my Quantum Mechanics cheat sheet

Nasser M. Abbasi

June 28, 2025

Compiled on June 28, 2025 at 9:33am

Table 1: QM cheat sheet

	Position Operator X	Momentum operator P	Hamiltonian operator H
Eigenvalue eigenvector relation	$X x\rangle=x x\rangle$ where x is the eigenvalue (size) of the $ x\rangle$ which is the position vector associated with x measured.	$P \phi_p angle=p \phi_p angle$ where p is the momentum of the particle.	$H \Psi_{E_{\hat{i}}}\rangle=E_{\hat{i}} \Psi_{E_{\hat{i}}}\rangle$ where $E_{\hat{i}}$ is the energy level of the particle.
Normalization relation	$\int_{-\infty}^{\infty} x\rangle \langle x \ dx = 1$	$\int_{-\infty}^{\infty} \phi_p\rangle \langle \phi_p \ dp = 1$	$\int_{-\infty}^{\infty} \left \Psi_{E_i} \right\rangle \left\langle \Psi_{E_i} \right \; dE = 1$
orthogonality	$\langle x x'\rangle = \delta(x-x')$	$\langle \phi_p \phi_{p'} \rangle = \delta(p - p')$	$\langle \Psi_{E_i} \Psi_{E_j} \rangle = \delta(E_i - E_j)$
Matrix element of operator	$\left\langle x X x' ight angle = x'\delta(x-x').$ Operator X is diagonal matrix.	$\langle x P x'\rangle=-i\hbar\delta(x-x')\frac{d}{dx'}$ where momentum operator P is expressed in position operator $ x\rangle$ basis. Note that operator P is not a diagonal matrix.	$\langle x \mid H \mid x' \rangle = ?$
Function form of the state function $ \Psi angle$	N/A?	$P \phi_{p}\rangle = p \phi_{p}\rangle$ $\int P x'\rangle \langle x' \phi_{p}\rangle dx = p \int x'\rangle \langle x' \phi_{p}\rangle dx$ $\int \langle x P x'\rangle \langle x' \phi_{p}\rangle dx = p \int \langle x x'\rangle \langle x' \phi_{p}\rangle dx$ $\int -i\hbar\delta(x-x') \frac{d}{dx'}\phi_{p}(x') dx = p \int \delta(x-x')\phi_{p}(x') dx$ $= \frac{2}{L} \frac{L}{2}$ $= 1$	$\begin{split} \langle \Psi \Psi \rangle &= \int_{-\infty}^{\infty} \langle \Psi x \rangle \langle x \Psi \rangle \ dx \\ &= \int_{-\infty}^{\infty} \langle x \Psi \rangle \langle x \Psi \rangle \ dx \\ &= \int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) \ dx \\ &= \int_0^L \left(\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \right)^2 \ dx \\ &= \frac{2}{L} \frac{L}{2} \\ &= 1 \end{split}$

 ${\bf Table 1-continued\ from\ previous\ page}$

	Position Operator X	Momentum operator Φ_p	Hamiltonian operator
Vector form to function form	$\langle x \Psi angle = \Psi(x)$	$raket{x\ket{\phi_p}=\phi_p(x)}$	$\langle x \Psi_E angle = \Psi_E(x)$
Expansion of state vector $ \Psi\rangle$	$ \Psi angle = \int_{-\infty}^{\infty} x angle \left\langle x \Psi ight angle \; dx$	$ \Psi angle = \int_{-\infty}^{\infty} \phi_p angle \left<\phi_p \Psi ight> dp$	$ \Psi angle = \int_{-\infty}^{\infty} E_i angle \langle E_i \Psi angle di$
State function $ \Psi\rangle$ For infinite potential deep well of width $x < 0 < L$	todo	todo	todo
Probability of measurement	1. Probability of measuring x given system is in state $ \Psi\rangle$ is $ \langle\Psi \Psi\rangle ^2$. For infinite potential deep well of width $x<0< L$ this becomes	$ \Psi angle = \int_{-\infty}^{\infty} \phi_p angle \left\langle \phi_p \Psi ight angle \; dp$	$ \Psi angle = \int_{-\infty}^{\infty} E_i angle \left\langle E_i \Psi ight angle \ di$
	$egin{aligned} \langle\Psi \Psi angle &= \int_{-\infty}^{\infty} ra{\Psi x}ra{x \Psi} dx \ &= \int_{-\infty}^{\infty} ra{x \Psi}ra{x \Psi} dx \end{aligned}$		
	$= \int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) dx$		
	$= \int_0^L \left(\sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} \right)^2 dx$		
	$= \frac{2}{L} \frac{L}{2}$ $= 1$		
	2. Probability of measuring x given system is in state ϕ_p		