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1 Problem 1
Problem Solve the PDE
Up = Uy + XT 0<x<1,t>20 (1)

With boundary conditions

u(0,t)=0

u(1,t)=0

And initial condition
u(x,0) = sin (x)

Solution
The corresponding homogeneous PDE u; = u,, with the same homogeneous boundary
conditions was solved before. It was found to have eigenfunctions

®, (x) = sin (\/Zx)

With corresponding eigenvalues
A = nn? n=1273,---

Using eigenfunction expansion, it is now assumed that the solution to the given inhomogeneous
PDE is given by

u(x,t) = i by (t) @y (x)

Substituting the above into the original PDE (1), and since term by term differentiation is justified
(eigenfunctions are continuous) results in

Db Oy (x) = D ba (1) @ (x) + D yn (1) Py (x) (14)
n=1 n=1 n=1

Where .7 yn (t) @, (x) is the expansion of the forcing function xt using same eigenfunctions

xt = Z Yn (1) @y (x) (1B)
n=1
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But @)/ (x) = —1,P, (x) since the eigenfunctions satisfy the eigenvalue ODE X"’ = —1,,X. There-
fore (1A) simplifies to

Db () @ (x) = D =Anbn () Py (x) + D, ¥ (1) Py (x)
n=1 n=1 n=1
by, () + Anby () = yn (2) (2)

¥Yn (t) is now found by applying orthogonality to (1B), and using the weight r (x) = 1 gives
1 1
tJ x®, (x)dx =y, (t)J‘ @2 (x) dx
0 0

Using @, (x) = sin (\//Tnx) = sin (nrx) and Jol sin? (nrx)dx = %, the above simplifies to

1
1
tI x sin (nzx) dx = yp (t) 2
0

1

Yn () =2t L x sin (nrx) dx (3)

The integral on the right side above is found using Jx sin (ax) dx = S“;# — *224% therefore

1

1 . SINNTX X COSNIX
x sin (nrx)dx = ——
0 nésmw nm 0

n2m? nr
cos niw

( sinnr  cosnmw )

nmw

_ -
 onm
(_1)n+1
 onm
Hence equation (3) now can be written as
2 (_1)n+1
Yn(t) = ———t
nr

Substituting the above in (2) gives the first order ODE to solve for b, (¢)

n+1
bl (t) + (nm)? by (t) = %t

The integrating factor is I = e’ ™"t Hence the above becomes, after multiplying both sides by I

d 2l _ 2(—1)"4—1 n2ml
g (b 0) = = e
Integrating both sides gives
2(=1 n+1 t
" h, (1) = 2™ J se" S ds + by, (0) (4)
ni 0

Where by, (0) is the constant of integration. Dividing both sides by en’m’t gives

2(-1 n+l pt
ba (1) = 2V Jse"z”z(s_t)ds+bn(O)e_”z”zt

ni 0
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t 2, 2(c_ 2,24 —n?n2t . .
But Jo se™ T (s = % by integration by parts. The above now becomes

2 2
nrlt—1+e 7!

ba (1) = 2(-1)"" ( ) +by (0

nd >
Now that b, (t) is found, the final solution is
u (xa t) = Z bn (t) @, (X)
n=1
0o 2.2 -n?x%t
-1 2 2
= (2(—1)”“ (" 4l — i ) + by (0) ™ f) sin (nx) 5)

n=1 44

b, (0) is determined from the given initial conditions u (x,0) = sin zx. The above becomes at
t=0

sinx= S (2 (-1 (_nls;l) +b, (o)) sin (nx)

n=1
= i b, (0) sin (n7zx)
n=1
Therefore when n = 1 (since LHS is sin 7x ) the above gives
b1(0)=1

And b, (0) = 0 for all other n. Equation (5) now simplifies to

n=1 term

2 -t 0
nt—1+e 1 2
u(x,t) = (2 (T) + e_”zt) sin (n’x)+; E o (-1)"*1 (nzﬂ'zt e 1) sin (n7x)
n=2

To verify the above solution, it was plotted against numerical solution for different instances
of time and also animated. It gave an exact match. A small number of terms was needed in the

summation since convergence was fast and is of order O (#) . The following is a plot of the above

solution for different instances of times using 5 terms.
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2 Problem 2

Problem Show that

(2~ ) f xJo (VAx) Jo (Vix) dx = VT, (VE) Jo (V2) = VAT, (VA) o (VE)

Hint: Use the same method that proves orthogonality of eigenfunctions in 11.4

Solution
In the above, A and p are the eigenvalues, with the corresponding eigenfunctions
@5 (x) = Jo (V) 1)
D, (x)=Jo (\/ﬁx) (2)
These come from the Sturm Liouville equation
= (xy")" = Axy (3)
Where
plx)=x
q(x)=0
r(x)=x
In operator form
L[®;] = - (@) = Ax®, (4)

Similarly for any other eigenvalue such as . Multiplying both sides of (4) by ®,, (x) and integrating
gives
dv u
1 1/
J L[®;]®,dx = J - (@) @, dx

0 0
Integrating by part the right side results in

1 1
j L[®;] @udx = [-0,D,] —J @@/, dx
0 0

L gives

Integrating by parts again the second integral above, where now dv = -}, u = @

1

1 1
J L[®)] @pdx = [~0)d,] ) - ([—(DA@;]O —J —CDACDI’I'dx)

0 0

1 1 !
= [_(D:lq)ll] 0 [—(I)A(D;l] 0 + JO —<I>,1<I>;,’dx

1 1 ’
[—ijlcbﬂ + d)ﬂ)l’l] o+ L o, (—@,’,) dx
But (—CIJL) =L [Cbu] . Hence the above can be written as

1 . 11 1
J L[®3] Dpdx = |-@) P, + 03P, | + J L[®,] ®rdx
0 , _

1 1 - ;
J L[cbl]qaﬂdx—J L[®,] @pdx = | -0}, + PP,
0 0 - -

1 - :
L (L[@2] @, — L[®y] @2) dx = RATRLITA
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But L[®;] = Ax®, and L [<1>y] = ux®,, therefore the above can be written as

1 ) .
J (Ax@,ﬁby — px®,®,) dx = -, + @A(I);l
0 - B

1 ] .
L (A—p) (x®, D) dx = »—CDACDy + (DA(D,’,_

1 _ ~
(A- ,u)J xPdpdx = | -0,y + D), (5)
o , ,

Since @, (x) = J, (\/Ix) @) (x) = \/i](; (\/Zx) and @, (x) = J, (ypx) L@, (x) = g (VEX),

then the above simplifies to
(A—p) ‘[01 xJo (\/Ix) Jo (Vpx) dx = [—\/I](; (\/Ix) Jo (VEx) + Jo (\/Zx) VHT, (\/ﬁx)];

Whatis left is to evaluate the boundary terms A = | ~VAJ; (VAx) Jo (yAx) +Jo (Vix) VAT; (vx) | :) .
This gives
A= | =V (VA) Jo (VB) + Jo (VA) g (VB | = [=VA15 0000 (0) + Jo ) Vi3 )]
But J/ (0) = 0 (since J/, (x) = —J; (x) and J; (0) = 0 ). Therefore the boundary terms reduces to
A = Jo (VA) VR (V) = VA (VA) Jo (Vi)

Substituting this back in (5) gives the desired result

= [ 1o (V) Jo () = VT () Jo (V) = VA (V) o ()

3 Problem 3

Problem By letting p — A in the formula of problem 2, derive a formula for fol xJ? (\/Zx) dx.
Then show that the normalized eigenfunctions of the eigenvalue problem in section 11.4 is

2 _ \/5]0 (jnx)
By (x) = Yo In )
s Gn)|
where 0 < j; < j, < j3 < --- denote the positive zeros of J;
Solution
4 Part (a)

From problem 3, the formula obtained is

(- h) j: xJo (VAx) Jo (Vix) dx = VTl (VE) Jo (V2) = VAT, (VA) Jo (VA)
Moving (A — p) to the right side gives

VT (V) o (VE) = A3 (VA) Jo (VD)
(A=p)

Ll xJo (\ﬁx) Jo (Vpx) dx =
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Taking the limit lim yf — A then the integral on the left becomes f; x@idx resulting in

VAT (VR) Jo (VA) = VAT; (V2) Jo (vA)
(A=p)

When y — A the right side becomes indeterminate form g. Therefore L’hospital rule is used,

which says that
e fO @
x=a g(x)  x—a g (x)
Comparing the above to (1) shows that y is now like x and A is like a. Therefore f” (x) is like

(0 = 4 (VR (3R) o (VE) = V2 (V2) 1 () )
TS (V) 1o (VA) = 2 (VA) 1, (v

d
= 5 B (‘/—)+\/_7J (V) Jo (VE) = 2=V (V) 7 ()

And ¢’ (x) is like d‘i (A — p) = —1. Using the above result back in (1) gives

Jo x]g (\/_) = ’lll’n jgr ((x))

Lo .
L xJ; (\/Ix) dx = ‘Llll_r& (1)

= lim (—%—]g (VE) Jo (VA) = V=5 (V) Jo (VA) + ==VAT; (V2) J; (\/ﬁ))

p—2 241 2\
- i (_%# T VR Jo (NA) = 3 (VR) Jo (V) + 20 (V2) 1 (W))

Now the limit is taken, since there is no indeterminate form. The above becomes

Ll ) (Vi) dx = =5 <=0 (VE) o (V) = 3¢ (V) 3o (VE) + 300 (V) 2 (V)
= (e ()] = o () 1 () - 2 () 1 ()| "

To simplify the above, the following relations were obtained from dlmf.NIST.gov to simplify the
above

T = Jos (0= PV
X

T @) = =T () + 2o ()

Using these, then ], (\/z) =-] (\/I) and Jj’ (\/Z) =) (\/X) + %]1 (\ﬁ) Equation (2) now

simplifies to

[ 03O 5 4 27495 (99) ()
=5 (o] o ()2 (3 () 20 () = o (V2) 2 ()
The second term cancels with the last term above giving the final result
[[ 5 (V) dx = 3 [ (VD)] 28 () o
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5 Part (b)

VA, are the positive zeros of J; (\/A_n) = 0. Below, V4, is replaced by j, where now j, are the

zeros of Jy (j,). One way to find the normalized eigenfunction Jo (inx) is by dividing Jp (j,x) by
its norm. In other words,
Jo (jnx)

o o)l (14)

jO (nx) =

But

1
|%0MWZJLr®KUMWX

Which is by the definition of the norm of a function with the corresponding weight r (x). But
from part(a) || Jo Gnx)|l = I; r (x) J¢ (jnx) dx was found to be % ([](; (/'n)] 2y B (jn)). Therefore
(1A) becomes
Jo Unx)
VA (U8 Ga)? + J2 )
_ \/5.]0 (nx)
U3 G + 72 )

jO (nx) =

But since j, are the zeros of Jj (j,), then all the J; (j,) terms above vanish giving

\/5]0 (]nx)
[T Gin)?
_ \/EJO (Jnx)
|75 Gl
Another way to find the normalized eigenfunctions jo (jnx) is as was done in the text book, which

is to first determine kj, as follows. Let Jy (jux) = knJo (jux), then the following equation is solved
for k,

jO (nx) =

(1)

1
me%umfw=1 )

But the weight r (x) = x, equation (2) becomes

1
k,zlj xJE (px)dx = 1

0
But from part(a), Iol x](f (jux)dx = % ([]; (jn)] ¥ ]g (jn)) . Hence the above becomes

2 _ 1
T 3 (UG + 5 (i)
V2

JUS Gl + 2 Gin)

kn =

As above, since all J; (j,) = 0 then



And the normalized eigenfunction become

Jo Ginx) = knJo (jnx)
_ V2 (jnx)
[T Gin)?
_ V2Jo (jnx)

|75 Gin)l

Which is the same result as (1).

6 Problem 4

Problem Solve the inhomogeneous differential equation
~((1-x*)y) =y+x° -1<x<1

With boundary conditions y (x),y’ (x) bounded as x — —1* and x — 1"
Solution
This problem is solved using 11.3 method (Eigenfunction expansion). The ODE is written as

~((1-2%)y) =y +x° (1)
Where p = 1 in this case. The corresponding homogeneous eigenvalue ODE to solve is then

—-((1-%")y) =2y 2)

Comparing to Sturm-Liouville form — (py’)’ + qy = rdy, then p (x) = (1 — x?) ,q = 0, = 1. Since
p (x) must be positive over all points in the domain, and since in this problem p (-1) = 0 and
p(1) = 0, then both x = —1, +1 are singular points. They can be shown to be regular singular
points.

Equation (2), where A is now is an eigenvalue, is the Legendre equation

(1-x*)y”" -2xy’ +Aly=0
Comparing to the standard Legendre equation form in chapter 5
(1-x*)y"-2xy’ +n(n+1)y=0 (3)

There are two cases to consider. n is integer and n is not an integer.
Case n is not an integer. It is know that now the solution to (3) is

Yy (x) = c1Py (x) + ¢,0n (x)

Where P, (x) is called the Legendre function of order n and Q,, (x) is called the Legendre function
of the second kind of order n. These solutions are valid for |x| < 1 since series expansion was
about point x = 0. But both of these functions are unbounded at the end points (Q,, (x) blows up
at x = 1 and P, (x) blows up at x = —1) leading to trivial solution.

This means n must be an integer. When n is an integer, then A, = n(n + 1). It is known (from
chapter 5), that in this case the solution to (3) becomes a terminating power series (a polynomial),
which is called the Legendre polynomial P, (x) .These polynomials are there bounded everywhere,
including at the end points x = +1, and therefore these solutions satisfy the boundary conditions.
Hence the Legendre P, (x) are the eigenfunctions to (3). This table summaries the result found
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n | eigenvalue eigenfunctions

0| A=0 Py(x)=1

1 Al =2 )2 (X) =X

2| A2=6 P, (x) = 5 (3x* - 1)

3| A3 =12 Ps (x) = 5 (5x° — 3x)
n|Ap,=nn+1) Pn(x)=ﬁj—;(x2—l)n

What the above says, is that the solution to
(1=x%) P/ (x) = 2xP}, (x) + AyPy (x) = 0

Is P, (x) with the corresponding eigenvalue A, = n(n + 1) as given by the above table. Now that
the eigenfunctions of the corresponding homogeneous eigenvalue ODE are found, they are used
to solve the given inhomogeneous ODE

~-((1-x*)y) =py+x° (4)

Using eigenfunction expansion method. Since ¢ = 1 and since there is no eigenvalue which is
also 1, then a solution exists. Let the solution be

y(x) = Z cnPn (x)
n=0
Substituting this solution into (4), and noting that L[y] = — ((1 — x?) y’) " = Ay gives
An Z cnPn(x)=p Z cnPp (x) + x°
n=0 n=0

Expanding x° using the same eigenfunctions (this can be done, since x* is continuous function
and the eigenfunctions are complete), then the above becomes

An i cnPn(x)=p i cnPy (x) + i dnP, (x)
n=0 n=0 n=0

AnCn = pep +dy

What is left is to determine d,, from
X = Z dnP, (x)
n=0

The above can be solved for d,, using orthogonality, or by direct expansion (otherwise called
undetermined coefficients method). Since the force x> is already a polynomial in x and of a small
order, then direct expansion is simpler. The above then becomes

x* = doPy (x) + d1 Py (x) + do Py (x) + d3P3 (x)

There is no need to expand for more than n = 3, since the LHS polynomial is of order 3. Substi-
tuting the known P, (x) expressions into the above equation gives

1 1
X3 = d() + d1x + dzg (3x2 — 1) + d3§ (5X3 — 3x)

_ 321 EER
—d0+d1x+d2(2x 2) +d3(2x zx)



Collecting terms of equal powers in x results in

1 3 3 5
x> =x (do - Edz) +X (dl - Eda) + x? (Edz) +x° (5d3)

Or
1
do—Edzzo
3
d1—§d3=0
3
Zdy=0
22
5
Zds=1
23

From third equation, d; = 0. From first equation dy = 0, and substituting last equation in the
second equation give d; = % Therefore

3
dl = g
2
d3 = -
75
And all other d,, are zero. Now the ¢, are found using ¢, = Afﬁp. Forn=1
di : 3
Cc1 = = = —
! Al —H 2-1 5
And forn =3 )
Cz = d3 = 5 = —
ST d-p 12-1 55
And all other ¢, are zero. Hence the final solution from y (x) = X7, ¢, Py, (x) reduces to only two

terms in the sum
y(x) = c1P; (x) + c3P5 (x)

+
5 55

Giving the final solution as

This is a plot of the solution
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Solution to Problem 4 using eigenfunction expansion

0.6

0.2F

y(x)

0.0f

-0.4F

-0.6F

-1.0 -0.5 0.0 0.5 1.0

7 Appendix for problem 4

Initially I did not know we had to use eigenfunction expansion, so solved it directly as follows.
Let the solution to
(1-x*)y" -2xy +y=x°
Be
y(x) = yn (x) + yp (x)
Where yj, (x) is the homogeneous solution to (1 — x%) y” - 2xy’ +y = 0 and y,, (x) is a particular

solution. Now, since (1 — x?) y”’ — 2xy’ + y = 0 is a Legendre ODE but with a non-integer order,
then its solution is not a terminating polynomials, but instead is given by

Yn (x) = e1Pp (x) + 205 (x)

Where P, (x) is called the Legendre function of order n and Q,, (x) is called the Legendre function
of the second kind of order n, and y, (x) is a particular solution. The particular solution can be
found, using method of undetermined coefficients to be y, (x) = f—1x3 + f—lx. Hence the general
solution becomes

~ - 1
y(x) = 1Py (x) + 205 (x) + TR (x* +6)
Now since the solution must be bounded as x — +1, then we must set ¢c; = 0 and ¢, = 0, because

both P, (x) and Q, (x) are unbounded at the end points (Q, (x) blows up at x = +1 and P, (x)
blows up at only x = —1), therefore the final solution contains only the particular solution

y(x) = %x (x2 + 6)

Which is the same solution found using eigenfunction expansion. At first I thought I made an
error somewhere, since I did not think all of the homogenous solution basis could vanish leaving
only a particular solution.
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