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1.1 Examples, page 35

Table 1.1: Lookup table for all problems in current section

ID problem ODE

4087 1 y = y′ + y′2

2

4088 2 (y − xy′)2 = 1 + y′2

4089 3 y − x = y′2
(
1− 2y′

3

)
4090 4 x2y′ = x(y − 1) + (y − 1)2
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2.1.1 problem 1

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 10
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 12
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 12

Internal problem ID [4087]
Book : Applied Differential equations, Newby Curle. Van Nostrand Reinhold. 1972
Section : Examples, page 35
Problem number : 1
Date solved : Tuesday, December 17, 2024 at 06:22:00 AM
CAS classification : [_quadrature]

Solve

y = y′ + y′2

2

Solving for the derivative gives these ODE’s to solve

(1)y′ = −1 +
√

1 + 2y

(2)y′ = −1−
√

1 + 2y

Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives ∫ 1
−1 +

√
1 + 2y

dy = dx√
1 + 2y + ln

(
−1 +

√
1 + 2y

)
= x+ c1

Singular solutions are found by solving

−1 +
√
1 + 2y = 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = 0
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Solving for y gives

y = 0

y = LambertW (e−1+x+c1)2

2 + LambertW
(
e−1+x+c1

)
We now need to find the singular solutions, these are found by finding for what values
(−1 +

√
1 + 2y) is zero. These give

y = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution y = 0 satisfies the ode and initial conditions.

Solving Eq. (2)

Integrating gives ∫ 1
−1−

√
1 + 2y

dy = dx

−
√
1 + 2y + ln

(√
1 + 2y + 1

)
= x+ c2

Solving for y gives

y = LambertW (−e−1+x+c2)2

2 + LambertW
(
−e−1+x+c2

)
Maple step by step solution

Let’s solve

y(x) = d
dx
y(x) +

(
d
dx

y(x)
)2

2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = −1−

√
1 + 2y (x), d

dx
y(x) = −1 +

√
1 + 2y (x)

]
� Solve the equation d

dx
y(x) = −1−

√
1 + 2y (x)

◦ Separate variables
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d
dx

y(x)
−1−

√
1+2y(x) = 1

◦ Integrate both sides with respect to x∫ d
dx

y(x)
−1−

√
1+2y(x)dx =

∫
1dx+ _C1

◦ Evaluate integral
ln(y(x))

2 −
√

1 + 2y (x)−
ln
(
−1+

√
1+2y(x)

)
2 +

ln
(
1+

√
1+2y(x)

)
2 = x+ _C1

� Solve the equation d
dx
y(x) = −1 +

√
1 + 2y (x)

◦ Separate variables
d
dx

y(x)
−1+

√
1+2y(x) = 1

◦ Integrate both sides with respect to x∫ d
dx

y(x)
−1+

√
1+2y(x)dx =

∫
1dx+ _C1

◦ Evaluate integral
ln(y(x))

2 +
√

1 + 2y (x) +
ln
(
−1+

√
1+2y(x)

)
2 −

ln
(
1+

√
1+2y(x)

)
2 = x+ _C1

• Set of solutions{
ln(y(x))

2 −
√

1 + 2y (x)−
ln
(
−1+

√
1+2y(x)

)
2 +

ln
(
1+

√
1+2y(x)

)
2 = x+ C1 , ln(y(x))2 +

√
1 + 2y (x) +

ln
(
−1+

√
1+2y(x)

)
2 −

ln
(
1+

√
1+2y(x)

)
2 = x+ C1

}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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Maple dsolve solution

Solving time : 0.024 (sec)
Leaf size : 106� �
dsolve(y(x) = diff(y(x),x)+1/2*diff(y(x),x)^2,

y(x),singsol=all)� �
y(x) =

LambertW
(
−
√
2 ex−1−c1

) (
LambertW

(
−
√
2 ex−1−c1

)
+ 2
)

2

y(x) = e2RootOf
(
−_Z−2x+2 e_Z−2+2c1−ln(2)+ln

(
e_Z(e_Z−2

)2))
2

− eRootOf
(
−_Z−2x+2 e_Z−2+2c1−ln(2)+ln

(
e_Z(e_Z−2

)2))

Mathematica DSolve solution

Solving time : 22.693 (sec)
Leaf size : 66� �
DSolve[{y[x]==D[y[x],x]+1/2*(D[y[x],x])^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2W
(
−ex−1−c1

) (
2 +W

(
−ex−1−c1

))
y(x) → 1

2W
(
ex−1+c1

) (
2 +W

(
ex−1+c1

))
y(x) → 0
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2.1.2 problem 2

Solved as first order Clairaut ode . . . . . . . . . . . . . . . . . 13
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 17
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 18
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 18

Internal problem ID [4088]
Book : Applied Differential equations, Newby Curle. Van Nostrand Reinhold. 1972
Section : Examples, page 35
Problem number : 2
Date solved : Tuesday, December 17, 2024 at 06:22:01 AM
CAS classification :
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

Solve

(y − xy′)2 = 1 + y′
2

Solved as first order Clairaut ode

Time used: 0.196 (sec)

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

(−xp+ y)2 = p2 + 1

Solving for y from the above results in

y = xp+
√
p2 + 1 (1A)

y = xp−
√

p2 + 1 (2A)

Each of the above ode’s is a Clairaut ode which is now solved.

Solving ode 1A We start by replacing y′ by p which gives

y = xp+
√

p2 + 1
= xp+

√
p2 + 1
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g =
√

p2 + 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p.

The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+
√

c21 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g =
√
p2 + 1, then

the above equation becomes

x+ g′(p) = x+ p√
p2 + 1

= 0
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Solving the above for p results in

p1 = y =
(
−x2 + 1

)√
− 1
x2 − 1

Substituting the above back in (1) results in

y =
(
−x2 + 1

)√
− 1
x2 − 1

Solving ode 2A We start by replacing y′ by p which gives

y = xp−
√

p2 + 1
= xp−

√
p2 + 1

Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −
√

p2 + 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p.

The general solution is given by

dp

dx
= 0

p = c1
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Substituting this in (1) gives the general solution as

y = c2x−
√

c22 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −
√
p2 + 1, then

the above equation becomes

x+ g′(p) = x− p√
p2 + 1

= 0

Solving the above for p results in

p1 = y =
√
− 1
x2 − 1

(
x2 − 1

)
Substituting the above back in (1) results in

y =
√
− 1
x2 − 1

(
x2 − 1

)
Summary of solutions found

y =
√
− 1
x2 − 1

(
x2 − 1

)
y =

(
−x2 + 1

)√
− 1
x2 − 1

y = c1x+
√
c21 + 1

y = c2x−
√
c22 + 1
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Maple step by step solution

Let’s solve(
−x
(

d
dx
y(x)

)
+ y(x)

)2 = 1 +
(

d
dx
y(x)

)2
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = xy(x)−

√
y(x)2+x2−1

x2−1 , d
dx
y(x) = xy(x)+

√
y(x)2+x2−1

x2−1

]
• Solve the equation d

dx
y(x) = xy(x)−

√
y(x)2+x2−1

x2−1

• Solve the equation d
dx
y(x) = xy(x)+

√
y(x)2+x2−1

x2−1

• Set of solutions
{workingODE ,workingODE}

Maple trace� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`� �
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Maple dsolve solution

Solving time : 0.077 (sec)
Leaf size : 57� �
dsolve((-diff(y(x),x)*x+y(x))^2 = 1+diff(y(x),x)^2,

y(x),singsol=all)� �
y(x) =

√
−x2 + 1

y(x) = −
√
−x2 + 1

y(x) = c1x−
√
c21 + 1

y(x) = c1x+
√
c21 + 1

Mathematica DSolve solution

Solving time : 0.174 (sec)
Leaf size : 73� �
DSolve[{(y[x]-x*D[y[x],x])^2==1+(D[y[x],x])^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1x−

√
1 + c12

y(x) → c1x+
√
1 + c12

y(x) → −
√
1− x2

y(x) →
√
1− x2
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2.1.3 problem 3

Solved as first order ode of type dAlembert . . . . . . . . . . . 19
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 21
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 22
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 22

Internal problem ID [4089]
Book : Applied Differential equations, Newby Curle. Van Nostrand Reinhold. 1972
Section : Examples, page 35
Problem number : 3
Date solved : Tuesday, December 17, 2024 at 06:22:02 AM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y − x = y′
2
(
1− 2y′

3

)
Solved as first order ode of type dAlembert

Time used: 1.317 (sec)

Let p = y′ the ode becomes

y − x = p2
(
1− 2p

3

)
Solving for y from the above results in

(1)y = p2 − 2
3p

3 + x

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1

g = p2 − 2
3p

3

Hence (2) becomes

p− 1 =
(
−2p2 + 2p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving the above for p results in

p1 = 1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 1
3 + x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1
−2p (x)2 + 2p (x)

(3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives∫
−2pdp = dx

−p2 = x+ c1

Solving for p(x) gives
p(x) =

√
−c1 − x

p(x) = −
√
−c1 − x

Substituing the above solution for p in (2A) gives

y = −c1 −
2(−c1 − x)3/2

3

y = −c1 +
2(−c1 − x)3/2

3
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Summary of solutions found

y = 1
3 + x

y = −c1 −
2(−c1 − x)3/2

3

y = −c1 +
2(−c1 − x)3/2

3

Maple step by step solution

Let’s solve

y(x)− x =
(

d
dx
y(x)

)2 (1− 2 d
dx

y(x)
3

)
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative d
dx
y(x) =

(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

2 + 1

2
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3 + 1
2 ,

d
dx
y(x) = −

(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

4 − 1

4
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3 + 1
2 −

I
√
3


(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

2 − 1

2
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3


2 , d

dx
y(x) = −

(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

4 − 1

4
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3 + 1
2 +

I
√
3


(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

2 − 1

2
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3


2


• Solve the equation d

dx
y(x) =

(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

2 + 1

2
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3 + 1
2

• Solve the equation d
dx
y(x) = −

(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

4 − 1

4
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3 + 1
2 −

I
√
3


(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

2 − 1

2
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3


2

• Solve the equation d
dx
y(x) = −

(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

4 − 1

4
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3 + 1
2 +

I
√
3


(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3

2 − 1

2
(
1−6y(x)+6x+2

√
−3y(x)+3x+9y(x)2−18xy(x)+9x2

)1/3


2

• Set of solutions
{workingODE ,workingODE ,workingODE}
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Maple trace� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 49� �
dsolve(-x+y(x) = diff(y(x),x)^2*(1-2/3*diff(y(x),x)),

y(x),singsol=all)� �
y(x) = x+ 1

3
y(x) = (2x− 2c1)

√
−x+ c1

3 + c1

y(x) = (−2x+ 2c1)
√
−x+ c1

3 + c1

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{y[x]-x==D[y[x],x]^2*(1-2/3* D[y[x],x]),{}},

y[x],x,IncludeSingularSolutions->True]� �
Timed out
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2.1.4 problem 4

Solved as first order homogeneous class Maple C ode . . . . . . 23
Solved using Lie symmetry for first order ode . . . . . . . . . . 27
Solved as first order ode of type Riccati . . . . . . . . . . . . . 33
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 39
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 40
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 40

Internal problem ID [4090]
Book : Applied Differential equations, Newby Curle. Van Nostrand Reinhold. 1972
Section : Examples, page 35
Problem number : 4
Date solved : Tuesday, December 17, 2024 at 06:22:04 AM
CAS classification : [[_homogeneous, ‘class C‘], _rational, _Riccati]

Solve

x2y′ = x(y − 1) + (y − 1)2

Summary of solutions found

y = 1

y = −x+ ln (x) + c1
ln (x) + c1

Solved as first order homogeneous class Maple C ode

Time used: 0.356 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = (Y (X) + y0 − 1) (x0 +X + Y (X) + y0 − 1)

(x0 +X)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 1
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)X + Y (X)2

X2

In canonical form, the ODE is

Y ′ = F (X,Y )

= Y (Y +X)
X2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y (Y +X) and N = X2 are both homoge-
neous and of the same order n = 2. Therefore this is a homogeneous ode. Since this
ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u2 + u

du
dX = u(X)2

X

Or
d

dX
u(X)− u(X)2

X
= 0

Or (
d

dX
u(X)

)
X − u(X)2 = 0

Which is now solved as separable in u(X).

The ode d
dX

u(X) = u(X)2
X

is separable as it can be written as

d

dX
u(X) = u(X)2

X
= f(X)g(u)
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Where

f(X) = 1
X

g(u) = u2

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫ 1

u2 du =
∫ 1

X
dX

− 1
u (X) = ln (X) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2 = 0 for u(X)
gives

u(X) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− 1
u (X) = ln (X) + c1

u(X) = 0

Solving for u(X) gives
u(X) = 0

u(X) = − 1
ln (X) + c1

Converting u(X) = 0 back to Y (X) gives

Y (X) = 0

Converting u(X) = − 1
ln(X)+c1

back to Y (X) gives

Y (X) = − X

ln (X) + c1
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Using the solution for Y (X)

Y (X) = 0 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x

Then the solution in y becomes using EQ (A)

y − 1 = 0

Using the solution for Y (X)

Y (X) = − X

ln (X) + c1
(A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x

Then the solution in y becomes using EQ (A)

y − 1 = − x

ln (x) + c1

Solving for y gives
y = 1

y = −x+ ln (x) + c1
ln (x) + c1
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Figure 2.1: Slope field plot
x2y′ = x(y − 1) + (y − 1)2

Solved using Lie symmetry for first order ode

Time used: 0.506 (sec)

Writing the ode as

y′ = xy + y2 − x− 2y + 1
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}



chapter 2. book solved problems 28

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(xy + y2 − x− 2y + 1) (b3 − a2)
x2 − (xy + y2 − x− 2y + 1)2 a3

x4

−
(
y − 1
x2 − 2(xy + y2 − x− 2y + 1)

x3

)
(xa2 + ya3 + a1)

− (2y + x− 2) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−2x3yb2 − x2y2a2 + x2y2b3 + y4a3 + x3b1 − 2x3b2 + x3b3 − x2ya1 + 2x2ya2 − x2ya3 + 2x2yb1 − 2x y2a1 − 2x y2a3 − 4y3a3 + x2a1 − x2a2 + x2a3 − 2x2b1 − x2b3 + 4xya1 + 4xya3 + 6y2a3 − 2xa1 − 2xa3 − 4ya3 + a3
x4

= 0

Setting the numerator to zero gives

(6E)−2x3yb2 + x2y2a2 − x2y2b3 − y4a3 − x3b1 + 2x3b2 − x3b3 + x2ya1 − 2x2ya2
+ x2ya3 − 2x2yb1 + 2x y2a1 + 2x y2a3 + 4y3a3 − x2a1 + x2a2 − x2a3
+ 2x2b1 + x2b3 − 4xya1 − 4xya3 − 6y2a3 + 2xa1 + 2xa3 + 4ya3 − a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1v

2
2 − a3v

4
2 − 2b2v31v2 − b3v

2
1v

2
2 + a1v

2
1v2 + 2a1v1v22 − 2a2v21v2 + a3v

2
1v2

+ 2a3v1v22 + 4a3v32 − b1v
3
1 − 2b1v21v2 + 2b2v31 − b3v

3
1 − a1v

2
1 − 4a1v1v2 + a2v

2
1

− a3v
2
1 − 4a3v1v2 − 6a3v22 + 2b1v21 + b3v

2
1 + 2a1v1 + 2a3v1 + 4a3v2 − a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−2b2v31v2+(−b1+2b2− b3) v31 +(−b3+a2) v21v22 +(a1− 2a2+a3− 2b1) v21v2
+ (−a1 + a2 − a3 + 2b1 + b3) v21 + (2a1 + 2a3) v1v22 + (−4a1 − 4a3) v1v2
+ (2a1 + 2a3) v1 − a3v

4
2 + 4a3v32 − 6a3v22 + 4a3v2 − a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a3 = 0
−a3 = 0
4a3 = 0

−2b2 = 0
−4a1 − 4a3 = 0
2a1 + 2a3 = 0
−b3 + a2 = 0

−b1 + 2b2 − b3 = 0
a1 − 2a2 + a3 − 2b1 = 0

−a1 + a2 − a3 + 2b1 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = −b3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y − 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
xy + y2 − x− 2y + 1

x2

)
(x)

= −y2 + 2y − 1
x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2+2y−1
x

dy

Which results in

S = x

y − 1
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy + y2 − x− 2y + 1
x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y − 1

Sy = − x

(y − 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− 1
R

dR

S(R) = − ln (R) + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

x

y − 1 = − ln (x) + c2

Which gives

y = ln (x)− c2 − x

ln (x)− c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy+y2−x−2y+1
x2

dS
dR

= − 1
R

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = x

y − 1

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.2: Slope field plot
x2y′ = x(y − 1) + (y − 1)2

Summary of solutions found

y = ln (x)− c2 − x

ln (x)− c2
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Solved as first order ode of type Riccati

Time used: 0.309 (sec)

In canonical form the ODE is

y′ = F (x, y)

= xy + y2 − x− 2y + 1
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
+ y2

x2 − 1
x
− 2y

x2 + 1
x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1−x
x2 , f1(x) = x−2

x2 and f2(x) = 1
x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
x− 2
x4

f 2
2 f0 =

1− x

x6

Substituting the above terms back in equation (2) gives
u′′(x)
x2 −

(
− 2
x3 + x− 2

x4

)
u′(x) + (1− x)u(x)

x6 = 0

Writing the ode as
d2u
dx2

x2 +
(x+ 2)

(
du
dx

)
x4 + (1− x)u

x6 = 0 (1)

A
d2u

dx2 +B
du

dx
+ Cu = 0 (2)
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Comparing (1) and (2) shows that

A = 1
x2

B = x+ 2
x4 (3)

C = 1− x

x6

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 2.4: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
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Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−

∫ 1
2

x+2
x4
1
x2

dx

= z1e
− ln(x)

2 + 1
x

= z1

(
e 1

x

√
x

)
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Which simplifies to

u1 = e 1
x

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e

∫
−

x+2
x4
1
x2

dx

(u1)2
dx

= u1

∫
e− ln(x)+ 2

x

(u1)2
dx

= u1

(
−e− ln

( 1
x

)
−ln(x) ln

(
1
x

))
Therefore the solution is

u = c1u1 + c2u2

= c1
(
e 1

x

)
+ c2

(
e 1

x

(
−e− ln

( 1
x

)
−ln(x) ln

(
1
x

)))

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x) = −c1 e
1
x

x2 +
c2 e

1
x ln

( 1
x

)
x2 + c2 e

1
x

x

Doing change of constants, the solution becomes

y = −

(
− c3 e

1
x

x2 + e
1
x ln

( 1
x

)
x2 + e

1
x

x

)
x2

c3 e
1
x − e 1

x ln
( 1
x

)
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Figure 2.3: Slope field plot
x2y′ = x(y − 1) + (y − 1)2

Summary of solutions found

y = −

(
− c3 e

1
x

x2 + e
1
x ln

( 1
x

)
x2 + e

1
x

x

)
x2

c3 e
1
x − e 1

x ln
( 1
x

)
Maple step by step solution

Let’s solve
x2( d

dx
y(x)

)
= x(y(x)− 1) + (y(x)− 1)2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = x(y(x)−1)+(y(x)−1)2

x2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli



chapter 2. book solved problems 40

trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 15� �
dsolve(diff(y(x),x)*x^2 = x*(y(x)-1)+(y(x)-1)^2,

y(x),singsol=all)� �
y(x) = 1− x

ln (x) + c1

Mathematica DSolve solution

Solving time : 0.312 (sec)
Leaf size : 23� �
DSolve[{x^2*D[y[x],x]==x*(y[x]-1)+(y[x]-1)^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1 + x

− log(x) + c1
y(x) → 1
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