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1 top level algorithm
This is the top level algorithm

function solve_first_order_ode_nonlinear_p(F (x, y, p))
Where p = y′ and the ode is non-linear in p. An example is x(y′)2 − yy′ = −1 and

y = x

(
y′ + a

√
1 + (y′)2

)
if degree of p an integer in F (x, y, p) then

As an example p2x+ yp+ y = 0 and it is possible to find the roots (i.e.
solve for p) then let the roots be pi and each generated ode is solved as
a first order ode which is now linear in each in y′i. So we need to solve
y′i = f(x, y) for each root.

else if we can solve for x from F (x, y, p) then
This is currently not implemented.
Let x = φ(y, p) then differentiating w.r.t. y gives

dx

dy
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
1
p
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
(1)

Solving (1) for p from the above and substituting the result in
x = φ(y, p) gives the solution.

else
CALL clairaut_dAlembert_solver(F (x, y, p))

end if
end function

Algorithm below is Clairaut dAlembert solver algorithm
function clairaut_dalembert_solver(F (x, y, p))

Solve for y and write the ode as (where p = y′)
y = xf(p) + g(p) (1)

where f(p) 6= 0
if f(p) = p then . Example y = xp+ g(p)

if g(p) = 0 then . Example y = xp

return as this is neither Clairaut nor d’Alembert.
else if g(p) is linear in p then . Example y = xp+ p

return as this is neither Clairaut nor d’Alembert.
else . Example y = xp+ p2 or y = xp+ sin(p)

This is a Clairaut ode. Taking the derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

where g′ is the derivative of g(p) w.r.t. p. The general solution is

dp

dx
= 0 p = c1

where c1 is constant. Substituting p = c1 the in (1) gives the general solution yg
The singular solution ys is now found from solving the ode (x+ g′(p)) = 0 for p and
substituting the solution pi back in (1).
return yg, ys

end if



else
CALL dalembert_solver(F (x, y, p))

end if
end function

Algorithm below is just the dAlembert solver algorithm
function dalembert_solver(F (x, y, p))

Write the ode as (where p = y′)
y = xf(p) + g(p) (1)

where f(p) 6= 0. Note that We get here when f(p) 6= p else it is Clairaut.
if g(p) = 0 then . Example y = xf(p)

f(p) must be nonlinear in p but can not be the special case p
1
n where n

integer because then it is separable.
if f(p) = p

1
n and n ∈ Z then . Ex. y = x(y′) 1

2

return as this is not dAlmbert ode.
end if

else
In this case any form of f(p) is OK even f(p) = p

1
n with n integer

except ofcourse f(p) = p since this would have made it Clairaut and not
dAlembert. Example is y = xf(p) + p is dAlembert.
if g(p) is constant and does not depend on p then . Ex. y = xf(p) + 1

return as this is not dAlmbert ode.
else

if g(p) = f(p) then
if g(p), f(p) have the form p

1
n with n integer then . Ex. y = xp

1
2 + p

1
2

return as this is not dAlmbert ode.
else . Ex. y = xp

2
3 + p

2
3 or y = xp2 + p2

This is dAlmbert ode.
end if

end if
end if

end if
When we get here then (1) is dAlmbert ode. Note that all the above
cases f(p), g(p) can not be function of x in any case. Now we solve (1)
using dAlmbert algorithm. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf + g)

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
where f ′ means df

dp
and g′ means dg

dp
. The above becomes

p = f + (xf ′ + g′) dp
dx

p− f = (xf ′ + g′) dp
dx

(2)

The singular solution is given when dp
dx

= 0 above. Hence

p− f = 0
Solving the above for p and substituting the result back in (1) gives the
singular solution ys. The general solution yg is found by solving the ode
in (2) for p and substituting the result in (1). there are two cases to
consider.
if ode (2) is separable or linear in p as is then

Solve (2) for p directly and substitute the solution in (1). This gives the
general solution yg.

else



Inverting (2) first gives
dx

dp
= xf ′ + g′

p− f
Which makes it linear ode in x. This is solved for x(p) as function of p.
Let

x = h(p) + c1 (3)
be the solution. Now two possible cases exist
if able to isolate p from (3) then

Substitute p in (1). This gives the general solution yg.
else

Solve for p from (1) and substitute the result in (3). This gives an implicit
solution for yg instead of explicit one.

end if
end if

end function

2 Solved examples

2.1 Algorithm diagram
The following is the flow chart.

Figure 1: Algorithm for solving first order ode with nonlinear y′
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2.2 Solved examples

# original ode y = xf(p) + g(p) f(p) g(p) type

1 x(y′)2 − yy′ = −1 y = xp+ 1
p p 1

p Clairaut

2 y = xy′ − (y′)2 y = xp− p2 p −p2 Clairaut

3 y = xy′ − 1
4 (y

′)2 y = xp− 1
4p

2 p − 1
4p

2 Clairaut

4 y = x(y′)2 y = xp2 p2 0 d’Alembert

5 y = x+ (y′)2 y = x+ p2 1 p2 d’Alembert

6 (y′)2 − 1− x− y = 0 y = −x+
(
p2 − 1

)
−1

(
p2 − 1

)
d’Alembert

7 yy′ − (y′)2 = x y = 1
px+ p 1

p p d’Alembert

8 y = x(y′)2 + (y′)2 y = xp2 + p2 p2 p2 d’Alembert

9 y = x
ay

′ + b
ay′ y = x

ap+
b
a
1
p

p
a

b
a
1
p d’Alembert

10 y = x

(
y′ + a

√
1 + (y′)2

)
y = x

(
p+ a

√
1 + p2

)
p+ a

√
1 + p2 0 d’Alembert

11 y = x+ (y′)2
(
1− 2

3y
′) y = x+ p2

(
1− 2

3p
)

1 p2
(
1− 2

3p
)

d’Alembert

12 y = 2x− 1
2 ln

( (
y′)2
y′−1

)
y = 2x− 1

2 ln
(

p2

p−1

)
2 − 1

2 ln
(

p2

p−1

)
d’Alembert

13 (y′)2 − x(y′)2 + y(1 + y′)− xy′ = 0 y = xp+xp2−p2

p+1 = xp− p2

p+1 p − p2

p+1 Clairaut

14 x(y′)2 + (x− y) y′ + 1− y = 0 y = xp+ 1
1+p p 1

1+p Clairaut

15 xyy′ = y2 + x
√

4x2 + y2 y = RootOf (h(p))x RootOf (h(p)) 0 d’Alembert
16 ln (cos y′) + y′ tan y′ = y y = ln (cos p) + p tan p 0 ln (cos p) + p tan p d’Alembert

17 x(y′)2 − 2yy′ + 4x = 0 y = x
(

1
2p+

2
p

)
1
2p+

2
p 0 d’Alembert

18 x− yy′ = a(y′)2 y = x
p − ap 1

p −ap d’Alembert

19 y = xF (p) +G(p) y = xF (p) +G(p) F (p) G(p) d’Alembert

20 y′ = −x
2 − 1 + 1

2

√
x2 + 4x+ 4y y = xp+

(
1 + 2p+ p2

)
p 1 + 2p+ p2 Clairaut

21 y′y

1+ 1
2

√
1+(y′)2

= −x y = −x
(

2+
√

1+p2

2p

)
−
(

2+
√

1+p2

2p

)
0 d’Alembert

22 x(y′)3 = yy′ + 1 y = xp2 − 1
p p2 − 1

p d’Alembert

23 (y′)2 − 2yy′ = 2x y = −x 1
p + 1

2p − 1
p

1
2p d’Alembert

24 xy′ − y =
√

x2 − y2 y = x
(

p
2 ± 1

2

√
2− p2

)
p
2 ± 1

2

√
2− p2 0 d’Alembert

2.2.1 Example 1

x(y′)2 − yy′ = −1, is put in normal form (by replacing y′ with p) and solving for y gives

y = xp+ 1
p

(1)

= xf(p) + g(p)

Where f(p) = p and g(p) = 1
p
. Since f(p) = p then this is Clairaut ode. Taking derivative

of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

5



Substituting this in (1) gives the general solution

y = c1x+ 1
c1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

1
p

= x− 1
p2

Hence x− 1
p2

= 0 or p = ± 1√
x
. Substituting these back in (1) gives

y1(x) = xp+ 1
p

= x
1√
x
+
√
x

= 2
√
x (3)

y2(x) = −x

√
1
x
−

√
x

= −2
√
x (4)

Eq. (2) is the general solution and (3,4) are the singular solutions.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − xy′ − 1
y′

= 0

−x+ 1
(y′)2

= 0

Second equation gives (y′)2 = 1
x
. Hence y′ = ±

√
1
x
. Hence the first equation now gives

(starting with positive root)

y − x

√
1
x
− 1√

1
x

= 0

y = x

√
1
x
+ 1√

1
x

=
x
√

1
x

√
1
x
+ 1√

1
x

= 2
√
x

And for the second root y′ = −
√

1
x
we obtain y = −2

√
x. We see these are the same

singular solutions obtained earlier.
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2.2.2 Example 2

y = xy′ − (y′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp− p2 (1)
= xf(p) + g(p)

Where f(p) = p and g(p) = −p2. Since f(p) = p then this is Clairaut ode. Taking
derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x− c21

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

(
−p2

)
= x+ 2p

Hence x+ 2p = 0 or p = x
2 . Substituting this back in (1) gives

y(x) = x2

2 − x2

4

= x2

4 (3)

Eq. (2) is the general solution and (3) is the singular solution.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − xy′ + (y′)2 = 0
−x+ 2y′ = 0

Second equation gives y′ = x
2 . Hence the first equation now gives the singular solution as

y − x
(x
2

)
+
(x
2

)2
= 0

y = x2

2 − x2

4
= 1

4x
2

Which is the same obtained earlier.
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2.2.3 Example 3

y = xy′ − 1
4(y

′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp− 1
4p

2 (1)

= xf(p) + g(p)

Where f(p) = p and g(p) = −1
4p

2. Since f(p) = p then this is Clairaut ode. Taking
derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x− 1
4c

2
1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

(
−1
4p

2
)

= x− 1
2p

Hence x− 1
2p = 0 or p = 2x. Substituting this back in (1) gives

y(x) = 2x2 − x2

= x2 (3)

Eq. (2) is the general solution and (3) is the singular solution.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − xy′ + 1
4(y

′)2 = 0

−x+ 1
2y

′ = 0

Second equation gives y′ = 2x. Hence the first equation now gives the singular solution as

y − 2x2 + 1
4
(
4x2) = 0

y − x2 = 0
y = x2

Which is the same obtained earlier.
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2.2.4 Example 4

y = x(y′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp2 (1)
= xf(p)

This is the case when f(p) = p2 and g(p) = 0. Since f(p) 6= p then this is d’Almbert ode.

Writing f ≡ f(p) and g ≡ g(p) to make notation simpler but remembering that f is
function of p(x) which in turn is function of x. Same for g(p).

y = xf

Taking derivative of the above w.r.t. x gives

p = d

dx
(xf)

p = f + xf ′ dp

dx

p− f = xf ′ dp

dx

Since f = p2 then the above becomes

p− p2 = 2xpdp
dx

(2)

The singular solution is given when dp
dx

= 0 or p − p2 = 0. This gives p = 0 or p = 1.
Substituting these values of p in (1) gives singular solutions

ys1 = 0 (3)
ys2 = x (4)

General solution is found when dp
dx

6= 0 . Eq(2) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(x), or do an inversion and solve for x(p). If the
ode is linear as is in p then no need to do inversion. Since (2) is separable as is, no need
to do an inversion. The solution to (2) is

p1 = 0

p2 = 1 + c1√
x

For each p, there is a general solution. Substituting each of the above in (1) gives

y1(x) = 0

y2(x) = x

(
1 + c1√

x

)2

Hence the final solutions are

y = x (singular)
y = 0

y = x

(
1 + c1√

x

)2

But y = x can be obtained from the general solution when c1 = 0. Hence it is removed.
Therefore the final solutions are

y = 0 (6)

y = x

(
1 + c1√

x

)2

(7)
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What will happen if we had done an inversion to x(p)? Let us find out. ode(5) now becomes

p− p2

p

dx

dp
= 2x

dx

2x = p

p− p2
dp

This is also separable in x. Solving this for x gives

x = c1

(p− 1)2

Solving for p from the above gives

p1 =
x+√

xc1
x

p2 =
x−√

xc1
x

Substituting each of the above in (1) gives

y1 = x

(
x+√

xc1
x

)2

=
(
x+√

xc1
)

x

2

y2 = x

(
x−√

xc1
x

)2

=
(
x−√

xc1
)

x

2

Now we see that singular solution y = x can be obtained from the above general solutions
from c1 = 0. But y = 0 can not. Hence the final solutions are

y = 0 (singular) (8)

y =
(
x+√

xc1
)

x

2

(9)

y =
(
x−√

xc1
)

x

2

(10)

All solutions (6,7,8,9,10) are correct and verified. Maple gives the solutions given in (8,9,10)
and not those in (6,7).

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − x(y′)2 = 0
−2xy′ = 0

Second equation gives y′ = 0. Hence the first equation now gives the singular solution as

y = 0

Which is the same obtained earlier.
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2.2.5 Example 5

y = x+ (y′)2 is put in normal form (by replacing y′ with p) which gives

y = x+ p2 (1)
= xf + g

Hence f(p) = 1, g(p) = p2. Since f(p) 6= p then this is d’Almbert ode. Taking derivative
w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

(2)

Using f = 1, g = p2 the above simplifies to

p− 1 = 2pdp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 in (2) which results in p − f = 0 or
p− 1 = 0. Hence p = 1. Substituting these values of p in (1) gives singular solution as

y = x+ 1 (3)

General solution is found when dp
dx

6= 0 . Eq (2A) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(x), or do an inversion and solve for x(p). Since
(2) is separable as is, no need to do an inversion. Solving (2) for p gives

p = LambertW
(
c1e

x
2−1)+ 1

Substituting this in (1) gives the general solution

y(x) = x+
(
LambertW

(
c1e

x
2−1)+ 1

)2 (4)

Note however that when c1 = 0 then the general solution becomes y(x) = x + 1. Hence
(3) is a particular solution and not a singular solution. (4) is the only solution.

2.2.6 Example 6

(y′)2 − 1− x− y = 0 is put in normal form (by replacing y′ with p) which gives

y = −x+
(
p2 − 1

)
(1)

= xf + g

Hence f = −1, g(p) = (p2 − 1). Since f(p) 6= p then this is d’Almbert ode. Taking
derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

(2)

Using f = −1, g = (p2 − 1) the above simplifies to

p+ 1 = 2pdp
dx

(2A)

11



The singular solution is found by setting dp
dx

= 0 which results in p = −1. Substituting
this in (1) gives singular solution as

y(x) = −x (3)

The general solution is found by finding p from (2A). No need here to do the inversion as
(2) is separable already. Solving (2) gives

p = −LambertW
(
−e−

x
2−1+ c2

2

)
− 1

= −LambertW
(
−c1e

−x
2−1)− 1

Substituting the above in (1) gives the general solution

y(x) = −x+
(
p2 − 1

)
y(x) = −x+

(
−LambertW

(
−c1e

−x
2−1)− 1

)2 − 1 (4)

Note however that when c1 = 0 then the general solution becomes y(x) = −x. Hence
(3) is a particular solution and not a singular solution. Solution (4) is therefore the only
solution.

2.2.7 Example 7

yy′ − (y′)2 = x is put in normal form (by replacing y′ with p) which gives

y = x+ p2

p
(1)

= 1
p
x+ p

= xf + g

Hence f = 1
p
, g(p) = p. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using f = 1
p
, g = p. Since f(p) 6= p then this is d’Almbert ode. the above simplifies to

p− 1
p
=
(
− x

p2
+ 1
)

dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 in (2) which results in Q(p) = 0 or
p− 1 = 0 or p = 1. Substituting these values in (1) gives the solutions

y1(x) = x+ 1 (3)

The general solution is found by finding p from (2A). Since (2A) is not linear and not
separable in p, then inversion is needed. Writing (2) as

dx

dp
=

1− x
p2

p− 1
p

= 1
p− p3

(
x− p2

)
Hence

dx

dp
+ x

p (p2 − 1) = p2

p (p2 − 1)
12



This is now linear ODE in x(p). The solution is

x =
p
√

(p− 1) (1 + p) ln
(
p+

√
p2 − 1

)
(1 + p) (p− 1) + c1

p√
(1 + p) (p− 1)

=
p
√
p2 − 1 ln

(
p+

√
p2 − 1

)
p2 − 1 + c1

p√
p2 − 1

(4)

Now we need to eliminate p from (1,4). From (1) since y = 1
p
x+ p then solving for p gives

p1 =
y

2 + 1
2
√

y2 − 4x

p2 =
y

2 − 1
2
√

y2 − 4x

Substituting each pi in (4) gives the general solution (implicit) in y(x). First solution is

x =

(
y
2 +

1
2
√
y2 − 4x

)√(
y
2 +

1
2
√
y2 − 4x

)2 − 1 ln
(

y
2 +

1
2
√
y2 − 4x+

√(
y
2 +

1
2
√
y2 − 4x

)2 − 1
)

(
y
2 +

1
2
√
y2 − 4x

)2 − 1
+c1

y
2 +

1
2
√
y2 − 4x√(

y
2 +

1
2
√
y2 − 4x

)2 − 1

And second solution is

x =

(
y
2 −

1
2
√
y2 − 4x

)√(
y
2 −

1
2
√
y2 − 4x

)2 − 1 ln
(

y
2 −

1
2
√
y2 − 4x+

√(
y
2 −

1
2
√
y2 − 4x

)2 − 1
)

(
y
2 −

1
2
√
y2 − 4x

)2 − 1
+c1

y
2 −

1
2
√
y2 − 4x√(

y
2 −

1
2
√
y2 − 4x

)2 − 1

2.2.8 Example 8

y = x(y′)2 + (y′)2 is put in normal form (by replacing y′ with p) which gives

y = xp2 + p2 (1)
= xf + g

where f = p2, g = p2. Since f(p) 6= p then this is d’Almbert ode. Taking derivative and
simplifying gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− p2 = (2xp+ 2p) dp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = 0 or p = 1.
Substituting these values in (1) gives the singular solutions

y1(x) = 0 (3)
y2(x) = x+ 1 (4)

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (A2) as

p(1− p)
2p (x+ 1) = dp

dx

13



Inverting gives

dx

dp
= 2(x+ 1)

(1− p)
dx

dp
− x

2
(1− p) = 2

(1− p)

This is now linear x(p). The solution is

x = C2

(p− 1)2
− 1

Solving for p gives

C2

(p− 1)2
= x+ 1

(p− 1)2 = C2

x+ 1

(p− 1) = ± C√
x+ 1

p = 1± C√
x+ 1

Substituting the above in (1) gives the general solutions

y = (x+ 1) p2

Therefore

y(x) = (x+ 1)
(
1 + C√

x+ 1

)2

y(x) = (x+ 1)
(
1− C√

x+ 1

)2

The solution y1(x) = 0 found earlier can not be obtained from the above general solution
hence it is singular solution. But y2(x) = x+ 1 can be obtained from the general solution
when C = 0. Hence there are only three solutions, they are

y1(x) = 0

y2(x) = (x+ 1)
(
1 + C√

x+ 1

)2

y3(x) = (x+ 1)
(
1− C√

x+ 1

)2

2.2.9 Example 9

y = x
a
y′ + b

ay′
is put in normal form (by replacing y′ with p) which gives

y = x

a
p+ b

a
p−1 (1)

= xf + g

Where f = p
a
, g = b

a
p−1. Since f(p) 6= p then this is d’Almbert ode. Taking derivative

w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

14



Using values for f, g the above simplifies to

p− p

a
=
(
x

a
− b

a
p−2
)

dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = 0. Substituting this in
(1) does not generate any solutions due to division by zero. Hence no singular solution exist.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

p
(
1− 1

a

)
x
a
− b

a
p−2 = dp

dx

Since this is nonlinear, then inversion is needed

dx

dp
=

x
a
− b

a
p−2

p
(
1− 1

a

)
dx

dp
− x

1
p (a− 1) = − b

a

1
p3
(
1− 1

a

)
This is now linear ode in x(p). The solution is

x = b

(2a− 1)p2 + C1p
1

a−1 (3)

There are now two choices to take. The first is by solving for p from the above in terms
of x and then substituting the result in (1) to obtain explicit solution for y(x), and the
second choice is by solving for p algebraically from (1) and substituting the result in (3).
The second choice is easier in this case but gives an implicit solution. Solving for p from
(1) gives

p1 =
ay +

√
a2y2 − 4xb
2x

p1 =
ay −

√
a2y2 − 4xb
2x

Substituting each one of these solutions back in (3) gives two implicit solutions

x = b

(2a− 1)
(

ay+
√

a2y2−4xb
2x

)2 + C1

(
ay +

√
a2y2 − 4xb
2x

) 1
a−1

x = b

(2a− 1)
(

ay−
√

a2y2−4xb
2x

)2 + C1

(
ay −

√
a2y2 − 4xb
2x

) 1
a−1

2.2.10 Example 10

y = xy′ + ax
√

1 + (y′)2 is put in normal form (by replacing y′ with p) which gives

y = x
(
p+ a

√
1 + p2

)
(1)

= xf

where f = p + a
√
1 + p2, g = 0. Since f(p) 6= p then this is d’Almbert ode. Taking

derivative and simplifying gives

p =
(
f + xf ′ dp

dx

)
p− f = xf ′ dp

dx

15



Using values for f, g the above simplifies to

−a
√

1 + p2 = x

(
1 + ap√

1 + p2

)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in −a
√
1 + p2 = 0. This

gives no real solution for p. Hence no singular solution exists.

The general solution is when dp
dx

6= 0 in (2A). Since (2A) is nonlinear, inversion is needed.

−a
√
1 + p2

x+ 1
2x

2ap√
1+p2

= dp

dx

dx

dp
=

x
(
1 + 1

2
2ap√
1+p2

)
−a

√
1 + p2

dx

x
=

1 + 1
2

2ap√
1+p2

−a
√
1 + p2

dp

dx

x
=

√
1 + p2 + 1

22ap
−a (1 + p2) dp

dx

x
=
(
− 1
a
√
1 + p2

− p

(1 + p2)

)
dp

Integrating gives
ln x(p) = −1

2 ln
(
p2 + 1

)
− 1

a
arcsinh (p)

Therefore
x = c1

−e−
1
a
(arcsinh(p))

√
p2 + 1

(3)

There are now two choices to take. The first is by solving for p from the above in terms
of x and substituting the result in (1) to obtain explicit solution for y(x), and the second
choice is by solving for p algebraically from (1) and substituting the result in (3). The
second choice is easier in this case but gives an implicit solution. Solving for p from (1)
gives

p1 = −1
x

ay +
√
−a2x2 + x2 + y2a− y

a2 − 1

p2 =
1
x

−ay +
√
−a2x2 + x2 + y2a− y

a2 − 1

Substituting each one of these solutions back in (3) gives two implicit solutions

x = c1
−e

− 1
a

(
arcsinh

(
− 1

x

ay+
√

−a2x2+x2+y2a−y

a2−1

))
√(

− 1
x
ay+

√
−a2x2+x2+y2a−y

a2−1

)2
+ 1

x = c1
−e

− 1
a

(
arcsinh

(
1
x

−ay+
√

−a2x2+x2+y2a−y

a2−1

))
√(

1
x
−ay+

√
−a2x2+x2+y2a−y

a2−1

)2
+ 1
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2.2.11 Example 11

y = x+ (y′)2
(
1− 2

3y
′
)

= x+ p2
(
1− 2

3p
)

Where f = 1, g = p2
(
1− 2

3p
)
. Since f(p) 6= p then this is d’Almbert ode. Taking derivative

w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− 1 =
(
2p− 2p2

) dp
dx

(2A)

The singular solution is when dp
dx

= 0 which results in p = 1. Substituting this in (1) gives

y = x−
(
1− 2

3

)
= x+ 1

3

The general solution is when dp
dx

6= 0. Then (2A) is now separable. Solving for p gives

p = −
√
c1 − x

p =
√
c1 − x

Substituting each one of the above solutions of p in (1) gives

y1 = x+
(
p2 − 2

3p
3
)

= x+
((

−
√
c1 − x

)2 − 2
3
(
−
√
c1 − x

)3)
= x+

(
c1 − x+ 2

3(c1 − x)
3
2

)
= c1 +

2
3(c1 − x)

3
2

And

y2 = x+
(
p2 − 2

3p
3
)

= x+
((√

c1 − x
)2 − 2

3
(√

c1 − x
)3)

= x+
(
c1 − x− 2

3(c1 − x)
3
2

)
= c1 −

2
3(c1 − x)

3
2

Therefore the solutions are

y = x+ 1
3

y = c1 +
2
3(c1 − x)

3
2

y = c1 −
2
3(c1 − x)

3
2

17



2.2.12 Example 12

(y′)2 = e4x−2y(y′ − 1)
ln (y′)2 = (4x− 2y) + ln (y′ − 1)
4x− 2y = ln (y′)2 − ln (y′ − 1)

4x− 2y = ln (y′)2

y′ − 1

2y = 4x− ln (y′)2

y′ − 1

y = 2x− 1
2 ln

(
(y′)2

y′ − 1

)

= 2x− 1
2 ln

(
p2

p− 1

)
= xf + g

Where f = 2, g = −1
2 ln

(
p2

p−1

)
. Since f(p) 6= p then this is d’Almbert ode. Taking

derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− 2 =
(

2− p

2p2 − 2p

)
dp

dx
(2A)

The singular solution is when dp
dx

= 0 which gives p = 2. From (1) this gives

y = 2x− 1
2 ln 4

The general solution is when dp
dx

6= 0. Then (2) becomes

dp

dx
= (p− 2)

(
2p2 − 2p
2− p

)
= 2p(1− p)

is now separable. Solving for p gives

p = 1
1 + ce−2x

Substituting the above solutions of p in (1) gives

y = 2x− 1
2 ln

( ( 1
1+ce−2x

)2
1

1+ce−2x − 1

)

= 2x− 1
2 ln

(
−e4x

c (c+ e2x)

)
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2.2.13 Example 13

y = xy′ + x(y′)2 − (y′)2

y′ + 1

= xp+ xp2 − p2

p+ 1

= xp− p2

p+ 1 (1)

= xf + g

Where f = p and g = − p2

p+1 . Since f(p) = p then this is Clairaut ode. Taking derivative
of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = xc1 −
c21

c1 + 1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

1
p

= x− 1
p2

Hence x− 1
p2

= 0 or p = ± 1√
x
. Substituting these back in (1) gives

y1(x) = xp+ 1
p

= x
1√
x
+
√
x

= 2
√
x (3)

y2(x) = −x

√
1
x
−

√
x

= −2
√
x (4)

Eq. (2) is the general solution and (3,4) are the singular solutions.

2.2.14 Example 14

x(y′)2 + (x− y) y′ + 1− y = 0
x(y′)2 + xy′ − yy′ + 1− y = 0

y(−y′ − 1) + x(y′)2 + xy′ + 1 = 0

19



Solving for y

y = −x(y′)2 − xy′ − 1
−y′ − 1

= −xp2 − xp− 1
−p− 1

= xp2 + xp+ 1
p+ 1

= x

(
p2 + p

p+ 1

)
+ 1

1 + p

= xp+ 1
1 + p

= xf + g (1)

Where f = p and g = 1
1+p

. Since f(p) = p then this is Clairaut ode. Taking derivative of
the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x+ 1
c1 + 1 (4)

The term (x+ g′(p)) = 0 is used to find singular solutions. But

x+ g′(p) = x+ d

dp

(
1

1 + p

)
= x− 1

(p+ 1)2

Hence

x− 1
(p+ 1)2

= 0

x(p+ 1)2 − 1 = 0

(p+ 1)2 = 1
x

p+ 1 = ± 1√
x

p = ± 1√
x
− 1

Substituting these values into (1) gives

y1 = xp1 +
1

1 + p1

= x

(
1√
x
− 1
)
+ 1

1 +
(

1√
x
− 1
)

= x√
x
− x+

√
x

= x
√
x

x
− x+

√
x

= 2
√
x− x (5)
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And substituting p2 into (1) gives

y1 = xp1 +
1

1 + p1

= x

(
− 1√

x
− 1
)
+ 1

1 +
(
− 1√

x
− 1
)

= − x√
x
− x−

√
x

= −x
√
x

x
− x−

√
x

= −2
√
x− x (6)

There are 3 solutions given in (4,5,6). One is general and two are singular.

2.2.15 Example 15

xyy′ = y2 + x
√

4x2 + y2

Solving for y gives

y=RootOf
(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)
x

y = xf + g

Where f = RootOf (_z4 − 4 + (p2 − 1)_z2 − 2_z3p) and g = 0. Since f(p) 6= p then this
is d’Almbert ode. Taking derivative of the above w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + xf ′ dp

dx

p− f = xf ′ dp

dx

Using values for f the above simplifies to

p−RootOf
(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)
=
(
x
d

dp
RootOf

(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)) dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = RootOf (_z4 − 4 + (p2 − 1)_z2 − 2_z3p).
Substituting this in (1) does not generate any real solutions (only 2 complex ones) hence
will not be used.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

dx

dp
= xf

p− f
1
x
dx = f

p− f
dp

Due to complexity of result, one now needs to obtain explicit result for RootOf which
makes the computation very complicated. So this is not practical to solve by hand. Will
stop here. It is much easier to solve this ode as a homogeneous ode instead which gives
the solution as

−
√
4x2 + y2

x
+ ln (x) = c1
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2.2.16 Example 16

ln (cos y′) + y′ tan y′ = y

Solving for y gives

y = ln (cos p) + p tan p (1)
y = xf + g

= g (1A)

Where f = 0 and g(p) = ln (cos p) + p tan p. Important note: This ode has f = 0 which is
strictly speaking is not of the form y = xf(p) + g(p). But Maple says this is dAlembert.
This is why it is included. I should make special case dAlmbert classification to handle
this special case.

Taking derivative of (1A) w.r.t. x gives

p = dg

dp

dp

dx

p =
(
− sin p
cos p + tan p+ p

(
1 + tan2 p

)) dp

dx

p =
(
− tan p+ tan p+ p

(
1 + tan2 p

)) dp
dx

p = p
(
1 + tan2 p

) dp
dx

1 =
(
1 + tan2 p

) dp
dx

(1)

The singular solution is found by setting dp
dx

= 0 which does not result in solution.

The general solution is found by finding p from (2). Since (2) is not linear in p, then
inversion is needed. Writing (1) as

dx

dp
= 1 + tan2 p

dx =
(
1 + tan2 p

)
dp

Integrating gives

x = tan p+ c

p = arctan (x− c)

Substituting the above in (1) gives the solution

y = ln (cos p) + p tan p
= ln (cos (arctan (x− c))) + (arctan (x− c)) tan (arctan (x− c))
= ln (cos (arctan (x− c))) + (x− c) arctan (x− c)

This ode also have solution y = 0.

2.2.17 Example 17

x(y′)2 − 2yy′ + 4x = 0

Solving for y gives

y = x

(
1
2y

′ + 2 1
y′

)
(1)

= x

(
1
2p+ 21

p

)
y = xf
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where f = 1
2p + 21

p
, g = 0. Since f(p) 6= p then this is d’Almbert ode. Taking derivative

and simplifying gives

p =
(
f + xf ′ dp

dx

)
p− f = xf ′ dp

dx

Using values for f, g the above simplifies to

p− 1
2p− 21

p
= x

(
1
2 − 2

p2

)
dp

dx

1
2p−

2
p
= x

(
1
2 − 2

p2

)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in 1
2p−

2
p
= 0 or 1

2p
2− 2 = 0

or p2 = 4 or p = ±2. Hence y = ±2x are the singular solutions.

The general solution is when dp
dx

6= 0 in (2A). Since (2A) is nonlinear, inversion is needed.
General solution can be shown to be

y = −1
2

(
−x2

c21
− 4
)
c1 (3)

Will now show a more general method to find singular solution that works for any first
order ode. This requires finding the general solution above first. Let the general solution
be

Φ(x, y, c) = 0

= y + 1
2

(
−x2

c21
− 4
)
c1

The ode is

F (x, y, y′) = 0
= x(y′)2 − 2yy′ + 4x

First we find the p-discriminant curve. This is found by eliminating y′ from

F = 0
∂F

∂y′
= 0

Or

x(y′)2 − 2yy′ + 4x = 0
2xy′ − 2y = 0

Second equation gives y′ = y
x
. Substituting into first equation gives x

(
y
x

)2−2y
(
y
x

)
+4x = 0

or y2

x
− 2y2

x
+ 4x = 0 or y = ±2x. These are the candidate singular solutions

ys = ±2x

Next, we verify these satisfy the ode itself. We see both do. Next we have to check that
for an arbitrary point x0 the following two equations are satisfied

yg(x0) = ys(x0)
y′g(x0) = y′s(x0)
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Where yg(x) is the general solution obtained above in (3). Starting with ys = 2x the above
two equations now become

−1
2

(
−x2

0
c21

− 4
)
c1 = 2x0

−1
2

(
−2x0

c21

)
c1 = 2

Or

x2
0

2c1
+ 2c1 = 2x0

x0

c1
= 2

Second equation gives c1 = x0
2 . Using this in first equation gives

x2
0

2x0
2
+ 2
(x0

2

)
= 2x0

x0 + x0 = 2x0

2x0 = 2x0

Which shows it is satisfied. Hence this shows that ys = 2x is indeed a singular solution.
Now we have to do the same for second ys = −2x. Hence the steps of this method are the
following

1. Find ys using p-discriminant method by eliminating y′ from F = 0 and ∂F
∂y′

= 0.

2. Verify that each ys found satisfies the ode.

3. Find general solution to the ode yg(x).

4. Verify that the two equations yg(x0) = ys(x0) and y′g(x0) = y′s(x0) are satisfied at
an arbitrary point x0. If so, then ys is singular solution. (envelope of the family of
curves of the general solution).

2.2.18 Example 18

x− yy′ = a(y′)2

Solving for y gives

−yp = −x+ ap2

−y = −x

p
+ ap

y = x

p
− ap (1)

y = xf(p) + g(p)

Where f = 1
p
, g = −ap. Since f(p) 6= p then this is d’Almbert ode. Taking derivative and

simplifying gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

But f(p) = 1
p
, f ′(p) = −1

p2
, g′(p) = −a and the above becomes

p = 1
p
− x

p2
dp

dx
− a

dp

dx

p− 1
p
=
(
− x

p2
− a

)
dp

dx
(2)
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The singular solution is found by setting dp
dx

= 0 which results in p = ±1. Hence y′ = ±1
or y = ±x but these do not satisfy the ode, hence no singular solutions exist.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
=

p− 1
p

− x
p2

− a

= p− p3

ap2 + x

But this is non-linear. Hence inversion is needed. This becomes

dx

dp
= −x(p)− ap2

p3 − p

Which is now linear in x(p). The solution is

x =
−pa

√
(p− 1) (p+ 1) ln

(
p+

√
p2 − 1

)
(p− 1) (p+ 1) + pc1√

p− 1
√
p+ 1

(3)

From (1) y = x
p
− ap, hence

p1 =
1
2
−y +

√
4ax+ y2

a

p2 = −1
2
y +

√
4ax+ y2

a

Plugging p1 into (3) gives one solution and Plugging p2 into (3) gives the second solution.

2.2.19 Example 19

y = xf(p) + g(p)

This problem is meant to show what to do when we are unable to solve explicitly for x(p)
when doing inversion. Taking derivative the above becomes

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

p− f(p) = (xf ′(p) + g′(p)) dp
dx

dp

dx
= p− f(p)

(xf ′ (p) + g′ (p))

Inversion is needed. Hence gives

dx(p)
dp

= (x(p) f ′(p) + g′(p))
p− f (p)

dx

dp
= xf ′

p− f
+ g′

p− f

This is now linear in x.
dx

dp
− xf ′

p− f
= g′

p− f

Integrating factor is µ = e
∫ f ′(p)

p−f
dp. Hence the above becomes

d

dp
(xµ) = µ

g′

p− f

xµ =
∫

µ
g′

p− f
dp+ c1

x = 1
µ

∫
µ

g′

p− f
dp+ c1µ (1)
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Now we solve for p from y = xf(p)+g(p) and plug-in the result into the above. To show how
this work, lets apply the earlier problem to the above which was to solve x− yy′ = a(y′)2.
From that problem we found that

p1 =
1
2
−y +

√
4ax+ y2

a

p2 = −1
2
y +

√
4ax+ y2

a

And we had f = 1
p
, g = −ap. Using these value we now find

µ = e
∫ f ′(p)

p−f
dp

= e

∫ − 1
p2

p− 1
p
dp

= p√
p2 − 1

Hence

x =
√
p2 − 1
p

∫
p√

p2 − 1
−a

p− 1
p

dp+ c1
p√

p2 − 1

= −a
√
p2 − 1
p

∫
p2

(p2 − 1)
3
2
dp+ c1

p√
p2 − 1

= −a
√
p2 − 1
p

(
− p√

p2 − 1
+ ln

(
p+

√
p2 − 1

))
+ c1

p√
p2 − 1

= a− a
√
p2 − 1
p

ln
(
p+

√
p2 − 1

)
+ c1

p√
p2 − 1

Substituting each one of the above value for p in (2) gives the two solutions. For example,
using p1 = 1

2
−y+

√
4ax+y2

a
gives

x = a−
a

√(
1
2
−y+

√
4ax+y2

a

)2
− 1

1
2
−y+

√
4ax+y2

a

ln

1
2
−y +

√
4ax+ y2

a
+

√(
1
2
−y +

√
4ax+ y2

a

)2

− 1

+c1

1
2
−y+

√
4ax+y2

a√(
1
2
−y+

√
4ax+y2

a

)2
− 1

And same for the other p2.

In the above example it was possible to evaluate the integrals in p, then replace p by its
solution from the original ode. What if this was not possible? Let say we have integral∫

ap2dp

And for some reason we are not able to the integration. In this case we first replace the
above with ∫ p

aτ 2dτ

And only now replace p with its solution as the upper limit.

2.2.20 Example 20

y′ = −x

2 − 1 + 1
2
√

x2 + 4x+ 4y

Solving for y gives

y = xp+
(
1 + 2p+ p2

)
(1)

y = xf + g

26



Hence f = p, g = (1 + 2p+ p2). Since f = p then this is Clairaut. Taking derivative of
the above w.r.t. x gives

y′ = f + x
df

dp

dp

dx
+ dg

dp

dp

dx

p = f + dp

dx

(
x
df

dp
+ dg

dp

)
But df

dp
= 1, dg

dp
= 2 + 2p. The above becomes

p− f = dp

dx
(x+ 2 + 2p)

But f = p. The above simplifies to

0 = dp

dx
(x+ 2 + 2p) (2)

The general solution is when dp
dx

= 0. Hence p = c1. Substituting this into (1) gives

y = xc1 +
(
1 + 2c1 + c21

)
The singular solution is when dp

dx
6= 0 in (2) which gives

x+ 2 + 2p = 0

p = −x− 2
2

Substituting this in (1) gives

y = x

(
−x− 2

2

)
+
(
1 + 2

(
−x− 2

2

)
+
(
−x− 2

2

)2
)

= −1
4x(x+ 4)

= −1
4x

2 − x

Checking this solution against the ode shows it is verifies the ode. Hence there are two
solutions, one general and one singular

y =
{

xc1 + 1 + 2c1 + c21

−1
4x

2 − x

2.2.21 Example 21

y′y

1 + 1
2

√
1 + (y′)2

= −x

Let y′ = p and rearranging gives

py = −x

(
1 + 1

2
√

1 + p2
)

y = −x

(
1
p
+ 1

2p
√
1 + p2

)
= −x

(
2
2p + 1

2p
√
1 + p2

)
= −x

(
2 +

√
1 + p2

2p

)
= xf + g (1)
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Hence

f = −2 +
√
1 + p2

2p
g = 0

Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

But f(p) = −2+
√

1+p2

2p , f ′(p) = −1
p2
, g = 0, g′ = 0 and the above becomes

p = −2 +
√
1 + p2

2p + x

(
− 1
2
√
1 + p2

− −2−
√
1 + p2

2p2

)
dp

dx

p+ 2 +
√
1 + p2

2p = x

(
− 1
2
√
1 + p2

− −2−
√
1 + p2

2p2

)
dp

dx
(2)

The singular solution is found by setting dp
dx

= 0 which results in p+ 2+
√

1+p2

2p = 0. Hence
p = ±i or y′ = ±i or y = ±ix. But these do not satisfy the ode, hence no singular
solutions exist.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
= 1

x

(
p+ 2+

√
1+p2

2p

)
(
− 1

2
√

1+p2
− −2−

√
1+p2

2p2

)
= 1

x

(
p3 + p

)
But this is non-linear in p. Hence inversion is needed. This becomes

dx

dp
= x

(
− 1

2
√

1+p2
− −2−

√
1+p2

2p2

)
(
p+ 2+

√
1+p2

2p

)
dx

dp
= x

p3 + p
dx

dp
− 1

p+ p3
x = 0

Which is now linear in x(p). The solution is

x = p√
1 + p2

c1 (3)

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

y = −x

(
2 +

√
1 + p2

2p

)
(1)

x = p√
1 + p2

c1 (3)

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). Using CAS we can just use the solve
command. For an example, using Maple it gives� �
eq1:=y=-x*( (2+sqrt(1+p^2))/(2*p));
eq2:=x=p/sqrt(1+p^2)*_C1
sol:=solve([eq1,eq2],[p,y],'allsolutions');
[[p = x*RootOf((c__1^2 - x^2)*_Z^2 - 1), y = -(RootOf((c__1^2 - x^2)*_Z^2 - 1)*c__1 + 2)/(2*RootOf((c__1^2 - x^2)*_Z^2 - 1))]]� �
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Now we can use allvalues� �
map(X->allvalues(X),sol)
[[p = x*sqrt(1/(c__1^2 - x^2)), y = -(sqrt(1/(c__1^2 - x^2))*c__1 + 2)/(2*sqrt(1/(c__1^2 - x^2)))],
[p = -x*sqrt(1/(c__1^2 - x^2)), y = (-sqrt(1/(c__1^2 - x^2))*c__1 + 2)/(2*sqrt(1/(c__1^2 - x^2)))]]� �
Hence the solutions are

y1 = −

√
1

c21−x2 c1 + 2

2
√

1
c21−x2

y2 = −
−
√

1
c21−x2 c1 + 2

2
√

1
c21−x2

These are verified valid solutions to the ode (had to use assuming positive)

2.2.22 Example 22

x(y′)3 = yy′ + 1

Let y′ = p and rearranging gives

xp3 = yp+ 1

y = xp3 − 1
p

= xp2 − 1
p

= xf + g (1)

Hence

f = p2

g = −1
p

Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

= f(p) + (xf ′ + g′) dp
dx

But f(p) = p2, f ′(p) = 2p, g = −1
p
, g′ = 1

p2
and the above becomes

p = p2 +
(
2xp+ 1

p2

)
dp

dx

p− p2 =
(
2xp+ 1

p2

)
dp

dx
(2)

The singular solution is found by setting dp
dx

= 0 which results in p − p2 = 0. Hence
p = 0 or p = 1. Substituting p = 0 in (1) gives 1/0 error. Hence this is not valid solution.
Substituting p = 1 in (1) gives y = x−1 which verifies the ode. Hence this is valid singular
solution.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
= p3(1− p)

2xp3 + 1
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But this is non-linear in p. Hence inversion is needed. This becomes

dx

dp
= 2xp3 + 1

p3 (1− p)

Which is now linear in x(p). The solution is

x = 2c1p2 + 2p− 1
2p2 (p− 1)2

(3)

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

y = xp2 − 1
p

(1)

x = 2c1p2 + 2p− 1
2p2 (p− 1)2

(3)

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). Using CAS we can just use the solve
command. For an example, using Maple it gives� �
eq1:=y=x*p^2-1/p;
eq2:=x= (2*_C1*p^2+2*p-1)/(2*p^2*(p-1)^2);
solve({eq1,eq2},{y,p})� �
Whch gives� �
{p = RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z),
y = (x*RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)^3 - 1)/RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)}� �
Hence the general solution is

y = xRootOf (1 + 2xZ4 − 4xZ3 + (−2c1 + 2x)Z2 − 2Z)3 − 1
RootOf (1 + 2xZ4 − 4xZ3 + (−2c1 + 2x)Z2 − 2Z)

And the singular solution is

y = x− 1

2.2.23 Example 23

(y′)2 − 2yy′ = 2x

Let y′ = p and rearranging gives

p2 − 2yp = 2x

y = p2 − 2x
2p

= −x
1
p
+ 1

2p

= xf + g (1)

Hence

f = −1
p

g = 1
2p
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Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

= f(p) + (xf ′ + g′) dp
dx

But f(p) = −1
p
, f ′(p) = 1

p2
, g = 1

2p, g
′ = 1

2 and the above becomes

p = −1
p
+
(

x

p2
+ 1

2

)
dp

dx

p+ 1
p
=
(

x

p2
+ 1

2

)
dp

dx
(2)

The singular solution is found by setting dp
dx

= 0 which results in p2 +1 = 0. Hence p = ±i

But these do not verify the ode. Hence no singular solutions exist.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
= (p2 + 1) 2p

2x+ p2

But this is non-linear in p. Hence inversion is needed. This becomes

dx

dp
= 2x+ p2

(p2 + 1) 2p

Which is now linear in x(p). The solution is

x =
(1
2 arcsinh (p) + c1

)
p

√
p2 − 1

(3)

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

y = −x
1
p
+ 1

2p (1)

x =
(1
2 arcsinh (p) + c1

)
p

√
p2 − 1

(3)

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). In this case it is easier to solve for p from
(1) which gives

p1 = y +
√

2x+ y2

p2 = y −
√

2x+ y2

Substituting each of these into (3) gives these two general solutions

x =
(1
2 arcsinh

(
y +

√
2x+ y2

)
+ c1

) (
y +

√
2x+ y2

)√(
y +

√
2x+ y2

)2 − 1

x =
(1
2 arcsinh

(
y −

√
2x+ y2

)
+ c1

) (
y −

√
2x+ y2

)√(
y −

√
2x+ y2

)2 − 1
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2.2.24 Example 24

xy′ − y =
√
x2 − y2

Let y′ = p and rearranging gives

xp− y =
√

x2 − y2

Solving for y gives two solutions

y = x

(
p

2 + 1
2
√
2− p2

)
(1)

y = x

(
p

2 − 1
2
√
2− p2

)
We will here solve the first one above. The second one will have similar solution. Comparing
the above to y = xf(p) + g(p) shows that

f = p

2 + 1
2
√

2− p2 (2)

g = 0

Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (2) w.r.t. x gives

p = d

dx
(xf(p))

= f(p) + xf ′(p) dp
dx

=
(
p

2 + 1
2
√

2− p2
)
+ x

(
1
2 − p

2
√
2− p2

)
dp

dx

p−
(
p

2 + 1
2
√

2− p2
)

= x

(
1
2 − p

2
√
2− p2

)
dp

dx
(3)

Singular solution is when dp
dx

= 0 which results in

p−
(
p

2 + 1
2
√

2− p2
)

= 0

p

2 − 1
2
√

2− p2 = 0

Hence p = 1. Substituting this in (2) gives singular solution

y = x

(
1
2 + 1

2
√
2− 1

)
= x

To find general solution, we need to solve (3) for p. EQ (3) becomes
dp

dx
=

p
2 −

1
2
√
2− p2

x
2 −

xp

2
√

2−p2

= −1
x

√
2− p2

This is separable ode.
−dp√
2− p2

= 1
x
dx

− arcsin
(√

2
2 p

)
= ln x+ c1

Substituting this into (1) gives

y = x

(
p

2 + 1
2
√

2− p2
)

= x

− 2√
2 sin (ln x+ c1)

2 + 1
2

√
2−

(
− 2√

2
sin (ln x+ c1)

)2


= x

(
− sin (ln x+ c1)√

2
+ 1

2

√
2− 2 sin2 (ln x+ c1)

)
32



2.2.25 Extra example

This ode is an example where y does not appear explicitly in the ode so not possible to
directly solve for y. It is given here to show possible problems with this method.

y′ =
√

1 + x+ y (1A)

This ode is squared to first solve for y which gives

(y′)2 = 1 + x+ y (2A)

However, here care is needed. To get back to original ode (1A) then (2A) means two
possible equations

y′ = ±
√

1 + x+ y

Hence the solutions obtained using (2A) can be the solution to one of these

y′ = +
√
1 + x+ y (B1)

y′ = −
√

1 + x+ y (B2)

Therefore the solution obtained by squaring both sides of (1A), which is done in order to
solve for y, must be checked to see if it satisfies the original ode, else it will be extraneous
solution resulting from squaring both sides of the ode.

Starting from (2A), in normal form (by replacing y′ with p) it becomes

y = −x− 1 + p2 (1)
= xf + g

Where f = −1, g = −1 + p2. Taking derivative w.r.t. x gives

p = f + (xf ′ + g′) dp
dx

p+ 1 = 2pdp
dx

(2)

Since ∂φ
∂x

= −1 6= p then this is d’Alembert ode. The singular solution is found by setting
dp
dx

= 0 which results in p = −1. Substituting this in (1) gives the singular solution

y(x) = −x (3)

But this solution does not satisfy the ode, hence it is extraneous. The general solution is
found by finding p from (2). Since (2) is nonlinear, then it is inverted which gives

p+ 1
2p = dp

dx
dx

dp
= 2p

p+ 1

Which is linear in x. Solving gives

x = 2p− 2 ln (p+ 1) + c1 (4)

Instead of inverting this to find p in terms of x, p is found from (1) which gives

y + x+ 1 = p2

p = ±
√

y + x+ 1

Substituting these solutions in (4) gives implicit solutions as

x = 2
√

y + x+ 1− 2 ln
(
1 +

√
y + x+ 1

)
+ c1

x = −2
√

y + x+ 1− 2 ln
(
1−

√
y + x+ 1

)
+ c1
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But only the first one above satisfies the ode. The second is extraneous. Therefore the
final solution is

x = 2
√

y + x+ 1− 2 ln
(
1 +

√
y + x+ 1

)
+ c1

And no singular solutions exist. If instead of doing the above, p was found from (4) using
inversion, then it will be

p = −LambertW
(
−c1e

−x
2 −1

)
− 1

Substituting this in (1) gives

y = −x− 1 +
(
−LambertW

(
−c1e

−x
2 −1

)
− 1
)2

But this general solution does not satisfy the original ode. In general, it is best to avoid
squaring both side of the ode in order to solve for y as this can generate extraneous
solutions. Only use this method if the original ode is already given in the form where y

shows explicitly.
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