(x− 2)2. There is a pole at x = 2 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since pole
order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case
three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4 (x− 2)2

For the pole at x = 2 let b be the coefficient of 1
(x−2)2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in the Laurent
series expansion of r at ∞. which can be found by dividing the leading coefficient of s by
the leading coefficient of t from

r = s

t
= 15

4 (x− 2)2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2
The following table summarizes the findings so far for poles and for the order of r at ∞
where r is

r = 15
4 (x− 2)2

pole c location pole order [
√
r]c α+

c α−
c

2 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in the
set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to determine
possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all set

of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω. Trying
α−
∞ = −3

2 then

d = α−
∞ −

(
α−
c1

)
= −3

2 −
(
−3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
2 (x− 2) + (−) (0)

= − 3
2 (x− 2)

= − 3
2 (x− 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2 (x− 2)

)
(0) +

((
3

2 (x− 2)2
)
+
(
− 3
2 (x− 2)

)2

−
(

15
4 (x− 2)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the ode
z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3

2(x−2)dx

= 1
(x− 2)3/2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x+2
(x−2)2

dx

= z1e
ln(x−2)

2

= z1
(√

x− 2
)

Which simplifies to

y1 =
1

x− 2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x+2

(x−2)2
dx

(y1)2
dx

= y1

∫
eln(x−2)

(y1)2
dx

= y1

(
(x− 2)4

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x− 2

)
+ c2

(
1

x− 2

(
(x− 2)4

4

))

Will add steps showing solving for IC soon.
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Maple step by step solution

Let’s solve

(x− 2)2
(

d2

dx2y(x)
)
− (x− 2)

(
d
dx
y(x)

)
− 3y(x) = 0

• Highest derivative means the order of the ODE is 2
d2

dx2y(x)
• Isolate 2nd derivative

d2

dx2y(x) = 3y(x)
(x−2)2 +

d
dx

y(x)
x−2

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dx2y(x)−
d
dx

y(x)
x−2 − 3y(x)

(x−2)2 = 0

� Check to see if x0 = 2 is a regular singular point
◦ Define functions[

P2(x) = − 1
x−2 , P3(x) = − 3

(x−2)2

]
◦ (x− 2) · P2(x) is analytic at x = 2

((x− 2) · P2(x))
∣∣∣∣
x=2

= −1

◦ (x− 2)2 · P3(x) is analytic at x = 2(
(x− 2)2 · P3(x)

) ∣∣∣∣
x=2

= −3

◦ x = 2is a regular singular point
Check to see if x0 = 2 is a regular singular point
x0 = 2

• Multiply by denominators

(x− 2)2
(

d2

dx2y(x)
)
+ (−x+ 2)

(
d
dx
y(x)

)
− 3y(x) = 0

• Change variables using x = u+ 2 so that the regular singular point is at u = 0

u2
(

d2

du2y(u)
)
− u
(

d
du
y(u)

)
− 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite DE with series expansions
◦ Convert u ·

(
d
du
y(u)

)
to series expansion

u ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r

◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion

u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r

Rewrite DE with series expansions
∞∑
k=0

ak(k + r + 1) (k + r − 3)uk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + 1) (k − 3) = 0

• Recursion relation that defines series solution to ODE
ak = 0

• Recursion relation for r = 0
ak = 0
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• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak = 0

]
• Revert the change of variables u = x− 2[

y(x) =
∞∑
k=0

ak(x− 2)k , ak = 0
]

Maple trace� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 19� �
dsolve((x-2)^2*diff(diff(y(x),x),x)-(x-2)*diff(y(x),x)-3*y(x) = 0,

y(x),singsol=all)� �
y = c1 + (x− 2)4 c2

x− 2

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 22� �
DSolve[{(x-2)^2*D[y[x],{x,2}]-(x-2)*D[y[x],x]-3*y[x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1(x− 2)3 + c2

x− 2
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