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CHAPTER 1
Introduction

This gives detailed description of all supported differential equations in my ode solver.
Whenever possible, each ode type algorithm is described using flow chart.

Each ode type is given an internal code name. This internal name is used by the solver to
determine which specific solver to call to solve the ode.

A differential equation is classified as one of the following types.

1. First order ode.

2. Second and higher order ode.

For first order ode, the following are the main classifications used.

1. First order ode f(x, y, y′) = 0 which is linear in y′(x).

2. First order ode not linear in y′(x) (such as d’Alembert, Clairaut). But it is important
to note that in this case the ode is nonlinear in y′ when written in the form y =
g(x, y′). For an example, lets look at this ode

y′ = −x2 − 1 +
√
x2 + 4x+ 4y

2

Which is linear in y′ as it stands. But in d’Alembert, Clairaut we always look at
the ode in the form y = g(x, y′). Hence, if we solve for y first, the above ode now
becomes

y = xy′ +
(
(y′)2 + 2y′ + 1

)
= g(x, y′)

Now we see that g(x, y′) is nonlinear in y′. The above ode happens to be of type
Clairaut.

For second order and higher order ode’s, further classification is

1. Linear ode.

2. non-linear ode.

Another classification for second order and higher order ode’s is

1. Constant coefficients ode.

2. Varying coefficients ode

Another classification for second order and higher order ode’s is

1. Homogeneous ode. (the right side is zero).

2. Non-homogeneous ode. (the right side is not zero).

All of the above can be combined to give this classification

1



chapter 1. introduction 2

1. First order ode.

(a) First order ode linear in y′(x).

(b) First order ode not linear in y′(x) (such as d’Alembert, Clairaut).

2. Second and higher order ode

(a) Linear second order ode.

i. Linear homogeneous ode. (the right side is zero).

ii. Linear homogeneous and constant coefficients ode.

iii. Linear homogeneous and non-constant coefficients ode.

iv. Linear non-homogeneous ode. (the right side is not zero).

v. Linear non-homogeneous and constant coefficients ode.

vi. Linear non-homogeneous and non-constant coefficients ode.

(b) Nonlinear second order ode.

i. Nonlinear homogeneous ode.

ii. Nonlinear non-homogeneous ode.

For system of differential equation the following classification is used.

1. System of first order odes.

(a) Linear system of odes.

(b) non-linear system of odes.

2. System of second order odes.

(a) Linear system of odes.

(b) non-linear system of odes.

Currently the program does not support Nonlinear higher order ode. It also does not
support nonlinear system of first order odes and does not support system of second order
odes.

The following is the top level chart of supported solvers.

Figure 1.1: Top level flow chart for ode solver

This diagram illustrate some of the plots generated for direction field and phase plots.
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Figure 1.2: Direction and slope fields generated

1.1 Types of solutions supported
For a differential equation, there are three types of solutions

1. General solution. This is the solution y(x) which contains arbitrary number of
constants up to the order of the ode.

2. Particular solution. This is the general solution after determining specific values
for the constant of integrations from the given initial or boundary conditions. This
solution will then contain no arbitrary constants.

3. singular solutions. These are solutions to the ode which satisfy the ode itself and
contain no arbitrary constants but can not be found from the general solution using
any specific values for the constants of integration. These solutions are found using
different methods than those used to finding the general solution. Singular solution
are hence not found from the general solution like the case is with particular solution.

The solver currently finds the general and Particular solution (if initial conditions are
given). It also finds singular solutions but for very limited first order ode’s. More support
for finding singular solutions using the p-discriminant and c-discriminant methods will be
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added.



CHAPTER 2
Design of the ode solver program

This gives high level view of my differential equations solver program which is in develop-
ment for academic use. The program design is based on top-down modular design.

There are a number of public API’s. The main API is dsolve(). But there are other API’s
such as for finding eigenvalues and eigenvectors.

This diagram shows the top level design

main
API

dsolve()
factor_ode() to
handle cases such as
f(x, y, y′)g(x, y, y′) =
0 as separate odes
f(x, y, y′) = 0 and
g(x, y, y′) = 0

first order ode
linear in y′ ode (dif-
ferent module for
each ode type)

IC process

nonlinear in y′ ode
(different module for
each ode type) IC process

find singular solu-
tions

second order ode
different module for
each ode type IC process

higher order ode
solver

IC process

parse_ode() and de-
termined ode order

dsolve_reduction()
second order ode
solved using reduc-
tion of order

IC process

dsolve_bvp() (not
yet implemented)

second order ode
boundary value
problem module

dsolve_series() series ode solver IC process

dsolve_sys() system of ode solver IC process

Figure 2.1: High level design

The following is the pseudo code of the dsolve() procedure. This is one of main calls into
the main module for solving a single differential equation. It returns back all solutions
found.

5
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� �
dsolve:=proc(ode,y(x),IC,hint::string)

-- This CALL validates the ode itself. IC are validated by each separate
-- module below this throws parse error if any fail
ode_MGR:-parse_ode(ode);
parse_IC_mgr:-parse_IC(ode,func,IC);

IF hint is given THEN
IF ode_order =1 THEN

latex,solver_name,solution := first_order_ode_solver(ode,y(x),IC,hint);
ELIF ode_order =2 THEN

latex,solver_name,solution := second_order_ode_solver(ode,y(x),IC,hint);
ELSE

ERROR; -- hint is only now supported for first and second order, not higher
END IF;

ELSE -- no hint
-- the following factors ode if possible. For example for y''*y'=0 gives
-- y''=0 and y'=0 factors. If not possible to factor, ode itself is only
-- factor. in 99% of the times, ode do not factor and ode_factors list
-- will just contain the original ode. But this makes it much easier
-- to solve an ode if it can be factored.

ode_factors := factor_ode(ode);
FOR each factor DO

IF ode_order=1 THEN
latex,solver_name,solution := first_order_ode_solver(factor,y(x),IC,"");

ELIF ode_order=2 THEN
latex,solver_name,solution := second_order_ode_solver(factor,y(x),IC,"");

ELSE
latex,solver_name,solution := higher_order_ode_solver(factor,y(x),IC,"");

END IF;
END LOOP;

END IF;

RETURN latex, solver_used, solution;
END proc;� �
The following is the main module for first order ode. Similar one for second order and similar
one for higher order.
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� �
first_order_ode_solver:=proc(ode,y(x),IC,hint)

IF hint is given THEN
latex,solution := CALL the solver given in hit(ode,y(x),IC);

ELSE
-- check the ode type and call the lower level solver to solve it.
IF first_order_ode_quadrature:-is_quadrature(ode,y(x)) THEN

solutions := first_order_ode_quadrature:-dsolve(ode,y(x),IC);
solutions := FIRST_ORDER_POST_PROCESS(solutions,ode,y(x),IC);
IF list of solution not empty THEN

RETURN solutions --done
END IF

END IF

IF first_order_linear:-is_linear(ode,y(x)) THEN
solution := first_order_ode_linear:-dsolve(ode,y(x),IC);
solution := FIRST_ORDER_POST_PROCESS(solution,ode,y(x),IC);
IF list of solution not empty THEN

RETURN solutions --done
END IF

END IF

IF ... same for all other first order solvers. There are 16 solvers now.
.
.
.

END IF

END proc;� �
The following is the post processing function for first order, called after each specific solver have
generated the solutions.
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� �
FIRST_ORDER_POST_PROCESS:=proc(solutions,ode,y(x),IC)
-- This is called after each specific found the solution.
-- Each solver only find the solution and it does not do anything else.
-- it takes as input list of solutions found, and returns list of solutions
-- after post processing.

IF initial condition are given THEN
FOR each solution found DO

Update solution for initial conditions (this resolves constant of integration)
END LOOP

END IF

FOR each solution DO
IF solution is implicit then convert to explicit if possible and if solution

remains valid against the ode and IC's if any. This means the solution
if not already explicit, can remain implicit.

END IF
END LOOP

FOR each solution DO
Verify solution using odetest.
IF not verified THEN

remove solution.
END IF

END LOOP

RETURN solutions (this could be empty list if solution(s) could not be verified.)

END proc;� �
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3.1 Existence and uniqueness for first order ode
There are two theorems that we will be using. One is for first order ode which is linear in
y and one for first order ode which is not linear in y.

3.1.1 Existence and uniqueness for non linear first order ode in
y

Given a first order ode y′ = f(x, y) (where y enters the ode as nonlinear, for example y2
or 1

y
) and with initial conditions y(x0) = y0 then we say a solution exists somewhere in

vicinity of initial point (x0, y0) if f(x, y) is continuous at (x0, y0). But we do not know yet
if there is only one solution or infinite number of solutions. If f(x, y) is not continuous at
(x0, y0) then we say the theory does not apply and we do not do the next check. Solution
could still exist and even be unique, but theory does not say anything about this.

If we found that f(x, y) is continuous at (x0, y0) then now we check if fy(x, y) is also
continuous at (x0, y0). If it is, then we say there is only one solution curve (i.e. a unique
solution) that passes through the initial point (x0, y0) and in some region around it.

If fy(x, y) turns out not to be continuous at (x0, y0) then theory does not guarantee
uniqueness. Solution could still be unique but theory does not say anything about this.
We have to solve the ode to find out.

3.1.1.1 Example 1

y′ = 2√y
y(0) = 0

First we find the region where solution exists and is unique. Domain of f(x, y) = 2√y is
y ≥ 0 (since we do not want complex numbers). Since y0 = 0 is inside this domain, then
we know solution exists. The domain of fy = 1√

y
is y > 0. We see that the region is all x

and y > 0. i.e. the top half of the plane not including x-axis.

Since the point given is (0, 0) then the theory do not apply. The point x0, y0 have to be
inside the region and not on the edge.

There is no guarantee that solution will be unique. Solving this ode gives

2√y = 2x+ c
√
y = x+ c1

At IC
0 = c1

Hence solution is
√
y = x

y = x2

But y = 0 is another solution. Notice that y = 0 can not be obtained from √
y = x + c1

for any choice of c1. So it is a singular solution and not trivial solution. This shows that
solution exists but is not unique. In this example, theory predicted that solution exists
but did not say anything about uniqueness. Only by solving it, we found the solution is
not unique.
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3.1.1.2 Example 2

y′ = y
1
3

y(0) = 0

First we find the region where solution exists and is unique. f(x, y) = y
1
3 . The domain

of y 1
3 is y ≥ 0 since we do not want complex values. Hence solution exists. The domain

of fy = 1
3

1
y
2
3
is y > 0. Hence the region is all x and y > 0. i.e. the top half of the plane

not including x-axis. Since the point given is (0, 0) on the x-axis, then the theory do not
apply. There is no guarantee solution is unique. Only way to find out is to try to solve the
ode and find out. Solving the ode gives∫

dy

y
1
3
=
∫
dx

3
2y

2
3 = x+ C

Applying IC gives C = 0. Hence solution is
3
2y

2
3 = x

Solving for y

y2 =
(
2
3x
)3

Taking the square root of both sides gives

y = ±

√(
2
3x
)3

= ±
(
2
3x
) 3

2

So there are two solutions. There is also a trivial solution y = 0. We see that the solution
exists but not unique.

3.1.1.3 Example 3

y′ = x
√
y − 3

y(4) = 3

First we find the region where solution exists and is unique. Domain of f(x, y) = x
√
y − 3

is y − 3 ≥ 0 or y ≥ 3 since we do not want complex numbers and all x values. This
shows solution exists. Domain of fy = x

2
√
y−3 is y > 3. Since point (4, 3) is not inside this

domain (it can not be on the edge, it has to be fully inside), then theory do not apply. No
guarantee that unique solution exist. Solving this gives

2
√
y − 3 = 1

2x
2 + c

At initial conditions
0 = 8 + c

Hence c = −8 and the solution becomes

2
√
y − 3 = 1

2x
2 − 8√

y − 3 = 1
4x

2 − 4

y − 3 =
(
1
4x

2 − 4
)2

y =
(
1
4x

2 − 4
)2

+ 3

Is this the only solution? Is this solution unique? No. By inspection we see that y = 3 is
also a solution. Hence the solution exist but is not unique.
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3.1.1.4 Example 4

y′ = −1
1 + x

y2 + 1
x− 1

y(0) = 0

f(x, y) = −1
1+x

y2 + 1
x−1 is continuous in x everywhere except at x = −1 and x = 1. And

fy = −2
1+x

y is continuous except at x = −1. Since initial conditions at x0 = 0, y0 = 0 then
there is a unique solution in some rectangle inside the rectangle −1 < x < 1 and for all y.
Solving the ode gives

2√y =
∫ x

0

√
y sin τ
√
y

+ c1

At x = 0, y = 0 the above gives
0 = c1

Hence the solution is
2√y =

∫ x

0

√
y sin τ
√
y

3.1.1.5 Example 5

y′ =
√

1− y2

y(0) = 1

f(x, y) =
√
1− y2 is continuous in x everywhere. For y we want 1− y2 ≥ 0 or y2 ≤ 1. The

point y0 = 1 satisfies this. Now fy = −2y
2
√

1−y2
. We want 1− y2 > 1 or y2 < 1. The point y0

does not satisfy this. Hence theory says nothing about uniqueness. Solution can be unique
or not. When the ode has form y′ = f(y) we always check if IC satisfies the ode. In this
case y(x) = 1 does satisfy the ode. So this means y(x) = 1 is solution. We do not need to
solve by integration. But if we did, we will obtain the following

dy√
1− y2

= dx

arcsin (y) = x+ c

y = sin (x+ c)

At initial conditions the above gives 1 = sin c. Hence c = π
2 . Therefore solution is y =

sin
(
x+ π

2

)
= cosx. So this is another solution that satisfies the ode. Solution is not

unique.

3.1.1.6 Example 6

y′ =
√

1− y2 + x

y(0) = 1

f(x, y) =
√
1− y2 + x is continuous in x everywhere. For y we want 1− y2 ≥ 0 or y2 ≤ 1.

The point y0 = 1 satisfies this. Now fy = −2y
2
√

1−y2
. We want 1 − y2 > 1 or y2 < 1. The

point y0 does not satisfy this. Hence theory does not apply.

In this case the ode has form y′ = f(x, y) and not y′ = f(y). So we can not just check if
initial conditions satisfies the ode and use that as solution. If we did, we see that y(x) = 1
does satisfy the ode at x = 0 but this will be wrong solution. In this case we have to go
ahead and solve the ode. In this case we will find that no general solution exists.
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3.1.1.7 Example 7

y′ =
√
1− y2

y(0) = 2

f(x, y) =
√
1− y2 is continuous in x everywhere. For y we want 1− y2 ≥ 0 or y2 ≤ 1. The

point y0 = 2 does not satisfy. Hence theorem does not apply. We just need any solution
that satisfies the ode. Since the ode has form y′ = f(y) and not y′ = f(x, y) then we
always try y(x) = y0 to see if it satisfies the ode. Substituting y = 2 into the ode gives

0 =
√
1− y2

=
√
1− 4

Therefore this solution did not work. In this case we have to solve the ode by integration
which gives

dy√
1− y2

= dx

arcsin (y) = x+ c

y = sin (x+ c)

At initial conditions the above gives 2 = sin c. Or c = arcsin (2). Hence the solution is

y(x) = sin (x+ arcsin (2))

3.1.1.8 Example 8

y′ = 1
y

y(1) = 0

By Existence and uniqueness, we see f(x, y) is not defined at y0 = 0. Hence theorem
does not apply. Since ode has form y′ = f(y) we now check if IC satisfies the ode itself.
Plugging in y = 0 into the ode is not satisfied due to 1

0 . So we have to solve the ode in
this case. integrating gives

∫
ydy =

∫
dx

1
2y

2 = x+ c

At IC this gives

0 = 1 + c

c = −1

Hence solution is
1
2y

2 = x− 1

y(x) = ±
√

2 (x− 1)

We see solution is not unique.
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3.1.2 Existence and uniqueness for linear first order ode in y

These are ode’s in the form
y′ + p(x) y = q(x)

The theorem says that if both p(x) , q(x) are continuous at x0 then solution exists and is
unique. Notice that now we do not check on y0 but only on x0. We get both existence and
uniqueness all in one test. If either p or q are not continuous, then no guarantee solution
exist or be unique.

3.1.2.1 Example 1

y′ = y

x
y(0) = 1

In standard form y′ − p(x) y = q(x). So p = −1
x
, q = 0. Hence the domain of p is all x

except x = 0. Domain of q is all x. Since the IC includes x = 0 then no guarantee solution
exists or be unique. Theory does not say anything. We have to try to solve the ode to find
out. Solving gives

y = cx

As solution. Applying I.C. gives
1 = 0

Not possible. Therefore no solution exist.

3.1.2.2 Example 2

y′ = y

x
y(0) = 0

In standard form y′ − p(x) y = q(x). So p = −1
x
, q = 0. Domain of p is x 6= 0. Domain of q

is all x. Since IC includes x = 0 then theory says nothing about existence and uniqueness.
We have to solve the ode to find out. Solving gives

y = cx

Applying I.C. gives
0 = 0

Which is true for any c. Hence solution exist which is y = cx for any c. Hence solution is
not unique. There are ∞ number of solutions.

3.1.2.3 Example 3

y′ = y

x
y(1) = 0

In standard form y′ − p(x) y = q(x). So p = −1
x
, q = 0. The domain of p is all x except

x = 0. Domain of q is all x. Since IC does not include x = 0 then solution is guaranteed
to exist and be unique in some region near x = 1. Solving gives

y = cx

As solution. Applying I.C. gives
0 = c

Hence the unique solution is
y = 0 x > 0

Solution exists and is unique. Solution can only be in the right hand plan which includes
x = 1 and it can not cross x = 0. i.e. solution is y = 0 for all x > 0. If IC was y(−1) = 0
then the solution would have been y = 0 for all x < 0.
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3.1.2.4 Example 4

y′ = 1
2
√
x

y(0) = 1

In standard form y′ − p(x) y = q(x). Hence p = −1
2
√
x
, q = 0. Domain of p is x > 0 (to avoid

complex numbers) and the domain for q is all x. Combining these gives x > 0. Since IC
includes x = 0 then the theory does not apply. Solving the ode gives

y =
√
x+ c

At (x0, y0) the above gives
1 = c

Hence solution is
y =

√
x+ 1 x > 0

So here solution exists and is unique. Even though theory did not apply.
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3.2 On the choice of which method to use when
solving an ode

When a given ode can be solved using a number of different methods, we need to decide
which is the best method to use. In general, it is best to avoid having to solve for the
derivative. In other words, for ode’s which are first order and non-linear in y′ to make
progress, we have to first solve for the derivative. But it is also possible to solve the ode
as is without solving for the derivative. Here is an example. Given this ode

y = x+ 3 ln (y′) (1)

This is non-linear in the derivative. Lets solve this as separable and then as dAlembert.
As separable, we have to first solve for y′ which gives

ln (y′) = y

3 − x

3
Taking exponential of both sides gives

y′ = e
( y
3−

x
3
)

y′ = e
y
3 e

−x
3

Which is now separable. Integrating gives∫
e

−y
3 dy =

∫
e

−x
3 dx

−3e
−y
3 = −3e−x

3 + c

e
−y
3 = e

−x
3 − c

3
−y
3 = ln

(
e

−x
3 − c

3

)
y = −3 ln

(
e

−x
3 − c

3

)
(2)

This solution as it stands could not be verified by Maple as valid solution to the ode unless
we assume that e−x

3 − c
3 > 0 and also assuming x > 0. Only then Maple odetest verifies the

solution as valid. Now lets see what happens if we solve the same ode above as dAlembert
using original form as is. Eq. (1) is

y = x+ 3 ln (p) (3)

Where p = y′. Comparing to dAlembert for y = xf + g shows that f = 1, g = 3 ln (p).
Taking derivative of the above w.r.t. x gives

y′ = f + xf ′ dp

dx
+ g′

dp

dx

p = f + dp

dx
(xf ′ + g′)

p− f = dp

dx
(xf ′ + g′)

But f = 1, g = 3 ln p, hence f ′(p) = 0, g′(p) = 3
p
. The above becomes

p− 1 = dp

dx

(
3
p

)
(4)

Singular solution when dp
dx

= 0 which gives p = 1. Hence (3) becomes y = x. This is the
singular solution. General solution is when dp

dx
6= 0 in (4). This gives the ode

dp

dx
= 1

3p(p− 1)
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Which is quadrature. Solving for p gives

p = 1
1 + ce

x
3

Substituting this into (3) gives

y = x+ 3 ln
(

1
1 + ce

x
3

)
This solution was verified as is in Maple with no assumptions. We see now the difference
in the solution solutions

ysep = −3 ln
(
e

−x
3 − c

3

)
ydAlembert = x+ 3 ln

(
1

1 + ce
x
3

)

The difference is that for verification, the separable solution requires giving assumptions
while the dAlembert does not. In this case, the dAlembert is preferable.

3.3 First order linear in derivative

F (x, y, y′) = 0
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These are first order ode’s which are linear in y′ but can be nonlinear in y.

3.3.1 Flow charts

3.3.1.1 First flow chart

First order ODE f(x, y, y′) = 0

Solved by integration

y′ = f(x)

y =

∫
f dx+ c

Linear. Solved by find-
ing an integrating factor.

y′ + f(x)y = g(x)

Separable. Solved by
separation and then inte-
gration.

y′ = F (x, y)

= f(x)g(y)

Homogeneous type A.

y′ = f
( y

x

)
Solved using substitution
y = ux which converts to
separable ODE.

Homogeneous type C.
ODE has the form

y′ = (a+ bx+ y)
1
n

y′ = (a+ bx+ y)n

Where n is integer not
one. Solve by substitu-
tion z = (a+ bx+ y). See
example

Homogeneous type
Maple C. This is differ-
ent from what is called
just homogeneous type
C above. ODE has the
form

y′ =
f(x, y)

g(x, y)

Solved using transfor-
mation x = X + x0,
y = Y + y0 to convert to
homogeneous type A. See
this

Bernoulli y′+Py = Qyn

where n 6= 1, n 6= 0.
Solved using substituion
v = y1−n which converts
the ODE to linear one
v′+(1−n)Pv = (1−n)Q.

Exact. ODE has the
form

y′ =
−M(x, y)

N(x, y)

Or as typically written
M(x, y)dx

+N(x, y)dy = 0

Where ∂M
∂y

= ∂N
∂x

Not Exact, but can find
integrating factor which
makes it exact. ODE has
the form

y′ =
−M(x, y)

N(x, y)

Or as typically written
M(x, y)dx

+N(x, y)dy = 0

Where ∂M
∂y

6= ∂N
∂x

but can find integrat-
ing factor µ such that
∂(µM)

∂y
=

∂(µN)
∂x

Riccati. ODE has any
of these forms

y′ = f0(x) + f1(x)y

+ f2(x)y
2

y′ = f0(x) + f2(x)y
2

Where f0 6= 0. An exam-
ple if y′ = x2−y2. Solved
by using transformation
y = u′

f2u
which generates

second order ODE in u
to solve.

Isobaric. Generaliza-
tion of homogeneous
where the substitution
y = vxm makes the ODE
separable. The weight
m here need not be 1 as
the case with homoge-
neous. An example is
2x3y′ = 1 +

√
1 + 4x2y

where weight m = −2
here and y = vx( − 2)
makes the ODE separa-
ble.

SpecialFormIDOne
ODE of form

y′ = g(x)ea(x)+by + f(x)

Solved by substitution
u = e−by which con-
verts the ODE to linear.
b must not depend on x.

First order differential
type. These are special
ODE’s which can written
as complete differential
d(f(x, y)) = d(g(x, y))
which is then solved by
just integrating. For
an example y′ = x−y

x+y

can be written y dy =
d
(
1
2
x2 − xy

)
which is

now solved by integrating
both sides. See this

Polynomial ODE.
ODE of the form

y′ =
a1x+ b1y + c1

a2x+ b2y + c2

Where the two lines can
be either parallel or not.

First order q(x)y′ +
r(x)y = f(x) solved us-
ing series method. Sub-
methods supported are
1. Irregular singular

point
2. Ordinary point
3. Ordinary point

Regular singular point
Expansion around point
other than zero is also
supported, including ini-
tial conditions.

Abel first kind. ODE
of the form

y′ = f0(x) + f1(x)y

+ fx(x)y
2 + f3(x)y

3

Currently the solver de-
tect this ODE and eval-
uates the Abel invariant
only.

First order ODE q(x)y′ +
r(x)y = f(x) solved us-
ing Laplace method.

Figure 3.1: Flow chart for first order linear in y′ solver

3.3.1.2 Second flow chart

This flow chart contains more details on the exact solver for first order ode.
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Figure 3.2: Additional flow chart for first order linear in y′ and exact solver

3.3.2 ODE of form y′ = B + Cf(ax+ by + c)
Solve

y′ = B + Cf(ax+ by + c)

Where A,B,C are parameters. Examples below show the method.
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3.3.2.1 Examples

3.3.2.1.1 Example 1 Solve

y′ = B + Cf(ax+ by + c) (1)

This form of ode can be solved by letting u = ax+ by + c which makes the ode separable.

du

dx
= a+ by′

Or
y′ = u′ − a

b

The ode becomes

u′ − a

b
= B + CF (u)

u′ = bB + bCF (u) + a

du

bB + bCF (u) + a
= dx

Integrating gives ∫
du

bB + bCF (u) + a
= x+ c∫ ax+by+c dτ

bB + bCF (τ) + a
= x+ c

If initial conditions are given as y(x0) = y0, the above becomes∫ ax0+by0+c

0

dτ

bB + bCF (τ) + a
= x0 + c1

c1 =
∫ ax0+by0+c

0

dτ

bB + bCF (τ) + a
− x0

Substituting this into (2) gives∫ ax+by+c

0

dτ

bB + bCF (τ) + a
= x+

∫ ax0+by0+c

0

dτ

bB + bCF (τ) + a
− x0

Note that when IC are given, the integrals are changed to have lower limit start from zero.
If no initial conditions are given, lower limit is not used. This uses Maple’s Intat notation
for integral at a point notation. See Maple help for Intat command.

3.3.2.1.2 Example 2 Solve

y′ = 1
7F (3x+ 5y)

y(x0) = y0

Comparing the above to (1) shows that

B = 0

C = 1
7

a = 3
b = 5
c = 0
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Plugging these into (2) gives∫ ax+by+c dτ

bB + bCF (τ) + a
= x+ c1∫ 3x+5y dτ

5
7F (τ) + 3

= x+ c1

Applying IC gives ∫ 3x0+5y0

0

dτ
5
7F (τ) + 3

= c1

Hence the solution is ∫ 3x+5y

0

dτ
5
7F (τ) + 3

= x+
∫ 3x0+5y0

0

dτ
5
7F (τ) + 3

If IC were given as y(0) = 0 then we see that c1 = 0 because upper limit becomes zero
and the above solution becomes ∫ 3x+5y

0

dτ
5
7F (τ) + 3

= x

3.3.2.1.3 Example 3
y′ = sin (3x+ 5y)

Comparing the above to (1) shows that

B = 0
C = 1
a = 3
b = 5
c = 0

Plugging these into (2) gives∫ ax+by+c dτ

bB + bC sin (τ) + a
= x+ c1∫ 3x+5y dτ

5 sin (τ) + 3 = x+ c1

3.3.2.1.4 Example 4
y′ = 8 + 3F (3x+ 5y + 9)

Comparing the above to (1) shows that

B = 8
C = 3
a = 3
b = 5
c = 9

Plugging these into (2) gives

∫ ax+by+c dτ

bB + bCF (τ) + a
= x+ c1∫ 3x+5y+9 dτ

40 + 15F (τ) + 3 = x+ c1
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3.3.2.1.5 Example 5 This method works only when the argument of F (·) is linear
in x and y. Lets see why. Assuming the ode is

y′ = F
(
x2 + 5y

)
Let u = x2 + 5y then du

dx
= 2x+ 5y′. Hence y′ = u′−2x

5 and the ode becomes

u′ − 2x
5 = F (u)

u′ = 5F (u) + 2x

Which is no longer separable. Lets see what happens if y was not linear. Let the ode be

y′ = F
(
x+ y2

)
Let u = x+ y2 then du

dx
= 1 + 2yy′. Hence y′ = u′−1

2y and the ode becomes

u′ − 1
2y = F (u)

u′ = 2yF (u) + 1

We see that the term y did not vanish and this can not work. This shows that for this
method to work, the argument of the function F must be linear in x, y

3.3.3 ODE of form y′ + p(x) y = q(x) (y ln y)
Solve

y′ + p(x) y = q(x) (y ln y) (1)

The substitution y = eu transforms the ode to linear ode.

dy

dx
= du

dx
eu

And the ode becomes

du

dx
eu + peu = queu

du

dx
+ p = qu

Which is linear ode.
du

dx
− qu = −p

The integrating factor is I = e
∫
−qdx. Hence the above becomes

d(uI) = −pI

Integrating gives

uI = −
∫
pIdx+ c1

u = −I−1
∫
pIdx+ I−1c1

u = −e
∫
qdx

(∫
pe
∫
−qdxdx

)
+ c1e

∫
qdx

But y = eu or u = ln y. Hence the final solution is

ln (y) = −e
∫
qdx

(∫
pe
∫
−qdxdx

)
+ c1e

∫
qdx
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Or

y = e
−e

∫
qdx
(∫

pe
∫
−qdxdx

)
+c1e

∫
qdx

= e
−e

∫
qdx
(∫

pe
∫
−qdxdx

)
ec1e

∫
qdx

= ec1e
∫
qdx

e
e
∫
qdx
(∫

pe
∫
−qdxdx

)

=
exp

(
c1e

∫
qdx
)

exp
(
e
∫
qdx
(∫

pe
∫
−qdxdx

)) (2)

If initial conditions y(x0) = y0 are given then the above becomes

y0 =
exp

(
c1e

∫ x0
0 qdτ

)
exp

(
e
∫ x0
0 qdτ

(∫ x0
0 p (τ) e

∫ τ
0 −q(z)dzdτ

))
exp

(
c1e

∫ x0
0 qdτ

)
= y0 exp

(
e
∫ x0
0 qdτ

(∫ x0

0
p(τ) e

∫ τ
0 −q(z)dzdτ

))
c1e

∫ x0
0 qdτ = ln

(
y0 exp

(
e
∫ x0
0 qdτ

(∫ x0

0
p(τ) e

∫ τ
0 −q(z)dzdτ

)))

c1 =
ln
(
y0 exp

(
e
∫ x0
0 qdτ

(∫ x0
0 p(τ) e

∫ τ
0 −q(z)dzdτ

)))
e
∫ x0
0 qdτ

(3)

Substituting the above in (2) gives

y =
exp

(
c1e

∫
qdx
)

exp
(
e
∫
qdx
(∫

pe
∫
−qdxdx

))
Where c1 is given by (3).

3.3.4 Quadrature ode

y′ = f(x)
y′ = f(y)

The following flow chart gives the algorithm for solving quadrature ode.

Figure 3.3: Flow chart for first order quadrature

ode internal name "quadrature"
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Solved by direct integration. There are two forms. They are

y′ = f(x)
y′ = f(y)

For first form, the solution is
y =

∫
f(x) dx+ c

For the second form the solution is∫
dy

f (y) =
∫
dx f(y) 6= 0∫

dy

f (y) = x+ c

These two forms are special cases of separable first order ode y′ = f(x) g(y) .

For the form y′ = f(y) and if IC are given, we should always check if IC satisfies the ODE
itself first. If so, then the solution is simply y = y0. i.e. there is no need to integrate and
solve for constant of integration and any of this. This only works for y′ = f(y) form. Not
for y′ = f(x).

Given an ode y′ = f(x) and if it is not possible to integrate
∫
f(x) dx, then the final

solution should be left as
y(x) =

∫
f(x) dx+ c1

If initial conditions are given as y(x0) = y0 then the above is adjusted to become

y(x) =
∫ x

x0

f(τ) dτ + y0

This is only when the integration of f(x) can not be computed.

On the other hand, if the ode is y′ = g(y) and it is also not possible to integrate
∫ 1

g(y)
then the final answer now becomes∫ y(x) 1

g (τ)dτ = x+ c1

If initial conditions are given as y(x0) = y0 then the above is adjusted to become∫ y(x)

0

1
g (τ)dτ +

∫ y0

0

1
g (τ)dτ = x− x0

Or

y(x) = RootOf
(∫ y0

_Z

1
g (τ)dτ + x− x0

)
For the case where it is not possible to solve for y′ explicitly, then RootOf is used. For
example, given

sin (y′) + y′ = x

This is quadrature, since it has only y′ and x. But it is not possible to isolate y′. The
solution will be in terms of RootOf given by

y′ = RootOf (sin (_Z) + _Z − x)

We now still continue as before and integrate both sides which results in

y(x) =
∫

RootOf (sin (_Z) + _Z − x) dx+ c
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If initial conditions are given as y(x0) = y0 the above is modified to become

y(x)− y0 =
∫ x

x0

RootOf (sin (_Z) + _Z − τ) dτ

What happens if the ode had a missing x instead? For an example

sin (y′) + y′ = y

Now solving for y′ gives

y′ = RootOf (sin (_Z) + _Z − y)

Integrating as before results in
dy

RootOf (sin (_Z) + _Z − y) = dx∫
dy

RootOf (sin (_Z) + _Z − y) =
∫
dx∫ y(x)

0

dτ

RootOf (sin (_Z) + _Z − τ) = x+ c

If initial conditions y(x0) = y0 are given, the above becomes∫ y0

0

dτ

RootOf (sin (_Z) + _Z − τ) +
∫ y(x)

y0

dτ

RootOf (sin (_Z) + _Z − τ) = x− x0

3.3.4.1 Example 1

y′ = y

y(0) = 1

Solution exists and unique. Integrating gives∫
dy

y
=
∫
dx y 6= 0

ln y = x+ c

y = cex

Applying IC gives
1 = c

Hence solution is
y = ex

3.3.4.2 Example 2

y′ = y − 1
y(0) = 1

Solution exists and unique. Integrating gives∫
dy

y − 1 =
∫
dx y − 1 6= 0

ln (y − 1) = x+ c

y − 1 = cex

y = cex + 1

Applying IC gives

1 = c+ 1
c = 0

Hence solution is

y − 1 = 0
y = 1



chapter 3. first order ode F (x, y, y′) = 0 26

3.3.4.3 Example 3

y′ = x

y(0) = 1

Integrating gives
y = x2

2 + c

Applying IC gives
1 = c

Hence solution is
y(x) = x2

2 + 1

3.3.4.4 Example 4

y′ = sin y + 1
y(π) = 1

This has unique solution. Integrating and solving for c results in the solution∫
dy

sin y + 1 =
∫
dx sin y + 1 6= 0

y = −2 arctan
(
c1 + x+ 2
c1 + x

)
Applying IC gives

1 = −2 arctan
(
c1 + π + 2
c1 + π

)
Solving for c1 and substituting in the general solution gives

y = −2 arctan
(

(x− π + 2) tan
(1
2

)
+ x− π

−π + x− 2 + tan
(1
2

)
(x− π)

)

3.3.4.5 Example 5

y′ = y(y − 1) (y − 3)
y(0) = 4

A solution exist an is unique. Integrating gives

∫
dy

y (y − 1) (y − 3) =
∫
dx y(y − 1) (y − 3) 6= 0

1
3 ln y + 1

6 ln (y − 3)− 1
2 ln (y − 1) = x+ c1 (1)

Applying initial conditions gives

1
3 ln 4 + 1

6 ln (1)− 1
2 ln (3) = c1

1
3 ln 4− 1

2 ln (3) = c1

Hence the solution from (1) is

1
3 ln y + 1

6 ln (y − 3)− 1
2 ln (y − 1) = x+ 1

3 ln 4− 1
2 ln (3)
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Lets see what happens if we convert to exponential first. Applying exponential to both
sides of (1) gives

exp
(
ln y 1

3 + ln (y − 3)
1
6 + ln (y − 1)

−1
2

)
= c2e

x

y
1
3 (y − 3)

1
6

(
1√
y − 1

)
= c2e

x

y
1
3 (y − 3)

1
6

√
y − 1

= c2e
x (2)

At IC
4 1

3 (4− 3)
1
6

√
4− 1

= c2

4 1
3

√
3
= c2

Hence the solution from (2) is

y
1
3 (y − 3)

1
6

√
y − 1

= 4 1
3

√
3
ex

And this is also correct. I prefer to convert to exponential when the solution has the form
f(y) = cg(x) where f(y) is made up of all ln as functions of y. This makes finding constant
of integration easier in all cases.

3.3.4.6 Example 6

y′ = ay − by2

y(0) = y0

A solution exist an is unique. Integrating gives∫
dy

ay − by2
=
∫
dx ay − by2 6= 0

1
a
ln y − 1

a
ln (by − a) = x+ c1

ln y − ln (by − a) = ax+ ac1
y

by − a
= eax+ac1

y

by − a
= c2e

ax

y = c2bye
ax − ac2e

ax

y(1− c2be
ax) = −ac2eax

y = −ac2eax

1− c2beax

= ac2e
ax

c2beax − 1
= ac2
c2b− e−ax

= a

b− 1
c2
e−ax

= a

b+ c3e−ax

Applying IC

y0 =
a

b+ c3
(b+ c3) y0 = a

by0 + c3y0 = a

c3 =
a− by0
y0
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Hence the solution becomes

y = a

b+
(

a−by0
y0

)
e−ax

= ay0
by0 + (a− by0) e−ax

3.3.4.7 Example 7

y′ = sin y
y(0) = π

Since this is of form y′ = f(y) and IC is given then we check if y = π satisfies the ode
itself or not. We see that 0 = sin (π) = 0. Hence it does. Hence the solution is

y = y0

= π

3.3.4.8 Example 8

y′ − 2y = 2√y
y(0) = 1

This one is tricky. As it is also Bernoulli ode. The Bernoulli ode has form y′ + py = qyn

where here p = −2 and q = 2 and n = 1
2 . It turns out solving this as quadrature causes

a problem with IC due to how the integration works out. Let solve it both ways to show
this.

y′ = f(y)
= 2√y + 2y

We see right away that by existence and uniqueness, f and ∂f
∂y

are defined at IC. Hence
solution exist and unique on some region that includes the point (0, 1). To solve as
quadrature we just need to integrate. This gives (using Mathematica’s Integrate)∫

dy
√
y + y

=
∫

2dx

2 ln (1 +√
y) = 2x+ c

Now we need to find c. At IC we have

2 ln (2) = c

Hence the solution is

2 ln (1 +√
y) = 2x+ 2 ln (2)

ln (1 +√
y) = x+ ln (2)

1 +√
y = exeln 2

= 2ex

Hence
√
y = 2ex − 1
y = (2ex − 1)2

= 4e2x − 4ex + 1
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This is valid for 2ex − 1 > 0. So it might be better to keep the solution implicit as
√
y = 2ex − 1. Let look at Maple’s integrate. It gives∫

dy
√
y + y

=
∫

2dx

ln (y − 1) + 2 arctanh (√y) = 2x+ c

Here is the problem. At y = 1 we get ln (0). Even though both antiderivatives are correct,
since they both differentiate back to 1√

y+y
, using Maple’s result causes problem solving

for the constant of integration since its anti-derivative is complex valued for all y. Let now
solve the same ode using Bernoulli method. The form is

y′ + py = qyn

where here p = −2 and q = 2 and n = 1
2 . Starting by dividing by y 1

2 gives

y′y−
1
2 − 2y 1

2 = 2

Let v = y1−n = y
1
2 and therefore v′ = 1

2y
− 1

2y′ or y′ = 2v′y 1
2 . Hence the above becomes

2v′ − 2v = 2
v′ − v = 1

Integrating factor is e−x. Hence d
dx
(e−xv) = e−x or ve−x = −e−x+c. Therefore v = −1+cex.

Which means √y = −1 + cex. At x = 0, y = 1 this gives

1 = −1 + c

c = 2

Hence the solution is √
y = −1 + 2ex

Which is the same solution using the integration result given by Mathematica. We see
that using Bernoulli in this example makes the integration easier and solving for constant
of integration is also easier.

3.3.4.9 Example 9

cos (y) y′ = 1
y(0) = 2

Since this is of form y′ = f(y) = 1
cos y and IC is given then we check if y = 2 satisfies the

ode itself or not. 0 = 1
cos(2) does not. Hence we need solve the ode. Integrating gives∫

cos ydy =
∫
dx

sin y = x+ c (1)

Here we can solve for y or keep it implicit until finding c. Let see what happens if we try
to first solve for y.

y = arcsin (x+ c)

Applying IC gives
2 = arcsin (c)

No solution for c. Lets now go back to (1) and solve for c first from (1) before solving for
y. We obtain

sin (2) = c
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This was much easier. Substituting this into (1) gives

sin y = x+ sin (2) (2)

Now we can solve for y using sin (y) = A =⇒ y = − arcsin (A) + 2πn+ π. Using this gives

y = − arcsin (x+ sin (2)) + 2nπ + π

For n integer. Trying n = 0 gives

y = − arcsin (x+ sin (2)) + π

Which satisfies the ode and the IC. It is also possible to keep the solution implicit as in (2)
in this case also as (2) satisfies both the ode and IC as is and there is no need to explicitly
solve for y.

3.3.4.10 Example 10

y′ = ay
a−1
a

Integrating gives
1
a

∫
dy

y
a−1
a

=
∫
dx

1
a

ay

y
a−1
a

= x+ c1

y

y
a−1
a

= x+ c1

y1−
(
a−1
a

)
= x+ c1

y
a−a+1

a = x+ c1

y
1
a = x+ c1

y = (x+ c1)a

3.3.4.11 Example 11

y′ sin (y′) + cos (y′) = y

Since x is missing then this is of the form y′ = f(y) we just need to solve for y′. The
solution is in terms of RootOf

y′ = RootOf (_Z sin (_Z) + cos (_Z)− y)

Integrating gives ∫
dy

RootOf (_Z sin (_Z) + cos (_Z)− y) =
∫
dx∫ y(x) dτ

RootOf (_Z sin (_Z) + cos (_Z)− τ) = x+ c

Hence the solution is implicit

x−
∫ y(x) dτ

RootOf (_Z sin (_Z) + cos (_Z)− τ) + c = 0

We should also find the singular solution since we divided by RootOf (_Z sin (_Z) + cos (_Z)− y).
i.e. ask what is y which will make this zero? Solving

RootOf (_Z sin (_Z) + cos (_Z)− y) = 0

For y gives
y = 1

Hence this is solution also. We see that if we plug in y = 1 in the ode, this is correct
solution.
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3.3.4.12 Example 12

(y′)4 + 4y(y′)3 + 6y2(y′)2 −
(
1− 4y3

)
y′ −

(
3− y3

)
y = 0

With IC
y(x0) = y0

Since x is missing then this is of the form y′ = f(y) we just need to solve for y′. The
solution is in terms of RootOf

y′ = RootOf
(
_Z4 + 4y_Z3 + 6y2_Z2 −

(
1− 4y3

)
_Z −

(
3− y3

)
y
)

Integrating gives∫
dy

RootOf (_Z4 + 4y_Z3 + 6y2_Z2 − (1− 4y3)_Z − (3− y3) y) =
∫
dx∫ y(x) dτ

RootOf (_Z4 + 4τ_Z3 + 6τ 2_Z2 − (1− 4τ 3)_Z − (3− τ 3) τ) = x+ c

Applying IC the above becomes∫ y0

0

dτ

RootOf (_Z4 + 4τ_Z3 + 6τ 2_Z2 − (1− 4τ 3)_Z − (3− τ 3) τ)

+
∫ y(x)

y0

dτ

RootOf (_Z4 + 4τ_Z3 + 6τ 2_Z2 − (1− 4τ 3)_Z − (3− τ 3) τ) = x− x0

3.3.5 Linear ode
y′ + p(x) y = q(x)

ode internal name "linear"

Solved by finding integration factor µ = e
∫
p(x)dx. The ode then becomes d

dx
(µy) = µq.

Integrating gives µy =
∫
µqdx+ c or

y =
(∫

µqdx+ c

)
1
µ

=
(∫

q(x) e
∫
p(x)dxdx+ c

)
e
∫
−p(x)dx

If µ can not be evaluated explicitly and initial conditions are given as y(x0) = y0 then the
integration factor is written as

µ = e
∫ x
x0 p(τ)dτ

And the solution become

y =
(∫ x

x0

q(τ) e
∫ τ
x0

p(τ)dτdτ + y0

)
e
∫ x
x0 −p(τ)dτ

For an example, if the ode was y′ + p(x) y = sin (x) with IC y(x0) = y0 then the solution
is

y =
(∫ x

x0

sin (τ) e
∫ τ
x0

p(τ)dτdτ + y0

)
e
∫ x
x0 −p(τ)dτ

On the other hand, If µ can be evaluated explicitly (i.e. the integration can be done) but∫
µqdx can not (may be because q(x) is too complicated or given as unknown function,

with IC y(x0) = y0 then the solution is

y =
(∫ x

x0

q(τ)µ(τ) dτ + y0µ(x0)
)

1
µ (x)

For an example, given ode y′ + sin (x) y = q(x) with IC y(x0) = y0 then the solution is

y =
(∫ x

x0

q(τ) e− cos(τ)dτ + y0e
− cos(x0)

)
1

e− cos(x)
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3.3.5.1 Example 1

y′ − 1
2
√
x
y = x

y(0) = 1

In normal form the ode is
y′ + p(x) y = q(x)

Hence here we have p(x) = −1
2
√
x
and q(x) = x. The domain of p(x) is all the real line

except x = 0 and domain of q(x) is all the real line. Combining domains gives all the real
line except x = 0. Since initial x0 is x = 0 which is outside the domain, then uniqueness
and existence theory do not apply. Solving gives

y = −2x 3
2 − 12

√
x− 6x− 12 + c1e

√
x

Applying IC

1 = −12 + c1

c1 = 13

Hence solution is

y = −2x 3
2 − 12

√
x− 6x− 12 + 13e

√
x x 6= 0

In this case, solution exists and unique.

3.3.5.2 Example 2

y′ − y

x
= 0

y(0) = 1

In normal form the ode is
y′ + p(x) y = q(x)

The above shows that p(x) = − 1
x
.The domain of p(x) is all the real line except x = 0.

Since initial x0 is x = 0 then uniqueness and existence theory do not apply. We are not
guaranteed solution exist or if it exist, is unique. Solving gives

y = c1x

Applying IC gives
1 = 0

Which is not possible. Hence no solution exist.

3.3.5.3 Example 3

y′ + 2y cot (2x) = 4x csc (x) sec2 (x)

In normal form the ode is
y′ + p(x) y = q(x)

Hence here we have p(x) = 2 cot (2x) , q(x) = 4x csc (x) sec (x)2. Therefore the integrating
factor is

µ = e
∫
p(x)dx

= e
∫
2 cot(2x)dx

= e−
1
2 ln
(
1+cot2(2x)

)
= 1√

1 + cot2 (2x)
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Then the ode becomes

d

dx
(yµ) = µ4x csc (x) sec2 (x)

d

dx

(
y

1√
1 + cot2 (2x)

)
= 1√

1 + cot2 (2x)
4x csc (x) sec2 (x)

y√
1 + cot2 (2x)

=
∫ 4x csc (x) sec2 (x)√

1 + cot2 (2x)
dx+ c1

y =
√

1 + cot2 (2x)c1 +
√

1 + cot2 (2x)
∫ 4x csc (x) sec2 (x)√

1 + cot2 (2x)
dx

3.3.5.4 Example 4

y′ + y cot (x) = cos x
y(0) = 0

In normal form the ode is
y′ + p(x) y = q(x)

Hence p = cot(x). Because cot (x) is 1
tan(x) which is not defined at x = 0 then uniqueness

and existence theory do not apply. Here we have p = cot (x) , q = cos (x). Therefore the
integrating factor is

µ = e
∫
p(x)dx

= e
∫
cot(x)dx

= eln(sinx)

= sin x

Then the ode becomes

d

dx
(yµ) = µ cosx

d

dx
(y sin x) = sin x cosx

y sin x =
∫

sin x cosx dx+ c1

y = 1
sin xc1 +

1
sin x

∫
sin x cosx dx

= 1
sin xc1 +

1
sin x

sin2 x

2
= 1

sin xc1 +
sin x
2

y sin x = c1 +
1
2 sin x

At y(0) = 0 the above results c1 = 0. Hence the solution is

y = sin x
2
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3.3.5.5 Example 5

y′ − y cot (x) = −sin x
x2

y(∞) = 0

In normal form the ode is
y′ + p(x) y = q(x)

Hence p(x) = − cot (x) and q(x) = − sinx
x2 . Not defined at IC, hence then uniqueness and

existence theory do not apply. The integrating factor is

µ = e
∫
p(x)dx

= e
∫
− cot(x)dx

= e− ln(sinx)

= 1
sin x

Then the ode becomes

d

dx
(yµ) = µq(x)

d

dx

(
y

1
sin x

)
= − 1

sin x

(
sin x
x2

)
y

sin x = −
∫ 1
x2

dx+ c

y

sin x = 1
x
+ c

y = sin x
x

+ c sin x

= sin (x)
(
1
x
+ c

)
Applying IC gives

0 = sin (x)
(
1
x
+ c

)
Either sin x = 0 or

( 1
x
+ c
)
= 0. We look only at second equation, since that one has the

c in it which we want to solve. hence (
1
x
+ c

)
= 0

As x→ ∞ then 1
x
→ 0 and we obtain c = 0. Hence the solution is

y = sin (x)
x

3.3.6 Separable ode

y′ = F (x, y)
= f(x) g(y)

The following flow chart gives the algorithm for solving separable ode.
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Figure 3.4: Flow chart for first order separable

ode internal name "separable"

Solved by separating and integrating. dy
dx

1
g(y) = f(x). Integrating gives

∫ 1
g
dy =

∫
fdx. If

it is possible to do the integration of the LHS then explicit solution in y is obtained else
the solution is implicit. The most difficult part is to determine that a given expression
F (x, y) is separable or not. i.e. given y′ = F (x, y) to find f(x) and g(y) . Code in solver is
over 600 lines long just to determine this due to many edge cases.

Singular solutions are found by solving for y from g(y) = 0.

3.3.6.1 Example 1

Solve

y′ = y3 sin x
y(0) = 0

From uniqueness and existence theory we see that solution to y′ = y3 sin x exist and is
unique. This is because f = y3 sin x is continuous everywhere (hence solution exist) and
fy = 3y2 sin x is also continuous everywhere (hence uniqueness is guaranteed).

This is little more tricky than it looks. Notice that y = 0 at x = 0. This is special IC,
because this means if we start by dividing both sides by y3 to separate them as we normally
do, this gives

dy

y3
= sin xdx
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But when we get to later on (after integration and adding constant of integration) to solve
for c we will have problems. The reason is, we should not divide by y in first place, since
y = 0 at initial conditions. In this special IC case, then at x = 0 the ode is

y′ = 0

Hence y = C1. But since the solution is guaranteed to be unique, then C1 must be zero
to give y = 0 as only one value of y(x) can exist. Hence this is the solution. This way we
do not even have to integrate or solve for constant of integration. If we were not given IC,
then we do as normal and now can divide by y. Assuming y 6= 0 then the ode becomes

dy

y3
= sin xdx y 6= 0

Integrating gives

− 1
2y2 = − cosx+ c

1
y2

= 2 cos x− 2c

1
y2

= 2 cos x+ c1 (1)

Hence
y2 = 1

2 cos x+ c1

Therefore
y = ± 1√

2 cos x+ c1
(2)

So we should always start, when IC are given, by checking uniqueness and existence and
never divide by y if y = 0 at initial conditions. In all other cases, we can divide to separate.
Lets do more examples on this to practice.

3.3.6.2 Example 2

Solve

y′ = y(x− 1)
y(2) = 0

f = y(x− 1) which is clearly continuous everywhere and so is fy. Hence it is guaranteed
that solution exist and unique. Since y = 0 at initial conditions, then we can’t divide by
y to separate. So we use the alternative method. At IC the ode itself becomes

y′ = 0

Hence
y = c

Since y is constant, then y = 0 because it can only have one value due to uniqueness.
Therefore the solution is

y = 0

Let now look at the general case to make things more clear.
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3.3.6.3 Example 3

Solve
y′ = f(y) g(x)

Such that f(y) g(x) is continuous everywhere and fyg is also. Hence it is guaranteed that
solution exist and unique. Let initial conditions be such that f(y0) = 0. For example, if
f(y) = y and y(0) = 0. In this case, we can not separate using

dy

f (y) = g(x) f(y) 6= 0

Since f(y) = 0 at I.C. So we use the short cut method. Substituting IC into the ode gives

y′ = 0
y = c

But since the solution is unique, then C1 = 0 since y = 0 is given and only one solution
y(x) can exist. Hence this is the solution.

y = 0

So the bottom line is this: Given a first order ode y′ = f(y) g(x) where the solution exist
and unique and f(y) = 0 at IC, then the solution is always

y = 0

Lets look at another special case ode.

3.3.6.4 Example 4

Solve

y′ = y

x
y(0) = 1

We see that f = y
x
is not continuous at x = 0. Hence by uniqueness and existence theorem,

there is no guarantee that solution exist. (Notice we do not say that no solution exist,
as there might be one, but there is no guarantee that one exists using the theorem).
Integrating gives

∫
dy

y
=
∫ 1
x
dx y 6= 0

ln y = ln x+ c

y = cx

Applying IC gives 1 = 0, hence no solution exist. When no solution exist, we do not need
to consider singular solutions.

3.3.6.5 Example 5

Solve
y′ = 2x

√
1− y2

Integrating gives ∫
dy√
1− y2

=
∫

2xdx
√
1− y2 6= 0

arcsin (y) = x2 + c

y = sin
(
x2 + c

)
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The singular solution is found by solving for y from
√
1− y2 = 0. This gives y2 = 1 or

y = ±1. Hence the solution is

y = sin
(
x2 + c

)
y = 1
y = −1

3.3.6.6 Example 6

Solve

y′ = 1− cos (2y)
x2

y(∞) = 10
3 π

The ode becomes ∫
dy

1− cos (2y) =
∫
dx

x2

− 1
2 tan y = −1

x
+ c

Applying IC

− 1
2 tan

(10
3 π
) = c

c = − 1
2
√
3

Hence solution (1) becomes

− 1
2 tan y = −1

x
− 1

2
√
3

cot (y) = 2
x
+ 1

3
√
3

If we want explicit solution then

y = arccot
(
2
x
+ 1

3
√
3
)
+ nπ

By checking few n, it turns out that n = 3 is the one needed such that IC are satisfied.
Hence

y = arccot
(
2
x
+ 1

3
√
3
)
+ 3π

3.3.6.7 Example 7

Solve

x3y′ − sin y = 1
y(∞) = 5π

Writing the ode as
y′ = 1 + sin y

x3
x 6= 0

Shows it is separable
dy

1 + sin y = dx

x3
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Integrating gives ∫
dy

1 + sin y =
∫
dx

x3

−2
tan

(
y
2

)
+ 1

= − 1
2x2 + c

2
tan

(
y
2

)
+ 1

= 1
2x2 − c

2
tan

(
y
2

)
+ 1

= 1− 2x2c
2x2

tan
(y
2

)
+ 1 = 4x2

1− 2x2c

tan
(y
2

)
= 4x2

1− 2x2c − 1

tan
(y
2

)
= 4x2 − (1− 2x2c)

1− 2x2c

tan
(y
2

)
= 4x2 − 1 + 2x2c

1− 2x2c
Hence

y

2 = arctan
(
4x2 − 1 + 2x2c

1− 2x2c

)
+ πn n ∈ Z

y = 2
(
arctan

(
4x2 − 1 + 2x2c

1− 2x2c

)
+ πn

)
(1)

Applying IC gives, and taking limit limx→∞

(
4x2−1+2x2c

1−2x2c

)
= −4+2c

2c assuming c 6= 0 then
(1) above becomes

5π = 2
(
arctan

(
−4 + 2c

2c

)
+ πn

)
= 2arctan

(
−4 + 2c

2c

)
+ 2πn

5π − 2πn
2 = arctan

(
−4 + 2c

2c

)
2πn− 5π

2 = arctan
(
4 + 2c
2c

)
The range of arctan is −π

2 to π
2 . Hence we need 2πn−5π

2 to be in this range. This means
2πn− 5π should be between −π· · · π but not including the edge points. Value of n which
allows this is n = −5

2 . (but n should be an integer. There is no integer solution.) Hence
this leads to no solution.

Now we go back to (1) and take the limit assuming c = 0.

Applying IC gives, and taking limit limx→∞

(
4x2−1+2x2c

1−2x2c

)
assuming c = 0 gives ∞. Hence

(1) becomes

5π = 2(arctan (∞) + πn)

5π = 2
(π
2

)
+ 2πn

5π = π + 2πn
5π − π = 2πn

n = 2

Hence (1) becomes (using c = 0, n = 2)

y = 2
(
arctan

(
4x2 − 1

)
+ 2π

)
= 2arctan

(
4x2 − 1

)
+ 4π

This solution satisfies the ode now and the IC.
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3.3.7 Homogeneous ode (class A)

y′ = F
(y
x

)
ode internal name "homogA"

This is called Homogeneous type A in Maple. Solved by substituting y = ux which converts
it to separable ode. A homogeneous ode has the form y′ = f(x, y) where tf(x, y) = f(tx, ty).
In solving these types of problems, separable is called. It is best to return implicit solution
from separable and not explicit. This makes the substitution u = y

x
easier. If explicit

solution is needed, it can be done after this operation is done.

3.3.7.1 Example 1

xy′ − y − 2√yx = 0

y′ = y

x
+ 2
x

√
yx

For real x

dy

dx
= y

x
+ 2
√
yx

x2

= y

x
+ 2
√
y

x

Let u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = u+ 2

√
u

x
du

dx
= 2

√
u

du

u
1
2
= 2
x
dx

√
u 6= 0

Which is separable. If we do not obtain separable ode, then we have made mistake.
Integrating gives ∫

u
−1
2 du =

∫ 2
x
dx

2u 1
2 = 2 ln x+ c1

u
1
2 = ln x+ c2

Replacing u = y
x
gives √

y

x
= ln x+ c2

The singular solution is u = 0. Which implies y = 0. Hence the solutions are√
y

x
= ln x+ c2

y = 0
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3.3.7.2 Example 2

dy

dx
= 2y2 − xy

3xy − 2x2

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = 2u2x2 − x2u

3x2u− 2x2

x
du

dx
+ u = 2u2 − u

3u− 2

x
du

dx
= 2u2 − u

3u− 2 − u

= 2u2 − u

3u− 2 − u(3u− 2)
3u− 2

= (2u2 − u)− u(3u− 2)
3u− 2

= 2u2 − u− 3u2 + 2u
3u− 2

= −u2 + u

3u− 2

= u(1− u)
3u− 2

Hence
du

dx
=
(
1
x

)(
u(1− u)
3u− 2

)
Which is separable. If we do not obtain separable ode, then we have made mistake.
Integrating gives ∫ 3u− 2

u (1− u)du =
∫ 1
x
dx

u(1− u)
3u− 2 6= 0

−2 ln u− ln (u− 1) = ln x+ c1

Replacing u = y
x
gives

−2 ln
(y
x

)
− ln

(y
x
− 1
)
= ln x+ c1

ln
(
x2

y2

)
− ln

(
y − x

x

)
= ln x+ c1

ln
(
x2

y2

)
+ ln

(
x

y − x

)
= ln x+ c1

Applying exponential to each side gives(
x2

y2

)(
x

y − x

)
= c2x (1)

Singular solution is when u(1−u)
3u−2 = 0. This gives u = 0 and u = 1. Hence this implies y = 0

and y = x. Therefore the solutions are(
x2

y2

)(
x

y − x

)
= c2x

y = 0
y = x

Lets say that we had also initial conditions y(1) = −1, then the above gives(
1

−1− 1

)
= c2

−1
2 = c2

Therefore the solution (1) becomes(
x2

y2

)(
x

y − x

)
= −1

2x
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3.3.7.3 Example 3

dy

dx
= 2(2y − x)

x+ y

y(0) = 2

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = 2(2ux− x)

x+ ux

x
du

dx
+ u = 2(2u− 1)

1 + u

x
du

dx
= 2(2u− 1)

1 + u
− u

= 2(2u− 1)− u(1 + u)
1 + u

= −u2 + 3u− 2
1 + u

This is separable

1 + u

−u2 + 3u− 2du = 1
x
dx

−u2 + 3u− 2
1 + u

6= 0

Integrating ∫ 1 + u

−u2 + 3u− 2du =
∫ 1
x
dx

−3 ln (u− 2) + 2 ln (u− 1) = ln x+ c

Replacing u = y
x
gives

−3 ln
(y
x
− 2
)
+ 2 ln

(y
x
− 1
)
= ln x+ c

−3 ln
(
y − 2x
x

)
+ 2 ln

(
y − x

x

)
= ln x+ c

ln
(

x

y − 2x

)3

+ ln
(
y − x

x

)2

= ln x+ c (1)

Singular solution is when −u2+3u−2
1+u

= 0 or u = 1, u = 2. This implies y = x, y = 2x. Hence
the solutions are

ln
(

x

y − 2x

)3

+ ln
(
y − x

x

)2

= ln x+ c

y = x

y = 2x

Note on the power rule for log. n ln (m) = ln (mn) is valid for m > 0 and in real domain. So
in this above we implicitly assumed this is true in order to write −3 ln

(
y−2x
x

)
as ln

(
x

y−2x

)3
.

Now, taking exponential of (1) gives(
x

y − 2x

)3(
y − x

x

)2

= c1x

x3

(y − 2x)3
(y − x)2

x2
= c1x

x(y − x)2

(y − 2x)3
= c1x

(y − x)2

(y − 2x)3
= c1 (2)
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At y(0) = 2 then

(2)2

(2)3
= c1

1
2 = c1

Hence the solution from (2) becomes

(y − x)2

(y − 2x)3
= 1

2

It is important in these kind of problems where left side has ln as function of y(x) is to
take exponential. Lets see what happens of we do not. Starting again from (1) and let us
try to solve for IC from (1) as is

ln
(

x

y − 2x

)3

+ ln
(
y − x

x

)2

= ln x+ c

At y(0) = 2 the above becomes

ln (0)3 + ln
(
2
0

)2

= ln 0 + c

We see this will not work. These types of issues are easy to work around when solving by
hand and looking at equations. But very hard to program since the code has to handle
any form of expression.

3.3.7.4 Example 4

dy

dx
= 1 + y

2x
y(0) = 0

The RHS is not defined at x = 0, therefore existence and uniqueness theorem does not
apply. Lets solve this as linear ode and not as homogeneous first to show that we obtain
same solution. It is much easier to solve this as linear ode.

dy

dx
− y

2x = 1

Integrating factor is I = e
∫
− 1

2xdx = e−
1
2 lnx = x−

1
2 = 1√

x
. Hence the above becomes

d

dx
(yI) = I

Integrating

y√
x
=
∫ 1√

x
dx

= 2
√
x+ c

y = 2x+ c
√
x

At y(0) = 0
0 = 0 + (0) c

Which is true for any c. Therefore there are infinite number of solutions. The solution is

y = 2x+ c
√
x



chapter 3. first order ode F (x, y, y′) = 0 44

Now we solve as homogeneous ode. Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the

above ode becomes

x
du

dx
+ u = 1 + ux

2x
x
du

dx
+ u = 1 + u

2
x
du

dx
= 1 + u

2 − u

x
du

dx
= 2− u

2

This is separable
2

2− u
du = 1

x
dx

2− u

2 6= 0

Integrating ∫ 2
2− u

du =
∫ 1
x
dx

−2 ln (u− 2) = ln x+ c

= ln (c1x)

Replacing u = y
x
gives

−2 ln
(y
x
− 2
)
= ln (c1x)

−2 ln
(y
x
− 2
)
− ln (c1x) = 0

ln
(

x

(y − 2x)2 c1

)
= 0

Taking exponential
x

c1 (y − 2x)2
= 1

x = c1(y − 2x)2

Singular solution is when u = 2 or y = 2x. Hence solutions are

x = c1(y − 2x)2

y = 2x

Apply IC y(0) = 0 on the above general solution gives

0 = c1(0)

Which is true for any c1. Hence solution is

1
c1

√
x = y − 2x

y = 2x+ 1
c1

√
x

Or
y = 2x+ c2

√
x

Which is same as earlier solution. Note that when c2 = 0 we obtain the singular solution
y = 2x. Hence this is not really a singular solution as it can be obtained from the general
solution for some value of c2 and should be removed now.
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3.3.7.5 Example 5

dy

dx
= y2 − x2 − 2xy
y2 − x2 + 2xy

y(1) = −1

At x = 1, y = −1 then f(x, y) = y2−x2−2xy
y2−x2+2xy is defined. And fy is also defined at x = 1, y =

−1. Hence a unique solution exist.

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = u2x2 − x2 − 2ux2

u2x2 − x2 + 2ux2

x
du

dx
+ u = u2 − 1− 2u

u2 − 1 + 2u

x
du

dx
= u2 − 1− 2u
u2 − 1 + 2u − u

= u2 − 1− 2u− u(u2 − 1 + 2u)
u2 − 1 + 2u

= −u
3 + u2 + u+ 1
u2 − 1 + 2u

This is separable.
du

dx

(
u2 + 2u− 1

u3 + u2 + u+ 1

)
= −1

x

Integrating gives ∫
u2 + 2u− 1

u3 + u2 + u+ 1du = −
∫ 1
x
dx

− ln (1 + u) + ln
(
1 + u2

)
= − ln x+ c1

Replacing u = y
x
gives

− ln
(
1 + y

x

)
+ ln

(
1 + y2

x2

)
= − ln x+ c

Applying exponential to each side gives(
1 + y

x

)−1
(
1 + y2

x2

)
= c1

1
x(

x

x+ y

)(
x2 + y2

x2

)
= c1

1
x(

x2

x+ y

)(
x2 + y2

x2

)
= c1

x2 + y2 = c1(x+ y)

c1 =
x2 + y2

x+ y
(1)

Applying IC y(1) = −1 to the above does not work to solve for c1 due to 1
0 which means

c1 = ∞. In this case we have to solve explicitly for y and then take the limit as c1 → ∞.
Solving for y from (1) gives gives

y1 =
1
2c1 +

1
2

√
c21 + 4xc1 − 4x2

y2 =
1
2c1 −

1
2

√
c21 + 4xc1 − 4x2

Taking limit limc1→∞ y1 does not give finite solution. But limc1→∞ y2 = −x Hence the
solution is

y = −x
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3.3.7.6 Example 6

dy

dx
= −3yx

3x2 + y2

y(0) = 1

At x = 0, y = 1 then f(x, y) = −3y−x
3x2+y2

is defined. And fy is also defined at x = 0, y = 1.
Hence a unique solution exist.

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = −3ux2

3x2 + u2x2

x
du

dx
+ u = −3u

3 + u2

x
du

dx
= −3u

3 + u2
− u

= −3u− u(3 + u2)
3 + u2

= −6u− u3

3 + u2

This is separable.
3 + u2

−6u− u3
du = 1

x
dx

Integrating ∫ 3 + u2

−6u− u3
du =

∫ 1
x
dx

−1
2 ln u− 1

4 ln
(
u2 + 6

)
= ln x+ c

−1
2 ln u− 1

4 ln
(
u2 + 6

)
− ln x = ln x+ ln c1

Solving for u gives

u1 = −

√√√√−3− 1
2

√
36 + 4

x4c41

u2 =

√√√√−3− 1
2

√
36 + 4

x4c41

u3 = −

√√√√−3 + 1
2

√
36 + 4

x4c41

u4 =

√√√√−3 + 1
2

√
36 + 4

x4c41

Hence

y1
x

= −

√√√√−3− 1
2

√
36 + 4

x4c41

y2
x

=

√√√√−3− 1
2

√
36 + 4

x4c41

y3
x

= −

√√√√−3 + 1
2

√
36 + 4

x4c41

y4
x

=

√√√√−3 + 1
2

√
36 + 4

x4c41
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or for x ≥ 0

y1 = −

√√√√−3x2 − 1
2

√
36x4 + 4

c41

y2 =

√√√√−3x2 − 1
2

√
36x4 + 4

c41

y3 = −

√√√√−3x2 + 1
2

√
36x4 + 4

c41

y4 =

√√√√−3x3 + 1
2

√
36x4 + 4

c41

Applying IC y(0) = 1

−1 =

√√√√−

√
1
c41

1 =

√√√√−

√
1
c41

−1 =

√√√√√ 1
c41

1 =

√√√√√ 1
c41

or

−1 =
√

1
c41

−1 =
√

1
c41

1 =
√

1
c41

1 =
√

1
c41

Throwing the first 2 since complex. Then c1 = 1. Hence

y =
√
−3x3 + 1

2
√
36x4 + 4

=
√
−3x3 +

√
9x4 + 1
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3.3.7.7 Example 7

dy

dx
= x+ y

x− y

y(1) = 0

Let y = ux or u = y
x
, hence dy

dx
= xdu

dx
+ u and the above ode becomes

x
du

dx
+ u = x+ ux

x− ux

x
du

dx
+ u = 1 + u

1− u

x
du

dx
= 1 + u

1− u
− u

x
du

dx
= 1 + u

1− u
− u(1− u)

1− u

= (1 + u)− u(1− u)
(1− u)

This is separable. ∫ (1− u)
(1 + u)− u (1− u)du =

∫ 1
x
dx∫

u− 1
u2 + 1du = −

∫ 1
x
dx

1
2 ln

(
u2 + 1

)
− arctan (u) = − ln (x) + c

But u = y
x
, hence the above becomes

1
2 ln

(
y2

x2
+ 1
)
− arctan

(y
x

)
= − ln (x) + c

Applying IC
1
2 ln (1)− arctan (0) = − ln (1) + c

c = 0

Hence the solution becomes
1
2 ln

(
y2

x2
+ 1
)
− arctan

(y
x

)
= − ln (x)

3.3.7.8 Example 8

dy

dt
= −y2 − 3ty

t2 + yt

y(2) = 1

Let y = ut or u = y
t
, hence dy

dt
= tdu

dt
+ u and the above ode becomes

t
du

dt
+ u = −u2t2 − 3t2u

t2 + ut2

t
du

dt
+ u = −u2 − 3u

1 + u

t
du

dt
= −u2 − 3u

1 + u
− u

= −u2 − 3u− u(1 + u)
1 + u

= −u2 − 3u− u− u2

1 + u

= −2u2 − 4u
1 + u
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Which is separable. (
1 + u

2u2 + 4u

)
du = −1

t
dt

1
2

∫ ( 1 + u

u2 + 2u

)
du = −

∫ 1
t
dt

1
2 ln

(
2u+ u2

)
= −2 ln t+ c1

ln
(
2u+ u2

)
= −4 ln t+ c2

Or
2u+ u2 = c3

1
t4

But u = y
t
. Hence the above becomes

2y
t
+
(y
t

)2
= c3

1
t4

(1)

Applying IC y(2) = 1 the above becomes

212 +
(
1
2

)2

= c3
1
24

1 + 1
4 = c3

16
c3 =

5
4(16)

= 20

Hence (1) becomes
2y
t
+
(y
t

)2
= 20
t4

Or

y1 =
−t2 +

√
t4 + 20
t

y2 =
−t2 −

√
t4 + 20
t

Whenever we get more than one solution, we should verify each solution satisfies the ode
and IC as some can be extraneous When we do this, we will find both solutions satisfy
the ode itself, but y2 does not satisfy the IC. Hence it is now removed. The final solution
is therefore

y1 =
−t2 +

√
t4 + 20
t

3.3.7.9 Example 9

xyy′ = y2 + x
√

4x2 + y2

Let y = ux or u = y
x
, hence y′ = xu′ + u and the above ode becomes

x2u(xu′ + u) = u2x2 + x
√
4x2 + u2x2

x2u(xu′ + u) = u2x2 + x2
√
4 + u2 x > 0

u(xu′ + u) = u2 +
√
4 + u2

uxu′ + u2 = u2 +
√
4 + u2

uxu′ =
√
4 + u2

u′ = 1
x

√
4 + u2

u
u√

4 + u2
du = 1

x
dx∫

u√
4 + u2

du =
∫ 1
x
dx

√
4 + u2 = ln x+ c1
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But u = y
x
, hence the above becomes√

4 + y2

x2
= ln x+ c1√

4x2 + y2

x2
= ln x+ c1

Or for x > 0 √
4x2 + y2

x
= ln x+ c1

3.3.8 Homogeneous type C y′ = (a+ bx+ cy)
n
m

ode internal name "homogeneousTypeC"

Ode has the form y′ = (a+ bx+ cy)
n
m where n,m integers. Solved by substituting z =

(a+ bx+ cy) .

3.3.8.1 Introduction

This note is about solving a first order ode of the form y′ = (a+ bx+ cy)
1
n and y′ =

(a+ bx+ cy)m where n,m 6= 1 and are integers. This is of the form y′ = f(x, y)
1
n and

y′ = f(x, y)m. Where f(x, y) must be linear in both y and x. The reason it needs to be
linear in x so that the transformed ode in z becomes separable.

One way to solve y′ = (a+ bx+ cy)
1
n is to raise both sides to n. For example for n = 2

the ode becomes (y′)2 = (a+ bx+ cy) which can be solved as d’Alembert.

This is what Maple seems to do based on what the Maple advisor says about the type of
this ode being d’Alembert.

But the problem with squaring both sides or raising both sides of ode to some power is
that this will introduce extraneous solutions to the original ode. Hence it is will be better
to avoid doing this if at all possible.

The following methods solve these odes without having to square or raise both sides to
same power and eliminate the introduction of extraneous solutions.

It is important to note that f(x, y) must be linear in x, y and not have product terms xy.

3.3.8.2 Solving y′ = (a+ bx+ cy)
1
n

For n integer 6= 1 which can be negative or positive, the ode is

dy

dx
= (a+ bx+ cy)

1
n (1)

Let z = a+ bx+ cy then

dz

dx
= b+ c

dy

dx
dy

dx
=
(
dz

dx
− b

)
1
c

Hence (1) becomes (
dz

dx
− b

)
1
c
= z

1
n

dz

dx
= cz

1
n + b∫

dz

cz
1
n + b

=
∫
dx (2)
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If the left side is integrable, then the solution to (1) can be found. For n integer it is
possible to find antiderivative. For example for n = 2 then (2) becomes

2
c

√
z −

2b ln
(
b+ c

√
z
)

c2
= x+ C1

Replacing back z = a+ bx+ cy the above becomes

2
c

√
a+ bx+ cy −

2b ln
(
b+ c

√
a+ bx+ cy

)
c2

= x+ C1 (3)

Which is the implicit solution to (1).

To show that the above does not work if we had xy term, lets give an example. Let
y′ = (a+ xy)

1
2 , then following the above, let z = a + xy and dz

dx
= y + xy′ or y′ =

dz
dx

−y

x
.

Hence z 1
2 =

dz
dx

−y

x
or xz 1

2 + y = dz
dx

and this is not separable. (it is Chini ode, where is very
hard to solve).

for n = 2. Using a = 1, b = 1, c = 1 Eq. (1) becomes
dy

dx
= (1 + x+ y)

1
2

And (3) becomes

2
√

1 + x+ y − 2 ln
(
1 +

√
1 + x+ y

)
= x+ C1 (4)

And for n = 3 Eq. (2) becomes

3
(
−2b+ cz

1
3

)
2c2 z

1
3 +

3b2 ln
(
b+ cz

1
3

)
c3

= x+ C1

Replacing back z = a+ bx+ cy the above becomes

3
(
−2b+ c(a+ bx+ cy)

1
3

)
2c2 z

1
3 +

3b2 ln
(
b+ c(a+ bx+ cy)

1
3

)
c3

= x+ C1 (5)

Which is the implicit solution to (1) for n = 3. Using a = 1, b = 1, c = 1 then (1) becomes
dy

dx
= (1 + x+ y)

1
3

And its solution (5) becomes
3
2

(
−2 + (1 + x+ y)

1
3

)
(1 + x+ y)

1
3 + 3 ln

(
1 + (1 + x+ y)

1
3

)
= x+ C1

And so on for higher values of n. This also works negative values of n. For example, for
n = −2 then (1) becomes

dy

dx
= (a+ bx+ cy)

−1
2

And the integral equation (2) now becomes∫
dz

cz
−1
n + b

=
∫
dx

Which for n = 2 gives
1
b3
(
−2bc

√
z + b2z + 2c2 ln

(
c+ b

√
z
))

= x+ C1

Replacing back z = a+ bx+ cy the above becomes
1
b3

(
−2bc

√
a+ bx+ cy + b2(a+ bx+ cy) + 2c2 ln

(
c+ b

√
a+ bx+ cy

))
= x+ C1

For a = 1, b = 1, c = 1 the above becomes(
−2
√
1 + x+ y + (1 + x+ y) + 2 ln

(
1 +

√
1 + x+ y

))
= x+ C1

And so on.
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3.3.8.3 Solving y′ = (a+ bx+ cy)m

For m integer 6= 1 which can be negative or positive, the ode is

dy

dx
= (a+ bx+ cy)m (1)

Let z = a+ bx+ cy then

dz

dx
= b+ c

dy

dx
dy

dx
=
(
dz

dx
− b

)
1
c

Hence (1) becomes (
dz

dx
− b

)
1
c
= zm

dz

dx
= czm + b∫

dz

czm + b
=
∫
dx (2)

If the left side is integrable, then the solution to (1) can be found. For m integer it is
possible to find antiderivative. For example for n = 2 then (2) becomes

1√
bc

arctan
(√

c

b
z

)
= x+ C1

Replacing back z = a+ bx+ cy the above becomes

1√
bc

arctan
(√

c

b
(a+ bx+ cy)

)
= x+ C1 (3)

Which is the implicit solution to (1).

for m = 2. For an example, for a = 1, b = 1, c = 1 Eq. (1) becomes

dy

dx
= (1 + x+ y)2

And (3) becomes

arctan (1 + x+ y) = x+ C1

1 + x+ y = tan (x+ C1)
y = tan (x+ C1)− 1− x (4)

And for m = 3 Eq. (2) becomes

−1
6b 2

3 c
1
3

2
√
3 arctan

1− 2
(
c
b

) 1
3 z

√
3

− 2 ln
(
b

1
3 + c

1
3 z
)
+ ln

(
b

2
3 − b

1
3 c

1
3 + c

2
3 z2
) = x+C1

Replacing back z = a+ bx+ cy the above becomes

−1
6b 2

3 c
1
3

2
√
3 arctan

1− 2
(
c
b

) 1
3 (a+ bx+ cy)
√
3

− 2 ln
(
b

1
3 + c

1
3 (a+ bx+ cy)

)
+ ln

(
b

2
3 − b

1
3 c

1
3 + c

2
3 (a+ bx+ cy)2

) = x+C1

(5)
Which is the implicit solution to (1) for m = 3. Using a = 1, b = 1, c = 1 then (1) becomes

dy

dx
= (1 + x+ y)3

And its solution (5) now simplifies to

−1
6

(
2
√
3 arctan

(
1− 2(1 + x+ y)√

3

)
− 2 ln (2 + x+ y) + ln

(
(1 + x+ y)2

))
= x+ C1
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And so on for higher values of m, but solution get complicated very quickly. This method
also works for negative m.

For example, for m = −2 then (1) becomes

dy

dx
= (a+ bx+ cy)−2

And the integral equation (2) now becomes∫
dz

cz−2 + b
=
∫
dx

Which gives

z

b
−

√
c arctan

(√
b
c
z
)

b
3
2

= x+ C1

Replacing back z = a+ bx+ cy the above becomes

a+ bx+ cy

b
−

√
c arctan

(√
b
c
(a+ bx+ cy)

)
b

3
2

= x+ C1

For a = 1, b = 1, c = 1 the above becomes

(1 + x+ y)− arctan (1 + x+ y) = x+ C1

arctan (1 + x+ y) = (1 + x+ y)− x− C1

arctan (1 + x+ y) = 1 + y − C1

arctan (1 + x+ y) = y + C2

And and so on for = −3,−4, · · · as all of these are integrable but become complicated
very quickly and the computer is needed to find the antiderivatives in these cases.

3.3.8.4 Examples

3.3.8.4.1 Example 1 y′ = (1 + 5x+ y)
1
2 Let z = 1 + 5x+ y, then dz

dx
= 5 + y′. This

simplifies to

y′ = z′ − 5(
1 + x2 + y

) 1
2 = z′ − 5
z

1
2 = z′ − 5

dz

dx
= z

1
2 + 5

Which is separable. Hence

dz

z
1
2 + 5

= dx z
1
2 + 5 6= 0

2
√
z − 5 ln

(
5 +

√
z
)
+ 5 ln

(√
z − 5

)
− 5 ln (z − 25) = x+ C1

Hence the implicit solution is

2
√

1 + 5x+ y − 5 ln
(
5 +

√
1 + 5x+ y

)
+ 5 ln

(√
1 + 5x+ y − 5

)
− 5 ln (1 + 5x+ y − 25) = x+ C1

2
√
1 + 5x+ y − 5 ln

(
5 +

√
1 + 5x+ y

)
+ 5 ln

(√
1 + 5x+ y − 5

)
− 5 ln (5x+ y − 24) = x+ C1

(1)

The above method is now compared to using d’Alembert for solving the ode, which results
after squaring both sides of the given ode. Squaring the ode gives
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(y′)2 = (1 + 5x+ y)
y = (y′)2 − 1− 5x
= x(−5) +

(
p2 − 1

)
= xf(p) + g(p) (2)

Where p = dy
dx
. This is d’Alembert of the form y = xf(p) + g(p) where f(p) = 5 and

g(p) = p2 − 1. Taking derivative of (2) w.r.t. x gives

p = f(p) + x
df

dp

dp

dx
+ dg

dp

dp

dx

p− f(p) =
(
x
df

dp
+ dg

dp

)
dp

dx
(3)

Using f(p) = 5 and g(p) = p2 − 1 the above becomes

p− 5 = 2pdp
dx

dp

dx
= p− 5

2p
Which is separable. Solving for p gives

p = 5LambertW
(
C

5 e
x
10−1

)
+ 5

Substituting this back into (2) gives

y = −5x+
((

5 LambertW
(
C

5 e
x
10−1

)
+ 5
)2

− 1
)

(4)

This is an explicit general solution for the ode y′ = (1 + 5x+ y)
1
2 . The singular solution

is found when dp
dx

= 0 in (3) which gives

p− 5 = 0
p = 5

Eq (2) now becomes

y = −5x+
(
52 − 1

)
= 24− 5x (5)

However, and this is the problem with squaring the ode, it can be shown that both solution
(4) and (5) do not verify the given y′ = (1 + 5x+ y)

1
2 . What went wrong? They do verify

the ode y′ = −(1 + 5x+ y)
1
2 (with minus sign). This example shows why one must be

careful when squaring both sides of an ode and solving the squared version. Therefore It
is better to avoid the squaring operation and to try to find a method to solve the original
ode in its original form.

3.3.8.5 References

1. will-squaring-both-sides-of-the-ode-change-its-type Thanks to this answer which gave
the main hint on how to solve such ode. I expanded this idea for a more general
cases and different exponents.

2. Wikipedia entry on D’Alembert’s equation This show alternative method to solve
the ode for 1

2 .

3. Wikipedia entry on Riccati equation

4. Wikipedia entry on Abel ode

5. paper: Exactness of Second Order Ordinary Differential Equations and Integrating
Factors by R. AlAhmad, M. Al-Jararha and H. Almefleh

https://math.stackexchange.com/questions/4489716/will-squaring-both-sides-of-the-ode-change-its-type
https://en.wikipedia.org/wiki/D%27Alembert%27s_equation
https://en.wikipedia.org/wiki/Riccati_equation
https://en.wikipedia.org/wiki/Abel_equation_of_the_first_kind
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3.3.9 Homogeneous Maple type C

y′ = f(x, y)
g (x, y)

ode internal name "homogeneousTypeMapleC"

This is different than the above homogeneous type C. This has the form y′ = f(x,y)
g(x,y) solved

by transformation x = X + x0, y = Y + y0. If able to solve for y0, x0 then the ode becomes
Homogeneous type A.

So what is homogeneous ode of class C ? It is an ode y′ = F (x, y) which is not homogeneous
ode of class A but using the transformation x = X + x0, y = Y + y0 it can become one.

This means if given an ode and it is not homogeneous ode of class A then if such trans-
formation can be found to convert it to one, it is called homogeneous ode of class C.
The transformed ode is then solved in Y (X) as homogeneous ode and the solution is
transformed back to y(x) using x = X + x0, y = Y + y0. This however required finding (if
possible) the x0, y0. This section illustrates this method with an example.

3.3.9.1 Example 1

y′ = 8y2 + 12xy − 10y − 6x+ 3
y2 + 6xy − 2y + 9x2 − 6x+ 1

Using methods in earlier sections it can be shown that this is not isobaric for any degree
including m = 1 (which means it is not even homogeneous ode of class A, which is special
case of isobaric). Let

x = X + x0

y = Y + y0

The above ode becomes

Y ′ = 8(Y + y0)2 + 12(X + x0) (Y + y0)− 10(Y + y0)− 6(X + x0) + 3
(Y + y0)2 + 6 (X + x0) (Y + y0)− 2 (Y + y0) + 9 (X + x0)2 − 6 (X + x0) + 1

(1)

= F (X,Y )

The question now becomes how to find x0, y0 such that the above ode is isobaric of degree
1. (i.e. homogeneous ode of class A). Earlier section showed that this becomes the condition
that

m = −
X ∂F

∂X

Y ∂F
∂Y

(2)

Where m = 1. Applying the above to (1) and setting m = 1 gives

1 = −
X d

dX

(
8(Y+y0)2+12(X+x0)(Y+y0)−10(Y+y0)−6(X+x0)+3

(Y+y0)2+6(X+x0)(Y+y0)−2(Y+y0)+9(X+x0)2−6(X+x0)+1

)
Y d

dY

(
8(Y+y0)2+12(X+x0)(Y+y0)−10(Y+y0)−6(X+x0)+3

(Y+y0)2+6(X+x0)(Y+y0)−2(Y+y0)+9(X+x0)2−6(X+x0)+1

)
= −

X
(

−6(3X+3Y+3x0+3y0−2)(2Y+2y0−1)
(y0−1+3x0+Y+3X)3

)
Y
(

2(3X+3Y+3x0+3y0−2)(6X+6x0−1)
(y0−1+3x0+Y+3X)3

)
= −X(−6(3X + 3Y + 3x0 + 3y0 − 2) (2Y + 2y0 − 1))

Y (2 (3X + 3Y + 3x0 + 3y0 − 2) (6X + 6x0 − 1))

1 = 3X
Y

2Y + 2y0 − 1
6X + 6x0 − 1

The above is satisfied if 2Y+2y0−1
6X+6x0−1 = 1

3
Y
X
. Which means 6Y+6y0−3

6X+6x0−1 = Y
X
. This implies if

6y0 − 3 = 0 and 6x0 − 1 = 0 then the equation is satisfied. Therefore a solution is found
which is

6y0 − 3 = 0

y0 =
1
2
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And

6x0 − 1 = 0

x0 =
1
6

Since transformation is found, then substituting the above 2 equations back in (1) gives

Y ′ =
8
(
Y + 1

2

)2 + 12
(
X + 1

6

) (
Y + 1

2

)
− 10

(
Y + 1

2

)
− 6
(
X + 1

6

)
+ 3(

Y + 1
2

)2 + 6
(
X + 1

6

) (
Y + 1

2

)
− 2

(
Y + 1

2

)
+ 9

(
X + 1

6

)2 − 6
(
X + 1

6

)
+ 1

= 43XY + 2Y 2

(3X + Y )2

= G(X,Y )

The above ode is now homogeneous ode of class A. We can verify this using method from
above section as follows

m = −
X ∂G

∂X

Y ∂G
∂Y

=
−X d

dX

(
4Y (3X+2Y )

(3X+Y )2

)
Y d

dY

(
4Y (3X+2Y )

(3X+Y )2

)
=

−X
(
−36 Y

(3X+Y )3 (X + Y )
)

Y
(
36 X

(3X+Y )3 (X + Y )
)

= 1

We see that this is indeed homogeneous ode of class A. Now this is solved easily using the
substitution Y = uX. This results in

− ln
(
Y +X

X

)
+ 3 ln

(
Y

X

)
− 3 ln

(
−3X − Y

X

)
− lnX = c1 (3)

But from earlier

X = x− x0

= x− 1
6

Y = y − y0

= y − 1
2

Hence the solution (3) in y(x) now becomes

− ln
(
y − 1

2 + x− 1
6

x− 1
6

)
+ 3 ln

(
y − 1

2
x− 1

6

)
− 3 ln

(
−
3
(
x− 1

6

)
−
(
y − 1

2

)
x− 1

6

)
− ln

(
x− 1

6

)
= c2

− ln
(
x+ y − 2

3
x− 1

6

)
+ 3 ln

(
6y − 3
6x− 1

)
− 3 ln

(
6y − 18x
6x− 1

)
− ln

(
x− 1

6

)
= c2

− ln
(
6
(
x+ y − 2

3

)
6x− 1

)
+ 3 ln

(
6y − 3
6x− 1

)
− 3 ln

(
6y − 3x
6x− 1

)
− ln

(
x− 1

6

)
= c2

The above is the solution (implicit) to the original ode. The main difficulty with this
method is in solving (if possible) equation (2) when m = 1 which is

1 = −
X ∂F

∂X

Y ∂F
∂Y

For x0, y0. In other words, to find explicit values for x0, y0 which makes the RHS above 1.
If we can find such x0, y0 then the original ode can now be solved. If not, then this method
will not work and we say the ode is not homogeneous ode of class C. Using the software
Maple this can be found as follows
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� �
restart;
eq:=1=3*X/Y*(2*Y+2*y0-1)/(6*X+6*x0-1);
solve(identity(eq,X),[x0,y0])� �
Which gives� �
[[x0 = 1/6, y0 = 1/2]]� �
And Using Mathematica� �
eq = 1 == 3*X/Y*(2*Y + 2*y0 - 1)/(6*X + 6*x0 - 1);
SolveAlways[eq, {X, Y}]� �
Which gives� �
{{x0 -> 1/6, y0 -> 1/2}}� �
3.3.10 Homogeneous type D
ode internal name "homogeneousTypeD"

The given ode has the form
y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given in
Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux.

3.3.10.1 Examples

3.3.10.1.1 Example 1 The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence
y′ = y

x
− 2
x
e

−y
x (2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2
x

b = −1

f
(
b
y

x

)
= e−

y
x
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Hence the solution is
y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(bu) = e−u and (3) becomes

u′ = − 2
x2
e−u

This is separable.

eudu = − 2
x2
dx∫

eudu = −2
∫ 1
x2
dx

eu = 2
x
+ c1

u = ln
(
2
x
+ c1

)
Hence (A) becomes

y = x ln
(
2
x
+ c1

)

3.3.10.1.2 Example 2 Solve

y′x− y − 2ex−
y
x = 0

The first step is to see if the above can be written as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Or

y′x− y − 2ex
−y
x = 0

y′ = y

x
− 2
x
exe

−y
x (2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2
x
ex

b = −1

f
(
b
y

x

)
= e−

y
x

Hence the solution is
y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = e−u and (3) becomes

u′ = − 2
x2
exe−u



chapter 3. first order ode F (x, y, y′) = 0 59

This is separable.

eudu = − 2
x2
exdx∫

eudu = −2
∫

ex

x2
dx

eu = −2
(
−e

x

x
+ Ei (x)

)
+ c1

Where Ei (x) is the exponential integral Ei (x) =
∫∞
−x

e−t

t
dt. Hence

u = ln
(
c1 − 2

(
−e

x

x
+ Ei (x)

))
And (A) becomes

y = x ln
(
c1 − 2

(
−e

x

x
+ Ei (x)

))

3.3.10.1.3 Example 3 Solve

y′x− y − 2 sin
(
3y
x

)
= 0

The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence

y′x− y − 2 sin
(
3y
x

)
= 0

y′ = y

x
− 2
x
sin
(
3y
x

)
(2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2
x

b = 3

f
(
b
y

x

)
= sin

(
3y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = sin (3u) and (3) becomes

u′ = − 2
x2

sin (3u)
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This is separable.

1
sin (3u)du = − 2

x2
dx∫ 1

sin (3u)du = −2
∫ 1
x2
dx

1
3

(
ln sin

(
3u
2

)
− ln cos

(
3u
2

))
= 2
x
+ c1

ln sin
(
3u
2

)
− ln cos

(
3u
2

)
= −6

x
+ c2

ln
sin
(3u

2

)
cos
(3u

2

) = −6
x
+ c2

ln tan
(
3u
2

)
= −6

x
+ c2

tan
(
3u
2

)
= c3e

− 6
x

3u
2 = arctan

(
c3e

− 6
x

)
u = 2

3 arctan
(
c3e

− 6
x

)
And (A) becomes

y = 2
3x arctan

(
c3e

− 6
x

)
3.3.10.1.4 Example 4 Solve

y′ = y

x
− 2
x

√
sin
(
3y
x

)
The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence
y′ = y

x
− 2
x

(
sin
(
3y
x

)) 1
2 (2)

Comparing (2) to (1) shows that

n = 1
m = 2

g(x) = −2
x

b = 3

f
(
b
y

x

)
= sin

(
3y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u)

1
2 (3)

Therefore f(u) = sin (3u) and (3) becomes

u′ = − 2
x2

sin (3u)
1
2
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This is separable.

1√
sin (3u)

du = − 2
x2
dx∫ 1√

sin (3u)
du = −2

∫ 1
x2
dx∫ 1√

sin (3u)
du = 2

x
+ c1

Leaving the integral as is, since it is too complicated to solve, then using y = ux where u
is the solution of the above.

3.3.10.1.5 Example 5 Solve

y − 2x3 tan
(y
x

)
− y′x = 0

The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence

y − 2x3 tan
(y
x

)
− y′x = 0

y′x = y − 2x3 tan
(y
x

)
y′ = y

x
− 2x2 tan

(y
x

)
(2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = −2x2

b = 1

f
(
b
y

x

)
= tan

(y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = tan u and (3) becomes

u′ = −2x tan u

This is separable.

1
tandu = −2xdx∫ 1
tandu = −2

∫
xdx

ln (sin u) = −x2 + c1

sin u = c2e
−x2

u = arcsin
(
c2e

−x2
)

Hence (A) becomes
y = x arcsin

(
c2e

−x2
)
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3.3.10.1.6 Example 6 Solve

y′ = y

x
+ x sin

(y
x

)
The first step is to see if we can write the above as

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Hence
y′ = y

x
+ x sin

(y
x

)
(2)

Comparing (2) to (1) shows that

n = 1
m = 1

g(x) = x

b = 1

f
(
b
y

x

)
= sin

(y
x

)
Hence the solution is

y = ux (A)

Where u is the solution to
u′ = 1

x
g(x) f(u) (3)

Therefore f(u) = sin u and (3) becomes

u′ = 1
x
(x) sin (u)

This is separable.

1
sin udu = dx∫ 1
sin udu =

∫
dx

ln sin u2 − ln cos u2 = x+ c1

ln tan u2 = x+ c1

tan u2 = c2e
x

u

2 = arctan (c2ex)

u = 2arctan (c2ex)

Hence (A) becomes
y = 2x arctan (c2ex)

3.3.11 Homogeneous type D2
y′ = f(x, y)

ode internal name "homogeneousTypeD2"

These are ode of any form, in which the change of variables results in either separable or
quadrature ode. Hence given an ode y′ = f(x, y) the change of variables y(x) = u(x)x is
made and the resulting ode in u(x) is examined. If it is separable or quadrature, then it
is solved for u and hence the solution y = ux is found.
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3.3.11.1 Examples

3.3.11.1.1 Example 1 Solve

y′ = −y(y
2 + 3x2 + 2x)
x2 + y2

Applying change of variables y = ux results in

u′ = −u(u
2 + 3)

u2 + 1
x+ 1
x

Which is separable. Solving this for u(x) by integration gives∫ 1
−u(u2+3)

u2+1

du =
∫
x+ 1
x

dx − u(u2 + 3)
u2 + 1 6= 0

1
3 ln

((
u2 + 3

)
u
)
+ x+ ln (x) = c1

Hence the solution in y(x) is

1
3 ln

(((y
x

)2
+ 3
)
y

x

)
+ x+ ln (x) = c1

Singular solution is when u(u2 + 3) = 0 or u = 0, u = ±i
√
3 which implies y = 0 and

y = ±i
√
3x. Hence the solutions are

1
3 ln

(((y
x

)2
+ 3
)
y

x

)
+ x+ ln (x) = c1

y = 0
y = i

√
3x

y = −i
√
3x

3.3.12 Homogeneous type G
This is what Maple calls this ode of this form

y′ = y

x
F
( y
xα

)
The solution is implicit as

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0

Lets look at some examples to better understand the method.

3.3.12.1 Examples

3.3.12.1.1 Example 1 Solve

y′ = −y(2x2y3 + 3)
x (x2y3 + 1)

The first step is to identify if this is class G and find F . We start by multiplying the RHS
by x

y
(regardless of what is in the RHS) which gives

y′ = x

y

(
−y(2x2y3 + 3)
x (x2y3 + 1)

)
= −2x2y3 − 3

x2y3 + 1
= F (x, y)
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Next we check if F (x, y) has y or not in it. If so, then let the RHS above be F (x, y) and
now do

fx = x
∂F

∂x

= x

(
2y3x

(x2y3 + 1)2
)

= 2y3x2

(x2y3 + 1)2

And let

fy = y
∂F

∂y

= y

(
3x2y2

(x2y3 + 1)2
)

= 3x2y3

(x2y3 + 1)2

Now we check, if fy = 0 then this is not Homogeneous type G. Else we now need to
determine value of α. This is done as follows.

α = fx

fy

= 2
3

If α comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G. But we have to do one more check. We have to check that F (x, y)
found above ends up with no x in it. Hence the solution is

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0 (1)

Now let yxα = τ or y = τ
xα and substituting this into F (x, y) gives

F (τ) =
−2x2

(
τ
xα

)3 − 3
x2
(

τ
xα

)3 + 1

=
−2x2

(
τ

x
2
3

)3
− 3

x2
(

τ

x
2
3

)3
+ 1

=
−2x2

(
τ3

x2

)
− 3

x2
(
τ3

x3

)
+ 1

= −2τ 3 − 3
τ 3 + 1

We see that F (x, y) ends up as F (τ) = −2τ3−3
τ3+1 after the transformation. It has no x left

in it. If we end up with x then this method can not be used.

The solution (1) becomes

ln x− c1 +
∫ yxα 1

τ
(
−α−

(−2τ3−3
τ3+1

))dτ = 0

ln x− c1 +
∫ yx

2
3 3τ 3 + 3
4τ 4 + 7τ dτ = 0

Solving the integral gives

ln x− c1 +
3
7 ln

(
yx

2
3

)
+ 3

28 ln
(
4x2y3 + 7

)
= 0

And this is the final answer. Now if earlier we have F (x, y) not have y in it. In this case
we check if F (x, y) has x. If not, then α = 0 and we do the same as above. But if F (x, y)
has x and not has y then it is not not Homogeneous type G.
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3.3.12.1.2 Example 2 Solve

y′ = 2x(−x4 − 2x2y + y2)
y2 + 2x2y − x4

The first step is to identify if this is class G and find F . We start by multiplying the RHS
by x

y
(regardless of what is in the RHS) which gives

y′ = x

y

(
2x(−x4 − 2x2y + y2)

y2 + 2x2y − x4

)
= 2x2(x4 + 2x2y − y2)

y (x4 − 2x2y − y2)
= F (x, y)

Next we check if F (x, y) has y or not in it. If so, then let the RHS above be F (x, y) and
now do

fx = x
∂F

∂x

= x

(
4x(x8 − 4x6y − 6x4y2 − 4x2y3 + y4)

y (x4 − 2x2y − y2)2
)

= 4x2(x8 − 4x6y − 6x4y2 − 4x2y3 + y4)
y (x4 − 2x2y − y2)2

And let

fy = y
∂F

∂y

= y

(
−2x2(x8 − 4x6y − 6x4y2 − 4x2y2 − 4x2y3 + y4)

y2 (x4 − 2x2y − y2)2
)

= −2x2(x8 − 4x6y − 6x4y2 − 4x2y2 − 4x2y3 + y4)
y (x4 − 2x2y − y2)2

Now we check, if fy = 0 then this is not Homogeneous type G. Else we now need to
determine value of α. This is done as follows.

α = fx

fy

= −2

If α comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

y′ = y

x
F
( y
xα

)
Hence the solution is

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0 (1)
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Now let y = τ
xα and substitute this into F (x, y) which results in

F (τ) =
2x2
(
x4 + 2x2 τ

xα −
(

τ
xα

)2)
τ
xα

(
x4 − 2x2 τ

xα −
(

τ
xα

)2)
=

2x2
(
x4 + 2x2 τ

x−2 −
(

τ
x−2

)2)
τ

x−2

(
x4 − 2x2 τ

x−2 −
(

τ
x−2

)2)
= 2x2(x4 + 2x4τ − x4τ 2)
τx2 (x4 − 2x4τ − τ 2x4)

= 2(x4 + 2x4τ − x4τ 2)
τ (x4 − 2x4τ − τ 2x4)

= 2
τ

(1 + 2τ − τ 2)
(1− 2τ − τ 2)

= 2
τ

(τ 2 − 2τ − 1)
(τ 2 + 2τ − 1)

The solution(1) becomes

ln x− c1 +
∫ yxα 1

τ (−α− F (α))dτ = 0

ln x− c1 +
∫ y

x2 1
τ
(
2−

(
2
τ
(τ2−2τ−1)
(τ2+2τ−1)

))dτ = 0

ln x− c1 +
∫ y

x2 1
2

τ 2 + 2τ − 1
τ 3 + τ 2 + τ + 1dτ = 0

Solving the integral gives

ln x− c1 −
1
2 ln

(
x2 + y

x2

)
+ 1

2 ln
(
x4 + y2

x4

)
= 0

3.3.12.1.3 Example 3 Solve

y′ = −1
2

3y2 − x

y (y2 − 3x)

The first step is to identify if this is class G and find F . We start by multiplying the RHS
by x

y
(regardless of what is in the RHS) which gives

y′ = x

y

(
−1
2

3y2 − x

y (y2 − 3x)

)
= −1

2
3xy2 − x2

y4 − 3xy2
= F (x, y)

Next we check if F (x, y) has y or not in it. If so, then let the RHS above be F (x, y) and
now do

fx = x
∂F

∂x

= 1
2
x(−3y4 + 2xy2 − 3x2)

y2 (−y2 + 3x)2

And let

fy = y
∂F

∂y

= 3xy4 − 3x2y2 + 3x3

y2 (−y2 + 3x)2
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Now we check, if fy = 0 then this is not Homogeneous type G. Else we now need to
determine value of α. This is done as follows.

α = fx

fy

= −1
2

If α comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

y′ = y

x
F
( y
xα

)
Hence the solution is

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0 (1)

Now let y = τ
xα and substitute this into F (x, y) which results in

F (τ) = −1
2
3xy2 − x2

y4 − 3xy2

= −1
2

3x
(

τ
xα

)2 − x2(
τ
xα

)4 − 3x
(

τ
xα

)2
= −1

2
3x
(

τ

x− 1
2

)2
− x2(

τ

x− 1
2

)4
− 3x

(
τ

x− 1
2

)2
= −1

2
3x2τ 2 − x2

τ 4x2 − 3xτ 2x

= −1
2
3τ 2 − 1
τ 4 − 3τ 2

The solution(1) becomes

ln x− c1 +
∫ yxα 1

τ (−α− F (α))dτ = 0

ln x− c1 +
∫ y√

x 1
τ
(1
2 −

(
−1

2
3τ2−1
τ4−3τ2

))dτ = 0

ln x− c1 +
∫ y√

x

2τ τ
2 − 3
τ 4 − 1dτ = 0

Solving the integral gives

ln x− c1 −
1
2 ln

(
y√
x
− 1
)
− ln

(
y√
x
+ 1
)
+ 2 ln

(
y2

x
+ 1
)

= 0

3.3.12.1.4 Example 4 Solve

y′ = −1
2
y
(
1 +

√
x2y4 + 1

)
x

The first step is to identify if this is class G and find F . We start by multiplying the RHS
by x

y
(regardless of what is in the RHS) which gives

y′ = x

y

(
−1
2
y
(
1 +

√
x2y4 + 1

)
x

)
= −1

2

(
1 +

√
x2y4 + 1

)
= F (x, y)
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Next we check if F (x, y) has y or not in it. If so, then let the RHS above be F (x, y) and
now do

fx = x
∂F

∂x

= −1
2

x2y4√
x2y4 + 1

And let

fy = y
∂F

∂y

= −x2y4√
x2y4 + 1

Now we check, if fy = 0 then this is not Homogeneous type G. Else we now need to
determine value of α. This is done as follows.

α = fx

fy

= 1
2

If α comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

y′ = y

x
F
( y
xα

)
Hence the solution is

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0 (1)

Now let y = τ
xα and substitute this into F (x, y) which results in

F (τ) = −1
2

(
1 +

√
x2y4 + 1

)
= −1

2

(
1 +

√
x2
( τ
xα

)4
+ 1
)

= −1
2

1 +

√
x2
(
τ

x
1
2

)4

+ 1


= −1

2

(
1 +

√
x2
τ 4

x2
+ 1
)

= −1
2

(
1 +

√
τ 4 + 1

)
The solution(1) becomes

ln x− c1 +
∫ yxα 1

τ (−α− F (α))dτ = 0

ln x− c1 +
∫ y

√
x 1
τ
(
−1

2 −
(
−1

2

(
1 +

√
τ 4 + 1

)))dτ = 0

ln x− c1 +
∫ y

√
x 2
τ
√
τ 4 + 1

dτ = 0

Solving the integral gives

ln x− c1 − arctanh
(

1√
x2y4 + 1

)
= 0
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3.3.12.1.5 Example 5 Solve

y′ = x

(
1 + 2y

x
+ y2

x4

)
The first step is to identify if this is class G and find F . We start by multiplying the RHS
by x

y
(regardless of what is in the RHS) which gives

y′ = x

y

(
x

(
1 + 2y

x
+ y2

x4

))
= x2

y
+ 2x+ y

x2

= (x2 + y)2

x2y

= F (x, y)

Next we check if F (x, y) has y or not in it. If so, then let the RHS above be F (x, y) and
now do

fx = x
∂F

∂x

= 2x4 − 2y2
x2y

And let

fy = y
∂F

∂y

= −x4 + y2

x2y

Now we check, if fy = 0 then this is not Homogeneous type G. Else we now need to
determine value of α. This is done as follows.

α = fx

fy

= −2

If α comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

y′ = y

x
F
( y
xα

)
Hence the solution is

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0 (1)

Now let y = τ
xα and substitute this into F (x, y) which results in

F (τ) = (x2 + y)2

x2y

=
(
x2 + τ

xα

)2
x2 τ

xα

=
(
x2 + τ

x−2

)2
x2 τ

x−2

= (x2 + τx2)2

x4τ

= x4 + τ 2x4 + 2τx4
x4τ

= 1 + τ 2 + 2τ
τ
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The solution(1) becomes

ln x− c1 +
∫ yxα 1

τ (−α− F (α))dτ = 0

ln x− c1 +
∫ y

x2 1
τ
(
2−

(1+τ2+2τ
τ

))dτ = 0

ln x− c1 +
∫ y

x2

− 1
τ 2 + 1dτ = 0

ln x− c1 −
∫ y

x2 1
τ 2 + 1dτ = 0

Solving the integral gives

ln x− c1 − arctan
( y
x2

)
= 0

y = − tan (c1 − ln x)x2

3.3.12.1.6 Example 6 Solve

(y′)2 = 4y − x2

Hence
y′ = ±

√
4y − x2

For the first ode, the first step is to identify if this is class G and find F . We start by
multiplying the RHS by x

y
(regardless of what is in the RHS) which gives

y′ = x

y

√
4y − x2

= F (x, y)

Next we check if F (x, y) has y or not in it. If so, then let the RHS above be F (x, y) and
now do

fx = x
∂F

∂x

= −2x(x2 − 2y)
y
√
4y − x2

And let

fy = y
∂F

∂y

= x(x2 − 2y)
y
√
4y − x2

Now we check, if fy = 0 then this is not Homogeneous type G. Else we now need to
determine value of α. This is done as follows.

α = fx

fy

= −2

If α comes out not to have in it x nor y as in this case, then we are done. This ode is
Homogeneous type G and the ode can be written as

y′ = y

x
F
( y
xα

)
Hence the solution is

ln x− c1 +
∫ yxα 1

τ (−α− F (τ))dτ = 0 (1)
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Now let y = τ
xα and substitute this into F (x, y) which results in

F (τ) = x

y

√
4y − x2

= x
τ
xα

√
4 τ
xα

− x2

= x

τx2
√
4τx2 − x2

Since the requirement is that F (τ) ends up free of x, then the only way to use this method
and simplify the above to eliminate x is to assume x > 0. Now the above simplifies to

F (τ) = 1
τ

√
4τ − 1

The solution(1) becomes

ln x− c1 +
∫ yxα 1

τ (−α− F (α))dτ = 0

ln x− c1 +
∫ y

x2 1
τ
(
2− 1

τ

√
4τ − 1

)dτ = 0

ln x− c1 +
∫ y

x2 1
2τ −

√
4τ − 1

dτ = 0

Solving the integral gives long complicated expression which is verified correct. So better
to keep the solution implicit as the above. Now we solve the second ode y′ = −

√
4y − x2

in similar way.

3.3.13 isobaric ode

3.3.13.1 Introduction

ode internal name "isobaric"

This is a generalization of the homogeneous ODE, where the substitution y = v(x)xm
makes the ODE separable. The weight m needs to be found first.

These are examples showing how to solve isobaric ode’s step by step method. The same
method is also used to solve homogeneous ode, which is special case of isobaric.

The hardest part is to determine if the ode is isobaric or homogeneous and to find the
degree of the isobaric. If the weight (or degree) m is one then it is just homogeneous ode.
If the weight is not 1 then it is isobaric ode. An ode y′ = f(x, y) is called isobaric of degree
m if

f(tx, tmy) = tm−1f(x, y)

It is called homogeneous ode if m = 1

f(tx, ty) = f(x, y)

So homogeneous ode is special case of isobaric ode whenm = 1. Another common definition
of a homogeneous ode is that when writing the ode as

y′ = f(x, y)

= M(x, y)
N (x, y)

Then M,N must both be homogeneous functions of same degree. Care is needed here,
Homogeneous function is not the same as a homogeneous ode. A function M(x, y) is
homogeneous function of degree n if M(tx, ty) = tnM(x, y) where n here do not have to
be zero.
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Using this second definition of homogeneous ode of y′ = M(x,y)
N(x,y) , we can now check if

M(x, y) and N(x, y) are both homogeneous functions and also have same degree (whatever
this degree happened to be). If this is the case, then we say the ode itself is homogeneous
ode.

It is possible to have an ode y′ = M(x,y)
N(x,y) where M,N are both homogeneous functions but

with different degrees. In this case the ode is not homogeneous ode even though both
M,N are each homogeneous functions.

We can use similar way to view isobaric ode. By saying that an isobaric ode is one when
it is written as

y′ = f(x, y)

= M(x, y)
N (x, y)

Then givenM(tx, tmy) = trM(x, y) is homogeneous function of degree r and N(tx, tmy) =
tr−m+1N(x, y) is homogeneous function of degree r −m+ 1. In this case we say that the
ode itself is isobaric of degree m, since

f(tx, tmy) = trM(x, y)
tr−m+1N (x, y)

= tm−1M(x, y)
N (x, y)

= tm−1f(x, y)

The above gives us another method to determine if an ode is homogeneous ode or isobaric
ode. We start by writing the ode as y′ = M(x,y)

N(x,y) . If M,N are both homogeneous functions
of same degree, then the ode is homogeneous ode and we stop.

If howeverM satisfiesM(tx, tmy) = trM(x, y) and N satisfies N(tx, tmy) = tr−m+1N(x, y)
where r is positive integer, then we say the ode is isobaric of degree m.

Why is it important to know if an ode is homogeneous or isobaric? This is because if an
ode is isobaric of degree m then the substitution y = uxm or u = y

xm converts to separable
ode in u. If an ode is homogeneous then the substitution y = ux or u = y

x
converts to

separable ode in u.

This is why it is very useful to determine if an ode is isobaric or homogeneous ode. Because
it allows us to use this substitution to convert it to separable. Separable ode’s are easy to
solve, since they involve only integration. Of course the integrals can be very difficult to
solve, but this is another issue.

How to determine if an ode is homogeneous or isobaric in practice? To check if an ode is
homogeneous, we start with the definition that ode y′ = f(x, y) is homogeneous ode if in

f(tx, tmy) = tm−1f(x, y) (A)

then if m = 1 then the ode is homogenous. If not, then the ode is not homogenous and
we check if it is isobaric by solving for m. How to find m?

This is done by taking derivative of both sides of equation (A) w.r.t. t and setting t = 1
after that. This results in

xfx +myfy = (m− 1) f
xfx +myfy = mf − f

xfx + f = m(f − yfy)

Hence
m = f + xfx

f − yfy
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Here is the important point. If it is possible to simplify the RHS above to an actual
numerical value, then m is the degree of isobaric and the ode is indeed isobaric. If it is
not possible to obtain a numerical m value, then the ode is not isobaric. The best way
to learn how to do this is by examples. Note in the above fx is partial derivative. Which
means taking derivative of f w.r.t x while keeping y fixed.

3.3.13.2 Examples

3.3.13.2.1 Example 1
dy

dx
=

−
(
y2 + 2

x

)
2yx (1)

Here f(x, y) = −
(
y2+ 2

x

)
2yx . We start by checking if it is isobaric or not. To find m such that

f(tx, tmy) = tm−1f(x, y) we do (as given in the introduction)

m = f + xfx
f − yfy

(2)

=
−
(
y2+ 2

x

)
2yx + x

(
xy2+4
2x3y

)
−
(
y2+ 2

x

)
2yx − y

(
−xy2−2

2x2y2

)
=

1
x2y

− 2
x2y

= −1
2

Hence this is isobaric of index m = −1
2 because it has a numerical solution as a result.

To verify this result, here M(x, y) =
(
−y2 − 2

x

)
, N(x, y) = 2yx. Let us start by checking

for isobaric (since homogeneous is special case).

M(tx, tmy) =
(
−t2my2 + 2

tx

)
= 1
t

(
−t2m+1y2 + 2

x

)
= t−1

(
−t2m+1y2 + 2

x

)
The above is same as

(
−y2 − 2

x

)
when 2m+1 = 0 or m = −1

2 . From the above we also see
that r = −1. This is by comparing the last result above to trM(x, y). Now that we found
candidate m and r, then all what we have to do is check N(tx, tmy) = tr−m−1N(x, y) or
not. If it is, then we are done and the ode is isobaric of degree m

N(tx, tmy) = 2tmytx

= 2t−1
2 ytx

= t
1
2 (2yx)

= t
1
2N(x, y)

Now we check if 1
2 = r−m+1. Which it is. Since r−m+1 = −1−

(
−1

2

)
+1 = 1

2 . Hence
this ode is isobaric. From now on Eq (2) will be used to find m.

Hence the substitution y = vxm will make the ode separable. This is the whole point of
isobaric ode’s. The hardest part is to find m. Substituting y = vx

=1
2 in (1) results in

v
dv

dx
= −1

x

This is solved for v easily since separable, and then y is found from y = vx
=1
2 .
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3.3.13.2.2 Example 2
dy

dx
= x

√
x4 + 4y − x3 (1)

We start by checking if it is isobaric or not. Using

m = f + xfx
f − yfy

=

(
x
√
x4 + 4y − x3

)
+ x
(√

x4 + 4y + 2x4√
x4+4y

− 3x2
)

(
x
√
x4 + 4y − x3

)
− x3 − 2xy√

x4+4y

=
4 x√

x4+4y

(
2y − x2

√
x4 + 4y + x4

)
x√

x4+4y

(
2y − 2x2

√
x4 + 4y + x4

)
=

4 x√
x4+4y
x√

x4+4y

= 4

Therefore this is isobaric of order 4. Substituting y = vxm = vx4 in (1) results in

v′ = −4v +
√
1 + 4v − 1
x

Which is separable. This is solved easily for v(x) and then y is found from y = vx4.

3.3.13.2.3 Example 3

x
(
x− y3

) dy
dx

=
(
3x+ y3

)
y

dy

dx
= (3x+ y3) y

x (x− y3) (1)

We start by checking if it is isobaric or not. Using

m = f + xfx
f − yfy

=

(
3x+y3

)
y

x(x−y3) + x
(

3y
x(−y3+x) −

(
y3+3x

)
y

x2(−y3+x) −
(
y3+3x

)
y

x(−y3+x)2

)
(3x+y3)y
x(x−y3) − y

(
3y3

x(−y3+x) +
y3+3x

x(−y3+x) +
3(y3+3x)y3
x(−y3+x)2

)
=

−4 y4

(x−y3)2

−12 y4

(x−y3)2

= 1
3

m = 1
3 makes each term the same weight 4

3 . Hence the substitution y = vx
1
3 will make the

ode separable. Substituting this in (1) results in

dv

dx
= −4

3x
v(v3 + 2)
(v3 − 1)

Which is separable. This is solved for v, and then y is found from y = vx
1
3 .
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3.3.13.2.4 Example 4
y′ = y

x
ln (xy − 1) (1)

We start by checking if it is isobaric or not. Using

m = f + xfx
f − yfy

=
y
x
ln (xy − 1) + x

(
−y ln(xy−1)

x2 + y2

x(xy−1)

)
y
x
ln (xy − 1)− y

(
ln(xy−1)

x
+ y

xy−1

)
=

y2

xy−1

− y2

xy−1

= −1

Hence the substitution y = v
x
will make the ode separable. Substituting this in (1) results

in
v′ = v ln (v)

x

Which is separable. This is solved for v, and then y is found from y = v
x
.

3.3.13.2.5 Example 5
(y′)2 = y(y − 2y′x)3 (1)

One way to handle this is to first solve for y′ and then apply the above method. This will
result in m = −1.

3.3.13.2.6 Example 6

(x− y) y′ − x− y = 0

y′ = x+ y

x− y
(1)

= f(x, y)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

=
x+y
x−y

+ x
(

1
x−y

− x+y

(x−y)2

)
x+y
x−y

− y
((

1
x−y

+ x+y

(x−y)2

))
=

x
(

1
x−y

− x+y

(x−y)2

)
−y
((

1
x−y

+ x+y

(x−y)2

))
= 1

Sincem = 1 then this is homogeneous ode (special case of isobaric). Hence the substitution
v = y

x
makes the ode (1) separable.
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3.3.13.2.7 Example 7

y′x− y − 2√xy = 0

y′ =
y + 2√xy

x
(1)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

=
y+2√xy

x
+ x
(

y
x
√
xy

− y+2√xy

x2

)
y+2√xy

x
− y

(1+ x√
xy

x

)
= 1

Sincem = 1 then this is homogeneous ode (special case of isobaric). Hence the substitution
v = y

x
makes the ode (1) separable.

3.3.13.2.8 Example 8

y′ = −y(y2 + 3x2 + 2x)
x2 + y2

(1)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

=
−y
(
y2+3x2+2x

)
x2+y2

+ x d
dx

(
−y
(
y2+3x2+2x

)
x2+y2

)
−y(y2+3x2+2x)

x2+y2
− y d

dy

(
−y(y2+3x2+2x)

x2+y2

)
=

−y
(
y2+3x2+2x

)
x2+y2

+ x
(
−2y

(
−x2+2xy2+y2

)
(x2+y2)2

)
−y(y2+3x2+2x)

x2+y2
− y

(
−3x4+2x3−2xy2+y4

(x2+y2)2

)
= 3x4 + 8x2y2 + 4xy2 + y4

4x2y2 + 4xy2

Since this does not simplify to numerical value, it is not homogenous ode. This turns out
to be homogenous type D. See earlier note on this. There is a slight difference in definition
between homogenous ode and homogenous type D. In Maple terms, homogenous ode is
called homogenous ode type A. A homogenous type D is one in which the substitution
y = ux makes the ode separable or quadrature.

3.3.13.2.9 Example 9

y′ =
(
−108y2 + 12

√
−108y3x3 + 81y4

) 2
3 + 12xy

6
(
−108y2 + 12

√
−108y3x3 + 81y4

) 1
3

(1)

We start by checking if it homogenous or not. Using

m = f + xfx
f − yfy

Which simplifies to
m = 3

Hence the substitution y = vxm will make the ode separable. Substituting y = vx3 in (1)
results in separable ode. But for this case, we have to assume x > 0 in order to simplify it.
The resulting ode is too long to write now, but verified to be separable using the computer.
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3.3.14 First order special form ID 1 y′ = g(x) ea(x)+by + f(x)
ode internal name "first order special form ID 1"

This is special form which did not fit in any of the above ones. Solved by the substitution
u = e−by which converts the ode to a linear first order ode in u(x) which is solved, then y
is found. b must not depend on x for this to work.

3.3.14.1 Example

y′ = 5ex2+20y + sin x (1)

Here a(x) = x2, b = 20, f(x) = sin x, g(x) = 5. Hence let

u = e−by

= e−20y

Therefore
du

dx
= −20y′e−20y

= −20y′u

Or
y′ = − u′

20u (2)

Comparing (1,2) gives

− u′

20u = 5ex2+20y + sin x

= 5e20yex2 + sin x

= 51
u
ex

2 + sin x

Or

−u′ = 100ex2 + 20u sin x
u′ = −100ex2 − 20u sin x

u′ + 20u sin x = −100ex2 (3)

This is linear first order ode. The integrating factor is

I = e
∫
20 sinxdx

= e−20 cosx

(3) becomes

d

dx
(uI) = −I100ex2

ue−20 cosx = −100
∫
ex

2
e−20 cosxdx+ c

u = −100e20 cosx
∫
ex

2−20 cosxdx+ ce20 cosx

= e20 cosx
(
−100

∫
ex

2−20 cosxdx+ c

)
But u = e−20y therefore

e−20y = e20 cosx
(
−100

∫
ex

2−20 cosxdx+ c

)
−20y = ln

(
e20 cosx

(
−100

∫
ex

2−20 cosxdx+ c

))
y = − 1

20 ln
(
e20 cosx

(
−100

∫
ex

2−20 cosxdx+ c

))
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3.3.15 Polynomial ode y′ = a1x+b1y+c1
a2x+b2y+c2

ode internal name "polynomial"

Special form for first order ode where the lines a1x + b1y + c1 = 0, a2x + b2y + c2 = 0
can be either parallel or not parallel. If the lines are not parallel then the transformation
X = x− x0, Y = y − y0 transforms the ode to homogeneous ode. If the lines are parallel
then the transformation U(x) = a1x+ b1y converts the ode to separable in U(x). The not
parallel case is when a1

b1
6= a2

b2
and the second case is when a1

b1
= a2

b2
.

3.3.15.1 Example lines are not parallel

y′ = −6x+ y − 3
2x− y − 1

Comparing to y′ = a1x+b1y+c1
a2x+b2y+c2

shows that a1 = −6, b1 = 1, a2 = 2, b2 = −1. Hence
a1
b1

= −6, a2
b2

= −2. This shows the lines are not parallel. Let

X = x− x0

Y = y − y0

The constant x0, y0 are found by solving

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Or

−6x0 + y0 − 3 = 0
2x0 − y0 − 1 = 0

Solving for x0, y0 gives

x0 = −1
y0 = −3

Hence

X = x+ 1
Y = y + 3

Using this transformation in y′ = −6x+y−3
2x−y−1 results in the ode

dY

dX
= 6X − Y

−2X + Y

This is a homogeneous ode
dY

dX
=

6− Y
X

−2 + Y
Y

Let u = Y
X
. Now it is solved as was shown in the above sections. At the end, Y is replaced

by y − y0 to obtain the solution in y(x).
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3.3.15.2 Example lines are parallel

y′ = − x+ y

3x+ 3y − 4
Comparing to y′ = a1x+b1y+c1

a2x+b2y+c2
shows that a1 = −1, b1 = −1, a2 = 3, b2 = 3. Hence

a1
b1

= 1, a2
b2

= 1. This shows the lines are parallel. Let

U(x) = a1x+ b1y

= −x− y

Hence y′ = −1− U ′(x). Hence the ode becomes

−1− U ′ − U

−3U − 4 = 0

U ′ = −2U + 4
3U + 4

This is separable. After solving for U(x), then y is found from U(x) = −x− y

y = −x− U

3.3.16 Bernoulli ode y′ + Py = Qyn

ode internal name "bernoulli"

This has the form y′ + Py = Qyn where n 6= 1, n 6= 0. Solved by dividing by yn and then
using the substitution v = y1−n. This converts the ode to linear ode v′ + (1− n)Pv =
(1− n)Q which is solved for v, then y is found.

3.3.16.1 Example 1

y′ + y cotx = y4 (1)
y(0) = 0

Comparing to y′+py = qyn shows that p = cotx, q = 1, n = 4. Let v = y1−n = y1−4 = y−3.
Then dv

dx
= −3y−4y′ or y′ = v′

−3y−4 . The ode becomes

v′

−3y−4 + y cotx = y4

Multiplying both sides by y−4 gives
v′

−3 + y−3 cotx = 1

But y−3 = v and the above becomes
v′

−3 + v cotx = 1

v′ − 3v cotx = −3

Which is linear in v. Solving gives

v = 1
4(3 sin x− sin (3x))

(
3
2 cscx cotx− 3

2 ln (csc (x)− cotx) + c1

)
= (sin x)3

(
3
2 cscx cotx− 3

2 ln (csc (x)− cotx) + c1

)
But v = 1

y3
. Hence the solution is

1
y3

= (sin x)3
(
3
2 cscx cotx− 3

2 ln (csc (x)− cotx) + c1

)
Was not able to solve for c1 at the given IC since gives 1/0. Hence only trivial solution
exist, which is

y = 0
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3.3.17 Exact ode M(x, y) +N(x, y) y′ = 0
ode internal name "exact"

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (1)

If the above ODE is exact, then there it can be written as a complete differential

M(x, y) +N(x, y) dy
dx

= dφ(x, y)

= ∂φ

∂x

dx

dx
+ ∂φ

∂y

dy

dx

= ∂φ

∂x
+ ∂φ

∂y

dy

dx
(2)

Comparing (1,2) shows that

∂φ

∂x
=M (3)

∂φ

∂y
= N (4)

But since ∂2φ
∂y∂x

= ∂2φ
∂x∂y

then this implies

∂

∂y

(
∂φ

∂x

)
= ∂

∂x

(
∂φ

∂y

)
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. Given the ode is exact, then integrating (3) gives

φ =
∫
Mdx+ f(y) (5)

Where f(y) is arbitrary function to be found. Taking derivative of the above w.r.t. y gives

∂φ

∂y
= d

dy

∫
Mdx+ f ′(y)

Comparing the above to (4) gives an equation to solve for f(
d

dy

∫
Mdx

)
+ f ′(y) = N (6)

Once f(y) is found then from (5) and since φ is constant it becomes

c =
∫
Mdx+ f(y)

This is an implicit solution for y(x).
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3.3.17.1 Examples

3.3.17.1.1 Example1 (
3x2 + 2xy2

)
+
(
2x2y + 4y3

)
y′ = 0

Hence M = (3x2 + 2xy2) , N = (2x2y + 4y3). We see that ∂M
∂y

= 4xy and ∂N
∂x

= 4xy, hence
exact. Then (5) gives

φ =
∫
Mdx+ f(y)

=
∫

3x2 + 2xy2dx+ f(y)

= x3 + x2y2 + f(y)

Hence (6) gives

d

dy

(
x3 + x2y2 + f(y)

)
= N

2yx2 + f ′(y) = 2x2y + 4y3

f ′(y) = 4y3

Therefore f(y) = y4 + c1. Therefore

φ =
∫
Mdx+ f(y)

= x3 + x2y2 + f(y)
= x3 + x2y2 + y4 + c1

But φ = c, since constant. Hence combining constants the above becomes

x3 + x2y2 + y4 = C

Which is implicit solution for y(x).

3.3.17.1.2 Example2(
ln
(
y + x

x+ 3

)
− y + x

x+ 3

)
dx+ ln

(
y + x

x+ 3

)
dy = 0

Hence M =
(
ln
(
y+x
x+3

)
− y+x

x+3

)
, N = ln

(
y+x
x+3

)
. We see that ∂M

∂y
= 3−y

(y+x)(x+3) and ∂N
∂x

=
3−y

(y+x)(x+3) , hence the ode is exact. Eq (5) gives

φ =
∫
Mdx+ f(y)

=
∫ (

ln
(
y + x

x+ 3

)
− y + x

x+ 3

)
dx+ f(y)

= (3− y) ln
(
y − 3
x+ 3

)
+ (y + x) ln

(
y + x

x+ 3

)
+ (3− y) ln (x+ 3)− x+ f(y)

= (3− y)
(
ln
(
y − 3
x+ 3

)
+ ln (x+ 3)

)
+ (y + x) ln

(
y + x

x+ 3

)
− x+ f(y)

= (3− y) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ f(y)



chapter 3. first order ode F (x, y, y′) = 0 82

Hence (6) gives

d

dy
(φ) = N

d

dy

(
(3− y) ln (y − 3) + (y + x) ln

(
y + x

x+ 3

)
− x+ f(y)

)
= ln

(
y + x

x+ 3

)
ln
(
y + x

x+ 3

)
− ln (y − 3) + f ′(y) = ln

(
y + x

x+ 3

)
− ln (y − 3) + f ′(y) = 0

f ′(y) = ln (y − 3)

Therefore

f(y) =
∫

ln (y − 3) dy

= ln (y − 3) (y − 3) + 3− y + c1

Hence from above

φ = (3− y) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ f(y)

= (3− y) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ ln (y − 3) (y − 3) + 3− y + c1

= −(y − 3) ln (y − 3) + (y + x) ln
(
y + x

x+ 3

)
− x+ ln (y − 3) (y − 3) + 3− y + c1

= (y + x) ln
(
y + x

x+ 3

)
− x+ 3− y + c1

= (y + x) ln
(
y + x

x+ 3

)
− x− y + c2

But φ = c, since constant. Hence combining constants the above becomes

(y + x) ln
(
y + x

x+ 3

)
− x− y = C

3.3.18 Not exact ode but can be made exact with integrating
factor

ode internal name "exactWithIntegrationFactor"

This has the form M(x, y) + N(x, y) y′ = 0 where ∂M
∂y

6= ∂N
∂x

where there exist integrat-
ing factor µ such that µM(x, y) + µN(x, y) y′ = 0 becomes exact. Three methods are
implemented to find the integrating factor.

3.3.18.1 Integrating factor that depends on x only

Let

µM(x, y) + µN(x, y) dy
dx

= dφ(x, y) (1)

= ∂φ

∂x

dx

dx
+ ∂φ

∂y

dy

dx

= ∂φ

∂x
+ ∂φ

∂y

dy

dx
(2)

Comparing (1),(2) then

∂φ

∂x
= µM

∂φ

∂y
= µN
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The compatibility condition is ∂2φ
∂y∂x

= ∂2φ
∂x∂y

then this implies

∂

∂y

(
∂φ

∂x

)
= ∂

∂x

(
∂φ

∂y

)
∂µM

∂y
= ∂µN

∂x

µyM + µMy = µxN + µNx

µxN = µyM + µMy − µNx

µxN = µyM + µ(My −Nx)

µx = µyM

N
+ µ

N
(My −Nx)

Assuming µ ≡ µ(x) then µy = 0 and the above simplifies to

µx = µ

N
(My −Nx)

dµ

dx

1
µ
= 1
N

(
∂M

∂y
− ∂N

∂x

)
Let 1

N

(
∂M
∂y

− ∂N
∂x

)
= A. If A ≡ A(x) which depends only on x then we can solve the above.

dµ

dx

1
µ
= A

µ = e
∫
Adx

Let M = µM,N = µN then the ode

M(x, y) +N(x, y) y′ = 0

is now exact.

3.3.18.2 Integrating factor that depends on y only

Let

µM(x, y) + µN(x, y) dy
dx

= dφ(x, y) (1)

= ∂φ

∂x

dx

dx
+ ∂φ

∂y

dy

dx

= ∂φ

∂x
+ ∂φ

∂y

dy

dx
(2)

Comparing (1),(2) then

∂φ

∂x
= µM

∂φ

∂y
= µN

The compatibility condition is ∂2φ
∂y∂x

= ∂2φ
∂x∂y

then this implies

∂

∂y

(
∂φ

∂x

)
= ∂

∂x

(
∂φ

∂y

)
∂µM

∂y
= ∂µN

∂x

µyM + µMy = µxN + µNx

µyM = µxN + µNx − µMy

µyM = µxN + µ(Nx −My)

µy =
µxN

M
+ 1
M
µ(Nx −My)
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Assuming µ ≡ µ(y) then µx = 0 and the above simplifies to

µy =
1
M
µ(Nx −My)

dµ

dy

1
µ
= 1
M

(Nx −My)

Let 1
M
(Nx −My) = B. If B ≡ B(y) which depends only on y then we can solve the above.

dµ

dy

1
µ
= B(y)

µ = e
∫
Bdy

Let M = µM,N = µN then the ode

M(x, y) +N(x, y) y′ = 0

is now exact.

3.3.18.2.1 Example 1 Solve

dy

dx
=
√
(x2 − 1) (y2 − 1)

(x2 − 1)

dy =
√
(x2 − 1) (y2 − 1)

(x2 − 1) dx

−
√

(x2 − 1) (y2 − 1)
(x2 − 1) dx+ dy = 0

Comparing to
M(x, y) dx+N(x, y) dy = 0

Shows that M = −
√

(x2−1)(y2−1)
(x2−1) , N = 1. We see that ∂M

∂y
6= ∂N

∂x
. Hence not exact. Lets try

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= (1− x2)√

(x2 − 1) (y2 − 1)

(
0− −y√

(x2 − 1) (y2 − 1)

)

= (1− x2)√
(x2 − 1) (y2 − 1)

y√
(x2 − 1) (y2 − 1)

= (1− x2) y
(x2 − 1) (y2 − 1)

= −y
(y2 − 1)

Since B does not depend on x then we can use this for an integrating factor.

µ = e
∫
Bdy

= e
−
∫ y(

y2−1
)dy

= 1√
y − 1

√
y + 1

Hence the ode now becomes

µMdx+ µNdy = 0
M̄dx+ N̄dy = 0 (A1)
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Where

M̄ = µM

= 1√
y − 1

√
y + 1

√
(x2 − 1) (y2 − 1)

(x2 − 1)

=
√
(x2 − 1) (y2 − 1)√

y − 1
√
y + 1 (x2 − 1)

And

N̄ = µN

= 1√
y − 1

√
y + 1

Now ode (A1) is exact. Now we follow the main method for solving an exact ode on the
above. Let

∂φ

∂x
= M̄ (1)

∂φ

∂y
= N̄ (2)

SinceM has both y and x, in it and N has only y in it, then in this case we start differently
than before. We start with (2) and not (1) as it makes things simpler when integrating.

Integrating (2) w.r.t. y gives

φ =
∫
N̄dy + f(x)

=
∫ 1√

y − 1
√
y + 1

dy + f(x)

But
∫ 1√

y−1
√
y+1dy =

√
(y−1)(y+1) ln

(
y+
√

y2−1
)

√
y−1

√
y+1 =

√
y2−1 ln

(
y+
√

y2−1
)

√
y−1

√
y+1 , hence the above becomes

φ =
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+ f(x) (3)

Taking derivative of (3) w.r.t. x gives

∂φ

∂x
= d

dx

(√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

)
+ f ′(x)

∂φ

∂x
= f ′(x) (4)

But ∂φ
∂x

= M̄ . Hence the above becomes

M̄ = f ′(x)√
(x2 − 1) (y2 − 1)√

y − 1
√
y + 1 (x2 − 1)

= f ′(x)

To solve for f(x) we now integrate the above w.r.t. x which gives∫ x
√

(τ 2 − 1) (y2 − 1)√
y − 1

√
y + 1 (τ 2 − 1)

dτ = f(x)

No need to add constant of integration, as that will be absorbed anyway. Substituting the
above back into (3) gives

φ =
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+
∫ x

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ
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φ = c, hence the solution is
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+
∫ x

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ + c = 0 (4A)

Lets now see what happens if after Eq (2), we started with M and not N as we always
do. Integrating (1) w.r.t. x gives

φ =
∫
M̄dx+ f(y)

=
∫ √

(x2 − 1) (y2 − 1)√
y − 1

√
y + 1 (x2 − 1)

dx+ f(y)

=
∫ x

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ + f(y) (5)

Taking derivative w.r.t. y the above becomes

∂φ

∂y
= d

dy

∫ x
√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ + f ′(y)

=
∫ x ∂

∂y

( √
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

)
dτ + f ′(y)

= 0 + f ′(y)
= f ′(y)

But ∂φ
∂y

= N̄ , hence the above becomes

1√
y − 1

√
y + 1

= f ′(y)

Integrating w.r.t. y gives

f(y) =
∫ 1√

y − 1
√
y + 1

dy + c

f(y) =
√

(y − 1) (y + 1) ln
(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+ c

Substituting this into (5) gives the solution as (after combining constants)

c1 =
∫ x

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ +
√

(y − 1) (y + 1) ln
(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

Which is same answer as (4A). So starting with M or N gives same result. But if N
depends on x, y and M depends on only one of these, it can be simpler to pick M . Same
for the other way around. If N depends on only one, and M depends on both x, y, then
it will be easier to start with N . But in both cases, same result should be obtained.

3.3.18.2.2 Example 2 This is same example as above but with initial conditions
y(x0) = y0 to show how to handle IC when unable to do the integration.

−
√

(x2 − 1) (y2 − 1)
(x2 − 1) dx+ dy = 0

y(x0) = y0

The solution found in above example is
√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+
∫ x

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ + c = 0
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At y(x0) = y0 the above becomes√
y20 − 1 ln

(
y0 +

√
y20 − 1

)
√
y0 − 1

√
y0 + 1

+
∫ x

x0

√
(τ 2 − 1) (y2 − 1)√

y0 − 1
√
y0 + 1 (τ 2 − 1)

dτ + c = 0

Substituting this value of c in the solution gives

√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

+
∫ x

x0

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

dτ =

√
y20 − 1 ln

(
y0 +

√
y20 − 1

)
√
y0 − 1

√
y0 + 1

+
∫ x

x0

√
(τ 2 − 1) (y2 − 1)√

y0 − 1
√
y0 + 1 (τ 2 − 1)

dτ

Or

√
y2 − 1 ln

(
y +

√
y2 − 1

)
√
y − 1

√
y + 1

−

√
y20 − 1 ln

(
y0 +

√
y20 − 1

)
√
y0 − 1

√
y0 + 1

+
∫ x

x0

√
(τ 2 − 1) (y2 − 1)√

y − 1
√
y + 1 (τ 2 − 1)

−
√

(τ 2 − 1) (y2 − 1)√
y0 − 1

√
y0 + 1 (τ 2 − 1)

dτ = 0

3.3.18.3 Third integrating factor

Using similar method If the above did not work, then we try

R = 1
xM − yN

(
∂N

∂x
− ∂M

∂y

)
If R is function of t = xy only then the integrating factor is µ = e

∫
Rdt and let M =

µM,N = µN then the ode M(x, y) +N(x, y) y′ = 0 is now exact.

3.3.19 Not exact first order ode where integrating factor is
found by inspection

ode internal name "exactByInspection"

This has the form M(x, y) + N(x, y) y′ = 0 where ∂M
∂y

6= ∂N
∂x

(i.e. the ode is not exact)
and none of the above three known methods for finding integrating factor were successful.
This solver uses trial and error using a number of built-in common integrating factor to
see if any one of them makes the ode exact.

3.3.19.1 Example

ydx+ x
(
x2y − 1

)
dy = 0

M(x, y) +N(x, y) y′ = 0

Where
∂M

∂y
= 1

∂N

∂x
= 3x2y − 1

Hence not exact. Trying the above 3 methods shows it is not possible to find an integrating
factor. But by inspection let I = y

x3 . Then the ode becomes

yIdx+ Ix
(
x2y − 1

)
dy = 0

y
y

x3
dx+ y

x3
x
(
x2y − 1

)
dy = 0

y2

x3
dx+

(
y2 − y

x2

)
dy = 0

M(x, y) +N(x, y) y′ = 0



chapter 3. first order ode F (x, y, y′) = 0 88

Where

M = y2

x3

N =
(
y2 − y

x2

)
Now we see that the ode is exact by checking:

∂M

∂y
= 2y
x3

∂N

∂x
= −

(
−2 y

x3

)
= 2y
x3

Since ode is now exact, we need to find φ from
∂φ

∂x
=M (3)

∂φ

∂y
= N (4)

From (3)
∂φ

∂x
= y2

x3

Therefore

φ =
∫
Mdx+ f(y)

=
∫

y2

x3
dx+ f(y)

= y2
∫
x−3dx+ f(y)

= y2
x−2

−2 + f(y)

= y2

−2x2 + f(y) (5)

Where f(y) is arbitrary function to be found. Taking derivative of the above w.r.t. y gives
∂φ

∂y
= d

dy

(
− y2

2x2 + f(y)
)

= − y

x2
+ f ′(y)

Comparing the above to (4) shows that

N = − y

x2
+ f ′(y)

y2 − y

x2
= − y

x2
+ f ′(y)

f ′(y) = y2

Hence

f(y) =
∫
y2dy

= y3

3 + c

Substituting this into (5) gives

φ = y2

−2x2 + f(y)

= y2

−2x2 + y3

3 + c

Since φ is also constant function then we can simplify the above to
y2

−2x2 + y3

3 = C

3y2 − 2x2y3 = 6x2C
3y2 − 2x2y3 = x2C1
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3.3.20 Reduced or special Riccati ode y′ = axn + by2

This is special case of the general Riccati ode y′ = c0(x) + c1(x) y + c2(x) y2 where now
c0(x) = axn and c2(x) = b where a, b, n are constants. The reduced Riccati ode do not
have y term in it. Only x and y2 in the RHS of the ode.

3.3.20.1 Reduced Riccati with n = −2

For the special case of n = −2 the solution can be written directly as given by Eqworld
ode0106 as

y = λ

x
− x2bλ

bx
2bλ+1x

2bλ + c1
(1)

Where in the above λ is a root of bλ2 + λ+ a = 0.

There is another way to solve the above with n = −2. This can be solved using the
substitution

y = 1
u

(2)

Hence y′ = − u′

u2 and the ode becomes

− u′

u2
= ax−2 + b

1
u2

−u′ = a
u2

x2
+ b

u′ = −au
2

x2
− b

Which is first order Homogeneous ode type (see earlier section). But using (1) is much
simpler method as solution can be written directly. The following example shows that
using (1) and (2) give same solution.

3.3.20.1.1 Example
y′ = −x−2 + 2y2

Comparing this to y′ = axn + by2 shows that a = −1, b = 2, n = −2. We will first solve
this using (1). The quadratic equation is

bλ2 + λ+ a = 0
2λ2 + λ− 1 = 0

The roots are 1
2 ,−1. Let us pick first λ = −1. Hence the solution using (1) is

y = λ

x
− x2bλ

bx
2bλ+1x

2bλ + c1

= −1
x

− x−4

2x
−4+1x

−4 + c1

= −1
x

− x−4

2
−3x

−3 + c1

= 1 + 3c1x3
2x− 3x4c1

= 1 + c2x
3

2x− x4c2

https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf
https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf
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Let us now try λ = 1
2 . The solution becomes

y = λ

x
− x2bλ

bx
2bλ+1x

2bλ + c1

= 1
2x − x2

2x
2+1x

2 + c1

= 1
2x − x2

2x3

3 + c1

= 3c1 − 4x3
4x4 + 6c1x

Both these solution verified OK. Now we will solve the same using the transformation
y = 1

u
.This results in the ode y′ = axn + by2 becoming

u′ = −au
2

x2
− b

u′ = u2

x2
− 2

We see that this transformation made the ode a homogeneous type which can be easily
solved now. This only works for n = −2. Solving this ode gives

u = −x(2 + c1x
3)

−1 + c1x3

Hence

y = 1
u

= 1− c1x
3

2x+ c1x4

Which is the same as first solution above.

3.3.20.2 Reduced Riccati with n 6= −2

For all other cases, there is direct solution to the reduced Riccati given by Eqworld ode0106
and Dr Dobrushkin web page as

w =
√
x

 c1 BesselJ
(

1
2k ,

1
k

√
abxk

)
+ c2 BesselY

(
1
2k ,

1
k

√
abxk

)
ab > 0

c1 BesselI
( 1
2k ,

1
k

√
−abxk

)
+ c2 BesselK

( 1
2k ,

1
k

√
−abxk

)
ab < 0

(2)

y = −1
b

w′

w

k = 1 + n

2

If n satisfies constraint that
n

2n+ 4
Is an integer, then the solution y(x) will come out using algebraic, exponential and
logarithmic functions (including circular functions, such as sin and cosine). If however, n
does not satisfy the above constraint, then (2) can still be used but the solution will come
out using Bessel function (also called cylindrical functions).

Hence (2) can be used for any n to solve the special or reduced Riccati ode.

The constraint that n
2n+4 is an integer, can also be given by saying that n = 4k

1−2k where
k = ±1,±2, · · · .

https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf
https://www.cfm.brown.edu/people/dobrush/am33/Mathematica/ch2/riccati.html
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When n satisfies this, then as mentioned above Eq (2) gives the solution in algebraic,
exponential and logarithmic functions. For all other values, Liouville proved no solution
exist in terms of elementary functions.

These n values come out to be n =
{
· · · ,−40

21 , · · · ,−
8
5 ,

−4
3 ,−4,−8

3 ,−
12
5 , · · · ,−

40
19

}
. We

notice that the limit on both ends goes to n = −2 which is the first special case above. Below
are two examples to illustrate this. First example will use n that meets this constraint,
and the second example will use n that does not meet the constraint.

3.3.20.2.1 Example 1
y′ = x−4 + y2

Comparing this to y′ = axn + by2 shows that a = 1, b = 1, n = −4. We see that n satisfies
that n

2n+4 = 1 which is integer. Hence we expect that applying (2) will give solution in
elementary functions. Since ab > 0 then applying

w =
√
xc1 BesselJ

(
1
2k ,

1
k

√
abxk

)
+ c2 BesselY

(
1
2k ,

1
k

√
abxk

)
k = 1 + −4

2 = 1− 2 = −1

Hence
w =

√
xc1 BesselJ

(
−1
2 ,−x−1

)
+ c2 BesselY

(
−1
2 ,−x

−1
)

Hence
y = −w

′

w

Simplifying the above gives

y = 1
x2

(
tan

(
−1
x
+ c1

)
− x

)

3.3.20.2.2 Example 2
y′ = x3 + y2

Comparing this to y′ = axn + by2 shows that a = 1, b = 1, n = 3. We see that n do not
satisfy that n

2n+4 = 3
6+4 = 3

10 being an integer. Hence we expect that applying (2) will give
solution in cylindrical functions and not elementary functions. Since ab > 0 then applying

w =
√
xc1 BesselJ

(
1
2k ,

1
k

√
abxk

)
+ c2 BesselY

(
1
2k ,

1
k

√
abxk

)
k = 1 + 3

2 = 5
2

Hence
w =

√
xc1 BesselJ

(
1
5 ,

2
5x

5
2

)
+ c2 BesselY

(
1
5 ,

2
5x

5
2

)
Hence

y = −w
′

w

Simplifying the above gives

y =
x

3
2

(
−c1 BesselJ

(
−4
5 ,

2
5x

5
2

)
− BesselY

(
−4
5 ,

2
5x

5
2

))
c1 BesselJ

(
1
5 ,

2
5x

5
2

)
+ BesselY

(
1
5 ,

2
5x

5
2

)
We see that the solution is in terms of cylindrical functions. Because n did not satisfy
that n

2n+4 is integer. But the main point is that (2) can still be used to solve the special
Riccati ode.
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3.3.21 General Riccati ode y′ = f0 + f1y + f2y
2

3.3.21.1 Direct solution of Riccati

There is no general method to solve the general Riccati ode. These are special cases to try

3.3.21.1.1 Case 1 If f0, f1, f2 are constants then this is separable ode and can easily
be solved.

3.3.21.1.2 Case 2 (particular solution is known) Assume we can find a particular
solution y1 to the general Riccati ode y′ = f0(x) + f1(x) y + f2(x) y2. Then let y = y1 + u.
The Riccati ode becomes a Bernoulli ode.

(y1 + u)′ = f0 + f1(y1 + u) + f2(y1 + u)2

y′1 + u′ = f0 + f1y1 + f1u+ f2
(
y21 + u2 + 2y1u

)
y′1 + u′ = f0 + f1y1 + f1u+ f2y

2
1 + f2u

2 + 2f2y1u

y′1 + u′ =
︷ ︸︸ ︷
f0 + f1y1 + f2y

2
1 +f1u+ f2u

2 + 2f2y1u
u′ = f1u+ f2u

2 + 2f2y1u
= u(f1 + 2f2y1) + f2u

2

Which is Bernoulli ode. But this assumes we are able to find particular solution y1 to the
general Riccati ode. There is no method to do that. So this case will not be tried.

3.3.21.1.3 References used

1. https://mathworld.wolfram.com/RiccatiDifferentialEquation.html

2. https://math24.net/riccati-equation.html

3. https://encyclopediaofmath.org/wiki/Riccati_equation

4. https://www.youtube.com/watch?v=iuHDmZ8VutM

5. paper: Methods of Solution of the Riccati Differential Equation. By D. Robert
Haaheim and F. Max Stein. 1969

3.3.21.2 Conversion of Riccati to second order ode

ode internal name "riccati"

Solved using transformation y = −u′

f2u
which generates second order ode in u. This is solved

for u (if possible) then y is found.

3.3.21.3 Examples

3.3.21.3.1 Example 1

y′ = −x+ 1
x
y2 (1)

Comparing to y′ = f0 + f1y + f2y
2 form shows that f0 = −x, f1 = 0, f2 = 1

x
. We will use

the method of converting to second order ode. Let y = −u′

f2u
= xu′

u
. Using this substitution

results in

f2u
′′ − (f ′

2 + f1f2)u′ + f 2
2 f0u = 0

1
x
u′′ −

(
− 1
x2

)
u′ +

(
1
x2

)
(−x)u = 0

1
x
u′′ + 1

x2
u′ − 1

x
u = 0

xu′′ + u′ − xu = 0

https://mathworld.wolfram.com/RiccatiDifferentialEquation.html
https://math24.net/riccati-equation.html
https://encyclopediaofmath.org/wiki/Riccati_equation
https://www.youtube.com/watch?v=iuHDmZ8VutM
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This is Bessel ode the solution is

u = c1 BesselI (0, x) + c2 BesselK (0, x)

But y = xu′

u
, hence

y = x
(c1 BesselI (1, x)− c2 BesselK (1, x))
c1 BesselI (0, x) + c2 BesselK (0, x)

3.3.22 Abel first kind ode y′ = f0 + f1y + f2y
2 + f3y

3

ode internal name "abelFirstKind"

This ODE has the form

y′(x) = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3 (1)

Any of the following forms is called an Abel ode of first kind

y′ = f0 + f1y + f2y
2 + f3y

3

y′ = f1y + f2y
2 + f3y

3

y′ = f2y
2 + f3y

3

y′ = f0 + f2y
2 + f3y

3

y′ = f0 + f3y
3

y′ = f0 + f1y + f3y
3

y′ = f2y
2 + f3y

3

The case for both f0(x) = 0, f2(x) = 0 is not allowed, else it becomes Bernoulli ode. Either
f0 = 0 or f2 = 0 is allowed but not both at same time. The term f3(x) must be there in
all cases. When f2 = 0 then Abel invariant is defined as

∆ = −(−f ′
0f3 + f0f

′
3 + 3f0f3f1)3

27f 4
3 f

5
0

In the case when f2 6= 0, then f2 is first removed from the original ode using the change of
dependent variable y = u(x)− f2

3f3 . Now the new ode will not have f2 in it, and the above
invariant can now be applied to it.

There are two possibilities when f2 = 0. Either ∆ can be constant (i.e. does not depend
on x) or not constant (i.e. function of x). The constant invariant is the easier case and
can be solved. The non constant case is not fully solved and only few cases can be solved
analytically. This is not supported now.

If invariant ∆ is constant and f0 6= 0 (since we can not have both f0 = 0, f2 = 0) then the
substitution

y =
(
f0
f3

) 1
3

u(x)

Results in a separable ode which can be solved. (See example below).

If f2 is not zero, then the first thing we do is transform the ode to remove f2. This is done
using y = u(x) − f2

3f3 . What this means is that the new ode in u(x) will no longer have
u2(x) term in it. It will only have linear and u(x) , u3(x) in it only. Now we can apply the
Abel invariant on this new ode.

After transformation to remove f2 we check the if Abel invariant is constant or not. If
not constant, then we check if it is Chini ode. I implemented solving Chini ode for special
case only. Chini ode is similar to Abel but does not have the y2 term. This is why the
transformation helps. This is the form of general Chini ode

y′ = f0(x) + f1(x) y + f3(x) yn
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When n = 2 then it is Riccati, and if n = 3 then it also Abel and for n > 3 it is general
Chini. There is no general method to solve Chini for arbitrary n. See my section on Chini
ode on how to solve this ode for specific conditions.

References: Maple help pages.

3.3.22.1 Solution method

(This all Need to be revised, as I am using different transformation here than described
above, I need to clarify all of this).

Find what is called the abel invariant and check if constant.

∆ = −(−f ′
0f3 + f0f

′
3 + 3f0f3f1)3

27f 4
3 f

5
0

The substitution y = 1
u
is now applied. Therefore y′ = − 1

u2u
′. Substituting this in (1) gives

− 1
u2
u′ = f0(x) + f1(x)

1
u
+ f2(x)

1
u2

+ f3(x)
1
u3

−uu′ = u3f0(x) + u2f1(x) + uf2(x) + f3(x)
uu′ = −u3f0(x)− u2f1(x)− uf2(x)− f3(x) (2)

Using the substitution u = 1
E

(
y + f2

3f3

)
where E = exp

(∫
f1 − f2

2
3f3dx

)
in the above gives

1
E

(
y + f2

3f3

)
u′ = −u3f0(x)− u2f1(x)− uf2(x)− f3(x)

Hence

u′ = 1
E2

dE

dx

(
y + f2

3f3

)
+ 1
E

(
y′ + 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
= 1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1
E

(
− 1
u2
u′ + 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
u′ + u′

Eu2
= 1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3E
f ′
2f3 − f2f

′
3

f 2
3

u′
(
1 + 1

Eu2

)
= 1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3E
f ′
2f3 − f2f

′
3

f 2
3

u′ = Eu2

1 + Eu2

(
1
E2

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3E
f ′
2f3 − f2f

′
3

f 2
3

)
u′ = u2

1 + Eu2

(
1
E

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
Substituting the above into (2) gives

u
u2

1 + Eu2

(
1
E

dE

dx

(
1
u
+ f2

3f3

)
+ 1

3
f ′
2f3 − f2f

′
3

f 2
3

)
= −u3f0 − u2f1 − uf2 − f3

Therefore

E = exp
(∫

f1(x)−
f 2
2 (x)

3f3 (x)
dx

)
ξ =

∫
f3(x)E2dx

u = 1
E

(
y + f2(x)

3f3 (x)

)
The above are used to convert the first kind Abel ode to canonical form. (To finish).
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3.3.22.2 About equivalence between two Abel ode’s

Given one Abel ode y′(x) = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3, it is called equivalent to
another Abel ode u′(t) = g0(t)+ g1(t)u+ g2(t)u2+ g3(t)u3 if there is transformation which
converts one to the other. This transformation is given by

x = F (t) (1)
y(x) = P (t)u(t) +Q(t)

Where F ′ 6= 0, P 6= 0. If such transformation can be found, then if given the solution of one
of these ode’s, the solution to the other ode can directly be fond using this transformation.
In this case, we also call these two ode as belonging to same Abel equivalence class. In
other words, an Abel equivalence class is the set of all Abel ode’s that can be transformed
to each others using the same transformation given in (1).

There are many disjoint Abel equivalence classes, each class will have all the ode that
can be transformed to each others using some specific transformation (1). Here is one
example below taken from paper by A.D.Roch and E.S.Cheb-Terrab called "Abel ODEs:
Equivalence and integrable classes".

Given one Abel ode
y′(x) = 1

2x+ 8y
2 + x

2x+ 8y
3 (2)

Which is known to have solution

c1 +
√
y2x− 4y − 1

y
+ 2arctan

(
1 + 2y√

y2x− 4y − 1

)
= 0 (3)

And now we are given a second Abel ode

u′(t) = 1
t
u+ f ′t− f

2 (f + 3t)u
2 + (f ′t− f) (t− f)

2 (f + 3t) u3 (4)

And asked to find its solution. If we can determine if (4) is equivalent to (2) then the
solution of (4) can be obtained directly. It can be found that

F (t) = f(t)
t

− 1

Q(t) = 0
P (t) = t

Where see that F ′(t) 6= 0 and P (t) 6= 0. Hence (1) becomes

x = f(t)
t

− 1 (5)

y(x) = tu(t)

Applying the transformation (5) on the solution (3) results in the solution of (4) as

A =

√(
f

t
− 1
)
t2u2 − 4tu− 1

c1 +
A

tu
+ 2arctan

(
1 + 2tu
A

)
= 0 (6)

Equation (6) above is the implicit solution to (4) obtained from the solution to (2) by
using equivalence transformation as the two ode’s are found to be equivalent. Finding the
transformation (5) requires more calculation and not trivial. See the above paper for more
information.
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3.3.22.3 Algorithm for solving Abel ode

The following is the algorithm for solving Abel ode.� �
FUNCTION abel_solver(ode)

INPUT: Abel ode y'=f0 + f1 y + f2 y^2 + f3 y^3

IF f2 = 0 then -- note, f0 can not be zero now. Else not abel ode.
-- as both f0 and f2 can not be zero at same time.

Check if the Abel invariant DEL is constant or not.

IF DEL not constant (i.e. depends on x) then
RETURN can not solve.

ELSE
Apply transformation y= (f0/f3)^(1/3)*u(x).

The new ode in u(x) should be separable
Solve for u(x)
Transform back to y(x)
RETURN

END IF
ELSE

Apply transformation y=u-f2/(3*f3) to remove f2.
This generates new_ode in u(x).

IF new_ode happens to be anything other than Abel or Chini
(such as separable, or quadrature) then solve it.
Apply reverse transformation to go back from u(x) to y(x)
using y=u - f2/(3*f3)
RETURN

ELSE
IF new_ode is chini y'=f*y^n + g*y + h THEN

IF Chini invariant is constant THEN
Solve. See Formula in Kamke
Aplying back transformation to y(x) using y=u - f2/(3*f3)
RETURN

ELSE
RETURN can not solve. Chini

END IF
ELSE

IF new_ode is Abel THEN
CALL abel_solver(new_ode) again recursive call.
This will check if invariant is constant or not and
solve it as separable if so.
RETURN solution if any.

ELSE
RETURN can not solve.

END IF
END IF

END IF
END IF� �
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3.3.22.4 Examples

3.3.22.4.1 Example 1
y′ = −xe−x − y + xe2xy3

Comparing to
y′ = f0 + f1y + f2y

2 + f3y
3

Shows that

f0 = −xe−x

f1 = −1
f2 = 0
f3 = xe2x

Since f2 = 0 then we check is if the invariant depends on x or not.

∆ = −(−f ′
0f3 + f0f

′
3 + 3f0f3f1)3

27f 4
3 f

5
0

= −(−(−e−x + xe−x) (xe2x) + (−xe−x) (e2x + 2xe2x) + 3(−xe−x) (xe2x) (−1))3

27 (xe2x)4 (−xe−x)5

= 0

Since ∆ does not depend on x, then this is the easy case. We can convert the ode to
separable using

y =
(
f0
f3

) 1
3

u

=
(
−xe−x

xe2x

) 1
3

u

=
(
−e−3x) 1

3 u

= −e−xu

Applying this change of variable to the original ode results in

e−x(u′ − u) = −xe−x + xu3e−x − e−xu

u′ − u = −x+ xu3 − u

u′ = −x+ xu3

= x
(
u3 − 1

)
Which is separable. Solving and simplifying gives

3
√
3x2−

√
3 ln

 4
3
(

(1+2u)2
3 + 1

)
−2

√
3 ln (u− 1)+6

√
3c1+6arctan

(√
3(2u+ 1)

3

)
= 0

But u = −yex. Hence the solution to the original Abel ode is

3
√
3x2−

√
3 ln

 4
3
(

(1−2yex)2
3 + 1

)
−2

√
3 ln (−yex − 1)+6

√
3c1+6arctan

(√
3(−2yex + 1)

3

)
= 0
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3.3.23 Chini first order ode y′ = f(x) (y′)n + g(x) y + h(x)
ode internal name "first_order_ode_chini"

This ode is normally generated when we get an Abel ode of first kind f0+f1y+f2y2+f3y3
and then remove the square term f2 using the transformation y = u(x) − f2

3f3 . Again as
mentioned above, this is done when the Abel invariant is constant. See above section.

Now we check if the Chini invariant is also constant or not. The Chini invariant is given
by

∆ = f−n−1h−2n+1(fh′ − f ′h− ngfh)n n−n

And if this comes out to be constant (i.e. do not depend on x), then we can now solve the
Chini ode using method given in Kamke page 303.

Otherwise there is no general method to solve it. This below is my translation of Kamke
1.55, page 303 on Chini ode. He says, given ode

y′ = f(x) (y′)n + g(x) y + h(x) (1)

If for a suitable constants α, β(
h

f

) 1
n

= e
∫
gdx

(
β + α

∫
he−

∫
gdxdx

)
(2)

if and when

z =
(
h

f

) 1
n

(3)

A solution of the linear equation
z′ − gz = αh (4)

you get the solutions of the original ode

y =
(
h

f

) 1
n

u(x) (5)

Through which ∫
du

un − αu+ 1 + c1 =
∫ (

h

f

) 1
n

hdx (6)

Is determined. For h = 0 the ode is Bernoulli. Lets try to figure how the above works on
number of examples.

3.3.23.1 Example 1

y′ = 3y4 + x3

This one, Maple nor Mathematica can solve. Lets see why. First we check the Chini
invariant. We see that f = 3, g = 0, h = x3, n = 4, hence

∆ = f−n−1h−2n+1(fh′ − f ′h− ngfh)n n−n

= 3−4−1(x3)−2(4)+1 (3(3x2)− 0− 0
)4 4−4

= 3−5(x3)−7 (9x2)4 4−4

= 3−54−4x−2194x8

= 3−54−494x−13

Since Chini invariant then it can’t be solved using Kamke shown method on page 303. To
verify, let us try to solve it using Kamke method and see what happens.
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The first thing is to find α, β such that (2) is true. EQ (2) becomes(
h

f

) 1
n

= e
∫
gdx

(
β + α

∫
he−

∫
gdxdx

)
(
x3

3

) 1
4

= e
∫
0dx
(
β + α

∫
x3e−

∫
0dxdx

)
= β + α

∫
x3dx

= β + α
x4

3

If we set β = 0 then (
x3

3

) 1
4

= α

(
x4

3

)
We see it is not possible to find constant α to satisfy this. So we must always check the
Chini invariant before trying, this will save time.

3.3.23.2 Example 2

y′ = y4 + x
(
− 4

3
)

This one, both Maple and Mathematica can solve. Lets see how. First we check the Chini
invariant. It should come out as constant. We see that f = 1, g = 0, h = x

(
− 4

3
)
, n = 4,

hence

∆ = f−n−1h−2n+1(fh′ − f ′h− ngfh)n n−n

= 1
(
x
(
− 4

3
))−2(4)+1

(
d

dx

(
x
(
− 4

3
))

− 0− 0
)4

4−4

=
(
x−

4
3

)−7
(
− 4
3x 7

3

)4

4−4

= 4−4x
28
3

(
44
34x

− 28
3

)
= 4−4

(
44
34

)
= 1

81

The above ∆ is also used in the solution below. So we need to find it each time. It is a
constant in this example, this is why Maple and Mathematica were able to solve it. Now
we follow Kamke method to actually solve the ode. The first thing is to find α, β such
that (2) is true. We see that f = 1, g = 0, h = x

(
− 4

3
)
, n = 4. Now we need to find α. This

can be found more easily from EQ (4)

z′ − gz = αh (4)

Where z =
(

h
f

) 1
n =

(
x

(
− 4

3
)

1

) 1
4

= x−
1
3 . Hence z′ = −1

3x
− 4

3 . Therefore (4) becomes (given

that g = 0)

−1
3x

− 4
3 = αx

(
− 4

3
)

α = −1
3

Since ∆ is not zero, then solution is directly given as (from Kamke)
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∫ α
(

h
f

)−1
n

y(x) 1
un

∆ − u+ 1du−
∫
α

(
h

f

)−1
n

hdx+ c1 = 0

∫ − 1
3x

1
3 y(x) 1

81u4 − u+ 1du+
1
3

∫
x
( 1
3
)
x
(
− 4

3
)
dx+ c1 = 0∫ − 1

3x
1
3 y(x) 1

81u4 − u+ 1du+
1
3

∫ 1
x
dx+ c1 = 0∫ − 1

3x
1
3 y(x) 1

81u4 − u+ 1du+
1
3 ln (x) + c1 = 0

3.3.23.3 Example 3

y′ = ay5 + bx
(
− 5

4
)

This is Kamke 1.52. First we find the Chini invariant. It should come out as constant. We
see that f = a, g = 0, h = bx−

5
4 , n = 5, hence

∆ = f−n−1h−2n+1(fh′ − f ′h− ngfh)n n−n

= − 1
1024

1
ab4

The above ∆ is also used in the solution below. It is a constant in this example, hence
can be solved. Now we follow Kamke method to actually solve the ode. Now we need to
find α. This can be found more easily from EQ (4)

z′ − gz = αh (4)

Where z =
(

h
f

) 1
n =

(
bx− 5

4
a

) 1
5 =

(
b
a

) 1
5 x−

1
4 . Hence z′ = −

(
b
a

) 1
5 1

4x
− 5

4 . Therefore (4) becomes
(given that g = 0)

−
(
b

a

) 1
5 1
4x

− 5
4 = αbx−

5
4

α = − 1
4a 1

5 b
4
5

Since ∆ is not zero, then solution is directly given as (from Kamke)

∫ α
(

h
f

)−1
n

y(x) 1
un

∆ − u+ 1du−
∫
α

(
h

f

)−1
n

hdx+ c1 = 0

∫ − 1

4a
1
5 b

4
5

(
bx

− 5
4

a

)− 1
5
y(x) 1

−1024ab4u4 − u+ 1du+
∫

− 1
4a 1

5 b
4
5

(
bx−

5
4

a

)− 1
5

bx−
5
4dx+ c1 = 0

∫ −x
1
4

4b y(x) 1
−1024ab4u4 − u+ 1du+

∫
− 1
4xdx+ c1 = 0

∫ −x
1
4

4b y(x) 1
−1024ab4u4 − u+ 1du−

1
4 ln (x) + c1 = 0

Note: In the above two examples ∆ was not zero. What to do if we obtain ∆ = 0 ? in this
case, the solution becomes

∫ (
h
f

)−1
n

1
un + 1du−

∫ (
h

f

)−1
n

hdx+ c1 = 0
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3.3.24 differential type ode y′ = f(x, y)
ode internal name "differentialType"

These are special case ode where the ode can be written as complete differential d(f(y)) =
d(g(x)) which is then solved by just integrating.

3.3.24.1 Example 1

dy

dx
= x− y

x+ y

(x+ y) dy = (x− y) dx
xdy + ydy = (x− y) dx

ydy = −xdy + xdx− ydx (1)

But RHS is complete differential because

−xdy + xdx− ydx = d

(
1
2x

2 − xy

)
Hence (1) becomes

ydy = d

(
1
2x

2 − xy

)
Integrating ∫

ydy =
∫
d

(
1
2x

2 − xy

)
1
2y

2 = 1
2x

2 − xy + c

y2 = x2 − 2xy + 2c

Which is an implicit solution. This method works if it is possible by the solver to detect
that the ode can be written as complete differentials or not.

3.3.24.2 Example 2

dy

dx
= −y

x
+ x2

dy =
(
−y + x3

x

)
dx

xdy = −ydx+ x3dx

0 = −xdy − ydx+ x3dx (1)

But RHS is complete differential because

−xdy − ydx+ x3dx = d

(
x4

4 − xy

)
Hence (1) becomes

0 = d

(
x4

4 − xy

)
Integrating gives

0 = x4

4 − xy + c

solving for y gives
y = x3

4 + c

x
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3.3.25 Series method

3.3.25.1 Algorithm flow chart

The algorithms are summarized in the following flow chart.

Figure 3.5: Flow chart for series solution for first order
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Figure 3.6: Algorithm for series solution for first orde
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3.3.25.2 Algorithm pseudocode

function solve_first_order_ode_series(y′ = f(x, y))
if f(x, y) analytic at expansion point x0 then

Apply Taylor series defintion directly to find the series expansion. Let
y0 = y(x0) and

y = y0 +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)
∣∣∣∣x=x0
y=y0

where

F0 = f(x, y)

Fn = d

dx
Fn−1

= ∂Fn−1

∂x
+
(
∂Fn−1

∂y

)
F0

return y as the solution
else

if f(x, y) not linear in y(x) then
return – Not supported.

else
Write the ode as y′ + p(x)y = q(x)
if limx→x0(x− x0)p(x) does not exist then

return Irregular singular point. Not supported.
else

Regular singular point. Expand p(x) in series if not already a polyno-
mial.

if unable to obtain series for p(x) then
return Not supported.

else
Use Frobenius series. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r)anxn+r−1

Figure 3.7: Algorithm for series solution for first orde

3.3.25.3 Ordinary point using standard power series method

ode internal name "first_order_ode_power_series_method_ordinary_point"

Expansion point is an ordinary point. Standard power series. The ode must be linear in
y′ and y at this time. See below for examples.
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3.3.25.4 Ordinary point using Taylor series method

ode internal name "first_order_ode_taylor_series_method_ordinary_point"

Alternative method to solving the above example is given here which is to use the Taylor
series method. This is derived as follows.

Let
y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is not
zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1)!
dnf

dxn

∣∣∣∣
x0,y0

But
df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2
= d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3
= d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(
∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f
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Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1)! Fn|x0,y0
(6)

See below for examples.

3.3.25.4.1 Example 1
y′ + 2xy = x

Solved using power series

Expansion is around x = 0. The (homogeneous) ode has the form y′ + p(x) y = 0. We see
that p(x) is defined as is at x = 0. Hence this is an ordinary point, also the RHS has series
expansion at x = 0. It is very important to check that the RHS has series expansion at
x = 0. Otherwise this method will fail and we must use Frobenius even if x = 0 is ordinary
point for the LHS of the ode. For example for the ode y′ + 2xy = 1

x
or y′ + 2xy =

√
x

standard power series will fail. See examples below.

Using standard power series, let

y =
∞∑
n=0

anx
n

y′ =
∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1

The ode now becomes
∞∑
n=1

nanx
n−1 + 2x

∞∑
n=0

anx
n = x

∞∑
n=1

nanx
n−1 +

∞∑
n=0

2anxn+1 = x

Reindex so that all powers on x are n gives
∞∑
n=0

(n+ 1) an+1x
n +

∞∑
n=1

2an−1x
n = x

For n = 0, the RHS is zero, since there is no matching term with x0, therefore the above
gives

a1 = 0

For n = 1, the RHS is x1 which gives

(n+ 1) an+1 + 2an−1 = 1
2a2 + 2a0 = 1

a2 =
1− 2a0

2

For n ≥ 2 the RHS is zero and we have recurrence relation. Therefore we have

(n+ 1) an+1 + 2an−1 = 0

For n = 2

3a3 + 2a1 = 0

a3 = −2a1
3 = 0
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For n = 3

4a4 + 2a2 = 0

a4 = −1
2a2 = −1

2

(
1− 2a0

2

)
= 2a0 − 1

4

And so on. The solution is

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= a0 +
(
1− 2a0

2

)
x2 +

(
2a0 − 1

4

)
x4 + · · ·

= a0

(
1− x2 + 1

2x
4 + · · ·

)
+
(
1
2x

2 − 1
4x

4 + · · ·
)

Which can be written as

y = y(0)
(
1− x2 + 1

2x
4 + · · ·

)
+
(
1
2x

2 − 1
4x

4 + · · ·
)

Solved using Taylor series

y′ + 2xy = x

y′ = x− 2xy
= f(x, y)

For this method to work, f(x, y) must be analytic at x = x0, the expansion point. Let
expansion point be x = 0. Let y(0) = y0. Then

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0
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Where F0 = f(x, y) and Fn = ∂Fn−1
∂x

+
(

∂Fn−1
∂y

)
F0. Hence

F0 = (x− 2xy)

F1 =
d

dx
F0

=
(
∂F0

∂x

)
+
(
∂F0

∂y

)
F0

=
(
∂(x− 2xy)

∂x

)
+
(
∂(x− 2xy)

∂y

)
(x− 2xy)

= (1− 2y)− 2x(x− 2xy)
= 4x2y − 2y − 2x2 + 1

F2 =
d2

dx2
F1

=
(
∂F1

∂x

)
+
(
∂F1

∂y

)
F0

=
(
∂

∂x

(
4x2y − 2y − 2x2 + 1

))
+
(
∂

∂y
4x2y − 2y − 2x2 + 1

)
(x− 2xy)

= (8xy − 4x) +
(
4x2 − 2

)
(x− 2xy)

= 12xy − 8x3y − 6x+ 4x3

F3 =
d3

dx3
F2

=
(
∂F2

∂x

)
+
(
∂F2

∂y

)
F0

=
(
∂

∂x

(
12xy − 8x3y − 6x+ 4x3

))
+
(
∂

∂y

(
12xy − 8x3y − 6x+ 4x3

))
(x− 2xy)

= 12y − 24x2y − 6 + 12x2 +
(
12x− 8x3

)
(x− 2xy)

= 12y − 48x2y + 16x4y + 24x2 − 8x4 − 6

And so on. Evaluating the above at x = 0, y = y0 gives

F0 = 0
F1 = −2y0 + 1
F2 = 0
F3 = 12y0 − 6

Hence

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

= y0 + xF0 +
x2

2 F1 +
x3

6 F2 +
x4

24F3 + · · ·

= y0 + 0 + x2

2 (−2y0 + 1) + 0 + x4

24(12y0 − 6) + · · ·

= y0 − 2y0
x2

2 + x2

2 + 1
2y0x

4 − x4

4 +

= y0

(
1− x2 + 1

2x
4
)
+ x2

2 − x4

4 + · · ·
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3.3.25.4.2 Example 2 Solved using Taylor series

Another example using Taylor series method.

y′ + 2xy = 1 + x+ x2

y′ = 1 + x+ x2 − 2xy
= f(x, y)

Let expansion point be x = 0. Let y(0) = y0. Then

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

Where F0 = f(x, y) and Fn = ∂Fn−1
∂x

+
(

∂Fn−1
∂y

)
F0. Hence

F0 = 1 + x+ x2 − 2xy

F1 =
(
∂F0

∂x

)
+
(
∂F0

∂y

)
F0

= 1 + 2x− 2y + (−2x)
(
1 + x+ x2 − 2xy

)
= 4x2y − 2y − 2x2 − 2x3 + 1

F2 =
(
∂F1

∂x

)
+
(
∂F1

∂y

)
F0

=
(
8xy − 4x− 6x2

)
+
(
4x2 − 2

)
(x− 2xy)

= 12xy − 8x3y − 6x− 6x2 + 4x3

F3 =
(
∂F2

∂x

)
+
(
∂F2

∂y

)
F0

= 12y − 24x2y − 6− 12x+ 12x2 +
(
12x− 8x3

) (
1 + x+ x2 − 2xy

)
= 12y − 48x2y + 16x4y + 24x2 + 4x3 − 8x4 − 8x5 − 6

And so on. Evaluating the above at x = 0, y = y0 gives

F0 = 1
F1 = −2y0 + 1
F2 = 0
F3 = 12y0 − 6

Hence

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

= y0 + F0x+ F1
x2

2 + F2
x3

6 + F3
x4

24 + · · ·

= y0 + x+ (−2y0 + 1) x
2

2 + (12y0 − 6) x
4

24 + · · ·

= y0

(
1− x2 + 1

2x
4 + · · ·

)
+
(
x+ 1

2x
2 − 1

4x
4 + · · ·

)
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3.3.25.4.3 Example 3 Solved using Taylor series

y′ + 2xy2 = 1 + x+ x2

y′ = 1 + x+ x2 − 2xy2

= f(x, y)

Let expansion point be x = 0. Let y(0) = y0. Then

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

Where F0 = f(x, y) and Fn = ∂Fn−1
∂x

+
(

∂Fn−1
∂y

)
F0. Hence

F0 = 1 + x+ x2 − 2xy2

F1 =
(
1 + 2x− 2y2

)
+ (−4xy)

(
1 + x+ x2 − 2xy2

)
= −4x3y + 8x2y3 − 4x2y − 4xy + 2x− 2y2 + 1

F2 =
(
∂F1

∂x

)
+
(
∂F1

∂y

)
F0

=
(
−12x2y + 16xy3 − 8xy − 4y + 2

)
+
(
−4x3 + 24x2y2 − 4x2 − 4x− 4y

) (
1 + x+ x2 − 2xy2

)
= −4x5 + 32x4y2 − 8x4 − 48x3y4 + 32x3y2 − 12x3 + 32x2y2 − 16x2y − 8x2 + 24xy3 − 12xy − 4x− 8y + 2

F3 =
(
∂F2

∂x

)
+
(
∂F2

∂y

)
F0

And so on. Evaluating the above at x = 0, y = y0 gives

F0 = 1
F1 = −2y20 + 1
F2 = −8y0 + 2

Hence

y = y(0) +
∞∑
n=0

xn+1

(n+ 1)! Fn(x, y)|x=0,y0

= y0 + F0x+ F1
x2

2 + F2
x3

6 + F3
x4

24 + · · ·

= y0 + x+
(
−2y20 + 1

) x2
2 + (−8y0 + 2) x

3

6 + · · ·

= y0

(
1− 4

3x
3 + · · ·

)
+ y20

(
−x2 + · · ·

)
+ · · ·+

(
x+ 1

2x
2 + 1

3x
3 + · · ·

)

3.3.25.4.4 Example 4 Solved using power series

y′ + y = sin x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We see
that p(x) is defined as is at x = 0. Hence this is ordinary point, also the RHS has series
expansion at x = 0.

Let y =
∑∞

n=0 anx
n, y′ =

∑∞
n=0 nanx

n−1 =
∑∞

n=1 nanx
n−1. The ode becomes

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = sin x

Indexing so all powers of x start at n gives
∞∑
n=0

(n+ 1) an+1x
n +

∞∑
n=0

anx
n = sin x
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Expanding sin x in series gives
∞∑
n=0

(n+ 1) an+1x
n +

∞∑
n=0

anx
n = x− x3

3! +
x5

5! − · · ·

For n = 0, there is no term on RHS with x0, hence we obtain

a1 + a0 = 0
a1 = −a0

For n = 1 there is one term x1 on RHS, hence

2a2 + a1 = 1

a2 =
1− a1

2 = 1 + a0
2

For n = 2 there is no term on RHS with x2 hence

3a3 + a2 = 0

a3 = −a23 = −
1+a0
2
3 = −1

6a0 −
1
6

For n = 3 there is term −1
6x

3 on RHS, hence

4a4 + a3 = −1
6

a4 =
−1

6 − a3
4 =

−1
6 −

(
−1

6a0 −
1
6

)
4 = 1

24a0

And so on. The solution is

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + · · ·

= a0 − a0x+
(
1 + a0

2

)
x2 +

(
−1
6a0 −

1
6

)
x3 +

(
1
24a0

)
x4 + · · ·

= a0

(
1− x+ 1

2x
2 − 1

6x
3 + 1

24x
4 − · · ·

)
+
(
1
2x

2 − 1
6x

3 + · · ·
)

3.3.25.5 Regular singular point using Frobenius series method.

ode internal name "first_order_ode_series_method_regular_singular_point"

expansion point is a regular singular point. Standard power series. The ode must be linear
in y′ and y at this time.

3.3.25.5.1 Example 1
y′ + 2xy =

√
x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We see
that p(x) is analytic at x = 0. However the RHS has no series expansion at x = 0 (not
analytic there). Therefore we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1
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The (homogenous) ode becomes
∞∑
n=0

(n+ r) anxn+r−1 + 2x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

2anxn+r+1 = 0

Reindex so all powers on x are the lowest gives
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=2

2an−2x
n+r−1 = 0 (1)

For n = 0 , Eq(1) gives
ra0x

r−1 = 0

Hence r = 0 since a0 6= 0. Therefore the balance equation is

mc0x
m−1 =

√
x

Where r is replaced my m and an is replaced by cn. The above will used below to find yp.
For n = 1, Eq(1) gives

(1 + r) a1xr = 0
a1 = 0

For n ≥ 2 the recurrence relation is from (1)

(n+ r) an + 2an−2 = 0

an = − 2an−2

(n+ r) (2)

Or for r = 0 the above simplifies to

an = − 2
n
an−2 (2A)

Eq (2A) is what is used to find all an for For n ≥ 2. Hence for n = 2 and remembering
that a0 = 1 gives

a2 = −1

For n = 3
a3 = −2

3a1 = 0

For n = 4
a4 = −1

2a2 =
1
2

For n = 5, 7, · · · and all odd n then an = 0. For n = 6

a6 = −1
3a4 = −1

6

And so on. Hence (using a0 = 1)

yh = c1

∞∑
n=0

anx
n+r

= c1

∞∑
n=0

anx
n

= c1
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= c1

(
1− x2 + 1

2x
4 − 1

6x
6 + · · ·

)
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Now we need to find yp using the balance equation. From above we found that

ra0x
r−1 = x

1
2

Renaming a to c and r as m so not to confuse terms used for yh, the above becomes

mc0x
m−1 = x

1
2

Hence m− 1 = 1
2 or m = 3

2 . Therefore mc0 = 1 or c0 = 2
3 . Now we can find the series for

yp using

yp =
∞∑
n=0

cnx
n+m

= x
3
2

∞∑
n=0

cnx
n

To find cm we use the same recurrence relation found for yh but change r to m and a to c.
From above we found

(n+ r) an + 2an−2 = 0

Hence it becomes
(n+m) cn + 2cn−2 = 0

The above is valid for n ≥ 2. For n = 0 we have found c0 already. For c1 using the above
ra1 = 0 hence it becomes mc1 = 0 which implies

c1 = 0

since m 6= 0. Now we are ready to find few cn terms. The above recurrence relation
becomes for m = 3

2 (
n+ 3

2

)
cn + 2cn−2 = 0

cn = −2cn−2(
n+ 3

2

)
Hence for n = 2

c2 =
−2c0(
2 + 3

2

) =
−2
(2
3

)(
2 + 3

2

) = − 8
21

For n = 3
c3 =

−2c1(
3 + 3

2

) = 0

For n = 4
c4 =

−2c2(
4 + 3

2

) =
−2
(
− 8

21

)(
4 + 3

2

) = 32
231

And so on. Hence

yp = x
3
2

∞∑
n=0

cnx
n

= x
3
2
(
c0 + c1x+ c2x

2 + · · ·
)

Hence the final solution is

y = yh + yp

= c1

(
1− x2 + 1

2x
4 − 1

6x
6 + · · ·

)
+ x

3
2

(
2
3 +− 8

21x
2 + 32

231x
4 − · · ·

)
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3.3.25.5.2 Example 2

y′ + 2xy = 1
x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We see
that p(x) is defined as is at x = 0. However the RHS has no series expansion at x = 0.
Therefore we must use Frobenius series. This is the same ode as example 1. So we go
straight to find yp as yh is the same. Now we need to find yp using the balance equation.
From above we found that

ra0x
r−1 = 1

x
Renaming a to c and r as m so not to confuse terms used for yh, the above becomes

mc0x
m−1 = x−1

Hence m − 1 = −1 or m = 0. Therefore mc0 = 1. But since m = 0 then no solution for
c0. Hence it is not possible to find series solution. This is an example where the balance
equation fails and so we have to use asymptotic expansion to find solution, which is not
supported now.

3.3.25.5.3 Example 3

y′ = 1
x

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We see
that p(x) = 0 is analytic at x = 0. However the RHS has no series expansion at x = 0
(not analytic there). Therefore we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

The (homogenous) ode becomes
∞∑
n=0

(n+ r) anxn+r−1 = 0 (1)

For n = 0
ra0x

r−1 = 0
Hence r = 0 since a0 6= 0. Therefore the ode satisfies

y′ = ra0x
r−1

Eq (1) becomes
∞∑
n=0

nanx
n−1 = 0

nanx
n−1 = 0 (2)

Therefore for all n ≥ 1 we have an = 0. Hence

yh = a0

Now we need to find yp using the balance equation. From above we found that

ra0x
r−1 = 1

x

Changing r to m and a0 to c0 so not to confuse notation gives

mc0x
m−1 = x−1

Hence m− 1 = −1 or m = 0. Therefore there is no solution for c0. Unable to find yp there-
fore no series solution exists. Asymptotic methods are needed to solve this. Mathematica
AsymptoticDSolveValue gives the solution as y(x) = c+ ln x.
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3.3.25.5.4 Example 4

y′ = 1
x2

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We see
that p(x) = 0 is analytic at x = 0. However the RHS has no series expansion at x = 0
(not analytic there). Therefore we must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

The (homogenous) ode becomes
∞∑
n=0

(n+ r) anxn+r−1 = 0 (1)

For n = 0
ra0x

r−1 = 0
Hence r = 0 since a0 6= 0. Therefore the balance equation is

ra0x
r−1 = 1

x2

Or by changing r to m and a0 to c0 so not to confuse notation with yh gives

mc0x
m−1 = x−2 (2)

Eq (1) becomes, where r = 0 now
∞∑
n=0

nanx
n−1 = 0

nanx
n−1 = 0 (2)

n = 0 is not used since that was used to find r. Therefore we start from n = 1. For all
n ≥ 1 we see from (2) that an = 0. Hence

yh = c1(a0 +O(x))

Letting a0 = 1 the above becomes

yh = c1(1 +O(x))

Now we need to find yp using the balance equation. From (2) above we found that

mc0x
m−1 = x−2

To balance, we need m− 1 = −2 or m = −1 and mc0 = 1 or c0 = −1. Therefore

yp = xm
∞∑
n=0

c0x
n

Where c0 = −1 and all cn for n ≥ 1 are found using the recurrence relation from finding
yh. But from above we found that all an = 0 for n ≥ 1. Hence cn = 0 also for n ≥ 1.
Therefore

yp = xmc0

= −1
x

+O
(
x2
)

Hence the solution is

y = yh + yp

= c1
(
1 +O

(
x2
))

+
(
−1
x

+O
(
x2
))

If we to ignore the big O, the above becomes

y = c1 −
1
x

To verify, we see that y′ = 1
x2 .
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3.3.25.5.5 Example 5
y′ + y

x
= 0

Expansion is around x = 0. The (homogenous) ode has the form y′ + p(x) y = 0. We see
that p(x) = 1

x
is not analytic at x = 0 but limx→0 xp(x) = 0 is analytic. Therefore we

must use Frobenius series in this case. Let

y =
∞∑
n=0

anx
n+r (A)

y′ =
∞∑
n=0

(n+ r) anxn+r−1

The ode becomes
∞∑
n=0

(n+ r) anxn+r−1 + 1
x

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r−1 = 0

∞∑
n=0

((n+ r) an + an)xn+r−1 = 0

∞∑
n=0

(n+ r + 1) anxn+r−1 = 0 (1)

For n = 0
(r + 1) a0 = 0

Hence r = −1 since a0 6= 0. Eq (1) becomes, where r = −1 now
∞∑
n=0

nanx
n = 0

nanx
n−1 = 0 (2)

n = 0 is not used since that was used to find r. Therefore we start from n = 1. For n = 1
the above gives a1 = 0 and same for all n ≥ 1. Hence from Eq (A), since y =

∑∞
n=0 anx

n+r

then (note: When there is only one
∑

term left in (1) as in this case, then this means
there is no recurrence relation and all an = 0 for n > 0).

y = c1

(
∞∑
n=0

anx
n+r

)

= c1

(
∞∑
n=0

anx
n−1

)
= c1

(
a0x

−1 + 0 + 0 + · · ·+O(x)
)

Letting a0 = 1 the above becomes

y = c1
(
x−1 +O(x)

)
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3.3.25.6 irregular singular point

ode internal name "first order ode series method. Irregular singular point"

expansion point is an irregular singular point. Not supported.

3.3.26 Laplace method
ode internal name "first_order_laplace"

These are ode’s solved using Laplace method. Currently only linear odes are supported.
Both constant coefficients and time varying coefficients. For time varying only, only coeffi-
cients that are polynomial in t are allowed. For example the following ode can be solved
using Laplace

ty′ + y = 0
(1 + t) y′ + ty = 0

y′ + 3t2y = 0

But not
sin (t) y′ + y = 0

Initial conditions can be at zero or not at zero or not given. For time varying, the ode is
transform to Laplace using the property

L(tny(t)) = (−1)n dn

dsn
Y (s)

What this means, is that having t as coefficient will generate first order ode in Y (s) which
needs to be solved first to find Y (s) before applying inverse Laplace transform to find the
solution y(t). A coefficient t2 will generate second order ode in Y (s) and t3 will generate a
third order ode in Y (s) and so on. This means if we are to use Laplace transform to solve
first order ode, we could end having to solving an ode in Y (s) of much higher order and
the generated solution Y (s) might become too complicated to even inverse Laplace it.

So it is not really useful to use Laplace method to solve time varying first order ode of
coefficient of polynomial of power tn where n > 1.

When the initial condition of the original ode is not at zero, the original condition must
be shifted so it is at zero. This is more critical to do for time varying than for constant
coefficients ode when we use Laplace transform method. This means we have to do change
of variables first. See examples below.

3.3.26.1 Algorithm for solving using Laplace transform for time varying ode� �
-- Input is first ode in y(t) with possible IC in form y(t0)=y0
-- output is solution y(t) using Laplace transform.

-- The first step is convert the ODE in y(t) to ODE in Y(s) using
-- the relation L(t^n f(t) ) = -(1)^n d^n/ds^n( F(s) )
-- where F(s) is the Laplace of f(t). This is applied to each term in
-- the original ode in y(t).

-- Now we have an ODE in Y(s). This ode can be first order or higher
-- order depending on the power on t. For example if the input
-- is t^3*y(t)+y'(t)=0 then the ode in Y(s) will be 3rd order.

-- Next step is to solve the ode in Y(s). Let us say the solution
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-- is Y(s)=.... This solution will have as many new constants as the
-- order of the ode in Y(s)

IF no IC are given THEN
Apply Laplace to the ODE and convert to ode in Y(s)
solve this ode in Y(s)
Apply inverse Laplace transform on solution Y(s). THis gives
y(t)=.... which is the final solution.

ELSE -- IC is given as y(t0)=y0
IF t0=0 THEN

Apply Laplace to the ODE and convert to ode in Y(s)
solve this ode in Y(s)

LABEL L:

Apply inverse Laplace transform on Y(s)
now we have y(t)=.... with constants c_i in it (*)
these constants c_i come from solving the ode in Y(s)
Apply IC to obtain equation y0=.... with constants c_i in it.

IF there is more than one unknown c_i in the RHS then solve
for one of them and plug that into (*). This is final solution

ELSE
solve for c_1 from y0=.... c_1 .... and plugin into (*).

END IF
ELSE -- initial conditions not at zero, i.e. y(t0)=y0 and t0<>0

-- This applies also even if y0=0 or not.

Transform the original ode in y(t) such that IC is now
shifted to zero.

For example, if IC was y(1)=y0, then use transformation
tau=t-1. This gives new ode in time, but with y(0)=y0.

This is the one we will work with now. Not the orginal one.

Apply Laplace to this new ODE and convert to ode in Y(s)
solve this ode in Y(s)

GOTO LABEL L to find solution y(tau)

convert solution back to t, using tau=t-t0
END IF

END IF� �
3.3.26.2 Examples with constant coefficients

3.3.26.2.1 Example 1 IC y(0) = 3

y′ − 2y = 6e5t

y(0) = 3

Taking the Laplace transform gives

L(y) = Y (s)
L(y′) = sY (s)− y(0)

L
(
6e5t

)
= 6
s− 5
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The ode becomes

sY (s)− y(0)− 2Y (s) = 6
s− 5

Y (s) (s− 2)− y(0) = 6
s− 5

Y (s) (s− 2) = 6
s− 5 + y(0)

Y (s) (s− 2) = 6
s− 5 + 3

Y (s) (s− 2) = 6 + 3(s− 5)
s− 5

Y (s) (s− 2) = 3s− 9
s− 5

Y (s) = 3s− 9
(s− 5) (s− 2)

= 2
s− 5 + 1

s− 2

Applying inverse Laplace transform and using L−1( 2
s−5

)
= 2e5t,L−1( 1

s−2

)
= e2t then the

above gives
y(t) = 2e5t + e2t

3.3.26.2.2 Example 2 IC y(−1) = 4

y′ − 6y = 0
y(−1) = 4

There are two ways to solve an ode using Laplace transform when IC are not at zero.
Either we do change of variables to shift the IC to zero, or solve as is. Both methods are
shown below.

method 1 (no change of variable)

Taking the Laplace transform of the ode gives

L(y) = Y (s)
L(y′) = sY (s)− y(0)

The ode becomes
sY − y(0)− 6Y = 0

Solving for Y gives

Y (s− 6)− y(0) = 0

Y = y(0)
s− 6

Taking inverse Laplace transform gives

y(t) = y(0) e6t (1)

Now we need to find y(0) , for this, we use the given IC y(−1) = 4. The above becomes

4 = y(0) e−6

y(0) = 4e6

Hence (1) becomes

y(t) = 4e6e6t

= 4e6t+6
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method 2 (change of variable)

Let
τ = t+ 1

The ode y′ − 6y = 0 becomes

y′(τ)− 6y(τ) = 0
y(0) = 4

Taking Laplace transform gives

sY − y(0)− 6Y = 0
sY − 4− 6Y = 0

Y = 4
s− 6

The inverse Laplace transform is
y(τ) = 4e6τ

Changing back to t the above becomes

y(t) = 4e6(t+1)

Which is the same answer as before. The change of variable method seems to be more
common.

3.3.26.2.3 Example 3 IC y(1) = y0

y′ + y = sin (t)
y(1) = y0

There are two ways to solve an ode using Laplace transform when IC are not at zero.
Either we do change of variables to shift the IC to zero, or solve as is. Both methods are
shown below.

method 1 (no change of variable)

Taking the Laplace transform of the ode gives

L(y) = Y (s)
L(y′) = sY (s)− y(0)

L(sin t) = 1
1 + s2

The ode becomes
sY − y(0) + Y = 1

1 + s2

Solving for Y gives

Y (s+ 1)− y(0) = 1
1 + s2

Y =
1

1+s2
+ y(0)

s+ 1

= 1
(1 + s2) (s+ 1) +

y(0)
s+ 1

Taking inverse Laplace transform gives

y(t) = e−t

2 (2y(0) + 1)− 1
2 cos t+ 1

2 sin t (1)
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Now we need to find y(0) , for this, we use the original given IC y(1) = y0. The above
becomes

y0 =
e−1

2 (2y(0) + 1)− 1
2 cos 1 + 1

2 sin 1

y0 +
1
2 cos 1− 1

2 sin 1 = e−1

2 (2y(0) + 1)

2e
(
y0 +

1
2 cos 1− 1

2 sin 1
)

= (2y(0) + 1)

y(0) = e

(
y0 +

1
2 cos 1− 1

2 sin 1
)
− 1

2

Hence (1) becomes

y(t) = e−t

2

(
2
(
e

(
y0 +

1
2 cos 1− 1

2 sin 1
)
− 1

2

)
+ 1
)
− 1

2 cos t+ 1
2 sin t

= e1−t

(
y0 +

1
2 cos 1− 1

2 sin 1
)
− 1

2 cos t+ 1
2 sin t

= 1
2e

1−t(2y0 + cos 1− sin 1)− 1
2 cos t+ 1

2 sin t

method 2 (change of variable)

Let
τ = t− 1

The ode y′ + y = sin (t) becomes

y′(τ) + y(τ) = sin (τ + 1)
y(0) = y0

Taking Laplace transform gives

sY − y(0) + Y = sin (1) s+ cos (1)
1 + s2

Y (1 + s) = sin (1) s+ cos (1)
1 + s2

+ y0

Y = sin (1) s+ cos (1)
(1 + s2) (1 + s) + y0

1 + s

The inverse Laplace transform is

y(τ) = 1
2e

−τ (2y0 + cos 1− sin 1) + cos 1
2 (sin τ − cos τ) + sin 1

2 (sin τ + cos τ)

Finally, changing back to t the above becomes

y(t) = 1
2e

1−t(2y0 + cos 1− sin 1)+cos 1
2 (sin (t− 1)− cos (t− 1))+sin 1

2 (sin (t− 1) + cos (t− 1))

Which simplifies to

y(t) = 1
2e

1−t(2y0 + cos 1− sin 1)− 1
2 cos t+ 1

2 sin t

Which is the same answer as before.
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3.3.26.3 Examples with time varying coefficients

3.3.26.3.1 Example 1 IC y(0) = 0

y′ − ty = 0
y(0) = 0

For this we will use relation L(tf(t)) = − d
ds
F (s). Hence taking the Laplace transform

gives

L(ty) = − d

ds
L(y)

= − d

ds
Y (s)

L(y′) = sY (s)− y(0)

The ode becomes

sY (s)− y(0) + d

ds
Y (s) = 0

sY (s) + d

ds
Y (s) = 0

Replacing initial conditions y(0) = 0 the above becomes

sY (s) + d

ds
Y (s) = 0

This is linear ode in Y (s). The integrating factor is e
∫
sds = e

s2
2 . Hence the above becomes

d

ds

(
Y e

s2
2

)
= 0

Integrating gives

Y e
s2
2 = c1

Y = c1e
−s2
2 (1)

Taking the inverse Laplace gives

y(t) = c1L−1
(
e

−s2
2

)
(2)

And now apply IC which gives
0 = c1L−1

(
e

−s2
2

)
Hence c1 = 0. Therefore (2) becomes

y(t) = 0

3.3.26.3.2 Example 2 IC y(0) = 0

ty′ + y = 0
y(0) = 0

We will use the property
L(tf(t)) = − d

ds
F (s)

Hence taking Laplace transform of each term of the ode gives

L(ty′) = − d

ds
(L(y′))

= − d

ds
(sY − y(0))

= −
(
Y + s

dY

ds

)
= −sdY

ds
− Y
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And
L(y) = Y

Hence the ode becomes in Laplace domain as

−sdY
ds

− Y + Y = 0

−sdY
ds

= 0
dY

ds
= 0

Solving this ode for Y (s) gives
Y = c1 (1)

Taking the inverse Laplace transform gives

y(t) = c1δ(t) (2)

Applying initial conditions
0 = c1δ(0)

Hence c1 = 0 and the solution (2) becomes

y(t) = 0

3.3.26.3.3 Example 3 IC y(0) = y0

ty′ + y = 0
y(0) = y0

The following property is used

L(tf(t)) = − d

ds
F (s)

Taking Laplace transform of each term of the ode gives

L(ty′) = − d

ds
(L(y′))

= − d

ds
(sY − y(0))

= −
(
Y + s

dY

ds

)
= −sdY

ds
− Y

And
L(y) = Y

TThe ode becomes in Laplace domain becomes

−sdY
ds

− Y + Y = 0

−sdY
ds

= 0
dY

ds
= 0

Solving this ode for Y (s) gives
Y = c1 (1)

Taking inverse Laplace gives
y(t) = δ(t) c1 (2)
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Applying initial conditions gives

y0 = δ(0) c1
c1 =

y0
δ (0)

The solution (2) becomes

y(t) = y0
δ(t)
δ (0)

3.3.26.3.4 Example 4 IC y(x0) = y0

ty′ + y = 0
y(x0) = y0

Since IC given is not at zero, change of variables must be made so that the IC at zero.
Let τ = t− x0 then the ode becomes

(x0 + τ) y′(τ) + y(τ) = 0
x0y

′(τ) + τy′(τ) + y(τ) = 0
y(0) = y0

Converting the above new ode to Laplace domain using

L(tf(τ)) = − d

ds
F (s)

Gives (using Y (s) as the Laplace of y(τ)) and simplifying using y(0) = y0

x0(sY − y(0)) + (−1) d
ds

(sY − y(0)) + Y = 0

x0(sY − y0)−
(
Y + s

dY

ds

)
+ Y = 0

x0sY − x0y0 − Y − s
dY

ds
+ Y = 0

x0sY − s
dY

ds
= x0y0

dY

ds
− x0Y = −x0y0

s

The solution is
Y = c1e

sx0 + (x0y0 Ei (sx0)) esx0

Taking inverse Laplace gives

y(τ) = x0y0
τ + x0

+ c1L−1(esx0) (1)

Applying initial conditions gives y(0) = y0 gives

y0 =
x0y0
x0

+ c1L−1(esx0)

y0 = y0 + c1L−1(esx0)
0 = c1L−1(esx0)
c1 = 0

Hence the solution (1) becomes
y(τ) = x0y0

τ + x0

Converting back to t using τ = t− x0 the above becomes

y(τ) = x0y0
t
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3.3.26.3.5 Example 5 (no IC)

ty′ + y = 0

We will use the property
L(tf(t)) = − d

ds
F (s)

Hence taking Laplace transform of each term of the ode gives

L(ty′) = − d

ds
(L(y′))

= − d

ds
(sY − y(0))

= −
(
Y + s

dY

ds

)
= −sdY

ds
− Y

And
L(y) = Y

Hence the ode becomes in Laplace domain as

−sdY
ds

− Y + Y = 0

−sdY
ds

= 0
dY

ds
= 0

Solving this ode for Y (s) gives
Y = c1 (1)

Taking inverse Laplace gives
y(t) = δ(t) c1

Since no initial conditions are given, then the above is the final solution. Notice that y(0)
do not have to be known, since it cancels out in the above. What is left is the c1 which is
generated from solve the ode in Y (s).

3.3.26.3.6 Example 6 IC y(1) = 5

ty′ + y = 0
y(1) = 5

method 1

Since IC given is not at zero, change of variables must be made so that the IC at zero.
Let τ = t− 1 then the ode becomes

(1 + τ) y′(τ) + y(τ) = 0
y′(τ) + τy′(τ) + y(τ) = 0

y(0) = 5

Converting the above new ode to Laplace domain using

L(tf(τ)) = − d

ds
F (s)
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Gives (using Y (s) as the Laplace of y(τ))

sY − y(0) + (−1) d
ds

(sY − y(0)) + Y = 0

sY − y(0)−
(
Y + s

d

ds
Y

)
+ Y = 0

sY − 5− Y − s
d

ds
Y + Y = 0

sY − s
d

ds
Y = 5

d

ds
Y − Y = −5

s

The solution is
Y = c1e

s + (5Ei (s)) es

Taking inverse Laplace transform gives

y(τ) = c1L−1(es, s, τ) + L−1((5 Ei (s)) es) (1)

= c1L−1(es, s, τ) + 5
1 + τ

Applying IC y(0) = 5 the above becomes

5 = c1L−1(es, s, 0) + 5
0 = c1L−1(es, s, 0)

Hence
c1 = 0

Therefore the solution (1) becomes

y(τ) = 5
1 + τ

(2)

Converting back to t the above becomes

y(t) = 5
t

Note that this ode can be solved much more easily but not using Laplace transform. Let
see how. The given ode is

y′ + y

t
= 0 t 6= 0

This is linear ode, its solution can be easily found as

y = 1
t
c1

Applying IC

5 = 1
1c1

c1 = 5

Hence the solution is
y = 5

t

method 2

This method shows what happens in the case of time varying ode whose IC is not at zero,
and if we do not do change of variables as was done above.
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Taking Laplace transform of original ode ty′ + y = 0 gives

− d

ds
(sY − y(0)) + Y = 0

−
(
Y + s

dY

ds

)
+ Y = 0

−sdY
ds

= 0
dY

ds
= 0

Hence
Y = c1

Taking inverse Laplace transform gives

y(t) = c1δ(t) (1)

Applying IC y(1) = 5 to the above

5 = c1δ(1)

c1 =
5

δ (1)

Which is off course is not valid, since δ(1) = 0. This shows that time varying ode, using
Laplace transform, we must apply change of variables (as done in method 1) first. Notice
that for constant coefficients, both methods work OK. See example above under constant
coefficient for problem where IC was not at zero.

So to be consistent, it seems better to stick to one method which works for both time
varying and constant coefficients, which is to do change of variables if the IC is given and
it is not at zero.

3.3.26.3.7 Example 7 IC y(1) = 0

ty′ + y = sin (t)
y(1) = 0

Change of variables is made to make the IC at zero. Let τ = t− 1. The ode becomes

(1 + τ) y′(τ) + y(τ) = sin (1 + τ)
y′(τ) + τy′(τ) + y(τ) = sin (1 + τ)

y(0) = 0

Converting the above new ode to Laplace domain using

L(tf(τ)) = − d

ds
F (s)

Gives (using Y (s) as the Laplace of y(τ))

(sY − y(0)) + (−1) d
ds

(sY − y(0)) + Y = sin (1) s+ cos (1)
1 + s2

sY − y(0)−
(
Y + s

dY

ds

)
+ Y = sin (1) s+ cos (1)

1 + s2

sY − 0− Y − s
dY

ds
+ Y = sin (1) s+ cos (1)

1 + s2

sY − s
d

ds
Y = sin (1) s+ cos (1)

1 + s2

d

ds
Y − Y = −sin (1) s+ cos (1)

s (1 + s2)
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The above is linear ode. Solving it gives

Y = es

2 (2Ei (1, s) cos (1)− Ei (1, s+ i)− Ei (1, s− i) + 2c1)

= es Ei (1, s) cos (1)− es

2 Ei (1, s+ i)− es

2 Ei (1, s− i) + c1e
s (1)

Taking inverse Laplace transform gives

y(τ) = cos 1
τ + 1 − cos (τ + 1)

τ + 1 + c1L−1(es) (4)

Applying IC y(0) = 0

0 = cos (1)− cos (1) + c1L−1(es)
0 = c1L−1(es)

Hence c1 = 0. Therefore (3) becomes

y(τ) = cos 1
τ + 1 − cos (τ + 1)

τ + 1

Going back to t using τ = t− 1 the above becomes

y(t) = cos 1
t

− cos (t)
t

3.3.26.3.8 Example 8 IC y(1) = 0

ty′ + y = t

y(1) = 0

Applying change of variables to make the IC at zero. Let τ = t− 1 the ode becomes

(τ + 1) y′(τ) + y(τ) = τ + 1
y′(τ) + τy′(τ) + y(τ) = τ + 1

y(0) = 0

Converting the above new ode to Laplace domain using

L(tf(τ)) = − d

ds
F (s)

Gives (using Y (s) as the Laplace of y(τ))

(sY − y(0)) + (−1) d
ds

(sY − y(0)) + Y = s+ 1
s2

sY − y(0)−
(
Y + s

dY

ds

)
+ Y = s+ 1

s2

sY − 0− Y − s
dY

ds
+ Y = s+ 1

s2

sY − s
d

ds
Y = s+ 1

s2

d

ds
Y − Y = −s+ 1

s3

The above is linear ode. Solving it gives

Y = 1
2s2 + 1

2s −
es Ei (1, s)

2 + c1e
s

Taking the inverse Laplace transform gives

y(τ) = τ

2 + 1
2 − 1

2 (1 + τ) + c1L−1(es) (1)
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Applying y(0) = 0

0 = 1
2 − 1

2 + c1L−1(es)

0 = c1L−1(es) (2)

Hence c1 = 0. Therefore (1) becomes

y(τ) = τ

2 + 1
2 − 1

2 (1 + τ)

Going back to t using τ = t− 1 the above becomes

y(t) = t− 1
2 + 1

2 − 1
2t

= t

2 − 1
2t

We see in the above, we did not have to use initial value theorem to find c1. This is because
the IC was y(0) = 0. But if the IC was y(0) = y0, where y0 6= 0 then (2) would becomes

y0 = c1L−1(es)

And then we can not solve for c1. So the above method works for homogeneous IC. The
following example solve this same problem but with IC y(1) = 1 to show how to handle
these cases.

3.3.26.3.9 Example 9 IC y(1) = 1 This is the same example as above, but with
y(1) = 1 instead of homogeneous IC y(1) = 0.

ty′ + y = t

y(1) = 1

Applying change of variables to make the IC at zero. Let τ = t− 1 the ode becomes

(τ + 1) y′(τ) + y(τ) = τ + 1
y′(τ) + τy′(τ) + y(τ) = τ + 1

y(0) = 1

Converting the above new ode to Laplace domain using

L(tf(τ)) = − d

ds
F (s)

Gives (using Y (s) as the Laplace of y(τ))

(sY − y(0)) + (−1) d
ds

(sY − y(0)) + Y = s+ 1
s2

sY − y(0)−
(
Y + s

dY

ds

)
+ Y = s+ 1

s2

sY − 1− Y − s
dY

ds
+ Y = s+ 1

s2

sY − s
d

ds
Y = s+ 1

s2
+ 1

d

ds
Y − Y = −s+ 1

s3
− 1
s

The above is linear ode. Solving it gives

Y = 1
2s2 + 1

2s +
es Ei (1, s)

2 + c1e
s (1)

Taking the inverse Laplace gives

y(τ) = τ

2 + 1
2 + 1

2 (1 + τ) + c1L−1(es) (2)
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Applying IC y(0) = 1 gives

1 = 1
2 + 1

2 + c1L−1(es)

0 = c1L−1(es)
c1 = 0

Hence (2) becomes
y(τ) = τ

2 + 1
2 + 1

2 (1 + τ)
Going back to t using τ = t− 1 the above becomes

y(t) = t− 1
2 + 1

2 + 1
2t

= t

2 + 1
2t

3.3.26.3.10 Example 10 (time varying with t2) IC y(0) = 0

y′ + t2y = 0
y(0) = 0

Using the property
L(tnf(t)) = (−1)n dn

dsn
F (s)

Taking Laplace transform of each term of the ode gives

L(y′) = sY − y(0)

And

L
(
t2y
)
= (−1)2 d2

ds2
L(y)

= d2

ds2
Y

Hence the ode becomes in Laplace domain as

sY − y(0) + d2

ds2
Y = 0

d2

ds2
Y + sY = y(0)

Replacing y(0) from initial conditions

d2

ds2
Y + sY = 0

This is Airy ode. The solution is

Y = c1AiryAi (−s) + c2AiryBi (−s) (1)

Taking inverse Laplace transform gives

y = c1L−1AiryAi (−s) + c2L−1AiryBi (−s) (2)

Since y0 = 0 at t = 0, the above becomes

0 = c1L−1AiryAi (−s) + c2L−1AiryBi (−s)

if we take c1 = 0, c2 = 0, this will make the LHS equal to RHS. Hence (2) becomes

y(t) = 0

I need to double check I could do the above or not. If not, then this is not possible to
solve using Laplace, since there is no inverse Laplace transform for Airy functions.
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3.3.26.3.11 Example 11 IC y(1) = 0

(1 + at) y′ + y = t

y(1) = 0

Applying change of variables to make the IC at zero. Let τ = t− 1 the ode becomes

(1 + a(τ + 1)) y′ + y = τ + 1
y′ + a(τ + 1) y′ + y = τ + 1
y′ + aτy′ + ay′ + y = τ + 1

(1 + a) y′ + aτy′ + y = τ + 1
y(0) = 0

Converting the above new ode to Laplace domain using

L(tf(τ)) = − d

ds
F (s)

Gives (using Y (s) as the Laplace of y(τ))

(1 + a) (sY − y(0)) + a(−1) d
ds

(sY − y(0)) + Y = s+ 1
s2

(1 + a) sY − a
d

ds
(sY ) + Y = s+ 1

s2

sY + asY − a

(
Y + s

dY

ds

)
+ Y = s+ 1

s2

sY + asY − aY − as
dY

ds
+ Y = s+ 1

s2

−asdY
ds

+ Y (1 + s+ as− a) = s+ 1
s2

dY

ds
− Y

(1 + s+ as− a)
as

= −s+ 1
as3

This is linear in Y (s). Solving gives

Y (s) = 1
s2 (a+ 1) + c1

s
a+1
a es

(a+1)
a

s2

Taking inverse Laplace gives

y(τ) = τ

a+ 1 + c1L−1

(
s

a+1
a es

(a+1)
a

s2

)

Applying IC y(0) = 0 the above becomes

0 = c1L−1

(
s

a+1
a es

(a+1)
a

s2

)

Hence c1 = 0 and the solution (1) becomes

y(τ) = τ

a+ 1

Going back to t using τ = t− 1 gives

y(t) = t− 1
a+ 1
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3.4 Lie symmetry method for solving first order
ODE

3.4.1 Terminology used and high level introduction

1. x, y are the natural coordinates used in the input ode dy
dx

= ω(x, y).

2. x̄, ȳ are called the Lie group (local) transformation coordinates. The ode remains
invariant (same shape) when written in x̄, ȳ. The coordinates R,S (some books use
lower case r, s) are called the canonical coordinates in which the input ode becomes
a quadrature and therefore easily solved by just integration.

3. ξ, η are called the Lie infinitesimals. ξ(x, y) , η(x, y) can be calculated knowing x̄, ȳ.
Also x̄, ȳ can be calculated given ξ, η. It is ξ, η which are the most important
quantities that need to be determined in order to find the canonical coordinates
R,S. These quantities are called the tangent vectors. These specify how the orbit
moves. The orbit is the path the point (x, y) point travels on as it move toward x̄, ȳ.
The tangent vectors ξ, η are calculated at ε = 0. The point x̄ = x+ ξε and the point
ȳ = y + ηε.

4. The ultimate goal is write dy
dx

= ω(x, y) in R,S coordinates where it is solved by
integration only as it will have the form dS

dR
= F (R). The right hand side should

always be a function of R only in canonical coordinates.

5. x̄, ȳ can be calculated knowing the canonical coordinates R,S.

6. The ideal transformation has the form (x̄, ȳ) → (x, y + ε) because with this trans-
formation the ode becomes quadrature in the transformed coordinates. But because
not all ode’s have this transformation available, the ode is transformed to canonical
coordinates (R,S) where the transformation

(
R̄, S̄

)
→ (R,S + ε) can be used.

7. The main goal of Lie symmetry method is to determine S,R. To be able to do this,
the quantities ξ, η must be determined first.

8. The remarkable thing about this method, is that regardless of how complicated the
original ode dy

dx
= ω(x, y) is, if the similarity condition PDE can be solved for ξ, η,

then R,S are found and the ode becomes quadrature dS
dR

= F (R). The ode is then
solved in canonical coordinates and the solution transformed back to x, y.

9. The quantity ε is called the Lie parameter. This is a real quantity which as it
goes to zero, gives the identity transformation. In other words, when ε = 0 then
(x, y) = (x̄, ȳ).

10. But there is no free lunch, even in Mathematics. The problem comes down to finding
ξ, η. This requires solving a PDE. This is done using ansatz and trial and error. This
reason possibly explains why the Lie symmetry method have not become standard
in textbooks for solving ODE’s as the algebra and computation needed to find ξ, η
from the PDE becomes very complex to do by hand.

11. Total derivative operator: Given f(x, y) then df
dx

= ∂f
∂x

+ ∂f
∂y

dy
dx

where it is assumed
that y(x) depends on x. Total derivative operator will be used extensively in all
the derivatiations below, so good to practice this. It is written as Dx = ∂x + ∂yy

′

for first order ode, and as Dx = ∂x + ∂yy
′ + ∂y′y

′′ for second order ode and as
Dx = ∂x + ∂yy

′ + ∂y′y
′′ + ∂y′′y

′′′ for third order ode and so on.

12. The notation fx means partial derivative. Hence ∂f
∂x

is written as fx. Total derivative
will always be written as df

dx
. It is important to distinguish between these two as the

algebra will get messy with Lie symmetry. Sometimes we write f ′ to mean df
dx

but it
is better to avoid f ′ and just write df

dx
when f is function of more than one variable.
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13. Given first ode dy
dx

= ω(x, y), where ȳ ≡ ȳ(x, y) and x̄ ≡ x̄(x, y) then then dȳ
dx̄

is given
by the following (using the total derivative operator)

dȳ

dx̄
= Dxȳ

Dxx̄

= ȳx + ȳyy
′

x̄x + x̄yy′

= ȳx + ȳyω

x̄x + x̄yω

14. Given second order ode d2y
dx2 = ω(x, y, y′) where ȳ ≡ ȳ(x, y, y′) and x̄ ≡ x̄(x, y, y′)

then d2ȳ
dx̄2 is given by

d2ȳ

dx̄2
=
Dx

dȳ
dx̄

Dxx̄

=
ȳ′x + ȳ′yy

′ + ȳ′y′y
′′

x̄′x + x̄′yy
′

To simplify notation we have used ȳ′ for dȳ
dx̄

in the above. The above simplifies to

d2ȳ

dx̄2
=
ȳ′x + ȳ′yy

′ + ȳ′y′ω

x̄′x + x̄′yy
′

Keeping in mind that (◦)x or (◦)y mean partial derivative.

15. Given third order ode d3y
dx3 = ω(x, y, y′, y′′) where ȳ ≡ ȳ(x, y, y′, y′′) and x̄ ≡

x̄(x, y, y′, y′) then d3ȳ
dx̄3 is given by

d3ȳ

dx̄3
=
Dx

d2ȳ
dx̄2

Dxx̄

=
ȳ

′′
x + ȳ′′yy

′ + ȳ′′y′y
′′ + ȳ′′y′′y

′′′

x̄′x + x̄′yy
′

=
ȳ

′′
x + ȳ′′yy

′ + ȳ′′y′y
′′ + ȳ′′y′′ω

x̄′x + x̄′yy
′

To simplify notation we used ȳ′′ for d2ȳ
dx̄2 above. And so on for higher order ode’s.

3.4.2 Introduction
Given any first order ODE

dy

dx
= ω(x, y) (A)

The first goal is to find a one parameter invariant Lie group transformation that keeps the
ode invariant. The Lie parameter the transformation depends on is called ε. This means
finding transformation of (x, y) to new coordinates (x̄, ȳ) that keeps the ode the same
form when written using x̄, ȳ.

This view looks at the transformation on the ode itself. Another view is to look at the
family of the solution curves of the ode instead. Looking at solution curves transformation
is geometrical in nature and can lead to more insight.

What does the transformation mean when looking at solution curves instead of the ODE
itself? It is the mapping of a point (x, y) on one solution curve to another point (x̄, ȳ) on
another solution curve. If the mapping sends point (x, y) to another point (x̄, ȳ) on the
same solution curve, then it is called a trivial mapping or trivial transformation.

As an example, given the ode y′ = 0, this has solutions y = c1. For any constant c1 there
is a solution curve. There are infinite number of solution curves. All solution curves are
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horizontal lines. The mapping (x, y) → (x+ ε, y) is trivial transformation as it moves the
point (x, y) to another point (x̄, ȳ) on the same solution curve.

The transformation (x, y) → (x, y + ε) however is non trivial as it moves the point (x, y)
to point (x̄, ȳ) on another solution curve. Here x̄ = x and ȳ = y + ε. This can also be
written (x, y) → (x, eεy) which is the preferred way.

The transformation (x, y) → (x+ ε, y + ε) is non trivial for this ode. The simplest non
trivial transformation that map all points on one solution curve to another solution curve
is selected. In canonical coordinates the transformation used has the form (R,S) →
(R,S + ε).

Another example is y′ = y. This has solution curves given by y = cex. This is a plot
showing two such curves for different c values.

x

y(x)
c1

c2
(x, y)

(x̄, ȳ)

Figure 3.8: Point transformation example for y′ = y

The above shows that a non trivial transformation is given by x̄ = x+ ε, ȳ = y. This can
be found analytically by solving the symmetry condition as will be illustrated below using
examples. For this case, the tangent vectors are ξ = ∂x̄

∂ε

∣∣
ε=0 = 1 and η = ∂ȳ

∂ε

∣∣
ε=0 = 0. In

Maple this is found using� �
ode:=diff(y(x),x)=y(x);
DEtools:-symgen(ode)
[_xi = 1, _eta = 0]� �
But the following transformation x̄ = x, ȳ = y + ε does not work

x

y(x)
c1

c2
(x, y)

(x̄, ȳ)

Figure 3.9: Possible Point transformation for y′ = y

This is because it does not keep the original ode invariant because dȳ
dx̄

= ȳ becomes
ȳx+ȳyy′

x̄x+x̄yy′
= ȳ, where now ȳx = 0, ȳy = 1, x̄x = 1, x̄y = 0, ȳ = y + ε, and hence ȳx+ȳyy′

x̄x+x̄yy′
= ȳ

simplifies to y′ = y + ε which is not the same ode. This shows that x̄ = x, ȳ = y + ε is not
valid Lie point symmetry.
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However x̄ = x + ε, ȳ = y leaves the ODE invariant. In this case ȳx = 0, ȳy = 1, x̄x =
1, x̄y = 0, ȳ = y and hence ȳx+ȳyy′

x̄x+x̄yy′
= ȳ becomes y′ = y which is the same ode.

The transformation must keep the ode invariant as this is the main definition of symmetry
transformation.

Therefore, what we are looking for, is the simplest transformation that move point (x, y)
from one solution curve to another solution curve, such that the transformatio also leaves
the ode invariant (same form) in the new coordinates (x̄, ȳ). In the above example, this
was x̄ = x+ ε, ȳ = y.

In the above, the path the point (x, y) travels on as it moves to (x̄, ȳ) as ε changes is called
the orbit. Each point (x, y) travels on its orbit during transformation.

In all such transformations, there is a parameter ε that the transformation depends on.
This is why this is called the Lie one parameter symmetry transformation group. There
are infinite number of such transformations.

Lie symmetry is hence called point symmetry, because of the above. It transforms points
from an solution curve to points on another solution curve for the same ODE. The identity
transformation is when ε = 0, since then the point is transformed to itself.

An example using an ODE. The Clairaut ode of the form y = xf(p) + g(p) where p ≡ y′.

x(y′)2 − yy′ +m = 0 (1)

y = x
(y′)2

m
+ y

y′

m

Where f(p) = (y′)2
m

and g(p) = y′

m
. Using the dilation transformation Lie group

x̄ ≡ x̄(x, y; ε) = e2εx (2)
ȳ ≡ ȳ(x, y; ε) = eεy (3)

Eq. (1) is now expressed in the new coordinates x̄, ȳ . If this results in same same ode
form but written in x̄, ȳ then the transformation is invariant. But how to find dȳ

dx̄
? This

is done as follows
dȳ

dx̄
=

dȳ
dx
dx̄
dx

=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

In this example ȳx = 0, ȳy = eε, x̄x = e2ε, x̄y = 0. The above now becomes

dȳ

dx̄
=
eε dy

dx

e2ε

= e−ε dy

dx

Writing (1) in terms of x̄, ȳ now gives

x̄

(
dȳ

dx̄

)2

− ȳ
dȳ

dx̄
+m = 0 (4)

(
e2εx

)(
e−ε dy

dx

)2

− (eεy) e−ε dy

dx
+m = 0

x

(
dy

dx

)2

− y
dy

dx
+m = 0 (5)

Which gives the same ode. The above method starts by replacing the given ode by x̄, ȳ, dȳ
dx̄

and finds if the result gives back the original ode in x, y, dy
dx
. This is simpler than having

to transform the original ode to x̄, ȳ, dȳ
dx̄
. This transformation can be verified in Maple as

follows
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� �
ode:=x*diff(y(x),x)^2-y(x)*diff(y(x),x)+m=0;
the_tr:={x=X*exp(-2*s),y(x)=Y(X)*exp(-s)};
newode:=PDEtools:-dchange(the_tr,ode,{Y(X),X},'known'={y(x)},'uknown'={Y(X)});
diff(Y(X), X)^2*X - Y(X)*diff(Y(X), X) + m = 0� �
Comparing (4) to (5) shows that the ode form did not change, only the letters changed
from x to x̄ and y to ȳ. The resulting ode must never have the parameter ε show or remain
in it as ofcourse this will make it different form than the orginal ode which do not have ε
in it.

The above shows how to verify that a transformation is invariant or not. In Lie group
transformation there is only one parameter ε and the transformation is obtained by
evaluating the group as ε goes to zero.

But how does this help in solving the original ode? If the ode in x, y is hard to solve, then
the ode written with x̄, ȳ will also be hard to solve since it is the same. But Eq. (4) is not
what is used to solve the ode. The above is just to verify the transformation is invariant.
Similarity transformation is used to determine the tangent vectors ξ, η only. These are the
most important quantities. These are then used to obtain the ode in canonical coordinates
R,S). In the canonical coordinates (R,S) the ode becomes quadrature and solved by
integration. The transformation found above is only one step toward finding (R,S) and it
is these canonical coordinates that are the goal and not x̄, ȳ.

3.4.3 Outline of the steps in solving a differential equation
using Lie symmetry method

These are the steps in solving an ODE using Lie symmetry method.

1. Given an ode y′ = ω(x, y) to solve in natural coordinates.

2. Now the tangent vector ξ(x, y) , η(x, y) are found. There are two options.

(a) If Lie group coordinates (x̄, ȳ) are given, then it is easy to determine ξ(x, y) , η(x, y)
using

ξ(x, y) = ∂x̄

∂ε

∣∣∣∣
ε=0

η(x, y) = ∂ȳ

∂ε

∣∣∣∣
ε=0

Lie group coordinates (x̄, ȳ) must also satisfy

x̄xȳy − x̄yȳx 6= 0

(b) In practice Lie group coordinates (x̄, ȳ) are not given and are not known. In this
case ξ(x, y) , η(x, y) must be found by solving the similarity condition which
results in a PDE (derivation is given below). The PDE for first order ode
y′ = ω(x, y) comes out to be

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

3. ξ, η are now used to determine the canonical coordinates (R,S). In the canonical
coordinates, only S translation is needed to make the ode quadrature. The trans-
formation is (R,S) → (R,S + ε). This transforms the original ode y′ = ω(x, y) to
dS
dR

= F (R) which is then solved by only integration. This is the main advantage of
moving to canonical coordinates (R,S).
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4. The ODE is solved in (R,S) space where R ≡ R(x, y) , S ≡ S(x, y). The transforma-
tion from (x, y) to (R,S) is found by solving two set of PDEs using the characteristic
method. After finding R(x, y) , S(x, y) the ode will then be given by dS

dR
= Sx+Sy

dy
dx

Rx+Ry
dy
dx

which will be quadrature. If this ode does not come out as dS
dR

= F (R) then something
went wrong in the process. This ode is now solved for S(R) . It is the symmetry of
the form (R,S) → (R,S + ε) which is of the most interest in the Lie method. This
is called a translation transformation along the y axis (or the S axis in canonical
coordinates). This is because this transformation leads to an ode which is solved by
just integration.

5. Transform the solution from S(R) to y(x).

6. An alternative to steps (3) to (5) (Which seems to be only applicable to first order
odes) is to use ξ, η to determine an integrating factor µ(x, y) which is given by
µ(x, y) = 1

η−ξω
then the general solution to y′ = ω(x, y) can be written directly

as
∫
µ(x, y) (dy − ωdx) = c1 or

∫
dy−ωdx
η−ξω

= c1 but this requires finding a function
F (x, y) whose differential is dF = dy−ωdx

η−ξω
and now the solution becomes

∫
dF = c1

or F = c1. If we can integrate this using
∫
µdy −

∫
µωdx = c1 then this is the

solution to the ode. It is implicit in y(x). Currently my program does not implement
Lie symmetry to find an integrating factor due to difficulty of finding dF that
satisfies dF = dy−ωdx

η−ξω
or in carrying out the integration in all general cases but I

hope to add this soon as a backup algorithm if the main one fails. This method is
similar to solving exact ode if we know the integrating factor.

7. An important property, at least for first order ode’s (I do not know now if this
applies to higher order) is that given ξ = f(x, y) , η = g(x, y), then we can always
shift and use ξ ≡ 0, η = g− ωf where y′ = ω(x, y). This means we can always base
everything on ξ ≡ 0 after this shift is done to η. This can simplify some parts of the
computation. Ofcourse if ξ was found to be zero initially, i.e. just after solving the
linearized similarity PDE, then there is nothing more to do.

The most difficult step in all of the above is 2(b) which requires finding ξ(x, y) , η(x, y). In
practice Lie group x̄, ȳ transformation is not given. Lie infinitesimal ξ(x, y) , η(x, y) have
to be found directly from the linearized symmetry condition PDE using ansatz and by
trial and error. The following diagram illustrates the above steps.
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S

R

(R̄, S̄)

(R,S)

Canonical coordinates
are given by

R̄ = R

S̄ = S + ϵ

orbit

At this point ϵ = 0 and the
tangent vectors are given by

ξ (x, y) =
dx

dϵ

∣∣∣∣
ϵ=0

η (x, y) =
dy

dϵ

∣∣∣∣
ϵ=0

y

x

(x̄, ȳ)

(x, y)

orbit

0 =
∂R

∂x
ξ +

∂R

∂y
η

1 =
∂S

∂x
ξ +

∂S

∂y
η

Method of characterstics

dx

ξ
=

dy

η
= dS

Generate the ODE in canonical coordinates

dS

dR
=

Sx + Syω

Rx +Ryω

And here is the tricky part. The RHS above will be a function
of x, y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving

dS

dR
= F (R)

Which is solved for S by quadrature. The final step is the
easy one. Convert solution S(R) back to x, y.

ODE is y′ = ω(x, y)

Nasser M. Abbasi main 1.ipe (8/23/2023)

Canonical coordinates

Linearized symmetry
condition PDE

ηx + ω (ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

Solve to find ξ, η

is ξ = 0 ?

YES

R = x

S =

∫
dy

η

NO

Solve dy
dx = η

ξ and set R
to the constant of inte-
gration.

Does ξ depend
on x only?

YES

Solve for S from

S =

∫
dx

ξ

NO

is η = 0 ?

YES NO

R = y

S =

∫
dx

ξ

Does η depend
on y only?

YES

Solve for S from

S =

∫
dy

η

NO

Since ξ depends on y and η
depends on x, then we can use
any one of these. Let us pick
dS = dx

ξ . But first we have to
replace y in ξ by its value found
from solving dy

dx = η
ξ found above

so that ξ is function of x only.
And now find

S =

∫
1

ξ
dx

Figure 3.10: General steps to solve ode using Lie symmetry method

The following diagram illustrates the above steps when we carry the shifting step in order
to force ξ = 0. We see that It simplifies the algorithm as now we can just assume ξ = 0
and we do not have to check for different cases as before.
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S

R

(R̄, S̄)

(R,S)

Canonical coordinates
are given by

R̄ = R

S̄ = S + ϵ

orbit

At this point ϵ = 0 and the
tangent vectors are given by

ξ (x, y) =
dx

dϵ

∣∣∣∣
ϵ=0

η (x, y) =
dy

dϵ

∣∣∣∣
ϵ=0

y

x

(x̄, ȳ)

(x, y)

orbit

0 =
∂R

∂x
ξ +

∂R

∂y
η

1 =
∂S

∂x
ξ +

∂S

∂y
η

Method of characterstics

dx

ξ
=

dy

η
= dS

Generate the ODE in canonical coordinates

dS

dR
=

Sx + Syω

Rx +Ryω

And here is the tricky part. The RHS above will be a function
of x, y. Rewrite the above as function of R only using the
earlier findings, knowing what R was. The result must depend
on R only giving

dS

dR
= F (R)

Which is solved for S by quadrature. The final step is the
easy one. Convert solution S(R) back to x, y.

ODE is y′ = ω(x, y)

Nasser M. Abbasi main 2.ipe (9/26/2023)

Canonical coordinates

Linearized symmetry
condition PDE

ηx + ω (ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

Solve to find ξ, η

R = x

S =

∫
dy

η

Apply the shift

η = η − ξω

ξ = 0

Since ξ = 0 always

Figure 3.11: General steps to solve ode using Lie symmetry method. Shifting
method

3.4.4 Finding xi and eta knowing the first order ode type.
Table lookup method.

There is a short cut to obtaining ξ(x, y) , η(x, y) if the first order ode type is known or can
be determined. (of course, if we know the ode type, then a direct method for solving the
ode can be used which is much simpler, since the type is known and there is no need to
use Lie symmetry), but still Lie symmetry can be useful in this case, and also it allows us
to find the integrating factor quickly, which provides one more method to solve the ode.
An example of a first order ode which does not have known type is(

x cos y − e− sin y
)
y′ + 1 = 0

The above can be solved using Lie symmetry but with functional form of anstaz ξ =
f(x) g(y) , η = 0. which gives ξ = e− sin y, η = 0.

I am in the process of building table for ready to use infinitesimal based on the first ode
type. The following small list is the current ones determined. For some first order ode
such as linear y′ = f(x) y(x) + g(x) or separable y′ = f(x) g(y) the infinitesimals can be
written directly (but again, for these simple ode’s Lie method is not really needed but
it provides good illustration on how to use it. Lie method is meant to be used for ode’s



chapter 3. first order ode F (x, y, y′) = 0 140

which have no known type or difficult to solve otherwise). For an ode type not given in
this list, an anstaz have to be used to solve the similarity PDE.

ode type form ξ η notes

linear ode y′ =
f(x)y(x) +
g(x)

0 e
∫
fdx Notice that g(x) does not

affect the result

separable ode y′ =
f(x) g(y)

1
f 0 This works for any g function

that depends on y only

quadrature ode y′ = f(x) 0 1 of course for quadrature we do
not need Lie symmetry as ode
is already quadrature

quadrature ode y′ = g(y) 1 0 For example y′ = x+y
−x+y or

y′ = y+2√yx
x

homogeneous
ODEs of Class
A

y′ = f
( y
x

)
x y

homogeneous
ODEs of Class
C

y′ =
(a+ bx+ cy)

n
m

1 − b
c Also

ξ = 0, η = c(bx+ cy + a)
n
m

are possible. For example, for
y′ = (1 + 2x+ 3y)

1
2 then use

the first option as simpler
which is ξ = 1, η = −2

3 . Notice
that ξ = 1, η = − b

c does not
depend on a and not on n,m.
Hence these odes
y′ = (1 + x+ y)

1
3 ,y′ =

(10 + x+ y)
1
3 and

y′ = (10 + x+ y)
2
3 all have

the same infinitesimals
ξ = 1, η = − b

c = −1

homogeneous
class D

y′ = y
x +

g(x)F
( y
x

) x2 xy example y′ = y
x + 1

xe
− y

x .
Where here
g(x) = 1

x , F
( y
x

)
= e−

y
x .

First order
special form
ID 1

y′ =
g(x) eh(x)+by+
f(x)

e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x) For an example, for the ode
y′ = 5ex2+20y + sin x, here
g(x) = 5, h(x) = x2, b =
20, f(x) = sin x, hence
ξ = e−

∫
20 sin dx−x2

5 , η =
sinxe−

∫
20 sin xdx−x2

5 or
ξ = 1

5 sin x
(
e20 cos(x)−x2

)
, η =

sin(x)
5

(
e20 cos(x)−x2

)
. In this

form, b must be constant.

polynomial
type ode

y′ =
a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

For example for y′ = x+y+3
2x+y

then a1 = 1, b1 = 1, c1 =
3, a2 = 2, b2 = 1, c2 = 0. Hence
ξ = x− 3, η = y + 6.



chapter 3. first order ode F (x, y, y′) = 0 141

Bernoulli ode y′ = f(x)y+
g(x)yn

0 yne
∫
(1−n)f(x) dx n is integer n 6= 1, n 6= 0. For

example, for
y′ = − sin (x) y + x2y2 then
f(x) = − sin x, g(x) = x2, n =
2 and ξ = 0, η = e

∫
sinxdxy2 or

ξ = 0, η = e− cosxy2. Notice
that g(x) does not show up in
the infinitesimals Another
example is y′ = 2 y

x + y3

x2 where
here f(x) = 2

x . Hence
ξ = 0, η = e−

∫
(3−1) 2

x
dxy3 or

ξ = 0, η = η = y3

x4

Reduced
Riccati

y′ =
f1(x) y +
f2(x) y2

0 e−
∫
f1dx For example, for

y′ = xy + sin (x) y2 then
f1 = x, f2 = sin x and hence
ξ = 0, η = e−

∫
xdx or

ξ = 0, η = e
1
2x

2 . Notice that
f2(x) does not show up in the
infinitesimals. I could not find
infinitesimals for the full
Riccati ode
y′ = f0(x) + f1(x) y + f2(x) y2.
Notice that f1, f2 can not be
both constants, else this
becomes separable

Abel first kind y′ = f0(x) +
f1(x) y +
f2(x) y2 +
f3(x) y3

No infinitesimals found

Currently the above are the ones I am able to determine for known first order ode’s. If I
find more, will add them. The table lookup is much faster to use than having to solve the
similarity PDE each time using anstaz in order to find ξ, η.

3.4.5 Finding xi and eta from linearized symmetry condition
Given any first order ODE

dy

dx
= ω(x, y) (A)

ξ(x, y) , η(x, y) are called the infinitesimals of the transformation. Maple has function
called symgen in the DEtools package to determine these using 16 different algorithms.
Starting with the Lie point transformation group

x̄ ≡ x̄(x, y; ε)
ȳ ≡ ȳ(x, y; ε)

Expanding using Taylor series near ε = 0 gives

x̄ = x+ ∂x̄

∂ε

∣∣∣∣
ε=0

ε+O
(
ε2
)

= x+ εξ(x, y) +O
(
ε2
)

ȳ = y + ∂ȳ

∂ε

∣∣∣∣
ε=0

ε+O
(
ε2
)

= y + εη(x, y) +O
(
ε2
)
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Ignoring higher order terms gives

x̄(x, y) = x+ εξ(x, y) (1)
ȳ(x, y) = y + εη(x, y) (2)

In the above ε is the one parameter in the Lie symmetry group. The symmetry condition
for (A) is that

dȳ

dx̄
= ω(x̄, ȳ)

Whenever
dy

dx
= ω(x, y)

Symmetry of an ODE means the ODE in (x, y) remain the same form (but using new
variables (x̄, ȳ)) after applying the (non-trivial) transformation (1,2).

Nontrivial transformation means ε 6= 0. The first goal is to find the functions ξ(x, y) , η(x, y)
which satisfy the symmetry condition above.

The symmetry condition is written as

dȳ

dx̄
=

dȳ
dx
dx̄
dx

= ω(x̄, ȳ) (3)

Where dȳ
dx

is the total derivative with respect to the x variable. Similarly for dx̄
dx
. But

dȳ

dx
= ȳx + ȳy

dy

dx
= ȳx + ȳyω(x, y) (4)

And

dx̄

dx
= x̄x + x̄y

dy

dx
= x̄x + x̄yω(x, y) (5)

Substituting (4,5) into (3) gives the symmetry condition as

ȳx + ω(x, y) ȳy
x̄x + ω (x, y) x̄y

= ω(x̄, ȳ) (6)

But
x̄x = 1 + εξx (7)

And similarly
x̄y = εξy (8)

And
ȳx = εηx (9)

And
ȳy = 1 + εηy (10)

Substituting (7,8,9,10) back into the symmetry condition (6) gives

εηx + ω(1 + εηy)
(1 + εξx) + ωεξy

= ω(x+ εξ, y + εη)

εηx + ω + ωsηy
1 + εξx + ωεξy

= ω(x+ εξ, y + εη)

ω + s(ηx + ωηy)
1 + ε (ξx + ωξy)

= ω(x+ εξ, y + εη) (11)

The above is used to determine ξ(x, y) , η(x, y). The above PDE is too complicated to use
as is. It is linearized, and the linearized version is used to solve for ξ, η near small ε.



chapter 3. first order ode F (x, y, y′) = 0 143

Eq. (11) is linearized by expanding the LHS and the RHS using Taylor series around ε = 0
. Starting with the LHS first, let ω+ε(ηx+ωηy)

1+ε(ξx+ωξy) = ∆LHS. Expanding this using Taylor series
around ε = 0 gives

∆LHS = ∆ε=0 + ε
d

dε
(∆)ε=0 + h.o.t. (11A)

But ∆ε=0 = ω and

d

dε
(∆LHS) =

d
dε

[ω + ε(ηx + ωηy)] (1 + ε(ξx + ωξy))− (ω + ε(ηx + ωηy)) d
dε

[1 + ε(ξx + ωξy)]
(1 + ε (ξx + ωξy))2

= (ηx + ωηy) (1 + ε(ξx + ωξy))− (ω + ε(ηx + ωηy)) (ξx + ωξy)
(1 + ε (ξx + ωξy))2

At ε = 0 the above reduces to
d

dε
(∆LHS)ε=0 = (ηx + ωηy)− ω(ξx + ωξy)

= ηx + ωηy − ωξx − ω2ξy

= ηx + ω(ηy − ξx)− ω2ξy (12)

Therefore the LHS of Eq. (11A) becomes

∆LHS = ω + ε
(
ηx + ω(ηy − ξx)− ω2ξy

)
(11B)

Now the RHS of Eq. (11) is linearized. Let ω(x+ sξ, y + sη) = ∆RHS. Expansion around
ε = 0 gives

∆RHS = ∆ε=0 + ε

(
d

dε
∆
)

ε=0
+ h.o.t.

But ∆ε=0 = ω(x, y) and
d

dε
∆RHS = ωxξ + ωyη

Hence the linearized RHS of (11) becomes

∆RHS = ω(x, y) + ε(ωxξ + ωyη) (13)

Substituting (11B,13) back into (11), gives the linearized version of (11) as

∆LHS = ∆RHS

ω + ε
(
ηx + ω(ηy − ξx)− ω2ξy

)
= ω + ε(ωxξ + ωyη)

ε
(
ηx + ω(ηy − ξx)− ω2ξy

)
= ε(ωxξ + ωyη)

ηx + ω(ηy − ξx)− ω2ξy = ωxξ + ωyη

Hence
ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

The above equation (14) is what is used to determine ξ, η. It is the linearized symmetry condition.
There is an additional constraint not mentioned above which is

x̄xȳy 6= x̄yȳx

The restricted form of (14) is
χx + χyω − χωy = 0

An important property is the following. Given any

ξ = A, η = B

Then we can always write the above as

ξ = 0, η = B − ωA

So that ξ = 0 can always be used if needed to simplify some things.

After finding ξ, η from (14), the question now becomes is how to use them to solve the
original ODE?
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3.4.6 Moving to canonical coordinates R,S
The next step is to determine what is called the canonical coordinates (R,S). In these
canonical coordinates the ODE becomes a quadrature and solved by integration. Once
solved, the solution is transformed back to (x, y). The canonical coordinates (R,S) are
found as follows. Selecting the transformation to be

R̄ = R (15)
S̄ = S + ε (16)

Eq. (15) becomes
∂R̄

∂ε

∣∣∣∣
ε=0

=
(
∂R̄

∂x

dx

dε

)∣∣∣∣
ε=0

+
(
∂R̄

∂y

dy

dε

)∣∣∣∣
ε=0

But ∂R̄
∂x

∣∣∣
ε=0

= ∂R
∂x

and dx
dε

∣∣
ε=0 = ξ(x, y) and similarly ∂R̄

∂y

∣∣∣
ε=0

= ∂R
∂y

and dy
dε

∣∣
ε=0 = η(x, y).

The above becomes
∂R̄

∂ε

∣∣∣∣
ε=0

= ∂R

∂x
ξ + ∂R

∂y
η

But ∂R̄
∂ε

∣∣∣
ε=0

= 0 since R̄ = R. The above reduces to

0 = ∂R

∂x
ξ + ∂R

∂y
η

This PDE have solution using symmetry method given by
dR

dt
= 0 (15A)

dx

dt
= ξ (15B)

dy

dt
= η (15C)

The same procedure is applied to Eq. (16) which gives

∂S̄

∂ε

∣∣∣∣
ε=0

=
(
∂S̄

∂x

dx

dε

)∣∣∣∣
ε=0

+
(
∂S̄

∂y

dy

dε

)∣∣∣∣
ε=0

But ∂S̄
∂x

∣∣∣
ε=0

= ∂S
∂x

and dx
dε

∣∣
ε=0 = ξ(x, y) and similarly ∂S̄

∂y

∣∣∣
ε=0

= ∂S
∂y

and dy
dε

∣∣
ε=0 = η(x, y) .

The above becomes
∂S̄

∂ε

∣∣∣∣
ε=0

= ∂R

∂x
ξ + ∂R

∂y
η

But ∂S̄
∂ε

∣∣∣
ε=0

= 1 since S̄ = S + ε. The above reduces to

1 = ∂S

∂x
ξ + ∂S

∂y
η

This PDE have solution using symmetry method given by
dS

dt
= 1 (16A)

dx

dt
= ξ (16B)

dy

dt
= η (16C)

Equations (15A,B,C) are used to solve for R(x, y) and equations (16A,B,C) are used to
solve for S(x, y). Starting with R. In the case when ξ = 0 the equations become

dR

dt
= 0

dx

dt
= 0

dy

dt
= η
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First equation above gives R = c1. Second equation gives x = c2. Letting c1 = c2 then

R = x

If ξ 6= 0 then combining Eqs. (15B,15C) gives

dy

dx
= η

ξ

R = c1

The ODE dy
dx

= η
ξ
is solved first and the constant of integration is replaced by R. Hence R

is now found. S(x, y) is found similarly using Eqs. (16A,B,C). If ξ = 0 then

dS

dt
= 1

dx

dt
= 0

dy

dt
= η

The first and third equations give

dS

dy
= 1
η

S =
∫ 1
η
dy

If ξ 6= 0 then using the second and third equation gives

dS

dx
= 1
ξ

S =
∫ 1

ξ
dx

Now that R,S are found and the problem is solved. The ode in (R,S) space is set up
using

dS

dR
=

Sx + Sy
dy
dx

Rx +Ry
dy
dx

(16)

Where dy
dx

= ω(x, y) which is given. The solution S(R) is next converted back to y(x).

Examples below illustrate how this done on a number of ODE’s. Eq. (16) is solved by
quadrature. This is the whole point of Lie symmetry method, is that the original ode
is solved in canonical coordinates where it is much easier to solve and the solution is
transformed back to natural coordinates.

The only way to understand this method well, is to workout some problems. To learn
more about the theory of Lie transformation itself and why it works, there are many links
in my links page on the subject.

3.4.7 Definitions and various notes

1. infinitesimal generator operator. Γ = ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y
. Any first order ode

has such generator. For instance, for the ode y′ = ω(x, y) then Γω = ξ ∂ω
∂x

+ η ∂ω
∂y
.

The ode y′ = ω(x, y) = y
x
+ x has solution y = x2 + xc1, therefore the solution

family is φ(x, y) = y−x2

x
= c. Using ξ = 0, η = x then Γφ = x

∂

(
y−x2

x

)
∂y

= 1. This

is another example: using ξ = x, η = 2y , hence Γφ = x
∂

(
y−x2

x

)
∂x

+ 2y
∂

(
y−x2

x

)
∂y

=
x
(
− y

x2 − 1
)
+ 2y

( 1
x

)
= − y

x
− 1 + 2 y

x
= y

x
− 1 6= 1. I must be not applying the

symmetry generator correct as the result supposed to be 1. Need to visit this again.
See book Bluman and Anco, page 109. Maybe some of the assumptions for using
this generator are not satisfied for this ode.
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2. ω(x, y) is invariant iff Γω = ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y

= 0.

3. The linearized PDE from the symmetry condition is ωξx+ω2ξy+ωxξ = ωyη+ηx+ωηy.
This is used to determine tangent vector (ξ(x, y) , η(x, y)) which is one of the core
parts of the algorithm to solve the ode using symmetry methods. There are infinite
number of solutions and only one is needed.

4. Symmetries and first integrals are the two most important structures of differential
equations. First integral is quantity that depends on x, y and when integrated over
any solution curve is constant.

5. Lie symmetry allows one to reduce the order of an ode by one. So if we have third
order ode and we know the symmetry for it, we can change the ode to second order
ode. Then if apply the symmetry for this second order ode, its order is reduced to
one now.

6. If ξ, η are known then the canonical coordinates R,S can now be found as functions
of x, y. We just ξ, η to find R,S. Once R,S are known then dS

dR
= f(R) can be

formulated. This ode is solved for S by quadrature. Final solution is found by
replacing R,S back by x, y. I have functions and a solver now written and complete
to do all of this but just for first order ode’s only. I need to start on second order
ode’s after that. The main and most difficult step is in finding ξ, η. Currently I
only use multivariable polynomial ansatz up to second order for ξ and multivariable
polynomial ansatz up to third order for η and then try all possible combinations.
This is not very efficient. But works for now. I need to add better and more efficient
methods to finding ξ, η but need to do more research on this.

7. When using polynomial ansatz to find ξ, η do not mix x, y in both ansatz. For
example if we use ξ = p(x) then can use η = q(x) or η = q(x, y) polynomial ansatz
to find η. But do not try ξ = p(x, y) ansatz with η = q(x, y) ansatz. In other words,
if one ansatz polynomial is multivariable, then the other should be single variable.
Otherwise results will be complicated and this defeats the whole ides of using Lie
symmetry as the ode generated will be as complicated or more than the original ode
we are trying to solve. I found this the hard way. I was generating all permutations
of ξ, η ansatz’s but with both as multivariable polynomials. This did not work well.

8. Symmetries on the ode itself, is same as talking about symmetries on solution
curves. i.e. given an ode y′ = ω(x, y) with solution y = f(x), then when we look
for symmetry on the ode which leaves the ode looking the same but using the new
variables x̄, ȳ. This is the same as when we look for symmetry which maps any point
(x, y) on solution curve y = f(x) to another solution curve. In other words, the
symmetry will map all solution curves of y′ = ω(x, y) to the same solution curves.
i.e. a specific solution curve y = f(x, c1) will be mapped to y = f(x, c2). All solution
curves of y′ = ω(x, y) will be mapped to the same of solution curves. But each curve
maps to another curve within the same set. If the same curve maps to itself, then
this is called invariant curve.

9. An orbit is the name given to the path the transformation moves the point (x, y)
from one solution curve to another point on another solution curve due to the
symmetry transformation.

10. A solution curve of y′ = ω(x, y) that maps to itself under the symmetry transforma-
tion is called an invariant curve.

11. Not every first order ode has symmetry. At least according to Maple. For example
y′ + y3 + xy2 = 0 which is Abel ode type, it found no symmetries using way=all.
May be with special hint it can find symmetry?

12. After trying polynomials ansatz, I find it is limited. Since it will only find symmetries
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that has polynomials form. A more powerful ansatz is the functional form. But these
are much harder to work with but they are more general at same time and can find
symmetries that can’t be found with just polynomials. So I have to learn how to use
functional ansatz’s. Currently I only use Polynomials.

13. ξ, η are called Lie infinitesimal and x̄, ȳ are called the Lie group.

14. If we given the ξ, η then we can find Lie group (x̄, ȳ). See example below.

15. If we are given Lie group (x̄, ȳ) then we can find the infinitesimal using ξ(x, y) =
∂
∂ε
x̄
∣∣
ε=0 and η(x, y) = ∂

∂ε
ȳ
∣∣
ε=0.

16. First order ode have infinite number of symmetries. Talking about symmetry of
an ode is the same as talking about symmetry between solution curves of the ode
itself. i.e. symmetry then becomes finding mapping that maps each solution curve
to another one in the same family of solutions of the ode.

17. ξ, η can also be used to find the integrating factor for the first order ode. This is
given by µ(x, y) = 1

η−ξω
where the ode is y′(x) = ω(x, y) . This gives an alternative

approach to solve the ode. I still need to add examples using µ(x, y).

18. For first order ode, to find Lie infinitesmilas, we have to solve first order PDE in 2
variables. For second order ode, to find Lie infinitesmilas, we have to solve second
order PDE in 3 variables. For third order ode, to find Lie infinitesmilas, we have to
solve third order PDE in 4 variables and so on. Hence in general, for nth order ode, we
have to solve nth order PDE in n+1 variables to find the required Lie infinitesmilas.
For first order, these variables are ξ, η and the PDE is ηx + ω(ηy − ξx) − ω2ξy −
ωxξ−ωyη = 0. Currently my program only handles first order odes. Once I am more
familar with Lie method for second order ode, will update these notes. See at the
end a section on just second order ode that I started working on.

3.4.8 Closer look at orbits and tangent vectors
This section takes a closer look at orbits and tangent vectors ξ, η which are the core of
Lie symmetry method. By definition

ξ(x, y) = dx̄

dε

∣∣∣∣
ε=0

(1)

η(x, y) = dȳ

dε

∣∣∣∣
ε=0

Hence ξ(x, y) shows how x̄ changes as function of (x, y). And η(x, y) shows how ȳ changes
as function of (x, y). This is because

x̄ = x+ ξε (2)
ȳ = y + ηε

Comparing (2) to equation of motion where x̄ represents final position and x is initial
position, then ξ is the speed and ε is the time. When time is zero, initial and final position
is the same. As time increases final position changes depending on the speed as time (here
represented as ε) increases. So it helps to think of ξ, η as the rate at which x̄, ȳ change
location depending on the value ε. ξ, η are calculated when ε is very small in the limit as
it reaches zero.

As ε increases the point (x, y) moves closer to the final destination point (x̄, ȳ). So these
quantities ξ, η specify the orbit shape. The orbit is the path taken by point transformation
from (x, y) to (x̄, ȳ) and depends on ε such that the ode remain invariant in x̄, ȳ and points
on solution curves are mapped to points on other solution curves.
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Different ξ, η give different orbits between two solution curves. The following example
shows this. Given the ode

y′ = x− y

x+ y

This is Abel type ode. Also Homogeneous class A.

It has two solutions. One solution is given by Mathematica as y = −x −
√
c1 + 2x2. A

small program was now written that plots the orbit for 4 solutions ξ, η found for the
similarity conditions. The similarity solution were found by Maple’s symgen command.

Figure 3.12: Command used to find ξ, η

The program starts from the same (x, y) point from one solution curve and determines
(x̄, ȳ) location on anther solution curve using each pair of ξ, η found. The same solution
curves are used in order to compare the orbits. The following plot was generated showing
the result
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Figure 3.13: Different orbits using different ξ, η

The source code used to generate the above plot is� �
<<MaTeX`
ode=y'[x]==(x-y[x])/(x+y[x]);
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ysol=DSolve[ode,y[x],x]
ysol=-x-Sqrt[C[1]+2 x^2];

x1 = 1.5;
y1 = ysol /. {C[1] -> 1, x -> x1};

ysol2=ysol/.C[1]->1.1

getSolutions[inf_List, titles_List, x_Symbol, ysol1_, ysol2_, x1_,
y1_, from_, to_] :=

Module[{xbar, ybar, eps, eq, soleps, p, data, n, xi, eta, texStyle},
data = Table[0, {n, Length@inf}];
texStyle = {FontFamily -> "Latin Modern Roman", FontSize -> 12};

Do[
xi = First[inf[[n]]];
eta = Last[inf[[n]]];
xbar = x1 + eps*xi ;
ybar = y1 + eps*eta;
eq = ybar == ysol2 /. x -> xbar;
soleps = SolveValues[eq, eps];
soleps = First@SortBy[soleps, Abs];
ybar = ybar /. eps -> soleps;
xbar = xbar /. eps -> soleps;
p = Plot[{ysol1, ysol2}, {x, from, to},

PlotLabel -> MaTeX[titles[[n]], Magnification -> 1.5],
BaseStyle -> texStyle,
Epilog -> {{Arrowheads[.02], Arrow[{{x1, y1}, {xbar, ybar}}]},

Text[MaTeX["\\left( x,y \\right)"], {x1, y1}, {-1, -1}],
Text[
MaTeX["\\left( \\bar{x},\\bar{y}\\right)"], {xbar, ybar}, {1,
1}]},

ImageSize -> 400];
data[[n]] = p
,
{n, 1, Length@inf}
];

data

];

inf = {{1/x1, -1/x1},
{0, 1/(x1 + y1)},
{-(x1^2 - 2*x1*y1 - y1^2)/(x1 - y1), 0},
{2*x1 + y1, x1}
};

titles = {"\\xi=\\frac{1}{x},\\eta=-\\frac{1}{x}",
"\\xi=0,\\eta=\\frac{1}{x+y}",
"\\xi=\\frac{-(x^2-2 x y-y^2)}{x=y},\\eta=0", "\\xi=2 x+y,\\eta=x"};

data = getSolutions[inf, titles, x, ysol /. C[1] -> 1, ysol2, x1, y1,
1.45, 1.51];

p = Grid[Partition[data, 2], Frame -> All, Spacings -> {1, 1}]� �
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3.4.9 Selection of ansatz to try
The following are selection of ansatz to try for solving the linearized PDE above generated
from the symmetry condition in order to solve for ξ(x, y) , η(x, y). These use the functional
form. As a general rule, the simpler that ansatz that works, the better it is.

Functional form of ansatz is better than explicit polynomials but much harder to use and
implement. Maple’s symgen has 16 different algorithms that can be specified using HINT
option to support functional forms. The following are possible cases to use.

1. ξ = 0, η = f(x)

2. ξ = 0, η = f(y)

3. ξ = f(x) , η = 0

4. ξ = f(y) , η = 0

5. ξ = f(x) , η = xg(y). An example: applied to y′ = x+cos
(
ey+(1+x)e−x

)
ey+x should give ξ =

ex, η = xe−y which leads to solution y = ln
(
2 arctan

(
e
−
(
c1+e−x

)
−1

e
−
(
c1+e−x

)
+1

)
− (1 + x) e−x

)
.

6. ξ = f(x) , η = g(y)

7. ξ = 0, η = f(x) g(y). For example, applied to y′ = x
√
1+y+

√
1+y+1+y

1+x
should give

f(x) =
√
1 + x, g(y) =

√
1 + y.

8. ξ = f(x) g(y) , η = 0

3.4.10 Examples

3.4.10.1 Example 1 on how to find Lie group (x, y) given Lie infinitesimal xi
and eta

Given ξ = 1, η = 2x find Lie group x̄, ȳ. Since

ξ(x, y) = ∂x̄

∂ε

∣∣∣∣
ε=0

Then
dx̄

dε
= ξ(x̄, ȳ)

= 1 (1)

Similarly, since
η(x, y) = ∂ȳ

∂ε

∣∣∣∣
ε=0

Then
dȳ

dε
= η(x̄, ȳ)

= 2ȳ (2)

Where in both odes (1,2) we have the condition that at ε = 0 then x̄ = x, ȳ = y. Starting
with (1), solving it gives

x̄ = ε+ c1(x, y)

Where c1(x, y) is arbitrary function which acts like constant of integration since x̄(x, y) is
function of two variables. At ε = 0 then c1(x, y) = x. Hence the above is

x̄ = ε+ x (3)

And from (2), solving give
ȳ = 2x̄ε+ c2(x, y)
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But at ε = 0 , ȳ = y, x̄ = x then the above gives c2 = y. Hence the above becomes

ȳ = 2x̄ε+ y

But x̄ = ε+ x from (3), hence the above becomes

ȳ = 2(ε+ x) ε+ y

= 2ε2 + 2εx+ y

Therefore Lie group is

x̄ = ε+ x

ȳ = 2ε2 + 2εx+ y

3.4.10.2 Example how to find Lie group (x, y) given canonical coordinates
R,S

Given R = x, S = y
x
find Lie group x̄, ȳ. Solving for x, y from R,S gives

x = R

y = SR

Hence

x̄ = R̄

ȳ = S̄R̄

But S̄ = S+ ε by definition of canonical coordinates and R̄ = R by definition of canonical
coordinates. Hence the above becomes

x̄ = R

ȳ = (S + ε)R

Using the values given for R,S in terms of x, y the above becomes

x̄ = x

ȳ =
(y
x
+ ε
)
x

= y + εx

3.4.10.3 Example y′ = y
x
+ x

This is linear first order which can be easily solved using integrating factor. But this is
just to illustrate Lie symmetry method.

y′ = y

x
+ x (1)

y′ = ω(x, y)

The first step is to find ξ and η. Using lookup method, since this is linear ode of form
y′ = f(x) y + g(x) then

ξ = 0
η = e

∫
fdx = e

∫ 1
x
dx = x
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The end of this problem shows also how to find these from the symmetry conditions.
Therefore we write

x̄ = x+ ξε

= x

ȳ = y + ηε

= y + ηx (2)

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
x

Before solving this, let us first verify that transformation (2) is invariant which means it
leaves the ode in same form but using x̄, ȳ. We do the same as in the above introduction.

dȳ

dx̄
=

dȳ
dx
dx̄
dx

=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

But ȳx = s, ȳy = 1, x̄x = 1, x̄y = 0 and the above becomes

dȳ

dx̄
=
ε+ dy

dx

1
= ε+ dy

dx

Substituting x̄, ȳ, dȳ
dx̄

in the original ode gives
dȳ

dx̄
= ȳ

x̄
+ x̄

ε+ dy

dx
= y + εx

x
+ x

ε+ dy

dx
= y

x
+ ε+ x

dy

dx
= y

x
+ x

Which is the original ODE. Therefore (2) are indeed an invariant Lie group transformation
as it leaves the ODE unchanged. The next step is to determine what is called the canonical
coordinates R,S. Where R is the independent variable and S is the dependent variable.
So we are looking for S(R) function. This is done by using the standard characteristic
equation by writing

dx

ξ
= dy

η
= dS

dx

0 = dy

x
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. In the special case when ξ = 0 and η 6= 0
these give

R = x

S =
∫ 1
η
dy

=
∫ 1
x
dy

= y

x
+ c
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We are free to set c = 0, hence S = y
x
. Therefore the transformation to canonical coordi-

nates is
(x, y) → (R,S) =

(
x,
y

x

)
The derivative in (R,S) is found same as with dȳ

dx̄
giving

dS

dR
=

Sx + Sy
dy
dx

Rx +Ry
dy
dx

But Sx = − y
x2 , Sy = 1

x
, Rx = 1, Ry = 0 and the above becomes

dS

dR
=

− y
x2 + 1

x
dy
dx

1
= − y

x2
+ 1
x

dy

dx

But dy
dx

= y
x
+ x hence the above becomes

dS

dR
= − y

x2
+ 1
x

(y
x
+ x
)

= 1

Solving this gives
S = R + c1

But S = y
x
, R = x. Therefore the above becomes

y

x
= x+ c1

y = x2 + c1x

Which is the solution to the original ode. Of course this was just an example showing how
to use Lie symmetry method. The original ode is linear and can be easily solved using an
integrating factor

y′ − y

x
= x

I = e−
∫ 1

x
dx = e− lnx = 1

x

Multiplying the ode by I gives

d

dx
(yI) = Ix

y

x
=
∫
x

x
dx

= x+ c1

Hence
y = x2 + xc1

Which is same solution. But Lie symmetry method works the same way for any given
ode. And this is where it powers are. It can solve much more complicated odes than this
using the same procedure. The main difficulty is in finding the infinitesimals for the group,
which are ξ, η that leaves the ode invariant.

Finding Lie symmetries for this example

y′ = y

x
+ x

= ω(x, y)
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The condition of symmetry is a the linearized PDE given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

We first find the determining equation before solving for ξ, η. Since ω = y
x
+ x then

ωy = 1
x
, ωx = − y

x2 + 1. Hence the above becomes

ηx +
(y
x
+ x
)
(ηy − ξx)−

(y
x
+ x
)2
ξy −

(
− y

x2
+ 1
)
ξ − 1

x
η = 0

ηx +
(y
x
+ x
)
(ηy − ξx)−

(
y2

x2
+ x2 + 2y

)
ξy −

(
− y

x2
+ 1
)
ξ − 1

x
η = 0

ηx +
(y
x
+ x
)
ηy − ξx

(y
x
+ x
)
−
(
y2

x2
+ x2 + 2y

)
ξy −

(
− y

x2
+ 1
)
ξ − 1

x
η = 0

Multiplying by x2 to normalize gives

x2ηx +
(
yx+ x3

)
ηy − ξx

(
yx+ x3

)
−
(
y2 + x4 + 2yx2

)
ξy −

(
−y + x2

)
ξ − xη = 0 (A)

Equation (A) is called the determining equation. Using different ansatz can result in more
solutions.

Trying ansatz

ξ = 0
η = b0x

Plugging these into (A) and comparing coefficients to solve for the unknown gives

x2(b0)− xη = 0
b0x

2 − x(b0x) = 0
b0x

2 − b0x
2 = 0

b0(0) = 0

So any b0 will work. Let b0 = 1. Hence

ξ = 0
η = x

Now Trying ansatz as

ξ = a0 + a1x

η = b0 + b1y

Then ξx = a1, ξy = 0, ηx = 0, ηy = b1 and the determining equation (A) becomes

(b0 + b1y)x+ (a0 + a1x)
(
x2 − y

)
+ b1

(
−yx− x3

)
+ a1

(
yx+ x3

)
= 0

(b0 + b1y)x+ (a0 + a1x)
(
x2 − y

)
+ (b1 − a1)

(
−yx− x3

)
= 0

xb0 − ya0 + x2a0 + x3(2a1 − b1) = 0

Setting each coefficient to zero gives

b0 = 0
a0 = 0
a0 = 0

2a1 − b1 = 0

Hence the solution is a0 = 0, b0 = 0, a1 = b1
2 . Using b1 = 2 gives a1 = 1 and therefore

ξ = x

η = 2y
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And Trying ansatz as

ξ = a0 + a1x+ a2y

η = b0 + b1y + b2x

Hence ξx = a1, ξy = a2, ηx = b2, ηy = b1 and the determining equation (A) becomes

(b0 + b1y + b2x)x+ (a0 + a1x+ a2y)
(
x2 − y

)
+ b1

(
−yx− x3

)
+ a2

(
y2 + x4 + 2yx2

)
+ b2

(
−x2

)
+ a1

(
yx+ x3

)
= 0

x4(−a2) + x3(−2a1) + x2y(−3a2) + x3(b1) + x2(−a0) + y(a0)− x(b0) = 0

Setting each coefficient to zero gives

b0 = 0
a0 = 0
a1 = 0
b1 = 0
a2 = 0
b2 = 0

This shows there is no solution for this ansatz. There are more solutions depending on what
ansatz we used. We just need one to obtain the final solution. In Maple, these solutions
can be found as follows� �
ode:=diff(y(x),x)= y(x)/x+x;
DEtools:-symgen(ode,y(x),way=all)
[_xi = 0, _eta = x],
[_xi = 0, _eta = x],
[_xi = 0, _eta = x^2 - y],
[_xi = x, _eta = 2*y],
[_xi = 1, _eta = y/x],
[_xi = x^2 + y, _eta = 4*y*x],
[_xi = x^2 - 3*y, _eta = -4*y^2/x]� �
Trying ansatz using functional form. Let ξ = 0, η = f(x) then ξx = 0, ξy = 0, ηx =
f ′(x) , ηy = 0 and the determining equation (A) becomes

x2ηx +
(
yx+ x3

)
ηy − ξx

(
yx+ x3

)
−
(
y2 + x4 + 2yx2

)
ξy −

(
−y + x2

)
ξ − xη = 0

x2f ′(x)− xf(x) = 0
xf ′(x)− f(x) = 0

This is easily solved to give f = cx. Hence ξ = 0, η = x by choosing c = 1. We see that
this choice of ansatz was the easiest in this case, as the ode generated was linear. Let us
try another and see what happens.

Trying ansatz as ξ = 0, η = f(y) then ξx = 0, ξy = 0, ηx = 0, ηy = f ′(y) and the
determining equation (A) becomes(

yx+ x3
)
f ′(y)− xf(y) = 0(

y + x2
)
f ′(y)− f(y) = 0

This is separable and its solution is f = c1(x2 + y). Hence ξ = 0, η = (x2 + y) by us-
ing c1 = 1. But this is not function of y only. So this choice did not work. Trying
[ξ = f(x) , η = 0] , [ξ = f(y) , η = 0] shows these also do not work.

ξ, η can be checked for validity by substituting them in the PDE. Maple’s symtest command
does this. These functional ansatz’s lead to an ode which have to be solved.
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3.4.10.4 Example y′ = xy2 − 2y
x
− 1

x3

Solve

y′ = xy2 − 2y
x

− 1
x3

(1)

y′ = ω(x, y)

For x 6= 0. Given dilation transformation

x̄ = eεx (2)
ȳ = e−2εy

Hence

ξ(x, y) = dx̄

dε

∣∣∣∣
ε=0

= x

η(x, y) = dȳ

dε

∣∣∣∣
ε=0

= −2y

(At end shows how to obtain these). The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
−2y − x

(
xy2 − 2y

x
− 1

x3

)
= − x2

x4y2 − 1

Now

x̄ = x+ ξε = x+ εx (3)
ȳ = y + ηε = y − 2yε

This transformation x̄ = eεx, ȳ = e−2εy is now verified that it keeps the ode invariant.

dȳ

dx̄
=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

=
e−2ε dy

dx

eε
= e−3ε dy

dx

Substituting x̄, ȳ, dȳ
dx̄

in the original ode gives

dȳ

dx̄
= x̄ȳ2 − 2ȳ

x̄
− 1
x̄3

e−3ε dy

dx
= (eεx)

(
e−2εy

)2 − 2(e−2εy)
(eεx) − 1

(eεx)3

e−3ε dy

dx
= e−3εxy2 − 2e−3εy

x
− e−3ε

x3

dy

dx
= xy2 − 2y

x
− 1
x3

Which is the original ode. Hence the transformation (2) is invariant. It is important to
use (2) and not (3) when doing the verification.

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

x
= dy

−2y = dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE gives

dy

dx
= −2y

x

Integrating gives yx2 = c where c is constant of integration. In this method R is always c.
Hence

R = yx2

S(x, y) is now found from the first equation in (1) and the last equation which gives

dS = dx

ξ

S =
∫
dx

x

S = ln x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an equation

to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. But

Sx = 1
x

Sy = 0
Rx = 2yx
Ry = x2

Substituting gives

dS

dR
=

1
x
+
(
xy2 − 2y

x
− 1

x3

)
(0)

2xy +
(
xy2 − 2y

x
− 1

x3

)
x2

=
1
x

2xy +
(
xy2 − 2y

x
− 1

x3

)
x2

= 1
x4y2 − 1

But R = yx2, hence the above becomes

dS

dR
= 1
R2 − 1

This is just quadrature. Integrating gives

S = − arctanh (R) + c1

This solution is converted back to x, y. Since S = ln x,R = yx2, the above becomes

ln |x| = − arctanh
(
yx2
)
+ c1
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Or

− ln |x|+ c1 = arctanh
(
yx2
)

yx2 = tanh (− ln |x|+ c1)

y = tanh (− ln |x|+ c1)
x2

Which is the solution to the original ODE.

The above shows the basic steps in this method. Let us solve more ODE’s to practice this
method more.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

We now need to solve the above for ξ, η given a specific ω(x, y) for the ODE at hand.
This PDE can not be solved as is for ξ, η without an ansatz. One common ansatz is to
use ξ = α(x) and η = β(x) y + γ(x) and plugging these into the above and then compare
coefficients to solve for α(x) , β(x) , γ(x).

Another ansatz is to use a polynomials for ξ, η. And this is what we will start with.

Using polynomial as ansatz

We start with order 1 polynomials. Hence

ξ = a0 + a1x (1)
η = b0 + b1y (2)

If this does not generate solution, we will try higher order polynomials. Eq (14) becomes

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0
0 + ω(b1 − a1)− ω2(0)− ωx(a0 + a1x)− ωy(b0 + b1y) = 0

But in this ODE ω = xy2− 2y
x
− 1

x3 , hence ωx = y2+ 2y
x2 + 3

x4 and ωy = 2yx− 2
x
. The above

becomes (
xy2 − 2y

x
− 1
x3

)
(b1 − a1)−

(
y2 + 2y

x2
+ 3
x4

)
(a0 + a1x)−

(
2yx− 2

x

)
(b0 + b1y) = 0

xy2b1 −
2y
x
b1 −

1
x3
b1 − xy2a1 +

2y
x
a1 +

1
x3
a1 − y2a0 −

2y
x2
a0 −

3
x4
a0 − xy2a1 − a1

2y
x

− a1
3
x3

− 2yxb0 +
2
x
b0 − 2y2xb1 +

2y
x
b1 = 0

xy2(b1 − a1 − a1 − 2b1) +
y

x
(−2b1 + 2a1 − 2a1 + 2b1) +

1
x3

(−b1 + a1 − 3a1) + y2(−a0) +
y

x2
(−2a0) +

1
x4

(−3a0) + yx(−2b0) +
1
x
(2b0) = 0

Each coefficient to each monomial must be zero. Hence

−2a1 − b1 = 0
−b1 − 2a1 = 0
−2a1 − 2b1 = 0

a0 = 0
b0 = 0

These are overdetermined equations. Solving gives a1 = −1
2b1 and a0 = b0 = 0. Choosing

b1 = −2 gives a1 = 1. Hence

ξ = a0 + a1x = x

η = b0 + b1y = −2y
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Which is what we wanted to show for this ODE. These are the values we used earlier to
solve the ODE using symmetry method.

Using functions as ansatz

Now ξ, η are found using ξ = α(x) and η = β(x) y + γ(x) as ansatz. Eq. (14) is

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

But
ηx = β′(x) y + γ′(x)

And
ηy = β(x)

And

ξy = 0
ξx = α′(x)

Substituting the above into EQ. (14) gives

β′(x) y + γ′(x) + ω(β(x)− α′(x))− ωxα(x)− ωy(β(x) y + γ(x)) = 0

But in this ODE ω = xy2− 2y
x
− 1

x3 , hence ωx = y2+ 2y
x2 + 3

x4 and ωy = 2yx− 2
x
. The above

becomes

β′y + γ′ +
(
xy2 − 2y

x
− 1
x3

)
(β − α′)−

(
y2 + 2y

x2
+ 3
x4

)
α−

(
2yx− 2

x

)
(βy + γ) = 0

Or

γ′ + yβ′ + 2
x
γ − 1

x3
β − 3

x4
α− y2α + 1

x3
α′ − 2xyγ − 2

x2
yα− xy2β + 2

x
yα′ − xy2α′ = 0

Collecting on y gives

y0
(
γ′ + 2

x
γ − 1

x3
β − 3

x4
α + 1

x3
α′
)
+y
(
β′ − 2xyγ − 2

x2
α + 2

x
α′
)
+y2(−α− xβ − xα′) = 0

Each term above is zero. This gives the following equations

γ′(x) + 2
x
γ(x)− 1

x3
β(x)− 3

x4
α(x) + 1

x3
α′(x) = 0

β′(x)− 2xyγ(x)− 2
x2
α(x) + 2

x
α′(x) = 0

−α(x)− xβ(x)− xα′(x) = 0

Solving these coupled ODE on the computer gives

α(x) = 1
x

(
c3x

4 + c1x
2 + c2

)
β(x) = −4c3x2 − 2c1
γ(x) = −2c3 − 2 c2

x4

Where the c1, c2, c3 above are constant of integration. Let c2 = c3 = 0. Hence

α(x) = 1
x

(
c3x

4 + c1x
2)

β(x) = −4c3x2 − 2c1
γ(x) = 0

Let c3 = 0. Hence

α(x) = 1
x
c1x

2

β(x) = −2c1
γ(x) = 0
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Let c1 = 1, hence

α(x) = x

β(x) = −2
γ(x) = 0

Therefore, since ξ = α(x) and η = β(x) y + γ(x) then ξ = x, η = −2y which is the same
as the earlier method. After working using this ansatz, I find using the polynomial ansatz
better. First of all, I had to set constants above to values in order to obtain the same result
as earlier. Setting these constants other values will give different result. For example, the
following are another set of possible solutions obtained from Maple for this ODE{

α(x) = 1
x
, β(x) = 0, γ(x) = − 2

x4

}
{
α(x) = −x2 , β(x) = 1, γ(x) = 0

}
{
α(x) = −x

3

4 , β(x) = x2, γ(x) = 1
2

}
Which gives {

ξ = 1
x
, η = − 2

x4

}
{
ξ = −x2 , η = y

}
{
ξ = −x3

4 , η = x2y + 1
2

}

3.4.10.5 Example y′ = y+1
x

+ y2

x3

Solve

y′ = y + 1
x

+ y2

x3

y′ = ω(x, y)

This can be written as

y′ = y

x
+ 1
x
+ y2

x3

= y

x
+ x2 + y2

x3

= y

x
+ 1
x

(
x2 + y2

x2

)
= y

x
+ 1
x

(
1 +

(y
x

)2)

Hence this has the form y′ = y
x
+g(x)F

(
y
x

)
where g(x) = 1

x
and F =

(
1 +

(
y
x

)2). Therefore
this is homogeneous class D. Lookup table gives

ξ = x2

η = xy

Another way to find ξ, η is by solving the symmetry condition PDE and this is shown at
the end of this problem. Hence
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x̄ = x+ ξε

= x+ x2ε

ȳ = y + ηε

= y + xyε (2)

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
xy − x2

(
y+1
x

+ y2

x3

)
= − x

x2 + y2

The ode is now verified that it remains invariant under (2) transformation.

dȳ

dx̄
=

dȳ
dx
dx̄
dx

=
ȳx + ȳy

dy
dx

x̄x + x̄y
dy
dx

But from (2) ȳx = yε, ȳy = 1 + xε, x̄x = 1 + 2xε, x̄y = 0 and the above becomes

dȳ

dx̄
=

1 + (1 + xε) dy
dx

1 + 2xε

Substituting x̄, ȳ, dȳ
dx̄

in the original ode gives

dȳ

dx̄
= ȳ + 1

x̄
+ ȳ2

x̄3

1 + (1 + xε) dy
dx

1 + 2xε = (y + xyε) + 1
x+ x2ε

+ (y + xyε)2

(x+ x2ε)3

Which as limε→0 gives
dy

dx
= y + 1

x
+ y2

x3

The same original ode showing the transformation is valid symmetry.� �
Y:=y/(1-s*x):
X:=x/(1-s*x):
eq:=(diff(Y,x)+diff(Y,y)*Z)/(diff(X,x)+diff(X,y)*Z)=simplify((Y+1)/X+Y^2/X^3):
solve(simplify(eq),Z)
y/x + 1/x + y^2/x^3� �
Hence the transformation in (2) is invariant.

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

x2
= dy

xy
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. We need to solve this for S, which gives (1) using method of characteristic
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to solve first order PDE which is standard method. Starting with the first pair of ODE
in (1) gives

dy

dx
= xy

x2
= y

x

Integrating gives y
x
= c where c is constant of integration. In this method R is always c.

Hence
R(x, y) = y

x

Now we find S(x, y) from the first equation in (1) and the last equation

dS = dx

ξ

S =
∫
dx

x2

S = −1
x

Now that we found R and S, we determine the ODE dS
dR

= Ω(R). The ODE comes out
to be function of R only, so it is quadrature. This is the whole idea of this method. By
solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an equation

to determine this given by
dS

dR
= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

We know everything on the RHS. Substituting gives

dS

dR
=

1
x2 +

(
y+1
x

+ y2

x3

)
(0)

− y
x2 +

(
y+1
x

+ y2

x3

)
1
x

=
1
x2

− y
x2 +

(
y+1
x

+ y2

x3

)
1
x

= x2

x2 + y2

= 1
1 +

(
y
x

)2
But R = y

x
, hence the above becomes

dS

dR
= 1

1 +R2

This is just quadrature. Integrating gives

S = arctan (R) + c1

Now we go back to x, y. Since S = − 1
x
, R = y

x
, then the above becomes

−1
x
= arctan

(y
x

)
+ c1

−1
x

+ c2 = arctan
(y
x

)
y

x
= tan

(
−1
x

+ c2

)
y(x) = x tan

(
−1
x

+ c2

)
And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)
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Let ansatz be

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Eq 14 becomes

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0
c4 + ω(c5 − c1)− ω2c2 − ωx(c1x+ c2y + c3)− ωy(c4x+ c5y + c6) = 0

But in this ODE ω = y+1
x

+ y2

x3 , hence ωx = −y+1
x2 − 3 y2

x4 and ωy = 1
x
+ 2y

x3 . The above
becomes

c4 +
(
y + 1
x

+ y2

x3

)
(c5 − c1)−

(
y + 1
x

+ y2

x3

)2

c2 −
(
−y + 1

x2
− 3y

2

x4

)
(c1x+ c2y + c3)−

(
1
x
+ 2y
x3

)
(c4x+ c5y + c6) = 0

1
x2
c3 −

1
x2
c2 +

1
x
c5 −

1
x
c6 +

2
x3
y2c1 −

2
x4
y2c2 +

3
x4
y2c3 +

1
x4
y3c2 −

1
x3
y2c5 −

1
x6
y4c2 −

1
x2
yc2 +

1
x2
yc3 −

2
x2
yc4 −

2
x3
yc6 = 0

x4c3 − x4c2 + x5c5 − x5c6 + 2x3y2c1 − 2x2y2c2 + 3x2y2c3 + x2y3c2 − x3y2c5 − y4c2 − x4yc2 + x4yc3 − 2x4yc4 − 2x3yc6 = 0
x4(c3 − c2) + x5(c5 − c6) + x3y2(2c1 − c5) + x2y2(−2c2 + 3c3) + x2y3(c2) + y4(−c2) + x4y(−c2 + c3 − 2c4) + x3y(−2c6) = 0

Each coefficient to each monomial must be zero. Hence

c3 − c2 = 0
c5 − c6 = 0
2c1 − c5 = 0

−2c2 + 3c3 = 0
c2 = 0

−c2 + c3 − 2c4 = 0
−2c6 = 0

Which simplifies to (since c2 = 0, c6 = 0)

c3 = 0
c5 = 0

c1 − c5 = 0
3c3 = 0

c3 − 2c4 = 0

Which simplifies to (since c3 = 0, c5 = 0)

c5 = 0
c1 − c5 = 0

c4 = 0

Hence c5 = 0, c1 = 0, c4 = 0. We see that all ci = 0, therefore there is no solution using
this ansatz.

Trying ansatz

ξ = a0 + a1x+ a2y + a3xy + a4x
2

η = b0 + b1x+ b2y + b3xy + b4y
2

Eq 9 becomes
ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

Substituting the ansatz and simplifying gives

−x2y3a2+y4a2+x4(−a0+a2)+x2y2(−3a0+2a2)+xy4a3+2x3yb0+x4y(−a0+a2+2b1)+x5(a3+b0−b2)+x3y2(−2a1+2a3+b2)+x6(a4−b3)+x6y(a4−b3)+x4y2(−a4+b3)+x5y(2a3−2b4)+x5y2(a3−b4) = 0
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Each coefficient to each monomial must be zero. Hence

a2 = 0
−a0 + a2 = 0

−3a0 + 2a2 = 0
a3 = 0
b0 = 0

−a0 + a2 + 2b1 = 0
a3 + b0 − b2 = 0

−2a1 + 2a3 + b2 = 0
a4 − b3 = 0

2a3 − 2b4 = 0
a3 − b4 = 0

Since a2 = a3 = b0 = 0 the above simplifies to

−a0 = 0
−3a0 = 0

−a0 + 2b1 = 0
−b2 = 0

−2a1 + b2 = 0
a4 − b3 = 0
−2b4 = 0
−b4 = 0

Since a0 = b2 = a4 = b4 = 0, The above now simplifies to

a4 − b3 = 0

Therefore, if we let a4 = 1 then b3 = 1 and the solution is

ξ = a0 + a1x+ a2y + a3xy + a4x
2

= x2

η = b0 + b1x+ b2y + b3xy + b5y
2

= xy

Which is what we used above to solve the ode.

3.4.10.6 Example y′ = y−4xy2−16x3

y3+4x2y+x

Solve

y′ = y − 4xy2 − 16x3
y3 + 4x2y + x

y′ = ω(x, y)

The first step is to find ξ and η. This is shown at the end of this problem below.

ξ = −y
η = 4x

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
4x+ y

(
y−4xy2−16x3

y3+4x2y+x

)
= x2y + x+ y3

4x2 + y2
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The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

−y
= dy

4x = dS (1)

The first pair of ode’s in (1) gives
dy

dx
= −4x

y

Solving gives
y =

√
−4x2 + c

Where c is constant of integration (For y > 0 only). In this method R is always c. Hence

y2 = −4x2 + c

R = y2 + 4x2 (2)

The first equation in (1) and the last equation gives

dS = dx

ξ

S = −
∫
dx

y

But y =
√
−4x2 + c. The above becomes

S = −
∫

dx√
−4x2 + c

= −1
2 arctan

(
2x√

−4x2 + c

)
= −1

2 arctan
(
2x
y

)
For y > 0. Now that we found R and S, we determine the ODE dS

dR
= Ω(R). The ODE

comes out to be function of R only, so it is quadrature. This is the whole idea of this
method. By solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is

an equation to determine this given by

dS

dR
= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

We know everything on the RHS. Substituting gives

dS

dR
=

d
dx

(
−1

2 arctan
(

2x
y

))
+
(

y−4xy2−16x3

y3+4x2y+x

)
d
dy

(
−1

2 arctan
(

2x
y

))
d
dx

√
y2 + 4x2 +

(
y−4xy2−16x3

y3+4x2y+x

)
d
dy

√
y2 + 4x2

=

−1
y
(

4x2
y2 +1

) + (y−4xy2−16x3

y3+4x2y+x

)
x

y2
(

4x2
y2 +1

)
4x√

y2+4x2 +
(

y−4xy2−16x3

y3+4x2y+x

)
y√

y2+4x2

= −
√

4x2 + y2

= −R

Hence
dS

dR
= −R

This is just quadrature. Integrating gives

S = −R
2

2 + c
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Now we go back to x, y. Since S = −1
2 arctan

(
2x
y

)
, R =

√
y2 + 4x2, then the above

becomes

−1
2 arctan

(
2x
y

)
= −

(
y2 + 4x2

2

)
+ c

y2

2 − 1
2 arctan

(
2x
y

)
+ 2x2 − c = 0 y > 0

And the above is the solution to original ODE.

Finding Lie symmetries for this example

The symmetry condition was derived earlier as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Let ansatz be

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Eq 14 becomes

c4 + ω(c5 − c1)− ω2c2 − ωx(c1x+ c2y + c3)− ωy(c4x+ c5y + c6) = 0

But in this ODE ω = y−4xy2−16x3

y3+4x2y+x
, hence ωx = −4y5−32x2y3−8xy2+

(
−64x4−1

)
y−32x3

(4x2y+y3+x)2 and ωy =
64x5+32x3y2+4xy4−8x2y−2y3+x

(4x2y+y3+x)2 . Above becomes

c4+
(
y − 4xy2 − 16x3
y3 + 4x2y + x

)
(c5 − c1)−

(
y − 4xy2 − 16x3
y3 + 4x2y + x

)2

c2−
(
−4y5 − 32x2y3 − 8xy2 + (−64x4 − 1) y − 32x3

(4x2y + y3 + x)2
)
(c1x+ c2y + c3)−

(
64x5 + 32x3y2 + 4xy4 − 8x2y − 2y3 + x

(4x2y + y3 + x)2
)
(c4x+ c5y + c6) = 0

Which expands to

8c1xy2
4x2y + y3 + x

+ 4c5xy2
4x2y + y3 + x

− 256c2x4y2

(4x2y + y3 + x)2
− 48c2x2y4

(4x2y + y3 + x)2
+ 16c2x3y
(4x2y + y3 + x)2

+ 12c2xy3

(4x2y + y3 + x)2

+ 48x2c2y
4x2y + y3 + x

− 128x5yc1
(4x2y + y3 + x)2

− 128x4yc3
(4x2y + y3 + x)2

− 32x3y3c1
(4x2y + y3 + x)2

− 32x2y3c3
(4x2y + y3 + x)2

+ 4x2y2c1
(4x2y + y3 + x)2

+ 4xy2c3
(4x2y + y3 + x)2

+ yc1x

(4x2y + y3 + x)2
+ 8x2yc4
4x2y + y3 + x

+ 8xyc6
4x2y + y3 + x

−

64x5c5y
(4x2y + y3 + x)2

− 64x4y2c4
(4x2y + y3 + x)2

− 64x3y3c5
(4x2y + y3 + x)2

− 64x3y2c6
(4x2y + y3 + x)2

− 12x2y4c4
(4x2y + y3 + x)2

− 16c5x3
4x2y + y3 + x

− 256c2x6

(4x2y + y3 + x)2
+ 64c1x3
4x2y + y3 + x

− c1y

4x2y + y3 + x
+ 48x2c3
4x2y + y3 + x

+ 4y3c2
4x2y + y3 + x

+ 4y2c3
4x2y + y3 + x

− 16x4c1
(4x2y + y3 + x)2

− 16x3c3
(4x2y + y3 + x)2

+ yc3

(4x2y + y3 + x)2
− c4x

4x2y + y3 + x
− 64x6c4
(4x2y + y3 + x)2

− 64x5c6
(4x2y + y3 + x)2

+ 3y4c5
(4x2y + y3 + x)2

+ 3y3c6
(4x2y + y3 + x)2

− c6
4x2y + y3 + x

− 12xy5c5
(4x2y + y3 + x)2

− 12xy4c6
(4x2y + y3 + x)2

+ 4x3yc4
(4x2y + y3 + x)2

+ 4x2y2c5
(4x2y + y3 + x)2

+ 4x2yc6
(4x2y + y3 + x)2

+ 3y3c4x
(4x2y + y3 + x)2

+ c4 = 0

Multiplying each term by (4x2y + y3 + x)2 and expanding gives the multivariable poly-
nomial

128x5yc1+64x3y3c1+8c1xy5−256c2x6−64c2x4y2+16c2x2y4+4c2y6−64x6c4−16x4y2c4+4x2y4c4+c4y6

−128x5c5y−64x3y3c5−8xy5c5+64x4yc3+32x2y3c3+4c3y5−64x5c6−32x3y2c6−4xy4c6+48x4c1+
8x2y2c1−c1y4+64c2x3y+16c2xy3+16x3yc4+4y3c4x−16c5x4+8x2y2c5+3y4c5+32x3c3+8xy2c3+8x2yc6+2y3c6+yc3−c6x = 0

Each monomial coefficient must be zero. This gives the following equations to solve for ci
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equation
−256c2 − 64c4 = 0
128c1 − 128c5 = 0
−64c6 = 0
−64c2 − 16c4 = 0
64c3 = 0
48c1 − 16c5 = 0
64c1 − 64c5 = 0
−32c6 = 0
64c2 + 16c4 = 0
32c3 = 0
16c2 + 4c4 = 0
32c3 = 0
8c1 + 8c5 = 0
8c6 = 0
8c1 − 8c5 = 0
−4c6 = 0
16c2 + 4c4 = 0
8c3 = 0
−c6 = 0
4c2 + c4 = 0
4c3 = 0
−c1 + 3c5 = 0
2c6 = 0
c3 = 0

Hence we see that c6 = 0, c3 = 0. The above reduces to

equation
−256c2 − 64c4 = 0
128c1 − 128c5 = 0
−64c2 − 16c4 = 0
48c1 − 16c5 = 0
64c1 − 64c5 = 0
64c2 + 16c4 = 0
16c2 + 4c4 = 0
8c1 + 8c5 = 0
8c1 − 8c5 = 0
16c2 + 4c4 = 0
4c2 + c4 = 0
−c1 + 3c5 = 0

Hence Ac = b gives 

0 −256 −64 0
128 0 0 −128
0 −64 −16 0
48 0 0 −16
64 0 0 −64
0 64 16 0
0 16 4 0
8 0 0 −8
0 16 4 0
0 4 1 0
−1 0 0 3




c1
c2
c4
c5

 =



0
0
0
0
0
0
0
0
0
0
0


The rank of A is 3 and the number of columns is 4. Hence non-trivial solution exist. Solving
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the above gives c4 = −4 and c2 = 1 and all other coefficients are zero. this means that ,
since

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6

Then

ξ = y

η = −4x

Which is what we wanted to show for this ODE.

3.4.10.7 Example y′ = −y2

ex−y

Solve

y′ = −y2

ex − y

y′ = ω(x, y)

The symmetry condition results in the PDE

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0

End of the problem shows how this is solved for ξ, η which results in

ξ(x, y) = 1
η(x, y) = y

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
y −

(
−y2

ex−y

)
= 1− ye−x

y

The next step is to determine what is called the canonical coordinates R,S. Where R
is the independent variable and S is the dependent variable. So we are looking for S(R)
function. This is done by using the standard characteristic equation by writing

dx

ξ
= dy

η
= dS

dx

1 = dy

y
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Which is a first

order PDE. This is solved for S, which gives (1) using the method of characteristic to
solve first order PDE which is standard method. Starting with the first pair of ODE gives

dy

dx
= y

Integrating gives ln |y| = x+c or y = cex where c is constant of integration. In this method
R is always c. Hence

R(x, y) = ye−x
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S(x, y) is now found from the first equation in (1) and the last equation which gives

dS = dx

ξ

dS = dx

1
dS = dx

S = x

Hence

R = ye−x

S = x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an equation

to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. Sx = 1, Rx = −ye−x, Sy = 0, Ry = e−x. Substituting
gives

dS

dR
= 1

−ye−x + −y2

ex−y
e−x

= ye−x − 1
ye−x

But R = ye−x, hence the above becomes

dS

dR
= R− 1

R

This is just quadrature. Integrating gives

S =
∫
R− 1
R

dR

= R− lnR + c1

This solution is converted back to x, y. Since S = x,R = ye−x, the above becomes

x = ye−x − ln
(
ye−x

)
+ c1

Which is the solution to the original ODE.

Finding Lie symmetries for this example

The condition of symmetry is given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Try

ξ = c1x+ c2y + c3

η = c4x+ c5y + c6
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Hence ξx = c1, ξy = c2, ηx = c4, ηy = c5 and (14) becomes

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0
c4 + ω(c5 − c1)− ω2c2 − ωx(c1x+ c2y + c3)− ωy(c4x+ c5y + c6) = 0

But ω = −y2

ex−y
, ωx = y2ex

(ex−y)2 , ωy =
(
− 2y

ex−y
− y2

(ex−y)2

)
and the above becomes

c4+
−y2

ex − y
(c5 − c1)−

(
−y2

ex − y

)2

c2−
y2ex

(ex − y)2
(c1x+ c2y + c3)−

(
− 2y
ex − y

− y2

(ex − y)2
)
(c4x+ c5y + c6) = 0

Need to do this again. I should get c3 = 1, c5 = 1 and everything else zero.

ξ = 1
η = y

3.4.10.8 Example y′ = x
√
1+y+

√
1+y+1+y

1+x

Solve

y′ = x
√
1 + y +

√
1 + y + 1 + y

1 + x

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Let Ansatz be

ξ = 0
η = f(x) g(y)

Hence (1) becomes
g(y) df

dx
+ ωf(x) dg

dy
− ωyf(x) g(y) = 0

But ωx = d
dx

(
x
√
1+y+

√
1+y+1+y

1+x

)
= − (y+1)

(x+1)2 and ωy = x+1+2
√
1+y√

1+y(2+2x) . Hence the above becomes

g(y) df
dx

+
(
x
√
1 + y +

√
1 + y + 1 + y

1 + x

)
f(x) dg

dy
− x+ 1 + 2

√
1 + y√

1 + y (2 + 2x)
(f(x) g(y)) = 0 (2)

The numerator of the normal form of the above is

2 df
dx
g
√

1 + yx+2y
√

1 + yf
dg

dy
+2f dg

dy
xy+2 df

dx
g
√
1 + y−2fg

√
1 + y+2f dg

dy

√
1 + y−fgx+2f dg

dy
x+2fydg

dy
−fg+2f dg

dy
= 0

(3)
We can now either collect on y or x and try. Let us start with collecting on all terms with
y. This gives

g
√

1 + y

(
2x df
dx

+ 2 df
dx

− 2f
)
+y
√
1 + y

dg

dy
(2f)+dg

dy

√
1 + y(2f)+g(xf − f)+ydg

dy
(2xf + 2f)+dg

dy
(2xf + 2f) = 0

(3A)
The coefficients of all terms with g(y) or y in them are from the above are the following,
which each must be zero

2f = 0
xf − f = 0

2xf + 2f = 0

2x df
dx

+ 2 df
dx

− 2f = 0
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Now we set each to zero and see if this produces f(x) which can be used. We have 4
choices to try above. Starting from the most simple one. The first one above gives 2f = 0
or f = 0. But this is not function of x. We try the next one xf − f = 0. This gives f = 0
or x = 1. Hence this does not give f as function of x. Next we try 2xf + 2f. This also
does not give f as function of x. The last one is 2x df

dx
+2 df

dx
− 2f = 0 or df

dx
= 2f

2x+2 . Solving
this gives f = c1(x+ 1). This is successful since f is function of x. Hence

f(x) = c1(x+ 1)
df

dx
= c1

Now we need to determine g(y). Substituting the above into (3) gives

2c1g(y)
√

1 + yx+2
√

1 + yc1(x+1)dg
dy
y+2c1(x+1)dg

dy
xy+2c1g

√
1 + y−2c1(x+1)g

√
1 + y+2c1(x+1)dg

dy

√
1 + y−c1(x+1)g(y)x+2c1(x+1)dg

dy
x+2c1(x+1)dg

dy
y−c1(x+1)g(y)+2c1(x+1)dg

dy
= 0

Which simplifies to

2c1
√
1 + y

dg

dy
yx+2c1

dg

dy
x2y−c1gx2+2c1

dg

dy

√
1 + yx+2

√
1 + yc1

dg

dy
y+2c1

dg

dy
x2+4c1

dg

dy
xy−2c1xg+2c1

dg

dy

√
1 + y+4c1

dg

dy
x+2c1

dg

dy
y−c1g(y)+2c1

dg

dy
= 0

(4)
Now factoring on all terms with x, and these are {x, x2} gives

−c1x2
(
−2dg

dy
y + g − 2dg

dy

)
−c1x

(
−2
√

1 + y
dg

dy
y − 2

√
1 + y

dg

dy
− 2dg

dy
y + g − 2dg

dy

)
+T = 0

(4A)
Where T are terms that depends on y only. Each factor of x, x2 must be zero. Hence the
first above implies

−2dg
dy
y + g − 2dg

dy
= 0

g′(y) = g

2 (1 + y)

Solving gives
g = c2

√
1 + y (5)

Substituting (5) into (4) gives

c1(1 + x) c2(1 + y) = 0

Which is not zero. Hence this term does not work. Now we try the second term in (4A)
which means

−2
√

1 + y
dg

dy
y − 2

√
1 + y

dg

dy
− 2dg

dy
y + g − 2dg

dy
= 0

dg

dy
= −g

−2
√
1 + yy − 2

√
1 + y − 2y − 2

Solving gives

g(y) = c2

√
1 + y

1 +
√
1 + y

Again, substituting the above back in (4) gives

c1(1 + x) c2
(1 + y)x(

1 +
√
1 + y

)2 = 0

Which is not zero. Therefore starting with f(x) = c1(x+ 1) has failed to produce a valid
g(y) to satisfy the pde. This means we need to start all over again. Going back to (3) and
now collecting on all terms with x instead. Here is (3) again

2 df
dx
g
√
1 + yx+2y

√
1 + yf

dg

dy
+2f dg

dy
xy+2 df

dx
g
√

1 + y−2fg
√

1 + y+2f dg
dy

√
1 + y−fgx+2f dg

dy
x+2fydg

dy
−fg+2f dg

dy
= 0

(3)
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Collecting on all terms that depend on x gives

x
df

dx

(
2g
√

1 + y
)
+f
(
2y
√

1 + y
dg

dy
− 2g

√
1 + y + 2dg

dy

√
1 + y + 2ydg

dy
+ 2dg

dy
− g

)
+xf

(
2dg
dy
y − g + 2dg

dy
y

)
= 0

(3B)
Each term must be zero, hence this gives these trials

2g
√
1 + y = 0

2dg
dy
y − g + 2dg

dy
y = 0

2y
√
1 + y

dg

dy
− 2g

√
1 + y + 2dg

dy

√
1 + y + 2ydg

dy
+ 2dg

dy
− g = 0

Starting with the first one above 2g
√
1 + y = 0 which gives g = 0 which does not match

the ansatz. Now we try the second one above, which gives

dg

dy
= g

2 + 2y

Solving gives
g = c1

√
1 + y (6)

Which meets the requirements of the ansatz. Now we need to use the above to generate
f(x). We do not need to try the third one above unless this fails. Substituting (6) into (3)
gives

c2

(
2 df
dx
xy + 2 df

dx
x+ 2 df

dx
y − fy + 2 df

dx
− f

)
= 0

2 df
dx
xy + 2 df

dx
x+ 2 df

dx
y − fy + 2 df

dx
− f = 0 (7)

Collecting on y gives
c1(1 + y)

(
2 df
dx
x+ 2 df

dx
− f

)
= 0

Hence 2 df
dx
x+ 2 df

dx
− f must be zero. This gives as solution

f(x) = c2
√
1 + x

df

dx
= c2

1
2
√
1 + x

Substituting the above into (7) to verify gives

2
(
c2

1
2
√
1 + x

)
xy + 2

(
c2

1
2
√
1 + x

)
x+ 2

(
c2

1
2
√
1 + x

)
y −

(
c2
√
1 + x

)
y + 2

(
c2

1
2
√
1 + x

)
− c2

√
1 + x = 0

c2
1√
1 + x

xy + c2
1√
1 + x

x+ c2
1√
1 + x

y − c2
√
1 + xy + c2

1√
1 + x

− c2
√
1 + x = 0

c2

(
1√
1 + x

xy + 1√
1 + x

x+ 1√
1 + x

y −
√
1 + xy + 1√

1 + x
−

√
1 + x

)
= 0

0 = 0

Verified, Hence we have found f(x) , g(y). Therefore

ξ = 0
η = f(x) g(y)
=

√
1 + x

√
1 + y

Where we set c1 = c2 = 1. The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1√
1 + x

√
1 + y
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The next step is to determine the canonical coordinates R,S. Where R is the independent
variable and S is the dependent variable. This is done by using the standard characteristic
equation by writing

dx

ξ
= dy

η
= dS

For the special case ξ = 0 we have R = x. S(x, y) is now found from the last two pair of
equations which gives

dS = dy

η

dS = dy√
1 + x

√
1 + y

S = 2
√
1 + y√
1 + x

Hence (constant of integration is set to zero)

R = x (2)

S = 2
√
1 + y√
1 + x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
solving for R we go back to x, y and solve for y(x). How to find dS

dR
? There is an equation

to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. Sx = −
√
1+y

(1+x)
3
2
, Rx = 1, Sy = 1√

1+x
√
1+y

, Ry = 0. Substi-
tuting into the above gives

dS

dR
= −

√
1 + y

(1 + x)
3
2
+ ω(x, y) 1√

1 + x
√
1 + y

= −
√
1 + y

(1 + x)
3
2
+
(
x
√
1 + y +

√
1 + y + 1 + y

1 + x

)
1√

1 + x
√
1 + y

= 1√
x+ 1

= 1√
R + 1

Hence
dS

dR
= 1√

R + 1
This is quadrature. Solving gives

S = 2
√
R + 1 + c1

Convecting back to x, y gives

2
√
1 + y√
1 + x

= 2
√
x+ 1 + c1
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3.4.10.9 Example y′ = −y
2x−yey

Solve

y′ = −y
2x− yey

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Let anstaz be

ξ = g(y)
η = 0

Substituting this into (1) gives
−ω2dg

dy
− ωxg = 0

But ω2 = y2

(2x−yey)2 , ωx = d
dx

(
−y

2x−yey

)
= 2y

(2x−yey)2 . The above becomes

− y2

(2x− yey)2
dg

dy
− 2y

(2x− yey)2
g = 0

−y2dg
dy

− 2yg = 0

dg

dy
+ 2
y
g = 0

This is linear ode. The solution is
g = c1

y2

Hence

ξ = 1
y2

η = 0

But taking c1 = 1. The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
− 1

y2

(
−y

2x−yey

)
= y(2x− yey)

The next step is to determine the canonical coordinates R,S. Where R is the independent
variable and S is the dependent variable. This is done by using the standard characteristic
equation by writing

dx

ξ
= dy

η
= dS

Since η = 0, then in this special case R = c1 = y. To find S we use dS = dx
ξ
or dS = y2dx.

Hence S = c21x+ c2 = c21x by taking c2 = 0. Therefore S = y2x since c1 = y.

R = y (2)
S = y2x

Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= Ω(R) is setup. The ODE comes out
to be function of R only, so it is quadrature. This is the main idea of this method. By
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solving for R we go back to x, y and solve for y(x). How to find dS
dR

? There is an equation
to determine this given by

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

Everything on the RHS is known. Sx = y2, Rx = 0, Sy = 2yx,Ry = 1. Substituting into
the above gives

dS

dR
= y2 + ω(x, y) 2yx

ω (x, y)

=
y2 +

(
−y

2x−yey

)
2yx(

−y
2x−yey

)
= y2ey

Now we need to express the RHS in terms of R,S. From (2) we see that y = R, hence the
above becomes

dS

dR
= R2eR

This is quadrature. Solving gives

S =
(
R2 − 2R + 2

)
eR + c1

Convecting back to x, y gives

y2x =
(
y2 − 2y + 2

)
ey + c1

3.4.10.10 Example y′ = −1−2yx
x2+2y

Solve

y′ = −1− 2yx
x2 + 2y

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Let anstaz be

ξ = 0
η = f(x) g(y)

Substituting this into (1) gives

g
df

dx
+ ωf

dg

dy
− ωyfg = 0

But ω = −1−2yx
x2+2y , ωy = d

dy

(
−1−2yx
x2+2y

)
= 2−2x3

(x2+2y)2 . The above becomes

g
df

dx
+
(
−1− 2yx
x2 + 2y

)
f
dg

dy
−
(

2− 2x3

(x2 + 2y)2
)
fg = 0
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The numerator of the normal form is

g
df

dx

(
x2 + 2y

)2 + (x2 + 2y
)
(−1− 2yx) f dg

dy
−
(
2− 2x3

)
fg = 0

g
df

dx

(
x4 + 4x2y + 4y2

)
+
(
−2x3y − x2 − 4xy2 − 2y

)
f
dg

dy
−
(
2− 2x3

)
fg = 0 (2)

To solve this for f(x) , g(y) we start by collecting on either x or y. Let us start by collecting
on y. This gives[
4 df
dx

] (
gy2
)
+
[
4 df
dx
x2
]
(yg)+

[
df

dx
x4 −

(
−2x3 + 2

)
f

]
g+
[(
−2x3 − 4x− 2

)
f
](dg

dy

)
−
[
x2f
] dg
dy

= 0

(3)
The other option was to collect on x terms. This would give[
−2ydg

dy
+ 2g

] (
x3f
)
−
[
x2f
](dg

dy

)
−[4xf ]

(
y
dg

dy

)
+
[
−2dg

dy
y − 2g

]
(f)+[g]

(
x4
df

dx

)
+[yg]

(
4 df
dx
x2
)
+
[
y2g
](

4 df
dx

)
= 0

(4)
We start from (3), and if this yields no solutions for f(x) , g(y) then we come back and
try (4). In either form, the terms inside the [·] must all be zero to satisfy the ode. From
(3) this gives

4 df
dx

= 0

4 df
dx
x2 = 0

df

dx
x4 −

(
−2x3 + 2

)
f = 0(

−2x3 − 4x− 2
)
f = 0

x2f = 0

If one of these results in f(x) which is function of x. Then we try it to solve for g(y). If
the solutions end up verifying the pde, then we are done. From the above, we start with
the first one. This gives f = c1. Which is not function of x. The second give same result.
The this option which is df

dx
x4 − (−2x3 + 2) f = 0 gives

f(x) = c1
e−

2
3x3

x2

Which is function of x. We now use this to find g(y). It turns out this does not work. The
whole anstaz will fail. So need to try different anstaz.

3.4.10.11 Example y′ = 3√yx

Solve

y′ = 3√yx
y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Trying polynomial anstaz

ξ = a0 + a1x

η = b0 + b1y

And substituting these into (1) and simplifying gives

(−9a1 + 3b1) yx− 3xb0 − 3ya0 = 0
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Setting all coefficients to zero gives

−9a1 + 3b1 = 0
b0 = 0
a0 = 0

Hence a1 = 1
3b1. Letting b1 = 1 then a1 = 1

3 and the infinitesimals are

ξ = 1
3x

η = y

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
y − 1

3x
(
3√yx

)
= −

y + x
√
xy

x3y − y2

The next step is to determine the canonical coordinates R,S. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

The first pair of equations gives
dy

dx
= η

ξ
= 3y

x

Solving gives
y = c1x

3

Hence
R = c1 =

y

x3
(2)

And S is found from
dS = dx

ξ
= 3dx

x

Integrating gives

S = 3 ln x+ c1

= 3 ln x

By choosing c1 = 0. Now that R(x, y) , S(x, y) are found, the ODE dS
dR

= F (R) is deter-
mined. This is determined from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = 3
x
, Rx = −3 y

x4 , Sy = 0, Ry = 1
x3 . Substituting these into the above gives

dS

dR
=

3
x

−3 y
x4 + ω (x, y) 1

x3

= 3x3
−3y + xω (x, y)
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But ω(x, y) = 3√yx. The above becomes

dS

dR
= 3x3

−3y + 3x√yx

= x3

x
√
yx− y

= −1√
y
x3 − y

x3

(3)

But R = y
x3 and the above becomes

dS

dR
= −1
R−

√
R

Which is a quadrature. Solving gives∫
dS =

∫
−1

R−
√
R
dR

S = −2 ln
(√

R− 1
)
+ c1

Converting back to x, y gives

3 ln x = −2 ln
(√

y

x3
− 1
)
+ c1

ln x3 + ln
(√

y

x3
− 1
)2

= c1

ln
(
x3
(√

y

x3
− 1
)2)

= c1

x3
(√

y

x3
− 1
)2

= c2

Or

y1(x) = 2x
(
x2 + x

√
xc1
)
− x3 + c1

y2(x) = −2x
(
−x2 + x

√
xc1
)
− x3 + c1

3.4.10.12 Example y′ = 4(yx)
1
3

Solve

y′ = 4(yx)
1
3

y′ = ω(x, y)

The symmetry condition results in the pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (1)

Trying polynomial anstaz

ξ = a0 + a1x

η = b0 + b1y

And substituting these into (1) and simplifying gives

(−16a1 + 8b1) yx− 4xb0 − 4ya0 = 0

Setting all coefficients to zero gives

−16a1 + 8b1 = 0
b0 = 0
a0 = 0
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Hence a1 = 1
2b1. Letting b1 = 1 then a1 = 1

2 and the infinitesimals are

ξ = 1
2x

η = y

The integrating factor is therefore

µ(x, y) = 1
η − ξω

= 1
y − 1

2x
(
4 (yx)

1
3

)
= 1
y − 2x (xy)

1
3

The next step is to determine the canonical coordinates R,S. This is done by using the
standard characteristic equation by writing

dx

ξ
= dy

η
= dS

The first pair of equations gives
dy

dx
= η

ξ
= 2y

x

Solving gives
y = c1x

2

Hence
R = c1 =

y

x2
(2)

And S is found from
dS = dx

ξ
= 2dx

x

Integrating gives

S = 2 ln x+ c1

= 2 ln x

By choosing c1 = 0. Now the ODE dS
dR

= F (R) is found from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = 2
x
, Rx = −2 y

x3 , Sy = 0, Ry = 2
x2 . Substituting these into the above and simplifying

gives

dS

dR
= x2

2x (yx)
1
3 − y

= 1
2 1
x
(yx)

1
3 − y

x2

= 1
2y 1

3x−
2
3 − y

x2

= 1
2
(

y
x2

) 1
3 − y

x2

= 1
2 (R)

1
3 −R
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Hence
dS

dR
= 1

2R 1
3 −R

Which is a quadrature. Solving gives∫
dS =

∫ 1
2R 1

3 −R
dR

S = −3
2 ln

(
−2 +R

2
3

)
+ c1

Converting back to x, y gives

2 ln x = −3
2 ln

(
−2 +

( y
x2

) 2
3
)
+ c1

The above can be simplified more if needed to solve for y(x) explicitly.

3.4.10.13 Example y′ = 2y + 3e2x

Solve

y′ = 2y + 3e2x

y′ = ω(x, y)

From the lookup table, since this is linear ode y′ = f(x) y + g(x) then

ξ = 0
η = e

∫
fdx

= e
∫
2dx

= e2x.

If we were to use the integrating factor method, then

µ(x, y) = 1
η − ξω

= 1
e2x

= e−2x

Then the general solution is ∫
µ(x, y) (dy − ωdx) = c1∫

e−2x(dy − (2y + 3e2x
)
dx
)
= c1∫

e−2xdy −
(
2ye−2x + 3

)
dx = c1∫

e−2xdy − 2ye−2xdx =
∫

3dx+ c1∫
d
(
e−2xy

)
=
∫

3dx+ c1

Hence

e−2xy = 3x+ c1

y = e2x(3x+ c1)

But if we were to use the basic Lie symmetry method, then the next step is to determine
the canonical coordinates R,S. This is done by using the standard characteristic equation
by writing

dx

ξ
= dy

η
= dS
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Since ξ = 0 then this is the special case where R = x. And S is found from

dS = dy

η
= e−2xdy

Integrating gives

S = e−2xy + c1

= e−2xy

By choosing c1 = 0. Now the ODE dS
dR

= F (R) is found from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = −2e−2xy,Rx = 1, Sy = e−2x, Ry = 0. Substituting these into the above and
simplifying gives

dS

dR
= −2e−2xy +

(
2y + 3e2x

)
e−2x

= −2e−2xy + 2ye−2x + 3
= 3

Which is a quadrature. Solving gives∫
dS =

∫
3dR

S = 3R + c1

Converting back to x, y gives

e−2xy = 3x+ c1

y = (3x+ c1) e2x

Of course, this ode is first order linear and can be solved much easier using integrating
factor method. But this is just to illustrate the Lie symmetry method.

3.4.10.14 Example y′ = 1
3
2y+y3−x2

x

Solve

y′ = 1
3
2y + y3 − x2

x
y′ = ω(x, y)

Using Maple the infinitesimals are

ξ = 3
2x 1

3

η = y

x
4
3

(Will need to show how to obtain these). Lets solve this using the integration factor method
first. The integrating factor is given by

µ(x, y) = 1
η − ξω

= 1
y

x
4
3
− 3

2x
1
3

(
1
3
2y+y3−x2

x

)
= 2 x

4
3

x2 − y3
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Then the general solution is ∫
µ(x, y) (dy − ωdx) = c1∫

2 x
4
3

x2 − y3

(
dy −

(
1
3
2y + y3 − x2

x

)
dx

)
= c1∫ (

2 x
4
3

x2 − y3
dy −

(
2 x

4
3

x2 − y3

)(
1
3
2y + y3 − x2

x

)
dx

)
= c1∫ (

2 x
4
3

x2 − y3
dy −

(
2
3

x
1
3

x2 − y3

)(
2y + y3 − x2

)
dx

)
= c1

Hence we need to find F (x, y) s.t. dF =
(
2 x

4
3

x2−y3
dy −

(
2
3

x
1
3

x2−y3

)
(2y + y3 − x2) dx

)
which

will make the solution F = c. Therefore

dF = ∂F

∂x
dx+ ∂F

∂y
dy

= 2 x
4
3

x2 − y3
dy −

(
2
3

x
1
3

x2 − y3

)(
2y + y3 − x2

)
dx

Hence

∂F

∂x
= −2

3
x

1
3 (2y + y3 − x2)

x2 − y3
(1)

∂F

∂y
= 2 x

4
3

x2 − y3
(2)

Integrating (1) gives

F =
(∫

−2
3
x

1
3 (2y + y3 − x2)

x2 − y3
dx

)
+ g(y)

= 1
2x

4
3 + 1

3 ln
(
x

4
3 + x

2
3y + y2

)
− 2

3
√
3 arctan

1
3

(
2x 2

3 + y
)√

3
y

− 2
3 ln

(
x

2
3 − y

)
+ g(y)

(3)

Where g(y) acts as the integration constant but F depends on x, y it becomes an arbitrary
function. Taking derivative of the above w.r.t. y gives

∂F

∂y
= 2 x

4
3

x2 − y3
+ g′(y) (4)

Equating (4,2) gives

2 x
4
3

x2 − y3
= 2 x

4
3

x2 − y3
+ g′(y)

0 = g′(y)
g(y) = c1

Hence (3) becomes

F = 1
2x

4
3 + 1

3 ln
(
x

4
3 + x

2
3y + y2

)
− 2

3
√
3 arctan

1
3

(
2x 2

3 + y
)√

3
y

− 2
3 ln

(
x

2
3 − y

)
+ c1

Therefore the solution is

F = c

1
2x

4
3 + 1

3 ln
(
x

4
3 + x

2
3y + y2

)
− 2

3
√
3 arctan

1
3

(
2x 2

3 + y
)√

3
y

− 2
3 ln

(
x

2
3 − y

)
= c2
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Where constants c1, c were combined into c2. Now this ode will be solved using direct
symmetry by converting to canonical coordinates. This is done by using the standard
characteristic equation by writing

dx

ξ
= dy

η
= dS

dx
3

2x
1
3

= dy
y

x
4
3

= dS

First pair of ode’s give
dy

dx
=

y

x
4
3
3

2x
1
3

= 2
3xy

Hence
y = c1x

2
3

Therefore
R = yx−

2
3

And
dS = dx

ξ
= 2

3x
1
3dx

Integrating gives

S =
∫ 2

3x
1
3dx

= 1
2x

4
3 + c1

= 1
2x

4
3

By choosing c1 = 0. Now the ODE dS
dR

= F (R) is found from

dS

dR
=

dS
dx

+ ω(x, y) dS
dy

dR
dx

+ ω (x, y) dR
dy

= Sx + ω(x, y)Sy

Rx + ω (x, y)Ry

But Sx = 2
3x

1
3 , Rx = −2

3yx
− 5

3 , Sy = 0, Ry = x−
2
3 . Substituting these into the above and

simplifying gives

dS

dR
=

2
3x

1
3

−2
3yx

− 5
3 + ω (x, y)x− 2

3

=
2
3x

1
3

−2
3yx

− 5
3 +

(
1
3
2y+y3−x2

x

)
x−

2
3

= −2 x2

x2 − y3

But R = yx−
2
3 or y = Rx

2
3 . The above becomes

dS

dR
= −2 x2

x2 −R3x2

= −2
1−R3

Which is a quadrature. Solving gives∫
dS =

∫
−2

1−R3dR

S = −1
3 ln

(
R2 + x+ 1

)
− 2

3
√
3 arctan

(
1
3(1 + 2R)

√
3
)
+ 2

3 ln (R− 1) + c1
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Converting back to x, y gives

1
2x

4
3 = −1

3 ln
((

yx−
2
3

)2
+ x+ 1

)
− 2

3
√
3 arctan

(
1
3

(
1 + 2

(
yx−

2
3

))√
3
)
+ 2

3 ln
((
yx−

2
3

)
− 1
)
+ c1

1
2x

4
3 = −1

3 ln
(
y2x−

4
3 + x+ 1

)
− 2

3
√
3 arctan

(
1
3

(
1 + 2yx− 2

3

)√
3
)
+ 2

3 ln
(
yx−

2
3 − 1

)
+ c1

3.4.10.15 Example y′ = 3− 2 y
x

This is homogeneous ODE of Class A of form y′ = F
(
y
x

)
, hence from the lookup table

ξ = x

η = y

The first step is to verify that x̄ = εx, ȳ = εy leaves the ode invariant.

dȳ

dx̄
= ȳx + ȳyy

′

x̄x + x̄yy′
= εy′

ε
= y′

Hence the ode becomes
dȳ

dx̄
= 3− 2 ȳ

x̄

y′ = 3− 2 εy
εx

= 3− 2y
x

Verified. Now the ode is solved. The tangent curves are computed directly from the Lie
group symmetry given above

ξ = ∂x̄

∂ε

∣∣∣∣
ε=0

= x

η = ∂ȳ

∂ε

∣∣∣∣
ε=0

= y

The canonical coordinates (R,S) are now found. Using

dx

ξ
= dy

η
= dS

dx

x
= dy

y
= dS (1)

The first pair gives

dy

dx
= y

x
ln y = ln x+ c1

y = cx

Hence

R = c

= y

x

Now we find S from the last pair of equations

dy

y
= dS

S = ln y

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)
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To find G(R), we use dS = Sxdx+ Sydy = 1
y
dy and dR = Rxdx+Rydy = − y

x2dx+ 1
x
dy.

Hence

dS

dR
=

1
y
dy

− y
x2dx+ 1

x
dy

=
dy
dx

− y2

x2 + y
x
dy
dx

=
dy
dx

−R2 +R dy
dx

But dy
dx

= 3− 2 y
x
= 3− 2R, hence

dS

dR
= 3− 2R

−R2 +R (3− 2R)

= 3− 2R
3 (R−R2)

Which is a quadrature. In Lie method, for first order ode, we always obtain dS
dR

= G(R).
Integrating the above gives ∫

dS =
∫ 3− 2R

3 (R−R2)dR

S = lnR− 1
3 ln (R− 1) + c1

Final step is to replace R,S back with x, y which gives

ln y = ln y
x
− 1

3 ln
(y
x
− 1
)
+ c1

y = c1

y
x(

y
x
− 1
) 1

3(y
x
− 1
) 1

3 = c1
1
x

y

x
− 1 = c2

1
x3

y =
(
c2

1
x3

+ 1
)
x

3.4.10.16 Example y′ = −3+ y
x

−1− y
x

This is homogeneous ODE of Class A of form y′ = F
(
y
x

)
, hence from the lookup table

ξ = x

η = y

Canonical coordinates (R,S) are found similar to the above which gives

R = y

x
S = ln y

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

Which is the same as above
dS

dR
=

dy
dx

−R2 +R dy
dx
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But in this problem, the only difference is that dy
dx

= −3+ y
x

−1− y
x
= −3+R

−1−R
, hence

dS

dR
=

−3+R
−1−R

−R2 +R
(−3+R
−1−R

)
= 1
R

R− 3
R2 + 2R− 3

Which is a quadrature. In Lie method, for first order ode, we always obtain dS
dR

= G(R).
Integrating the above gives∫

dS =
∫ 1
R

(
R− 3

R2 + 2R− 3

)
dR

S = ln (R)− 1
2 ln (R + 3)− 1

2 ln (R− 1) + c1

Final step is to replace R,S back with x, y which gives

ln y = ln
(y
x

)
− 1

2 ln
(y
x
+ 3
)
− 1

2 ln
(y
x
− 1
)
+ c1

This can be solved for y if an explicit solution is needed.

3.4.10.17 Example y′ = 1+3
( y
x

)2
2 y
x

This is homogeneous ODE of Class A of form y′ = F
(
y
x

)
, hence from the lookup table

ξ = x

η = y

The canonical ode is
dS

dR
=

dy
dx

−R2 +R dy
dx

The above is the same ode in canonical coordinates for any ode of the form y′ = F
(
y
x

)
.

We just need to express y′ as function of R. In this case the above becomes

dS

dR
=

1+3R2

2R

−R2 +R
(1+3R2

2R

)
= 3R2 + 1
R3 +R

Integrating gives
S = ln

(
R
(
R2 + 1

))
+ c1

Final step is to replace R,S back with x, y which gives

ln y = ln
(
y

x

((y
x

)2
+ 1
))

+ c1

y = c2
y

x

((y
x

)2
+ 1
)

1 = c2
x

((y
x

)2
+ 1
)

y2

x2
= c3x− 1

y2 = c3x
3 − x2

Hence

y = ±
√
c3x3 − x2

= ±x
√
c3x− 1
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Finding ξ, η from symmetry condition for the above ode This shows how to find ξ, η di-
rectly also. The condition of symmetry is given above in equation (14) as

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Try Ansatz

ξ = c0 + c1x

η = c2 + c3y

And given

ω = 1
2
x2 + 3y2
xy

ω2 = 1
4
(x2 + 3y2)2

x2y2

ωx = 1
2
x2 − 3y2
yx2

ωy =
1
2
3y2 − x2

xy2

Hence (14) becomes

ηx +
1
2
x2 + 3y2
xy

ηy −
1
2
x2 − 3y2
yx2

ξ − 1
2
3y2 − x2

xy2
η = 0

Therefore the above becomes
1
2
x2 + 3y2
xy

c3 −
1
2
x2 − 3y2
yx2

(c0 + c1x)−
1
2
3y2 − x2

xy2
(c2 + c3y) = 0

Using the computer the above simplifies to
x

y
(c3 − c1) +

1
2c2

x

y2
− 1
y

(
1
2c0
)
− 1
x

3
2c2 +

3
2c0

y

x2
= 0

Hence

c3 − c1 = 0
1
2c2 = 0

−1
2c0 = 0

−3
2c2 = 0
3
2c0 = 0

Solving gives c0 = 0, c2 = 0 and c3 = c1. Hence the solution is

ξ = c1x

η = c3y

Let c1 = 1, therefore c3 = 1 and we obtain

ξ = x

η = y

Which is the result we used in solving the above problem. Notice that any scaler will also
work. Hence

ξ = 5x
η = 5y

And

ξ = 10x
η = 10y

This will also give same solution.
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3.4.10.18 Example y′ = y
x
+ 1

x
F
(
y
x

)
This is homogeneous class D y′ = y

x
+ g(x)F

(
y
x

)
. Hence from lookup table

ξ = x2

η = xy

Now we just need to find canonical coordinates (R,S) since ξ, η are known. Using

dx

ξ
= dy

η
= dS

dx

x2
= dy

xy
= dS (1)

The first pair gives

dy

dx
= y

x
ln y = ln x+ c1

y = cx

Hence

R = c

= y

x

Now we find S from the last pair of equations (we could also use the first and last equations
in (1)).

dy

xy
= dS

S = 1
x
ln y

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

= Sx + Syy
′

Rx +Ryy′

To find G(R), we use Sx = −1
x2 ln y, Sy = 1

xy
and Rx = − y

x2 , Ry = 1
x
. Hence

dS

dR
=

−1
x2 ln y + 1

xy
y′

− y
x2 + 1

x
y′

=
− ln y − x

y
y′

y + xy′

=
− ln y − 1

R
y′

y + xy′

But y′ = y
x
+ 1

x
F
(
y
x

)
= R + 1

x
F (R). The above becomes

dS

dR
=

− ln y − 1
R

(
R + 1

x
F (R)

)
y + x

(
R + 1

x
F (R)

)
=

− ln y − 1− 1
xR
F (R)

y + xR + F (R)

=
− ln y − 1− 1

x y
x
F (R)

y + x y
x
+ F (R)

=
− ln y − 1− 1

y
F (R)

2y + F (R)
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Something is wrong. dS
dR

should only be a function of R. Need to find out why. Let me try
the other pair of equations from (1) to solve for S and see what happens.

dx

x2
= dS

S = −1
x

What is left is to find dS
dR

. This is given by

dS

dR
= G(R)

= Sx + Syy
′

Rx +Ryy′

To find G(R), we use Sx = 1
x2 , Sy = 0 and Rx = − y

x2 , Ry = 1
x
. Hence

dS

dR
=

1
x2

− y
x2 + 1

x
y′

= 1
−y + xy′

But y′ = y
x
+ 1

x
F
(
y
x

)
= R + 1

x
F (R). The above becomes

dS

dR
= 1

−y + x
(
R + 1

x
F (R)

)
= 1

−y + xR + F (R)

= 1
−y + x y

x
+ F (R)

= 1
F (R)

This worked. But why the first choice did not work? OK, let me continue now. Integrating
the above gives

S =
∫ 1
F (R)dR + c

But S = − 1
x
, hence

−1
x
=
∫ y

x 1
F (r)dr + c

0 =
∫ y

x 1
F (r)dr + c+ 1

x

This example shows that when solving for S from

dx

x2
= dy

xy
= dS

There are two choice. One is dS = dy
xy

and the other dS = dx
x2 . Using the first choice did not

work here (unless I made a mistake, but do not see it)., Only the second choice worked
because we must end up with dS

dR
= G(R) where RHS is function of R only. I need to look

more into this. In theory, any choice should have worked.
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3.4.10.19 Example y′ = y
x
+ 1

x
e−

y
x

This is homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
. Hence from lookup table

ξ = x2

η = xy

From above we found the solution to be

S =
∫ 1
F (R)dR + c

In this case F (R) = e−R. Hence

S =
∫
eRdR + c

S = eR + c

Now we just need to find canonical coordinates (R,S) since ξ, η are known. From above

R = y

x

S = −1
x

Hence the solution becomes

−1
x
= e

y
x + c

e
y
x = c2 −

1
x

y

x
= ln

(
c2 −

1
x

)
y = x ln

(
c2 −

1
x

)
The nice thing about this method is that once we solve for one pattern of an ode, then
the same solution in canonical coordinates is used, the only change need is to plug-in in
the RHS of the original ode in the solution and integrate.

3.4.10.20 Example y′ = 1−y2+x2

1+y2−x2

y′ = 1− y2 + x2

1 + y2 − x2

= ω(x, y)

Using anstaz’s it is found that

ξ = x− y

η = y − x

Hence
dx

ξ
= dy

η
= dS

dx

x− y
= dy

y − x
= dS (1)

The first two give
dy

dx
= η

ξ
= y − x

x− y
= −1

Hence
y = −x+ c1 (2)
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Therefore

R = c1

= y + x

To find S, since both ξ, η depend on both x, y, then dy
η

= dS or dx
ξ

= dS can be used.
Lets try both to show same answer results.

dy

η
= dS

dS = dy

y − x

But from (2), x = c1 − y. The above becomes

dS = dy

y − (c1 − y)

= dy

2y − c1

Hence
S = 1

2 ln (2y − c1)

But c1 = y + x. So the above becomes

S = 1
2 ln (2y − (y + x))

= 1
2 ln (y − x) (3)

Let us now try the other ode
dx

ξ
= dS

dS = dx

x− y

But from (2) y = −x+ c1. The above becomes

dS = dx

x− (−x+ c1)

= dx

2x− c1

Therefore
S = 1

2 ln (2x− c1)

But c1 = y + x. Therefore

S = 1
2 ln (2x− (y + x))

= 1
2 ln (x− y) (4)

The constant of integration is set to zero when finding S. What is left is to find dS
dR

. This
is given by

dS

dR
= Sx + Syω

Rx +Ryω
(5)

But, and using (4) for S we have

Rx = 1
Ry = 1

Sx = −1
y − x

Sy =
1

y − x
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Hence (2) becomes

dS

dR
=

−1
y−x

+ 1
y−x

ω

1 + ω

=
−ω−1

x−y

1 + ω

= 1− ω

(1 + ω) (x− y)

=
1−

(
1−y2+x2

1+y2−x2

)
(
1 +

(
1−y2+x2

1+y2−x2

))
(x− y)

= −x− y

= −(x+ y)
= −R

Hence
dS

dR
= −R

S = −R
2

2
Converting back to x, y gives

ln (y − x) = −(y + x)2

2

3.4.10.21 Example y′ = −1
4xe

−2y + 1
4

√
(e−2y)2 x2 + 4e−2y

y′ = −1
4xe

−2y + 1
4

√
(e−2y)2 x2 + 4e−2y

= ω(x, y)

Using anstaz’s it is found that

ξ = x

η = 1

Hence
dx

ξ
= dy

η
= dS

dx

x
= dy = dS (1)

The first two give
dy

dx
= 1
x

Hence
y = ln x+ c1

Therefore

R = c1

= y − ln x

And S is found from either dy
η
= dS or dx

ξ
= dS. Since η = 1, it is simpler to use dy

η
= dS

instead.
dy

η
= dS

dy = dS

S = y
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Where constant of integration is set to zero. What is left is to find dS
dR

. This is given by

dS

dR
= Sx + Syω

Rx +Ryω
(2)

But

Rx = −1
x

Ry = 1
Sx = 0
Sy = 1

Hence (2) becomes

dS

dR
= ω

− 1
x
+ ω

= 1
− 1

xω
+ 1

= 1
1− 1

x

(
− 1

4xe
−2y+ 1

4

√
(e−2y)2x2+4e−2y

)

But y = R + ln x. The above becomes

dS

dR
= 1

1− 1

x

(
− 1

4xe
−2(R+ln x)+ 1

4

√(
e−2(R+ln x))2x2+4e−2R+ln x

)

= 1
1− 1

x
(
− 1

4
xe−2R

x2 + 1
4

1
x

√
e−4R+4e−2R

)
= 1

1− 1(
− 1

4 e
−2R+ 1

4

√
e−4R+4e−2R

)
Integrating gives

S =

√
1+4e2R
e4R

e2R arctanh
(

1√
1+4e2R

)
√
1 + 4e2R

Converting back to x, y gives

y =

√
1+4e2(y−ln x)

e4(y−ln x) e2(y−lnx) arctanh
(

1√
1+4e2(y−ln x)

)
√
1 + 4e2(y−lnx)

3.4.10.22 Example y′ = y−xf
(
x2+ay2

)
x+ayf(x2+ay2)

y′ = y − xf(x2 + ay2)
x+ ayf (x2 + ay2)

= ω(x, y)

Using anstaz’s it is found that

ξ = −ay
η = x

Hence

dx

ξ
= dy

η
= dS

dx

−ay
= dy

x
= dS (1)
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The first two give
dy

dx
= x

−ay
This is separable. Solving gives (taking one root)

y =
√
a (ac1 − x2)

a

Solving for c1 gives
c1 =

x2 + ay2

a

Hence
R = x2 + ay2

a

S is found from either dy
η
= dS or dx

ξ
= dS. Using dx

−ay
= dS then

dx

−ay
= dS

But y =
√

a(ac1−x2)
a

. Hence

dx

−a
√

a(ac1−x2)
a

= dS

dx

−
√
a (ac1 − x2)

= dS

− 1√
a
arctan

( √
ax√

c1a2 − x2a

)
= S

− 1√
a
arctan

(√
ax

ay

)
= S

Where constant of integration is set to zero. What is left is to find dS
dR

. This is given by

dS

dR
= Sx + Syω

Rx +Ryω
(2)

But

Rx = 2x
a

Ry = 2y

Sx = − y

x2y2 + a

Sy = − x

a
(
1 + x2y2

a

)
Hence (2) becomes

dS

dR
=

− y
x2y2+a

+
(
− x

a
(
1+x2y2

a

)
)
ω

2x
a
+ 2yω

But R = x2+ay2

a
. The above becomes

dS

dR
=

− y
aR

+
(
− x

a
(
1+x2y2

a

)
)
ω

2x
a
+ 2yω

To finish. Another hard part of this Lie method is to convert back dS
dR

= Sx+Syω
Rx+Ryω

so that
the RHS is only a function of R. Need to find a robust way to do this. This is now a weak
point in my program as I have few ode’s that it can’t do it
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3.4.11 Alternative form for the similarity condition PDE
This section shows how to obtain eq. (8) in paper "Computer Algebra Solving of First
Order ODEs Using Symmetry Methods" 1996 by Durate, Terrab, Mota. Which is an
alternative equation to solve instead of the main Lie condition for symmetry we were
looking at above.

Starting with the main linearized symmetry pde

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (14)

Assuming anstaz
η = ξω + χ (A)

Hence

ηx = ξxω + ξωx + χx

ηy = ξyω + ξωy + χy

Then (14) becomes

(ξxω + ξωx + χx) + ω((ξyω + ξωy + χy)− ξx)− ω2ξy − ωxξ − ωy(ξω + χ) = 0
ξxω + ξωx + χx + ξyω

2 + ξωyω + χyω − ωξx − ω2ξy − ωxξ − ξωωy − ωyχ = 0
ξxω + χx + ξyω

2 + ξωyω + χyω − ωξx − ω2ξy − ξωωy − ωyχ = 0
χx + ξyω

2 + ξωyω + χyω − ω2ξy − ξωωy − ωyχ = 0
χx + ξωyω + χyω − ξωωy − ωyχ = 0

Or
χx + χyω − ωyχ = 0 (1)

And hence (1) is now solved for χ(x, y). If we are able to find χ then we can use the anstaz
η = ξω + χ. This leaves only one unknown ξ. The paper does not explain how to solve for
this, ξ, which I assume is by using (14) again. The paper only said

The knowledge of χ, in turn, allows one to set ξ and η as desired using (A)

Which is not too clear how in practice this is done. I need to work an example showing
this. The paper says that (1) is solved for χ(x, y) by using bivariate polynomial anstaz.
The degree can be set by a user, or Maple internally determines this.
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3.5.1 Introduction and algorithm flow charts
This gives an overview on solving first order ode where y′ enters the ode as nonlinear.
Examples are x(y′)2+yy′+x = 0 or 2y′x−y+ln y′ = 0 and so on. Four general cases exist
and these are summarized in the flow chart at the end of this section. Two of these cases
are called the Clairaut ode and the d’Alembert ode. Following the flow chart, a number
of examples are solved.

Given the ode F (x, y, y′) = 0, we start by writing y′ = p which results in

F (x, y, p) = 0

This is the top level algorithm
function solve_first_order_ode_nonlinear_p(F (x, y, p))

Where p = y′ and the ode is non-linear in p. An example is x(y′)2 − yy′ = −1 and

y = x

(
y′ + a

√
1 + (y′)2

)
if degree of p an integer in F (x, y, p) then

As an example p2x+ yp+ y = 0 and it is possible to find the roots (i.e.
solve for p) then let the roots be pi and each generated ode is solved as
a first order ode which is now linear in each in y′i. So we need to solve
y′i = f(x, y) for each root.

else if we can solve for x from F (x, y, p) then
This is currently not implemented.
Let x = φ(y, p) then differentiating w.r.t. y gives

dx

dy
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
1
p
= ∂φ

∂y
+ ∂φ

∂p

dp

dy
(1)

Solving (1) for p from the above and substituting the result in
x = φ(y, p) gives the solution.

else
CALL clairaut_dAlembert_solver(F (x, y, p))

end if
end function

Algorithm below is Clairaut dAlembert solver algorithm
function clairaut_dalembert_solver(F (x, y, p))

Solve for y and write the ode as (where p = y′)
y = xf(p) + g(p) (1)

where f(p) 6= 0
if f(p) = p then . Example y = xp+ g(p)

if g(p) = 0 then . Example y = xp

return as this is neither Clairaut nor d’Alembert.
else if g(p) is linear in p then . Example y = xp+ p

return as this is neither Clairaut nor d’Alembert.
else . Example y = xp+ p2 or y = xp+ sin(p)

This is a Clairaut ode. Taking the derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx



where g′ is the derivative of g(p) w.r.t. p. The general solution is

dp

dx
= 0 p = c1

where c1 is constant. Substituting p = c1 the in (1) gives the general solution yg
The singular solution ys is now found from solving the ode (x+ g′(p)) = 0 for p and
substituting the solution pi back in (1).
return yg, ys

end if
else

CALL dalembert_solver(F (x, y, p))
end if

end function
Algorithm below is just the dAlembert solver algorithm

function dalembert_solver(F (x, y, p))
Write the ode as (where p = y′)

y = xf(p) + g(p) (1)
where f(p) 6= 0. Note that We get here when f(p) 6= p else it is Clairaut.
if g(p) = 0 then . Example y = xf(p)

f(p) must be nonlinear in p but can not be the special case p 1
n where n

integer because then it is separable.
if f(p) = p

1
n and n ∈ Z then . Ex. y = x(y′) 1

2

return as this is not dAlmbert ode.
end if

else
In this case any form of f(p) is OK even f(p) = p

1
n with n integer

except ofcourse f(p) = p since this would have made it Clairaut and not
dAlembert. Example is y = xf(p) + p is dAlembert.
if g(p) is constant and does not depend on p then . Ex. y = xf(p) + 1

return as this is not dAlmbert ode.
else

if g(p) = f(p) then
if g(p), f(p) have the form p

1
n with n integer then . Ex. y = xp

1
2 + p

1
2

return as this is not dAlmbert ode.
else . Ex. y = xp

2
3 + p

2
3 or y = xp2 + p2

This is dAlmbert ode.
end if

end if
end if

end if
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When we get here then (1) is dAlmbert ode. Note that all the above
cases f(p), g(p) can not be function of x in any case. Now we solve (1)
using dAlmbert algorithm. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf + g)

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
where f ′ means df

dp
and g′ means dg

dp
. The above becomes

p = f + (xf ′ + g′) dp
dx

p− f = (xf ′ + g′) dp
dx

(2)

The singular solution is given when dp
dx

= 0 above. Hence

p− f = 0
Solving the above for p and substituting the result back in (1) gives the
singular solution ys. The general solution yg is found by solving the ode
in (2) for p and substituting the result in (1). there are two cases to
consider.
if ode (2) is separable or linear in p as is then

Solve (2) for p directly and substitute the solution in (1). This gives the
general solution yg.

else
Inverting (2) first gives

dx

dp
= xf ′ + g′

p− f
Which makes it linear ode in x. This is solved for x(p) as function of p.
Let

x = h(p) + c1 (3)
be the solution. Now two possible cases exist
if able to isolate p from (3) then

Substitute p in (1). This gives the general solution yg.
else

Solve for p from (1) and substitute the result in (3). This gives an implicit
solution for yg instead of explicit one.

end if
end if

end function

3.5.2 Algorithm diagram
The following is the flow chart.
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Figure 3.14: Algorithm for solving first order ode with nonlinear y′
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3.5.3 Solved examples

# original ode y = xf(p) + g(p) f(p) g(p) type

1 x(y′)2 − yy′ = −1 y = xp+ 1
p p 1

p Clairaut

2 y = xy′ − (y′)2 y = xp− p2 p −p2 Clairaut

3 y = xy′ − 1
4 (y

′)2 y = xp− 1
4p

2 p − 1
4p

2 Clairaut

4 y = x(y′)2 y = xp2 p2 0 d’Alembert

5 y = x+ (y′)2 y = x+ p2 1 p2 d’Alembert

6 (y′)2 − 1− x− y = 0 y = −x+
(
p2 − 1

)
−1

(
p2 − 1

)
d’Alembert

7 yy′ − (y′)2 = x y = 1
px+ p 1

p p d’Alembert

8 y = x(y′)2 + (y′)2 y = xp2 + p2 p2 p2 d’Alembert

9 y = x
ay

′ + b
ay′ y = x

ap+
b
a
1
p

p
a

b
a
1
p d’Alembert

10 y = x

(
y′ + a

√
1 + (y′)2

)
y = x

(
p+ a

√
1 + p2

)
p+ a

√
1 + p2 0 d’Alembert

11 y = x+ (y′)2
(
1− 2

3y
′) y = x+ p2

(
1− 2

3p
)

1 p2
(
1− 2

3p
)

d’Alembert

12 y = 2x− 1
2 ln

( (
y′)2
y′−1

)
y = 2x− 1

2 ln
(

p2

p−1

)
2 − 1

2 ln
(

p2

p−1

)
d’Alembert

13 (y′)2 − x(y′)2 + y(1 + y′)− xy′ = 0 y = xp+xp2−p2

p+1 = xp− p2

p+1 p − p2

p+1 Clairaut

14 x(y′)2 + (x− y) y′ + 1− y = 0 y = xp+ 1
1+p p 1

1+p Clairaut

15 xyy′ = y2 + x
√
4x2 + y2 y = RootOf (h(p))x RootOf (h(p)) 0 d’Alembert

16 ln (cos y′) + y′ tan y′ = y y = ln (cos p) + p tan p 0 ln (cos p) + p tan p d’Alembert

17 x(y′)2 − 2yy′ + 4x = 0 y = x
(

1
2p+

2
p

)
1
2p+

2
p 0 d’Alembert

18 x− yy′ = a(y′)2 y = x
p − ap 1

p −ap d’Alembert

19 y = xF (p) +G(p) y = xF (p) +G(p) F (p) G(p) d’Alembert

20 y′ = −x
2 − 1 + 1

2

√
x2 + 4x+ 4y y = xp+

(
1 + 2p+ p2

)
p 1 + 2p+ p2 Clairaut

21 y′y

1+ 1
2

√
1+(y′)2

= −x y = −x
(

2+
√

1+p2

2p

)
−
(

2+
√

1+p2

2p

)
0 d’Alembert

22 x(y′)3 = yy′ + 1 y = xp2 − 1
p p2 − 1

p d’Alembert

23 (y′)2 − 2yy′ = 2x y = −x 1
p + 1

2p − 1
p

1
2p d’Alembert

24 xy′ − y =
√
x2 − y2 y = x

(
p
2 ± 1

2

√
2− p2

)
p
2 ± 1

2

√
2− p2 0 d’Alembert

3.5.3.1 Example 1

x(y′)2 − yy′ = −1, is put in normal form (by replacing y′ with p) and solving for y gives

y = xp+ 1
p

(1)

= xf(p) + g(p)

Where f(p) = p and g(p) = 1
p
. Since f(p) = p then this is Clairaut ode. Taking derivative

of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1
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Substituting this in (1) gives the general solution

y = c1x+
1
c1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

1
p

= x− 1
p2

Hence x− 1
p2

= 0 or p = ± 1√
x
. Substituting these back in (1) gives

y1(x) = xp+ 1
p

= x
1√
x
+
√
x

= 2
√
x (3)

y2(x) = −x
√

1
x
−

√
x

= −2
√
x (4)

Eq. (2) is the general solution and (3,4) are the singular solutions.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − xy′ − 1
y′

= 0

−x+ 1
(y′)2

= 0

Second equation gives (y′)2 = 1
x
. Hence y′ = ±

√
1
x
. Hence the first equation now gives

(starting with positive root)

y − x

√
1
x
− 1√

1
x

= 0

y = x

√
1
x
+ 1√

1
x

=
x
√

1
x

√
1
x
+ 1√

1
x

= 2
√
x

And for the second root y′ = −
√

1
x
we obtain y = −2

√
x. We see these are the same

singular solutions obtained earlier.
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3.5.3.2 Example 2

y = xy′ − (y′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp− p2 (1)
= xf(p) + g(p)

Where f(p) = p and g(p) = −p2. Since f(p) = p then this is Clairaut ode. Taking
derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x− c21

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

(
−p2

)
= x+ 2p

Hence x+ 2p = 0 or p = x
2 . Substituting this back in (1) gives

y(x) = x2

2 − x2

4

= x2

4 (3)

Eq. (2) is the general solution and (3) is the singular solution.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − xy′ + (y′)2 = 0
−x+ 2y′ = 0

Second equation gives y′ = x
2 . Hence the first equation now gives the singular solution as

y − x
(x
2

)
+
(x
2

)2
= 0

y = x2

2 − x2

4
= 1

4x
2

Which is the same obtained earlier.
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3.5.3.3 Example 3

y = xy′ − 1
4(y

′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp− 1
4p

2 (1)

= xf(p) + g(p)

Where f(p) = p and g(p) = −1
4p

2. Since f(p) = p then this is Clairaut ode. Taking
derivative of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x−
1
4c

2
1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

(
−1
4p

2
)

= x− 1
2p

Hence x− 1
2p = 0 or p = 2x. Substituting this back in (1) gives

y(x) = 2x2 − x2

= x2 (3)

Eq. (2) is the general solution and (3) is the singular solution.

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − xy′ + 1
4(y

′)2 = 0

−x+ 1
2y

′ = 0

Second equation gives y′ = 2x. Hence the first equation now gives the singular solution as

y − 2x2 + 1
4
(
4x2
)
= 0

y − x2 = 0
y = x2

Which is the same obtained earlier.
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3.5.3.4 Example 4

y = x(y′)2 is put in normal form (by replacing y′ with p) and solving for y gives

y = xp2 (1)
= xf(p)

This is the case when f(p) = p2 and g(p) = 0. Since f(p) 6= p then this is d’Almbert ode.

Writing f ≡ f(p) and g ≡ g(p) to make notation simpler but remembering that f is
function of p(x) which in turn is function of x. Same for g(p).

y = xf

Taking derivative of the above w.r.t. x gives

p = d

dx
(xf)

p = f + xf ′ dp

dx

p− f = xf ′ dp

dx

Since f = p2 then the above becomes

p− p2 = 2xpdp
dx

(2)

The singular solution is given when dp
dx

= 0 or p − p2 = 0. This gives p = 0 or p = 1.
Substituting these values of p in (1) gives singular solutions

ys1 = 0 (3)
ys2 = x (4)

General solution is found when dp
dx

6= 0 . Eq(2) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(x), or do an inversion and solve for x(p). If the
ode is linear as is in p then no need to do inversion. Since (2) is separable as is, no need
to do an inversion. The solution to (2) is

p1 = 0

p2 = 1 + c1√
x

For each p, there is a general solution. Substituting each of the above in (1) gives

y1(x) = 0

y2(x) = x

(
1 + c1√

x

)2

Hence the final solutions are

y = x (singular)
y = 0

y = x

(
1 + c1√

x

)2

But y = x can be obtained from the general solution when c1 = 0. Hence it is removed.
Therefore the final solutions are

y = 0 (6)

y = x

(
1 + c1√

x

)2

(7)
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What will happen if we had done an inversion to x(p)? Let us find out. ode(5) now becomes

p− p2

p

dx

dp
= 2x

dx

2x = p

p− p2
dp

This is also separable in x. Solving this for x gives

x = c1

(p− 1)2

Solving for p from the above gives

p1 =
x+√

xc1
x

p2 =
x−√

xc1
x

Substituting each of the above in (1) gives

y1 = x

(
x+√

xc1
x

)2

=
(
x+√

xc1
)

x

2

y2 = x

(
x−√

xc1
x

)2

=
(
x−√

xc1
)

x

2

Now we see that singular solution y = x can be obtained from the above general solutions
from c1 = 0. But y = 0 can not. Hence the final solutions are

y = 0 (singular) (8)

y =
(
x+√

xc1
)

x

2

(9)

y =
(
x−√

xc1
)

x

2

(10)

All solutions (6,7,8,9,10) are correct and verified. Maple gives the solutions given in (8,9,10)
and not those in (6,7).

Another method to find the singular solutions if it exists is called the p-discriminant. This
is used only for first order ode with nonlinear in y′. We set up the following two equations

F (x, y, y′) = 0
∂F (x, y, y′)

∂y′
= 0

We eliminate y′ and obtain G(x, y) = 0 equation. This is the singular solution. But we still
have to check if it satisfies the ode and also if it is true singular solution curve. More on this
later. Let us now just find the singular solution found above but using the p-discriminant
method. The above two equations are

y − x(y′)2 = 0
−2xy′ = 0

Second equation gives y′ = 0. Hence the first equation now gives the singular solution as

y = 0

Which is the same obtained earlier.
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3.5.3.5 Example 5

y = x+ (y′)2 is put in normal form (by replacing y′ with p) which gives

y = x+ p2 (1)
= xf + g

Hence f(p) = 1, g(p) = p2. Since f(p) 6= p then this is d’Almbert ode. Taking derivative
w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

(2)

Using f = 1, g = p2 the above simplifies to

p− 1 = 2pdp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 in (2) which results in p − f = 0 or
p− 1 = 0. Hence p = 1. Substituting these values of p in (1) gives singular solution as

y = x+ 1 (3)

General solution is found when dp
dx

6= 0 . Eq (2A) is a first order ode in p. Now we could
either solve ode (2) directly as it is for p(x), or do an inversion and solve for x(p). Since
(2) is separable as is, no need to do an inversion. Solving (2) for p gives

p = LambertW
(
c1e

x
2−1)+ 1

Substituting this in (1) gives the general solution

y(x) = x+
(
LambertW

(
c1e

x
2−1)+ 1

)2 (4)

Note however that when c1 = 0 then the general solution becomes y(x) = x + 1. Hence
(3) is a particular solution and not a singular solution. (4) is the only solution.

3.5.3.6 Example 6

(y′)2 − 1− x− y = 0 is put in normal form (by replacing y′ with p) which gives

y = −x+
(
p2 − 1

)
(1)

= xf + g

Hence f = −1, g(p) = (p2 − 1). Since f(p) 6= p then this is d’Almbert ode. Taking
derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

(2)

Using f = −1, g = (p2 − 1) the above simplifies to

p+ 1 = 2pdp
dx

(2A)
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The singular solution is found by setting dp
dx

= 0 which results in p = −1. Substituting
this in (1) gives singular solution as

y(x) = −x (3)

The general solution is found by finding p from (2A). No need here to do the inversion as
(2) is separable already. Solving (2) gives

p = −LambertW
(
−e−

x
2−1+ c2

2

)
− 1

= −LambertW
(
−c1e−

x
2−1)− 1

Substituting the above in (1) gives the general solution

y(x) = −x+
(
p2 − 1

)
y(x) = −x+

(
−LambertW

(
−c1e−

x
2−1)− 1

)2 − 1 (4)

Note however that when c1 = 0 then the general solution becomes y(x) = −x. Hence
(3) is a particular solution and not a singular solution. Solution (4) is therefore the only
solution.

3.5.3.7 Example 7

yy′ − (y′)2 = x is put in normal form (by replacing y′ with p) which gives

y = x+ p2

p
(1)

= 1
p
x+ p

= xf + g

Hence f = 1
p
, g(p) = p. Taking derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using f = 1
p
, g = p. Since f(p) 6= p then this is d’Almbert ode. the above simplifies to

p− 1
p
=
(
− x

p2
+ 1
)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 in (2) which results in Q(p) = 0 or
p− 1 = 0 or p = 1. Substituting these values in (1) gives the solutions

y1(x) = x+ 1 (3)

The general solution is found by finding p from (2A). Since (2A) is not linear and not
separable in p, then inversion is needed. Writing (2) as

dx

dp
=

1− x
p2

p− 1
p

= 1
p− p3

(
x− p2

)
Hence

dx

dp
+ x

p (p2 − 1) = p2

p (p2 − 1)



chapter 3. first order ode F (x, y, y′) = 0 208

This is now linear ODE in x(p). The solution is

x =
p
√

(p− 1) (1 + p) ln
(
p+

√
p2 − 1

)
(1 + p) (p− 1) + c1

p√
(1 + p) (p− 1)

=
p
√
p2 − 1 ln

(
p+

√
p2 − 1

)
p2 − 1 + c1

p√
p2 − 1

(4)

Now we need to eliminate p from (1,4). From (1) since y = 1
p
x+ p then solving for p gives

p1 =
y

2 + 1
2
√
y2 − 4x

p2 =
y

2 − 1
2
√
y2 − 4x

Substituting each pi in (4) gives the general solution (implicit) in y(x). First solution is

x =

(
y
2 +

1
2
√
y2 − 4x

)√(
y
2 +

1
2
√
y2 − 4x

)2 − 1 ln
(

y
2 +

1
2
√
y2 − 4x+

√(
y
2 +

1
2
√
y2 − 4x

)2 − 1
)

(
y
2 +

1
2
√
y2 − 4x

)2 − 1
+c1

y
2 +

1
2
√
y2 − 4x√(

y
2 +

1
2
√
y2 − 4x

)2 − 1

And second solution is

x =

(
y
2 −

1
2
√
y2 − 4x

)√(
y
2 −

1
2
√
y2 − 4x

)2 − 1 ln
(

y
2 −

1
2
√
y2 − 4x+

√(
y
2 −

1
2
√
y2 − 4x

)2 − 1
)

(
y
2 −

1
2
√
y2 − 4x

)2 − 1
+c1

y
2 −

1
2
√
y2 − 4x√(

y
2 −

1
2
√
y2 − 4x

)2 − 1

3.5.3.8 Example 8

y = x(y′)2 + (y′)2 is put in normal form (by replacing y′ with p) which gives

y = xp2 + p2 (1)
= xf + g

where f = p2, g = p2. Since f(p) 6= p then this is d’Almbert ode. Taking derivative and
simplifying gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− p2 = (2xp+ 2p) dp
dx

(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = 0 or p = 1.
Substituting these values in (1) gives the singular solutions

y1(x) = 0 (3)
y2(x) = x+ 1 (4)

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (A2) as

p(1− p)
2p (x+ 1) = dp

dx
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Inverting gives

dx

dp
= 2(x+ 1)

(1− p)
dx

dp
− x

2
(1− p) = 2

(1− p)

This is now linear x(p). The solution is

x = C2

(p− 1)2
− 1

Solving for p gives

C2

(p− 1)2
= x+ 1

(p− 1)2 = C2

x+ 1

(p− 1) = ± C√
x+ 1

p = 1± C√
x+ 1

Substituting the above in (1) gives the general solutions

y = (x+ 1) p2

Therefore

y(x) = (x+ 1)
(
1 + C√

x+ 1

)2

y(x) = (x+ 1)
(
1− C√

x+ 1

)2

The solution y1(x) = 0 found earlier can not be obtained from the above general solution
hence it is singular solution. But y2(x) = x+ 1 can be obtained from the general solution
when C = 0. Hence there are only three solutions, they are

y1(x) = 0

y2(x) = (x+ 1)
(
1 + C√

x+ 1

)2

y3(x) = (x+ 1)
(
1− C√

x+ 1

)2

3.5.3.9 Example 9

y = x
a
y′ + b

ay′
is put in normal form (by replacing y′ with p) which gives

y = x

a
p+ b

a
p−1 (1)

= xf + g

Where f = p
a
, g = b

a
p−1. Since f(p) 6= p then this is d’Almbert ode. Taking derivative

w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx
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Using values for f, g the above simplifies to

p− p

a
=
(
x

a
− b

a
p−2
)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = 0. Substituting this in
(1) does not generate any solutions due to division by zero. Hence no singular solution exist.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

p
(
1− 1

a

)
x
a
− b

a
p−2 = dp

dx

Since this is nonlinear, then inversion is needed

dx

dp
=

x
a
− b

a
p−2

p
(
1− 1

a

)
dx

dp
− x

1
p (a− 1) = − b

a

1
p3
(
1− 1

a

)
This is now linear ode in x(p). The solution is

x = b

(2a− 1)p2 + C1p
1

a−1 (3)

There are now two choices to take. The first is by solving for p from the above in terms
of x and then substituting the result in (1) to obtain explicit solution for y(x), and the
second choice is by solving for p algebraically from (1) and substituting the result in (3).
The second choice is easier in this case but gives an implicit solution. Solving for p from
(1) gives

p1 =
ay +

√
a2y2 − 4xb
2x

p1 =
ay −

√
a2y2 − 4xb
2x

Substituting each one of these solutions back in (3) gives two implicit solutions

x = b

(2a− 1)
(

ay+
√

a2y2−4xb
2x

)2 + C1

(
ay +

√
a2y2 − 4xb
2x

) 1
a−1

x = b

(2a− 1)
(

ay−
√

a2y2−4xb
2x

)2 + C1

(
ay −

√
a2y2 − 4xb
2x

) 1
a−1

3.5.3.10 Example 10

y = xy′ + ax
√
1 + (y′)2 is put in normal form (by replacing y′ with p) which gives

y = x
(
p+ a

√
1 + p2

)
(1)

= xf

where f = p + a
√
1 + p2, g = 0. Since f(p) 6= p then this is d’Almbert ode. Taking

derivative and simplifying gives

p =
(
f + xf ′ dp

dx

)
p− f = xf ′ dp

dx



chapter 3. first order ode F (x, y, y′) = 0 211

Using values for f, g the above simplifies to

−a
√

1 + p2 = x

(
1 + ap√

1 + p2

)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in −a
√
1 + p2 = 0. This

gives no real solution for p. Hence no singular solution exists.

The general solution is when dp
dx

6= 0 in (2A). Since (2A) is nonlinear, inversion is needed.

−a
√
1 + p2

x+ 1
2x

2ap√
1+p2

= dp

dx

dx

dp
=
x
(
1 + 1

2
2ap√
1+p2

)
−a

√
1 + p2

dx

x
=

1 + 1
2

2ap√
1+p2

−a
√
1 + p2

dp

dx

x
=

√
1 + p2 + 1

22ap
−a (1 + p2) dp

dx

x
=
(
− 1
a
√
1 + p2

− p

(1 + p2)

)
dp

Integrating gives
ln x(p) = −1

2 ln
(
p2 + 1

)
− 1
a
arcsinh (p)

Therefore
x = c1

−e− 1
a
(arcsinh(p))

√
p2 + 1

(3)

There are now two choices to take. The first is by solving for p from the above in terms
of x and substituting the result in (1) to obtain explicit solution for y(x), and the second
choice is by solving for p algebraically from (1) and substituting the result in (3). The
second choice is easier in this case but gives an implicit solution. Solving for p from (1)
gives

p1 = −1
x

ay +
√
−a2x2 + x2 + y2a− y

a2 − 1

p2 =
1
x

−ay +
√
−a2x2 + x2 + y2a− y

a2 − 1

Substituting each one of these solutions back in (3) gives two implicit solutions

x = c1
−e

− 1
a

(
arcsinh

(
− 1

x

ay+
√

−a2x2+x2+y2a−y

a2−1

))
√(

− 1
x
ay+

√
−a2x2+x2+y2a−y

a2−1

)2
+ 1

x = c1
−e

− 1
a

(
arcsinh

(
1
x

−ay+
√

−a2x2+x2+y2a−y

a2−1

))
√(

1
x
−ay+

√
−a2x2+x2+y2a−y

a2−1

)2
+ 1
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3.5.3.11 Example 11

y = x+ (y′)2
(
1− 2

3y
′
)

= x+ p2
(
1− 2

3p
)

Where f = 1, g = p2
(
1− 2

3p
)
. Since f(p) 6= p then this is d’Almbert ode. Taking derivative

w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− 1 =
(
2p− 2p2

) dp
dx

(2A)

The singular solution is when dp
dx

= 0 which results in p = 1. Substituting this in (1) gives

y = x−
(
1− 2

3

)
= x+ 1

3

The general solution is when dp
dx

6= 0. Then (2A) is now separable. Solving for p gives

p = −
√
c1 − x

p =
√
c1 − x

Substituting each one of the above solutions of p in (1) gives

y1 = x+
(
p2 − 2

3p
3
)

= x+
((

−
√
c1 − x

)2 − 2
3
(
−
√
c1 − x

)3)
= x+

(
c1 − x+ 2

3(c1 − x)
3
2

)
= c1 +

2
3(c1 − x)

3
2

And

y2 = x+
(
p2 − 2

3p
3
)

= x+
((√

c1 − x
)2 − 2

3
(√

c1 − x
)3)

= x+
(
c1 − x− 2

3(c1 − x)
3
2

)
= c1 −

2
3(c1 − x)

3
2

Therefore the solutions are

y = x+ 1
3

y = c1 +
2
3(c1 − x)

3
2

y = c1 −
2
3(c1 − x)

3
2
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3.5.3.12 Example 12

(y′)2 = e4x−2y(y′ − 1)
ln (y′)2 = (4x− 2y) + ln (y′ − 1)
4x− 2y = ln (y′)2 − ln (y′ − 1)

4x− 2y = ln (y′)2

y′ − 1

2y = 4x− ln (y′)2

y′ − 1

y = 2x− 1
2 ln

(
(y′)2

y′ − 1

)

= 2x− 1
2 ln

(
p2

p− 1

)
= xf + g

Where f = 2, g = −1
2 ln

(
p2

p−1

)
. Since f(p) 6= p then this is d’Almbert ode. Taking

derivative w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + (xf ′ + g′) dp

dx

p− f = (xf ′ + g′) dp
dx

Using values for f, g the above simplifies to

p− 2 =
(

2− p

2p2 − 2p

)
dp

dx
(2A)

The singular solution is when dp
dx

= 0 which gives p = 2. From (1) this gives

y = 2x− 1
2 ln 4

The general solution is when dp
dx

6= 0. Then (2) becomes

dp

dx
= (p− 2)

(
2p2 − 2p
2− p

)
= 2p(1− p)

is now separable. Solving for p gives

p = 1
1 + ce−2x

Substituting the above solutions of p in (1) gives

y = 2x− 1
2 ln

( ( 1
1+ce−2x

)2
1

1+ce−2x − 1

)

= 2x− 1
2 ln

(
−e4x

c (c+ e2x)

)
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3.5.3.13 Example 13

y = xy′ + x(y′)2 − (y′)2

y′ + 1

= xp+ xp2 − p2

p+ 1

= xp− p2

p+ 1 (1)

= xf + g

Where f = p and g = − p2

p+1 . Since f(p) = p then this is Clairaut ode. Taking derivative
of the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = xc1 −
c21

c1 + 1

The term (x+ g′(p)) = 0 is used to find singular solutions.

x+ g′(p) = x+ d

dp

1
p

= x− 1
p2

Hence x− 1
p2

= 0 or p = ± 1√
x
. Substituting these back in (1) gives

y1(x) = xp+ 1
p

= x
1√
x
+
√
x

= 2
√
x (3)

y2(x) = −x
√

1
x
−

√
x

= −2
√
x (4)

Eq. (2) is the general solution and (3,4) are the singular solutions.

3.5.3.14 Example 14

x(y′)2 + (x− y) y′ + 1− y = 0
x(y′)2 + xy′ − yy′ + 1− y = 0

y(−y′ − 1) + x(y′)2 + xy′ + 1 = 0
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Solving for y

y = −x(y′)2 − xy′ − 1
−y′ − 1

= −xp2 − xp− 1
−p− 1

= xp2 + xp+ 1
p+ 1

= x

(
p2 + p

p+ 1

)
+ 1

1 + p

= xp+ 1
1 + p

= xf + g (1)

Where f = p and g = 1
1+p

. Since f(p) = p then this is Clairaut ode. Taking derivative of
the above w.r.t. x gives

p = d

dx
(xp+ g(p))

p = p+ (x+ g′(p)) dp
dx

0 = (x+ g′(p)) dp
dx

The general solution is given by
dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution

y = c1x+
1

c1 + 1 (4)

The term (x+ g′(p)) = 0 is used to find singular solutions. But

x+ g′(p) = x+ d

dp

(
1

1 + p

)
= x− 1

(p+ 1)2

Hence

x− 1
(p+ 1)2

= 0

x(p+ 1)2 − 1 = 0

(p+ 1)2 = 1
x

p+ 1 = ± 1√
x

p = ± 1√
x
− 1

Substituting these values into (1) gives

y1 = xp1 +
1

1 + p1

= x

(
1√
x
− 1
)
+ 1

1 +
(

1√
x
− 1
)

= x√
x
− x+

√
x

= x
√
x

x
− x+

√
x

= 2
√
x− x (5)
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And substituting p2 into (1) gives

y1 = xp1 +
1

1 + p1

= x

(
− 1√

x
− 1
)
+ 1

1 +
(
− 1√

x
− 1
)

= − x√
x
− x−

√
x

= −x
√
x

x
− x−

√
x

= −2
√
x− x (6)

There are 3 solutions given in (4,5,6). One is general and two are singular.

3.5.3.15 Example 15

xyy′ = y2 + x
√

4x2 + y2

Solving for y gives

y=RootOf
(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)
x

y = xf + g

Where f = RootOf (_z4 − 4 + (p2 − 1)_z2 − 2_z3p) and g = 0. Since f(p) 6= p then this
is d’Almbert ode. Taking derivative of the above w.r.t. x gives

p =
(
f + xf ′ dp

dx

)
+
(
g′
dp

dx

)
p = f + xf ′ dp

dx

p− f = xf ′ dp

dx

Using values for f the above simplifies to

p−RootOf
(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)
=
(
x
d

dp
RootOf

(
_z4 − 4 +

(
p2 − 1

)
_z2 − 2_z3p

)) dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in p = RootOf (_z4 − 4 + (p2 − 1)_z2 − 2_z3p).
Substituting this in (1) does not generate any real solutions (only 2 complex ones) hence
will not be used.

The general solution is found by finding p from (2A). Since (2A) is not linear in p, then
inversion is needed. Writing (2A) as

dx

dp
= xf

p− f
1
x
dx = f

p− f
dp

Due to complexity of result, one now needs to obtain explicit result for RootOf which
makes the computation very complicated. So this is not practical to solve by hand. Will
stop here. It is much easier to solve this ode as a homogeneous ode instead which gives
the solution as

−
√
4x2 + y2

x
+ ln (x) = c1
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3.5.3.16 Example 16

ln (cos y′) + y′ tan y′ = y

Solving for y gives

y = ln (cos p) + p tan p (1)
y = xf + g

= g (1A)

Where f = 0 and g(p) = ln (cos p) + p tan p. Important note: This ode has f = 0 which is
strictly speaking is not of the form y = xf(p) + g(p). But Maple says this is dAlembert.
This is why it is included. I should make special case dAlmbert classification to handle
this special case.

Taking derivative of (1A) w.r.t. x gives

p = dg

dp

dp

dx

p =
(
− sin p
cos p + tan p+ p

(
1 + tan2 p

)) dp

dx

p =
(
− tan p+ tan p+ p

(
1 + tan2 p

)) dp
dx

p = p
(
1 + tan2 p

) dp
dx

1 =
(
1 + tan2 p

) dp
dx

(3.1)

The singular solution is found by setting dp
dx

= 0 which does not result in solution.

The general solution is found by finding p from (2). Since (2) is not linear in p, then
inversion is needed. Writing (1) as

dx

dp
= 1 + tan2 p

dx =
(
1 + tan2 p

)
dp

Integrating gives

x = tan p+ c

p = arctan (x− c)

Substituting the above in (1) gives the solution

y = ln (cos p) + p tan p
= ln (cos (arctan (x− c))) + (arctan (x− c)) tan (arctan (x− c))
= ln (cos (arctan (x− c))) + (x− c) arctan (x− c)

This ode also have solution y = 0.

3.5.3.17 Example 17

x(y′)2 − 2yy′ + 4x = 0

Solving for y gives

y = x

(
1
2y

′ + 2 1
y′

)
(1)

= x

(
1
2p+ 21

p

)
y = xf
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where f = 1
2p + 21

p
, g = 0. Since f(p) 6= p then this is d’Almbert ode. Taking derivative

and simplifying gives

p =
(
f + xf ′ dp

dx

)
p− f = xf ′ dp

dx

Using values for f, g the above simplifies to

p− 1
2p− 21

p
= x

(
1
2 − 2

p2

)
dp

dx

1
2p−

2
p
= x

(
1
2 − 2

p2

)
dp

dx
(2A)

The singular solution is found by setting dp
dx

= 0 which results in 1
2p−

2
p
= 0 or 1

2p
2− 2 = 0

or p2 = 4 or p = ±2. Hence y = ±2x are the singular solutions.

The general solution is when dp
dx

6= 0 in (2A). Since (2A) is nonlinear, inversion is needed.
General solution can be shown to be

y = −1
2

(
−x

2

c21
− 4
)
c1 (3)

Will now show a more general method to find singular solution that works for any first
order ode. This requires finding the general solution above first. Let the general solution
be

Φ(x, y, c) = 0

= y + 1
2

(
−x

2

c21
− 4
)
c1

The ode is

F (x, y, y′) = 0
= x(y′)2 − 2yy′ + 4x

First we find the p-discriminant curve. This is found by eliminating y′ from

F = 0
∂F

∂y′
= 0

Or

x(y′)2 − 2yy′ + 4x = 0
2xy′ − 2y = 0

Second equation gives y′ = y
x
. Substituting into first equation gives x

(
y
x

)2−2y
(
y
x

)
+4x = 0

or y2

x
− 2y2

x
+ 4x = 0 or y = ±2x. These are the candidate singular solutions

ys = ±2x

Next, we verify these satisfy the ode itself. We see both do. Next we have to check that
for an arbitrary point x0 the following two equations are satisfied

yg(x0) = ys(x0)
y′g(x0) = y′s(x0)
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Where yg(x) is the general solution obtained above in (3). Starting with ys = 2x the above
two equations now become

−1
2

(
−x

2
0
c21

− 4
)
c1 = 2x0

−1
2

(
−2x0
c21

)
c1 = 2

Or

x20
2c1

+ 2c1 = 2x0
x0
c1

= 2

Second equation gives c1 = x0
2 . Using this in first equation gives

x20
2x0

2
+ 2
(x0
2

)
= 2x0

x0 + x0 = 2x0
2x0 = 2x0

Which shows it is satisfied. Hence this shows that ys = 2x is indeed a singular solution.
Now we have to do the same for second ys = −2x. Hence the steps of this method are the
following

1. Find ys using p-discriminant method by eliminating y′ from F = 0 and ∂F
∂y′

= 0.

2. Verify that each ys found satisfies the ode.

3. Find general solution to the ode yg(x).

4. Verify that the two equations yg(x0) = ys(x0) and y′g(x0) = y′s(x0) are satisfied at
an arbitrary point x0. If so, then ys is singular solution. (envelope of the family of
curves of the general solution).

3.5.3.18 Example 18

x− yy′ = a(y′)2

Solving for y gives

−yp = −x+ ap2

−y = −x
p
+ ap

y = x

p
− ap (1)

y = xf(p) + g(p)

Where f = 1
p
, g = −ap. Since f(p) 6= p then this is d’Almbert ode. Taking derivative and

simplifying gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

But f(p) = 1
p
, f ′(p) = −1

p2
, g′(p) = −a and the above becomes

p = 1
p
− x

p2
dp

dx
− a

dp

dx

p− 1
p
=
(
− x

p2
− a

)
dp

dx
(2)
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The singular solution is found by setting dp
dx

= 0 which results in p = ±1. Hence y′ = ±1
or y = ±x but these do not satisfy the ode, hence no singular solutions exist.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
=

p− 1
p

− x
p2

− a

= p− p3

ap2 + x

But this is non-linear. Hence inversion is needed. This becomes

dx

dp
= −x(p)− ap2

p3 − p

Which is now linear in x(p). The solution is

x =
−pa

√
(p− 1) (p+ 1) ln

(
p+

√
p2 − 1

)
(p− 1) (p+ 1) + pc1√

p− 1
√
p+ 1

(3)

From (1) y = x
p
− ap, hence

p1 =
1
2
−y +

√
4ax+ y2

a

p2 = −1
2
y +

√
4ax+ y2

a

Plugging p1 into (3) gives one solution and Plugging p2 into (3) gives the second solution.

3.5.3.19 Example 19

y = xf(p) + g(p)

This problem is meant to show what to do when we are unable to solve explicitly for x(p)
when doing inversion. Taking derivative the above becomes

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

p− f(p) = (xf ′(p) + g′(p)) dp
dx

dp

dx
= p− f(p)

(xf ′ (p) + g′ (p))

Inversion is needed. Hence gives

dx(p)
dp

= (x(p) f ′(p) + g′(p))
p− f (p)

dx

dp
= xf ′

p− f
+ g′

p− f

This is now linear in x.
dx

dp
− xf ′

p− f
= g′

p− f

Integrating factor is µ = e
∫ f ′(p)

p−f
dp. Hence the above becomes

d

dp
(xµ) = µ

g′

p− f

xµ =
∫
µ

g′

p− f
dp+ c1

x = 1
µ

∫
µ

g′

p− f
dp+ c1µ (1)
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Now we solve for p from y = xf(p)+g(p) and plug-in the result into the above. To show how
this work, lets apply the earlier problem to the above which was to solve x− yy′ = a(y′)2.
From that problem we found that

p1 =
1
2
−y +

√
4ax+ y2

a

p2 = −1
2
y +

√
4ax+ y2

a

And we had f = 1
p
, g = −ap. Using these value we now find

µ = e
∫ f ′(p)

p−f
dp

= e

∫ − 1
p2

p− 1
p
dp

= p√
p2 − 1

Hence

x =
√
p2 − 1
p

∫
p√

p2 − 1
−a
p− 1

p

dp+ c1
p√

p2 − 1

= −a
√
p2 − 1
p

∫
p2

(p2 − 1)
3
2
dp+ c1

p√
p2 − 1

= −a
√
p2 − 1
p

(
− p√

p2 − 1
+ ln

(
p+

√
p2 − 1

))
+ c1

p√
p2 − 1

= a− a
√
p2 − 1
p

ln
(
p+

√
p2 − 1

)
+ c1

p√
p2 − 1

Substituting each one of the above value for p in (2) gives the two solutions. For example,
using p1 = 1

2
−y+

√
4ax+y2

a
gives

x = a−
a

√(
1
2
−y+

√
4ax+y2

a

)2
− 1

1
2
−y+

√
4ax+y2

a

ln

1
2
−y +

√
4ax+ y2

a
+

√(
1
2
−y +

√
4ax+ y2

a

)2

− 1

+c1
1
2
−y+

√
4ax+y2

a√(
1
2
−y+

√
4ax+y2

a

)2
− 1

And same for the other p2.

In the above example it was possible to evaluate the integrals in p, then replace p by its
solution from the original ode. What if this was not possible? Let say we have integral∫

ap2dp

And for some reason we are not able to the integration. In this case we first replace the
above with ∫ p

aτ 2dτ

And only now replace p with its solution as the upper limit.

3.5.3.20 Example 20

y′ = −x2 − 1 + 1
2
√
x2 + 4x+ 4y

Solving for y gives

y = xp+
(
1 + 2p+ p2

)
(1)

y = xf + g
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Hence f = p, g = (1 + 2p+ p2). Since f = p then this is Clairaut. Taking derivative of
the above w.r.t. x gives

y′ = f + x
df

dp

dp

dx
+ dg

dp

dp

dx

p = f + dp

dx

(
x
df

dp
+ dg

dp

)
But df

dp
= 1, dg

dp
= 2 + 2p. The above becomes

p− f = dp

dx
(x+ 2 + 2p)

But f = p. The above simplifies to

0 = dp

dx
(x+ 2 + 2p) (2)

The general solution is when dp
dx

= 0. Hence p = c1. Substituting this into (1) gives

y = xc1 +
(
1 + 2c1 + c21

)
The singular solution is when dp

dx
6= 0 in (2) which gives

x+ 2 + 2p = 0

p = −x− 2
2

Substituting this in (1) gives

y = x

(
−x− 2

2

)
+
(
1 + 2

(
−x− 2

2

)
+
(
−x− 2

2

)2
)

= −1
4x(x+ 4)

= −1
4x

2 − x

Checking this solution against the ode shows it is verifies the ode. Hence there are two
solutions, one general and one singular

y =
{
xc1 + 1 + 2c1 + c21

−1
4x

2 − x

3.5.3.21 Example 21

y′y

1 + 1
2

√
1 + (y′)2

= −x

Let y′ = p and rearranging gives

py = −x
(
1 + 1

2
√

1 + p2
)

y = −x
(
1
p
+ 1

2p
√
1 + p2

)
= −x

(
2
2p + 1

2p
√
1 + p2

)
= −x

(
2 +

√
1 + p2

2p

)
= xf + g (1)
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Hence

f = −2 +
√
1 + p2

2p
g = 0

Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

But f(p) = −2+
√

1+p2

2p , f ′(p) = −1
p2
, g = 0, g′ = 0 and the above becomes

p = −2 +
√
1 + p2

2p + x

(
− 1
2
√
1 + p2

− −2−
√
1 + p2

2p2

)
dp

dx

p+ 2 +
√
1 + p2

2p = x

(
− 1
2
√
1 + p2

− −2−
√
1 + p2

2p2

)
dp

dx
(2)

The singular solution is found by setting dp
dx

= 0 which results in p+ 2+
√

1+p2

2p = 0. Hence
p = ±i or y′ = ±i or y = ±ix. But these do not satisfy the ode, hence no singular
solutions exist.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
= 1
x

(
p+ 2+

√
1+p2

2p

)
(
− 1

2
√

1+p2
− −2−

√
1+p2

2p2

)
= 1
x

(
p3 + p

)
But this is non-linear in p. Hence inversion is needed. This becomes

dx

dp
= x

(
− 1

2
√

1+p2
− −2−

√
1+p2

2p2

)
(
p+ 2+

√
1+p2

2p

)
dx

dp
= x

p3 + p
dx

dp
− 1
p+ p3

x = 0

Which is now linear in x(p). The solution is

x = p√
1 + p2

c1 (3)

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

y = −x
(
2 +

√
1 + p2

2p

)
(1)

x = p√
1 + p2

c1 (3)

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). Using CAS we can just use the solve
command. For an example, using Maple it gives� �
eq1:=y=-x*( (2+sqrt(1+p^2))/(2*p));
eq2:=x=p/sqrt(1+p^2)*_C1
sol:=solve([eq1,eq2],[p,y],'allsolutions');
[[p = x*RootOf((c__1^2 - x^2)*_Z^2 - 1), y = -(RootOf((c__1^2 - x^2)*_Z^2 - 1)*c__1 + 2)/(2*RootOf((c__1^2 - x^2)*_Z^2 - 1))]]� �
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Now we can use allvalues� �
map(X->allvalues(X),sol)
[[p = x*sqrt(1/(c__1^2 - x^2)), y = -(sqrt(1/(c__1^2 - x^2))*c__1 + 2)/(2*sqrt(1/(c__1^2 - x^2)))],
[p = -x*sqrt(1/(c__1^2 - x^2)), y = (-sqrt(1/(c__1^2 - x^2))*c__1 + 2)/(2*sqrt(1/(c__1^2 - x^2)))]]� �
Hence the solutions are

y1 = −

√
1

c21−x2 c1 + 2

2
√

1
c21−x2

y2 = −
−
√

1
c21−x2 c1 + 2

2
√

1
c21−x2

These are verified valid solutions to the ode (had to use assuming positive)

3.5.3.22 Example 22

x(y′)3 = yy′ + 1

Let y′ = p and rearranging gives

xp3 = yp+ 1

y = xp3 − 1
p

= xp2 − 1
p

= xf + g (1)

Hence

f = p2

g = −1
p

Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

= f(p) + (xf ′ + g′) dp
dx

But f(p) = p2, f ′(p) = 2p, g = −1
p
, g′ = 1

p2
and the above becomes

p = p2 +
(
2xp+ 1

p2

)
dp

dx

p− p2 =
(
2xp+ 1

p2

)
dp

dx
(2)

The singular solution is found by setting dp
dx

= 0 which results in p − p2 = 0. Hence
p = 0 or p = 1. Substituting p = 0 in (1) gives 1/0 error. Hence this is not valid solution.
Substituting p = 1 in (1) gives y = x−1 which verifies the ode. Hence this is valid singular
solution.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
= p3(1− p)

2xp3 + 1
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But this is non-linear in p. Hence inversion is needed. This becomes

dx

dp
= 2xp3 + 1
p3 (1− p)

Which is now linear in x(p). The solution is

x = 2c1p2 + 2p− 1
2p2 (p− 1)2

(3)

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

y = xp2 − 1
p

(1)

x = 2c1p2 + 2p− 1
2p2 (p− 1)2

(3)

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). Using CAS we can just use the solve
command. For an example, using Maple it gives� �
eq1:=y=x*p^2-1/p;
eq2:=x= (2*_C1*p^2+2*p-1)/(2*p^2*(p-1)^2);
solve({eq1,eq2},{y,p})� �
Whch gives� �
{p = RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z),
y = (x*RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)^3 - 1)/RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)}� �
Hence the general solution is

y = xRootOf (1 + 2xZ4 − 4xZ3 + (−2c1 + 2x)Z2 − 2Z)3 − 1
RootOf (1 + 2xZ4 − 4xZ3 + (−2c1 + 2x)Z2 − 2Z)

And the singular solution is

y = x− 1

3.5.3.23 Example 23

(y′)2 − 2yy′ = 2x

Let y′ = p and rearranging gives

p2 − 2yp = 2x

y = p2 − 2x
2p

= −x1
p
+ 1

2p

= xf + g (1)

Hence

f = −1
p

g = 1
2p
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Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (1) w.r.t. x gives

p = d

dx
(xf(p) + g(p))

= f(p) + xf ′(p) dp
dx

+ g′(p) dp
dx

= f(p) + (xf ′ + g′) dp
dx

But f(p) = −1
p
, f ′(p) = 1

p2
, g = 1

2p, g
′ = 1

2 and the above becomes

p = −1
p
+
(
x

p2
+ 1

2

)
dp

dx

p+ 1
p
=
(
x

p2
+ 1

2

)
dp

dx
(2)

The singular solution is found by setting dp
dx

= 0 which results in p2 +1 = 0. Hence p = ±i
But these do not verify the ode. Hence no singular solutions exist.

The general solution is when dp
dx

6= 0 in (2). This gives the ode

dp

dx
= (p2 + 1) 2p

2x+ p2

But this is non-linear in p. Hence inversion is needed. This becomes

dx

dp
= 2x+ p2

(p2 + 1) 2p

Which is now linear in x(p). The solution is

x =
(1
2 arcsinh (p) + c1

)
p

√
p2 − 1

(3)

We now need to eliminate p. We have two equations to do that, (1) and (3). Here they
are side by side

y = −x1
p
+ 1

2p (1)

x =
(1
2 arcsinh (p) + c1

)
p

√
p2 − 1

(3)

We can either solve for p from (1) and plugin in the value found into (3). Or we can solve
for p from (3) and plugin the value found in (1). In this case it is easier to solve for p from
(1) which gives

p1 = y +
√

2x+ y2

p2 = y −
√

2x+ y2

Substituting each of these into (3) gives these two general solutions

x =
(1
2 arcsinh

(
y +

√
2x+ y2

)
+ c1

) (
y +

√
2x+ y2

)√(
y +

√
2x+ y2

)2 − 1

x =
(1
2 arcsinh

(
y −

√
2x+ y2

)
+ c1

) (
y −

√
2x+ y2

)√(
y −

√
2x+ y2

)2 − 1
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3.5.3.24 Example 24

xy′ − y =
√
x2 − y2

Let y′ = p and rearranging gives

xp− y =
√
x2 − y2

Solving for y gives two solutions

y = x

(
p

2 + 1
2
√
2− p2

)
(1)

y = x

(
p

2 − 1
2
√
2− p2

)
We will here solve the first one above. The second one will have similar solution. Comparing
the above to y = xf(p) + g(p) shows that

f = p

2 + 1
2
√

2− p2 (2)

g = 0

Since f(p) 6= p then this is d’Almbert ode. Taking derivative of (2) w.r.t. x gives

p = d

dx
(xf(p))

= f(p) + xf ′(p) dp
dx

=
(
p

2 + 1
2
√

2− p2
)
+ x

(
1
2 − p

2
√
2− p2

)
dp

dx

p−
(
p

2 + 1
2
√

2− p2
)

= x

(
1
2 − p

2
√
2− p2

)
dp

dx
(3)

Singular solution is when dp
dx

= 0 which results in

p−
(
p

2 + 1
2
√

2− p2
)

= 0

p

2 − 1
2
√

2− p2 = 0

Hence p = 1. Substituting this in (2) gives singular solution

y = x

(
1
2 + 1

2
√
2− 1

)
= x

To find general solution, we need to solve (3) for p. EQ (3) becomes
dp

dx
=

p
2 −

1
2
√
2− p2

x
2 −

xp

2
√

2−p2

= −1
x

√
2− p2

This is separable ode.
−dp√
2− p2

= 1
x
dx

− arcsin
(√

2
2 p

)
= ln x+ c1

Substituting this into (1) gives

y = x

(
p

2 + 1
2
√

2− p2
)

= x

− 2√
2 sin (ln x+ c1)

2 + 1
2

√
2−

(
− 2√

2
sin (ln x+ c1)

)2


= x

(
− sin (ln x+ c1)√

2
+ 1

2

√
2− 2 sin2 (ln x+ c1)

)
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3.5.3.25 Extra example

This ode is an example where y does not appear explicitly in the ode so not possible to
directly solve for y. It is given here to show possible problems with this method.

y′ =
√
1 + x+ y (1A)

This ode is squared to first solve for y which gives

(y′)2 = 1 + x+ y (2A)

However, here care is needed. To get back to original ode (1A) then (2A) means two
possible equations

y′ = ±
√

1 + x+ y

Hence the solutions obtained using (2A) can be the solution to one of these

y′ = +
√

1 + x+ y (B1)
y′ = −

√
1 + x+ y (B2)

Therefore the solution obtained by squaring both sides of (1A), which is done in order to
solve for y, must be checked to see if it satisfies the original ode, else it will be extraneous
solution resulting from squaring both sides of the ode.

Starting from (2A), in normal form (by replacing y′ with p) it becomes

y = −x− 1 + p2 (1)
= xf + g

Where f = −1, g = −1 + p2. Taking derivative w.r.t. x gives

p = f + (xf ′ + g′) dp
dx

p+ 1 = 2pdp
dx

(2)

Since ∂φ
∂x

= −1 6= p then this is d’Alembert ode. The singular solution is found by setting
dp
dx

= 0 which results in p = −1. Substituting this in (1) gives the singular solution

y(x) = −x (3)

But this solution does not satisfy the ode, hence it is extraneous. The general solution is
found by finding p from (2). Since (2) is nonlinear, then it is inverted which gives

p+ 1
2p = dp

dx
dx

dp
= 2p
p+ 1

Which is linear in x. Solving gives

x = 2p− 2 ln (p+ 1) + c1 (4)

Instead of inverting this to find p in terms of x, p is found from (1) which gives

y + x+ 1 = p2

p = ±
√
y + x+ 1

Substituting these solutions in (4) gives implicit solutions as

x = 2
√
y + x+ 1− 2 ln

(
1 +

√
y + x+ 1

)
+ c1

x = −2
√
y + x+ 1− 2 ln

(
1−

√
y + x+ 1

)
+ c1
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But only the first one above satisfies the ode. The second is extraneous. Therefore the
final solution is

x = 2
√
y + x+ 1− 2 ln

(
1 +

√
y + x+ 1

)
+ c1

And no singular solutions exist. If instead of doing the above, p was found from (4) using
inversion, then it will be

p = −LambertW
(
−c1e

−x
2 −1

)
− 1

Substituting this in (1) gives

y = −x− 1 +
(
−LambertW

(
−c1e

−x
2 −1

)
− 1
)2

But this general solution does not satisfy the original ode. In general, it is best to avoid
squaring both side of the ode in order to solve for y as this can generate extraneous
solutions. Only use this method if the original ode is already given in the form where y
shows explicitly.

3.5.4 references
1. An elementary treatise on differential equations. By Abraham Cohen. 1906.

2. Applied differential equations, N Curle. 1972

3. Ordinary differential equations, LB Jones. 1976.

4. Elementary differential equations, William Martin, Eric Reissner. second edition.
1961.

5. Differentialgleichungen, by E. Kamke, page 30.

6. Differential and integral calculus by N. Piskunov, Vol II
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3.5.5 Special case. (y′)
n
m = f(x) g(y)

ode internal name "first_order_nonlinear_p_but_separable"

For the special case of (y′)
n
m = F (x, y) where RHS is separable, i.e. F (x, y) = f(x) g(y)

then short cut method is described below. This only works if F (x, y) is separable and if
there is only one y′ in the equation. For example, it will not work on (y′)

3
2 +y′ = yx and will

not work on (y′)
3
2 = y+ x (see second special case below for the form (y′)

n
m = ax+ by+ c)

If the form is (y′)
n
m = f(x) g(y) then we first write it as (y′)n = (f(x) g(y))m assuming

f(x) g(y) > 0. Then find roots on unity for n. For example of n = 2 this gives

y′ =

 (f(x) g(y))
m
2

−(f(x) g(y))
m
2

And if n = 3 then

y′ =


(f(x) g(y))

m
3

−(−1)
1
3 (f(x) g(y))

m
3

(−1)
2
3 (f(x) g(y))

m
3

And if n = 4 then

y′ =


(f(x) g(y))

m
4

−i(f(x) g(y))
m
4

i(f(x) g(y))
m
4

−(f(x) g(y))
m
4

And so on. For works for positive or negative n,m integers. Now the ode are solved each
as as separable. Examples given below.

3.5.5.1 Example 1

(y′)4 + f(x) (y − a)3 (y − b)3 (y − c)2 = 0
(y′)4 = −f(x) (y − a)3 (y − b)3 (y − c)2

(y′)4

(y − a)3 (y − b)3 (y − c)2
= −f(x) y′(

(y − a)3 (y − b)3 (y − c)2
) 1

4

4

= −f(x)

y′(
(y − a)3 (y − b)3 (y − c)2

) 1
4
= (−f(x))

1
4

y′(
(y − a) (y − b) (y − c)

2
3

) 3
4
= (−f(x))

1
4

dy(
(y − a) (y − b) (y − c)

2
3

) 3
4
= (−f(x))

1
4 dx

∫ y(x) 1(
(z − a) (z − b) (z − c)

2
3

) 3
4
dz =

∫ x

(−f(τ))
1
4 dτ + c1
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3.5.5.2 Example 2

(y′)3 = y sin x
(y′)3

y
= sin x(

y′

y
1
3

)3

= sin x

Hence we have 3 solutions

y′

y
1
3
=


sin 1

3 x

−(−1)
1
3 sin 1

3 x

(−1)
2
3 sin 1

3 x

dy

y
1
3
=


sin 1

3 xdx

−(−1)
1
3 sin 1

3 xdx

(−1)
2
3 sin 1

3 xdx

∫
dy

y
1
3
=


∫
sin 1

3 xdx

−(−1)
1
3
∫
sin 1

3 xdx

(−1)
2
3
∫
sin 1

3 xdx

3
2y

2
3 =


∫
sin 1

3 xdx+ c1

−(−1)
1
3
∫
sin 1

3 xdx+ c1

(−1)
2
3
∫
sin 1

3 xdx+ c1

y
2
3 =


2
3

∫
sin 1

3 xdx+ c1

−2
3(−1)

1
3
∫
sin 1

3 xdx+ c1

2
3(−1)

2
3
∫
sin 1

3 xdx+ c1

y =



(
2
3

∫
sin 1

3 xdx+ c1
) 3

2

(
−2

3(−1)
1
3
∫
sin 1

3 xdx+ c1
) 3

2

(
2
3(−1)

2
3
∫
sin 1

3 xdx+ c1
) 3

2

3.5.5.3 Example 3

(y′)3 = yx

(y′)3

y
= x(

y′

y
1
3

)3

= x
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Hence we have 3 solutions

y′

y
1
3
=


x

1
3

−(−1)
1
3 x

1
3

(−1)
2
3 x

1
3

dy

y
1
3
=


x

1
3dx

−(−1)
1
3 x

1
3xdx

(−1)
2
3 x

1
3xdx

∫
dy

y
1
3
=


∫
x

1
3dx

−(−1)
1
3
∫
x

1
3dx

(−1)
2
3
∫
x

1
3dx

3
2y

2
3 =


3
4x

4
3 + c1

−(−1)
1
3

(
3
4x

4
3

)
+ c1

(−1)
2
3

(
3
4x

4
3

)
+ c1

y
2
3 =


1
2x

4
3 + c1

−(−1)
1
3

(
1
2x

4
3

)
+ c1

(−1)
2
3

(
1
2x

4
3

)
+ c1

y =



(
1
2x

4
3 + c1

) 3
2

(
−(−1)

1
3

(
1
2x

4
3

)
+ c1

) 3
2

(
(−1)

2
3

(
1
2x

4
3

)
+ c1

) 3
2

3.5.5.4 Example 4

(y′)
1
3 = yx
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For this form, we write y′ = (yx)3 but this is always with the assumption that yx > 0.

y′ = (yx)3

y′ = y3x3

dy

y3
= x3dx

− 1
2y2 = 1

4x
4 + c1

2y2 = −1
1
4x

4 + c1

y2 = 1
−1

2x
4 + c2

y =


√

1
− 1

2x
4+c2

−
√

1
− 1

2x
4+c2

=


√

2
−x4+c3

−
√

2
−x4+c3

=


√
2√

−x4+c3

−
√
2√

−x4+c3

3.5.5.5 Example 5

(y′)2 = 1− y2

1− x2

(y′)2

1− y2
= 1

1− x2(
y′

(1− y2)
1
2

)2

= 1
1− x2

Hence we have 2 solutions

y′√
(1− y2)

=


√

1
1−x2

−
√

1
1−x2

∫
dy√

(1− y2)
=


∫ √ 1

1−x2dx

−
∫ √ 1

1−x2dx

=


∫ 1√

1−x2dx

−
∫ 1√

1−x2dx
− 1 < x < 1

arcsin (y) =
{

arcsin (x) + c

− arcsin (x) + c
− 1 < x < 1

y =
{

sin (arcsin (x) + c)
− sin (arcsin (x) + c)

− 1 < x < 1
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3.5.5.6 Algorithm description to obtain the above solutions

Starting with
(y′)

n
m = f(x) g(y)

Find the solution z of equation
z

n
m = fg

This will obtain number of solutions. For example for n = 3,m = 1

z1 = (fg)
1
3

z2 = −1
2(fg)

1
3 + 1

2i
√
3(fg)

1
3

z3 = −1
2(fg)

1
3 − 1

2i
√
3(fg)

1
3

Now if we assume that f > 0, g > 0 then we can separate the f, g giving

z1 = f
1
3 g

1
3

z2 = −1
2f

1
3 g

1
3 + 1

2i
√
3f 1

3 g
1
3

z3 = −1
2f

1
3 g

1
3 − 1

2i
√
3f 1

3 g
1
3

or

z1 = f
1
3 g

1
3

z2 = g
1
3

(
−1
2f

1
3 + 1

2i
√
3f 1

3

)
z3 = g

1
3

(
−1
2f

1
3 − 1

2i
√
3f 1

3

)
This means

y′ = f
1
3 g

1
3

y′ = g
1
3

(
−1
2f

1
3 + 1

2i
√
3f 1

3

)
y′ = g

1
3

(
−1
2f

1
3 − 1

2i
√
3f 1

3

)
Which gives ∫

dy

g (y)
1
3
=
∫
f(x)

1
3 dx+ c1∫

dy

g (y)
1
3
=
∫ (

−1
2f

1
3 + 1

2i
√
3f 1

3

)
dx+ c1∫

dy

g (y)
1
3
=
∫ (

−1
2f

1
3 − 1

2i
√
3f 1

3

)
dx+ c1

There is no need to evaluate the integrals unless needed. Without the assumption f, g > 0
we could not separate them. Since (fg)

n
m = f

n
m g

n
m is true under this condition when n

m
is

rational number. If n
m

is an integer, then this condition is not needed and we can always
factor out f, g and separate them.

The assumption f, g > 0 might be too strict to use but without this assumption this
method can not be used.
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3.5.6 Special case. (y′)
n
m = ax+ by + c

ode internal name "first_order_nonlinear_p_but_linear_in_x_y"

For the special case of (y′)
n
m = F (x, y) where RHS is linear in both x and y, i.e. F (x, y) =

ax+by+c then a short cut method is described below using transformation u = ax+by+c.
This makes it separable in u. This will not work if there is nonlinear x term, such as
(y′)

n
m = by + x2 or nonlinear term in y such as (y′)

n
m = y2 + x.

Taking derivatives gives u′ = a+ by′ or y′ = u′−a
b

and the ode becomes(
u′ − a

b

) n
m

= u(
u′ − a

b

)n

= um

Here we need to find roots of unity for n. For example, for n = 2 we have

u′ − a

b
=

 (u)
m
2

−(u)
m
2

And for n = 3

u′ − a

b
=


(u)

m
3

−(−1)
1
3 (u)

m
3

(−1)
2
3 (u)

m
3

And so on. From now on, this is solved as separable. For negative integer values n, we just
replaced n by −n in the above. For example, for n = 3

u′ − a

b
=


(u)

m
−3

−(−1)
1
3 (u)

m
−3

(−1)
2
3 (u)

m
−3

For symbolic values of n we can just leave the integral as is. For example for (y′)r = ax+by
we obtain (

u′ − a

b

)r

= u

u′ − a

b
= u

1
r

u′ = bu
1
r + a∫

du

bu
1
r + a

=
∫
dx+ c1∫ ax+by(x) dz

bz
1
r + a

= x+ c1

3.5.6.1 Example 1

(y′)3 = 2y + 3x+ 9
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Let u = 2y + 3x+ 9 then u′ = 2y′ + 3 then y′ = u′−3
2 and the ode becomes(

u′ − 3
2

)3

= u

u′ − 3
2 =


(u)

1
3

−(−1)
1
3 (u)

1
3

(−1)
2
3 (u)

1
3

u′ − 3 =


2(u)

1
3

−2(−1)
1
3 (u)

1
3

2(−1)
2
3 (u)

1
3

u′ =


2(u)

1
3 + 3

−2(−1)
1
3 (u)

1
3 + 3

2(−1)
2
3 (u)

1
3 + 3

Each is now solved as separable.

u′ = 2(u)
1
3 + 3

du

2 (u)
1
3 + 3

= dx∫
du

2 (u)
1
3 + 3

=
∫
dx∫

du

2 (u)
1
3 + 3

= x+ c1

Hence ∫ 2y(x)+3x+9 dz

2z 1
3 + 3

= x+ c1

For the second one u′ = −2(−1)
1
3 (u)

1
3 + 3 results in

du

−2 (−1)
1
3 (u)

1
3 + 3

= dx∫
du

−2 (−1)
1
3 (u)

1
3 + 3

=
∫
dx∫ 2y(x)+3x+9 dz

−2 (−1)
1
3 (z)

1
3 + 3

= x+ c1

And for the third ode u′ = 2(−1)
2
3 (u)

1
3 + 3

du

2 (−1)
2
3 (u)

1
3 + 3

= dx∫
du

2 (−1)
2
3 (u)

1
3 + 3

=
∫
dx∫ 2y(x)+3x+9 dz

2 (−1)
2
3 (z)

1
3 + 3

= x+ c1

Hence the three solutions are

∫ 2y(x)+3x+9 dz

2z
1
3+3

= x+ c1∫ 2y(x)+3x+9 dz

−2(−1)
1
3 (z)

1
3+3

= x+ c1∫ 2y(x)+3x+9 dz

2(−1)
2
3 (z)

1
3+3

= x+ c1
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3.5.6.2 Example 2

(y′)
3
2 = 2y + 3x+ 9

Let u = 2y + 3x+ 9 then u′ = 2y′ + 3 then y′ = u′−3
2 and the ode becomes(

u′ − 3
2

) 3
2

= u((
u′ − 3

2

) 1
2
)3

= u

Let
(
u′−3
2

) 1
2 = Y then

Y 3 = u

Y =


u

1
3

u
1
3

(
−1

2 +
i
√
3

2

) 1
3

u
1
3

(
−1

2 −
i
√
3

2

) 1
3

Hence

(
u′ − 3

2

) 1
2

=


u

1
3

u
1
3

(
−1

2 +
i
√
3

2

) 1
3

u
1
3

(
−1

2 −
i
√
3

2

) 1
3

(
u′ − 3

2

)
=


u

2
3

u
2
3

(
−1

2 +
i
√
3

2

) 2
3

u
2
3

(
−1

2 −
i
√
3

2

) 2
3

u′ =


2u 2

3 + 3

2u 2
3

(
−1

2 +
i
√
3

2

) 2
3 + 3

2u 2
3

(
−1

2 −
i
√
3

2

) 2
3 + 3

Each is solved as separable. 

∫
du

2u
2
3+3

=
∫
dx∫

du

2u
2
3
(
− 1

2+
i
√
3

2

) 2
3+3

=
∫
dx

∫
du

2u
2
3
(
− 1

2−
i
√
3

2

) 2
3+3

=
∫
dx

Hence the three solutions are

∫ 2y(x)+3x+9 dz

2z
2
3+3

= x+ c1∫ 2y(x)+3x+9 dz

2z
2
3
(
− 1

2+
i
√
3

2

) 2
3+3

= x+ c1

∫ 2y(x)+3x+9 dz

2z
2
3
(
− 1

2−
i
√
3

2

) 2
3+3

= x+ c1
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3.5.6.3 Algorithm description to obtain the above solutions

Starting with
(y′)

n
m = ax+ by + c

Find the solution z of equation
z

n
m = u

Where u now is a symbol. Lets say we found s1, s2, · · · solutions (depending on what n,m
are). Then for each solution si change it to be

si = bsi + a

Then write ∫
du

si
= x+ c1

Then replace each with letter u in each si by new letter say z (the integration variable).
Now the solution becomes ∫ ax+by+c dz

si
= x+ c1

This is basically what was done in the above examples. There is no need to find an explicit
solution for the integral. But this can be done if needed afterwords.

3.6 System of first order ode’s
3.6.1 Linear system of first order ode’s . . . . . . . . . . . . . . . . . . . . . . . . 238
3.6.2 nonlinear system of first order ode’s . . . . . . . . . . . . . . . . . . . . . . 243

3.6.1 Linear system of first order ode’s
Currently the solver only supports first order system of odes, that are linear and not time
varying.

ode internal name "system of linear ODEs"

System of linear first order ode’s.

x′ = Ax+ F (x)

Solved using both eigenvalues and eigenvectors method and also the matrix exponential
method. Only linear ode’s are supported. The following flow chart show the algorithm for
two system of ode’s.



chapter 3. first order ode F (x, y, y′) = 0 239

Figure 3.15: Flow chart for system of ode solver

These diagrams show the handling of repeated eigenvalues when a defective system is
encountered.

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 3.16: repeated eigenvalue of order 2
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 3.17: repeated eigenvalue of order 3
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λ
eigenvectors

v⃗1

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 4

case 1

case 2

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλtv⃗3

x⃗4 = eλtv⃗4

The solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

The Four possible cases for repeated eigenvalue of multiplicity 4

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

A− λI

zero vector
v⃗1 A− λI

v⃗2

v⃗4
rank 2 vector

In this case, we need to solve for v⃗4 from linear combination of v⃗1, v⃗2, v⃗3.

(A− λ)v⃗4 = a1v⃗1 + a2v⃗2 + a3v⃗3

Where ai are any scalars not all zero.

u⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3

A− λI

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλtv⃗3

x⃗4 = eλt (u⃗ t+ v⃗4)

Where u⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3 and ai are
constants to find that are not all zero.

(A− λI) v⃗4 = u⃗

Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

✓

normal
eigenvector

v⃗2 v⃗4v⃗3

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ✓

normal
eigenvector

normal
eigenvector

✓

normal
eigenvector

?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

v⃗3
A− λI

(A− λI)2

case 3

Incomplete eigenvalue.
defect is 2

A− λI

zero vector
v⃗1 A− λI

v⃗2

v⃗3
rank 2

First solve for v⃗3, v⃗4 from

(A− λI)v⃗3 = v⃗1

(A− λI)v⃗4 = v⃗4

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλt (v⃗1 t+ v⃗3)

x⃗4 = eλt (v⃗2 t+ v⃗4)

Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ✓

normal
eigenvector

normal
eigenvector

? ?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

Generalized
eigenvector

v⃗4
rank 2 A− λI

case 4

Incomplete eigenvalue.
defect is 3

A− λI

zero vector
v⃗1

v⃗2
rank 2 A− λI

x⃗1 = eλtv⃗1

x⃗2 = eλt (v⃗1 t+ v⃗2)

x⃗3 = eλt
(
v⃗1

t2

2
+ v⃗2 t+ v⃗3

)

x⃗4 = eλt
(
v⃗1

t3

6
+ v⃗2

t2

2
+ v⃗3 t+ v⃗4

)
Where v⃗2 is found by solving (A− λI)v⃗2 =
v⃗1. And v⃗3 is found by solving (A−λI)v⃗3 =
v⃗2. And v⃗4 is found by solving (A−λI)v⃗4 =
v⃗3.
Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ?

normal
eigenvector

? ?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

Generalized
eigenvector

v⃗3
rank 3 A− λI

Generalized
eigenvector

rank 1
v⃗4

rank 3 A− λI

A− λI

Figure 3.18: repeated eigenvalue of order 4

3.6.1.1 Examples

3.6.1.1.1 Example 1

x′(t) + y′(t) = x+ y + t (1)
x′(t) + y′(t) = 2x+ 3y + et (2)

Hence

x+ y + t = 2x+ 3y + et

y = −1
2x+

1
2t−

1
2e

t (3)

Taking derivative w.r.t. t gives
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y′ = −x
′

2 + 1
2 − 1

2e
t (4)

Substituting (3,4) in (1) to eliminate y, y′ gives

x′ +
(
−x

′

2 − 1
2e

t + 1
2

)
= x+

(
−x2 − 1

2e
t + 1

2t
)
+ t

x′ = 3t+ x− 1 (5)

This is linear ode. Its solution is

x = c1e
t − 3t− 2 (6)

Substituting this in (3) gives

y = −1
2
(
c1e

t − 3t− 2
)
+ 1

2t−
1
2e

t

= 2t− 1
2e

t − 1
2c1e

t + 1

3.6.1.1.2 Example 2

x′(t) + y′(t) = x+ y + t (1)
2x′(t) + y′(t) = 2x+ 3y + et (2)

Let x′ = A, y′ = B then

A+B = x+ y + t (1)
2A+B = 2x+ 3y + et (2)

From (1), B = x+ y + t− A. Substituting in (2) gives

2A+ (x+ y + t− A) = 2x+ 3y + et

A = x− t+ 2y + et (3)

Now we plugin the above in (1) which gives

(
x− t+ 2y + et

)
+B = x+ y + t

B = 2t− y − et (4)

Hence we have the following two linear ode’s of standard form now. These are (3,4)

x′ = x− t+ 2y + et

y′ = 2t− y − et

And now these can be solved using standard methods.
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3.6.1.1.3 Example 3

x′(t) + y′(t) = x+ 2y + 2et (1)
x′(t) + y′(t) = 3x+ 4y + e2t (2)

Hence

x+ 2y + 2et = 3x+ 4y + e2t

y = −x− 1
2e

2t + et (3)

Taking derivative w.r.t. t gives

y′ = −x′ − e2t + et (4)

Substituting (3,4) in (1) to eliminate y, y′ gives

x′ +
(
−x′ − e2t + et

)
= x+ 2

(
−x− 1

2e
2t + et

)
+ 2et

x′ − x′ − e2t + et = x− 2x− e2t + 2et + 2et

0 = −x+ 3et

x = 3et (5)

Substituting this in (3) gives

y = −3et − 1
2e

2t + et

= −2et − 1
2e

2t

Hence the solution is

x = 3et

y = −2et − 1
2e

2t

3.6.2 nonlinear system of first order ode’s
Not currently supported.
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4.1 Flow charts

Figure 4.1: Flow chart for some of the supported ode types
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4.2 Existence and uniqueness for second order ode
There are two theorems. One for linear second order ode and one for non-linear second
order ode.

4.2.1 Existence and uniqueness for linear second order ode
Given linear second order ode

y′′ + p(x) y′ + q(x) y = f(x)

With initial conditions at x0

y(x0) = y0

y′(x0) = y′0

If p(x) , q(x) , f(x) are all continuous at x0 then theorem guarantees that a solution exist
and is unique on some interval than includes x0. If this was not the case, (i.e. if any of
p, q, f are not continuous at x0) then the theorem does not apply. This means a solution
could still exists and even be unique, but theory does not say anything about this.

4.2.1.1 Example

xy′′ + y′ + 3y = sin (x)
y(0) = 0
y′(0) = 1

In standard form
y′′ + 1

x
y′ + 3

x
y = 1

x
sin x

We see that p(x) = 1
x
is not continuous at x0 = 0. Hence theorem does not apply. It turns

out that there is no solution to this ode with these initial conditions. Changing x0 to 1
instead of zero, solution exists and is unique.

4.2.1.2 Example

y′′ + 1
x− 1y

′ + 3y = x

y(1) = 0
y′(1) = 1

In standard form
y′′ + py′ + qy = f

p(x) = 1
x−1 is not continuous at x0 = 1. Hence theorem does not apply. It turns out that

there is no solution to this ode with these initial conditions. Changing x0 to 0 instead
then a solution exists and is unique.
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4.2.2 Existence and uniqueness for non-linear second order ode
Now the ode is written in the form

y′′ = f(x, y, y′)
y(x0) = y0

y′(x0) = y′0

Then if f is continuous at (x0, y0, y′0) and fy is also continuous at (x0, y0, y′0) and also fy′
is also continuous at (x0, y0, y′0) then there is unique solution on interval that contains x0.

4.2.2.1 Example

y′′ = 2yy′

y(0) = 1
y′(0) = 2

Hence f(x, y, y′) = 2yy′. At x = 0 then f = 4 which is continuous. And fy = 2y′ which
at x0 becomes 4. This is also continuous. And fy′ = 2y which at x0 becomes 4 which is
also continuous. Hence solution exists and is unique on interval that contains x = 0. The
solution can be found as follows

Let y′ = p(y) then y′′ = dp
dx

= dp
dy

dy
dx

= dp
dy
p. The ode becomes

dp

dy
p = 2yp

dp

dy
= 2y

But at x = 0 we have y(0) = 1 and y′(0) = p(y(0)) = p(1) = 2. This is the initial condition
used for solving the above quadrature ode. Integrating the above gives

p = y2 + c1

Applying IC p(1) = 2 gives

2 = 1 + c1

c1 = 1

Hence p = y2 + 1. But y′ = p or y′ = y2 + 1. This is separable with initial conditions
y(0) = 1. Integrating gives ∫

dy

y2 + 1 =
∫
dx

arctan (y) = x+ c2

Applying IC
arctan (1) = c2

So c2 = π
4 . Hence the solution becomes

arctan (y) = x+ π

4
y(x) = tan

(
x+ π

4

)
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4.2.2.2 Example

y′′ + y = 1
x

y(0) = 1
y′(0) = 2

Here f(x) = 1
x
is not continuous at x = 0. Therefore theory does not apply. It turns out

that no solution exists for this ode.
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4.3 Linear second order ode
4.3.1 Linear ode with constant coefficients Ay′′ +By′ + Cy = f(x) . . . . . . . . 251
4.3.2 Linear ode with non-constant coefficients A(x) y′′ +B(x) y′ + C(x) y = f(x) 259
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4.3.1 Linear ode with constant coefficients Ay′′ +By′ +Cy = f(x)

4.3.1.1 Quadrature ode y′′ = f(x)

ode internal name "second order ode quadrature"

Solved by integration twice. y′ =
∫
fdx+ c1 and y =

∫ (∫
fdx

)
dx+ c1x+ c2

4.3.1.2 Solved by finding roots of characteristic equation

ode internal name "second order linear constant coeff"

These are solved by finding roots of characteristic equation. This is the standard method.
Homogeneous and inhomogeneous. The method of Variation of parameters and the method
of undetermined coefficients are both used to find the particular solution. If hint "laplace"
is given, then the ODE is solved using Laplace transform method. If hint "series" is given
then series method is used.

4.3.1.2.1 Example 1 (Variation of parameters)

4y′′ − y = e
x
2 + 6

Solution is y = yh + yp. The roots of the characteristic equation are ±1
2 ,. hence yh is

yh = c1e
1
2x + c2e

− 1
2x

The basis for yh are y1 = e
1
2x, y2 = e−

1
2x. Let

yp = y1u1 + y2u2

Where

u1 = −
∫
y2f(x)
aW

dx

u2 =
∫
y1f(x)
aW

dx

Where a = 4, f(x) = e
x
2 + 6 and

W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣∣ e

1
2x e−

1
2x

1
2e

1
2x −1

2e
− 1

2x

∣∣∣∣∣∣ = −1
2 − 1

2 = −1

Hence

u1 = −
∫
e−

1
2x
(
e

x
2 + 6

)
−4 dx = 1

4x− 3e− 1
2x

u2 =
∫
e

1
2x
(
e

x
2 + 6

)
−4 dx = −1

4e
1
2x
(
e

1
2x + 12

)
Hence

yp = y1u1 + y2u2

= e
1
2x

(
1
4x− 3e− 1

2x

)
+ e−

1
2x

(
−1
4e

1
2x
(
e

1
2x + 12

))
= 1

4xe
1
2x − 1

4e
1
2x − 6

Therefore

y = yh + yp

= c1e
1
2x + c2e

− 1
2x + 1

4xe
1
2x − 1

4e
1
2x − 6

Or by combining terms into new constant, the above becomes

y = c3e
1
2x + c2e

− 1
2x + 1

4xe
1
2x − 6
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4.3.1.3 Solved using Laplace transform

ode internal name "second order laplace"

These are solved using Laplace transform. These are only solved using this method if
’hint’="laplace" is given.

4.3.1.3.1 Example 1

y′′ + 2y′ + y = 0
y(1) = 2
y′(0) = 2

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + Y = 0(

s2Y − sy(0)− 2
)
+ (2sY − 2y(0)) + Y = 0

Since not all initial conditions are at zero, and we need to have them at zero to use Laplace,
then one way is to let y(0) = y0 as unknown (we could also have used y(0) = c1). Find
the solution, then solve for y0 using the initial condition y(1) = 2. This shows how it is
done. The above becomes

(
s2Y − sy0 − 2

)
+ (2sY − 2y0) + Y = 0

Y
(
s2 + 2s+ 1

)
− sy0 − 2− 2y0 = 0

Y = sy0 + 2 + 2y0
s2 + 2s+ 1

Applying inverse Laplace transform gives

y(t) = (y0 + 2t+ y0t) e−t (1)

But y(1) = 2 hence

2 = (y0 + 2 + y0) e−1

2e = 2y0 + 2
y0 = e− 1

Therefore (1) becomes

y(t) = (e− 1 + 2t+ (e− 1) t) e−t

= e−t(−1 + e+ t+ et)

4.3.1.3.2 Example 2

y′′ − 2y′ − 3y = 0
y(4) = −3
y′(4) = −17

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
− 2(sY − y(0))− 3Y = 0

Since given initial conditions are not at t = 0, then let y(0) = c1, y
′(0) = c2 and the above

becomes (
s2Y − sc1 − c2

)
− 2(sY − c1)− 3Y = 0

Y
(
s2 − 2s− 3

)
− sc1 − c2 + 2c1 = 0

Y = sc1 + c2 − 2c1
s2 − 2s− 3
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Taking inverse Laplace gives

y(t) = 1
4e

−t
(
c2
(
e4t − 1

)
+ c1

(
3 + e4t

))
(1)

Hence
y′(t) = 1

4e
−t(4c1e−4t + 4c2e4t)−

1
4e

−t(c2(−1 + e4t) + c1(3 + e4t)) (2)

At t = 4 then (1,2) become

−3 = 1
4e

−4(c2(e16 − 1
)
+ c1

(
3 + e16

))
−17 = 1

4e
−4(4c1e−16 + 4c2e16)−

1
4e

−4(c2(−1 + e16) + c1(3 + e16))

Solving the above for c1, c2 gives

c1 =
−5 + 2e16

e12

c2 =
−15− 2e16

e12

Hence the solution (1) becomes

y(t) = 1
4e

−t

(
−15− 2e16

e12
(
e4t − 1

)
+ −5 + 2e16

e12
(
3 + e4t

))
= −e3t

(
5e−12 − 2e4e−4t)

= −5e3t−12 + 2e4−t

4.3.1.3.3 Example 3

y′′ + 2y′ + 5y = 50t− 100
y(2) = −4
y′(2) = 14

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + 5Y = 50

s2
− 100

s

Since given initial conditions are not at t = 0, then let y(0) = c1, y
′(0) = c2 and the above

becomes (
s2Y − sc1 − c2

)
+ 2(sY − c1) + 5Y = 50

s2
− 100

s

Y
(
s2 + 2s+ 5

)
− sc1 − c2 − 2c1 =

50
s2

− 100
s

Y =
sc1 + c2 + 2c1 + 50

s2
− 100

s

s2 + 2s+ 5

Taking inverse Laplace gives

y(t) = −24 + 10t+ (24 + c1) e−t cos (2t) + (14 + c1 + c2) e−t cos t sin t (1)

Hence
y′(t) = e−t

(
10et + (c2 − 10) cos (2t)− (110 + 5c1 + c2) cos t sin t

)
(2)

At t = 2 then (1,2) become

−4 = −24 + 20 + (24 + c1) e−2 cos (4) + (14 + c1 + c2) e−2 cos 2 sin 2
14 = e−2(10e2 + (c2 − 10) cos (4)− (110 + 5c1 + c2) cos 2 sin 2

)



chapter 4. second order ode F (x, y, y′, y′′) = 0 254

Solving the above for c1, c2 gives

c1 = −2
(
12 + e2 sin 4

)
c2 = 2

(
5 + e2(2 cos 4 + sin 4)

)
Hence the solution (1) becomes

y(t) = −24+10t+
(
24− 2

(
12 + e2 sin 4

))
e−t cos (2t)+

(
14− 2

(
12 + e2 sin 4

)
+ 2
(
5 + e2(2 cos 4 + sin 4)

))
e−t cos t sin t

Which simplifies to
y(t) = −24 + 10t− 2e2−t sin (4− 2t)

4.3.1.3.4 Example 4

y′′ + 2y′ + 10y = δ(t)
y(0) = 0
y′(0) = 0

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + 10Y = 1

Since given initial conditions then the above becomes

s2Y + 2sY + 10Y = 1

Y = 1
s2 + 2s+ 10

= 1
(s+ 2) (s+ 5)

Taking inverse Laplace transform gives

y = 1
6ie

(−1−3i)t − 1
6ie

(−1+3i)t

= 1
6ie

−te−3it − 1
6ie

−te3it

= 1
6ie

−t
(
e−3it − e3it

)
= 1

6ie
−t(cos 3t− i sin 3t− (cos 3t+ i sin 3t))

= 1
6ie

−t(−i sin 3t− i sin 3t)

= 1
6ie

−t(−2i sin 3t)

= 1
3e

−t sin 3t

Which is the same as
y =

(
1
3e

−t sin (3t)
)
U(t)

Where U(t) is Heaviside function which is one for t > 0. Note that it seems one should
not give IC at same point of application of δ(t) as in this problem. So this problem might
be ill posed. Need to look more into this.
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4.3.1.3.5 Example 5

y′′ + 2y′ + y = 0
y′(0) = 2

This problem shows what to do when one IC is missing. Basically, if an IC is missing, it
is just kept unknown. Taking Laplace transform gives(

s2Y − sy(0)− y′(0)
)
+ 2(sY − y(0)) + Y = 0(

s2Y − sy(0)− 2
)
+ (2sY − 2y(0)) + Y = 0

Since not all initial conditions are given, then we let the missing IC be some unknown. In
this case y(0) = c1. And continue as before. The above becomes

(
s2Y − sc1 − 2

)
+ (2sY − 2c1) + Y = 0

Y
(
s2 + 2s+ 1

)
− sc1 − 2− 2c1 = 0

Y = sc1 + 2 + 2c1
s2 + 2s+ 1

Applying inverse Laplace transform gives

y(t) = (c1 + 2t+ c1t) e−t (1)

We can if we want, now replace c1 = y(0) to make it more clear what the c1 represents.

y(t) = (y(0) + 2t+ y(0) t) e−t (2)

4.3.1.3.6 Example 6

y′′ + 2y′ + y = 0
y(0) = 0

Taking Laplace transform gives(
s2Y − sy(0)− y′(0)

)
+ 2(sY − y(0)) + Y = 0(

s2Y − y′(0)
)
+ 2sY + Y = 0

Since one IC is missing, then let y′(0) = c2. The above becomes

(
s2Y − c2

)
+ 2sY + Y = 0

Y
(
s2 + 2s+ 1

)
− c2 = 0

Y = c2
s2 + 2s+ 1

Applying inverse Laplace transform gives

y(t) = c2te
−t (1)

We can if we want, now replace c2 = y′(0) to make it more clear what the c2 represents.

y(t) = y′(0) te−t (2)
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4.3.1.3.7 Example 7 This example is for higher order ode, showing how to easily
handle IC if at zero or not or if some missing or not, all using same process. Given

y′′′ + y′′ + y′ + y = 0 (1)

And lets say the IC’s given are

y(1) = a

y′′(0) = b

The idea is to always use c0, c1, c2 for y(0) , y′(0) , y′′(0) and then at the very end solve for
these from the given initial conditions. We will get two equations (since we only have 2
IC) and 3 unknowns. So some of the c0, c1, c2 will remain in the solution as unknowns
which is OK. Applying Laplace transform on (1) gives

s3Y − y′′(0)− sy′(0)− s2y(0) + s2Y − y′(0)− sy(0) + sY − y(0) + Y = 0

We now replace y′′(0) = c2, y
′(0) = c1, y(0) = c0 and simplify the above which becomes

Y
(
s3 + s2 + s+ 1

)
− c2 − sc1 − s2c0 − c1 − sc0 − c0 = 0

Y
(
s3 + s2 + s+ 1

)
− s2c0 − s(c1 + c0)− c2 − c1 − c0 = 0

Y = c2 + c1 + c0 + s(c1 + c0) + s2c0
s3 + s2 + s+ 1

Taking inverse Laplace gives the solution as

y(t) = 1
2(c0 − c2) cos (t) +

1
2e

−t(c0 + c2) +
1
2 sin (t) (c0 + 2c1 + c2) (2)

Now we only need to solve for the constants using the given initial conditions. This results
in these two equations (since we have 2 IC only). Using y(1) = a gives

a = 1
2(c0 − c2) cos (1) +

1
2e

−1(c0 + c2) +
1
2 sin (1) (c0 + 2c1 + c2) (3)

Taking derivatives twice of (2) and using y′′(0) = b gives the second equation

y′′(t) = 1
2e

−t(c0 + c2) +
1
2(−c0 − 2c1 − c2) sin (t)−

1
2(c0 − c2) cos (t)

Using y′′(0) = b the above gives

b = 1
2(c0 + c2)−

1
2(c0 − c2)

= c2 (4)

Now we need to solve (3,4) for c0, c1, c2. From (4) we see that c2 = b. Substituting this
into (3) gives

a = 1
2(c0 − b) cos (1) + 1

2e
−1(c0 + b) + 1

2 sin (1) (c0 + 2c1 + b) (5)

We can now choose the free parameter as c0, hence

c1 = − 1
2 sin (1)

(
cos (1) + e−1 + sin (1)

)
c0 +

1
2 sin (1)

(
b cos (1)− be−1 − b sin (1) + 2a

)
We are done. The solution (2) is now found by replacing c2, c1 into it. c0 remains are the
only unknown. This method works for any combination of IC given even if some at zero
or not.
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4.3.1.3.8 Example 8 (non-constant coefficient)

tx′′(t) + x′ + tx = 0 (1)

Assuming x(0) = 1, x′(0) = 0. In solving ode using Laplace where the coefficient in time
varying, we will be using the relation

L(tnf(t)) = (−1)n F (n)(s) (2)

Where F (s) is the laplace transform of f(t). For example, if the input is tx(t) the Laplace
tranaform is −X ′(s) = −dX(s)

ds
and if the input is t2x(t) then the Laplace transform is

d2X(s)
s2

and so on. This will generate an ODE in X(s) which we have to solve for X(s).
Applying this to (1) gives

L(x′′) = s2X(s)− sx(0)− x′(0)
L(x′) = sX(s)− x(0)
L(x) = X(s)

Hence using (2) on the above, then Laplace transform of (1) becomes

− d

ds

(
s2X(s)− sx(0)− x′(0)

)
+ (sX(s)− x(0))− d

ds
X(s) = 0

Substituting initial conditions gives

− d

ds

(
s2X(s)− s

)
+ (sX(s)− 1)− d

ds
X(s) = 0

−
(
2sX + s2X ′ − 1

)
+ sX − 1−X ′(s) = 0

X ′(−s2 − 1
)
+X(−2s+ s) = 0(

s2 + 1
)
X ′ + sX = 0

This differential equation is now solved for X(s) which gives

X(s) = c1√
s2 + 1

The inverse Laplace transform is

x(t) = c1 BesselJ0 (t)

Since x(0) = 1 then
1 = c1 BesselJ0 (0)

But BesselJ0 (0) = 1, hence c1 = 1 and the solution is

x(t) = BesselJ0 (t)

4.3.1.4 Solved using series method

4.3.1.4.1 Ordinary point using Taylor series method ode internal name "sec-
ond_order_taylor_series_method_ordinary_point"

This is the same as section below under non-constant coefficient.
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4.3.1.4.2 Ordinary point using power series method ode internal name "sec-
ond_order_power_series_method_ordinary_point"

This is the same as section below under non-constant coefficient.
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4.3.2.1 Collection of special transformations

These are special transformation that do not fit in any other type.

1. For ode of form (1− x2) y′′ − xy′ + y = 0 use x = sin z. This tranforms the ode to
y′′(z) + y(z) = 0.

2. For ode of form y′′ + 2x
1+x2y

′ + 1
(1+x2)2y = 0 use transformation x = tan z this

transforms the ode to y′′(z) + y(z) = 0 as well.

3. For ode of form (1 + y2) y′′ − (2y − 1) (y′)2 + 3x(1 + y2) y′ = 0 use transformation
y(x) = tan (z(x)) which gives z′′(x) + (z′(x))2 + 3xz′(x) = 0.

4. For ode of form y′′(x)− x
1−x2y

′+ y
1−x2 = 0 use x = cos (z) which gives y′′(z)+y(z) = 0

Reference: Short course on differential equations. By Donald Francis Campbell. Maxmillan
company. London. 1907.

4.3.2.2 Euler ode x2y′′ + xy′ + y = f(x)

ode internal name "second order euler ode"

Solved by substitution y = xr and solving for r. Solution will be y = c1x
r1 + c2x

r2 where
r1, r2 are the roots of the characteristic equation. For repeated root, the second solution is
multiplied by extra ln (x) and not extra x as is the case with standard constant coefficient
ode. The particular solution is found in the same way using variation of parameters. Can
not use undetermined coefficient method since this is not constant coefficients ode. The
basis functions here are xr1 , xr2 if not repeated roots, else the basis are xr1 , ln (x)xr2 .

Initial conditions for Euler ode can not be at x = 0. For ode of the form

(x− a)2 y′′ + (x− a) y′ + y = f(x)

This is still Euler ode. We start by substitution X = x− a which gives

X2y′′ +Xy′ + y = f(X + a)

This is now solved using y = Xr as before. When we obtain the solution y(X) then every
X is replaced back by x− a to obtain the final solution. Below are two examples.

4.3.2.2.1 Example 1 x2y′′ + xy′ + y = x We always start by solving yh from

x2y′′ + xy′ + y = 0

Let y = xr then y′ = rxr−1, y′′ = r(r − 1)xr−2 and the above becomes

x2r(r − 1)xr−2 + xrxr−1 + xr = 0
r(r − 1)xr + rxr + xr = 0

r(r − 1) + r + 1 = 0

The roots are i,−i. Hence the two basis solutions are y1 = xi, y2 = x−i. The solution is

yh = c1x
i + c2x

−i

= c1e
lnxi + c2e

lnx−i

= c1e
i lnx + c2e

−i lnx

= c1 cos (ln x) + c2 sin (ln x)

Hence the solution is
y = yh + yp

yp is found from variation of parameters.

yp = u1y1 + u2y2
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Where

u1 = −
∫
y2f(x)
aW

dx

u2 =
∫
y1f(x)
aW

dx

Where f = x in this case, since this is the forcing function in the rhs of the original ode
and W is the wronskian

W =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣cos (ln (x)) sin (ln x)
− sin(ln(x))

x
cos(ln(x))

x

∣∣∣∣∣ = 1
x
cos (ln x)2 + 1

x
sin (ln x)2

= 1
x

And a = x2 which is the coefficient of the y′′ term in the original ode. Hence u1, u2 become

u1 = −
∫
x sin (ln x)
x2
( 1
x

) dx = −
∫

sin (ln x) dx = −1
2x(− cos (ln x) + sin (ln x)) = 1

2x cos (ln x)−
1
2x sin (ln x)

u2 =
∫
x cos (ln (x))

x2
( 1
x

) dx =
∫

cos (ln (x)) dx = 1
2x(cos (ln x) + sin (ln x)) = 1

2x cos (ln x) +
1
2x sin (ln x)

Hence

yp = u1y1 + u2y2

=
(
1
2x cos (ln x)−

1
2x sin (ln x)

)
cos (ln (x)) +

(
1
2x cos (ln x) +

1
2x sin (ln x)

)
sin (ln x)

= 1
2x
(
cos (ln x)2 − sin (ln x) cos (ln x) + cos (ln x) sin (ln x) + sin (ln x)2

)
= 1

2x

Therefore the solution is

y = yh + yp

= 1
2x+ c1 cos (ln x) + c2 sin (ln x)

4.3.2.2.2 Example 2 (x− 2)2 y′′ + (x− 2) y′ + y = x This examples shows how to
solve the Euler ode when coefficients have constant shift as in this example. This method
only work when the shift is the same on both coefficients of y′′ and y′. We start by assuming
X = x− 2 or x = X + 2. The ode becomes

X2y′′ +Xy′ + y = X + 2

In the above, y is now a function of X and not x. We always start by solving yh from

X2y′′ +Xy′ + y = 0

As we did in the above example, the solution is

yh(X) = c1 cos (lnX) + c2 sin (lnX)

Now we find the particular solution where now f(X) = X + 2 and not x. Hence the
solution is

y = yh + yp

yp is found from variation of parameters as before.

yp = u1y1 + u2y2
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Where

u1 = −
∫
y2f(X)
aW

dX

u2 =
∫
y1f(X)
aW

dX

Where f = X + 2 in this case, since this is the forcing function in the rhs of the original
ode and W is the wronskian which is 1

X
as was found in the first example. Hence u1, u2

become

u1 = −
∫ (X + 2) sin (lnX)

X2
( 1
X

) dX = −
∫ (X + 2) sin (lnX)

X
dX = 2 cos (lnX) + 1

2X cos (lnX)− 1
2X sin (lnX)

u2 =
∫ (X + 2) cos (ln (x))

X2
( 1
X

) dX =
∫ (X + 2) cos (ln (x))

X
dX = 2 sin (lnX) + 1

2X cos (lnX) + 1
2X sin (lnX)

Hence

yp = u1y1 + u2y2

=
(
2 cos (lnX) + 1

2X cos (lnX)− 1
2X sin (lnX)

)
cos (ln (X)) +

(
2 sin (lnX) + 1

2X cos (lnX) + 1
2X sin (lnX)

)
sin (lnX)

= 2 cos2 (lnX) + 1
2X cos2 (lnX)− 1

2X sin (lnX) cos (ln (X)) + 2 sin2 (lnX) + 1
2X cos (lnX) sin (lnX) + 1

2X sin2 (lnX)

= 2 + 1
2X

Therefore the solution is

y(X) = yh + yp

= 2 + 1
2X + c1 cos (lnX) + c2 sin (lnX)

The solution to the original ode is now found by replacing X = x− 2 which gives

y(x) = 2 + 1
2(x− 2) + c1 cos (ln (x− 2)) + c2 sin (ln (x− 2))

= 1 + 1
2x+ c1 cos (ln (x− 2)) + c2 sin (ln (x− 2))

4.3.2.3 Kovacic type

ode internal name "kovacic"

These are ode that are solvable using Kovacic algorithm. See my paper on arxiv on this
with algorithm description.

4.3.2.4 Method of conversion to first order Riccati

ode internal name This is currently not implemented.

Given linear second order ode A(x) y′′+B(x) y′+C(x) y = 0 then using the transformation
v(x) = −y′

y
converts the second order ode to a first order Riccati

v′ = −yy′′ + (y′)2

y2

=
−y
(
−B

A
y′ − C

A
y
)
+ (y′)2

y2

=
B
A
yy′ + C

A
y2 + (y′)2

y2

= B

A

y′

y
+ C

A
+ (y′)2

y2

= C

A
+ B

A
v + v2
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Which is Riccati of the form v′ = f0(x) + f1(x) v + f2v
2. where f0 = C

A
, f1 = B

A
, f2 = 1.

Lets say we can now find the solution to this Riccati v(x) (see section earlier on Riccati for
algorithm). Then the solution to the second order ode is found from y′ = −yv by solving
this first order ode. The solution is

y = e−
∫
v(x)dx + c2

Notice there is also a second constant of integration inside v(x). This method of course
works only if we can solve the generated Riccati ode which does not have a general method
for solving and only for specific cases it can be solved. So this will be tried as last resort.

We want to look for reduced Riccati generated from the above, which is v′ = f0 + f2v
2.

Which means f1 = 0 or B = 0 in the hope of solving the Riccati. This means ode of the
form A(x) y′′ +C(x) y = 0 will have hope of solving using this Riccati conversion method.
See Riccati section why that is.

4.3.2.5 Airy ode y′′ ± kxy = 0 or y′′ + by′ ± kxy = 0

ode internal name "second order airy"

Sometimes this is written as y′′ ± k2xy = 0. But it is the same ode. The power on k is
not important. So in this below will show for generic kn.

This table gives the patterns to use for solving Airy ode. This result uses this general form
of Airy ode

Ay′′ ±By′ ± kn(ax+ b) y = 0

Hence in this table, if y′ is missing, we just replace B = 0. This all assumes k,A,B, a, c
do not depends on x. The solution to the above is given by

y = c1e

(
∓Bx
2A

)
AiryAi

−

(
A(ax+ b) kn − B2

4

) (±kna
A

) 1
3

aAkn

+c2e
(

∓Bx
2A

)
AiryBi

−

(
A(ax+ b) kn − B2

4

) (±kna
A

) 1
3

aAkn


The only thing we need to watch for, is the sign on B and on kn. If the sign is negative in
the ode, then we use e

(
Bx
2A

)
and if the sign is positive on B then we use e

(
−Bx

2A

)
. For kn,

the leading sign do not change in the solution. Below are some examples

ODE Values solution

y′′ − knxy = 0 A = 1, B = 0, a = 1, b = 0 y = c1AiryAi
(
−(−kn)

1
3 x
)
+ c2AiryBi

(
−(−kn)

1
3 x
)

y′′ + knxy = 0 A = 1, B = 0, a = 1, b = 0 y = c1AiryAi
(
−(kn)

1
3 x
)
+ c2AiryBi

(
−(kn)

1
3 x
)

y′′ − k2(x+ 3) y = 0 A = 1, B = 0, a = 1, b = 3 y = c1AiryAi
(
−(−k2)

1
3 (x+ 1)

)
+ c2AiryBi

(
−(−k2)

1
3 (x+ 1)

)
5y′′ + 2y′ − k4(3x+ 4) y = 0 A = 5, B = 2, a = 3, b = 4 c1e

(−x
5
)
AiryAi

−
(
5(3x+4)k4−1

)(−k4(3)
5

) 1
3

15k4

+ c2e
(−2x

10
)
AiryBi

−
(
5(3x+4)k4−1

)(−k4(3)
5

) 1
3

15k4


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4.3.2.6 Solved using series method

function solve_second_order_ode_series(y′′ = f(x, y, y′))
if f(x, y, y′) analytic at expansion point x0 then

This means x0 is an ordinary point. Apply Taylor series defintion directly to find
the series expansion. Let y0 = y(x0), y′(x0) = y′0 and

y = y0 + y′0 +
∞∑

n=0

xn+2

(n+ 2)! Fn(x, y)
∣∣∣∣x0
y0
y′
0

Where

F0 = f(x, y, y′)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0

return y as the solution
else

if f(x, y, y′) not linear in y(x) or not linear in y′(x) then
return Not supported.

else
if expansion point x0 is not regular singular point then

return Not supported.
else

This is a regular singular point. Determine the roots of the indicial equation. Let
roots be r1, r2.
if Roots r1, r2 are complex (they will conjugate) then

Example is Euler ode x2y′′ + xy + y = 0
Use Frobenius series as is for each basis solution y1, y2 where

y1 =
∞∑

n=0
anx

n+r1

y2 =
∞∑

n=0
bnx

n+r2

Where an, bn above are found from the recurrence relation using each ri root.
else if Roots r1, r2 differ by non-integer then . Ex. 2x2y′′ + 3xy − xy = 0

Use Frobenius series as is for each basis solution y1, y2 as above case.
else if Roots r1, r2 are repeated. This means one root r, a double root then

An example ode is x2y′′ + xy′ + xy = 0
y1 is found use Frobenius series as above. For y2 a modification is needed. Let
y2 = y1 ln(x) +

∑∞
n=1 bnx

n+r where bn = d
dran(r) after finding an(r) evaluated at

the root.
else if Roots r1, r2 differ by an integer then

if Both roots r1, r2 are good then . Ex. (x− x2)y′′ + 3y′ + 3y = 0
Called the lucky case. This means the recurrence equation and all an are defined
for all n for both r1, r2. In this case both solutions y1, y2 are found using standard
Frobenius series and no modification is needed.

Figure 4.2: Series method for second order ode algorithm

Ordinary point and regular singular point are supported. irregular singular point support
will be added in the future. Expansion around point other than zero is also supported,
including initial conditions. All three cases of regular point are supported, these are when
the roots on indicial equation are repeated, or differ by an integer, or differ by non integer.
case of Complex roots of indicial equation is also supported. Only second order and first
order series solution is supported. Higher order ode support will be added in the future.
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4.3.2.6.1 Ordinary point using Taylor series method ode internal name "sec-
ond_order_taylor_series_method_ordinary_point"

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to 0
by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the case
for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using Taylor
series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)!
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (4.1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (4.2)

d2f

dx2
= d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3
= d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(
∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)! Fn|x0,y0,y′0
(7)

To find y(x) series solution around x = 0.

4.3.2.6.2 Ordinary point using power series method ode internal name "sec-
ond_order_power_series_method_ordinary_point"

Expansion point is an ordinary point. Using standard power series. For an ordinary point,
and for inhomogeneous. ode, always generate the full solution directly from the summation.
Do not split the problem into yh, yp . To be able to do this, we have to express the RHS
as Taylor series (expand it around the same expansion point). If the RHS is already a
polynomial in x then there is nothing to do as it is already in Taylor series form. Examples
below show how to do this. When the RHS is not zero, do not attempt to find recurrence
relation as the RHS will get in the way, If the RHS is zero, then find recurrence relation.

y′′ = f(x, y, y′)

In this method, we let Let y =
∑∞

n=0 anx
n and replace this in the above ode and solve for

an using recurrence relation. Examples below show how these methods work.
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Example 1 Solved using Taylor series method.

y′′ + xy′ + y = 2x+ x2 + x4

y′′ = −xy′ − y + 2x+ x2 + x4

y′′ = f(x, y, y′)

Hence
y(x) = y0 + xy′0 +

∞∑
n=0

xn+2

(n+ 1)! Fn|x0,y0,y′0

Where

F0 = f(x, y, y′)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0

Hence

F1 =
∂(−xy′ − y + 2x+ x2 + x4)

∂x
+ ∂(−xy′ − y + 2x+ x2 + x4)

∂y
y′ + ∂(−xy′ − y + 2x+ x2 + x4)

∂y′
y′′

=
(
4x3 + 2x− y′ + 2

)
− y′ − xy′′

= 2x− 2y′ − xy′′ + 4x3 + 2

But y′′ = f(x, y, y′), the above becomes

F1 = 2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

And

F2 =
d

dx
(Fn−1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x

(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

)
+

+
(
∂

∂y

(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

))
y′

+
(
∂

∂y′
(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

))
y′′

=
(
y − 4x+ 2xy′ + 9x2 − 5x4 + 2

)
+ xy′ +

(
−2 + x2

)
y′′

= y − 4x− 2y′′ + 3xy′ + x2y′′ + 9x2 − 5x4 + 2

But y′′ = f(x, y, y′), the above becomes

F2 = y − 4x− 2
(
−xy′ − y + 2x+ x2 + x4

)
+ 3xy′ + x2

(
−xy′ − y + 2x+ x2 + x4

)
+ 9x2 − 5x4 + 2

= 3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

And

F3 =
d

dx
(F2)

= ∂

∂x
F2 +

(
∂F2

∂y

)
y′ +

(
∂F2

∂y′

)
y′′

= ∂

∂x

(
3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

)
+
(
∂

∂y

(
3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

))
y′

+
(
∂

∂y′
(
3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2

))
y′′

= 14x+ 5y′ − 3x2y′ − 2xy + 6x2 − 24x3 + 6x5 − 8 +
(
3− x2

)
y′ +

(
5x− x3

)
y′′
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But y′′ = f(x, y, y′), the above becomes

F3 = 14x+ 5y′ − 3x2y′ − 2xy + 6x2 − 24x3 + 6x5 − 8 +
(
3− x2

)
y′ +

(
5x− x3

) (
−xy′ − y + 2x+ x2 + x4

)
= 14x+ 8y′ + x3y − 9x2y′ + x4y′ − 7xy + 16x2 − 19x3 − 2x4 + 10x5 − x7 − 8

And so on. Evaluating each of the above at x = 0, y = y0, y
′ = y′0 gives

F0 =
(
−xy′ − y + 2x+ x2 + x4

)
x=0,y0,y′0

= −y0

F1 =
(
2x− 2y′ + x2y′ + xy − 2x2 + 3x3 − x5 + 2

)
x=0,y0,y′0

= (−2y′0 + 2)

F2 = 3y − 8x+ 5xy′ − x2y − x3y′ + 7x2 + 2x3 − 6x4 + x6 + 2 = 3y0 + 2
F3 = 14x+ 8y′ + x3y − 9x2y′ + x4y′ − 7xy + 16x2 − 19x3 − 2x4 + 10x5 − x7 − 8 = 8y′0 − 8

Hence

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)! Fn|x0,y0,y′0

= y0 + xy′0 +
x2

2 F0 +
x3

6 F1 +
x4

24F2 +
x5

5! F3 + · · ·

= y0 + xy′0 +
x2

2 (−y0) +
x3

6 (−2y′0 + 2) + x4

24(3y0 + 2) + x5

5! (8y
′
0 − 8) + · · ·

= y0

(
1− x2

2 + 1
8x

4 + · · ·
)
+ y′0

(
x− x3

3 + 1
15x

4· · ·
)
+
(
1
3x

3 + 1
12x

4 − 1
15x

4
)

= c1

(
1− x2

2 + 1
8x

4 + · · ·
)
+ c2

(
x− x3

3 + 1
15x

4· · ·
)
+
(
1
3x

3 + 1
12x

4 − 1
15x

4
)

Solved using power series method.

y′′ + xy′ + y = 2x+ x2 + x4

Comparing the homogenous ode to y′′+ p(x) y′+ q(x) y = 0 shows that p(x) = x, q(x) = 1.
These are defined everywhere. Let the expansion point be x0 = 0. This is ordinary
point since p(x) , q(x) are defined at x0. Let y =

∑∞
n=0 anx

n. Hence y′ =
∑∞

n=0 nanx
n−1 =∑∞

n=1 nanx
n−1 and y′′ =

∑∞
n=1 (n) (n− 1) anxn−2 =

∑∞
n=2 (n) (n− 1) anxn−2. The homoge-

nous ode becomes
∞∑
n=2

(n) (n− 1) anxn−2 + x
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 2x+ x2 + x4

∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=1

nanx
n +

∞∑
n=0

anx
n = 2x+ x2 + x4

Adjust all sums to lowest power on x gives
∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=3

(n− 2) an−2x
n−2 +

∞∑
n=2

an−2x
n−2 = 2x+ x2 + x4

n = 2 gives x0 on the LHS with no match on the RHS. Hence

2a2 + a0 = 0

a2 = −1
2a0

n = 3 gives x1 on the LHS with one match on the RHS. Hence

6a3 + 2a1 = 2

a3 =
2− 2a1

6
= 1

3 − 1
3a1
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n = 4 gives x2 on the LHS with one match on the RHS. Hence

12a4 + 3a2 = 1

a4 =
1− 3a2

12

=
1− 3

(
−1

2a0
)

12
= 1

8a0 +
1
12

n = 5 gives x3 on the LHS with no match on the RHS. Hence

20a5 + 4a3 = 0

a5 =
−4a3
20

=
−4
(1
3 −

1
3a1
)

20
= 1

15a1 −
1
15

n = 6 gives x4 on the LHS with one match on the RHS. Hence

30a6 + 5a4 = 1

a6 =
1− 5a4

30

=
1− 5

(1
8a0 +

1
12

)
30

= 7
360 − 1

48a0

And for n ≥ 7 we have recurrence relation

(n) (n− 1) an + (n− 2) an−2 + an−2 = 0

an = − n− 1
n (n− 1)an−2

Hence for n = 7

a7 = − 6
42a5

= − 6
42

(
1
15a1 −

1
15

)
= 1

105 − 1
105a1

For n = 8

a8 = − 7
(8) (7)a6

= − 7
(8) (7)

(
7
360 − 1

48a0
)

= 1
384a0 −

7
2880

And so on. Hence

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= a0 + a1x−
1
2a0x

2 +
(
1
3 − 1

3a1
)
x3 +

(
1
8a0 +

1
12

)
x4 +

(
1
15a1 −

1
15

)
x5 +

(
7
360 − 1

48a0
)
x6 +

(
1
105 − 1

105a1
)
x7 + · · ·

= a0

(
1− 1

2x
2 + 1

8x
4 − 1

48x
6 + · · ·

)
+ a1

(
x− 1

3x
3 + 1

15x
5 − 1

105x
7 − · · ·

)
+
(
1
3x

3 + 1
12x

4 − 1
15x

5 + 7
360x

6 + 1
105x

7 + · · ·
)



chapter 4. second order ode F (x, y, y′, y′′) = 0 270

Which is the same answer given using the Taylor series method. We see that the Taylor
series method is much simpler, but requires using the computer to calculate the derivatives
as they become very complicated as more terms are needed.

Even though the expansion point is ordinary, we can also solve this using Frobenius series
as follows. Comparing the ode y′′ + xy′ + y = 0 to

y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = x, q(x) = 1. Therefore p0 = limx→0 xp(x) = limx→0 x
2 = 0 and q0 =

limx→0 x
2q(x) = limx→0 x

2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) = 0

r = 1, 0

Hence r1 = 1, r2 = 0. All ordinary points will have the same roots. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r = 0

Reindex to lowest powers gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=2

(n+ r − 2) an−2x
n+r−2 +

∞∑
n=2

an−2x
n+r−2 = 0 (1)

For n = 0
r(r − 1) a0xr−2 = 0

The homogenous ode therefore satisfies

y′′ + xy′ + y = r(r − 1) a0xr (2)

For n = 1, Eq (1) gives
(1 + r) (r) a1 = 0

For r = 1 we see that a1 = 0. But for r = 0 then the above gives 0b1 = 0. This means b1
can be any value and we choose b1 = 0 in this case.

For n ≥ 2 we obtain the recurrence relation

(n+ r) (n+ r − 1) an + (n+ r − 2) an−2 + an−2 = 0

an = −(n+ r − 2) an−2 − an−2

(n+ r) (n+ r − 1) = −(n+ r − 1) an−2

(n+ r) (n+ r − 1)
(3)

Now we find y1 which is associated with r = 1. From (3) and for r = 1 it becomes

an = − n

(n+ 1)nan−2 = − 1
n+ 1an−2 (4)
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For n = 2 and using a0 = 1
a2 = −1

3a0 = −1
3

For n = 3
a3 = −1

4a1 = 0

All odd an will be zero. For n = 4

a4 = −1
5a2 = −1

5

(
−1
3

)
= 1

15
And so on. Hence

y1 =
∑

anx
n+r1

= x
∑

anx
n

= x
(
a0 + a1x+ a2x

2 + · · ·
)

= x

(
1− 1

2x
2 + 1

10x
4 − · · ·

)
= x− 1

3x
3 + 1

15x
5 − · · ·

Now we find y2 associated with r = 0. From (3) this becomes (using b instead of a) and
r = 0

bn = −(n+ r − 1) bn−2

(n+ r) (n+ r − 1)

= −(n− 1) bn−2

(n) (n− 1)

= −bn−2

n
(5)

From above, we found that b1 = 0. Now we use (5) to find all bn for n ≥ 2. For n = 2

b2 = −b02 = −1
2

For n = 3
b3 = −b13 = 0

For n = 4
b4 = −b24 = 1

8
And so on. Hence

y2 =
∑

bnx
n+r2

=
∑

bnx
n

=
(
b0 + b1x+ b2x

2 + · · ·
)

=
(
1− 1

2x
2 + 1

8x
4 + · · ·

)
Hence the solution yh is

y = c1y1 + c2y2

= c1

(
x− 1

3x
3 + 1

15x
5 − · · ·

)
+ c2

(
1− 1

2x
2 + 1

8x
4 + · · ·

)
We see this is the same yh obtained using standard power series. This shows that we can
also use Frobenius series to solve for ordinary point. The roots will always be r1 = 1, r2 = 0.
But this requires more work than using standard power series. The main advantage of
using Frobenius series for ordinary point comes in when the RHS has no series expansion
at x = 0. For example, if the RHS in this ode was say

√
x then we must use Frobenius to

be able to solve it as standard power series will fail, since
√
x has no series representation

at x = 0. Examples below shows how to do this.
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Example 2
1
x5
y′′ + y′ + y = 0

Solved using Taylor series method.

y′′ = −x5(y′ + y)
= −x5y − x5y′

y′′ = f(x, y, y′)

Hence
y(x) = y0 + xy′0 +

∞∑
n=0

xn+2

(n+ 1)! Fn|x0,y0,y′0

Where

F0 = f(x, y, y′)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0

Hence

F1 =
∂(−x5y − x5y′)

∂x
+ ∂(−x5y − x5y′)

∂y
y′ + ∂(−x5y − x5y′)

∂y′
y′′

=
(
−5x4y − 5x4y′

)
− x5y′ − x5y′′

But y′′ = f(x, y, y′), the above becomes

F1 =
(
−5x4y − 5x4y′

)
− x5y′ − x5

(
−x5y − x5y′

)
= x10y − 5x4y − 5x4y′ − x5y′ + x10y′

And

F2 =
d

dx
(Fn−1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x

(
x10y − 5x4y − 5x4y′ − x5y′ + x10y′

)
+

+
(
∂

∂y

(
x10y − 5x4y − 5x4y′ − x5y′ + x10y′

))
y′

+
(
∂

∂y′
(
x10y − 5x4y − 5x4y′ − x5y′ + x10y′

))
y′′

=
(
10x9y − 20x3y − 20x3y′ − 5x4y′ + 10x9y′

)
+ x4

(
x6 − 5

)
y′ +

(
−5x4 − x5 + x10

)
y′′

But y′′ = f(x, y, y′), the above becomes

F2 =
(
10x9y − 20x3y − 20x3y′ − 5x4y′ + 10x9y′

)
+ x4

(
x6 − 5

)
y′ +

(
−5x4 − x5 + x10

) (
−x5(y′ + y)

)
= −x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

)
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And

F3 =
d

dx
(F2)

= ∂

∂x
F2 +

(
∂F2

∂y

)
y′ +

(
∂F2

∂y′

)
y′′

= ∂

∂x

(
−x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

))
+
(
∂

∂y

(
−x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

)))
y′

+
(
∂

∂y′
(
−x3

(
20y + 20y′ + 10xy′ − 15x6y − x7y + x12y − 15x6y′ − 2x7y′ + x12y′

)))
y′′

= −5x2
(
12y + 12y′ + 8xy′ − 27x6y − 2x7y + 3x12y − 27x6y′ − 4x7y′ + 3x12y′

)
+ x3

(
−x12 + x7 + 15x6 − 20

)
y′ +

(
−20x3 − 10x4 + 15x9 + 2x10 − x15

)
y′′

But y′′ = f(x, y, y′), the above becomes

F3 = −5x2
(
12y + 12y′ + 8xy′ − 27x6y − 2x7y + 3x12y − 27x6y′ − 4x7y′ + 3x12y′

)
+ x3

(
−x12 + x7 + 15x6 − 20

)
y′ +

(
−20x3 − 10x4 + 15x9 + 2x10 − x15

) (
−x5(y′ + y)

)
= −x2

(
60y + 60y′ + 60xy′ − 155x6y − 20x7y + 30x12y + 2x13y − x18y − 155x6y′ − 45x7y′ − x8y′ + 30x12y′ + 3x13y′ − x18y′

)
And so on. Since the derivatives become very complicated, the result was done on the
computer which results in (Evaluating each of the above at x = 0, y = y0, y

′ = y′0)

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = 0
F5 = −120y′0 − 120y0
F6 = −720y′0
F7 = 0
F8 = 0
F9 = 0
F10 = 0
F11 = 6652800y′0 + 6652800y0
F12 = 79833600y′0 + 11404800y0
F13 = 111196800y′0
F14 = 0

...

And so on. Hence

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2)! Fn|x0,y0,y′0

= y0 + xy′0 +
x7

7! (−120y′0 − 120y0)−
x8

8! (720y
′
0) +

x13

13! (6652800y
′
0 + 6652800y0)

+ x14

14! (79833600y
′
0 + 11404800y0) +

x15

15! (111196800y
′
0) + · · ·

= y0

(
1− 120

7! x
7 + 6652800

13! x13 + 11404800
14! x14 − · · ·

)
+ y′0

(
x− 120

7! x
7 − 720

8! x
8 + 6652800

13! x13 + 79833600
14! x14 + 111196800

15! x15 + · · ·
)

= y0

(
1− 1

42x
7 + 1

936x
13 + 1

7644x
14 + · · ·

)
+ y′0

(
x− 1

42x
7 − 1

56x
8 + 1

936x
13 + 1

1092x
14 + 1

11 760x
15 + · · ·

)
Solved using power series method
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Expansion around x = 0. This is ordinary point. Since RHS is zero, we will find recurrence
relation.

Let y =
∑∞

n=0 anx
n. Hence y′ =

∑∞
n=0 nanx

n−1 =
∑∞

n=1 nanx
n−1 and y′′ =

∑∞
n=1 (n) (n− 1) anxn−2 =∑∞

n=2 (n) (n− 1) anxn−2. The ode becomes

x−5y′′ + y′ + y = 0

Hence
∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 0

∞∑
n=2

(n) (n− 1) anxn−7 +
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 0

Reindex so all powers start at lowest powers n− 7
∞∑
n=2

(n) (n− 1) anxn−7 +
∞∑
n=7

(n− 6) an−6x
n−7 +

∞∑
n=7

an−7x
n−7 = 0 (1)

For n = 2, 3, 4, 5, 6 it generates a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0 since there is only
one term in each one of these and the RHS is zero.

For n ≥ 7 we have the recurrence relation

(n) (n− 1) an + (n− 6) an−6 + an−7 = 0 (2)

an = −(n− 6) an−6 + an−7

(n+ 2) (n+ 1)

Hence for n = 7
a7 = −a1 + a0

42
For n = 8

a8 = − 2a2 + a1
(6 + 2) (6 + 1) = −a1

56
For n = 9

a9 = −(7− 4) a3 + a2
(7 + 2) (7 + 1) = 0

For n = 10
a10 = −(8− 4) a4 + a3

(8 + 2) (8 + 1) = 0

For n = 11
a11 = −(9− 4) a5 + a4

(9 + 2) (9 + 1) = 0

For n = 12
a12 = −(n− 4) a6 + a5

(n+ 2) (n+ 1) = 0

For n = 13

a13 = − (11− 4) a7 + a6
(11 + 2) (11 + 1) = − (11− 4) a7

(11 + 2) (11 + 1) = − 7
156a7 = − 7

156

(
−a1 + a0

42

)
= 1

936a0+
1
936a1

And so on. Hence

y =
∞∑
n=0

anx
n

= a0 + a1x+ a7x
7 + a13x

13 + · · ·

Notice that all terms an = 0 for n = 2· · · 6. The above becomes

y = a0 + a1x+
(
− 1
42a0 −

1
42a1

)
x7 +

(
1
936a0 +

1
936a1

)
x13 + · · ·

= a0

(
1− 1

42x
7 + 1

936x
13 + · · ·

)
+ a1

(
x− 1

42x
7 + 1

936x
13 + · · ·

)
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Example 3
1
x2
y′′ + y′ + y = sin x

Expansion around x = 0. This is ordinary point. Since RHS is not zero, do not find
recurrence relation. Let y =

∑∞
n=0 anx

n. Hence y′ =
∑∞

n=0 nanx
n−1 =

∑∞
n=1 nanx

n−1 and
y′′ =

∑∞
n=1 (n) (n− 1) anxn−2 =

∑∞
n=2 (n) (n− 1) anxn−2. The ode becomes

y′′ + x2y′ + x2y = x2 sin x

Hence
∞∑
n=2

(n) (n− 1) anxn−2 + x2
∞∑
n=1

nanx
n−1 + x2

∞∑
n=0

anx
n = x2 sin x

∞∑
n=2

(n) (n− 1) anxn−2 +
∞∑
n=1

nanx
n+1 +

∞∑
n=0

anx
n+2 = x2 sin x

Reindex so all powers to start from n. This results in
∞∑
n=0

(n+ 2) (n+ 1) an+2x
n +

∞∑
n=2

(n− 1) an−1x
n +

∞∑
n=2

an−2x
n = x2 sin x

To be able to continue, we have to expand sin x as Taylor series around x. The above
becomes
∞∑
n=0

(n+ 2) (n+ 1) an+2x
n +

∞∑
n=2

(n− 1) an−1x
n +

∞∑
n=2

an−2x
n = x2

(
x− 1

6x
3 + 1

120x
5 − 1

5040x
7 + · · ·

)
∞∑
n=0

(n+ 2) (n+ 1) an+2x
n +

∞∑
n=2

(n− 1) an−1x
n +

∞∑
n=2

an−2x
n = x3 − 1

6x
5 + 1

120x
7 − 1

5040x
9 + · · ·

For n = 0

2a2 = 0
a2 = 0

For n = 1

(3) (2) a3 = 0
a3 = 0

For n = 2

(2 + 2) (2 + 1) a4 + (2− 1) a1 + a0 = 0
12a4 + a1 + a0 = 0

a4 =
−a1 − a0

12
For n = 3 (now we pick one term from the RHS which match on x3)

20a5 + 2a2 + a1 = 1

a5 =
1− a1
20

For n = 4

30a6 + 3a3 + a2 = 0
a6 = 0

For n = 5

42a7 + 4a4 + a3 = −1
6

a7 =
−1

6 − 4a4
42 =

−1
6 − 4

(−a1−a0
12

)
42 = 1

126a0 +
1
126a1 −

1
252
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And so on. Hence

y =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= a0 + a1x+
(
−a1 − a0

12

)
x4 +

(
1− a1
20

)
x5 +

(
1
126a0 +

1
126a1 −

1
252

)
x7 + · · ·

= a0

(
1− 1

12x
4 + 1

126x
7 + · · ·

)
+ a1

(
x− 1

12x
4 − 1

20x
5 + 1

126x
7 + · · ·

)
+
(

1
20x

5 − 1
252x

7 + · · ·
)

4.3.2.6.3 Regular singular point using Frobenius series method. expansion
point is regular singular point. Four sub methods depending on type of roots of the indicial
equations.

Roots of indicial equation are complex ode internal name "second_order_series_method_reg-
ular_singular_point_complex_roots"

In this case the solution is
y = c1y1 + c2y2

Where

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2

Where r1, r2 are roots of the indicial equation. a0, b0 are set to 1 as arbitrary.

Example 1
x2y′′ + xy′ + y = 1

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = 1

x2 . There is one singular point at x0 = 0. Therefore p0 =
limx→0 xp(x) = limx→0 1 = 1 and q0 = limx→0 x

2q(x) = limx→0 1 = 1. Hence the indicial
equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r + 1 = 0

r2 + 1 = 0
r = ±i

Hence r1 = i, r2 = −i. Expansion around x = 0. This is regular singular point. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Solving first for the homogenous ode.

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r = 0
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For n = 0
(r(r − 1) + r + 1) a0xr = 0 (1)

Since a0 6= 0, then (r(r − 1) + r + 1) = 0 or r2 + 1 = 0. Therefore r = ±i as was found
above. The homogenous ode therefore satisfies

x2y′′ + xy′ + y =
(
r2 + 1

)
a0x

r

Since when r = ±i, the RHS is zero. For n ≥ 1 the recurrence relation is

(n+ r) (n+ r − 1) an + (n+ r) an + an = 0
((n+ r) (n+ r − 1) + (n+ r) + 1) an = 0(

n2 + 2nr + r2 + 1
)
an = 0 (2)

Let a0 = 1. For r = i. For n = 1

(1 + 2i− 1 + 1) a1 = 0

Hence a1 = 0. Similarly all an = 0 for n ≥ 1. Hence

y1 =
∞∑
n=0

anx
n+i

= xi(a0 + a1x+ · · · )
= a0x

i

= xi

For r = −i. For n = 1 and using b instead of a, we obtain (also using b0 = 1)

(1− 2i+ 1 + 1) bn = 0

Hence b1 = 0. Similarly all bn = 0 for n ≥ 1. Hence

y2 =
∞∑
n=0

bnx
n−i

= x−i(b0 + b1x+ · · · )
= b0x

−i

= x−i

Therefore

yh = c1y1 + c2y2

= c1x
i + c2x

−i

To find yp since the ode satisfies

x2y′′ + xy′ + y =
(
r2 + 1

)
a0x

r

Relabel r = m, a0 = c0 to avoid confusion with terms used above, then we balance RHS,
hence (

m2 + 1
)
c0x

m = 1

This implies m = 0 and c0 = 1. Therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n
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Using the recurrence relation (2) found above, but now using the values found m = 0 and
c0 = 1, then (2) becomes (

n2 + 2nm+m2 + 1
)
cn = 0(

n2 + 1
)
cn = 0

Hence all cn = 0 except for c0. Therefore

yp =
∞∑
n=0

cnx
n

= c0

= 1

Hence the solution is

y = yh + yp

= c1x
i + c2x

−i + 1

Roots of indicial equation differ by non integer ode internal name "second_or-
der_series_method_regular_singular_point_difference_not_integer"

If one of the roots is an integer, and the ode is inhomogeneous. ode, then we do not need
to split the solution into yh, yp and can use the integer root to find yp directly. If both
roots are non-integer, we have to split the problem into yh, yp. This is because it will not
be possible to match powers on x from the left side to the right side. Because the RHS will
be polynomial in x, but the LHS will not be polynomial in x because of the non integer
powers on x.In this case the solution is

y = c1y1 + c2y2

Where

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2

And r1, r2 are roots of the indicial equation. a0, b0 are set to 1 as arbitrary.

Example 1
2x2y′′ + 3xy′ − xy = x2 + 2x

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 3
2x , q(x) = −1

2x . There is one singular point at x = 0. Therefore p0 =
limx→0 xp(x) = limx→0

3
2 = 3

2 and q0 = limx→0 x
2q(x) = limx→0−x

2 = 0. Hence the indicial
equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 3
2r + 0 = 0

r(2r + 1) = 0

r = 0,−1
2

Therefore r1 = 0, r2 = −1
2 .
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Expansion around x = x0 = 0. This is regular singular point. Hence Frobenius is needed.
First we find yh. Let y =

∑∞
n=0 anx

n+r, hence

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

2x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + 3x
∞∑
n=0

(n+ r) anxn+r−1 − x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

3(n+ r) anxn+r −
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

3(n+ r) anxn+r −
∞∑
n=1

an−1x
n+r = 0

When n = 0

2(r) (r − 1) a0xr + 3(r) a0xr = 0
(r(2r + 1)) a0xr = 0

Since a0 6= 0 then r(2r + 1) = 0 and r = 0, r = −1
2 as was found above. Therefore the

homogenous ode satisfies

2x2y′′ + 3xy′ − xy = (r(2r + 1)) a0xr

Where the RHS will be zero when r = 0 or r = −1
2 . For n ≥ 1 the recurrence relation is

2(n+ r) (n+ r − 1) an + 3(n+ r) an − an−1 = 0

an = an−1

2 (n+ r) (n+ r − 1) + 3 (n+ r)
= an−1

2n2 + 4nr + n+ 2r2 + r
(1)

For r = 0 the above becomes
an = an−1

2n2 + n

For n = 1 and letting a0 = 1
a1 =

1
3

For n = 2
a2 =

a1
8 + 2 = a1

10 = 1
30

For n = 3
a3 =

a2
18 + 3 = a2

21 = 1
21 (30) = 1

630
And so on. Hence

y1 =
∞∑
n=0

anx
n+r =

∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + · · ·

= 1 + 1
3x+

1
30x

2 + 1
630x

3 + · · ·
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And for r = −1
2 the recurrence relation (2) becomes, and using b instead of a

bn = bn−1

2n2 + 4n
(
−1

2

)
+ n+ 1

2 −
1
2
= − bn−1

n− 2n2

For n = 1 and using b0 = 1
b1 = − b0

1− 2 = 1

For n = 2
b2 = − b1

2− 8 = − 1
2− 8 = 1

6
For n = 3

b3 = − b2
3− 18 = −

1
6

3− 18 = 1
90

And so on. Hence

y2 =
∞∑
n=0

bnx
n+r2

= 1√
x

∞∑
n=0

bnx
n

= 1√
x

(
b0 + b1x+ b2x

2 + · · ·
)

= 1√
x

(
1 + x+ 1

6x
2 + 1

90x
3 + · · ·

)
Hence

yh = c1y1 + c2y2

= c1

(
1 + 1

3x+
1
30x

2 + 1
630x

3 + · · ·
)
+ c2

1√
x

(
1 + x+ 1

6x
2 + 1

90x
3 + · · ·

)
Now we find yp. Since ode satisfies

2x2y′′ + 3xy′ − xy = (r(2r + 1)) a0xr

To find yp, and relabeling r as m and a as c so not to confuse terms used for yh. Then
the above becomes

2x2y′′ + 3xy′ − xy = (m(2m+ 1)) c0xm

The RHS is x2 + 2x. We balance each term at a time, this finds a particular solution for
each term on the RHS, then these particular solutions are added at the end. For the input
2x the balance equation is

(m(2m+ 1)) c0xm = 2x

This implies that
m = 1

Therefore (m(2m+ 1)) c0 = 2, or c0(1(2 + 1)) = 2 or 3c0 = 2 or

c0 =
2
3

The recurrence relation now becomes (using m for r and c0 for a0)

cn = cn−1

2n2 + 4nm+ n+ 2m2 +m

For m = 1 the above becomes
cn = cn−1

2n2 + 5n+ 3
For n = 1 and using c0 = 2

3

c1 =
2
3

2 + 5 + 3 = 1
15
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For n = 2
c2 =

c1
8 + 10 + 3 =

1
15

8 + 10 + 3 = 1
315

For n = 3
c3 =

c2
18 + 15 + 3 =

1
315

18 + 15 + 3 = 1
11 340

And so on. Hence

yp1 =
∞∑
n=0

cnx
n+m = x

∞∑
n=0

cnx
n

= x
(
c0 + c1x+ c2x

2 + · · ·
)

= x

(
2
3 + 1

15x+
1
315x

2 + 1
11 340x

3 + · · ·
)

=
(
2
3x+

1
15x

2 + 1
315x

3 + 1
11 340x

4 + · · ·
)

The second term x2 is now balanced x2. The balance equation is

(m(2m+ 1)) c0xm = x2

Therefore m = 2 and (m(2m+ 1)) c0 = 1. Hence

(2(4 + 1)) c0 = 1

c0 =
1
10

The recurrence relation becomes for m = 2

cn = cn−1

2n2 + 4nm+ n+ 2m2 +m

For m = 2 the above becomes
cn = cn−1

2n2 + 9n+ 10
For n = 1 and using c0 = 1

10

c1 =
1
10

2 + 9 + 10 = 1
210

For n = 2
c2 =

c1
8 + 18 + 10 =

1
210

8 + 18 + 10 = 1
7560

For n = 3
c3 =

c2
18 + 27 + 10 =

1
7560

18 + 27 + 10 = 1
415 800

And so on. Hence

yp2 =
∞∑
n=0

cnx
n+m = x2

∞∑
n=0

cnx
n

= x2
(
c0 + c1x+ c2x

2 + · · ·
)

= x2
(

1
10 + 1

210x+
1

7560x
2 + 1

415 800x
3 + · · ·

)
=
(

1
10x

2 + 1
210x

3 + 1
7560x

4 + 1
415 800x

5 + · · ·
)

The particular solution is the sum of all the particular solutions found above, which is

yp = yp1 + yp2

=
(
2
3x+

1
15x

2 + 1
315x

3 + 1
11 340x

4 + · · ·
)
+
(

1
10x

2 + 1
210x

3 + 1
7560x

4 + 1
415 800x

5 + · · ·
)

= 2
3x+

(
1
15 + 1

10

)
x2 +

(
1
315 + 1

210

)
x3 +

(
1

11 340 + 1
7560

)
x4 + · · ·

= 2
3x+

1
6x

2 + 1
126x

3 + 1
4536x

4 + · · ·
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Hence the complete solution is

y = yh + yp

= c1

(
1 + 1

3x+
1
30x

2 + 1
630x

3 + · · ·
)
+ c2

1√
x

(
1 + x+ 1

6x
2 + 1

90x
3 + · · ·

)
+ 2

3x+
1
6x

2 + 1
126x

3 + 1
4536x

4 + · · ·

Example 2
2xy′′ + (x+ 1) y′ + 3y = 5

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = (x+1)
2x , q(x) = 3

2x . There is one singular point at x = 0. Therefore p0 =
limx→0 xp(x) = limx→0

(x+1)
2 = 1

2 and q0 = limx→0 x
2q(x) = limx→0

3x
2 = 0. Hence the

indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 1
2r + 0 = 0

r(2r − 1) = 0

r = 0, 12

Therefore r1 = 0, r2 = 1
2 .

Expansion around x = x0 = 0. This is regular singular point. Hence Frobenius is needed.
Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogenous ode becomes

2x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + (x+ 1)
∞∑
n=0

(n+ r) anxn+r−1 + 3
∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

3anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1+
∞∑
n=1

(n+ r − 1) an−1x
n+r−1+

∞∑
n=0

(n+ r) anxn+r−1+
∞∑
n=1

3an−1x
n+r−1 = 0

For n = 0

(2(r) (r − 1) a0 + ra0)xr−1 = 0
(2r(r − 1) + r) a0 = 0

Since a0 6= 0 then the first term above will vanish only when 2r(r − 1) + r = 0 or
r(2r − 1) = 0. Hence r = 0, r = 1

2 as was found above. For n ≥ 1

2(n+ r) (n+ r − 1) an + (n+ r − 1) an−1 + (n+ r) an + 3an−1 = 0

an = − n+ r + 2
(n+ r) (2r + 2n− 1)an−1

(1)
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Therefore the differential equation satisfies

2xy′′ + (x+ 1) y′ + 3y = r(2r − 1) a0xr−1 (2)

The RHS above will be zero when r = 0 or r = 1
2 . When r = 0 the recurrence relation (1)

becomes
an = − n+ 2

(n) (2n− 1)an−1

Which gives (for a0 = 1) (working out few terms using the above)

y1 = 1− 3x+ 2x2 − 2
3x

3 + · · ·

And when r = 1
2 the recurrence relation is (using b in place of a and letting b0 = 1 also)

bn = −
n+ 5

2(
n+ 1

2

)
(1 + 2n− 1)

bn−1

Which gives (working out few terms)

y2 =
√
x

(
1− 7x

6 + 21x
2

40 + · · ·
)

Hence the solution is

yh = c1y1 + c2y2

= c1

(
1− 3x+ 2x2 − 2

3x
3 + · · ·

)
+ c2

(√
x

(
1− 7x

6 + 21x
2

40 + · · ·
))

Now we find yp. From (2), and relabeling r as m and a as c so not to confuse terms used

2xy′′ + (x+ 1) y′ + 3y = m(2m− 1) c0xm−1

Therefore we need to balance m(2m− 1) c0xm−1 = 5 since the RHS is 5. This implies
m − 1 = 0 or m = 1. Therefore m(2m− 1) c0 = 5 or (2− 1) c0 = 5 which gives c0 = 5.
Hence

yp =
∞∑
n=0

cnx
n+m

= x
∞∑
n=0

cnx
n

To find cn, the same recurrence relation (1) is used by with r replaced by m and a replaced
by c. This gives

cn = − n+m+ 2
(n+m) (2m+ 2n− 1)cn−1

For m = 1 the above becomes

cn = − n+ 3
(n+ 1) (1 + 2n)cn−1

For n = 1
c1 = − 1 + 3

(1 + 1) (1 + 2)c0 = −2
3c0 = −2

3(5) = −10
3

For n = 2
c2 = − 2 + 3

(2 + 1) (1 + 4)c1 = −1
3c1 = −1

3

(
−10

3

)
= 10

9
For n = 3

c1 = − 3 + 3
(3 + 1) (1 + 6)c2 = − 3

14

(
10
9

)
= −2

3(5) = − 5
21

And so on. Hence
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yp = x
∞∑
n=0

cnx
n

= x
(
c0 + c1x+ c2x

2 + c3x
3 + · · ·

)
= x

(
5− 10

3 x+
10
9 x

2 − 5
21x

3 + · · ·
)

=
(
5x− 10

3 x
2 + 10

9 x
3 − 5

21x
4 + · · ·

)
Hence the final solution

y = yh + yp

= c1

(
1− 3x+ 2x2 − 2

3x
3 + · · ·

)
+
√
xc2

(
1− 7x

6 + 21x
2

40 + · · ·
)
+
(
5x− 10

3 x
2 + 10

9 x
3 − 5

21x
4 + · · ·

)
Example 3

2xy′′ + (x+ 1) y′ + 3y = x

This is the same problem as above but different RHS. As shown above, we obtained that
the differential equation satisfies

2xy′′ + (x+ 1) y′ + 3y = r(2r − 1) a0xr−1

To find yp, and using m in place of r and c in place of a so not to confuse terms with the
yh terms, then the above becomes

2xy′′ + (x+ 1) y′ + 3y = m(2m− 1) c0xm−1

The RHS above will be zero when m = 0 or m = 1
2 . We now need to balance the RHS

against given RHS which is x. Hence

m(2m− 1) c0xm−1 = x

To balance this we need m− 1 = 1 or m = 2. Hence 2(4− 1) c0 = 1 or c0 = 1
6 . Using the

recurrence relation we found above, which is for n ≥ 1 (again, calling r as m so not to
confuse yh terms with yp terms), we obtain

cn = − n+m+ 2
(n+ r) (2m+ 2n− 1)cn−1

But now using m = 2
cn = − n+ 4

(n+ 2) (4 + 2n− 1)cn−1

Hence for n = 1

c1 = − 1 + 4
(1 + 2) (4 + 2− 1)c0

= −1
3c0

= −1
3

(
1
6

)
= − 1

18

for n = 2

c2 = − 6
(2 + 2) (4 + 4− 1)c1

= − 3
14c1 = − 3

14

(
− 1
18

)
= 1

84
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For n = 3

c3 = − 3 + 4
(3 + 2) (4 + 6− 1)c2

= − 7
45c2 = − 7

45

(
1
84

)
= − 1

540

For n = 4

c4 = − 4 + 4
(4 + 2) (4 + 8− 1)c3

= − 4
33c3 = − 4

33

(
− 1
540

)
= 1

4455

And so on. Hence

yp =
∞∑
n=0

cnx
n+r

= x2
∞∑
n=0

cnx
n

= x2
(
c0 + c1x+ c2x

2 + · · ·
)

= x2
(
1
6 − 1

18x+
1
84x

2 − 1
540x

3 + 1
4455x

4 + · · ·
)

Hence the solution is (yh was found in the earlier problem)

y = yh + yp

= c1

(
1− 3x+ 2x2 − 2

3x
3 + · · ·

)
+ c2

(√
x

(
1− 7x

6 + 21x
2

40 + · · ·
))

+ x2
(
1
6 − 1

18x+
1
84x

2 − 1
540x

3 + 1
4455x

4 + · · · · · ·
)

Example 4
x2y′′ + (x+ 1) y′ + y = 5

Expansion around x = x0 = 0. This is regular singular point. Hence Frobenius is needed.
Comparing the ode to

y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = x+1
x2 , q(x) = 1

x2 . Therefore p0 = limx→0 xp(x) = limx→0
x+1
x

which is not
defined. Hence not possible to solve this using series solution.

Example 5
2x2y′′ − xy′ +

(
1− x2

)
y = x2

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = −x
2x2 = − 1

2x , q(x) =
(
1−x2)
2x2 . Therefore p0 = limx→0 xp(x) = limx→0

−1
2 = −1

2

and q0 = limx→0 x
2q(x) = limx→0

(
1−x2)
2 = 1

2 . Hence the indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1)− 1
2r +

1
2 = 0

r2 − 3
2r +

1
2 = 0

r = 1, 12
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Therefore r1 = 0, r2 = −1
2 . Expansion around x = x0 = 0. This is regular singular point.

Hence Frobenius is needed. First we find yh. Let y =
∑∞

n=0 anx
n+r, hence

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogenous ode becomes

2x2y′′ − xy′ +
(
1− x2

)
y = 0

2x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − x
∞∑
n=0

(n+ r) anxn+r−1 +
(
1− x2

) ∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r −
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r+2 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r −
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r −

∞∑
n=2

an−2x
n+r = 0

When n = 0

(2(n+ r) (n+ r − 1) a0 − (n+ r) a0 + a0)xr = 0
(2r(r − 1)− r + 1) a0xr = 0(

2r2 − 3r + 1
)
a0x

r = 0

Since a0 6= 0 then 2r2 − 3r + 1 = 0, hence r = 1, r = 1
2 as was found above. Therefore the

homogenous ode satisfies

2x2y′′ − xy′ +
(
1− x2

)
y =

(
2r2 − 3r + 1

)
a0x

r

Where the RHS will be zero when r = 1, r = 1
2 . When n = 1

2(1 + r) (1 + r − 1) a1 − (1 + r) a1 + a1 = 0
(2(1 + r) (1 + r − 1)− (1 + r) + 1) a1 = 0

r(2r + 1) a1 = 0

Hence a1 = 0. For n ≥ 2 the recurrence relation is

2(n+ r) (n+ r − 1) an − (n+ r) an + an − an−2 = 0

an = an−2

2 (n+ r) (n+ r − 1)− (n+ r) + 1
= an−2

2 (n+ r) (n+ r − 1)− (n+ r) + 1
(1)

For r = 1 the above becomes
an = an−2

n (2n+ 1)
For n = 2 and letting a0 = 1

a2 =
a0

2 (4 + 1) = 1
10

For n = 3
a3 =

a1
n (2n+ 1) = 0
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For n = 4
a4 =

a2
4 (8 + 1) =

1
10

4 (8 + 1) = 1
360

And so on. Hence

y1 =
∞∑
n=0

anx
n+r = x

∞∑
n=0

anx
n

= x
(
a0 + a1x+ a2x

2 + · · ·
)

= x

(
1 + x2

10 + x4

360 + · · ·
)

And for r = 1
2 the recurrence relation (1) becomes, and using b instead of a

bn == bn−2

2 (n+ r) (n+ r − 1)− (n+ r) + 1

= bn−2

2
(
n+ 1

2

) (
n+ 1

2 − 1
)
−
(
n+ 1

2

)
+ 1

= bn−2

n (2n− 1)

Notice also that b1 = 0 just like a1 = 0 from above. Now, for n = 2 and using b0 = 1

b2 =
b0

2 (4− 1) = 1
6

For n = 3
b2 = − b1

2− 8 = − 1
2− 8 = 1

6
For n = 3

b3 =
b1

n (2n− 1) = 0

For n = 4
bn = b2

4 (8− 1) =
1
6

4 (8− 1) = 1
168

And so on. Hence

y2 =
∞∑
n=0

bnx
n+r2

=
√
x

∞∑
n=0

bnx
n

=
√
x
(
b0 + b1x+ b2x

2 + · · ·
)

=
√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
Hence

yh = c1y1 + c2y2

= c1

(
x

(
1 + x2

10 + x4

360 + · · ·
))

+ c2
√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
= c1

(
x+ x3

10 + x5

360 + · · ·
)
+ c2

√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
Now we find yp. Since ode satisfies

2x2y′′ − xy′ +
(
1− x2

)
y =

(
2r2 − 3r + 1

)
a0x

r

To find yp, and relabeling r as m and a as c so not to confuse terms used for yh. Then
the above becomes

2x2y′′ − xy′ +
(
1− x2

)
y =

(
2m2 − 3m+ 1

)
c0x

m
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The RHS is x2. Hence the balance equation is(
2m2 − 3m+ 1

)
c0x

m = x2

This implies that
m = 2

Therefore (2m2 − 3m+ 1) c0 = 1, or (8− 6 + 1) c0 = 1 or

c0 =
1
3

The recurrence relation (1) from above now becomes (using m for r and c0 for a0)

cn = cn−2

2 (n+m) (n+m− 1)− (n+m) + 1

For m = 2 the above becomes

cn = cn−2

2 (n+ 2) (n+ 1)− (n+ 2) + 1
= cn−2

2n2 + 5n+ 3
For n = 1 we use c1 = 0 the same as was found for a1, b1. For n ≥ 2 the above is used.
Hence for n = 2

c2 =
c0

8 + 10 + 3 =
1
3

8 + 10 + 3 = 1
63

For n = 3
c3 =

c1
18 + 15 + 3 = 0

For n = 4
c4 =

c2
32 + 20 + 3 =

1
63

32 + 20 + 3 = 1
3465

And so on. Hence

yp =
∞∑
n=0

cnx
n+m = x2

∞∑
n=0

cnx
n

= x2
(
c0 + c1x+ c2x

2 + · · ·
)

= x2
(
1
3 + 1

63x
2 + 1

3465x
4 + · · ·

)
= 1

3x
2 + 1

63x
4 + 1

3465x
6 + · · ·

Hence the complete solution is

y = yh + yp

= c1

(
x+ x3

10 + x5

360 + · · ·
)
+ c2

√
x

(
1 + 1

6x
2 + 1

168x
4 + · · ·

)
+
(
1
3x

2 + 1
63x

4 + 1
3465x

6 + · · ·
)

Alternative way to find yp is the the following. Let yp = c0 + c1x+ c2x
2 + c3x

3 + · · · then
y′p = c1 + 2c2x+ 3c3x2 + · · · and y′′p = 2c2 + 6c3x+ · · · . Hence the ode becomes

2x2(2c2 + 6c3x+ · · · )− x
(
c1 + 2c2x+ 3c3x2 + · · ·

)
+
(
1− x2

) (
c0 + c1x+ c2x

2 + c3x
3 + · · ·

)
= x2

c0 + x(−c1 + c1) + x2(4c2 − 2c2 + c2 − c0) + x3(· · · ) = x2

Hence c0 = 0, 4c2 − 2c2 + c2 − c0 = 1 or 3c2 − c0 = 1 or c2 = 1
3 . We need to keep adding

more equations and solving them simultaneously. This method is not as easy to use as
the method used above, which uses the balance equation to find to yp. Also this method
could fail, since in practice we should not use undetermined coefficients method (which is
what this does) on an ode with variable coefficients. So I will not use this any more.

Example 6
2xy′′ + y′ + y = 0
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Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
2x , q(x) = 1

2x . Therefore p0 = limx→0 xp(x) = limx→0
1
2 = 1

2 and q0 =
limx→0 x

2q(x) = limx→0
x
2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 1
2r = 0

r(2r − 1) = 0

r = 0, 12

Therefore r1 = 0, r2 = 1
2 . Expansion around x = x0 = 0. This is regular singular point.

Hence Frobenius is needed. First we find yh. Let y =
∑∞

n=0 anx
n+r, hence

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

xy′′ + y′ + y = 0

2x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

2(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

When n = 0

2(r) (r − 1) a0xr−1 + ra0x
r−1 = 0

(2r(r − 1) + r) a0xr−1 = 0
(r(2r − 1)) a0xr−1 = 0

Since a0 6= 0 then r(2r − 1) = 0, hence r = 0, r = 1
2 as was found above. Therefore the

homogenous ode satisfies

2xy′′ + y′ + y = (r(2r − 1)) a0xr−1

Where the RHS will be zero when r = 1, r = 1
2 . For n ≥ 1 the recurrence relation is

2(n+ r) (n+ r − 1) an + (n+ r) an = −an−1

an = −an−1

2 (n+ r) (n+ r − 1) + (n+ r)

= −an−1

2n2 + 4nr − n+ 2r2 − r
(1)

For r = 0 the above becomes
an = −an−1

n (2n− 1)
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For n = 1 and using a0 = 1
a1 =

−a0
n (2n− 1) = −1

For n = 2
a2 =

−a1
2 (3) = 1

6
For n = 3

a3 =
−a2
3 (5) =

−1
6

15 = − 1
90

And so on. Hence

y1 =
∞∑
n=0

anx
n+r1

= a0 + a1x+ a2x
2 + · · ·

= 1− x+ 1
6x

2 − 1
90x

3 + · · ·

To find y2, using (1) but replacing a by b and using r = 1
2 and letting b0 = 1 and following

the above process gives

bn = −bn−1

2n2 + 4n
(1
2

)
− n+ 2

(1
2

)2 − 1
2

= − bn−1

2n2 + n

For n = 1
b1 = −b03 = −1

3
For n = 2

b2 = − b1
8 + 2 = − b1

10 = −
−1

3
10 = 1

30
And so on. Hence we obtain

y2 =
√
x

∞∑
n=0

bnx
n

=
√
x
(
b0 + b1x+ b2x

2 + · · ·
)

=
√
x

(
1− 1

3x+
1
30x

2 + · · ·
)

Therefore the solution is

y = c1y1 + c2y1

= c1

(
1− x+ 1

6x
2 − 1

90x
3 + · · ·

)
+ c2

(√
x

(
1− 1

3x+
1
30x

2 + · · ·
))

Example 7
4xy′′ + 3y′ + 3y =

√
x

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 3
4x , q(x) = 3

4x . Therefore p0 = limx→0 xp(x) = limx→0
3
4 = 3

4 and q0 =
limx→0 x

2q(x) = limx→0
3x
4 = 0. Hence x = 0 is regular singular point. The indicial

equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + 3
4r + 0 = 0

r(r − 1) + 3
4r = 0

r = 1
4 , 0
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Frobenius is now used. Roots differ by non integer. First we find yh. Let y =
∑∞

n=0 anx
n+r.

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The homogenous ode becomes

4x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + 3
∞∑
n=0

(n+ r) anxn+r−1 + 3
∞∑
n=0

anx
n+r = 0

∞∑
n=0

4(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=0

3anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

4(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=1

3an−1x
n+r−1 = 0

When n = 0

4(n+ r) (n+ r − 1) anxn+r−1 + 3(n+ r) anxn+r−1 = 0
4r(r − 1) a0 + 3ra0 = 0
(4r(r − 1) + 3r) a0 = 0

Since a0 6= 0 then 4r(r − 1) + 3r = 0, hence r = 0, r = 1
4 as was found above. Therefore

the homogenous ode satisfies

4xy′′ + 3y′ + 3y = (4r(r − 1) + 3r) a0xr−1

Hence the balance equation is that we will use to find the particular solution is

(4m(m− 1) + 3m) c0xm−1 =
√
x

We will get back to the above after finding yh. Going over the same steps as before, we
find the recurrence relation

an = − 3an−1

4n2 + 8nr + 4r2 − n− r

For r = 1
4 , n > 0 and similarly

bn = − 3an−1

4n2 + 8nr + 4r2 − n− r

For r = 0, n > 0. Finding few terms using the above gives the solution as

yh = c1y1(x) + c2y2(x)

= c1x
1
4

(
1− 3

5x+
1
10x

2 − 1
130x

3 + · · ·
)
+ c2

(
1− x+ 3

14x
2 − 3

154x
3 + · · ·

)
Now we need to find yp. From the balance equation

(4m(m− 1) + 3m) c0xm−1 =
√
x

Hencem−1 = 1
2 orm = 3

2 . And (4m(m− 1) + 3m) c0 = 1, hence
(
4
(3
2

) (3
2 − 1

)
+ 3
(3
2

))
c0 =

1, which gives c0 = 2
15 . Therefore

yp = xm
∞∑
n=0

cnx
n

= x
3
2
(
c0 + c1x+ c2x

2 + · · ·
)

= x
3
2

(
2
15 + c1x+ c2x

2 + · · ·
)
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We now just need to determined cn for n > 0. For this we use the same recurrence relation
as found above. We can use an or bn as they are the same, but change an to cn and r to c
(so not to confuse notations). This gives

cn = − 3cn−1

4n2 + 8nm+ 4m2 − n−m

For n > 0 and m = 3
2 . Hence for n = 1 the above gives

c1 = − 3c0
4 + 8

(3
2

)
+ 4

(3
2

)2 − 1− 3
2

= −
3
( 2
15

)
4 + 8

(3
2

)
+ 4

(3
2

)2 − 1− 3
2

= − 4
225

For n = 2

c1 = − 3c1
4 (2)2 + 8 (2)

(3
2

)
+
(3
2

)2 − 2−
(3
2

)
= −

3
(
− 4

225

)
4 (2)2 + 8 (2)

(3
2

)
+ 4

(3
2

)2 − 2−
(3
2

)
= 8

6825

And so on. Hence

yp = x
3
2

(
2
15 + c1x+ c2x

2 + · · ·
)

= x
3
2

(
2
15 − 4

225x+
8

6825x
2 − 16

348075x
3 + · · ·

)
Hence the complete solution is

y = yh + yp

= c1x
1
4

(
1− 3

5x+
1
10x

2 − 1
130x

3 + · · ·
)
+ c2

(
1− x+ 3

14x
2 − 3

154x
3 + · · ·

)
+ x

3
2

(
2
15 − 4

225x+
8

6825x
2 − 16

348075x
3 + · · ·

)

Roots of indicial equation differ by integer. Good case ode internal name "sec-
ond_order_series_method_regular_singular_point_difference_is_integer_good_case".

In this case the solution is
y = c1y1 + c2y2

There are two sub cases that show up when roots differ by integer. First sub case is
when the second solution y2 is obtained similar to how y1 is obtained. i.e. using standard
Frobenius series but with the second root. The second sub case is the harder one, this is
when y2 fails to be obtained using the standard method due to bN being undefined where
N is the difference between the roots. In this sub case we need to use a modified Frobenius
series method where, which is explained more using examples below. Therefore for sub
case one (called the good case) we have

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2
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For the second subcase (called the bad case) first we will find the bad root r of the indicial
equation which causes the recurrence relation to become undefined at some n. Call it rbad,
then we first find y defined as

y = xr
∞∑
n=0

(r − rbad) anxn

Where an is found using the recurrence relation (but r is kept symbolic). y1 is then found
from by evaluating it r = rbad

y1 = yr=rbad

And also setting a0 = 1. Note that some terms will vanish above but not all, since there
will be cancellation of (r − rbad) during the process. y2 is next found using

y2 =
(
d

dr
y

)
r=rbad

= y1 ln (x) + xrbad
∞∑
n=0

(
d

dr
((r − rbad) anxn)

)
r=rbad

Example 1 (
x− x2

)
y′′ + 3y′ + 2y = 3x2

Comparing the above to y′′ + p(x) y′ + q(x) y = 0 shows that p(x) = 3
x(1−x) , q(x) =

2
x(x−1) .

Hence there are two singular points, one at x = 0 and one at x = 1. Let the expansion be
around x = 0. This means the solution will define up to x = 1, which is the next nearest
singular point.

p0 = lim
x→0

xp(x) = lim
x→0

x
3

x (1− x) = 3

And
q0 = lim

x→0
x2

2
x (1− x) = 0

Hence x0 = 0 is a regular singular point. The indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + 3r = 0
r2 − r + 3r = 0

r2 + 2r = 0
r(r + 2) = 0

Therefore r = 0, r = −2. They differ by an integer N = 2. Therefore two linearly
independent solutions can be constructed using

y1 =
∞∑
n=0

anx
n+r1

y2 =
∞∑
n=0

bnx
n+r2

Where C above can be zero depending on a condition given below. Now we will work out
the solution for a general r. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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The homogeneous ode becomes (
x− x2

)
y′′ + 3y′ + 2y = 0(

x− x2
) ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2 + 3
∞∑
n=0

(n+ r) anxn+r−1 + 2
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=0

2anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1−
∞∑
n=1

(n+ r − 1) (n+ r − 2) an−1x
n+r−1+

∞∑
n=0

3(n+ r) anxn+r−1+
∞∑
n=1

2an−1x
n+r−1 = 0

(1A)
For n = 0

(n+ r) (n+ r − 1) anxn+r−1 + 3(n+ r) anxn+r−1 = 0
(r(r − 1) + 3r) a0xr−1 =(

r2 + 2r
)
a0x

r−1 = 0 (1B)

Since a0 6= 0, then r = 0, r = −2 as was found above. Hence N = 2 which is the difference
between the two roots. The homogenous ode therefore satisfies(

x− x2
)
y′′ + 3y′ + 2y =

(
r2 + 2r

)
a0x

r−1

Since when r = 0, r = −2 the RHS is zero. The term on the right of the above is important
as it will be used to determine the particular solution. The recurrence relation is when
n ≥ 1 from (1A) and is given by

(n+ r) (n+ r − 1) an − (n+ r − 1) (n+ r − 2) an−1 + 3(n+ r) an + 2an−1 = 0

Keeping larger an on the left and all lower an on the right gives

an = −2 + (n+ r − 1) (n+ r − 2)
(n+ r) (n+ r − 1) + 3 (n+ r)an−1

an = n+ r − 3
n+ r + 2an−1 (1)

Now we find yh = c1y1 + c2y2. For r = 0 then (1) becomes

an = n− 3
n+ 2an−1 (2)

For n = 1 and letting a0 = 1 then (2) gives

a1 =
1− 3
1 + 2a0 =

−2
3

For n = 2 Eq. (2) gives

a2 =
2− 3
2 + 2a1 =

2− 3
2 + 2

(
−2
3

)
= 1

6

For n = 3 Eq. (2) gives
a3 =

3− 3
3 + 2a2 = 0

And all other higher an = 0. Hence

y1 =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2

= 1− 2
3x+

1
6x

2
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Now we need to find y2. We first check if y2 can be found using standard method as was
done above for y1. For this we calculate bN = b2 using same recurrence relation (1) to see
if it is defined or not. If it is defined, then we continue, else we have to use the modified
Frobenius method. From (1) and using b instead of a and using r = r2 = −2 gives

bn = n+ r − 3
n+ r + 2bn−1

= n− 2− 3
n− 2 + 2bn−1

= n− 5
n

bn−1

Hence for n = 1 and using b0 = 1 as we did for a0 gives

b1 = −4b0 = −4

For n = N = 2
bn = −3

2 b1 = 6

Since bN is defined, we can continue and y2 is found using same recurrence relation. Hence
this is subcase one. For n = 3

b3 =
−2
3 b2 = −4

For n = 4
b4 =

−1
4 b3 = 1

And so on. Hence

y2 =
1
x2

∞∑
n=0

bnx
n

= 1
x2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4)
= 1
x2
(
1− 4x+ 6x2 − 4x3 + x4

)
Therefore

yh = c1y1 + c2y2

= c1

(
1− 2

3x+
1
6x

2
)
+ c2

(
1
x2
(
1− 4x+ 6x2 − 4x3 + x4

))
Now we find yp. From earlier we found in (1B) the balance equation which gives(

x− x2
)
y′′ + 3y′ + 2y =

(
r2 + 2r

)
a0x

r−1

Relabeling r as m and a as c so not to confuse terms used in finding yh the above becomes(
x− x2

)
y′′ + 3y′ + 2y =

(
m2 + 2m

)
c0x

m−1

Therefore we need to balance (m2 + 2m) c0xm−1 = 3x2. This implies m− 1 = 2 or m = 3.
Therefore (m2 + 2m) c0 = 3 or (9 + 6) c0 = 3 which gives c0 = 3

15 = 1
5 . Hence

yp =
∞∑
n=0

cnx
n+m

= x3
∞∑
n=0

cnx
n

To find cn, the same recurrence relation given in (1) is used again but now r is replaced
by m and a replaced by c. This gives the recurrence relation to find coefficients of the
particular solution as

cn = n+m− 3
n+m+ 2cn−1
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For m = 3 the above becomes

cn = n+ 3− 3
n+ 3 + 2cn−1

= n

n+ 5cn−1

For n = 1
c1 =

1
6c0 =

1
6

(
1
5

)
= 1

30
For n = 2

c2 =
2

2 + 5c1 =
2
7

(
1
30

)
= 1

105
And so on. Hence

yp = x3
∞∑
n=0

cnx
n

= x3
(
c0 + c1x+ c2x

2 + · · ·
)

= x3
(
1
5 + 1

30x+
1
105x

2 + · · ·
)

Hence the final solution

y = yh + yp

= c1

(
1− 2

3x+
1
6x

2
)
+ c2

(
1
x2
(
1− 4x+ 6x2 − 4x3 + x4

))
+
(
1
5x

3 + 1
30x

4 + 1
105x

5 + · · ·
)

If we try to find yp by assuming yp =
∑∞

n=0 cnx
n and substituting into the ode and try to

match coefficients, we can not always be successful. The above method using the balance
equation always works and that is what I am using in my solver.

Example 2
4x2y′′ + 4xy′ +

(
4x2 − 1

)
y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = 4x2−1

4x2 . Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =
limx→0 x

2q(x) = limx→0
4x2−1

4 = −1
4 . Hence the indicial equation is

r(r − 1) + p0r + q0 = 0

r(r − 1) + r − 1
4 = 0

r2 − 1
4 = 0

r = −1
2 ,

1
2

Therefore r1 = 1
2 , r2 = −1

2 .

Expansion around x = 0. This is regular singular point. Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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The ode becomes

4x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + 4x
∞∑
n=0

(n+ r) anxn+r−1 + 4x2
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

4(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

4(n+ r) anxn+r +
∞∑
n=0

4anxn+r+2 −
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(4(n+ r) (n+ r − 1) + 4(n+ r)− 1) anxn+r +
∞∑
n=0

4anxn+r+2 = 0

∞∑
n=0

(
4n2 + 8nr + 4r2 − 1

)
anx

n+r +
∞∑
n=0

4anxn+r+2 = 0

∞∑
n=0

(
4(n+ r)2 − 1

)
anx

n+r +
∞∑
n=0

4anxn+r+2 = 0

(1)

Re indexing to lowest powers on x gives
∞∑
n=0

(
4(n+ r)2 − 1

)
anx

n+r +
∞∑
n=2

4an−2x
n+r = 0 (2)

n = 0 gives (
4r2 − 1

)
a0x

r = 0

Since a0 6= 0, then r1 = 1
2 , r2 = −1

2 as was found above. The ode therefore satisfies

4x2y′′ + 4xy′ +
(
4x2 − 1

)
y =

(
4r2 − 1

)
a0x

r

Since when r1 = 1
2 , r2 = −1

2 the RHS is zero. When n = 1 then (2) gives(
4(1 + r)2 − 1

)
a1 = 0 (3)

The recurrence relation is when n ≥ 2 from (2) is given by(
4(n+ r)2 − 1

)
an + 4an−2 = 0

an = −4
4 (n+ r)2 − 1

an−2 (4)

Since roots differ by an integer N = 1 then there two linearly independent solutions can
be constructed using

y1 = xr1
∞∑
n=0

anx
n

y2 = Cy1 ln (x) + xr2
∞∑
n=0

bnx
n

C above can come out to be zero. We start by finding y1 (the one with the larger r).

Now, using r = 1
2 . For n = 1 and from (3)(

4
(
1 + 1

2

)2

− 1
)
a1 = 0

8a1 = 0
a1 = 0

From n = 2 from (4) and using r = 1
2 it becomes

an = −4
4
(
n+ 1

2

)2 − 1
an−2

= − 1
n2 + n

an−2 (5)
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For n = 2 then (5) gives (and using a0 = 1)

a2 = −1
6a0

= −1
6

For n = 3 Eq (5) gives

a3 = − 1
12a1

= 0

For n = 4 Eq (5) gives

a4 = − 1
20a2

= − 1
20

(
−1
6

)
= 1

120
And so on. Hence

y1 =
∞∑
n=0

anx
n+ 1

2

= x
1
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · ·
)

=
√
x

(
1− 1

6x
2 + 1

120x
4 + · · ·

)
Now we need to find y2. We first check if y2 can be found using standard method as was
done above for y1. For this we calculate bN = b1 using same recurrence relation (1) to see
if it is defined or not. If it is defined, then we continue, else we have to use the modified
Frobenius method. From (1) and using b instead of a and using r = r2 = −1

2 gives(
4
(
1− 1

2

)2

− 1
)
b1 = 0

0b1 = 0

Hence b1 is arbitrary. Let b1 = 0. Since bN = b1 is defined, we can continue and y2 is found
using same recurrence relation. Hence this is subcase one. From (4) and using r = −1

2 it
becomes

bn = −4
4
(
n− 1

2

)2 − 1
bn−2

= − 1
n (n− 1)bn−2 (6)

For n = 2 Eq (6) gives (and using b0 = 1)

b2 = − 1
2 (2− 1)b0

= −1
2

For n = 3 Eq (6) gives

b3 = − 1
3 (3− 1)b1

= 0

For n = 4 Eq (6) gives

b4 = − 1
4 (4− 1)b2

= −− 1
12

(
−1
2

)
= 1

24



chapter 4. second order ode F (x, y, y′, y′′) = 0 299

And so on. Hence

y2 =
∞∑
n=0

bnx
n− 1

2

= 1√
x

(
b0 + b1x+ b2x

2 + · · ·
)

= 1√
x

(
1− 1

2x
2 + 1

24x
4 + · · ·

)
Therefore the final solution is

y = c1y1 + c2y2

= c1
√
x

(
1− 1

6x
2 + 1

120x
4 + · · ·

)
+ c2

1√
x

(
1− 1

2x
2 + 1

24x
4 + · · ·

)
Example 3

y′′ + y′ + y =
√
x

This ode is here because the RHS has no series expansion at x = 0. Comparing the ode
to

y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1, q(x) = 1. Therefore p0 = limx→0 xp(x) = limx→0 x = 0 and q0 =
limx→0 x

2q(x) = limx→0 x
2 = 0. Hence the indicial equation is

r(r − 1) = 0
r = 0, 1

Therefore r1 = 1, r2 = 0.

Expansion around x = 0. This is regular singular point (due to the RHS not having series
expansion). Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0 (1)

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=1

(n+ r − 1) an−1x
n+r−2 +

∞∑
n=2

an−2x
n+r−2 = 0 (2)

n = 0 gives
r(r − 1) a0xr−2 = 0

Since a0 6= 0, then r1 = 1, r2 = 0 as was found above. The ode therefore satisfies

y′′ + y′ + y = r(r − 1) a0xr−2

When n = 1 then (2) gives

(1 + r) (r) a1 + ra0 = 0

a1 =
−a0
1 + r

(3)
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The recurrence relation is when n ≥ 2 from (2) is given by

(n+ r) (n+ r − 1) an + (n+ r − 1) an−1 + an−2 = 0

an = −(n+ r − 1) an−1 − an−2

(n+ r) (n+ r − 1) (4)

Since roots differ by an integer N = 1 then there two linearly independent solutions can
be constructed using

y1 = xr1
∞∑
n=0

anx
n

y2 = Cy1 ln (x) + xr2
∞∑
n=0

bnx
n

C above can come out to be zero. We start by finding y1 (the one with the larger r).

Now, using r = 1. For n = 1 and from (3) and using a0 = 1 gives

a1 =
−a0
2

a1 =
−1
2

From n = 2 from (4) and using r = 1 it becomes

a2 =
−2a1 − a0
(2 + 1) (2) = −2a1 − a0

6 =
−2
(−1

2

)
− 1

6 = 0

For n = 3 then (5) gives

a3 =
−(3) a2 − a1
(3 + 1) (3) = −a1

12 =
−
(−1

2

)
12 = 1

24

And so on. Hence

y1 =
∞∑
n=0

anx
n+1

= x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · ·
)

= x

(
1− 1

2x+
1
24x

2 − 1
120x

3 + · · ·
)

Now we need to find y2. We first check if y2 can be found using standard method as was
done above for y1. For this we look at a1 = −a0

1+r
and see this is defined for r = 0. Next

we look at the recurrence relation an = −(n+r−1)an−1−an−2
(n+r)(n+r−1) and see this is also defined for

r = 1. Hence C = 0 and we can find y2 using same series expansion and using b0 = 1.

b1 =
−b0
1 + r

= −1
1 = −1

For n ≥ 2 we have
bn = −(n+ r − 1) bn−1 − bn−2

(n+ r) (n+ r − 1)
Which for r = 0 becomes

bn = −(n− 1) bn−1 − bn−2

n (n− 1) (5)

For n = 2
b2 =

−(2− 1) b1 − b0
2 = −(2− 1) (−1)− 1

2 = 0

For n = 3
b3 =

−(3− 1) b2 − b1
3 (3− 1) = 1

6
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For n = 4
b4 =

−(3) b3 − b2
4 (3) =

−(3)
(1
6

)
4 (3) = − 1

24
And so on. Hence

y2 =
∞∑
n=0

bnx
n+0

=
(
b0 + b1x+ b2x

2 + · · ·
)

= 1− x+ 1
6x

3 − 1
24x

4 + · · ·

Therefore yh

yh = c1y1 + c2y2

= c1x

(
1− 1

2x+
1
24x

2 − 1
120x

3 + · · ·
)
+ c2

(
1− x+ 1

6x
3 − 1

24x
4 + · · ·

)
Now we find yp. From above y′′ + y′ + y = r(r − 1) a0xr−2, and relabeling r as m and a as
c so not to confuse terms used

y′′ + y′ + y = m(m− 1) c0xm−2

Therefore we need to balance m(m− 1) c0xm−2 = x
1
2 since the RHS is

√
x. This implies

m− 2 = 1
2 or m = 5

2 . Therefore m(m− 1) c0 = 1 or 5
2

(5
2 − 1

)
c0 = 1, c0 = 4

15 . Hence

yp =
∞∑
n=0

cnx
n+m

= x
5
2

∞∑
n=0

cnx
n

To find cn, the same recurrence relation (4) is used by with r replaced by m and a replaced
by c. This gives

cn = −(n+m− 1) cn−1 − cn−2

(n+m) (n+m− 1)

=
−
(
n+ 5

2 − 1
)
cn−1 − cn−2(

n+ 5
2

) (
n+ 5

2 − 1
)

= −4
3
2cn−1 + cn−2 + ncn−1

(2n+ 3) (2n+ 5) (6)

The above is only for n ≥ 2. For n = 1, using a1 = −a0
1+r

and replacing a by c and r by m
gives

c1 =
−c0
1 +m

=
− 4

15
1 +

(5
2

) = − 8
105

For n = 2 from (6)

c2 = −4
3
2c1 + c0 + 2c1
(4 + 3) (4 + 5) = −4

(
3
2

(
− 8

105

)
+ 4

15 + 2
(
− 8

105

)
(4 + 3) (4 + 5)

)
= 0

For n = 3
c3 = −4

3
2c2 + c1 + 3c2
(6 + 3) (6 + 5) = −4

( − 8
105

(6 + 3) (6 + 5)

)
= 32

10 395
And so on. Hence
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yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+ 5

2

= x
5
2

∞∑
n=0

cnx
n

= x
5
2
(
c0 + c1x+ c2x

2 + · · ·
)

= x
5
2

(
4
15 − 8

105x+
32

10 395x
3 + · · ·

)
Hence the final solution

y = yh + yp

= c1x

(
1− 1

2x+
1
24x

2 − 1
120x

3 + · · ·
)
+ c2

(
1− x+ 1

6x
3 − 1

24x
4 + · · ·

)
+ x

5
2

(
4
15 − 8

105x+
32

10 395x
3 + · · ·

)
Roots of indicial equation differ by integer. Bad case ode internal name "sec-
ond_order_series_method_regular_singular_point_difference_is_integer_bad_case".

The description is given above. Only examples are given below.

Example 1
x2y′′ + xy′ +

(
x2 − 4

)
y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = x2−4

x2 . Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =
limx→0 x

2q(x) = limx→0 x
2 − 4 = −4. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r − 4 = 0

r2 − 4 = 0
r = 2,−2

Therefore r1 = 2, r2 = −2. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
(
x2 − 4

) ∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r + x2
∞∑
n=0

anx
n+r − 4

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r+2 −

∞∑
n=0

4anxn+r = 0

∞∑
n=0

((n+ r) (n+ r − 1) + (n+ r)− 4) anxn+r +
∞∑
n=0

anx
n+r+2 = 0
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Re indexing to lowest powers on x gives
∞∑
n=0

((n+ r) (n+ r − 1) + (n+ r)− 4) anxn+r +
∞∑
n=2

an−2x
n+r = 0 (2)

n = 0 gives

(r(r − 1) + r − 4) a0xr = 0(
r2 − 4

)
a0x

r = 0

Since a0 6= 0, then r2 = 4 or r1 = 2, r2 = −2 as was found above. The ode therefore
satisfies

x2y′′ + xy′ +
(
x2 − 4

)
y =

(
r2 − 4

)
a0x

r

Since when r1 = 2 or r2 = −2 then the RHS is zero. When n = 1 then (2) gives

((1 + r) r + (1 + r)− 4) a1 = 0(
r2 + 2r − 3

)
a1 = 0

Hence
a1 = 0

The recurrence relation is when n ≥ 2 from (2) is given by

((n+ r) (n+ r − 1) + (n+ r)− 4) an + an−2 = 0

an = −an−2

((n+ r) (n+ r − 1) + (n+ r)− 4) (4)

We check first if this is subcase one or two. To do this, we check if the recurrence relation
is defined for both roots for all n ≥ 2. The above for r = 2 gives

an = −an−2

((n+ 2) (n+ 2− 1) + (n+ 2)− 4) = − 1
n

an−2

n+ 4

We see that it is defined for all n ≥ 2. Now we check the other root r2 = −2. (4) now
becomes

an = −an−2

((n− 2) (n− 3) + (n− 2)− 4) = − 1
n

an−2

n− 4
We see that this is the difficult root as at n = 4 it is not defined as it gives 1/0 error.
Hence

rbad = −2

Therefore this is subcase two. For this case we do the following. We first find the solution
using symbolic r using (4), and at the end replace a0 by (r − rbad) b0 = (r + 2) b0. From
(4) and for n = 2

a2 =
−a0

((2 + r) (1 + r) + (2 + r)− 4) = −1
r

a0
r + 4

Since a1 = 0 then all odd an = 0. For n = 4

a4 =
−a2

((4 + r) (3 + r) + (4 + r)− 4) = − a2
(r + 6) (r + 2) = −

−1
r

a0
r+4

(r + 6) (r + 2) = 1
r

a0
(r + 4) (r + 6) (r + 2)

For n = 6

a6 =
−a4

((6 + r) (5 + r) + (6 + r)− 4) = − a4
(r + 8) (r + 4)

= −
1
r

a0
(r+4)(r+6)(r+2)

(r + 8) (r + 4)

= −1
r

a0
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)
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And so on. Hence

y = xr
(
a0 + a2x

2 + a4x
4 + · · ·

)
= xra0

(
1− 1

r

1
r + 4x

2 + 1
r

1
(r + 4) (r + 6) (r + 2)x

4 − 1
r

1
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

Replacing a0 by b0(r − rbad) or b0(r + 2) the above becomes

y = xrb0

(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

(5)
Now

y1 = yr=rbad

= yr=−2

= x−2b0

(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

r=−2

= x−2b0

(
1
r

1
(r + 4) (r + 6)x

4 − 1
r

1
(r + 8) (r + 4) (r + 4) (r + 6)x

6 + · · ·
)

r=−2

= x−2b0

(
− 1
16x

4 + 1
192x

6 − · · ·
)

But b0 = 1. Hence

y1 =
(
− 1
16x

2 + 1
192x

4 − · · ·
)

= − 1
16

(
x2 − 1

12x
4 − · · ·

)
We can removing the leading − 1

16 since it will be absorbed by the c1 constant. Hence

y1 = c1

(
x2 − 1

12x
4 − · · ·

)
Now we find y2 using

y2 =
(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at the bad root r = rbad = −2 same as for y1. Hence,
and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xr
(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
))

r=−2

= yr=−2 ln x+ xr
d

dr

(
(r + 2)− 1

r

(r + 2)
r + 4 x2 + 1

r

(r + 2)
(r + 4) (r + 6) (r + 2)x

4 − 1
r

(r + 2)
(r + 8) (r + 4) (r + 4) (r + 6) (r + 2)x

6 + · · ·
)

r=−2

But
y1 = yr=−2

Therefore, evaluating all the derivatives gives

y2 = y1 ln x+ xr
(
1 + (r2 + 4r + 8)

r2 (r + 4)2
x2 − 1

r2
3r2 + 20r + 24
(r2 + 10r + 24)2

x4 + (5r3 + 68r2 + 256r + 192)
r2 (r + 4)3 (r2 + 14r + 48)2

x6 + · · ·
)

r=−2

= y1 ln x+ x−2
(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

)
Hence

y2 = y1 ln x+
(
1
4 + 1

x2
+ 1

64x
2 − 11

2304x
4 + · · · · · ·

)
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Therefore the final solution is

y = c1y1 + c2y2

= c1

(
x2 − 1

12x
4 − · · ·

)
+ c2

(
ln (x)

(
x2 − 1

12x
4 − · · ·

)
+
(
1
4 + 1

x2
+ 1

64x
2 − 11

2304x
4 + · · · · · ·

))
Example 2

xy′′ − 3y′ + xy = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = −3
x
, q(x) = 1. Therefore p0 = limx→0 xp(x) = limx→0 (−3) = −3 and

q0 = limx→0 x
2q(x) = limx→0 x

2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1)− 3r = 0

r2 − 4r = 0
r(r − 4) = 0

r = 0, 4

Therefore r1 = 4, r2 = 0. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

xy′′ − 3y′ + xy = 0

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − 3
∞∑
n=0

(n+ r) anxn+r−1 + x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

3(n+ r) anxn+r−1 +
∞∑
n=2

an−2x
n+r−1 = 0 (2)

n = 0 gives

r(r − 1) a0xr−1 − 3ra0xr−1 = 0
(r(r − 4)) a0xr−1 = 0

Since a0 6= 0, then r(r − 4) = 0 or r1 = 0, r2 = 4 as was found above. The ode therefore
satisfies

xy′′ − 3y′ + xy = (r(r − 4)) a0xr−1

Since when r1 = 4 or r2 = 0 then the RHS is zero. When n = 1 then (2) gives

(1 + r) (r) a1 − 3(1 + r) a1 = 0(
r2 − 2r − 3

)
a1 = 0
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Hence
a1 = 0

The recurrence relation is when n ≥ 2 from (2) is given by

(n+ r) (n+ r − 1) an − 3(n+ r) an + an−2 = 0

an = −an−2

(n+ r) (n+ r − 1)− 3 (n+ r) (4)

We check first if this is subcase one or two. To do this, we check if the recurrence relation
is defined for both roots for all n ≥ 2. The above for r = 4 gives

an = −an−2

(n+ 4) (n+ 3)− 3 (n+ 4) = − 1
n

an−2

n+ 4

Which is defined for all n ≥ 2. Checking the second root r = 0 gives

an = −an−2

(n+ 0) (n+ 0− 1)− 3 (n+ 0) = − 1
n

an−2

n− 4

Which is not defined for n = 4. Hence this is subcase two, where y2 does not exist using
standard method. Hence

rbad = 0

For this case we do the following. We find the solution using symbolic r and replace a0 by
(r − rbad) b0. From (4) and for n = 2

a2 =
−a0

(2 + r) (1 + r)− 3 (2 + r) = − a0
r2 − 4

Since a1 = 0 then all odd an = 0. For n = 4

a4 =
−a2

(4 + r) (4 + r − 1)− 3 (4 + r) =
a0

r2−4
r (r + 4) = a0

r (r + 4) (r2 − 4)

For n = 6

a6 =
−a4

(6 + r) (5 + r)− 3 (6 + r) =
− a0

r(r+4)(r2−4)

r2 + 8r + 12

= −a0
(r2 + 8r + 12) r (r + 4) (r2 − 4)

And so on. Hence

y = xr
(
a0 + a2x

2 + a4x
4 + · · ·

)
= xra0

(
1− 1

r2 − 4x
2 + 1

r (r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) r (r + 4) (r2 − 4)x
6 + · · ·

)
Replacing a0 by b0(r − r2) or b0r since r2 = 0, the above becomes

y = xrb0

(
r − r

r2 − 4x
2 + 1

(r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) (r + 4) (r2 − 4)x
6 + · · ·

)
(5)

Now

y1 = yr=rbad

= yr=0

= b0

(
1

(4) (−4)x
4 − 1

(12) (4) (−4)x
6 + · · ·

)
= b0

(
− 1
16x

4 + 1
192x

6 + · · ·
)
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But b0 = 1. Hence

y1 =
(
− 1
16x

4 + 1
192x

6 + · · ·
)

= − 1
16

(
x4 − 1

12x
6 + · · ·

)
We can removing the leading − 1

16 since it will be absorbed by the c1 constant. Hence

y1 = c1

(
x4 − 1

12x
6 + · · ·

)
= x4c1

(
1− 1

12x
2 + · · ·

)
Now we find y2 using

y2 =
(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at root r = rbad = 0 the same as for y1. Hence, and
using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xr
(
r − r

r2 − 4x
2 + 1

(r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) (r + 4) (r2 − 4)x
6 + · · ·

))
r=0

= yr=0 ln x+ xr
d

dr

(
r − r

r2 − 4x
2 + 1

(r + 4) (r2 − 4)x
4 − 1

(r2 + 8r + 12) (r + 4) (r2 − 4)x
6 + · · ·

)
r=0

= yr=0 ln x+ x0
(
1 + (r2 + 4)

(r2 − 4)2
x2 − 3r2 + 8r − 4

(r3 + 4r2 − 4r − 16)2
x4 + 1

(r + 2)3
5r3 + 38r2 + 44r − 88
(r3 + 8r2 + 4r − 48)2

x6 − · · ·
)

r=0

= yr=0 ln x+
(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

)
But

yr=0 = y1

Therefore
y2 = y1 ln x+

(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

)
The complete solution is

y = c1y1 + c2y2

= x4c1

(
1− 1

12x
2 + · · ·

)
+ c2

(
ln x
(
x4
(
1− 1

12x
2 + · · ·

))
+
(
1 + 1

4x
2 + 1

64x
4 − 11

2304x
6 + · · ·

))
Example 3

x2y′′ +
(
x2 − 2x

)
y′ + 2y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Show that p(x) =
(
x2−2x

)
x2 = (x−2)

x
, q(x) = 2

x2 . Therefore p0 = limx→0 xp(x) = limx→0 (x− 2) =
−2 and q0 = limx→0 x

2q(x) = limx→0 2 = 2. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1)− 2r + 2 = 0

r2 − 3r + 2 = 0
r = 2, 1
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Therefore r1 = 2, r2 = 1. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2y′′ +
(
x2 − 2x

)
y′ + 2y = 0

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
(
x2 − 2x

) ∞∑
n=0

(n+ r) anxn+r−1 + 2
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r + x2
∞∑
n=0

(n+ r) anxn+r−1 − 2x
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

2anxn+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r+1 −
∞∑
n=0

2(n+ r) anxn+r +
∞∑
n=0

2anxn+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r+
∞∑
n=1

(n+ r − 1) an−1x
n+r−

∞∑
n=0

2(n+ r) anxn+r+
∞∑
n=0

2anxn+r = 0

(2)
n = 0 gives

r(r − 1) a0xr − 2ra0xr + 2a0xr = 0
(r(r − 1)− 2r + 2) a0xr = 0(

r2 − 3r + 2
)
a0x

r = 0

Since a0 6= 0, then r2 − 3r+2 = 0,or r1 = 2, r2 = 1 as was found above. The ode therefore
satisfies

x2y′′ +
(
x2 − 2x

)
y′ + 2y =

(
r2 − 3r + 2

)
a0x

r

Recurrence relation is when n ≥ 1. From (2)

(n+ r) (n+ r − 1) an + (n+ r − 1) an−1 − 2(n+ r) an + 2an = 0

Therefore

an = − (n+ r − 1)
(n+ r) (n+ r − 1)− 2 (n+ r) + 2an−1

= − 1
n+ r − 2an−1 (3)

We check first if this is subcase one or two. To do this, we check if the above recurrence
relation is defined for both roots for all n ≥ 1. The above for r = r1 = 2 gives

an = − 1
n
an−1

Which is defined for all n ≥ 1. Checking the second root r = 1 gives

an = − 1
n− 1an−1

Which is not defined for n = 1. Hence this is subcase two, where y2 does not exist using
standard method. Hence

rbad = 1
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For this case we do the following. We find the solution using symbolic r and replace a0 by
(r − rbad) b0. From (3) and for n = 1

a1 = − 1
r − 1a0

For n = 2
a2 = −1

r
a1 =

1
(r) (r − 1)a0

For n = 3
a3 = − 1

r + 1a2 = − a0
(r) (r − 1) (r + 1)

For n = 4
a4 = − 1

2 + r
a3 =

a0
(r) (r − 1) (r + 1) (r + 2)

And so on. Hence

y = xr
(
a0 + a1x+ a2x

2 + · · ·
)

= xra0

(
1− 1

r − 1x+
1

(r) (r − 1)x
2 − 1

(r) (r − 1) (r + 1)x
3 + 1

(r) (r − 1) (r + 1) (r + 2)x
4 − · · ·

)
Replacing a0 by b0(r − rbad) or b0(r − 1) since rbad = 1, the above becomes

y = xrb0

(
(r − 1)− (r − 1)

r − 1 x+ (r − 1)
(r) (r − 1)x

2 − (r − 1)
(r) (r − 1) (r + 1)x

3 + (r − 1)
(r) (r − 1) (r + 1) (r + 2)x

4 − · · ·
)

= xrb0

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

)
(5)

Now

y1 = yr=rbad

= yr=1

= xb0

(
−x+ x2 − 1

2x
3 + 1

(1) (2) (3)x
4 − · · ·

)
= xb0

(
−x+ x2 − 1

2x
3 + 1

6x
4 − · · ·

)
But b0 = 1. Hence

y1 = x

(
−x+ x2 − 1

2x
3 + 1

6x
4 − · · ·

)
= −x2 + x3 − 1

2x
4 + 1

6x
5 − · · ·

Now we find y2 using
y2 =

(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at root r = rbad = 1, the same as for y1. Hence, and
using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xrb0

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

))
r=1

= yr=1 ln x+ xr=1 d

dr

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

)
r=1

= y1 ln x+ x
d

dr

(
(r − 1)− x+ 1

r
x2 − 1

r (r + 1)x
3 + 1

r (r + 1) (r + 2)x
4 − · · ·

)
r=1

= y1 ln x+ x

(
1− 1

r2
x2 + 1

r2
2r + 1
(r + 1)2

x3 − 1
r2

3r2 + 6r + 2
(r2 + 3r + 2)2

x4 − · · ·
)

r=1

= y1 ln x+ x

(
1− x2 + 3

4x
3 − 11

36x
4 − · · ·

)
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Therefore
y2 = y1 ln x+

(
x− x3 + 3

4x
4 − 11

36x
5 − · · ·

)
The complete solution is

y = c1y1 + c2y2

= c1

(
−x2 + x3 − 1

2x
4 + 1

6x
5 − · · ·

)
+ c2

(
ln x
(
−x2 + x3 − 1

2x
4 + 1

6x
5 − · · ·

)
+
(
x− x3 + 3

4x
4 − 11

36x
5 − · · ·

))
Example 4

(x− 1) y′′ + xy′ + y

x
= 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = x
x−1 , q(x) =

1
x(x−1) . There is a singular point at x = 0 and at x = 1. For

x = 0, p0 = limx→0 xp(x) = 0 and q0 = limx→0 x
2q(x) = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) = 0

r = 0, 1

For expansion around x = 0. This is regular singular point. Hence Frobenius is needed.
Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

(x− 1) y′′ + xy′ + y

x
= 0

(x− 1)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 + x−1
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r−1 = 0

Re indexing to lowest powers on x gives
∞∑
n=1

(n+ r − 1) (n+ r − 2) an−1x
n+r−2−

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2+
∞∑
n=2

(n+ r − 2) an−2x
n+r−2+

∞∑
n=1

an−1x
n+r−2 = 0

(2)
n = 0 gives

(r(r − 1)) a0 = 0

Since a0 6= 0, then r1 = 0, r2 = 1 as was found above. For n = 1

(r) (r − 1) a0 − (1 + r) (r) a1 + a0 = 0

a1 =
a0 + (r) (r − 1) a0

(1 + r) (r) = 1 + (r) (r − 1)
(1 + r) (r) a0

For r = 0 the above is not defined. Therefore this falls into case two (difficult case). Hence
rbad = 0. For r = 1 we see a1 is defined.
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For this case we do the following. We find the solution using symbolic r and replace a0 by
(r − rbad) b0 = rb0. For n = 1

a1 =
1 + (r) (r − 1)
(1 + r) (r) a0

For n ≥ 2, the recurrence relation is

(n+ r − 1) (n+ r − 2) an−1 − (n+ r) (n+ r − 1) an + (n+ r − 2) an−2 + an−1 = 0

Or
an = (n+ r − 1) (n+ r − 2) + 1

(n+ r) (n+ r − 1) an−1 +
(n+ r − 2)

(n+ r) (n+ r − 1)an−2 (3)

For n = 2

a2 =
(1 + r) (r) + 1
(2 + r) (1 + r)a1 +

r

(2 + r) (1 + r)a0

= r(1 + r) + 1
(2 + r) (1 + r)

(
1 + r(r − 1)
(1 + r) (r) a0

)
+ r

(2 + r) (1 + r)a0

=
(

r(1 + r) + 1
(2 + r) (1 + r)

1 + r(r − 1)
r (1 + r) + r

(2 + r) (1 + r)

)
a0

=
(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
a0

For n = 3

a3 =
(2 + r) (1 + r) + 1
(3 + r) (2 + r) a2 +

(1 + r)
(3 + r) (2 + r)a1

= (2 + r) (1 + r) + 1
(3 + r) (2 + r)

((
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
a0

)
+ (1 + r)

(3 + r) (2 + r)

(
1 + (r) (r − 1)
(1 + r) (r) a0

)
=
[
(2 + r) (1 + r) + 1
(3 + r) (2 + r)

(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
+ (1 + r)

(3 + r) (2 + r)
1 + (r) (r − 1)
(1 + r) (r)

]
a0

And so on. Hence

y = xr
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= xra0

(
1 + 1 + (r) (r − 1)

(1 + r) (r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
x2 + · · ·

)
Replacing a0 by b0(r − rbad) or b0r since rbad = 0, the above becomes

y = xrb0

(
r + r

1 + (r) (r − 1)
(1 + r) (r) x+ r

(
(r(1 + r) + 1) (1 + r(r − 1))
(2 + r) (1 + r) (1 + r) (r) + r

(2 + r) (1 + r)

)
x2 + · · ·

)
= xrb0

(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

)
(5)

Now

y1 = yr=rbad

= yr=0

= x0b0

(
x+

(
1

(2) (1) (1)

)
x2 +

[
(2) (1) + 1
(3) (2)

(
(1) (1)

(2) (1) (1)

)
+ (1)

(3) (2)

]
x3· · ·

)
= b0

(
x+ 1

2x
2 + 5

12x
3 + · · ·

)
But b0 = 1. Hence

y1 = x+ 1
2x

2 + 5
12x

3 + · · ·

y2 is found using
y2 =

(
dy

dr

)
r=rbad
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Notice the derivative is evaluated also at root r = rbad = 0, the same as for y1. Hence, and
using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xr
(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

))
r=0

= yr=0 ln x+ xr=0 d

dr

(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

)
r=0

But yr=0 = y1. The above becomes

y2 = y1 ln x+
d

dr

(
r + 1 + (r) (r − 1)

(1 + r) x+
(
(r(1 + r) + 1) (1 + r(r − 1))

(2 + r) (1 + r) (1 + r) + r2

(2 + r) (1 + r)

)
x2 + · · ·

)
r=0

Carrying out the derivatives gives

y2 = y1 ln x+
(
1 + 1

(r + 1)2
(
r2 + 2r − 2

)
x+

(
(r5 + 7r4 + 10r3 + 8r2 + 5r − 5)

(r + 1)3 (r + 2)2
)
x2 + · · ·

)
r=0

Evaluating at r = 0
y2 = y1 ln x+

(
1− 2x− 5

4x
2 + · · ·

)
Therefore the complete solution is

y = c1y1 + c2y2

= c1

(
x+ 1

2x
2 + 5

12x
3 + · · ·

)
+ c2

(
ln x
(
x+ 1

2x
2 + 5

12x
3 + · · ·

)
+
(
1− 2x− 5

4x
2 + · · ·

))
Example 5

x2y′′ + xy′ +
(
x2 − 1

)
y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = x2−4

x2 . Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =
limx→0 x

2q(x) = limx→0 (x2 − 1) = −1. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r − 1 = 0

r2 − 1 = 0
r = 1,−1

Therefore r1 = 1, r2 = −1. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 +
(
x2 − 1

) ∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r + x2
∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r+2 −

∞∑
n=0

anx
n+r = 0
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Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=2

an−2x
n+r −

∞∑
n=0

anx
n+r = 0 (2)

n = 0 gives

r(r − 1) a0xr + ra0x
r − a0 = 0

(r(r − 1) + r − 1) a0xr = 0(
r2 − 1

)
a0x

r = 0

Since a0 6= 0, then r2 = 1 or r1 =, r2 = −1 as was found above. The ode therefore satisfies

x2y′′ + xy′ +
(
x2 − 1

)
y =

(
r2 − 1

)
a0x

r (2A)

When n = 1 then (2) gives

(1 + r) (r) a1 + (1 + r) a1 − a1 = 0
((1 + r) (r) + (1 + r)− 1) a1 = 0

(r(r + 2)) a1 = 0

Hence
a1 = 0

The recurrence relation is when n ≥ 2 from (2) is given by

(n+ r) (n+ r − 1) an + (n+ r) an + an−2 − an = 0

an = −an−2

(n+ r) (n+ r − 1) + (n+ r)− 1 (4)

We check first if this is subcase one or two. To do this, we check if the recurrence relation
is defined for both roots for all n ≥ 2. The above for r = 1 gives

an = −an−2

(n+ 1)n+ n

We see that it is defined for all n ≥ 2. Now we check the other root r2 = −1. (4) now
becomes

an = −an−2

(n− 1) (n− 2) + (n− 2)
We see that this is the difficult root as at n = 2 it is not defined as it gives 1/0 error.
Hence

rbad = −1

Therefore this is subcase two. For this case we do the following. We first find the solution
using symbolic r using (4), and at the end replace a0 by (r − rbad) b0 = (r + 1) b0. From
(4) and for n = 2

a2 =
−a0

((2 + r) (1 + r) + (2 + r)− 1) = −a0
(r + 1) (r + 3)

Since a1 = 0 then all odd an = 0. For n = 4

a4 =
−a2

((4 + r) (3 + r) + (4 + r)− 1) = − a2
(r + 5) (r + 3) = −

−a0
(r+1)(r+3)

(r + 5) (r + 3) = a0
(r + 5) (r + 3) (r + 1) (r + 3)

For n = 6

a6 =
−a4

((6 + r) (5 + r) + (6 + r)− 1) = − a4
(r + 7) (r + 5) = −

a0
(r+5)(r+3)(r+1)(r+3)

(r + 7) (r + 5)
= − a0

(r + 7) (r + 5) (r + 5) (r + 3) (r + 1) (r + 3)
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And so on. Hence

y = xr
(
a0 + a2x

2 + a4x
4 + · · ·

)
= xra0

(
1− 1

(r + 1) (r + 3)x
2 + 1

(r + 5) (r + 3) (r + 1) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 1) (r + 3)x
6 + · · ·

)
Replacing a0 by b0(r − rbad) or b0(r + 1) the above becomes

y = xrb0

(
(r + 1)− (r + 1)

(r + 1) (r + 3)x
2 + (r + 1)

(r + 5) (r + 3) (r + 1) (r + 3)x
4 − (r + 1)

(r + 7) (r + 5) (r + 5) (r + 3) (r + 1) (r + 3)x
6 + · · ·

)
= xrb0

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

)
(5)

Now

y1 = yr=rbad

= yr=−1

= x−1b0

(
− 1
(r + 3)x

2 + 1
(r + 5) (r + 3) (r + 3)x

4 − 1
(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x

6 + · · ·
)

r=−1

= x−1b0

(
− 1
(−1 + 3)x

2 + 1
(−1 + 5) (−1 + 3) (−1 + 3)x

4 − 1
(−1 + 7) (−1 + 5) (−1 + 5) (−1 + 3) (−1 + 3)x

6 + · · ·
)

= x−1b0

(
−1
2x

2 + 1
16x

4 − 1
384x

6 + · · ·
)

b0 = 1. Hence

y1 =
1
x

(
−1
2x

2 + 1
16x

4 − 1
384x

6 + · · ·
)

=
(
−1
2x+

1
16x

3 − 1
384x

5 + · · ·
)

= −1
2

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
We can remove the leading −1

2 since it will be absorbed by the c1 constant. Hence

y1 =
(
x− 1

8x
3 + 1

192x
5 + · · ·

)
Now we find y2 using

y2 =
(
dy

dr

)
r=rbad

Notice the derivative is evaluated also at the bad root r = rbad = −2 same as for y1. Hence,
and using b0 = 1 and using (5) the above gives

y2 =
d

dr

(
xrb0

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

))
r=−1

= yr=−1 ln x+ xr
d

dr

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

)
r=−1

But
y1 = yr=−2

Therefore, evaluating all the derivatives gives

y2 = y1 ln x+ x−1 d

dr

(
(r + 1)− 1

(r + 3)x
2 + 1

(r + 5) (r + 3) (r + 3)x
4 − 1

(r + 7) (r + 5) (r + 5) (r + 3) (r + 3)x
6 + · · ·

)
r=−1

= y1 ln x+ x−1
(
1 + 1

(r + 3)2
x2 − 3r + 13

(r + 3)3 (r + 5)2
x4 + 1

(r + 7)2
5r2 + 52r + 127
(r2 + 8r + 15)3

x6 + · · ·
)

r=−1

= y1 ln x+ x−1
(
1 + 1

4x
2 − 5

64x
4 + 5

1152x
6 + · · ·

)
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Hence
y2 = y1 ln x+

(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
)

Therefore the final solution is

y = c1y1 + c2y2

= c1

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+ c2

(
ln (x)

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
))

Example 6
x2y′′ + xy′ +

(
x2 − 1

)
y = 1

This is same example as above but with non zero in the RHS. So we can use the solution
for yh obtained above, but need to find yp here and add these to obtain the general solution.
From above we found that

yh = c1

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+ c2

(
ln (x)

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
))

And from (2A) in the above example we also found the balance equation, which is always
the starting point to finding yp, which is

x2y′′ + xy′ +
(
x2 − 1

)
y =

(
r2 − 1

)
a0x

r

Therefore, and as we did all the time, relabel r as m and a as c so not to confuse notations.
Therefore we have (

m2 − 1
)
c0x

m = 1

Hence
m = 0

This implies (m2 − 1) c0 = 1 or
c0 = −1

Now we find yp using the same recursive relation found when finding yh terms but using
r = m = 0 now and using a0 = c0 = −1 (instead of a0 = 1 as is always done when finding
yh). Also let c1 = 0 as that is the same as a1. Now we get to the recurrence relation (4) in
last example which is

an = −an−2

(n+ r) (n+ r − 1) + (n+ r)− 1

Using c in place of a and using m in place r it becomes for n ≥ 2

cn = −cn−2

(n+m) (n+m− 1) + (n+m)− 1

But m = 0
cn = −cn−2

n (n− 1) + (n− 1)
For n = 2

c2 =
−c0
2 + 1 = −c03

But c0 = −1. The above becomes

c2 =
−c0
2 + 1 = 1

3
For n = 4 (since all odd cn = 0)

c4 =
−c2

4 (3) + (3) =
−1

3
4 (3) + (3) = − 1

45
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For n = 6
c6 =

−c4
6 (5) + (5) =

1
45

6 (5) + (5) = 1
1575

And so on. Hence

yp = xm
∞∑
n=0

cnx
n

= c0 + c2x
2 + c4x

4 + · · ·

= −1 + 1
3x

2 − 1
45x

4 + 1
1575x

6 + · · ·

Hence the general solution is

y = yh + yp

= c1

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+

c2

(
ln (x)

(
x− 1

8x
3 + 1

192x
5 + · · ·

)
+
(
1
x
+ 1

4x−
5
64x

3 + 5
1152x

5 + · · ·
))

+
(
−1 + 1

3x
2 − 1

45x
4 + 1

1575x
6 + · · ·

)
Example 7

x2y′′ + xy′ +
(
x2 − 1

)
y = 1

x

This is same example as above but with 1
x
instead of 1 in the RHS to show that there will

not be a series solution in this. From (2A) in the above example we found the balance
equation, which is always the starting point to finding yp, which is

x2y′′ + xy′ +
(
x2 − 1

)
y =

(
r2 − 1

)
a0x

r

Therefore, and as we did all the time, relabel r as m and a as c so not to confuse notations.
Therefore we have (

m2 − 1
)
c0x

m = x−1

Hence
m = −1

This implies (m2 − 1) c0 = 1 or (
(−1)2 − 1

)
c0 = 1
0c0 = 1

Therefore no solution exists. This is why there is no series solution for this ode. If we try
to solve this using Maple, will will get no answer and the above explains why.

Roots of indicial equation are repeated ode internal name "second_order_series_method_reg-
ular_singular_point_repeated_root".

In this case the solution is
y = c1y1 + c2y2

Where

y1 =
∞∑
n=0

anx
n+r1

y2 = y1 ln (x) +
∞∑
n=1

bnx
n+r2

r1, r2 are roots of the indicial equation. a0, b0 are set to 1 as arbitrary. The coefficients
bn are not found from the recurrence relation but found using using bn = d

dr
an(r) after
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finding an first, and the result evaluated at root r2. (notice that r = r1 = r2 in this case).
Notice there is no C term in from of the ln in this case as when root differ by an integer
and the sum on bn starts at 1 since b0 is always zero due to d

dr
a0(r) = 0 always as a0 = 1

by default.

Example 1

x2y′′ + xy′ + xy = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = 1

x
. Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =

limx→0 x
2q(x) = limx→0 x = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r = 0

r2 = 0
r = 0, 0

Therefore r1 = 0, r2 = 0.

Expansion around x = 0. This is regular singular point. Hence Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x2
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 + x
∞∑
n=0

(n+ r) anxn+r−1 + x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r +
∞∑
n=1

an−1x
n+r = 0 (1)

The indicial equation is obtained from n = 0. The above reduces to
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑
n=0

(n+ r) anxn+r = 0

(n+ r) (n+ r − 1) an + (n+ r) an = 0
(r) (r − 1) a0 + ra0 = 0
a0
((
r2 − r

)
+ r
)
= 0

a0r
2 = 0

Since a0 6= 0 then
r2 = 0
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Hence r1 = 0, r2 = 0. Since the roots are repeated then two linearly independent solutions
can be constructed using

y1 = xr1
∞∑
n=0

anx
n =

∞∑
n=0

anx
n

y2 = y1 ln (x) + xr2
∞∑
n=1

bnx
n = y1 ln (x) +

∞∑
n=1

bnx
n

For n ≥ 1 the recurrence relation is

(n+ r) (n+ r − 1) an + (n+ r) an + an−1 = 0

an = − an−1

(n+ r) (n+ r − 1) + (n+ r)
= − an−1

(n+ r)2
(1)

Starting with y1. From (1) with r = 0 gives

an = −an−1

n2

For n = 1 and using a0 = 1
a1 = −1

For n = 2
a2 = −a14 = 1

4
And so on. Hence

y1 =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · ·

= 1− x+ 1
4x

2 − 1
36x

3 + · · ·

In the case of duplicate roots, bn is found using bn = d
dr
an(r). And this is evaluated at

r = r0 = 0 in this case since r0 = 0 here. So we need to find an(r). This is done from (1).
For n = 1

b1 =
d

dr
(a1(r))

b1 =
d

dr

(
− a0

(1 + r)2
)

= d

dr

(
− 1
(1 + r)2

)
= 2

(r + 1)3

Evaluated at r = 0 gives
b1 = 2

For n = 2 then (2) becomes

b2 =
d

dr
(a2(r))

b2 =
d

dr

(
− a1

(2 + r)2
)

= d

dr

(
−
− 1

(1+r)2

(2 + r)2

)
= d

dr

(
1

(r + 1)2 (r + 2)2
)

= −2 2r + 3
(r2 + 3r + 2)3

At r = 0 the above becomes
b2 = −2 3

(2)3
= −3

4
And so on. Just remember when replacing the an in the above, is to use the original an(r)
as function of r and not the actual an values from above. It has to be function of r first
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before taking derivatives, Hence

y2 = y1 ln (x) +
∞∑
n=1

bnx
n

= y1 ln (x) + b1x+ b2x
2 + b3x

3 + · · ·

= y1 ln (x) + 2x− 3
4x

2 + · · ·

= y1 ln (x) +
(
2x− 3

4x
2 + · · ·

)
Therefore the general solution is

y = c1y1 + c2y2

= c1

(
1− x+ 1

4x
2 − 1

36x
3 + · · ·

)
+ c2

(
y1 ln (x) +

(
2x− 3

4x
2 + · · ·

))
Example 2

x2y′′ + xy′ + xy = 1

The homogenous ode was solved up, so we just need to find yp. To find yp, and using m
in place of r and c in place of a so not to confuse terms with the yh terms, then from the
above problem, we found the indicial equation. Hence the balance equation is

c0m
2xm = 1

To balance this we need m = 0. Hence 0c0 = 1 which is not possible. Hence no particular
solution exists. No solution in series exists.

Example 3

x2y′′ + xy′ + xy = 1
x

This is the same ode as above but with different RHS. So we will go directly to finding yp.
From above we found that the balance equation is

x2y′′ + xy′ + xy = m2c0x
m

Hence
m2c0x

m = x−1

Which implies m = −1 and therefore m2c0 = 1 or c0 = 1. Using the recurrence equation
(1) in the above problem using using cn in place of an and m in place or r gives

cn = − cn−1

(n+m)2

For m = −1
cn = − cn−1

(n− 1)2

Hence

yp =
∞∑
n=0

cnx
n+m

= 1
x

∞∑
n=0

cnx
n

Now to find few cn terms. For n = 1

c1 = − c0

(1− 1)2
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Which is not defined. Hence no yp exist. There is no solution in terms of series solution.

Example 4

x2y′′ + xy′ + xy = x

This is the same ode as above, where we found yh but with different RHS. So we will go
directly to finding yp. From above we found that the balance equation is

x2y′′ + xy′ + xy = m2c0x
m

Hence
m2c0x

m = x

Which implies m = 1 and therefore m2c0 = 1 or c0 = 1. Using the recurrence equation (1)
in the above problem and using cn in place of an and m in place or r gives

cn = − cn−1

(n+m)2

For m = 1
cn = − cn−1

(n+ 1)2

Hence

yp =
∞∑
n=0

cnx
n+m

= x
∞∑
n=0

cnx
n

Now to find few cn terms. For n = 1

c1 = − c0

(2)2
= −1

4

For n = 2
c2 = − c1

(2 + 1)2
=

1
4
9 = 1

36
For n = 3

c3 = − c2

(3 + 1)2
= −

1
36
16 = − 1

576
And so on. Hence

yp = x
∞∑
n=0

cnx
n

= x
(
c0 + c1x+ c2x

2 + · · ·
)

= x

(
1− 1

4x+
1
36x

2 − 1
576x

3 + · · ·
)

=
(
x− 1

4x
2 + 1

36x
3 − 1

576x
4 + · · ·

)
Using yh found in the above problem since that does not change, then the general solution
is

y = yh + yp

= c1

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 + · · ·

)
+ c2

(
ln (x)

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 + · · ·

)
+
(
2x− 3

4x
2 + 14

108x
3 + · · ·

))
+
(
x− 1

4x
2 + 1

36x
3 − 1

576x
4 + · · ·

)
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Example 5
xy′′ + y′ − xy = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
x
, q(x) = −1. Therefore p0 = limx→0 xp(x) = limx→0 1 = 1 and q0 =

limx→0 x
2q(x) = limx→0 x

2 = 0. Hence the indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r = 0

r2 = 0
r = 0, 0

Therefore r1 = 0, r2 = 0. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 − x
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 −
∞∑
n=0

anx
n+r+1 = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 −
∞∑
n=2

an−2x
n+r−1 = 0

∞∑
n=0

((n+ r) (n+ r − 1) + (n+ r)) anxn+r−1 −
∞∑
n=2

an−2x
n+r−1 = 0

∞∑
n=0

(n+ r)2 anxn+r−1 −
∞∑
n=2

an−2x
n+r−1 = 0 (1)

The indicial equation is obtained from n = 0. The above reduces to

r2a0x
n+r−1 = 0

Since a0 6= 0 then
r2 = 0

Hence r1 = 0, r2 = 0 as found earlier. Since the roots are repeated then two linearly
independent solutions can be constructed using

y1 = xr1
∞∑
n=0

anx
n =

∞∑
n=0

anx
n

y2 = y1 ln (x) + xr2
∞∑
n=1

bnx
n = y1 ln (x) +

∞∑
n=1

bnx
n

n = 1 gives

(1 + r) (r) a1 + (1 + r) a1 = 0
(r + 1)2 a1 = 0
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Hence a1 = 0. The recurrence relation is obtained for n ≥ 2. From (1)

n+ r(n+ r − 1) an + (n+ r) an − an−2 = 0

an = an−2

(n+ r)2
(1)

Since we need to differentiate y1 to obtain y2 and the differentiation is w.r.t r, we will carry
the calculations with r in place and at the end replace r by its value (which happened to
be zero in this example). We do this only in the case of repeated roots.

For n = 2
a2 =

a0

(2 + r)2
= 1

(2 + r)2

For n = 3
a3 =

a1

(3 + r)2
= 0

For n = 4

a4 =
a2

(4 + r)2
=

1
(2+r)2

(4 + r)2
= 1

(2 + r)2 (4 + r)2

For n = 5, we will find a5 = 0 (for all odd n this is the case). For n = 6

a6 =
a4

(6 + r)2
= 1

(2 + r)2 (4 + r)2 (6 + r)2

And so on. We see that nth term is an = Πk
j=1

1
(2j+r)2 . Now we can substitute the r = 0

value into the above to obtain

a2 =
1
4

a4 =
1
64

a6 =
1

2304

Hence

y1 =
∑

anx
n

= a0 + a1x+ a2x
2 + · · ·

= 1 + 1
4x

2 + 1
64x

4 + 1
2304x

6 + · · ·

To find y2 we use bn = d
dr
an and evaluate this at r = r2 which in this case is zero. Hence

b2 =
d

dr
a2 =

d

dr

(
1

(2 + r)2
)

=
(
− 2
(r + 2)3

)
r=0

= −2
8 = −1

4

b4 =
d

dr
a4 =

d

dr

(
1

(2 + r)2 (4 + r)2
)

=
(
−4 r + 3

(r2 + 6r + 8)3
)

r=0
=
(
−4 3

(8)3
)

= − 3
128

b6 =
d

dr
a6

= d

dr

(
1

(2 + r)2 (4 + r)2 (6 + r)2
)

=
(
−2 3r2 + 24r + 44

(r3 + 12r2 + 44r + 48)3
)

r=0

= −2 44
(48)3

= − 11
13 824



chapter 4. second order ode F (x, y, y′, y′′) = 0 323

And so on. Hence

y1 = y1 ln (x) +
∞∑
n=1

bnx
n+r2

= y1 ln (x) +
∞∑
n=1

bnx
n

= y1 ln (x) +
(
b2x

2 + b4x
4 + b6x

6 + · · ·
)

= y1 ln (x) +
(
−1
4x

2 − 3
128x

4 +− 11
13 824x

6 + · · ·
)

Therefore the complete solution is

y = c1y1 + c2y2

= c1

(
1 + 1

4x
2 + 1

64x
4 + 1

2304x
6 + · · ·

)
+ c2

(
ln (x)

(
1 + 1

4x
2 + 1

64x
4 + 1

2304x
6 + · · ·

)
+
(
−1
4x

2 − 3
128x

4 +− 11
13 824x

6 + · · ·
))

Example 6
sin (x) y′′ + y′ + y = 0

Comparing the ode to
y′′ + p(x) y′ + q(x) y = 0

Hence p(x) = 1
sin(x) , q(x) = 1

sinx
. Therefore p0 = limx→0 xp(x) = limx→0

x

x−x2
3! +

x5
5! −···

=
1

1− x
3!+

x4
5! −

= 1 and q0 = limx→0 x
2q(x) = limx→0

x2

x−x2
3! +

x5
5! −···

= x

1−x2
3! +

x5
5! −···

= 0. Hence the
indicial equation is

r(r − 1) + p0r + q0 = 0
r(r − 1) + r = 0

r2 = 0
r = 0, 0

Therefore r1 = 0, r2 = 0. Expansion around x = 0. This is regular singular point. Hence
Frobenius is needed. Let

y =
∞∑
n=0

anx
n+r

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

The ode becomes

sin (x)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0(

x− x3

3! +
x5

5! − · · ·
) ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Using O(x7) terms as the Order of the series (if more terms are needed we will use more
terms from the sin x series). This means we have to now only expand up to n = 7 as that
is the order used for the series of sin x. The above becomes

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − x3

3!

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

+ x5

5!

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0
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Which becomes
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

1
6(n+ r) (n+ r − 1) anxn+r+1

+
∞∑
n=0

1
120(n+ r) (n+ r − 1) anxn+r+3 +

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Re indexing to lowest powers on x gives
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1

+
∞∑
n=4

1
120(n+ r − 4) (n+ r − 5) an−4x

n+r−1+
∞∑
n=0

(n+ r) anxn+r−1+
∞∑
n=1

an−1x
n+r−1 = 0

Simplifying gives
∞∑
n=0

(n+ r)2 anxn+r−1−
∞∑
n=2

(n+ r − 2) (n+ r − 3)
6 an−2x

n+r−1+
∞∑
n=4

(n+ r − 4) (n+ r − 5)
120 an−4x

n+r−1+
∞∑
n=1

an−1x
n+r−1 = 0

(1)
The indicial equation is obtained from n = 0. The above reduces to

r2a0x
r−1 = 0

Since a0 6= 0 then
r2 = 0

Hence r1 = 0, r2 = 0 as found earlier. Since the roots are repeated then two linearly
independent solutions can be constructed using

y1 = xr1
∞∑
n=0

anx
n =

∞∑
n=0

anx
n

y2 = y1 ln (x) + xr2
∞∑
n=1

bnx
n = y1 ln (x) +

∞∑
n=1

bnx
n

n = 1 gives from (1) and by taking a0 = 1

(1 + r)2 a1 + a0 = 0

a1 = − a0

(1 + r)2

= − 1
(1 + r)2

For n = 2 gives from (1)

(2 + r)2 a2 −
(r) (r − 1)

6 a0 + a1 = 0

(2 + r)2 a2 = −a1 +
(r) (r − 1)

6 a0

a2 =
1

(1 + r)2 (2 + r)2
+ (r) (r − 1)

6 (2 + r)2

For n = 3

(3 + r)2 a3 −
(1 + r) (r)

6 a1 + a2 = 0

a3 = − a2

(3 + r)2
+ (1 + r) (r)

6 (3 + r)2
a1

= −
1

(1+r)2(2+r)2 +
(r)(r−1)
6(2+r)2

(3 + r)2
− (1 + r) (r)

6 (3 + r)2
1

(1 + r)2

= − (r4 + r3 − r2 − r + 6)
6 (r + 3)2 (r2 + 3r + 2)2

− (1 + r) (r)
6 (3 + r)2 (1 + r)2
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For n ≥ 4 the recurrence relation is

(n+ r)2 an −
(n+ r − 2) (n+ r − 3)

6 an−2 +
(n+ r − 4) (n+ r − 5)

120 an−4 + an−1 = 0

Or

an = − an−1

(n+ r)2
+ (n+ r − 2) (n+ r − 3)

6 (n+ r)2
an−2 −

(n+ r − 4) (n+ r − 5)
120 (n+ r)2

an−4 (2)

Since we need to differentiate y1 to obtain y2 and the differentiation is w.r.t r, we will carry
the calculations with r in place and at the end replace r by its value (which happened to
be zero in this example). We do this only in the case of repeated roots.

For n = 4 then (2) gives

a4 = − a3

(4 + r)2
+ (2 + r) (1 + r)

6 (4 + r)2
a2 −

(r) (−1 + r)
120 (4 + r)2

a0

= −
− 1

(r+1)2(r+2)2(r+3)2

(4 + r)2
+ (2 + r) (1 + r)

6 (4 + r)2
a2 −

(r) (−1 + r)
120 (4 + r)2

a0

= 1
(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2

+ (2 + r) (1 + r)
6 (4 + r)2

1
(r + 1)2 (r + 2)2

− (r) (−1 + r)
120 (4 + r)2

And so on. Now we replace r = 0 to find y1. Just remember not to use anything over
n = 5 since we cut off the series for sin (x) at x5.

Using r = 0, then the above values for ai found become

a1 = − 1
(1 + r)2

= −1

a2 =
1

(1 + r)2 (2 + r)2
+ (r) (r − 1)

6 (2 + r)2
= 1

4

a3 = − (r4 + r3 − r2 − r + 6)
6 (r + 3)2 (r2 + 3r + 2)2

− (1 + r) (r)
6 (3 + r)2 (1 + r)2

= − 1
(2)2 (3)2

= − 1
36

a4 =
1

(r + 1)2 (r + 2)2 (r + 3)2 (4 + r)2
+ (2 + r) (1 + r)

6 (4 + r)2
1

(r + 1)2 (r + 2)2
− (r) (−1 + r)

120 (4 + r)2

= 1
(2)2 (3)2 (4)2

+ (2)
6 (4)2

1
(2)2

= 1
144

Let find one more term. For n = 5 then (2) gives

a5 = − a4

(5 + r)2
+ (3 + r) (2 + r)

6 (5 + r)2
a3 −

(1 + r) (r)
120 (5 + r)2

a1

= −
1

144
52 + (3) (2)

6 (5)2
(
− 1
36

)
= − 1

720

For n = 6 the above recurrence relation gives

a6 = − a5

(6 + r)2
+ (4 + r) (3 + r)

6 (6 + r)2
a4 −

(2 + r) (1 + r)
120 (6 + r)2

a2

= −
− 1

720
62 + (4) (3)

6 (6)2
1
144 − (2)

120 (6)2
1
4

= 1
3240
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For n = 7

a7 = − a6

(7 + r)2
+ (5 + r) (4 + r)

6 (7 + r)2
a5 −

(3 + r) (2 + r)
120 (7 + r)2

a3

= −
1

3240

(7)2
+ (5) (4)

6 (7)2
(
− 1
720

)
− (3) (2)

120 (7)2
(
− 1
36

)
= − 23

317 520
For n = 8

a8 = − a7

(8 + r)2
+ (6 + r) (5 + r)

6 (8 + r)2
a6 −

(4 + r) (3 + r)
120 (8 + r)2

a4

= −
(
− 23

317 520

)
(8)2

+ (6) (5)
6 (8)2

(
1

3240

)
− (4) (3)

120 (8)2
(

1
144

)
= 13

903 168
Which is now the wrong value. It should be 1

62720 . So using 3 terms from sin x we obtain
up to a7 correct terms. Hence

y1 =
∑

anx
n

= a0 + a1x+ a2x
2 + · · ·

= 1− 1
2x+

1
4x

2 + 1
36x

3 + 1
144x

4 − 1
720x

5 + 1
3240x

6 − 23
317 520x

7 + · · ·

What would have happened if we expanded sin (x) only for two terms? Lets find out. The
ode becomes

sin (x)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0(

x− x3

3! + · · ·
) ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

The above becomes

x
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 − x3

3!

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=0

1
6(n+ r) (n+ r − 1) anxn+r+1 +

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

Reindex
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 −
∞∑
n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

∞∑
n=0

(n+ r)2 anxn+r−1 −
∞∑
n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

For n = 0 we obtain the indicial equation as we did above. For n = 1(
1 + r2

)
a1 + a0 = 0

a1 = − a0
(1 + r2) = − 1

(1 + r2)
For r = 0 this gives

a1 = −1
n ≥ 2 gives

(n+ r)2 an −
1
6(n+ r − 2) (n+ r − 3) an−2 + an−1 = 0

an = − an−1

(n+ r)2
+ 1

6
(n+ r − 2) (n+ r − 3)

(n+ r)2
an−2

(2A)
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Hence for n = 2

a2 = − a1

(2 + r)2
+ 1

6
r(−1 + r)
(2 + r)2

a0

= −
− 1

(1+r2)

(2 + r)2
+ 1

6
r(−1 + r)
(2 + r)2

For r = 0 the above gives

a2 = −
− 1

(1)

(2)2
= 1

4
n = 3 gives

a3 = − a2

(3 + r)2
+ 1

6
(1 + r) (r)
(3 + r)2

a1

= −
1
4

(3 + r)2
− 1

6
(1 + r) (r)
(3 + r)2

For r = 0
a3 = −

1
4

(3)2
= − 1

36
For n = 4

a4 = − a3

(4 + r)2
+ 1

6
(2 + r) (1 + r)

(4 + r)2
a2

= − a3

(4)2
+ 1

6
(2) (1)
(4)2

a2

= −
(
− 1

36

)
(4)2

+ 1
6
(2) (1)
(4)2

(
1
4

)
= 1

144
For n = 5

a5 = − a4

(5 + r)2
+ 1

6
(3 + r) (2 + r)

(5 + r)2
a3

= −
1

144

(5)2
+ 1

6
(3) (2)
(5)2

(
− 1
36

)
= − 1

720
For n = 6

a6 = − a5

(6 + r)2
+ 1

6
(6 + r − 2) (6 + r − 3)

(6 + r)2
a4

= −
(
− 1

720

)
(6)2

+ 1
6
(4) (3)
62

1
144

= 11
25 920

Which is the wrong value. We see that using two terms only from the sin (x) gave up
correct an values up to a5. What if we used only one term? Lets find out.

sin (x)
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

(x+ · · · )
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑
n=0

(n+ r) anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0

∞∑
n=0

(n+ r)2 anxn+r−1 +
∞∑
n=1

an−1x
n+r−1 = 0
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n = 0 gives the indicial equation. For n ≥ 1 the recurrence relation is

(n+ r)2 an + an−1 = 0

an = − an−1

(n+ r)2

For n = 1

a1 = − a0

(1 + r)2

= − 1
(1 + r)2

For r = 0
a1 = −1

For n = 2
a2 = − a1

(2 + r)2
= 1

(2 + r)2

For r = 0
a2 =

1
4

For n = 3
a3 = − a2

(3 + r)2
= −

1
4

(3 + r)2

For r = 0
a3 = −

1
4

(3)2
= − 1

36
For n = 4

a4 = − a3

(4 + r)2
= −

− 1
36

(4 + r)2

For r = 0
a4 = −

− 1
36

(4)2
= 1

576
We see that this is the wrong value. So when using one term only we obtain correct an
up to a3. What do we learn from all the above? It is that if we expand f(x) up to O(xn)
order, then we can only determine correct terms up to an and no more. In the above when
we used sin (x) = x− x3

6 + x5

120 +O(x
7) then we obtained correct terms up to a7. And when

we used sin (x) = x− x3

6 + O(x5) then we obtained correct terms up to a5 and when we
used sin (x) = x+O(x3) then we obtained correct terms up to a3. So we should keep this
in mind from now on,.

To find y2 we use bn = d
dr
an and evaluate this at r = r2 which in this case is zero. Hence

b1 =
d

dr
a1 =

d

dr

(
− 1
(1 + r)2

)
r=0

= 2
(r + 1)3

= 2

b2 =
d

dr
a2 =

d

dr

(
1

(1 + r)2 (2 + r)2
+ (r) (r − 1)

6 (2 + r)2
)

=
(
5r4 + 13r3 + 9r2 − 25r − 38

6 (r2 + 3r + 2)3
)

r=0
= −38

6 (2)3
= −19

24

b3 =
d

dr
a3

= d

dr

(
− (r4 + r3 − r2 − r + 6)
6 (r + 3)2 (r2 + 3r + 2)2

− (1 + r) (r)
6 (3 + r)2 (1 + r)2

)
=
(
(4r6 + 18r5 + 20r4 − 15r3 − 18r2 + 93r + 114)

6 (r3 + 6r2 + 11r + 6)3
)

r=0

= 114
6 (6)3

= 19
216
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And so on. Hence

y1 = y1 ln (x) +
∞∑
n=1

bnx
n+r2

= y1 ln (x) +
∞∑
n=1

bnx
n

= y1 ln (x) +
(
2x− 19

24x
2 + 19

216x
3 + · · ·

)
Therefore the complete solution is

y = c1y1 + c2y2

= c1

(
1− 1

2x+
1
4x

2 + 1
36x

3 + 1
144x

4 + · · ·
)

+ c2

((
1− 1

2x+
1
4x

2 + 1
36x

3 + 1
144x

4 + · · ·
)
ln (x) +

(
2x− 19

24x
2 + 19

216x
3 + · · ·

))

4.3.2.6.4 irregular singular point ode internal name "second_order_series_method_ir-
regular_singular_point"

expansion point is irregular singular point. Not supported.

4.3.2.7 Reduction of order

ode internal name "reduction_of_order"

This is second order ode where on solution is known. The second solution is found using
reduction of order.

4.3.2.7.1 Example 1 Solve

y′′ + p(x) y′ + q(x) y = 0

Given that one solution is known to be y1. We start by assuming the second solution is
y2 = y1u(x) where u(x) is to be determined. Hence

y′2 = y′1u+ y1u
′

y′′2 = y′′1u+ y′1u
′ + y′1u

′ + y1u
′′

= y′′1u+ 2y′1u′ + y1u
′′

Substituting in the given ODE gives (since y2 is a solution, then it also satisfies the ode)

(y′′1u+ 2y′1u′ + y1u
′′) + p(y′1u+ y1u

′) + qy1u = 0

And now we collect on u and all its derivatives. The above becomes

u(y′′1 + py′1 + qy1) + u′(2y′1 + py1) + y1u
′′ = 0

But y′′1 + py′1 + qy1 = 0. The above becomes

u′(2y′1 + py1) + y1u
′′ = 0

Ok, you migth ask, what did we accomplish in all of this? Since we eneded up with just
another second order ode. But here is the main point of this method. This new ode is
missing the u term. Therefore by letting u′ = v we can make the above ode become first
order ode

v(2y′1 + py1) + y1v
′ = 0

SInce y1 is given, the above first order ode is now solved for v, and once v is known, then
u is found by integrating u′ = v and once u is found then y2 is found from y2 = y1u(x).
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The above ode can be written as

v′ +
(
2y

′
1
y1

+ p

)
v = 0

Hence it is linear first order ode. The integrating factor is

µ = e
∫
2 y′1
y1

+pdx

= e
∫ 2

y1
dy1
dx

dx+
∫
pdx

= e
∫ 2

y1
dy1+

∫
pdx

= e2 ln y1+
∫
pdx

= e2 ln y1e
∫
pdx

= y21e
∫
pdx

Therefore

d(vµ) = 0
vµ = c1

v = c1
e−

∫
pdx

y21
(1)

Since u′ = v then we have
du

dx
= v

Integrating
u =

∫
vdx+ c2

Here we are free to let c2 = 0. Therefore

u =
∫
vdx (2)

Therefore

y2 = y1u

= y1

∫
vdx

= y1

∫ (
c1
e−

∫
pdx

y21

)
dx

= c1y1

∫ (
e−

∫
pdx

y21

)
dx (3)

And the solution is
y = c1y2 + c2y1

The following example shows how the above can be applied to a concrete problem.

4.3.2.7.2 Example 2 Solve

x2y′′ + xy′ − 9y = 0
y1 = x3

Putting the ode in normal form, it becomes

y′′ + 1
x
y′ − 9

x2
y = 0
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Hence p = 1
x
, q = − 9

x2 . Using EQ (1)

v = c1
e−

∫
pdx

y21

= c1
e−

∫ 1
x
dx

x6

= c1
x6
e− lnx

= c1
1
x7

EQ (2) becomes

u =
∫
vdx

=
∫
c1x

−7dx

= c1
x−6

−6
= c1x

−6

(last step above just rewrites the constant). Hence the second solution is

y2 = y1u

= x3
(
c1x

−6)
= c1x

−3

Therefore the solution is

y = c3y2 + c4y1

= c1
1
x3

+ c2x
3

Where in last step above, constants were merged and renamed.

4.3.2.8 Transformation to a constant coefficient ODE methods

4.3.2.8.1 Introduction Starting with a second order linear ode in the following nor-
mal form

y′′ + p(x) y′ + q(x) y = r(x) (A)

The goal is to find a transformation that converts this ode to one with constant coefficients
which is then easily solved. There are two transformations to try. One uses transforma-
tion on the independent variable x and the second is on the dependent variable y. The
transformation on the independent variable uses τ = g(x) and the one on the dependent
variable uses y = v(x) z(x) and y = v(x)xn as special case.

4.3.2.8.2 Flow diagram The following is diagram of the algorithms.
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Figure 4.3: Algorithm diagram

4.3.2.8.3 Transformation on the independent variable xmethod 1 ode internal name
"second_order_change_of_variable_on_x_method_1"

Given ode
y′′ + p(x) y′ + q(x) y = r(x) (A)

Let τ = g(x) where τ is the new independent variable. Applying this to (A) results in
(details not shown)

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)
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The idea of the transformation is to determine if ode (1) can be solved instead of (A).

Let q1 = c2 where c is a constant then from (2)

q(x)
(τ ′ (x))2

= c2

τ ′ = 1
c

√
q (x) (5)

τ ′′ = 1
2c

q′(x)√
q (x)

(5A)

Substituting (5,5A) in (2) finds p1(τ). If p1(τ) is a constant (does not depend on x) then
(1) can be solved for y(τ) and (A) is therefore solved for y(x).

4.3.2.8.4 Transformation on the independent variable xmethod 2 ode internal name
"second_order_change_of_variable_on_x_method_2"

Given ode
y′′ + p(x) y′ + q(x) y = r(x) (A)

Let τ = g(x) where τ is the new independent variable. Applying this to (A) results in
(details not shown)

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

The idea of the transformation is to determine if ode (1) can be solved instead of (A).

Let p1 = 0 then τ is solved for from τ ′′(x) + p(x) τ ′(x) = 0.

τ =
∫
e−

∫
pdxdx

If this solution τ(x) results in q1 above being a constant, then (1) can now be easily solved.

4.3.2.8.5 Transformation on the dependent variable (method 1) y = v(x) z(x)
ode internal name "second_order_change_of_variable_on_y_method_1"

This is also called Liouville transformation. Book by Einar Hille, ordinary differential
equations in the complex domain. Page 179. This method assumes that

y = v(x) z(x)

Substituting this into (A) results in the following ode where the dependent variable is v
and not y

v′′(x) +
(
p+ 2

z
z′(x)

)
v′(x) + 1

z
(z′′(x) + pz′(x) + qz(x)) v(x) = r

z
(6)

Assuming that coefficient of v′ in (6) zero implies

p+ 2
z
z′(x) = 0
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Solving gives (where constant of integration is taken as one)

z = e−
∫ p

2dx (6A)

With this choice (6) becomes

v′′ + 1
z
(z′′ + pz′ + qz) v = r

z

Substituting z from (6A) into the above reduces it to (after some algebra) to

v′′ + q1v = r1 (6B)

Where

q1 = q − 1
2p

′ − 1
4p

2

r1 =
r

z

= re
1
2
∫
pdx

q1 is called the Liouville ode invariant. If q1 is constant, or constant divided by x2, then the
substitution y = v(x) z(x) used in the original original ode results in a constant coefficient
ode. In y = v(x) z(x) the z(x) term is known from 6A and v(x) is the new unknown
dependent variable.

The new ode will be in v(x) but with constant coefficients. Solving it for v(x) gives y.
Examples given below to illustrate this method.

Example 1
y′′ + 2

x
y′ + y = 1

x
(1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = 2
x
, q = 1, r = 1

x
. Hence (6A) is

z = e−
∫ p

2dx

= e−
∫ 1

x
dx

= e− lnx

= 1
x

Now we check if q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

= 1− 1
2

(
2
x

)′

− 1
4

(
2
x

)2

= 1−
(
− 1
x2

)
− 1

4
4
x2

= 1−
(
− 1
x2

)
− 1

4
4
x2

= 1 + 1
x2

− 1
x2

= 1

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v

x
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Since z = 1
x
. Substituting the above into the original ODE (1) gives(v

x

)′′
+
(
2
x

(v
x

)′)
+ v

x
= 1
x(

v′

x
− v

x2

)′

+ 2
x

(
v′

x
− v

x2

)
+ v

x
= 1
x(

v′′

x
− v′

x2
−
(
v′

x2
− 2 v

x3

))
+ 2
x

(
v′

x
− v

x2

)
+ v

x
= 1
x

v′′

x
− v′

x2
− v′

x2
+ 2 v

x3
+ 2v′
x2

− 2v
x3

+ v

x
= 1
x

v′′

x
− v′

x2
− v′

x2
+ 2v′
x2

+ v

x
= 1
x

v′′

x
+ v

x
= 1
x

v′′ + v = 1

This is constant coefficient ODE which is easily solved. If the ode in v(x) did not come to
be constant coefficient then we made a mistake. The solution is

v = c1 cosx+ c2 sin x+ 1

Hence

y = v

x

= c1
cosx
x

+ c2
sin x
x

+ 1
x

Example 2

y′′ + 2
x
y′ − y = 0 (1)

y(−∞) = 0
y′(−1) = −e−1

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = 2
x
, q = −1, r = 0. Hence (6A) is

z = e−
∫ p

2dx

= e−
∫ 1

x
dx

= e− lnx

= 1
x

Now we check if q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

= −1− 1
2

(
2
x

)′

− 1
4

(
2
x

)2

= −1−
(
− 1
x2

)
− 1

4
4
x2

= −1−
(
− 1
x2

)
− 1

4
4
x2

= −1 + 1
x2

− 1
x2

= 0

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v

x
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Since z = 1
x
. Substituting the above into the original ODE (1) gives(v

x

)′′
+
(
2
x

(v
x

)′)
− v

x
= 0(

v′

x
− v

x2

)′

+ 2
x

(
v′

x
− v

x2

)
− v

x
= 0(

v′′

x
− v′

x2
−
(
v′

x2
− 2 v

x3

))
+ 2
x

(
v′

x
− v

x2

)
− v

x
= 0

v′′

x
− v′

x2
− v′

x2
+ 2 v

x3
+ 2v′
x2

− 2v
x3

− v

x
= 0

v′′

x
− v′

x2
− v′

x2
+ 2v′
x2

− v

x
= 0

v′′

x
− v

x
= 0

v′′ − v = 0

This is constant coefficient ODE which is easily solved. If the ode in v(x) did not come to
be constant coefficient then we made a mistake. The solution is

v = c1e
−x + c2e

x

Hence

y = v

x

= c1
e−x

x
+ c2

ex

x
(2)

Now we need to find c1, c2 from initial conditions. From (2),

y′ = −c1
e−x

x
− c1

e−x

x2
+ c2

ex

x
− c2

ex

x2
(3)

Whenever we have ∞ in the IC, we will replace it by u. Hence the IC’s are now

y(−u) = 0 (4)
y′(−1) = −e−1

Substituting IC into (2,3) gives two equations to solve for c1, c2

0 = −c1
eu

u
− c2

e−u

u
−e−1 = c1e

1 − c1e
1 − c2e

−1 − c2e
−1 = −2c2e−1

Solving the above two equations for c1, c2 gives

c1 = −e
−u

2eu

c2 =
1
2

But
lim
u→∞

(
−e

−u

2eu

)
= 0

Hence

c1 = 0

c2 =
1
2

And the solution (2) becomes
y = 1

2
ex

x
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Example 3

x2y′′ − x(x+ 2) y′ + (x+ 2) y = 2x3

y′′ − x+ 2
x

y′ + x+ 2
x2

y = 2x (1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = −x+2
x
, q = (x+2)

x2 , r = 2x. Hence (6A) is

z = e−
∫ p

2dx

= e
∫

x+2
2x dx

= xe
x
2

Now we check if Liouville ode invariant q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

= (x+ 2)
x2

− 1
2
(
xe

x
2
)′ − 1

4

(
−x+ 2

x

)2

= −1
4

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v(x) z(x)
= v
(
xe

x
2
)

Substituting the above into the original ODE (1) gives

y′′ − x+ 2
x

y′ + x+ 2
x

y = 2x(
v
(
xe

x
2
))′′ − x+ 2

x

(
v
(
xe

x
2
))′ + x+ 2

x2
v
(
xe

x
2
)
= 2x

Carrying out the simplification gives

4v′′ − v = 8e−x
2

Which is constant coefficient ode. This is easily solved giving the solution

v = c1 sinh
(x
2

)
+ c2 cosh

(x
2

)
− 2xe−x

2

Hence

y = v(x) z(x)

=
(
c1 sinh

(x
2

)
+ c2 cosh

(x
2

)
− 2xe−x

2

)
xe

x
2

Example 4
y′′ − 4xy′ +

(
4x2 − 2

)
y = 0 (1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then p = −4x, q = (4x2 − 2) , r = 0. Hence (6A) is

z = e−
∫ p

2dx

= e
∫
2xdx

= ex
2

Now we check if Liouville ode invariant q1 is constant or a constant divided by x2.

q1 = q − 1
2p

′ − 1
4p

2

=
(
4x2 − 2

)
− 1

2(−4x)′ − 1
4(−4x)2

=
(
4x2 − 2

)
+ 2− 1

4
(
16x2

)
= 4x2 − 2 + 2− 4x2

= 0
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Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v(x) z(x)

= v
(
ex

2
)

Substituting the above into the original ODE (1) gives

y′′ − 4xy′ +
(
4x2 − 2

)
y = 0(

vex
2
)′′

− 4x
(
vex

2
)′

+
(
4x2 − 2

)
vex

2 = 0

Carrying out the simplification gives

v′′ = 0

Which is constant coefficient ode. This is easily solved giving the solution

v = c1 + c2x

Hence

y = v(x) z(x)
= (c1 + c2x) ex

2

Example 5
x2y′′ + 3xy′ + y = 0 (1)

This is of course Euler ode, and we do not need to try this method as solving it as Euler
ode is much simpler. But this is just for illustration for the case when the Liouville ode
invariant comes out not a constant. In the form y′′ + p(x) y′ + q(x) y = r(x) then

y′′ + 3
x
y′ + 1

x2
y = 0 (1A)

Where now p = 3
x
, q = 1

x2 , r = 0. Hence (6A) is

z = e−
∫ p

2dx

= e
−3
2
∫ 1

x
dx

= 1
x

3
2

Now we check if Liouville ode invariant q1 is constant.

q1 = q − 1
2p

′ − 1
4p

2

=
(

1
x2

)
− 1

2

(
3
x

)′

− 1
4

(
3
x

)2

=
(

1
x2

)
− 3

2

(
−1
x2

)
− 1

4

(
9
x2

)
= 1
x2

+ 3
2x2 − 9

4x2

= 1
4x2

Since q1 is not constant then the ode can not not converted to an ode in v(x) with constant
coefficient.
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Example 6
xy′′ + 2y′ − xy = 0 (1)

In the form y′′ + p(x) y′ + q(x) y = r(x) then

y′′ + 2
x
y′ − y = 0 (1A)

Where now p = 2
x
, q = −1, r = 0. Hence (6A) is

z = e−
∫ p

2dx

= e−
∫ 1

x
dx

= 1
x

Now we check if Liouville ode invariant q1 is constant.

q1 = q − 1
2p

′ − 1
4p

2

= (−1)− 1
2

(
2
x

)′

− 1
4

(
2
x

)2

= −1−
(
− 1
x2

)
− 1
x2

= −1 + 1
x2

− 1
x2

= −1

Since q1 is constant, then we can use the change of the variable y = v(x) z(x) which is

y = v(x) z(x)

= v
1
x

Substituting the above into the original ODE (1A) gives

y′′ + 2
x
y′ − y = 0(

v
1
x

)′′

+ 2
x

(
v
1
x

)′

− v
1
x
= 0

Carrying out the simplification gives

v′′ − v = 0

Which is constant coefficient ode. This is easily solved giving the solution

v = c1e
x + c2e

−x

Hence

y = v(x) z(x)

=
(
c1e

x + c2e
−x
) 1
x

Example 7

y′′ − 1√
x
y′ +

(
1
4x + 1

4x 3
2
− 2
x2

)
y = 0 (1)

In the form y′′+ p(x) y′+ q(x) y = r(x) then p = − 1√
x
, q =

(
1
4x + 1

4x
3
2
− 2

x2

)
, r = 0. Hence

(6A) is

z = e−
∫ p

2dx

= e
∫ 1√

x
dx

= e2
√
x
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Now we check if Liouville ode invariant q1 is constant.

q1 = q − 1
2p

′ − 1
4p

2

=
(

1
4x + 1

4x 3
2
− 2
x2

)
− 1

2

(
− 1√

x

)′

− 1
4

(
− 1√

x

)2

= − 2
x2

Not constant. Stop here. This can be solved using Kovacic algorithm.

4.3.2.8.6 Transformation on the dependent variable (method 2) y = v(x)xn
ode internal name "second_order_change_of_variable_on_y_method_2"

This transformation, if it works, changes the second order ode to an one with missing y,
which then can be solved as first order ode by reduction of order. This transformation
does not necessarily changes the second order ode to one with constant coefficient like the
above general transformation. But to an ode with missing y.

This method assumes
y = v(x)xn

If this transformation changes the ode to one with missing y, then it can be used. Substi-
tuting this in (A) results in the following ode where the dependent variable is now v and
not y

xnv′′ +
(
2xn−1n+ xnp

)
v′ +

(
n(n− 1)xn−2 + npxn−1 + qxn

)
v = r

v′′ +
(
2n
x
+ p
)
v′ +

(
n(n− 1)x−2 + npx−1 + q

)
v = r

xn
(7)

If it happens that
n(n− 1)x−2 + npx−1 + q = 0 (7A)

For some integer or rational number n, then (7) becomes

v′′ +
(
2n
x
+ p
)
v′ = r

xn
(7B)

Which now can be solved using substitution u = v′.

u′ +
(
2n
x
+ p
)
u = r

xn

Which is linear first order ode. Once u is found, then v is by found integration. Hence y
is now found. To use this method, all what we need is to check if (7A) is true for some
number n. Typically one tries n = ±1 first and if this does not work, then try to find
other values. Example below shows how to apply this method.

4.3.2.8.7 Worked Examples on all above 4 methods

Example 1. xy′′ + 2y′ − xy = 0 Trying change of variable on independent variable first.
Let τ = g(x) where z will be the new independent variable. Writing the ode in normal
form gives

y′′ + py′ + qy = r

p = 2
x

q = −1
r = 0

Applying τ = g(x) transformation on the above ode gives

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)
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Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(τ ′ (x))2
= c2

τ ′ = 1
c

√
q (5)

If p1 is constant using this τ then (1) is a second order constant coefficient ode which can
be solved easily. This ode has q = −1, therefore from (3)

τ ′ = 1
c

√
−1

Hence p1 becomes using (2)

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

=
0 + (2x−1) 1

c

√
−1

−1
c2

= −2x−1√−1c

Which is not a constant. So this transformation failed.

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant divided
by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e−

∫
2x−1dxdx

=
∫
x−2dx

= −1
x

Using this then q1 becomes

q1 =
q

(τ ′ (x))2

= −1( 1
x2

)2
= −x4

= − 1
τ 4

Which is not constant and nor a constant divided by τ 2. So this transformation did not
work.

Trying change of variables on the dependent variable transformation (first method). This
method assumes

y = v(x) z(x)
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Substituting this in the given ode results in new ode where the dependent variable is v
and not y which can be found to be

v′′(x) +
(
p+ 2

z
z′(x)

)
v′(x) + 1

z
(z′′(x) + pz′(x) + qz(x)) v(x) = r

z

Let p+ 2
z
z′(x) = 0. Solving gives z = e−

∫ p
2dx. With this choice the above ode becomes

v′′ + 1
z
(z′′ + pz′ + qz) v = r

z

Applying z = e−
∫ p

2dx to the above reduces it to

v′′ + q1v = r1 (6)

Where

q1 = q − 1
2p

′ − 1
4p

2

r1 = re
1
2
∫
pdx

If q1 turns out to be constant or a constant divided by x2 with this choice of z, then v is
solved for from (6) and the solution to the original ode is obtained. Applying this method
on the given ode gives

z = e−
∫ p

2dx

= e−
∫
x−1dx

= e− lnx

= x−1

Hence

q1 = q − 1
2p

′ − 1
4p

2

= −1 + 2
2x

−2 − 1
4
(
2x−1)2

= −1 + x−2 − x−2

= −1

Since q1 is constant, then this transformation works. Eq (6) now becomes

v′′ − v = 0

The solution is
v = c1e

−x + c2e
x

Therefore, since z = x−1 then

y = v(x) z(x)

= 1
x

(
c1e

−x + c2e
x
)

This example shows that change of variable on the independent variable did not work, but
change of variable on the dependent variable (general case) worked.

Trying change of variable on the dependent variable (second method). This method assumes
that

y = v(x)xn

For some n, This transformation changes the ode to an ode with a missing y, which can
be easily solved as two first order ode’s. Substituting this in (A) results in the following
ode where the dependent variable is v and not y

xnv′′ +
(
2xn−1n+ xnp

)
v′ +

(
n(n− 1)xn−2 + npxn−1 + qxn

)
v = r (7)
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If it happens that (
n(n− 1)xn−2 + npxn−1 + qxn

)
= 0 (7A)

For some n, then (7) becomes

xnv′′ +
(
2xn−1n+ xnp

)
v′ = r (7B)

Which can be solved using substitution u = v′ to give

u′ + (2xn−1n+ xnp)
xn

u = r

Applying (7A) on this example ode gives(
n(n− 1)xn−2 + n

(
2
x

)
xn−1 + (−1)xn

)
= 0

n(n− 1)xn−2 + 2nxn−2 − xn = 0(
n+ n2)xn−2 − xn = 0

It is clear that there exists no integer or rational number n which makes the LHS above
zero. Hence this special transformation did not work.

This is an example where only the change of variable on the dependent variable (general
case) worked.

Example 2. Euler ODE x2y′′(x) + xy′(x) + y(x) = 0 One way to solve Euler ODE

x2y′′(x) + xy′(x) + y(x) = 0 (A)

Putting it in normal form gives

y′′(x) + 1
x
y′(x) + 1

x2
y(x) = 0

Hence

p = 1
x

q = 1
x2

r = 0

Trying change of variable on the independent variable. Let τ = g(x) where τ will be the
new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)
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If with this τ , then p1 turns out to be constant, then (1) is now a second order constant
coefficient ode which is easily solved. Applying (5) on the given ode gives

τ = 1
c

∫ √
x−2dx

= 1
c
ln x

Using the above on (2) gives

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= 0

Which is a constant. Hence this transformation worked. Therefore(1) becomes (using
q1 = c2 which is a constant c2)

y′′(τ) + p1y
′(τ) + q1y(τ) = r1

y′′(τ) + c2y(τ) = 0

The solution is
y(τ) = A cos (cτ) +B sin (cτ)

But τ = 1
c
ln x. Hence the above becomes

y(x) = A cos (ln x) +B sin (ln x)

In practice, this longer method is not needed to solve Euler ode x2y′′(x)+xy′(x)+y(x) = 0
as that the substitution y = xr works more easily. But the above method is more general.
For example, using y = xr, then x2y′′(x)+ xy′(x)+ y(x) = 0 becomes r(r − 1)+ r+1 = 0.
The roots r are i,−i. Then the solution is linear combination of the basis solutions given
by

y = Axi +Bx−i

= Aelnxi +Belnx−i

= Aei lnx +Be−i lnx

= A cos (ln x) +B sin (ln x)

Where the last step used Euler relation to do the conversion. Another known transformation
for Euler (which is not as simple as the above) is to use x = et. Using this gives

dx

dt
= et (2)

But ln x = t, hence
dt

dx
= 1
x

(3)

To do this change of variable and obtain a new ode where now y(x) becomes y(t), then
y′(x) is changed to y′(t) and y′′(x) is changed y′′(t). Using

dy

dx
= dy

dt

dt

dx
(4)

Substituting (3) into (4) gives
dy

dx
= dy

dt

1
x

But 1
x
= e−t. The above becomes

dy

dx
= e−tdy

dt
(5)

Now y′′(x) needs to change to y′′(t). Since

d2y

dx2
= d

dx

(
dy

dx

)
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Substituting (5) into the above gives

d2y

dx2
= d

dx

(
e−tdy

dt

)
Dividing the numerator and denominator of d

dx
by dt gives

d2y

dx2
=

d
dt
dx
dt

(
e−tdy

dt

)
= dt

dx

d

dt

(
e−tdy

dt

)
But from (3) dt

dx
= 1

x
= e−t. Hence the above becomes

d2y

dx2
= e−t d

dt

(
e−tdy

dt

)
Using the the product rule gives

d2y

dx2
= e−t

(
−e−tdy

dt
+ e−td

2y

dt2

)
= e−2t

(
−dy
dt

+ d2y

dt2

)
= e−2t

(
d2y

dt2
− dy

dt

)
(6)

Now y′(x) and y′′(x) have been converted to y′(t) , y′′(t). Substituting (5,6) in the gives
ode gives

x2y′′(x) + xy′(x) + y(x) = 0

x2e−2t
(
d2y

dt2
− dy

dt

)
+ xe−tdy

dt
+ y(t) = 0

But x = et and x2 = e2t. The above becomes

d2y

dt2
− dy

dt
+ dy

dt
+ y(t) = 0

d2y

dt2
+ y(t) = 0

This is now constant coefficient ODE. The solution is

y(t) = A cos (t) +B sin (t)

Since ln x = t, then the above becomes

y(x) = A cos (ln x) +B sin (ln x)

This completes the solution.

Example 3. y′′ sin2 (2x) + y′ sin (4x)− 4y = 0 Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = sin (4x)
sin2 (2x) sin (2x) 6= 0

q = − 4
sin2 (2x)

Trying change of variable on the independent variable as above. Let τ = g(x) where τ
will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)
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Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order constant
coefficient ode. Applying this on the given ode (5) becomes

τ = 1
c

∫ √
− 4
sin2 (2x)dx

= 2i
c

∫ 1
sin (2x)dx

= i

c
ln (csc (2x)− cot (2x))

Eq (2) now becomes

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= 0

Which is constant. Hence this transformation worked. Therefore (1) becomes (since q1 = c2

is constant c2)

y′′(τ) + p1y
′(τ) + q1y(τ) = r1

y′′ + c2y = 0

This gives
y(τ) = A cos (cτ) +B sin (cτ)

Using τ = i
c
ln (csc (2x)− cot (2x)) the above becomes

y(x) = A cos (i ln (csc (2x)− cot (2x))) +B sin (i ln (csc (2x)− cot (2x)))

Simplifying using trig identities gives

y(x) = −iB cos (2x) + A

sin (2x)

= B0 cos (2x)
sin (2x) + A

sin (2x)
= B0 cot (2x) + A csc(2x)

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant divided
by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

τ =
∫
e
−
∫ sin(4x)

sin2(2x)dxdx

τ =
∫ 1

sin (2x)dx
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Using this gives

q1 =
q

(τ ′ (x))2

=
− 4

sin2(2x)

− 1
1

sin2(2x)

= −4

Which is a constant. Hence this transformation also works. Eq (1) now becomes

y′′ + p1y
′ + q1y = r1

y′′(τ)− 4y(τ) = 0
y(τ) = Ae−2τ +Be2τ

But τ =
∫ 1

sin(2x)dx = 1
2 ln (csc (2x)− cot (2x)), hence

y(x) = Ae−2 1
2 ln(csc(2x)−cot(2x)) +Be2

1
2 ln(csc(2x)−cot(2x))

= Ae− ln(csc(2x)−cot(2x)) +Beln(csc(2x)−cot(2x))

= A

csc (2x)− cot (2x) +B csc (2x)− cot (2x)

Which can be simplified to same solution shown in approach 1. This was an example where
both sub methods of change of variable on the independent variable worked.

Example 4. (1− x2) y′′ − xy′ + y = 0 Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = −x
(1− x2) x 6= 1, x 6= −1

q = 1
(1− x2)

Trying change of variable on the independent variable as above. Let τ = g(x) where τ
will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order constant
coefficient ode which is easily solved. Using the given ode (5) becomes

τ = 1
c

∫ √ 1
(1− x2)dx

= i

c
ln
(
x+

√
x2 − 1

)
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Hence (2) now becomes

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= 0

Which is constant. Hence this transformation worked. Therefore the ode (1) becomes
(since q1 = c2 is constant c2)

y′′(τ) + p1y
′(τ) + q1y(τ) = r1

y′′ + c2y = 0

The solution is
y(τ) = A cos (cτ) +B sin (cτ)

Using τ = i
c
ln
(
x+

√
x2 − 1

)
the above becomes

y(x) = A cos
(
i ln
(
x+

√
x2 − 1

))
+B sin

(
i ln
(
x+

√
x2 − 1

))
Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant divided
by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

τ =
∫
e

∫
x(

1−x2
)dx
dx

τ =
∫ 1√

x− 1
√
x+ 1

dx

Therefore

q1 =
q

(τ ′ (x))2

=
1

(1−x2)(
1√

x−1
√
x+1

)2
=

1
(1−x2)

1
(x−1)(x+1)

=
1

(1−x2)
1

x2−1

= −1

Which is a constant. This transformation also worked. Eq (1) becomes

y′′ + p1y
′ + q1y = r1

y′′(τ)− y(τ) = 0
y(τ) = Ae−τ +Beτ

Using τ =
∫ 1√

x−1
√
x+1dx = ln

(
x+

√
x2 − 1

)
, (x > 1) the above

y(x) = Ae−τ +Beτ

= Ae
− ln

(
x+

√
x2−1

)
+Be

ln
(
x+

√
x2−1

)

= A

x+
√
x2 − 1

+B
(
x+

√
x2 − 1

)
This solution looks different from the solution found above using approach 1, but can be
shown to be the same. This was an example where both methods of change of variable on
the independent variable work.
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Example 5. x2y′′ − xy′ +
(
−x2 − 1

4

)
y = 0 Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = −1
x

x 6= 0

q = −
x2 + 1

4
x2

r = 0

Trying change of variable on the independent variable as above. Let τ = g(x) where τ
will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order constant
coefficient ode which is easily solved. Applying this on the given ode then (5)

τ = 1
c

∫ √
−
x2 + 1

4
x2

dx

= 1
2c

√
−4x2 − 1 + arctan

(
1√

−4x2 − 1

)
Hence (2) now becomes

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= (8x2 + 4) c
(−4x2 − 1)

3
2

Which is not constant. Therefore this transformation did not work.

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant divided
by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e
∫ 1

x
dxdx

=
∫
elnxdx

=
∫
xdx

= x2

2
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Using this then q1 becomes

q1 =
q

(τ ′ (x))2

=
−x2+ 1

4
x2

x2

= − 1
x4

(
x2 + 1

4

)
Which is not constant. Trying change of variable on the dependent variable (first method).
This method assumes

y = v(x) z(x)

The Liouville ode invariant is

q1 = q − 1
2p

′ − 1
4p

2

= −
x2 + 1

4
x2

− 1
2
d

dx

(
−1
x

)
− 1

4

(
−1
x

)2

= − 1
x2
(
x2 + 1

)
Which is not constant. Hence this method does not work. One way to solve this is as a
Bessel ODE. I have many examples how to do this on my main page.

Example 6. (x2 − 1) y′′ − 2xy′ + 2y = 0 Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = −2x
x2 − 1 x 6= ±1

q = 2
x2 − 1

r = 0

Trying change of variable on the independent variable as above. Let τ = g(x) where τ
will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ = 1
c

∫
√
qdx (5)

If with this τ , then p1 turns out to be constant, then it means (1) is second order constant
coefficient ode. Applying this on the given ode (5) becomes

τ = 1
c

∫ √ 2
x2 − 1dx

= 1
c

√
2 ln

(
x+

√
x2 − 1

)



chapter 4. second order ode F (x, y, y′, y′′) = 0 351

Hence (2) reduces to

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= − 3
√
2cx√

1
x2−1 (2x2 − 2)

Which is not constant. This transformation did not work.

Approach 2 Let p1 = 0. If with this choice now q1 becomes constant or a constant divided
by τ 2 then (2) can be easily integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e
∫ 2x

x2−1dxdx

=
∫ (

x2 − 1
)
dx

Hence q1 becomes

q1 =
q

(τ ′ (x))2

=
2

x2−1

(x2 − 1)2

= 2
(x2 − 1)3

Which is not constant. This transformation did not work.

Trying change of variable on the dependent variable (first method). This method assumes
that

y = v(x) z(x)

The Liouville ode invariant is

q1 = q − 1
2p

′ − 1
4p

2

=
(

2
x2 − 1

)
− 1

2
d

dx

(
−2x
x2 − 1

)
− 1

4

(
−2x
x2 − 1

)2

= − 3
(x2 − 1)2

Which is not constant and not constant divided by x2. Hence this transformation also did
not work.

Trying the Lagrange adjoint ode method. From above the adjoint ode is

z′′ − d(zp)
dx

+ zq = 0

For some unknown function z(x). Hence it becomes

z′′ − d

dx

(
z

(
−2x
x2 − 1

))
+ z

(
2

x2 − 1

)
= 0

z′′ −
(
− 2z′x
x2 − 1 + 4zx2

(x2 − 1)2
− 2z
x2 − 1

)
+ z

(
2

x2 − 1

)
= 0

z′′ + 2x
x2 − 1z

′ − 4x2 + 4(x2 − 1)
(x2 − 1)2

z = 0
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Clearly this is just as hard to solve as the original ode So this method does it work.

Trying integrating factor method. For this to work the condition is that 1
2

(
p′ + 1

2p
2) = q.

Applying this on the current ode gives

1
2

(
p′ + 1

2p
2
)

= q

1
2

(
d

dx

(
−2x
x2 − 1

)
+ 1

2

(
−2x
x2 − 1

)2
)

= 2
x2 − 1

(2x2 + 1)
(x2 − 1)2

= 2
x2 − 1

2x2 + 1
x2 − 1 = 2

Which is not true. Hence there is no integrating factor.

Trying transformation on the dependent variable (second method). This method assumes

y = v(x)xn

This works only if (7A) given in the introduction is satisfied.(
n(n− 1)xn−2 + npxn−1 + qxn

)
= 0 (7A)

Applying this on the current ode example gives(
n(n− 1)xn−2 + n

(
−2x
x2 − 1

)
xn−1 +

(
2

x2 − 1

)
xn
)

= 0

Trying n = 1 the above becomes((
−2x
x2 − 1

)
+
(

2
x2 − 1

)
x

)
= 0

Hence this transformation works for n = 1. Therefore y = v(x)x. eq (7) in the introduction
now reduces to

xnv′′ +
(
2xn−1n+ xnp

)
v′ +

(
n(n− 1)xn−2 + npxn−1 + qxn

)
v = r (7)

v′′ + (xp+ 2)
x

v′ = 0

Which now can be solved using substitution u = v′.

u′ + (xp+ 2)
x

u = r

Which is linear first order ode. Once u is found, then v is found by integration. Hence y
is now found. Hence

u′ − 2
x3 − x

u = 0

Which has the solution u = c1
x2

x2−1 . Hence v
′ = c1

x2

x2−1 . Integrating gives v = c1
(
x+ 1

x

)
+c2.

Therefore y = xv = c1(x2 + 1) + c2x

This was an example where only the transformation on the dependent second method
y = v(x)xn worked.
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Example 7. xy′′ + (x2 − 1) y′ + x3y = 0 Writing the ode in normal form gives

y′′ + p(x) y′ + q(x) y = r

p = x2 − 1
x

x 6= 0

q = x2

r = 0

Trying change of variable on the independent variable as above. Let τ = g(x) where τ
will be the new independent variable. Applying this transformation results in

y′′ + p1y
′ + q1y = r1 (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies
q

(τ ′ (x))2
= c2

τ ′ = 1
c

√
q (5)

If p1 turns out to be constant with this τ then it implies (1) is second order constant
coefficient ode. Eq (5) becomes

τ ′ = 1
c

√
x2

τ ′′(x) = 1
2c

2x√
x2

Hence from (2)

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

=
1
2c

2x√
x2 +

(
x2−1
x

)
1
c

√
x2(

1
c

√
x2
)2

= c

Which is a constant. Then (1) becomes second order of constant coefficient

y′′(τ) + cy′(τ) + c2y(τ) = 0

Which has the solution

y(τ) = e−
cτ
2

(
A sin

(
c
√
3τ
2

)
+B sin

(
c
√
3τ
2

))

But from earlier τ = x2

2c . Hence the above becomes

y(x) = Ae−
c x2
2c
2 sin

(
c
√
3x2

2c
2

)
+Be−

c x2
2c
2 sin

(
c
√
3x2

2c
2

)

= e−
x2
4

(
A sin

(√
3x2
4

)
+B sin

(√
3x2
4

))
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Approach 2

Let p1 = 0. If with this choice now q1 becomes constant or a constant divided by τ 2 then
(2) can be easily integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e−

∫
x2−1

x
dxdx

=
∫
xe−

x2
2 dx

= −e−
x2
2

Therefore

q1 =
q

(τ ′ (x))2

= x2(
xe−

x2
2

)2
= ex

2

Which is not constant. Now it is checked to see if it is constant divided by τ 2. Since
τ 2 =

(
−e−x2

2

)2
= e−x2 then q1 = 1

τ2
. Therefore this approach also worked.

Eq (2) becomes

y′′ + p1y
′ + q1y = 0 (1)

y′′ + 1
τ 2
y = 0

τ 2y′′ + y = 0

Which is standard Euler ode which can be solved easily. Giving

y(τ) = A
√
τ cos

(√
3
2 ln (τ)

)
+B

√
τ sin

(√
3
2 ln (τ)

)

But τ = −e−x2
2 . Hence the above becomes

y(x) = A

√
−e−x2

2 cos
(√

3
2 ln

(
−e−

x2
2

))
+B

√
−e−x2

2 sin
(√

3
2 ln

(
−e−

x2
2

))

This looks different from the solution obtained in approach 1, but it verifies also as correct
solution. This is an example where change of independent variable using q1 = c2 works
and also change of independent variable using p1 = 0 works as well.

Example 8. 4x2 sin (x) y′′+(−4x2 cosx− 4x sin x) y′+(2x cosx+ 3 sin x) y = 0 Writing
the ode in normal form gives

y′′ + p(x) y′ + q(x) y = 0

p = −4x2 cosx− 4x sin x
4x2 sin (x) x 6= 0, π, 2π, · · ·

q = 2x cosx+ 3 sin x
4x2 sin (x)

r = 0
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Applying transformation on the dependent variable second method y = v(x)xn results in

xnv′′ +
(
2nxn−1 + pxn

)
v′ +

(
n(n− 1)xn−2 + pxn−1n+ qxn

)
v = 0

v′′ + (2nxn−1 + pxn)
xn

v′ +
(
n(n− 1)xn−2 + pxn−1n+ qxn

xn

)
v = 0

v′′ +
(
2nx−1 + p

)
v′ +

(
n(n− 1)x−2 + px−1n+ q

)
v = 0

v′′ +
(
2nx−1 + p

)
v′ +

(
pnx−1 + q +

(
n2 − n

)
x−2) v = 0 (1)

Assuming the coefficient of v(x) above is zero. This gives

pnx−1 + q +
(
n2 − n

)
x−2 = 0

Substituting the values for p, q in the above gives(
−4x2 cosx− 4x sin x

4x2 sin (x)

)
nx−1 + 2x cosx+ 3 sin x

4x2 sin (x) +
(
n2 − n

)
x−2 = 0

Solving for n shows that n = 1
2 . Hence (1) now reduces to

v′′ +
(
x−1 + p

)
v′ = 0

v′′ +
(
1
x
+ −4x2 cosx− 4x sin x

4x2 sin (x)

)
v′ = 0

v′′ +
(
4x sin x− 4x2 cosx− 4x sin x

4x2 sin x

)
v′ = 0

v′′ +
(
−4x2 cosx
4x2 sin x

)
v′ = 0

v′′ − cosx
sin xv

′ = 0

Let v′ = u, the above becomes
u′ − cosx

sin xu = 0

Which is linear first order ode. It has the solution u = c1 sin (x). Hence

v′ = c1 sin (x)

Integrating gives
v = −c1 cos (x) + c2

Therefore

y = v
√
x

= (−c1 cos (x) + c2)
√
x

This can also be written as
y = (c3 cos (x) + c2)

√
x

Example 9 x2y′′ − (2a− 1)xy′ + a2y = 0 The above is standard Euler ode. But below
shows how to apply these transformations if one did not know this.

Trying change of variable on independent variable first. Let τ = g(x) where z will be the
new independent variable. Writing the ode in normal form gives

y′′ + py′ + qy = r

p = (1− 2a)
x

q = a2

x2

r = 0
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Applying τ = g(x) transformation on the above ode gives

y′′(τ) + p1(τ) y′(τ) + q1(τ) y(τ) = r1(τ) (1)

Where

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

(τ ′ (x))2
(2)

q1(τ) =
q(x)

(τ ′ (x))2
(3)

r1(τ) =
r(x)

(τ ′ (x))2
(4)

Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(τ ′ (x))2
= c2

τ ′ = 1
c

√
q (5)

If p1 is constant using this τ then (1) is a second order constant coefficient ode which can
be solved easily. This ode has q = a2

x2 , therefore from (5) assuming positive

τ ′ = 1
c

√
a2

x2

= a

cx

Hence p1 becomes using (2)

p1(τ) =
τ ′′(x) + pτ ′(x)

(τ ′ (x))2

= (1− 2a) c
x

Which is not a constant. So this transformation failed.

Approach 2 Let p1 = 0. If with this choice q1 becomes a constant or a constant divided
by τ 2 then (2) can be integrated. p1 = 0 implies from (2) that

τ ′′ + pτ ′ = 0

τ =
∫
e−

∫
pdxdx

=
∫
e−

∫ (1−2a)
x

dxdx

=
∫
x2a−1dx

= x2a

2a

Using this then q1 becomes

q1 =
q

(τ ′ (x))2

=

(
a2

x2

)
(x2a−1)2

= a2

x2x4a−2

= a2

x4a
(6)
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Which is not constant. But τ 2 =
(

x2a

2a

)2
= x4a

4a2 . Hence q1 =
1
4

1
τ2
. Hence this transformation

works. Eq (2) becomes

y′′ + p1y
′ + q1y = 0 (1)

y′′ + 1
4
1
τ 2
y = 0

4τ 2y′′ + y = 0

Which is standard Euler ode which can be solved easily. Giving

y(τ) = A
√
τ +B

√
τ ln (τ)

But τ = x2a

2a . Hence the above becomes

y(x) = A

√
x2a

2a +B

√
x2a

2a ln
(
x2a

2a

)
= A

√
x2a

2a +B

√
x2a

2a ln
(
x2a

2a

)
= A1x

a +B1x
a ln
(
x2a

2a

)

Example 10. Bessel ODE Given the ode

y′′(x) +
(
1− 3

4x2

)
y(x) = 0 (A)

Trying change of variables on the dependent variable (first method). In this method we
assume

y = v(x) z(x)

The ode is y′′ + py′ + qy = 0. Hence p = 0, q =
(
1− 3

4x2

)
. Therefore the Liouville ode

invariant is

q1 = q − 1
2p

′ − 1
4p

2

=
(
1− 3

4x2

)

Since q1 is not constant, then this method does not work.

Trying change of variable on independent variable.

Let z = g(x) where z will be the new independent variable. In general, given an ode of
the form

y′′(x) + p(x) y′(x) + q(x) y(x) = r(x)

Then applying this transformation results in

y′′(z) + p1(z) y′(z) + q1(z) y(z) = r1(z) (1)

Where

p1(z) =
z′′(x) + pz′(x)

(z′ (x))2
(2)

q1(z) =
q

(z′ (x))2
(3)

r1(z) =
r

(z′ (x))2
(4)
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Approach 1. Let q1 = c2 where c2 is some constant. This implies

q

(z′ (x))2
= c2

z = 1
c

∫
√
qdx (5)

If with this z, then p1 turns out to be constant, then it means (1) is second order constant
coefficient ode. Applying this on current ode then (5) becomes

z = 1
c

∫ √(
1− 3

4x2

)
dx

= 1
2c

(
√
4x2 − 3 +

√
3 arctan

( √
3√

4x2 − 3

))

Hence (2) becomes

p1(z) =
z′′(x) + pz′(x)

(z′ (x))2

= 6c
(4x2 − 3)

3
2

Which is not a constant. So this transformation did not work. So change of variable on
both the dependent and independent variable does not work for this ode to convert it to
one with constant coefficient. Trying converting it to standard Bessel ODE. Using this
change of variable on the dependent variable

y = ux
1
2

To transform (A) to standard Bessel ODE

x2u′′ + xu′ +
(
x2 − 1

)
u = 0

Since y = ux
1
2 then

dy

dx
= du

dx
x

1
2 + u

x
−1
2

2 (2A)

And

d2y

dx2
= d

dx

(
du

dx
x

1
2 + u

x
−1
2

2

)

= d

dx

(
du

dx
x

1
2

)
+ d

dx

(
u
x

−1
2

2

)

= d2u

dx2
x

1
2 + 1

2
du

dx
x−

1
2 + 1

2
du

dx
x

−1
2 − 1

4ux
− 3

2

= d2u

dx2
x

1
2 + du

dx
x−

1
2 − 1

4ux
− 3

2 (3A)

Substituting (2A,3A) into (A) gives

d2u

dx2
x

1
2 + du

dx
x−

1
2 − 1

4ux
− 3

2 +
(
1− 3

4x2

)
ux

1
2 = 0

d2u

dx2
x

1
2 + du

dx
x−

1
2 − 1

4ux
− 3

2 + ux
1
2 − 3

4ux
− 3

2 = 0

d2u

dx2
x

1
2 + du

dx
x−

1
2 − ux−

3
2 + ux

1
2 = 0



chapter 4. second order ode F (x, y, y′, y′′) = 0 359

Multiplying both side by x 3
2 gives

x2
d2u

dx2
+ x

du

dx
− u+ ux2 = 0

x2
d2u

dx2
+ x

du

dx
−
(
1− x2

)
u = 0

x2
d2u

dx2
+ x

du

dx
+
(
x2 − 1

)
u = 0

Which is Bessel ode where order is n = 1. This has known standard solution. Once u(x)
is known, then y(x) which is the solution to the original ODE (A) is now known also.
There is a more general method and better method to find if second order ode can be
transformed to Bessel ODE. See my main page for examples and description.

4.3.2.9 Exact linear second order ode p2(x) y′′ + p1(x) y′ + p0(x) y = f(x)

ode internal name "exact_linear_second_order_ode"

Given the ode
p2(x) y′′ + p1(x) y′ + p0(x) y = f(x) (1)

And if there exists an ode
(p2y′ + (p1 − p′2) y)

′ = f(x) (2)

Whose when differented w.r.t. x gives back (1), then (2) is called the first integral of (1).
Now we solve (2) as it is one order less. The condition for first integral to exist is

p′′2 − p′1 + p0 = 0 (3)

Sometimes (2) is called the adjoint ode of (1). The goal therefore is to determine if a linear
second order ode has a corresponding adjoint ODE or not of the form (py′ +B(x) y)′ = 0.

Let us see how to find the condition that first integral exist or not.

p2y
′′ + p1y

′ + p0y = (p2y′ + (p1 − p′2) y)
′

Expanding gives

p2y
′′ + p1y

′ + p0y = p′2y
′ + p2y

′′ + (p′1 − p′′2) y + (p1 − p′2) y′

= p2y
′′ + (p′2 + p1 − p′2) y′ + (p′1 − p′′2) y

= p2y
′′ + p1y

′ + (p′1 − p′′2) y

Comparing coefficients

p0 = p′1 − p′′2

p′′2 − p′1 + p0 = 0

This is the condition for exactness stated in (3). i.e. if the input ODE (1) satisfies this
condition then the ODE is exact and has an adjoint ODE (2) which we now can be easily
solve since it is complete differential. We see that solving (2) is much simpler than (1)
since (2) is first order. Integrating this once gives

p2y
′ + (p1 − p′2) y =

∫
f(x) dx+ c1

This is first order ode. This is also called the first integral equation of (1). This process
extends to higher order odes also. For third order ode, if we can find its first integral, then
the order is reduced by one. See section on higher order ode’s of how this can be extended
to higher order ode’s.
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4.3.2.9.1 Example 1
x2y′′ + xy′ − y = x4

Then p2 = x2, p1 = x, p0 = −1, f(x) = x4. Condition (3) becomes

p′′2 − p′1 + p0 = 2− 1− 1
= 0

Hence it is second order exact. Therefore the adjoint ode (2) is

(p2y′ + (p1 − p′2) y)
′ = f(x)(

x2y′ + (x− 2x) y
)′ = x4

x2y′ + (x− 2x) y =
∫
x4dx+ c

x2y′ − xy = x5

5 + c

Integrating gives
x2y′ + (x− 2x) y =

∫
x4dx+ c

This is called the first integral of the original ode. Hence

x2y′ + (x− 2x) y =
∫
x4dx+ c1

x2y′ − xy = x5

5 + c1

This is linear ode. Solving this ode gives

y = x4

15 − c1
2x + c2x

Note that this is also a Euler ode.

4.3.2.9.2 Example 2
y′′ + xy′ + y = 0

Here p2 = 1, p1 = x, p0 = 1. The condition for exactness is

p′′2 − p′1 + p0 = 0− 1 + 1
= 0

The ode is already exact. i.e. no integrating factor is needed. The solution becomes

(p2y′ + (p1 − p′2) y)
′ = 0

(y′ + xy)′ = 0

The first integral is
y′ + xy = c1

Solving this gives
d

dx
(Iy) = Ic1

d

dx

(
ye
∫
xdx
)
= e

∫
xdxc1

ye
∫
xdx =

∫
e
∫
xdxc1dx+ c2

y = e
∫
−xdx

(∫
e
∫
xdxc1dx

)
+ c2e

∫
−xdx

= c1e
−x2
2

(∫
e

x2
2 dx

)
+ c2e

−x2
2 dx

= e
−x2
2

(
c1

∫
e

x2
2 dx+ c2

)
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4.3.2.10 Linear second order not exact but solved by finding mu(x)
integrating factor.

ode internal name "linear_second_order_ode_solved_by_mu_integrating_factor"

(not implemented yet).

As mentioned above, an exact ode is one which has a corresponding adjoint ODE. In the
case when the ode was exact, we did not use an integrating factor (this is the same as
saying the integrating factor was 1), i.e. µ(x) = 1.

But if the ode is not exact, then we look for integrating factor µ(x) that when multiplied
by the ode makes it exact and hence will have an adjoint ODE. Given

py′′ + q(x) y′ + r(x) y = f(x) (1)

Which is assumed not to be exact. Multiplying both sides by µ(x) gives µ(py′′ + q(x) y′ + r(x) y) =
µf(x). Let

µ(py′′ + q(x) y′ + r(x) y) = (µpy′ +By)′ (2)

Expanding gives

µ(py′′ + q(x) y′ + r(x) y) = µ′py′ + µp′y′ + µpy′′ +B′y +By′

µpy′′ + µqy′ + µry = µpy′′ + y′(µ′p+ µp′ +B) + yB′

Comparing coefficients gives the following 2 equations

µq = µ′p+ µp′ +B (2A)
µr = B′ (2B)

Taking derivative of (2A) gives

µ′q + µq′ = µ′′p+ µ′p′ + µ′p′ + µp′′ +B′

Substituting for B′ from (2B) into the above gives

µ′q + µq′ = µ′′p+ µ′p′ + µ′p′ + µp′′ + µr (3)

Arranging
µ′′p+ µ′(2p′ − q) + µ(p′′ − q′ + r) = 0 (4)

The integrating factor µ is the solution to the above ODE (called the adjoint ode also).
Note that in (4), the term p′′−q′+r will not be zero, as this is the condition for exactness,
and this ode is not exact (else we will not need an integrating factor to start with).

We can obtain (4) directly from py′′ + qy′ + ry = 0. Since the relation between an ode and
its adjoint ode is the following: given

py′′ + qy′ + ry = 0

Its adjoint ode is (
(pµ)′ − qµ

)′ + rµ = 0
(pµ)′′ − (qµ)′ + rµ = 0

(p′µ+ pµ′)′ − (q′µ+ qµ′) + rµ = 0
p′′µ+ p′µ′ + p′µ′ + pµ′′ − q′µ− qµ′ + rµ = 0

pµ′′ + µ′(2p′ − q) + µ(p′′ − q′ + r) = 0

We see this is the same as (4). In summary, an ode py′′ + qy′ + ry = 0 has adjoint ode
(pµ)′′ − (qµ)′ + rµ = 0 where the solution to the adjoint ode makes the first ode exact.
Once the integrating factor µ is found then the first integral is given by

py′′ + qy′ + ry = (µpy′ +By)′
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Where

B = µq − µ′p− µp′

= µ(q − p′)− µ′p

Hence
py′′ + qy′ + ry = (µpy′ + (µ(q − p′)− µ′p) y)′ (5)

There is a known relation between an ode and its adjoint ode given by

µ(py′′ + qy′ + ry)− y(py′′ + qy′ + ry) = d

dx
(P (y, u))

Where the bar above the ode means its complex conjugate. The function P (y, u) is called
the bilinear concomitant (see Murphy book, page 93). And is given by

P (y, u) = p(y′µ− yµ′) + (q − p′) yµ

Unfortunately, all this does not help us in solving the adjoint ode (4) in order to find the
integrating factor µ. Since it will also be a second order ode which can be as hard to solve
as the original ode. So this method is not practical as far as I can see unless the adjoint
ODE comes out very simple to solve, but in all the examples I looked at, this was not the
case.

4.3.2.10.1 Example 1
y′′ − 4xy′ +

(
4x2 − 2

)
y = 0

p = 1, q = −4x, r = (4x2 − 2) . Let us first check if the ode is exact or not as is. The
condition for exactness is

p′′ − q′ + r = 0

Therefore the above becomes

0 + 4 +
(
4x2 − 2

)
= 0

The LHS is not zero. This means the ode is not exact. Therefore we need to try to find
an integration factor µ(x) to make the ode exact. (4) becomes

µ′′p+ µ′(2p′ − q) + µ(p′′ − q′ + r) = 0
µ′′ + µ′(4x) + µ

(
4 +

(
4x2 − 2

))
= 0

µ′′ + 4xµ′ + µ
(
2 + 4x2

)
= 0

We see in practice that finding the integrating factor leads to yet another second order
ode which is as hard to solve as the original ode. The solution to this ode can be found to
be e−x2

, xe−x2 . We only need one integrating factor. Hence let

µ(x) = e−x2

Multiplying this by the given ode now makes it exact

e−x2
y′′ − 4xe−x2

y′ +
(
4x2 − 2

)
e−x2

y = 0

To see this let us check the condition again now. Here p = e−x2
, q = −4xe−x2

, r =
(4x2 − 2) e−x2 . Hence

p′′ − q′ + r = 0(
4e−x2

x2 − 2e−x2
)
−
(
8e−x2

x2 − 4e−x2
)
+
(
4x2 − 2

)
e−x2 = 0

0 = 0
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We see that it is now exact. Hence it has adjoint ODE of the form (5)

(µpy′ + (µ(q − p′)− µ′p) y)′ = 0

Hence the first integral is

µpy′ + (µ(q − p′)− µ′p) y = c

Using µ = e−x2
, p = 1, q = −4x the above becomes

e−x2
y′ +

(
−4xe−x2 −

(
−2xe−x2

))
y = c

e−x2
y′ − 2xe−x2

y = c

y′ − 2xy = cex
2

This is linear first ode whose solution is

y = ex
2(cx+ c2)

4.3.2.10.2 Example 2

y′′ + 1
x
y′ + 1

x
y = 0

Here p = 1, q = 1
x
, r = 1

x
, f(x) = 0. The condition of exactness is

p′′ − q′ + r = 0

0−
(
− 1
x2

)
+ 1
x
= 0

Is not satisfied. Hence the ode is not exact. The adjoint ode (4) to find the integrating
factor becomes

µ′′p+ µ′(p′ − q) + µ(p′′ − q′ + r) = 0

µ′′ + µ′
(
−1
x

)
+ µ

(
− 1
x2

+ 1
x

)
= 0

µ′′ − 1
x
µ′ − µ

(
1− x

x2

)
= 0

x2µ′′ − xµ′ − (1− x)µ = 0

Which has solutions µ as bessel functions. We see that trying to find an integrating factor
using this method is not practical, as it leads to an ode just as hard to solve as the original
one. We could just have solved y′′ + 1

x
y′ + 1

x
y = 0 directly, since this is Bessel ode. Unless

there is a short cut to solving the ODE to find the integrating factor, this method is not
practical. See section below for simpler method

The main difficulty when second order is not exact, is in finding the integrating factor
µ(x) which itself requires solving another second order ode. The whole point of an ODE
being exact is that it is a complete differential which means the order is reduced by one
to make it easier to solve. This means solving a second order ode becomes solving a first
order ode when the ode is exact.



chapter 4. second order ode F (x, y, y′, y′′) = 0 364

4.3.2.11 Linear second order not exact but solved by finding an M
integrating factor.

ode internal name "linear_second_order_ode_solved_by_an_M_integrating_factor"

This is another method to find integrating factor method for the second order ode. This
method of finding an integrating factor is not a general one like the above using µ(x) but
it is easier to check. This is tried first and if this does not work, then the above will be
tried.

Given the ode, normalized so that the coefficient of y′′ is one

y′′ +Q(x) y′ +R(x) y = f(x) (1)

Let there exists an integrating factor M(x) such that

(M(x) y)′′ =M(x) f(x) (2)

Then it can be integrated twice and solved. To find M , the above becomes

(M ′y +My′)′ =Mf

M ′′y +M ′y′ +M ′y′ +My′′ =Mf

My′′ + y′(2M ′) +M ′′y =Mf

y′′ + y′
(
2M

′

M

)
+ M ′′

M
y = f (2A)

Comparing (2A) to (1) gives

2M
′

M
= Q

M ′′

M
= R

Or

M ′ − 1
2MQ = 0 (3)

M ′′ −MR = 0 (4)

Starting with (3) givesM = e
1
2
∫
Qdx. If this also satisfies (4), thenM is found by integration.

If not, then this method did not work.

4.3.2.11.1 Example 1
y′′ − 4xy′ +

(
4x2 − 2

)
y = 0

Hence Q = −4x and R = (4x2 − 2) , f(x) = 0. Eq(3) becomes

M ′ − 1
2MQ = 0

Therefore

M = e
1
2
∫
Qdx

= e
1
2
∫
−4xdx

= e−x2

Now we much check that equation (4) is verified with such M .

M ′ = −2xe−x2

M ′′ = −2e−x2 − 2x
(
−2e−x2

)
= −2e−x2 + 4xe−x2
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Substituting these in (4) gives(
−2e−x2 + 4xe−x2

)
− e−x2(4x2 − 2

)
= 0

−2e−x2 + 4xe−x2 + 2e−x2 − 4x2e−x2 = 0
0 = 0

M is satisfied. Therefore the integrating factor is

M = e−x2

Eq (2) now becomes

(My)′′ = 0
My′ = c1

My = c1x+ c2

y = c1x+ c2
M

= (c1x+ c2) ex
2

Which is the same answer found using the more general method of µ(x) in the above
section but this is simpler when it works since it does not involve solving another ode (the
adjoint ode) to find an integrating factor.

4.3.2.11.2 Example 2 Here is an example where the method of integrating factor
does not work.

y′′ + 1
x
y′ + 1

x
y = 0

Here p = 1, q = 1
x
, r = 1

x
, f(x) = 0. The condition of exactness is

p′′ − q′ + r = 0

0−
(
− 1
x2

)
+ 1
x
= 0

Is not satisfied. Hence the ode is not exact. Therefore let us try to find M . Using

M = e
1
2
∫
qdx

= e
1
2 lnx

=
√
x

Therefore M ′ = 1
2x

−1
2 and M ′′ = −1

4x
−3
2 . Substituting these in (4) to verify gives (using

r = x−1)

−1
4x

−3
2 − x

1
2
(
x−1) = 0

−1
4x

−3
2 − x−

1
2 = 0

Which does not verify as the LHS is not zero. Therefore the integrating method did not
work on this ode.

An easier method to find if an M integrating factor exists is the following. Since M =
e

1
2
∫
qdx then substituting this into (2A) gives

y′′ + y′
(
2M

′

M

)
+ M ′′

M
y = f(x)

Since M ′ = 1
2qM and since

M ′′ = 1
2(q

′M + qM ′)

= 1
2

(
q′M + 1

2q
2M

)
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Then (2A) now becomes

y′′ + y′
(
2

1
2qM

M

)
+

1
2

(
q′M + 1

2q
2M
)

M
y = f

y′′ + qy′ + 1
2

(
q′ + 1

2q
2
)
y = f

By comparing the above to the given ode in normal form shows that for M to exist
the condition is

r = 1
2

(
q′ + 1

2q
2
)

if the above is true, then M exists and is given by

M = e
1
2
∫
qdx

Using this method on the first example above y′′ − 4xy′ + (4x2 − 2) y = 0, where q =
−4x and r = (4x2 − 2). Checking if (4x2 − 2) = 1

2

(
q′ + 1

2q
2), then 1

2

(
−4 + 1

2(16x
2)
)
=

4x2 − 2 = r. Hence M exists. This is a much faster method to determine if M exists or
not.

The second example y′′ + 1
x
y′ + 1

x
y = 0 where q = 1

x
, r = 1

x
, then 1

2

(
q′ + 1

2q
2) =

1
2

(
−x−2 + 1

2x
−2) = − 1

4x2 6= r. Therefore no M exists and the integration factor does
not exist for this ode. Note this does not mean there is no integrating factor. It just means
this short cut method which I call the M integrating factor does not work.

4.3.2.12 Solved using Lagrange adjoint equation method.

ode internal name "second order ode lagrange adjoint equation method"

This method is used when hint is “adjoint”. This transformation does not use change of
variables. It was discovered by Lagrange in his Miscellanea Taurensis paper. It reduces
the order of the ode by one, assuming the so called adjoint ode can be solved. This is also
described in section 1.5.1 on page 14 of the “book Change and Variations A History of
Differential Equations to 1900” by Jeremy Gray. This method will only work if adjoint
equation turns out to be simple and can be solved. It is now only used by the program if
the hint “adjoint” is detected or if all the other methods were first tried and they all fail to
solve the ode. So this method works if the adjoint ode can be solved. But the adjoint ode
itself is second order non constant ode. So we need to solve a second order non-constant
ode in order to reduce the order by one of the original ode. Luckily the adjoint ode turns
out to be possible to solve by change of variables when the original one is not, and that is
why this method is tried.

Given the ode
y′′ + p(x) y′ + q(x) y = r(x) (1)

This method starts by multiplying the ode by some unknown function z ≡ z(x) which
gives

zy′′ + zpy′ + zqy = zr (2)
Integrating gives ∫

zy′′dx+
∫
zpy′dx+

∫
zqydx =

∫
zrdx (3)

Using integration by parts on
∫
zpy′dx using

∫
udv = uv −

∫
vdu where u = zp and

dv = y′, hence v = y and du = d
dx
(zp). Therefore∫

zpy′dx = zpy −
∫
y
d(zp)
dx

dx

Using integration by parts on
∫
zy′′dx using

∫
udv = uv−

∫
vdu where u = z and dv = y′′,

hence v = y′ and du = z′. Therefore∫
zy′′dx = zy′ −

∫
y′z′dx
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Eq (3) becomes(
zy′ −

∫
y′z′dx

)
+
(
zpy −

∫
y
d(zp)
dx

dx

)
+
∫
zqydx =

∫
zrdx (4)

Integrating by part again the term
∫
y′z′dx using

∫
udv = uv −

∫
vdu where u = z′ and

dv = y′, hence v = y and du = z′′. Therefore∫
y′z′dx = yz′ −

∫
yz′′dx

Substituting this in (4) gives(
zy′ −

(
yz′ −

∫
yz′′dx

))
+
(
zpy −

∫
y
d(zp)
dx

dx

)
+
∫
zqydx =

∫
zrdx

zy′ − yz′ +
∫
yz′′dx+ zpy −

∫
y
d(zp)
dx

dx+
∫
zqydx =

∫
zrdx

zy′ − yz′ + zpy +
∫ (

yz′′ − y
d(zp)
dx

+ zqy

)
dx =

∫
zrdx

zy′ − yz′ + zpy +
∫
y

(
z′′ − d(zp)

dx
+ zq

)
dx =

∫
zrdx

zy′ + (zp− z′) y +
∫
y

(
z′′ − d(zp)

dx
+ zq

)
dx =

∫
zrdx (5)

The adjoint ode is the term inside the integral above given by

z′′ − d(zp)
dx

+ zq = 0 (6)

If this can be solved, where the solution zsol(x) 6= 0, then (5) reduces to

zsoly
′ +
(
zsolp− (zsol)′

)
y =

∫
zrdx

y′ + y

(
p− (zsol)′

zsol

)
= 1
z

∫
zrdx

Which is first order ode in y(x) which can be easily solved for y(x). Equation (6) is called
the Lagrange adjoint equation. This method of course works only if the adjoint ode can
be solved for z(x) and the solution is not zero.

4.3.2.13 Solved By transformation on B(x) for ODE
Ay′′(x) +By′(x) + C(x) y(x) = 0

ode internal name "second_order_ode_non_constant_coeff_transformation_on_B"

This method is tried to reduce the order ode the ODE by one, by doing direct transfor-
mation on B(x) for the ode

A(x) y′′(x) +B(x) y′(x) + C(x) y(x) = 0

Let
y = Bv

Then y′ = B′v + v′B and y′′ = B′′v + B′v′ + v′′B + v′B′ = v′′B + 2v′B′ + B′′v then the
original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0
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Now we check if AB′′ + BB′ + CB = 0 or not. If it is zero, then this method works and
we can now solve

ABv′′ +
(
2AB′ +B2) v′ = 0

Using u = v′ which reduces the order to one.

ABu′ +
(
2AB′ +B2)u = 0

This is first order ode now. Solved for u gives v′ which is solved for v as first order ode.
Then y = Bv and we are done. This method only works of course if AB′′+BB′+CB = 0
comes out to be zero. Here is an example

4.3.2.13.1 Example 1
xy′′ + (−1− x) y′ + y = 0

Here A = x,B = (−1− x) and C = 1, hence B′ = −1, B′′ = 0 and therefore

AB′′ +BB′ + CB = 0 + (−1− x) (−1) + (−1− x)
= 1 + x− 1− x

= 0

It works. Hence the reduces ode becomes

ABv′′ +
(
2AB′ +B2) v′ = 0

Let u = v′ then

ABu′ +
(
2AB′ +B2)u = 0

x((−1− x))u′ +
(
−2x+ (−1− x)2

)
u = 0

u− xu′ + ux2 − x2u′ = 0
u′
(
−x− x2

)
+ u
(
1 + x2

)
= 0

u′ − (1 + x2)
(x+ x2)u = 0

This is linear first order ode solved using integrating factor which gives

u = c1
xex

(1 + x)2

Hence since v′ = u then

v′ = c1
xex

(1 + x)2

This is quadrature. Solving gives

v = c2 + c1
ex

1 + x

Therefore
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y = Bv

= (−1− x)
(
c2 + c1

ex

1 + x

)
= c2(1 + x) + c1e

x

Note that this method is sensitive to the ODE is written. If we divide the ode by A is
becomes

y′′ + (−1− x)
x

+ 1
x
y = 0

And now A = 1, B = (−1−x)
x

and C = 1
x
, hence B′ = − 1

x
+ 1+x

x2 and B′′ = 2
x2 − 2

x3 (1 + x)
then

AB′′ +BB′ + CB =
(

2
x2

− 2
x3

(1 + x)
)
+
(
(−1− x)

x

)(
−1
x
+ 1 + x

x2

)
+ 1
x

(
(−1− x)

x

)
= − 1

x3
(
x2 + 2x+ 3

)
6= 0

So this method now fails to reduce the ode order by one. So in practice, I try first on the
ode as given, and then try again by normalizing it so that B is not rational function and
try again. In other words, given an ode y′′ + (−1−x)

x
+ 1

x
y = 0 then try with B = (−1−x)

x

and if this fails, try again after multiplying the ode by x so now B = (−1− x) and A = x

and C = 1 and see if this works or not. This method of course only works when B is not
zero.

4.3.2.14 Bessel type ode x2y′′ + xy′ + (x2 − n2) y = f(x)

ode internal name "second order bessel ode"

Solves Besself ode or an ode which can be converted to bessel ode.

4.3.2.14.1 Introduction This gives examples of converting (when possible) a second
order linear ode to Bessel form. Bessel ODE is

x2y′′ + xy′ +
(
x2 − n2) y = 0 (A)

Where n is the order which can be integer or non-integer. This comes out when doing
separation of variables for the Laplace and Helmholtz PDE in spherical and cylindrical
coordinates. n is integer for cylindrical coordinates and half integer values (n = 1

2 +Z), for
spherical coordinates. n can also be any other real value. The case n = 1

2 + Z is special in
that the solution of the ode is reducible to standard trigonometric functions and complex
exponential function. In all other cases, the solution remains in terms of Bessel functions.

The solution to (A) is known to be

y(x) = c1Jn(x) + c2Yn(x)

Where Jn(x) is Bessel function of first kind (order n). And Yn(x) Bessel function of second
kind (order n).

There is also the modified Bessel ODE which differ by a sign

x2y′′ + xy′ −
(
x2 + n2) y = 0 (B)
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There is however a generalized form of (A,B). Which will be used below. (Bowman 1958).
This form is

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ −

(
n2γ2 − α2)) y = 0 (C)

Which is obtained by applying the transformation η = y
xα , ξ = βxγ to (A). The above has

the solution

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ)) integer n (C1)
y(x) = xα(c1Jn(βxγ) + c2J−n(βxγ)) noninteger n (C2)

4.3.2.14.2 Collection of transformations This section shows number of transfor-
mations applied to second order linear ode in order to make it of the form (A) or (B) if
it is not already in that form. Once the ode is in form A or B, then its solution is now
known using Bowman transformation.

Example x2y′′ + xy′ + (ax2 − n2) y = 0

x2y′′ + xy′ +
(
ax2 − n2) y = 0 (1)

Comparing (1) to (C) shows that

(1− 2α) = 1
2γ = 2
a = β2γ2

γ2 = 1
α = 0

Solving shows that γ = 1, β =
√
a. Hence the solution from (C1) can now be written

directly as
y(x) = c1Jn

(√
ax
)
+ c2Yn

(√
ax
)

Another way to obtain this solution is to use the transformation

x = 1√
a
z

Which converts (1) to
z2y′′ + zy′ +

(
x2 − v2

)
y = 0 (2)

This is now in standard form (A) which has solution

y(z) = c1Jv(z) + c2Yv(z)

Replacing back z =
√
ax in the above gives

y(x) = c1Jv
(√

ax
)
+ c2Yv

(√
ax
)

So the rule is that, the term is (ax2 − n2) y then we can just replace Jn(x) and Yn(x) in the
standard solution with Jn

(√
ax
)
and Yn

(√
ax
)
. For example x2y′′ + xy′ + (4x2 − 9) y = 0

will have the solution y(x) = c1J3(2x) + c2Y3(2x).
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Example x2y′′ + xy′ + xy = 0

x2y′′ + xy′ + xy = 0 (1)

Comparing (1) to (C) shows that

(1− 2α) = 1 (2)(
β2γ2x2γ −

(
n2γ2 − α2)) = x

Hence

β2γ2x2γ = x(
n2γ2 − α2) = 0 (3)

Which implies

2γ = 1 (4)
β2γ2 = 1 (5)

(2) gives α = 0. (4) gives γ = 1
2 . Substituting these into (3) gives

n = 0

And (5) gives β2 = 4 or β = ±2. Therefore from (C1) the solution is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= c1J0

(
2
√
x
)
+ c2Yn

(
2
√
x
)

Example x2y′′ + bxy′ + (x2 − v2) y = 0

x2y′′ + bxy′ +
(
x2 − v2

)
y = 0 (1)

Comparing (1) to the generalized form (C) x2y′′+(1− 2α)xy′+(β2γ2x2γ − (n2γ2 − α2)) y =
0 shows that

(1− 2α) = b

2γ = 2
β2γ2 = 1(

n2γ2 − α2) = v2

Hence γ = 1, β = 1 . From first equation α = 1
2(1− b). Using this in the last equation

gives

n2 − 1
4(1− b)2 = v2

n =
√
v2 + 1

4 (1− b)2

Therefore the solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= x

1
2 (1−b)(c1Jn(x) + c2Yn(x))

For example, if b = 4, then the ode is x2y′′ + 4xy′ + (x2 − v2) y = 0 and the solution is

y(x) = x−
3
2 (c1Jn(x) + Yn(x))

Where n = 1
2

√
4v2+9

2 .
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Example xy′′ + y′ + Ay = 0
xy′′ + y′ + Ay = 0 (1)

Where A is constant. Multiplying by x gives

x2y′′ + xy′ + Axy = 0

Comparing the above to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 1
Ax = β2γ2x2γ(

n2γ2 − α2) = 0

Which implies α = 0, 2γ = 1 or γ = 1
2 . Therefore β

2γ2 = A gives β2 = 4A or β = 2
√
A.

And n = 0. Hence the solution (C1) is

y(x) = c1J0
(
2
√
A
√
x
)
+ c2Y0

(
2
√
A
√
x
)

Alternative and longer method is the following (this is kept just for illustration, as the
above method is more direct).

Using the transformation
x = v2

Hence
v =

√
x (2)

and dv
dx

= 1
2
√
x
. Therefore

dy

dx
= dy

dv

dv

dx

= dy

dv

1
2
√
x

= dy

dv

1
2v (3)

And

d2y

dx2
= d

dx

(
dy

dx

)
= d

dx

(
dy

dv

1
2v

)
But d

dx
= d

dv
dv
dx
. The above becomes

d2y

dx2
= d

dv

dv

dx

(
dy

dv

1
2v

)
= dv

dx

d

dv

(
dy

dv

1
2v

)
But dv

dx
= 1

2
√
x
= 1

2v . Hence the above becomes

d2y

dx2
= 1

2v
d

dv

(
dy

dv

1
2v

)
(4)

But
d

dv

(
dy

dv

1
2v

)
= 1

2

(
d2y

dv2
1
v
− dy

dv

1
v2

)
Hence (4) becomes

d2y

dx2
= 1

4v

(
d2y

dv2
1
v
− dy

dv

1
v2

)
(5)
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Substituting (3,5) into (1) gives

x
1
4v

(
d2y

dv2
1
v
− dy

dv

1
v2

)
+ dy

dv

1
2v + Ay = 0

But x = v2. The above becomes

v

4

(
y′′

1
v
− dy

dv

1
v2

)
+ y′

1
2v + Ay = 0

1
4y

′′ − 1
4y

′ 1
v
+ y′

1
2v + Ay = 0

1
4y

′′ + 1
4y

′ 1
v
+ Ay = 0

y′′ + y′
1
v
+ 4Ay = 0

Multiplying through by v2
v2y′′ + vy′ + 4Av2y = 0

The above of the form
v2y′′ + vy′ +

(
a2v2 − n2) y = 0

Where n = 0 and a2 = 4A which has the standard solution

y(v) = c1Jn(av) + c2Yn(av)

Where Jn(v) is the Bessel function of first kind and Yn(v) is Bessel function of second
kind. Since v =

√
x and a = 2

√
A then the solution for (1) becomes (using n = 0)

y(x) = c1J0
(
2
√
A
√
x
)
+ c2Y0

(
2
√
A
√
x
)

For example, if A = 1
4 . Then the ode xy′′ + y′ + 1

4y = 0 and the solution above becomes

y(x) = c1J0
(√

x
)
+ c2Y0

(√
x
)

Example y′′ − 1
x
y = 0

y′′ − 1
x
y = 0 (1)

Multiplying both sides by x2 gives

x2y′′ − xy = 0

Comparing to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows that

(1− 2α) = 0
β2γ2x2γ = −x(

n2γ2 − α2) = 0

First equation gives α = 1
2 . Second equation gives γ = 1

2 and β2γ2 = −1. Therefore
β2 = −4 or β = ±2i. Last equation gives n2γ2 = 1

4 or n = 1 since γ2 = 1
4 . Hence the

solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
=

√
x
(
c1J1

(
2i
√
x
)
+ c2Y1

(
2i
√
x
))

By properties of Bessel functions, where Jn
(
ai
√
x
)
= inIn

(
a
√
x
)
, then the above becomes

y(x) =
√
x
(
ic1I1

(
2
√
x
)
+ c2Y1

(
2i
√
x
))

Alternative longer method is the following:
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Trying standard transformation y =
√
xY . The ode becomes

x2Y ′′ + xY ′ −
(
x+ 1

4

)
Y = 0

Using the transformation x = t2 the above becomes

t2Y ′′ + tY ′ −
(
4t2 + 1

)
Y = 0

Finally applying the standard transformation t = 1
2z to fix the term (4t2 + 1) to standard

form the above becomes
z2Y ′′ + zY ′ −

(
t2 + 1

)
Y = 0

This is modified Bessel ODE whose solution is known to be

Y (z) = c1I1(z) + c2K1(z)

Where I1 is modified Bessel function of first kind and K1 is modified Bessel function of
second kind. But z = 2t. Hence the above becomes

Y (t) = c1I1(2t) + c2K1(2t)

But t =
√
x. The above becomes

Y (x) = c1I1
(
2
√
x
)
+ c2K1

(
2
√
x
)

But y(x) =
√
xY (z) hence

y(x) = c1
√
xI1
(
2
√
x
)
+ c2

√
xK1

(
2
√
x
)

Example 4x2y′′ + 4xy′ + (x− 4) y = 0 Dividing by 4

x2y′′ + xy′ +
(
1
4x− 1

)
y = 0

Comparing the above to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 1

β2γ2x2γ = 1
4x(

n2γ2 − α2) = 1

Which implies α = 0, 2γ = 1, β2γ2 = 1
4 . Hence γ = 1

2 and β = 1. Last equation now says
n2γ2 = 1 or n = 2. Hence the solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= c1J2

(√
x
)
+ c2Y2

(√
x
)

Example y′′ − 1
x
3
2
y = 0 Multiplying by x 3

2

x
3
2y′′ − y = 0

Multiplying by x 1
2

x2y′′ − x
1
2y = 0

Comparing the above to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 0
β2γ2x2γ = −x

1
2(

n2γ2 − α2) = 0
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Which implies α = 1
2 , 2γ = 1

2 , β
2γ2 = −1. Hence γ = 1

4 and β2 = −16 or β = ±4i. Last
equation now says

(
n2 1

16 −
1
4

)
= 0 or n = 2. Hence the solution (C1) is

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))

=
√
x
(
c1J2

(
4ix 1

4

)
+ c2Y2

(
4ix 1

4

))
By properties of Bessel functions, where Jn

(
ai
√
x
)
= inIn

(
a
√
x
)
, then the above becomes

y(x) =
√
x
(
−c1I2

(
4x 1

4

)
+ c2Y2

(
4ix 1

4

))
Example x2y′′ − xy + (x2 + 1) y = 0

x2y′′ − xy +
(
x2 + 1

)
y = 0

Comparing the above to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = −1
β2γ2x2γ = x2

−
(
n2γ2 − α2) = 1

Which implies α = 1 and γ = 1 and β2γ2 = 1 or β = 1. Last equation now becomes
−(n2 − 1) = 1 or n2 = 0 or n = 0. Hence the solution (C1) becomes

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))
= x(c1J0(x) + c2Y0(x))

Example y′′ − x−
1
4y = 0 Multiplying by x 1

4

x
1
4y′′ − y = 0

Multiplying by x 7
4

x2y′′ − x
7
4y = 0

Comparing the above to (C) x2y′′ + (1− 2α)xy′ + (β2γ2x2γ − (n2γ2 − α2)) y = 0 shows
that

(1− 2α) = 0
β2γ2x2γ = −x

7
4(

n2γ2 − α2) = 0

Which implies α = 1
2 and 2γ = 7

4 or γ = 7
8 and β2γ2 = −1 or β2 = − 1( 7

8
)2 = −64

49 . Hence
β = i87 . Last equation now becomes

(
n2(49

64

)
− 1

4

)
= 0, or n = 4

7 . Hence the solution (C2)
for non integer n becomes

y(x) = xα(c1Jn(βxγ) + c2J−n(βxγ))

=
√
x

(
c1J 4

7

(
i
8
7x

7
8

)
+ c2J− 4

7

(
i
8
7x

7
8

))
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Example f ′′ + λ
x
f ′ − µf = 0 Multiplying by x2

x2f ′′ + λxf ′ +
(
−µx2

)
f = 0 (1)

Using the generalized form of Bessel ode

x2f ′′ + xf ′ +
(
x2 − n2) f = 0 (A)

Which is given by (Bowman 1958)

x2f ′′ + (1− 2α)xf ′ +
(
β2γ2x2γ −

(
n2γ2 − α2)) f = 0 (C)

Comparing (1) and (C) shows that

(1− 2α) = λ (2)
β2γ2x2γ = −µx2 (3)(

n2γ2 − α2) = 0 (4)

(2) gives α = 1
2 −

1
2λ. (3) gives 2γ = 2 or γ = 1. And (3) also shows that β2γ2 = −µ or

β =
√
−µ. Now (4) gives

(
n2 −

(1
2 −

1
2λ
)2) = 0 or n =

(1
2 −

1
2λ
)
. (taking positive root).

But the solution to (C) is gives by

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))

Therefore the solution to (1) is

y(x) = x
( 1
2−

1
2λ
)(
c1J( 1

2−
1
2λ
)(√−µx

)
+ c2Y( 1

2−
1
2λ
)(√−µx

))
Where J is the Bessel function of first kind and Y is the Bessel function of the second
kind.

Example x2y′′ + xy′ + (x2 − 5)y = 0

x2y′′ + xy′ + (x2 − 5)y = 0 (1)

Using the generalized form of Bessel ode

x2y′′ + xy′ +
(
x2 − n2) y = 0 (A)

Which is given by (Bowman 1958)

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ −

(
n2γ2 − α2)) y = 0 (C)

Comparing (1) and (C) shows that

(1− 2α) = 1 (2)
β2γ2x2γ = x2 (3)(

n2γ2 − α2) = 5 (4)

(2) gives α = 0. (3) gives γ = 1 and β2γ2 = 1 or β = 1. Now (4) gives n2γ2 = 5 or
n =

√
5.But the solution to (C) is given by

y(x) = xα(c1Jn(βxγ) + c2Yn(βxγ))

Therefore the solution to (1) is

y(x) = c1J√5(x) + c2Y√5(x)

Where J is the Bessel function of first kind and Y is the Bessel function of the second
kind.
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4.3.2.15 Bessel form A type ode ay′′ + by′ + (cerx −m)y = f(x)

ode internal name "second_order_bessel_ode_form_A"

These are ode of the above form which can be converted to Bessel using transformation
x = ln (t).

4.3.2.15.1 Example ay′′ + by′ + (cerx −m)y = 0 An ode of the form

ay′′ + by′ + (cerx +m)y = 0 (1)

can be transformed to Bessel ode using the transformation

x = ln (t)
ex = t

Where a, b, c,m are not functions of x and where b and m are allowed to be be zero. Using
this transformation gives

dy

dx
= dy

dt

dt

dx

= dy

dt
ex

= t
dy

dt
(2)

And

d2y

dx2
= d

dx

(
dy

dx

)
= d

dx

(
t
dy

dt

)
= d

dt

dt

dx

(
t
dy

dt

)
= dt

dx

d

dt

(
t
dy

dt

)
= t

d

dt

(
t
dy

dt

)
= t

(
dy

dt
+ t

d2y

dt2

)
(3)
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Substituting (2,3) into (1) gives

at

(
dy

dt
+ t

d2y

dt2

)
+ bt

dy

dt
+ (cerx +m)y = 0(

aty′ + at2y′′
)
+ bty′ + (ctr +m)y = 0

at2y′′ + (b+ a) ty′ + (ctr +m)y = 0

t2y′′ + b+ a

a
ty′ +

( c
a
tr + m

a

)
y = 0 (4)

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel
ode which is

t2y′′ + (1− 2α) ty′ +
(
β2γ2t2γ −

(
n2γ2 − α2)) y = 0 (C)

And now comparing (4) and (C) shows that

(1− 2α) = b+ a

a
(5)

β2γ2 = c

a
(6)

2γ = r (7)(
n2γ2 − α2) = −m

a
(8)

(5) gives α = 1
2 −

b+a
2a . (7) gives γ = r

2 . (8) now becomes
(
n2( r

2

)2 − (12 − b+a
2a

)2) = −m
a

or n2 =
−m

a
+
(

1
2−

b+a
2a

)2
(
r
2
)2 . Hence n = 2

r

√
−m

a
+
(1
2 −

b+a
2a

)2 by taking the positive root. And
finally (6) gives β2 = c

aγ2 or β =
√

c
a
1
γ
=
√

c
a
2
r
(also taking the positive root). Hence

α = 1
2 − b+ a

2a

n = 2
r

√
−m
a

+
(
1
2 − b+ a

2a

)2

β =
√
c

a

2
r

γ = r

2

But the solution to (C) which is general form of Bessel ode is known and given by

y(t) = tα(c1Jn(βtγ) + c2Yn(βtγ))

Substituting the above values found into this solution gives

y(t) = t
1
2−

b+a
2a

(
c1J 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
t
r
2

)
+ c2Y 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
t
r
2

))

Since ex = t then the above becomes

y(x) = e
x
(

1
2−

b+a
2a

)(
c1J 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+
(

1
2−

b+a
2a

)2
(√

c

a

2
r
ex

r
2

))

= e
x
(

−b
2a

)(
c1J 2

r

√
−m

a
+
(

−b
2a

)2
(√

c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+
(

−b
2a

)2
(√

c

a

2
r
ex

r
2

))

= e
x
(

−b
2a

)(
c1J 2

r

√
−m

a
+ b2

4a2

(√
c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
−m

a
+ b2

4a2

(√
c

a

2
r
ex

r
2

))
= e

x
(

−b
2a

)(
c1J 2

r

√
− 4ma+b2

4a2

(√
c

a

2
r
ex

r
2

)
+ c2Y 2

r

√
− 4ma+b2

4a2

(√
c

a

2
r
ex

r
2

))
= e

x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
(9)
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Equation (9) above is the solution to ay′′ + by′ + (cerx +m)y = 0. Therefore we just need
now to compare this form to the ode given and use (9) to obtain the final solution.

Let us now apply this to an example for illustration. Given the ode

y′′ + (e2x − 4)y = 0

Comparing the above to ay′′ + by′ + (cerx +m)y = 0 shows that a = 1, b = 0, c = 1, r =
2,m = −4. Hence the solution (9) becomes

y(x) = e
x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
= c1J 1

2
√
16(ex) + c2Y 1

2
√
16(ex)

= c1J2(ex) + c2Y2(ex)
= c1 BesselJ (2, ex) + c2 BesselY (2, ex)

Another example for illustration. Given the ode

y′′ + y′ + (ex − 4)y = 0

Comparing the above to ay′′ + by′ + (cerx +m)y = 0 shows that a = 1, b = 1, c = 1, r =
1,m = −4. Hence the solution (9) becomes

y(x) = ex
(−1

2
)(
c1J√16

(
2ex 1

2

)
+ c2Y√16+1

(
2ex 1

2

))
= e

−x
2
(
c1J√17

(
2ex

2
)
+ c2Y√17

(
2ex

2
))

Another example for illustration. Given the ode

y′′ + (e2x − n2)y = 0

Comparing the above to ay′′ + by′ + (cerx +m)y = 0 shows that a = 1, b = 0, c = 1, r =
2,m = −n2. Hence the solution (9) becomes

y(x) = e
x
(

−b
2a

)(
c1J 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

)
+ c2Y 1

ra

√
−4ma+b2

(√
c

a

2
r
ex

r
2

))
= c1J 1

2
√

−4(−n2)(e
x) + c2Y 1

2
√

−4(−n2)(e
x)

= c1Jn(ex) + c2Yn(ex)
= c1 BesselJ (n, ex) + c2 BesselY (n, ex)
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4.4.1 Exact nonlinear second order ode F (x, y, y′, y′′) = 0
(Approach 1)

ode internal name "exact_nonlinear_second_order_ode"

(not implemented yet)

4.4.1.1 Introduction and terminology used

An ode F (x, y, y′, y′′) = 0 is called exact if there exists a function R(x, y, y′) with order
one less that of the ode, such that

F (x, y, y′, y′′) = d

dx
R(x, y, y′)

Which also implies that R = c some constant, because F = 0. In the above R(x, y, y′) is
called the first integral of the ode F (also called the reduced ode), because

R =
∫
Fdx+ c (1A)

An important property of first integral is the following. If we write the ode F (x, y, y′, y′′) =
0 as y′′ = Φ(x, y, y′) which we can always do, then

Rx + y′Ry + ΦRy′ = 0 (1B)

Lets see how this works. Given the ode y′′ + xy′ + y = 0 which is exact as is from the
exactness test py′′+qy′+r = 0 which is p′′−q′+r = 0, hence p = 1, q = x, r = 1, therefore
−1+ 1 = 0 which is true. Therefore we can write because we can write y′′ + xy′ + y = 0 =
(y′ +B(x) y)′ and find that B = x, Hence

y′′ + xy′ + y = (y′ + xy)′

Where y′ + xy = 0 is the reduced ode.

R = y′ + xy

For the original ode y′′ + xy′ + y = 0, it can be written as y′′ = −(xy′ + y), therefore
Φ = −(xy′ + y). Eq (1B) now becomes

Rx + y′Ry + ΦRy′ = 0
y + y′x− (xy′ + y) (1) = 0

y + y′x− xy′ − y = 0
0 = 0

Verified. Here is another example. Given the ode (x− 1)2 y′′+4y′x+2y−2x = 0, this is exact
because we can write (x− 1)2 y′′+4y′x+2y−2x = d

dx
((2x+ 2) y + (x2 − 2x+ 1) y′ − x2),

hence the first integral (or the reduced ode) is R = (2x+ 2) y+ (x2 − 2x+ 1) y′ − x2. The
original ode can be written as y′′ = − (4y′x+2y−2x)

(x−1)2 , therefore Φ = − (4y′x+2y−2x)
(x−1)2 . Eq (1B)

becomes

Rx + y′Ry + ΦRy′ = 0

(2y + 2xy′ − 2y′ − 2x) + y′(2x+ 2)−
(
4y′x+ 2y − 2x

(x− 1)2
)(

x2 − 2x+ 1
)
= 0

0 = 0

Verified. Equations (1A) and (1B) are important as they will be used to determined an
integrating factor when the ode is not exact.
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4.4.1.2 Test for exactness

The following shows how to determine if F (x, y, y′, y′′) = 0 is exact or not (without having
to find the first integral R). This is based on page 164 in Murphy book. The second order
ode must be of degree one. If it is, it can not be exact. The ode is exact iff

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0 (1)

This turns out to be the same thing as using p′′ − q′ + r = 0 on the ode py′′ − q′ + r = 0.
Let us apply the above test on second order ode which is known to be exact to see how it
works. The ode is

F (x, y, y′, y′′) = 0
xy′′ + (y − 1) y′ = 0

Hence the above test gives

y′ − d

dx
(y − 1) + d2

dx2
(x) = 0

y′ − y′ = 0
0 = 0

Confirmed. Since the ode is linear, we could also apply p′′ − q′ + r = 0 to check, which is
simpler. Here p = x, q = (y − 1) , r = 0. Therefore

p′′ − q′ + r = 0
0− 0 + 0 = 0

The form (1) is given in Murphy book which is more general since it works on nonlinear
and linear odes while p′′ − q′ + r = 0 is meant to be used for linear second order odes.

In implementation of the solver this is the same type of ode as "second order integrable
as is" ode which is described below. I should merge these together. if a second order ode
is exact, then it is also integrable ode as is. This is by definition of exactness above.

4.4.1.3 Examples showing how to check for exactness

4.4.1.3.1 Example 1

y′′ + x

y2
y′ − 1

y
= 0

F (x, y, y′, y′′) = y′′ + x

y2
y′ − 1

y

Applying the test
∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0 (1)

Therefore
∂F

∂y
= − 2

y3
xy′ + 1

y2

∂F

∂y′
= x

y2

∂F

∂y′′
= 1

Hence (1) becomes (
− 2
y3
xy′ + 1

y2

)
− d

dx

(
x

y2

)
+ d2

dx2
(1) = 0(

− 2
y3
xy′ + 1

y2

)
−
(

1
y2

− 2xy′
y3

)
= 0

0 = 0
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Therefore this exact. We see that
(
y′ − x

y

)′
= y′′ −

(
1
y
+ xy2

y′

)
. Which implies the ode is

integrable as is. Which means ∫ (
y′ − x

y

)′

dx = 0

y′ − x

y
= c (2)

Which can now be solved. In the above R(x, y, y′) =
(
y′ − x

y

)
. In other words F = d

dx
R.

Hence
d

dx
R = 0

Integrating gives ∫
d

dx
Rdx = c∫
dR = c

R = c

y′ − x

y
= c

Which is the same as (2) above but shows how it came about more clearly.

4.4.1.3.2 Example 2

3βy′′ + yy′ = 0
F (x, y, y′, y′′) = 3βy′′ + yy′

Applying the test
∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0 (1)

Therefore

∂F

∂y
= y′

∂F

∂y′
= y

∂F

∂y′′
= 3β

Hence (1) becomes

(y′)− d

dx
(y) + d2

dx2
(3β) = 0

y′ − y′ = 0
0 = 0

Therefore this exact. Therefore we see that
(

y2

2 + 3βy′
)′

= 3βy′′ + yy′ = 0. Which implies
the ode can be written as ∫ (

y2

2 + 3βy′
)′

dx = 0

y2

2 + 3βy′ = c

Solving this first order ode gives the solution

y = tanh
(

1
6r

√
c1(c2 + x)

√
2
)√

2√c1
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4.4.1.4 How to solve the ode once it is determined it is exact

In the examples above we did not show how to obtain or find the first integral R(x, y, y′).
Given an ode F (x, y, y′, y′′) = 0 which is determined to be exact as above, then how to
solve it? This is done by first finding the first integral R. We need to find R(x, y, y′) such
that

F (x, y, y, y′′) = d

dx
R(x, y, y′) = 0

Once R is found, then we need to solve the first order ode R(x, y, y′) = c where R is now
one order less that F so it should be simpler to solve. This ode might require another
integration factor to solve depending on what it type turns out to be.

This reduces the order of the ode from second to first order (since R is first order). To
find R(x, y, y′) the first step is to write the given ode in this form

F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) (1)

We know what f, g are in the above by reading them from the given ode. But

F = d

dx
R(x, y, y′)

= ∂R

∂x

dx

dx
+ ∂R

∂y

dy

dx
+ ∂R

∂y′
dy′

dx

= Rx +Ryy
′ +Ry′y

′′ (1A)

And since y′′ = Φ(x, y, y′) then the above can also be written as

F = Rx +Ryy
′ + ΦRy′

The above is same as Eq (1B) in the introduction above. Comparing (1,1A) shows that

f = Ry′ (2)
g = Rx +Ryy

′ (3)

At this point it is easier to replace y′ by p. The above becomes

f = Rp (2)
g = Rx +Ryp (3)

Using (2,3) we are able to determine R. Note that R must exist since we checked the ode
is exact and hence must have a first integral. This method similar to how we find R for
an exact first order ode.

Starting with (2) and integrating it w.r.t. p gives

R =
∫
fdp+ ψ(x, y) (4)

Where ψ(x, y) acts like an integration constant but since R depends on more than one
variable, it is now an arbitrary function of the other variables x, y. If we can find ψ(x, y),
then R is found, since f is known. To find ψ , we differentiate one time w.r.t. x and another
time w.r.t. y and substitute the result in (3). This gives

g =
(
∂

∂x

(∫
fdp

)
+ ψx(x, y)

)
+
(
∂

∂y

(∫
fdp

)
+ ψy(x, y)

)
p (5)

In the above the terms ∂
∂x

(∫
fdp

)
, ∂
∂y

(∫
fdp

)
are known, since everything is known. The

only unknowns are ψx(x, y) , ψy(x, y). Comparing terms in (5) we can generate two equa-
tions for ψx, ψy and by integrating them we find ψ. Examples below show how to do this
as this is easier explained using examples.
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4.4.1.4.1 Examples finding first integral R(x, y, y′) for an exact second order
ode

Example 1
yy′′ + (y′)2 + 2axyy′ + ay2 = 0

Comparing this to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows that

f = y

g = (y′)2 + 2axyy′ + ay2

= p2 + 2axyp+ ay2

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= yp+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

p2 + 2axyp+ ay2 =
(
∂

∂x
(yp) + ψx

)
+
(
∂

∂y
(yp) + ψy

)
p

But ∂
∂x
(yp) = 0 since y, p are held constant. It is important to watch for this here. Given

f(x, y) = 3x+ y(x) where y is function of x, then when we do ∂f
∂x

the result is 3 and not
3 + y′ because with partial derivatives the y is held constant. Similarly ∂

∂y
(yp) = p2. The

above becomes

p2 + 2axyp+ ay2 = ψx + (p+ ψy) p
= ψx + p2 + ψyp

2axyp+ ay2 = ψx + ψyp

Comparing terms shows that

2axy = ψy (2A)
ay2 = ψx (3A)

Integrating (2A) w.r.t y gives
ψ = axy2 + h(x) (4A)

Differentiating the above w.r.t. x gives ψx = ay2 + h′(x). comparing this to (3A) above
gives ay2 = ay2 + h′(x), hence h′(x) = 0 or h(x) = c. Therefore (4A) becomes

ψ = axy2 + c

Substituting the above in (1A) gives

R = yp+ axy2 + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

yp+ axy2 = c2

yy′ + axy2 = c2

This is the reduced ode which needs to be solved for y. The above says that R = yy′ +
axy2 + c2. To verify, let us apply F = d

dx
R. This gives

yy′′ + (y′)2 + 2axyy′ + ay2 = d

dx

(
yy′ + axy2 + c2

)
= y′y′ + yy′′ + ay2 + 2axyy′

= yy′′ + (y′)2 + 2axyy′ + ay2

Verified.
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Example 2

y′′ + xy′ + y = 0
F (x, y, y′, y′′) = 0

This ode is not nonlinear, but let us apply this method to it anyway. First we need to
determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

1− d

dx
(x) + d2

dx2
(1) = 0

1− 1 = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows that

f = 1
g = xy′ + y

= xp+ y

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

xp+ y =
(
∂p

∂x
+ ψx

)
+
(
∂p

∂y
+ ψy

)
p

But ∂p
∂x

= 0 since y is held constant. And ∂p
∂y

= 0. The above becomes

xp+ y = ψx + ψyp

Comparing terms shows that

x = ψy

y = ψx

Integrating the first equation gives ψ = xy + c. Hence (1A) becomes

R = p+ xy + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

p+ xy = c2

y′ + xy = c2

This is the reduced ode which needs to be solved for y. Solving gives

y = erf
(
i
√
2x
2

)
e

−x2
2 c1 + c2e

−x2
2
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Example 3

y′′ − 2yy′ = 0
F (x, y, y′, y′′) = 0

First we need to determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

−2y′ − d

dx
(−2y) + d2

dx2
(1) = 0

−2y′ + 2 d
dx

(y) = 0

−2y′ + 2y′ = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows that

f = 1
g = −2yy′

= −2yp

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

−2yp =
(
∂p

∂x
+ ψx

)
+
(
∂p

∂y
+ ψy

)
p

−2yp = ψx + ψyp

Comparing terms shows that

−2y = ψy

0 = ψx

Integrating the first equation gives ψ = −y2 + h(x). Differentiating this w.r.t. x gives
ψx = h′(x). comparing this to the second equation above gives 0 = h′(x), hence h(x) = c.
Hence ψ = −y2 + c. Therefore (1A) becomes

R = p− y2 + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

p− y2 = c2

y′ − y2 = c2

This is the reduced ode.
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Example 4

(x− 1)2 y′′ + 4xy′ + 2y − 2x = 0
F (x, y, y′, y′′) = 0

First we need to determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

2− d

dx
(4x) + d2

dx2
(
(x− 1)2

)
= 0

2− 4 + d

dx
(2(x− 1)) = 0

2− 4 + 2 = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows that

f = (x− 1)2

g = 4xy′ + 2y − 2x
= 4xp+ 2y − 2x

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= (x− 1)2 p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

4xp+ 2y − 2x =
(
∂

∂x

(
(x− 1)2 p

)
+ ψx

)
+
(
∂

∂y

(
(x− 1)2 p

)
+ ψy

)
p

4xp+ 2y − 2x = 2p(x− 1) + ψx + ψyp

4xp+ 2y − 2x = p(2(x− 1) + ψy) + ψx

Comparing terms shows that

4x = 2(x− 1) + ψy

2y − 2x = ψx

Or

2x+ 2 = ψy

2y − 2x = ψx

Integrating the first equation gives ψ = 2xy+2y+ h(x). Differentiating this w.r.t. x gives
ψx = 2y + h′(x). comparing this to the second equation above gives 2y − 2x = 2y + h′(x),
hence h′(x) = −2x. Hence h = −x2+c. Therefore ψ = 2xy+2y−x2+c. Eq (1A) becomes

R = (x− 1)2 p+ 2xy + 2y − x2 + c

= (x− 1)2 y′ + 2xy + 2y − x2 + c

Therefore, since R = c1 a constant, then the above becomes (by merging the constants)

(x− 1)2 y′ + 2xy + 2y − x2 = c2

Which is the reduced ode to solve.
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Example 5

y′′ − y′ey = 0
F (x, y, y′, y′′) = 0

First we need to determine if it is exact or not. Applying the test

∂F

∂y
− d

dx

(
∂F

∂y′

)
+ d2

dx2

(
∂F

∂y′′

)
= 0

−y′ey − d

dx
(−ey) + d2

dx2
(1) = 0

−y′ey + y′ey = 0
0 = 0

So it exact. Comparing this ode to F (x, y, y′, y′′) = f(x, y, y′) y′′ + g(x, y, y′) shows that

f = 1
g = −y′ey

= −pey

Therefore (4) becomes

R =
∫
fdp+ ψ(x, y)

= p+ ψ(x, y) (1A)

Hence (5) becomes

g =
(
∂

∂x

(∫
fdp

)
+ ψx

)
+
(
∂

∂y

(∫
fdp

)
+ ψy

)
p

−pey =
(
∂

∂x
p+ ψx

)
+
(
∂

∂y
p+ ψy

)
p

−pey = ψx + ψyp

Comparing terms shows that

−ey = ψy

0 = ψx

Integrating the first equation gives ψ = −ey + h(x). Partial differentiating this w.r.t. x
gives ψx = h′(x). comparing this to the second equation above gives h′(x) = 0, hence
h(x) = c. Hence h = −x2 + c. Therefore ψ = −ey + c. Eq (1A) becomes

R = p− ey + c

= y′ − ey + c

Therefore, since φ = c1 a constant, then the above becomes (by merging the constants)

y′ − ey = c2

Which is the reduced ode to solve.
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4.4.2 Exact nonlinear second order ode F (x, y, y′, y′′) = 0
(Approach 2)

This method is based on paper "Exactness of Second Order Ordinary Differential Equations
and Integrating Factors", by AlAhmad, M. Al-Jararha and H. Almefleh which now I have
full implementation for. We start with the ode in the form

a2(x, y, y′) y′′ + a1(x, y, y′) y′ + a0(x, y, y′) = 0 (1)

Then, we first verify the ode is exact using the conditions
∂a2
∂y

= ∂a1
∂y′

∂a2
∂x

= ∂a0
∂y′

(2)

∂a1
∂x

= ∂a0
∂y

If the above are satisfied, then next we generate a first order ode using∫ x

x0

a0(α, y, y′) dα +
∫ y

y0

a1(x0, β, y′) dβ +
∫ y′

y′0

a2(x0, y0, γ) dγ = 0 (3)

If we are not given initial conditions for the original ode, then the above is replaced by∫ x

0
a0(α, y, y′) dα +

∫ y

0
a1(0, β, y′) dβ +

∫ y′

0
a2(0, 0, γ) dγ = c1 (4)

Next, we solve the the above first order ode. Examples below make this method more
clear. Notice that when matching our equation against the template (1), it is possible to
obtain different possible matches and hence different possible a0, a1, a2 depending on how
the match is done. We should only pick one that satisfy the exactness conditions and use
that match. See example 4 below for such an example to illustrate what this means.

4.4.2.1 Example 1

Solve
(−y sin y + cos y) y′′ − (y′)2 (2 sin y + y cos y) = sin x

Comparing the above to (1) shows that

a2 = −y sin y + cos y
a1 = −(2 sin y + y cos y) y′

a0 = − sin x

Checking the exactness conditions in (2) shows they are all satisfied. Since no initial
conditions are given, then we will use (4). This gives∫ x

0
− sin (α) dα +

∫ y

0
−(2 sin β + β cos β) y′dβ +

∫ y′

0
(−(0) sin (0) + cos (0)) dγ = c1

−
∫ x

0
sin (α) dα−

∫ y

0
(2 sin β + β cos β) y′dβ +

∫ y′

0
dγ = c1

−
∫ x

0
sin (α) dα− y′

∫ y

0
(2 sin β + β cos β) dβ +

∫ y′

0
dγ = c1

(−1 + cos x)− y′(1 + y sin y − cos y) + y′ = c1

y′(1− (1 + y sin y − cos y)) = 1− cosx+ c1

y′(cos y − y sin y) = 1− cosx+ c1

Solving gives
y cos y = c1x+ x− sin x+ c2

And this is the solution to original ode.



chapter 4. second order ode F (x, y, y′, y′′) = 0 391

4.4.2.2 Example 2

This is same example as above but now with initial conditions to show how to handle
them.

(−y sin y + cos y) y′′ − (y′)2 (2 sin y + y cos y) = sin x
y(1) = 2
y′(1) = 0

Where

a2 = −y sin y + cos y
a1 = −(2 sin y + y cos y) y′

a0 = − sin x

Since IC are given then we will use EQ (3). In the above x0 = 1, y0 = 2, y′0 = 0. Hence∫ x

x0

a0(α, y, y′) dα +
∫ y

y0

a1(x0, β, y′) dβ +
∫ y′

y′0

a2(x0, y0, γ) dγ = 0 (3)∫ x

1
− sin (α) dα +

∫ y

2
a1(1, β, y′) dβ +

∫ y′

0
a2(1, 2, γ) dγ = 0∫ x

1
− sin (α) dα− y′

∫ y

2
(2 sin β + β cos β) dβ +

∫ y′

0
−(2) sin (2) + cos (2) dγ = 0

Carrying the integration gives

(− cos (1) + cos (x))− y′(−2 sin (2) + cos (2) + y sin (y)− cos (y)) + y′(−2 sin (2) + cos (2)) = 0
y′(−2 sin (2) + cos (2) + 2 sin (2)− cos (2)− y sin y + cos y) = cos (1)− cosx

y′(−y sin y + cos y) = cos (1)− cosx

Solving the above and making sure to use y(1) = 2 now as initial conditions for the above
ode, gives

−x cos (1) + y cos (y)− 2 cos (2) + cos (1)− sin (1) + sin (x) = 0

4.4.2.3 Example 3

Solve
yy′′ + (y′)2 = 0

This ode can also be solved using the method of missing x. Comparing the above to (1)

a2(x, y, y′) y′′ + a1(x, y, y′) y′ + a0(x, y, y′) = 0 (1)

shows that

a2 = y

a1 = y′

a0 = 0

Then, we first verify the ode is exact using the conditions

∂a2
∂y

= ∂a1
∂y′

∂a2
∂x

= ∂a0
∂y′

(2)

∂a1
∂x

= ∂a0
∂y
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This gives

1 = 1
0 = 0 (2)
0 = 0

Hence it is exact.. Since no initial conditions are given, then we will use (4). This gives∫ x

0
a0(α, y, y′) dα +

∫ y

0
a1(0, β, y′) dβ +

∫ y′

0
a2(0, 0, γ) dγ = c1

0 + y′
∫ y

0
dβ + y

∫ y′

0
dγ = c1

y′y + yy′ = c1

2y′y = c1

Solving gives ∫
2ydy =

∫
c1dx

y2 = c1x+ c2

Or

y1 =
√
c1x+ c2

y2 = −
√
c1x+ c2

And this is the solution to the original ode.

4.4.2.4 Example 4

Solve

yy′′ + (y′)2 − y′ = 0 (1A)
yy′′ + y′(y′ − 1) = 0 (1B)

This ode can also be solved using the method of missing x. Comparing the above to (1B)

a2(x, y, y′) y′′ + a1(x, y, y′) y′ + a0(x, y, y′) = 0 (1)

shows that

a2 = y (2A)
a1 = (y′ − 1)
a0 = 0

Note that there is ambiguity in this method in terms of what to use for a0, a1. It is possible
to read the above ode as having the following pattern. Looking at (1A) now, then

a2 = y (2B)
a1 = y′

a0 = −y′
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It is also possible to use this third matching

a2 = y (2C)
a1 = 0
a0 = (y′)2 − y′

These three are all valid matches. How to know which one to use assuming they are verify
the exactness conditions? Pick the one that satisfy the exactness conditions. If there is
more than one that satisfy the exactness conditions, any one will do. Let us try the last
match (2C) above for now and see. We first verify the ode is exact using the conditions

∂a2
∂y

= ∂a1
∂y′

∂a2
∂x

= ∂a0
∂y′

∂a1
∂x

= ∂a0
∂y

This gives
1 = 0

So match (2C) did not work. Lets now use the first match above (2A). We first verify the
ode is exact using the conditions. This now gives

1 = 1
0 = 0
0 = 0

So match (2A) verified the exactness. Using this and since no initial conditions are given,
then we will use (4). This gives∫ x

0
a0(α, y, y′) dα +

∫ y

0
a1(0, β, y′) dβ +

∫ y′

0
a2(0, 0, γ) dγ = c1

0 + (y′ − 1)
∫ y

0
dβ +

∫ y′

0
(0) dγ = c1

(y′ − 1) y = c1

y′y − y = c1

y′ = c1 + y

y

Integrating

dy
c1+y
y

= dx∫
y

c1 + y
dy =

∫
dx

y − c1 ln (y + c1) = x+ c2

Which is the correct solution to the original ode.

Lets us now try match (2B). First we need to verify it satisfies the exactness conditions.
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∂a2
∂y

= ∂a1
∂y′

∂a2
∂x

= ∂a0
∂y′

∂a1
∂x

= ∂a0
∂y

If we now try match (2B) above, which is a2 = y, a1 = y′, a0 = −y′ then the above gives

1 = 1
0 = −1
0 = 0

Hence this match does not satisfy the exactness conditions. So out of the three possible
matches (2A,2B,2C) only (2A) can be used and this gives the correct solution.

4.4.2.5 Example 5

Let solve the same ode above but with only one IC is given and not both. In other words,
if we are given either y(x0) = y0 or y′(x0) = y′0 only. To see how to handle this method in
such case. We know if there are no IC are given, then we use EQ (4) above, which is

∫ x

0
a0(α, y, y′) dα +

∫ y

0
a1(0, β, y′) dβ +

∫ y′

0
a2(0, 0, γ) dγ = c1 (4)

And if both initial conditions are given, then we use EQ (3), which is

∫ x

x0

a0(α, y, y′) dα +
∫ y

y0

a1(x0, β, y′) dβ +
∫ y′

y′0

a2(x0, y0, γ) dγ = 0 (3)

Let see what to do when only one IC is given for the second order ode

yy′′ + y′(y′ − 1) = 0
y(0) = 0

From problem 4, we found that this match works

a2 = y (2A)
a1 = (y′ − 1)
a0 = 0

And now we are given x0, y0 only but we are not given y′0. Because of this, we will use (3)
and not (4) and use the values for the given x0, y0 where needed and replace y′0 by y′(0).
Hence (3) becomes

∫ x

x0

a0(α, y, y′) dα +
∫ y

y0

a1(x0, β, y′) dβ +
∫ y′

y′(0)
a2(x0, y0, γ) dγ = 0

0 +
∫ y

0
(y′ − 1) dβ +

∫ y′

y′(0)
y0dγ = 0

0 + (y′ − 1) y +
∫ y′

y′(0)
(0) dγ = 0

(y′ − 1) y = 0
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Hence y = 0 or y′ = 1. But y′ = 1. Solving this gives y = x+ c1. using initial conditions
y(0) = 0 gives c = 0. Hence y = x is also a solution. Hence solutions are

y = 0
y = x

This shows that if we are given even partial initial conditions, then we should use EQ (3)
and not EQ (4). The following example gives one more illustration of this.

4.4.2.6 Example 6

Let solve the same ode above but with now this IC y′(0) = 1.

yy′′ + y′(y′ − 1) = 0
y′(0) = 1

From the above, we found that that this match works

a2 = y (2A)
a1 = (y′ − 1)
a0 = 0

And now we are given x0, y′0 only but we are not given y0. Because of this, we will use (3)
and not (4) and use the values for the given x0, y′0 where needed and replace y0 by y(0).
Hence (3) becomes

∫ x

x0

a0(α, y, y′) dα +
∫ y

y(0)

a1(x0, β, y′) dβ +
∫ y′

y′0

a2(x0, y0, γ) dγ = 0

0 +
∫ y

0
(y′ − 1) dβ +

∫ y′

y′0

y0dγ = 0

0 + (y′ − 1)
∫ y

y(0)
dβ + y0

∫ y′

1
(0) dγ = 0

(y′ − 1) (y − y(0)) = 0

Hence y = −y(0) or (y′ − 1) = 0 which gives solution and y = x+ c. But y = −y(0) does
not satisfies the IC y′(0) = 1. But y = x+ c does. Hence the solution is

y = x+ c

4.4.2.7 Example 7

yy′′ + (y′)2 + 1 = 0
y′(0) = 1

Comparing to
a2(x, y, y′) y′′ + a1(x, y, y′) y′ + a0(x, y, y′) = 0 (1)

Then possible matches are

a2 = y

a1 = (y′)2 + 1
a0 = 0
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Or

a2 = y

a1 = y′

a0 = 1

Or

a2 = y

a1 = 0
a0 = (y′)2 + 1

We just need one match that satisfies the exactness conditions

∂a2
∂y

= ∂a1
∂y′

∂a2
∂x

= ∂a0
∂y′

∂a1
∂x

= ∂a0
∂y

Looking at the first match, then the conditions become

1 = 2y′

Hence it fails. Looking at the second match

1 = 1
0 = 0
0 = 0

This works, Therefore we will use a2 = y, a1 = y′, a0 = 1. Since we are given initial
conditions (even if partial), we will use Eq (3) which is∫ x

x0

a0(α, y, y′) dα +
∫ y

y0

a1(x0, β, y′) dβ +
∫ y′

y′0

a2(x0, y0, γ) dγ = 0

We are given x0, y′0 but not y0. Hence in the above we will replace y0 by y(0) and use the
actual values for x0, y′0 given. The above becomes, now using x0 = 0, y′0 = 1, y0 = y(0)∫ x

x0

(1) dα +
∫ y

y(0)
y′dβ +

∫ y′

y′0

y0dγ = 0∫ x

0
(1) dα +

∫ y

y(0)
y′dβ +

∫ y′

1
y(0) dγ = 0

x+ y′(y − y(0)) + y(0) (y′ − 1) = 0
x+ yy′ − y(0) y′ + y(0) y′ − y(0) = 0

x+ yy′ − y(0) = 0

Solving gives
x2 − 2xy(0) + y2 − c1 = 0
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4.4.3 nonlinear and not exact second order ode

4.4.3.1 Introduction

There seems in the literature two main approaches for handling this. One is to find an
integrating factor µ which makes the ode exact, then it can be solved as shown above.
The second approach is to find the first integral directly from the form of the ode itself.
There are many methods to do this. I will go over the integrating method first, then the
second method after that.

4.4.3.2 Solved by finding an integrating factor mu

ode internal name "exact_nonlinear_second_order_ode_with_integrating_factor"

4.4.3.2.1 Introduction Not implemented yet. The above section showed how to
solve the ode F (x, y, y′, y′′) = 0 once it is determined it is exact as is, which is by finding
the first integral R. But the real problem is what to do if the ode is not exact as is?. Given
the second order nonlinear ode

F (x, y, y′, y′′) = 0

Which is not exact as is (using the earlier test shown), then we need to either find an
integrating factor µ to make it exact (this integrating factor might or might not exist) or
try to find the first integral directly without finding an integrating factor first. There are
few papers that show how to do this for some types of nonlinear second order odes.

Using an integrating factor approach, If we are able to find µ, then the ode can now be
solved as type "second order integrable as is" or as type "exact nonlinear second order ode"
as shown in the above section. (need to merge these types).

As mentioned earlier, an ode F (x, y, y′, y′′) = 0 is called exact if there exists a function
R(x, y, y′) (called first integral) with order one less than the order of the ode, such that

F (x, y, y′, y′′) = d

dx
R(x, y, y′)

If the ode is not exact, then we need to find an integrating factor of any of these
forms µ(x) , µ(y) , µ(y′) , µ(x, y) , µ(x, y′) , µ(y, y′) such that µF (x, y, y′, y′′) is now exact
and hence

µF (x, y, y′, y′′) = d

dx
R(x, y, y′)

The main difficulty is how to find µ. Few papers were written on this (but I found them
all not very clear as they give no examples).

Finding µ with first order ODE is easy. But not so easy with second order ode’s. Note
that in the above, an integrating factor of the form µ = µ(x, y, y′) will not be considered
as finding such an integrating factor requires solving a PDE which is harder than solving
the original ode. There two relations are important in order to find µ

R = G(x, y) +
∫
µdy′ (1)

= G(x, y) +
∫
µdp

Where p = y′ and G is some function to be determined. As was derived in the introduction
of the earlier section, we also have the relation

Rx + y′Ry + ΦRy′ = 0 (2)
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4.4.3.2.2 Integrating factors by inspection. These are not yet implemented. Before
going through the formal way to find µ for non exact second order nonlinear ode, there
is a table given by Murphy which we can utilize before searching for µ as a lookup table.
Writing the ode as y′′ + g(x, y, y′) = 0 the table is

g(x, y, y′) form integrating factor
g(y) (i.e. function of y only) y′

g(y′) (i.e. function of y′ only) y′

g

p(x, y) y′ +Q(x, y) (y′)2 1
y′

p(x, y) +Q(x, y) y′ such that ∂p
∂y

= ∂Q
∂x

1
y′

The above integrating factors are from Murphy book page 165.

4.4.3.2.3 Integrating factor µ(x) that depends on x only Not implemented.

4.4.3.2.4 Integrating factor µ(y) that depends on y only Not implemented.

4.4.3.2.5 Integrating factor µ(y′) that depends on y′ only Not implemented.

4.4.3.2.6 Integrating factor µ(x, y) Not implemented.

4.4.3.2.7 Integrating factor µ(x, y′) Not implemented.

4.4.3.2.8 Integrating factor µ(y, y′) Not implemented.

4.4.3.2.9 Checking if an integrating factor exists (but not find it) An example
is

xy(2x+ y) y′′ +
(
x2 + xy

)
y′ +

(
3xy + y2

)
= 0

to do.

4.4.3.2.10 References

1. book: Ordinary differential equations and their solutions by George M. Murphy.

2. paper: "Integrating Factors for Second-order ODEs" by E.S. Cheb-Terraba, and A.D.
Roche.

3. Handbook of Mathematics for engineers and scientists. By Polyanin and Manzhirov.
Page 492.
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4.4.3.3 Solved by finding the first integral directly

ode internal name "exact_nonlinear_second_order_ode_using_first_integral"

4.4.3.3.1 Introduction Not implemented yet. This uses point Lie symmetry.

The above section showed how to solve the nonlinear ode F (x, y, y′, y′′) = 0 once it is
determined it is exact as is, which is by finding the first integral R directly without finding
an integrating factor first. This below gives few ode forms with the corresponding first
integral R to use and how to find R. These are collected from few papers I am studying
now.

4.4.3.3.2 ode of the form y′′ + a2(x, y) (y′)2 + a1(x, y) y′ + a0(x, y) = 0 From paper
(On first integrals of second-order ordinary differential equations by Romero et all), this
is called class B. The first integral is

d

dx
R = C(x) + 1

A (x, y) y′ +B (x, y)

where Cy = 0. Another class of ode’s is called class A with first integral

d

dx
R = 1

A (x, y) y′ +B (x, y)

This is subset of class B.

4.4.4 ode is Integrable as given
ode internal name "second_order_integrable_as_is"

This is the same as "exact_nonlinear_second_order_ode". Can be linear or nonlinear.
But must be of degree one. ODE is integrable as is w.r.t. the independent variable x. Need
to merge type names into one.

4.4.4.1 Example 1

xyy′′ + x(y′)2 − yy′ = 0

Integrating both sides gives∫
xyy′′ + x(y′)2 − yy′dx = c1

xyy′ − y2 = c1

y′ = c1
xy

+ y

x

= c1 + y2

xy

=
(
c1 + y2

y

)
1
x

Which is separable and easily solved.
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4.4.4.2 Example 2

y′′ = − 1
2 (y′)2

2(y′)2 y′′ = −1

With IC

y(0) = 1
y′(0) = −1

Integrating both sides gives ∫
2(y′)2 y′′dx =

∫
−dx

2
3(y

′)3 = −x+ c

(y′)3 = −3
2x+ c1

Hence

y′1 =
(
−3
2x+ c1

) 1
3

(1)

y′2 = −(−1)
1
3

(
−3
2x+ c1

) 1
3

(2)

y′3 = (−1)
2
3

(
−3
2x+ c1

) 1
3

(3)

Trying solution (1). Integrating gives

y1 =
∫ (

−3
2x+ c1

) 1
3

dx+ c2

= −1
2

(
−3
2x+ c1

) 4
3

+ c2

Applying y(0) = 1 gives
1 = −1

2c
4
3
1 + c2 (4)

And y′(x) gives

y′1 =
(
−3
2x+ c1

) 1
3

Hence y′(0) = −1 gives
−1 = c

1
3
1

No solution. Trying solution (2). Integrating gives

y2 = −(−1)
1
3

∫ (
−3
2x+ c1

) 1
3

dx+ c2

= −(−1)
1
3

(
−1
2

(
−3
2x+ c1

) 4
3
)

+ c2 (4A)

Applying y(0) = 1 gives

1 = (−1)
1
3

(
1
2c

4
3
1

)
+ c2 (5)

And y′2(x) gives

y′2(x) = −
(
−1
2

) 1
3

(−3x+ 2c1)
1
3
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Hence y′(0) = −1 gives

−1 = −
(
−1
2

) 1
3

(2c1)
1
3

1 = (−1)
1
3 (c1)

1
3

No solution. Finally we will try y3. Integrating gives

y3 = (−1)
2
3

∫ (
−3
2x+ c1

) 1
3

+ c2

= (−1)
2
3

(
−1
2

(
−3
2x+ c1

) 4
3
)

+ c2

Applying y(0) = 1 gives

1 = (−1)
2
3

(
−1
2c

4
3
1

)
+ c2 (6)

And y′3(x) gives

y′3(x) = (−1)
2
3

(
−3
2x+ c1

) 1
3

Hence y′(0) = −1 gives
−1 = (−1)

2
3 (c1)

1
3

Solving gives c1 = −1. Substituting into (6) gives

1 = (−1)
2
3

(
−1
2(−1)

4
3

)
+ c2

c2 =
3
2

Hence solution is

y3 = (−1)
2
3

(
−1
2

(
−3
2x+ c1

) 4
3
)

+ c2

= (−1)
2
3

(
−1
2

(
−3
2x− 1

) 4
3
)

+ 3
2

= 3
2 − 1

2(−1)
3
2

(
−3
2x− 1

) 4
3

This problem shows that out of the 3 solutions, only one was valid.

4.4.5 ode can be made Integrable F (x, y, y′′) = 0
ode internal name "second_order_ode_can_be_made_integrable"

Can be linear or nonlinear. These are ode’s which become integrable if both sides are
multiplied by y′. For this method to have chance of working, the original ode must not
have y′ already in it.
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4.4.5.1 Example

2y′′ − ey = 0
Multiplying both sides by y′ gives

2y′y′′ − y′ey = 0

Integrating ∫
(2y′y′′ − y′ey) dx = c1

(y′)2 − ey = c1

Hence
y′ = ±

√
ey + c1

Each of the above is separable, which are solved by integration.

4.4.6 Solved using Mainardi Liouville method
ode internal name "second_order_nonlinear_solved_by_mainardi_lioville_method"

4.4.6.1 Introduction

This shows how to solve the nonlinear second order ode of the form

y′′(x) + p(x) y′(x) + q(y) (y′(x))2 = 0 (1)

For this method to work, in the above p(x) must be either a function of x or a constant.
It can not depend on y. And in the term q(y) [y′(x)]2, q(y) must be only a function of y
or a constant. It can not depend on x.

For an example this method will work on y′′+y′+yy2 = 0 and on y′′+sin (x) y′(x)+y(y′)2 =
0 and on y′′ + sin (x) y′ + (1 + y) (y′)2 = 0 but not on y′′ + y′ + xyy2 = 0 and not on
y′′ + sin (y) y′ + yy2 = 0.

This is implemented in my ode solver as type 18. The first step is to divide (1) by y′(x)
which gives

y′′

y′
+ p(x) + q(y) y′ = 0 (2)

y′′

y′
= −q(y) y′ − p(x) (3)

The LHS is d
dx
(ln y′) and the term q(y) y′(x) is

(
d
dy

∫
q(y) dy

)
dy
dx

= d
dx

∫
q(y) dy. This is

the reason why q can not depend on x, In order to be able to evaluate the integral. Using
this (3) now becomes

y′′

y′
= −

(
d

dx

∫
q(y) dy

)
− p(x)

d

dx
(ln y′) = −

(
d

dx

∫
q(y) dy

)
− p(x)

d

dx
(ln y′) + d

dx

∫
q(y) dy = −p(x)

d

dx

(
ln y′ +

∫
q(y) dy

)
= −p(x)

Integrating gives
ln y′ +

∫
q(y) dy = −

∫
p(x) dx (4)

And this is the reason why p can not depend on y. In order to able to integrate the RHS
above. Once

∫
q(y) dy and

∫
p(x) dx are evaluated, then y′ is found and this gives first

order ode in y which is easily solved.
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4.4.6.2 Example

y′′ + (3 + x) y′ + y[y′]2 = 0

Comparing to
y′′(x) + p(x) y′(x) + q(y) [y′(x)]2 = 0

Show that p = (3 + x) and q(y) = y. Hence the conditions are satisfied to use this method.
Therefore equation (4) becomes

ln y′ +
∫
q(y) dy = −

∫
p(x) dx

ln y′ +
∫
ydy = −

∫
(3 + x) dx

ln y′ + y2

2 = −(3 + x)2

2 + c

ln y′ = −(3 + x)2

2 − y2

2 + c

Hence
y′ = c1e

− (3+x)2
2 − y2

2

This is separable.

dy

dx
= c1e

− (3+x)2
2 e−

y2
2

e
y2
2 dy = c1e

− (3+x)2
2 dx

Integrating gives ∫
e

y2
2 dy =

∫
c1e

− (3+x)2
2 dx+ c2

− i

2
√
2π erf

(
i√
2
y

)
= −c12

√
2π erf

(
x√
2
+ 3√

2

)
+ c2

And the above is the implicit solution for y.

4.4.7 nonlinear second order ode with missing x or missing y(x)
When a nonlinear second order ode is missing x then make everything as du

dy
using the

substitution u = y′, y′′ = udu
dy
, y′′′ = u2 d

2u
dy2

+ u
(

du
dy

)2
and so on. Example is yy′′ − (y′)2 = 1.

When a nonlinear second order ode is missing y then make everything du
dx

using the
substitution u = y′, y′′ = du

dx
, y′′′ = d2u

dx2 and so on. Example y′′(x) =
√

1 + (y′)2 or or
y′′ = (y′)2 cosx. Notice that we start with the same substitution which is y′ = u. See
examples below.

The following gives examples of each method.

Both methods reduce the order of the ode by one resulting in first order ode where the
dependent variable becomes u which is then easily solved for. These methods are meant
to be used only when the second order ode is nonlinear.

If the ode is missing both x and y then either method will work.
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4.4.7.1 Missing x

ode internal name "second_order_ode_missing_x"

Given
y′′ = f(y, y′) (1)

Let y′ = u then y′′ = du
dx

= du
dy

dy
dx

= udu
dy

and the ode becomes

u′u = f(y, u) (2)

Which is now a first order ode. If we can solve this for u then the solution to the original
ode (1) is

dy

dx
= u(y)∫

dy

u (y) = x+ c1

4.4.7.1.1 Example 1
yy′′ − (y′)2 = 1

Let p = y′ then y′′ = pp′. Hence the ode becomes

ypp′ − p2 = 1

p′ = 1 + p2

p

1
y

This is separable.

p′
p

1 + p2
= 1
y

p

1 + p2
dp = 1

y
dy∫

p

1 + p2
dp =

∫ 1
y
dy

1
2 ln (p− 1) + 1

2 ln (p+ 1) = ln y + c

Or, assuming p− 1 > 0, p+ 1 > 0

ln (p− 1) + ln (p+ 1) = 2 ln y + 2c
ln ((p− 1) (p+ 1)) = ln y2 + c1

(p− 1) (p+ 1) = c2y
2

p2 − 1 = c2y
2

p2 = c2y
2 + 1

Hence
p = ±

√
1 + c2y2

Therefore the solution to the original ode is

y′(x) = ±
√
1 + c2y2

This is first order ode which is separable. The first one gives

y′(x) =
√

1 + c2y2

dy√
1 + c2y2

= dx∫
dy√

1 + c2y2
=
∫
dx

1
√
c2

ln
(√

c2y +
√

1 + c2y2
)
= x+ c3

ln
(√

c2y +
√

1 + c2y2
)
= √

c2x+
√
c2c3

Where c2, c3 are constants. Similar solution result for the negative ode.
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4.4.7.1.2 Example 2
y′′ + ay(y′) + by3 = 0 (1)

Let p = y′ then y′′ = pp′. Hence the ode becomes

pp′ + ayp+ by3 = 0 (2)

Which is now a first order ode.
p′ = −ay + b

y3

p
(3)

Solving for p gives

1
4
√
a2 + 8b

(
ln
(
−by4 + ay2p+ 2p2

)√
a2 + 8b+ 2a arctanh

(
ax2 + 4p
y2
√
a2 + 8b

))
= c1

Then y is found by solving y′ = p, another first order ode.

1
4
√
a2 + 8b

(
ln
(
−by4 + ay2y′ + 2(y′)2

)√
a2 + 8b+ 2a arctanh

(
ax2 + 4y′

y2
√
a2 + 8b

))
= c1

But this second one could not solve. Actually ode (3) is homogeneous, class G and should
use formula given in Kamke’s book, p. 19. but I have yet to implement this.

4.4.7.1.3 Example 3
2yy′′ − y3 − 2(y′)2 = 0 (1)

With IC

y(0) = −1
y′(0) = 0

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2ypdp
dy

− y3 − 2p2 = 0 (2)

dp

dy
= y3 + 2p2

2py

Which is first order ode in p(y) of type Bernoulli. There are two solutions

p1 = y
√
y + c1 (3)

p2 = −y
√
y + c1 (4)

But p = y′ hence the above becomes

y′(x) = y
√
y + c1 (3A)

y′(x) = −y
√
y + c1 (4A)

Before solving this ode, we can either use initial conditions to solve for c1 or solve it as
it is and at the very end use initial conditions to solve for both c1 and the new constant
which will come up which will be c2. It is easier to get rid of c1 now than keep it. Will
show both methods.

Getting rid of c1 now method. At x = 0 we have y′(0) = 0, y(0) = −1 hence the above
becomes

0 = −1
√
−1 + c1

0 =
√
−1 + c1

c1 = 1
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Eq(3A) becomes
y′(x) = y

√
y + 1

This is quadrature. Integrating

dy

y
√
y + 1

= dx

−2 arctanh
(√

y + 1
)
= x+ c2

At x = 0 we have y(0) = −1 and the above becomes

−2 arctanh
(√

−1 + 1
)
= c2

c2 = −2 arctanh (0)
c2 = 0

Hence the solution is

−2 arctanh
(√

y + 1
)
= x

arctanh
(√

y + 1
)
= −x2√

y + 1 = tanh
(
−x2

)
= − tanh

(x
2

)
y + 1 = tanh2

(x
2

)
y = tanh2

(x
2

)
− 1 (5)

Now we solve the second ode (4A). At x = 0 we have y′(0) = 0, y(0) = −1 hence Eq.(4A)
becomes

0 = 1
√
−1 + c1

0 =
√
−1 + c1

1 + c1 = 0
c1 = −1

Hence (4A) becomes
y′(x) = −y

√
y − 1

Which gives the solution

y(x) = x+ 2arctan (y − 1) + c2 (6)

At x = 0 we have y(0) = −1 and the above becomes

−1 = 0 + 2 arctan (−2) + c2

c2 = −1− 2 arctan (−2)

Hence the solution (6) becomes

y(x) = x+ 2arctan (y − 1)− 1 + 2 arctan (2)

But this solution does not satisfy y′(0) = 0. Hence it is not valid solution. So the only
solution is (5).

Now we will do the same thing, but we will not get rid of c1 early one as above, and keep
it until the end. We will see we will get same solution as (5).

Not getting rid of c1 method. Starting from (3A) and (4A) above.

y′(x) = y
√
y + c1 (3A)

y′(x) = −y
√
y + c1 (4A)
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Starting with (3A), solving it gives∫ 1√
y + c1y

dy = x+ c2

−
2 arctanh

(√
y+c1√
c1

)
√
c1

= x+ c2

−2 arctanh
(√

y + c1√
c1

)
= x

√
c1 + c3

arctanh
(√

y + c1√
c1

)
= −x

√
c1
2 + c4

√
y + c1√
c1

= tanh
(
c4 − x

√
c1
2

)
√
y + c1 =

√
c1 tanh

(
c4 − x

√
c1
2

)
y + c1 = c1 tanh2

(
c4 − x

√
c1
2

)
y = c1 tanh2

(
c4 − x

√
c1
2

)
− c1 (7)

Now we can solve for the initial conditions. using y(0) = −1 gives

−1 = c1 tanh2 (c4)− c1 (8)

Taking derivative of the above gives

y′ = −c
3
2
1 tanh

(
c4 − x

√
c1
2

)
sech

(
c4 − x

√
c1
2

)2

Applying y′(0) = 0 gives
0 = −c

3
2
1 tanh (c4) sech (c4)2 (9)

Solving (8,9) for c1, c4 gives

c1 = 1
c4 = 0

Hence the solution (7) is

y = tanh2
(
−1
2x
)
− 1 (10)

Which same as (5). Now we go back and solve (4A).

y′(x) = −y
√
y + c1∫ 1√

y + c1y
dy = −x+ c2 (4.3)

−
2 arctanh

(√
y+c1√
c1

)
√
c1

= −x+ c2

−2 arctanh
(√

y + c1√
c1

)
= −x

√
c1 + c3

arctanh
(√

y + c1√
c1

)
= x

√
c1
2 + c4

√
y + c1√
c1

= tanh
(
c4 + x

√
c1
2

)
√
y + c1 =

√
c1 tanh

(
c4 + x

√
c1
2

)
y + c1 = c1 tanh2

(
c4 + x

√
c1
2

)
y = c1 tanh2

(
c4 + x

√
c1
2

)
− c1 (7)
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Now we can solve for the initial conditions. using y(0) = −1 gives

−1 = c1 tanh2 (c4)− c1 (8)

Taking derivative of (7) gives

y′ = c
3
2
1 tanh

(
c4 + x

√
c1
2

)(
1− tanh

(
c4 + x

√
c1
2

)2
)

Applying y′(0) = 0 gives

0 = c
3
2
1 tanh (c4)

(
1− tanh (c4)2

)
(9)

But now if we try to solve (8,9) for c1, c4 we see no solution exists. Hence (4A) leads to
no solution. Only solution is (8). This is the same as earlier method.

This shows that if we get rid of c1 early one or not, same solution results. But it is much
easier to get rid of c1 after finding the solution to the first ode.

4.4.7.1.4 Example 4
2y′′ − ey = 0 (1)

With IC

y(0) = 0
y′(0) = 1

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2pdp
dy

− ey = 0

2dp
dy
p = ey (2)

This is separable.

2
∫
pdp =

∫
eydy

p2 = ey + c1 (3)

Before solving this, we should apply IC now as it simplifies the solution greatly. This
assumes both y, y′ are are given at same point x0. Which is the case here. If only one IC
is given (such as y(0) or y′(0) but not both, then we can not apply IC now and have to
do it at the end).

We are given that y′(0) = p = 1, y(0) = 0, hence the above reduces to

1 = e0 + c1

c1 = 0

Hence (3) now becomes
p2 = ey

but p = y′ hence

(y′)2 = ey

y′ = ±
√
ey

This is quadrature. For the positive solution
dy√
ey

= dx (4)

2√
ey

= −x+ c2 (4.4)
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For y(0) = 0 we obtain
2 = c2

Hence (4) becomes

2√
ey

= −x+ 2
√
ey = 2

2− x

ey =
(

2
2− x

)2

y1 = 2 ln
(

2
2− x

)
For the negative solution

y′ = −
√
ey

Integrating
2√
ey

= x+ c2 (5)

At y(0) = 0
2 = c2

Hence (5) becomes

2√
ey

= x+ 2
√
ey = 2

x+ 2

ey =
(

2
x+ 2

)2

y2 = 2 ln
(

2
x+ 2

)
However, this solution do not satisfy y′(0) = 1 so it is discarded. Hence the solution is
only

y1 = 2 ln
(

2
2− x

)

4.4.7.1.5 Example 5 This is same example as above, but here we delay applying IC
to the very end to see the difference. This method is more general, but makes solving for
IC harder.

2y′′ − ey = 0 (1)

With IC

y(0) = 0
y′(0) = 1

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2dp
dy
p = ey

This is separable.

2
∫
pdp =

∫
eydy

p2 = ey + c1
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but p = y′ hence the above becomes

(y′)2 = ey + c1

y′ = ±
√
ey + c1

This is quadrature. For the positive solution
dy√
ey + c1

= dx

−
2 arctanh

(√
ey+c1√
c1

)
√
c1

= x+ c2

2 arctanh
(√

ey + c1√
c1

)
= −x

√
c1 − c2

√
c1

arctanh
(√

ey + c1√
c1

)
= −x

√
c1
2 −

c2
√
c1

2
√
ey + c1√
c1

= tanh
(
−x

√
c1
2 −

c2
√
c1

2

)
√
ey + c1 =

√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

)
ey + c1 =

(
√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

))2

ey =
(
√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

))2

− c1

y = ln
((

√
c1 tanh

(
−x

√
c1
2 −

c2
√
c1

2

))2

− c1

)
(2)

Now we have to use (2) and take derivative and solve for c1, c2. Much harder than if we
have applied IC to each solution earlier.

4.4.7.1.6 Example 6
2y′′ − sin (2y) = 0 (1)

With IC

y(0) = −π2
y′(0) = 1

Let p = y′ then y′′ = pdp
dy
. Hence the ode becomes

2pdp
dy

= sin (2y) (2)

2pdp = sin (2y) dy∫
2pdp =

∫
sin (2y) dy

p2 = −1
2 cos (2y) + c1

At x = 0 we have p = 1, y = −π
2 . Hence the above becomes

1 = −1
2 cos (−π) + c1

= −1
2 cos (π) + c1

1 = 1
2 + c1

c1 =
1
2

Therefore (2) becomes
(y′(x))2 = −1

2 cos (2y) + 1
2

Need to solve and apply IC y(0) = −π
2 to finish.
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4.4.7.1.7 Example 7
yy′′ − (y′)2 + (y′)3 = 0 (1)

With IC

y(0) = −1
y′(0) = 0

Let p = y′ then y′′ = dp
dx

= dp
dy

dy
dx

= dp
dy
p. Hence the ode becomes

y
dp

dy
p− p2 + p3 = 0 (2)

p′ = p2 − p3

yp

p′ = p− p2

y

This is separable. Solving ∫
dp

p2 − p
= −

∫ 1
y
dy p− p2 6= 0

This gives
p− 1
p

= c1
y

Applying IC p = 0 at y = −1 show there is no solution as we obtain −1 = 0. Hence no
general solution exists. Let look for singular solution. This happens when p − p2 = 0 or
p = 0 and p = 1. Looking at p = 0 means y′ = 0 or y = c. At IC this gives c = −1. Hence
y = −1. This also satisfies y′(0) = 0. So y = −1 is valid singular solution. Let look at
p = 1 which means y′ = 1 or y = x + c1. At first IC this gives c1 = −1. Hence solution
now becomes y = x− 1. But this does not satisfy y′(0) = 0. Therefore only

y = −1

Is solution (singular).

4.4.7.1.8 Example 8 (
1 + (y′)2

)2
= y2y′′ (1)

With IC

y(0) = 3
y′(0) =

√
2

Let p = y′, hence y′′ = pp′ and the ode becomes(
1 + p2

)2 = y2pp′

pp′

(1 + p2)2
= 1
y2

(2)

Solving the above ode gives

p1 = −
√

−2 (c1y − 1) (2c1y + y − 2)
2 (c1y − 1) (3)

p2 =
√

−2 (c1y − 1) (2c1y + y − 2)
2 (c1y − 1) (4)

Now we replace back p = y′(x) above gives

y′ = −
√
−2 (c1y − 1) (2c1y + y − 2)

2 (c1y − 1) (3A)

y′ =
√
−2 (c1y − 1) (2c1y + y − 2)

2 (c1y − 1) (4A)
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Lets start with (3A). Before solving, we will get rid of c1 using IC. Given that y(0) =
3, y′(0) =

√
2 then (3A) becomes

√
2 = −

√
−2 (3c1 − 1) (6c1 + 3− 2)

2 (3c1 − 1)

c1 =
1
6

Hence (4A) becomes

y′ = −

√
−2
(1
6y − 1

)
(3y + y − 2)

2
(1
6y − 1

)
Solving this ode gives the solution

x−
√
−4y2 + 30y − 36

4 −
9 arcsin

(4y
9 − 5

3

)
8 + c2 = 0 (5)

Finally, using y(0) = 3 the above becomes

−
√

−4 (9) + 30 (3)− 36
4 −

9 arcsin
(

4(3)
9 − 5

3

)
8 + c2 = 0

Solving for c2 gives

c2 =
√
18
4 −

9 arcsin
(1
3

)
8

Hence (5) becomes

x−
√
−4y2 + 30y − 36

4 −
9 arcsin

(4y
9 − 5

3

)
8 +

√
18
4 −

9 arcsin
(1
3

)
8 = 0 (6)

Now we have to do the same for ode (4A). Given that y(0) = 3, y′(0) =
√
2 then (4A)

becomes
√
2 =

√
−2 (3c1 − 1) (6c1 + 3− 2)

2 (3c1 − 1)
But there is no solution for c1. This means (4A) leads to no solution. Hence only solution
is (6).

4.4.7.2 missing y(x)

ode internal name "second_order_ode_missing_y"

Let p = y′ then y′′ = p′. Hence the ode becomes

4.4.7.2.1 Example 1
y′′ + (y′)2 + y′ = 0 (1)

Let p = y′ then y′′ = p′. Hence the ode becomes

p′ + p2 + p = 0 (2)

Which is now a first order separable ode. Its solution can be easily found to be

p = 1
c1ex − 1

Hence
y′(x) = 1

c1ex − 1
Which is now solved for y(x) as first order, which gives by integration

y = ln (c1ex − c2 + 1)− x
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4.4.7.2.2 Example 2

y′′ + (y′)2 = 1 (1)
y(0) = 0
y′(0) = 1

Let p(x) = y′ then y′′ = p′ and the ode becomes

p′ + p2 = 1
p′ = 1− p2

dp

dx
= 1− p2∫

dp

1− p2
=
∫
dx

arctanh (p) = x+ c1

p = tanh (x+ c1)

At x = 0, p = 1 hence
1 = tanh (c1)

There is no solution. Hence no general solution exist. Now we look for singular solution.
This happens when 1 − p2 = 0 or p2 = 1 or p = ±1. For p = 1 this means y′ = 1 or
y = x+ c which at IC gives c = 0. Hence singular solution is

y = x

This satisfies both IC’s. If we try p = −1 it gives y = −x but this does not satisfy IC. So
only solution is y = x.

4.4.7.2.3 Example 3A

y′′ =
√

1 + (y′)2 (1)
y(0) = 1

Notice that only one IC is given. Let p = y′ then y′′ = p′. Hence the ode becomes

p′ =
√

1 + p2 (2)

We can’t use IC on this ode, since the IC is only on y and not y′. Solving this as first
order gives

p(x) = sinh (x+ c1)

But p = y′ hence the above becomes

y′(x) = sinh (x+ c1)

Now we solve this using the IC y(0) = 1. Solving the above gives

y = cosh (x+ c1) + c2 (3)

Applying IC, and now we need to be careful. We need to solve for c2 and not c1.

1 = cosh (0 + c1) + c2

c2 = 1− cosh (c1)

Hence (3) becomes
y(x) = cosh (x+ c1) + 1− cosh (c1)
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4.4.7.2.4 Example 3B

y′′ =
√

1 + (y′)2 (1)
y(0) = 1

This is slightly alternative way to solving the ode. Let p = y′ then y′′ = p′. Hence the ode
becomes

p′ =
√
1 + p2 (2)

Solving this as first order gives

p(x) = sinh (x+ c1)

But p = y′ hence the above becomes

y′(x) = sinh (x+ c1)

Integrating gives

y =
∫

sinh (x+ c1) dx+ c2

= cosh (x+ c1) + c2 (3)

Now we need to apply IC’s to find c1, c2. We only have one IC y(0) = 1. Applying this to
the above solution gives

1 = cosh (c1) + c2

c2 = 1− cosh (c1)

Hence (3) becomes
y(x) = cosh (x+ c1) + 1− cosh (c1)

4.4.7.2.5 Example 4

y′′ =
√
1 + (y′)2 (1)

y′(0) = 1

Notice that only one IC is given. Let p = y′ then y′′ = p′. Hence the ode becomes

p′ =
√
1 + p2 (2)

Now we can use the IC on this ode, since the IC is on y′. Solving this as first order gives

p(x) = sinh (x+ c1)

Applying IC, where p(0) = y′(0) = 1 gives

1 = sinh (c1)
c1 = arcsinh (1)

Hence
p(x) = sinh (x+ arcsinh (1))

But p = y′ hence the above becomes

y′(x) = sinh (x+ arcsinh (1))

Solving as first order ode gives

y(x) = cosh
(
x+ ln

(
1 +

√
2
))

+ c2
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4.4.7.2.6 Example 5
y′′ = (y′)2 cosx (1)

Let p = y′ then y′′ = p′. Hence the ode becomes

p′ = p2 cosx∫
dp

p2
=
∫

cosxdx

−1
p
= sin x+ c1

Hence p = −1
sinx+c1

. But p = y′(x). Therefore

y′(x) = −1
sin x+ c1∫

dy = −
∫

dx

sin x+ c1

y =
− arctan

(
2c1 tan

(
x
2
)
+2

2
√

c21−1

)
√
c21 − 1

+ c2

4.4.7.2.7 Example 6

y′′ = − 1
2 (y′)2

(1)

y(0) = 1
y′(0) = −1

Notice that this is also missing x type second order ode. Now let p(x) = y′ then y′′ = p′

and the ode becomes
p′ = − 1

2p2

Which is quadrature. The solution is

p3 + 3x
2 = c1

At x = 0, p(0) = −1. Hence the above gives

−1 = c1

And the solution becomes
p3 + 3x

2 = −1

But p = y′, hence the above becomes

(y′)3 + 3x
2 = −1

With IC y(0) = 1. This is quadrature. Solving gives

y1 = − 1
16i(3x+ 2)

(
−i+

√
3
)
(−12x− 8)

1
3 + c1

y2 =
1
16i(3x+ 2)

(
i+

√
3
)
(−12x− 8)

1
3 + c1

y3 =
1
8(3x+ 2) (−12x− 8)

1
3 + c1

Applying IC to the above shows that only second solution satisfies the original initial
conditions with c = 3

2 . Hence solution is

y2 =
1
16(3x+ 2)

(
i
√
3− 1

)
(−12x− 8)

1
3 + 3

2
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Another option when solving these types of odes is not to plugin the IC until the very
end. Like this. Starting with

p3 + 3x
2 = c1

We do not resolve the c1. But keep it. Since p = y′, hence the above becomes

(y′)3 + 3x
2 = c1

This is quadrature. Solving gives

y1 =
1
16i(3x− 2c1)

(
i−

√
3
)
(8c1 − 12x)

1
3 + c2

y2 =
1
16i(3x− 2c1)

(
i+

√
3
)
(8c1 − 12x)

1
3 + c2

y3 =
1
8(3x− 2c1) (8c1 − 12x)

1
3 + c2

And only now we solve for c1, c2 from both initial conditions. Assuming we made no
mistake, then same result will come out.

4.4.8 Higher degree second order ode
ode internal name "second_order_ode_high_degree"

These are ode’s with the second derivative raised to power not one. Solved by solving for
y′′ which generates all roots and now each ode is solved.
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5.1 Linear higher order ode

5.1.1 Linear ode with constant coefficients
a3y

′′′ + a2y
′′ + a1y

′ + a0y = f(x)

5.1.1.1 Solved by finding roots of characteristic equation

ode internal name "Higher order linear constant coefficients ODE"

These are solved finding roots of characteristic equation. This is the standard method.
For non-homogeneous ode, The method of Variation of parameters and the method of
undetermined coefficients are both used to find the particular solution.

5.1.1.2 Solved by series method

ode internal name "Higher_order_series_method_ordinary_point"

Only ordinary point is supported and for third order ode at this time. See section below.

5.1.1.3 Solved using Laplace transform

ode internal name "higher_order_laplace"

Laplace transform method is used. Currently only linear with constant coefficient ode is
supported.

5.1.2 Linear ode with non-constant coefficients

5.1.2.1 Euler type x3y′′′ + x2y′′ + xy′ + y = f(x)

ode internal name "higher_order_ODE_non_constant_coefficients_of_type_Euler"

This uses same algorithm as for second order Euler type ode but for higher order.

5.1.2.2 Solved using reduction of order

ode internal name "higher_order_reduction_of_order"

Given third order ode, which is linear (this method actually works for constant or non-
constant coefficients), such as

y′′′ + ay′′ + by′ + cy = 0

And given one known solution, y1(x) then let second solution be y2 = y1u (there will be
three independent basis solutions, since this is third order ode). Then substituting this
into the ode gives

y′2 = y′1u+ y1u
′

y′′2 = y′′1u+ y′1u
′ + y′1u

′ + y1u
′′

= y′′1u+ 2y′1u′ + y1u
′′

y′′′2 = y′′′1 u+ y′′1u
′ + 2y′′1u′ + 2y′1u′′ + y′1u

′′ + y1u
′′′

= y′′′1 u+ 3y′′1u′ + 3y′1u′′ + y1u
′′′

Substituting the above into the given original ode (since y2 is a solution, then it satisfies
the ode), gives

(y′′′1 u+ 3y′′1u′ + 3y′1u′′ + y1u
′′′) + a(y′′1u+ 2y′1u′ + y1u

′′) + b(y′1u+ y1u
′) + cy1u = 0

u(y′′′1 + ay′′1 + by′1 + cy1) + u′(3y′′1 + 2ay′1 + by1) + u′′(3y′1 + ay1) + u′′′(y1) = 0
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But y′′′1 + ay′′1 + by′1 + cy1 = 0. The above becomes

u′(3y′′1 + 2ay′1 + by1) + u′′(3y′1 + ay1) + u′′′y1 = 0 (1)

Since there is no u term, then let v = u′ and the above reduces to second order ode

v(3y′′1 + 2ay′1 + by1) + v′(3y′1 + ay1) + v′′y1 = 0 (2)

Solving for v from the above, then we find u since u′ = v, by integration, we introduces
one more constant of integration which we can set to zero. Once we find u then we can
find the second solution y2 since y2 = y1u. Then the final solution is

y = c1y1 + c2y2

Note that y2 which was found above, comes with 2 basis solutions in it. So the above gives
the three basis solutions needed.

5.1.2.2.1 Example 1

y′′′ + 3y′′ − 54y = 0
y1 = e3x

Let y2 = ue3x. Where here a = 3, b = 0, c = −54. Then EQ (1) becomes

u′(3y′′1 + 2ay′1 + by1) + u′′(3y′1 + ay1) + u′′′y1 = 0
u′(3y′′1 + 6y′1) + u′′(3y′1 + 3y1) + u′′′y1 = 0

But y1 = e3x, y′1 = 3e3x, y′′1 = 9e3x. Hence the above becomes

u′
(
27e3x + 18e3x

)
+ u′′

(
9e3x + 3e3x

)
+ u′′′e3x = 0

45u′ + 12u′′ + u′′′ = 0

Let u′ = v then the above becomes

45v + 12v′ + v′′ = 0

This is now second order ode. The solution for v is

v = c1e
−6x sin (3x) + c2e

−6x cos (3x)

But u′ = v, then
u =

∫
vdx+ c3

We can choose c3 = 0 . Hence

u =
∫ (

c1e
−6x sin (3x) + c2e

−6x cos (3x)
)
dx

= e−6x

15

(
(c1 + 2c2) cos (3x) + 2

(
c1 −

c2
2

)
sin (3x)

)
= e−6x(c3 cos (3x) + c4 sin (3x))

Where in the last step above, we merged constants to make new constants. Renaming
constants back gives

u = e−6x(c1 cos (3x) + c2 sin (3x))

Hence since second solution is y2 = y1u then we have

y2 = y1u

= e3x
(
e−6x(c1 cos (3x) + c2 sin (3x))

)
= e−3x(c1 cos (3x) + c2 sin (3x))
= c1e

−3x cos (3x) + c2e
−3x sin (3x)
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Hence the solution is

y = c3y1 + c4y2

= c3e
3x + c4

(
c1e

−3x cos (3x) + c2e
−3x sin (3x)

)
= c3e

3x + c1e
−3x cos (3x) + c2e

−3x sin (3x)

Where in the last step above we just merged and renamed constants.

5.1.2.2.2 Example 2

y′′′ − 2
3y

′′ + 4y′ − 8
3y = 0

y1 = e
2x
3

Let y2 = y1u = ue
3
2x. Where here a = −2

3 , b = 4, c = −8
3 . Then EQ (1) becomes

u′(3y′′1 + 2ay′1 + by1) + u′′(3y′1 + ay1) + u′′′y1 = 0

u′
(
3y′′1 + (2)

(
−2
3

)
y′1 + 4y1

)
+ u′′

(
3y′1 −

2
3y1
)
+ u′′′y1 = 0

u′
(
3y′′1 −

4
3y

′
1 + 4y1

)
+ u′′

(
3y′1 −

2
3y1
)
+ u′′′y1 = 0

But y1 = e
2x
3 , y′1 = 2

3e
2x
3 , y′′1 = 4

9e
2x
3 . Hence the above becomes

u′
(
3
(
4
9e

2x
3

)
− 4

3

(
2
3e

2x
3

)
+ 4
(
e

2x
3

))
+ u′′

(
3
(
2
3e

2x
3

)
− 2

3

(
e

2x
3

))
+ u′′′e

2x
3 = 0

u′
(
4
3 − 8

9 + 4
)
+ u′′

(
2− 2

3

)
+ u′′′ = 0

40
9 u

′ + 4
3u

′′ + u′′′ = 0

40u′ + 12u′′ + 9u′′′ = 0

Let u′ = v then the above becomes

40v + 12v′ + 9v′′ = 0

This is now second order ode. The solution for v can be found to be

v = c1e
−2x
3 sin (2x) + c2e

− 2x
3 cos (2x)

But u′ = v, then
u =

∫
vdx+ c3

We can choose c3 = 0 . Hence

u =
∫
c1e

−2x
3 sin (2x) + c2e

− 2x
3 cos (2x) dx

= −9e− 2x
3

20

((
c1 +

c2
3

)
cos (2x) + 1

3(c1 − 3c2) sin (2x)
)

= e−
2x
3 (c3 cos (2x) + c4 sin (2x))

Where in the last step above, constants were combined to make new constants. Renaming
constants, the above becomes

u = e−
2x
3 (c1 cos (2x) + c2 sin (2x))

Since second solution is y2 = y1u then we have

y2 = y1u

= e
2x
3

(
e−

2x
3 (c1 cos (2x) + c2 sin (2x))

)
= c1 cos (2x) + c2 sin (2x)
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Hence the solution is

y = c3y1 + c4y2

= c3e
2x
3 + c4(c1 cos (2x) + c2 sin (2x))

= c3e
2x
3 + c1 cos (2x) + c2 sin (2x)

Where in the last step above we just merged and renamed constants.

5.1.2.3 Solved by finding first intergal (exact ode)

ode internal name "higher_order_exact"

This applies only to linear higher order which are exact. Solved by finding its first integral,
which will be an ode of order one less. Let look at third order ode first

p3(x) y′′′ + p2(x) y′′ + p1y
′ + p0y = f(x)

The condition of exactness is
p′′′3 − p′′2 + p′1 − p0 = 0 (1)

If this condition is satisfied then first integral is

(p3y′′ + (p2 − p′3) y′ + (p1 − p′2 + p′′3) y)
′ = f(x)

p3y
′′ + (p2 − p′3) y′ + (p1 − p′2 + p′′3) y =

∫
f(x) dx+ c1 (2)

This is now second order ode which is solved for y. For a 4th order ode

p4(x) y′′′′ + p3(x) y′′′ + p2(x) y′′ + p1y
′ + p0y = f(x)

The condition is
p′′′′4 − p′′′3 + p′′2 − p′1 − p0 = 0 (3)

If the above is satisfied, then the first integral is

(p4y′′′ + (p3 − p′4) y′′ + (p2 − p′3 + p′4) y′ + (p1 − p′2 + p′′3 − p′′′4 ) y)
′ = f(x)

p4y
′′′ + (p3 − p′4) y′′ + (p2 − p′3 + p′4) y′ + (p1 − p′2 + p′′3 − p′′′4 ) y =

∫
f(x) dx+ c1 (4)

And so on. Hence given general higher order ode

pny
(n) + pn−1y

(n−1) + · · ·+ p2y
′′ + p1y

′ + p0y = f(x)

The condition for exactness is

p(n)n − p
(n−1)
n−1 + p

(n−2)
n−2 + · · ·+ (−1)n p(n)n + · · · = 0

And the first integral is

pny
(n−1)+(pn−1 − p′n) y(n−2)+· · ·+

(
p1 − p′2 + · · ·+ (−1)n p(n−1)

n + · · ·+ p(n−1)
n

)
y =

∫
f(x) dx+c1

5.1.2.3.1 Example 1 xy′′′ + (x2 − 3) y′′ +4xy′ +2y = 0 Comparing to standard form
p3y

′′′ + p2y
′′ + p1y

′ + p0y = f(x) shows that

p3 = x

p2 = x2 − 3
p1 = 4x
p0 = 2

f(x) = 0
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Checking if it is exact

p′′′3 − p′′2 + p′1 − p0 = 0− 2 + 4− 2
= 0

Hence it is exact. The first integral is therefore

(p3y′′ + (p2 − p′3) y′ + (p1 − p′2 + p′′3) y)
′ = f(x)(

xy′′ +
(
x2 − 3− 1

)
y′ + (4x− 2x+ 0) y

)′ = 0(
xy′′ +

(
x2 − 4

)
y′ + 2xy

)′ = 0

Hence the first integral is
xy′′ +

(
x2 − 4

)
y′ + 2xy = c1

Let us now check if this is also exact. This has form

p2y
′′ + p1y

′ + p0 = f(x)

Where now

p2 = x

p1 =
(
x2 − 4

)
p0 = 2x

f(x) = c1

Checking if it is exact

p′′2 − p′1 + p0 = 0− 2x+ 2x
= 0

Show it is exact. Therefore its first integral is

(p2y′ + (p1 − p′2) y)
′ = f(x)(

xy′ +
((
x2 − 4

)
− 1
)
y
)′ = c1(

xy′ +
(
x2 − 5

)
y
)′ = c1

Hence first integral is

xy′ +
(
x2 − 5

)
y =

∫
c1dx+ c2

= c1x+ c2

This is first oder linear ode which is now easily solved.

5.1.2.4 Solved by series method

ode internal name "higher_order_taylor_series_method_ordinary_point"

Only ordinary point is supported and for third order ode at this time using Taylor series
(not power series) method. Let

y′′′ = f(x, y, y′, y′′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to 0 by
change of variables) and assuming f(x, y, y′, y′′) is analytic at x0 which must be the case
for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0 and y′′(x0) = y′′0 .
Using Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) +
(x− x0)4

4! y′′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 y
′′
0 +

x3

3! f |x0,y0,y′0,y
′′
0
+ x4

4! f
′|x0,y0,y′0,y

′′
0
+ · · ·

= y0 + xy′0 +
x2

2 y
′′
0 +

∞∑
n=0

xn+3

(n+ 3)!
dnf

dxn

∣∣∣∣
x0,y0,y′0,y

′′
0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
+ ∂f

∂y′′
dy′′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ + ∂f

∂y′
y′′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ + ∂f

∂y′
f

d2f

dx2
= d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
y′′ + ∂

∂y′′

(
df

dx

)
y′′′ (2)

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
y′′ + ∂

∂y′′

(
df

dx

)
f

d3f

dx3
= d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+ ∂

∂y

(
d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
y′′ + ∂

∂y′′

(
d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y, y′, y′′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
y′′ + ∂F0

∂y′′
y′′′

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
y′′ + ∂F0

∂y′′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
y′′ + ∂F1

∂y′′
y′′′

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
y′′ + ∂F1

∂y′′
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′ +

(
∂Fn−1

∂y′′

)
y′′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′ +

(
∂Fn−1

∂y′′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
x2

2 y
′′
0 +

∞∑
n=0

xn+3

(n+ 3)! Fn|x0,y0,y′0,y
′′
0

(7)

To find y(x) series solution around x = 0.
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5.2 nonlinear higher order ode

5.2.1 Missing x

ode internal name "higher_order_ODE_missing_x"

If the ode which is missing x then the substitution y′ = u, y′′ = udu
dy
, y′′′ = u2 d

2u
dy2

+ u
(

du
dy

)2
and so on is used to reduced the order by one. This works for linear and nonlinear ode.

5.2.1.1 Example 1 y′y′′′ + (y′)2 = 2(y′′)2

Let u = y′ then

y′′ = d

dx

(
dy

dx

)
= du

dx

= du

dy

dy

dx

= u
du

dy

And

y′′′ = d

dx
(y′′)

= d

dx

(
u
du

dy

)
= d

dy

(
u
du

dy

)
dy

dx

= d

dy

(
u
du

dy

)
u

= u
d

dy

(
u
du

dy

)
= u

(
du

dy

du

dy
+ u

d2u

dy2

)
= u

(
du

dy

)2

+ u2
d2u

dy2

Hence the original ode becomes

y′y′′′ + (y′)2 = 2(y′′)2

u

(
u

(
du

dy

)2

+ u2
d2u

dy2

)
+ u2 = 2

(
u
du

dy

)2

u2
(
du

dy

)2

+ u3
d2u

dy2
+ u2 = 2u2

(
du

dy

)2

(
du

dy

)2

+ u
d2u

dy2
+ 1 = 2

(
du

dy

)2

u
d2u

dy2
=
(
du

dy

)2

− 1

This is second order ode in u(y) with missing y. Let du
dy

= s then d2u
dy2

= d
dy

(
du
dy

)
= ds

dy
=

ds
du

du
dy

= s ds
du
. The above becomes

us
ds

du
= s2 − 1

ds

du

s

s2 − 1 = 1
u
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Which is separable. The solution is

s = ±
√

1 + c21u
2 (1)

Taking the first solution then
du

dy
=
√
1 + c21u

2

The solution is
u = 1

c1
sinh (c1y + c1c2)

But u = y′ hence
y′ = 1

c1
sinh (c1y + c1c2)

Solving gives
y = 1

c1
(arccosh (− tanh (x+ c1c3))− c1c2)

We need to do the same for the other solution in (1)

5.2.2 Missing y as in ay′′′ + by′′ + cy′ = f(x)
ode internal name "higher_order_ODE_missing_y"

This works for linear and non-linear ode. Since y is missing, we then assume y′ = u, y′′ =
u′, y′′′ = u′′ and so on. The ode reduces to one order less. Now the lower order ode is
solved.

5.2.2.1 Example 1

x2y′′′ + xy′′ + y′ = 0

This is not Euler type as it stands. Let y′ = u then the ode order is reduced by one and
becomes

x2u′′ + xu′ + u = 0

This is now Euler type. Solving it gives

u = c2 cos (ln x) + c3 sin (ln x)

Hence
y′ = c2 cos (ln x) + c3 sin (ln x)

Solving this as first order ode of quadrature type gives

y = c2
2 x cos (ln x) +

c2
2 x sin (ln x)−

1
2c3x cos (ln x) +

1
2c3x sin (ln x) + c1

= x cos (ln x)
(
c2
2 − 1

2c3
)
+ x sin (ln x)

(
c2
2 + +1

2c3
)
+ c1

= C2x cos (ln x) + C3x sin (ln x) + c
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5.2.2.2 Example 2

xy′′′′ + y′′′ + y′′ = 0

Let y′ = u then the ode becomes

xu′′′ + u′′ + u′ = 0

Since u is missing then let u′ = v and the above becomes

xv′′ + v′ + v = 0

This is now second order ode. This is Bessel ode whose solution is

v = c3 BesselJ0
(
2
√
x
)
+ c4 BesselY0

(
2
√
x
)

Hence
u′ = c3 BesselJ0

(
2
√
x
)
+ c4 BesselY0

(
2
√
x
)

This is solved by quadrature giving

u = c3
√
xBesselJ1

(
2
√
x
)
+ c4

√
xBesselY1

(
2
√
x
)
+ c2

Hence
y′ = c3

√
xBesselJ1

(
2
√
x
)
+ c4

√
xBesselY1

(
2
√
x
)
+ c2

This is solved by quadrature giving

y = c3xBesselJ2
(
2
√
x
)
+ c4xBesselY2

(
2
√
x
)
+ c2x+ c1

5.2.2.3 Example 3

xy′′′ − y′′ = 0

Let y′ = u then the ode becomes
xu′′ − u′ = 0

Since u is missing then let u′ = v and the above becomes

xv′ − v = 0

This is linear first order ode whose solution is v = c1x. Hence u′ = c1x. Integrating gives
u = c1x

2 + c2. Hence
y′ = c1x

2 + c2

Integrating gives
y = c1x

3 + c2x+ c3
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