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1 Problem 1

Problem Solve the wave equationut t = uxx for infinite domain −∞ < x < ∞with initial position
u (x, 0) = f (x) = 1

1+x 2 and zero initial velocity д (x) = 0. Plot the solution for t = 0, 1, 2 seconds.
solution
The solution for wave PDE ut t = a2uxx on infinite domain can be written as a series solution

or as general solution using D’Alembert form. Using D’Alembert, the solution is

u (x, t) =
1
2
(f (x − at) + f (x + at)) +

1
2a

∫ x+at

x−at
д (s)ds

Where in this problem a = 1 and д (x) = 0. Therefore the above simplifies to

u (x, t) =
1
2
(f (x − t) + f (x + t))

f (x − t) is the initial position shifted to the right by t and f (x + t) is the initial position shifted
to the left by t . Since f (x) = 1

1+x 2 , the above solution becomes

u (x, t) =
1
2

(
1

1 + (x − t)2
+

1

1 + (x + t)2

)
This is a plot of the solution at time t = 0 (which is just 1

1+x 2 )
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Plot of solution to problem 1 at t=0
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This is a plot of the solution at time t = 1
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Plot of solution to problem 1 at t=1

This is a plot of the solution at time t = 2
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Plot of solution to problem 1 at t=2

The above shows that, eventually, the initial position splits into two halves, where one half
moves to the right and one half moves to the left, but the sum (energy) of the parts remain equal
to that at t = 0 since there is no damping. An Animation was also made of this solution for better
illustration.
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2 Problem 2

ProblemApply themethod of separation of variables to the dampedwave equationut t+2ut = uxx
on finite domain with fixed ends u (0, t) = 0 and u (π , t) = 0. Let initial position be u (x, 0) = f (x)
and initial velocity ut (x, 0) = 0. Determine the first term in the series solution.

solution
Let the solution be u (x, t) = X (x)T (t). Substituting this back into the PDE gives

T ′′X + 2T ′X = X ′′T

Dividing throughout by XT , 0 and simplifying gives

T ′′

T
+ 2

T ′

T
=
X ′′

X
= −λ

Hence the eigenvalue ODE is

X ′′ + λX = 0 (1)
X (0) = 0

X (π ) = 0

And the corresponding time ODE
T ′′ + 2T ′ + λT = 0 (2)

The eigenvalue ODE for the homogeneous boundary conditionwas solved before.The eigenvalues
are

λn =
(nπ
L

) 2
n = 1, 2, 3, · · ·

Since L = π , the above becomes

λn = n
2 n = 1, 2, 3, · · · (3)

The corresponding eigenfunctions are

Xn (x) = cn sin (nx)

Now that the eigenvalues are found, the time ODE (2) is solved.

T ′′
n + 2T

′
n + n

2Tn = 0

This is constant coefficient ODE. The characteristic equation is

r 2 + 2r + n2 = 0

The roots are

r =
−b ±

√
b2 − 4ac
2a

=
−2 ±

√
4 − 4n2

2

= −1 ±
√
1 − n2

For n = 1 the root becomes r = −1 (double root), hence the solution is

T1 (t) = A1e
−t + B1te

−t (4)
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And for the remaining value n = 2, 3, · · · , the term
√
1 − n2 becomes complex. Therefore the roots

can now be written as r = −1 ± i
√
n2 − 1. This implies that the solution can be expressed using

trigonometric functions as

Tn (t) = e−t
(
An cos

(
t
√
n2 − 1

)
+ Bn sin

(
t
√
n2 − 1

) )
n = 2, 3, · · · (5)

Since initial velocity is zero at t = 0, then (4) leads toT ′
1 = −A1e

−t + B1e
−t − tB1e

−t . At t = 0 this
gives 0 = −A1 + B1. Therefore solution (4) becomes

T1 (t) = A1
(
e−t + te−t

)
(4A)

Taking time derivative for (5) gives

T ′
n (t) = −e−t

(
An cos

(√
n2 − 1t

)
+ Bn sin

(√
n2 − 1t

) )
+

e−t
(
−An

√
n2 − 1 sin

(√
n2 − 1t

)
+ Bn

√
n2 − 1 cos

(√
n2 − 1t

) )
At t = 0 the above becomes

0 = −An + Bn
√
n2 − 1

Hence An = Bn
√
n2 − 1 and (5) reduces to

Tn (t) = Bne
−t

(√
n2 − 1 cos

(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
n = 2, 3, · · · (5A)

Therefore the fundamental solution is

un (x, t) = Tn (t)Xn (x)

u (x, t) =
∞∑
n=1

Tn (t)Xn (x)

= T1 (t)X1 (x) +
∞∑
n=2

Tn (t)Xn (x)

= c1
( (
e−t + te−t

)
sinx

)
+

∞∑
n=2

cne
−t

(√
n2 − 1 cos

(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
sin (nx)

(6)

Where the constant A1 was combined into c1 and Bn combined into cn . The constants c1 and cn
are now found from initial position. At t = 0 (6) becomes

f (x) = c1 sinx +
∞∑
n=2

cn
√
n2 − 1 sin (nx)

Multiplying both sides by sin (mx) and Integrating gives∫ π

0
f (x) sin (mx)dx =

∫ π

0
c1 sinx sin (mx)dx +

∞∑
n=2

cn
√
n2 − 1

(∫ π

0
sin (nx) sin (mx)dx

)
(7)

Form = 1 the above reduces to∫ π

0
f (x) sinxdx =

∫ π

0
c1 sin

2 xdx∫ π

0
f (x) sinxdx =

π

2
c1

c1 =
2
π

∫ π

0
f (x) sinxdx
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And form = 2, 3, · · · (7) becomes

∫ π

0
f (x) sin (mx)dx =

0︷                       ︸︸                       ︷∫ π

0
c1 sinx sin (mx)dx + cm

√
m2 − 1

(∫ π

0
sin2 (mx)dx

)
= cm

√
m2 − 1

(∫ π

0
sin2 (mx)dx

)
Hence for n = 2, 3, · · · the above gives∫ π

0
f (x) sin (nx)dx = cn

√
n2 − 1

(π
2

)
Therefore

cn =
2

π
√
n2 − 1

∫ π

0
f (x) sinnxdx n = 2, 3, · · ·

This completes the solution. The final solution from (6) becomes

u (x, t) =

(
2
π

∫ π

0
f (x) sinxdx

) (
e−t + te−t

)
sin (x)

+
2
π

∞∑
n=2

∫π
0
f (x) sin (nx)dx
√
n2 − 1

e−t
(√

n2 − 1 cos
(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
sin (nx)

To test the solution, it is compared to numerical differential equation solution. Using f (x) =
x (π − x) as an example. The result showed an exact match. An animation was also made. There-
fore the first term is (

2
π

∫ π

0
f (x) sinxdx

) (
e−t + te−t

)
sin (x)

And for n = 2, 3, · · · the nth term is(
2
π

∫ π

0
f (x) sin (nx)dx

) e−t
(√

n2 − 1 cos
(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
sin (nx)

√
n2 − 1
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3 Problem 3

Problem Solve uxx + uyy = 0 on the square 0 ≤ x,y ≤ 1. If u (0,y) = u (x, 0) = u (x, 1) = 0 and
u (1,y) = y − y2. Find an approximate value for u

( 1
2 ,

1
2

)
solution To make the solution steps more useful and general, a is used for the length of the x

dimension and b for the length of the y dimension, then these are replaced by 1 at the very end.
This is a plot of boundary conditions

x

y

1

1u = 0

u = 0

u = 0

f(y) = y(1− y)uxx + uyy = 0

Let u (x,y) = X (x)Y (x). Substituting this into the PDE gives

X ′′Y + Y ′′X = 0

Dividing throughout by XY , 0 and simplifying gives

X ′′

X
= −

Y ′′

Y
= λ

This gives the eigenvalue ODE

Y ′′ + λY = 0 (1)
Y (0) = 0

Y (b) = 0

The solution to (1) gives the eigenvalues λn =
( nπ
L

) 2 for n = 1, 2, 3 · · · and since L = b, this
becomes

λn =
(nπ
b

) 2
n = 1, 2, · · ·

And the corresponding eigenfunction

Yn (y) = cn sin
(√

λny
)

= cn sin
(nπ
b
y
)

Therefore the corresponding nonhomogeneous X (x) ODE

X ′′
n − λnXn = 0 (2)

Xn (0) = 0

Xn (a) = y − y2
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The solution to (2), since λn is positive is

Xn (x) = An cosh
(√

λnx
)
+ Bn sinh

(√
λnx

)
= An cosh

(nπ
b
x
)
+ Bn sinh

(nπ
b
x
)

Boundary conditions X (0) = 0 gives
0 = An

The solution (3) now simplifies to

Xn (x) = Bn sinh
(nπ
b
x
)

Hence the fundamental solution is

un (x,y) = XnYn

= cn sinh
(nπ
b
x
)
sin

(nπ
b
y
)

Where the constants Bn is merged with cn . The solution is

u (x,y) =
∞∑
n=1

cn sinh
(nπ
b
x
)
sin

(nπ
b
y
)

(3)

cn is now found by applying the boundary condition at x = a. The above becomes

y − y2 =
∞∑
n=1

cn sinh
(nπ
b
a
)
sin

(nπ
b
y
)

Multiplying both sides by sin
(mπ

b y
)
and integrating gives∫ b

0

(
y − y2

)
sin

(mπ

b
y
)
dy =

∞∑
n=1

cn sinh
(nπ
b
a
) (∫ b

0
sin

(mπ

b
y
)
sin

(nπ
b
y
)
dy

)
By orthogonality the above reduces to∫ b

0

(
y − y2

)
sin

(mπ

b
y
)
dy = cn sinh

(mπ

b
a
) ∫ b

0
sin2

(mπ

b
y
)
dy

=
b

2
cm sinh

(mπ

b
a
)

Therefore

cn =
2
b

1

sinh
(mπ

b a
) ∫ b

0

(
y − y2

)
sin

(nπ
b
y
)
dy

Now replacing a = 1,b = 1, the above becomes

cn =
2

sinh (nπ )

∫ 1

0

(
y − y2

)
sin (nπy)dy

=
2

sinh (nπ )

(
−2 (−1 + (−1)n)

n3π 3

)
=

−4
sinh (nπ )

(−1 + (−1)n)
n3π 3
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Hence the solution (3) becomes

u (x,y) =
−4
π 3

∞∑
n=1

(−1 + (−1)n)
n3

sinh (nπx)
sinh (nπ )

sin (nπy)

At x = 1
2 ,y =

1
2 the above becomes

u

(
1
2
,
1
2

)
=

−4
π 3

∞∑
n=1

(−1 + (−1)n)
n3

sinh
( nπ

2

)
sinh (nπ )

sin
(nπ
2

)
For n = 1, the above gives 0.0514136952911346 and for n = 2 the value do not change beyond 16
decimal points. So only need to use one term to get very good approximation value as

u

(
1
2
,
1
2

)
= 0.0514136952911346

This value is between zero and 0.25, where 0.25 is the maximum value at the boundary and zero
is the minimum value at the boundary. This agrees with the min-max principle. This is a 3D plot
of the solution over the whole square.

In[40]:= mySol[x_, y_] := -4 / Pi^3 Sum
(-1 + (-1)^n)

n^3

Sinh[n Pi x]

Sinh[n Pi]
Sin[n Pi y] , {n, 1, 2}

Plot3D[mySol[x, y], {x, 0, 1}, {y, 0, 1}, AxesLabel → {"x", "y", "u(x,y)"}, BaseStyle → 14]

Out[41]=

This is a contour plot
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ContourPlot[Evaluate[mySol[x, y]], {x, 0, 1}, {y, 0, 1}, AxesLabel → {x, y},

PlotRange → {-1, 1}, Contours → 100, PlotTheme -> "Scientific", PlotLegends → Automatic]

Out[16]=
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4 Problem 4

Problem Solve uxx +uyy = 0 on disk x2 +y2 < 1 with boundary condition xy2 when x2 +y2 = a.
Where a = 1 in this problem. Express solution in x,y

solution The first step is to convert the boundary condition to polar coordinates. Since x =
r cosθ ,y = r sinθ , then at the boundary u (r , θ ) = r cosθ (r sinθ )2. But r = 1 (the radius). Hence
at the boundary, u (1, θ ) = f (θ ) where

f (θ ) = cosθ sin2 θ

= cosθ
(
1 − cos2 θ

)
= cosθ − cos3 θ

But cos3 θ = 3
4 cosθ +

1
4 cos 3θ . Therefore the above becomes

f (θ ) = cosθ −

(
3
4
cosθ +

1
4
cos 3θ

)
=

1
4
cosθ −

1
4
cos 3θ (1)

The above is also seen as the Fourier series of f (θ ). The PDE in polar coordinates is

ur r +
1
r
ur +

1
r 2
uθθ = 0

The solution is known to be

u (r , θ ) =
c0
2
+

∞∑
n=1

rn (cn cos (nθ ) + kn sin (nθ )) (2)

Since the above solution is the same as f (θ ) when r = 1, then equating (2) when r = 1 to (1)
gives

1
4
cosθ −

1
4
cos 3θ =

c0
2
+

∞∑
n=1

(cn cos (nθ ) + kn sin (nθ ))

By comparing terms on both sides, this shows by inspection that

c0 = 0

c1 =
1
4

c3 =
−1
4

And all other cn,kn are zero. Using the above result back in (2) gives the solution as

u (r , θ ) = r
4 cosθ − r 3

4 cos 3θ (3)

This solution is now converted to xy using the formula

rn cosnθ =
n∑

k=0
even

(
n
k

)
xn−k (−1)

k
2 yk

=
n∑

k=0
even

n!
k! (n − k)!

xn−k (−1)
k
2 yk
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For n = 1 the above gives

r cosθ =
1!

0! (1 − 0)!
x1−0 (−1)0y0

= x (4)

And for n = 3

r 3 cos 3θ =
3!

0! (3 − 0)!
x3−0 (−1)0y0 +

3!
2! (3 − 2)!

x3−2 (−1)1y2

= x3 − 3xy2 (5)

Using (4,5) in (3) gives the solution in x,y

u (x,y) = 1
4x − 1

4

(
x3 − 3xy2

)
(6)

This is now verified that is satisfies the PDE uxx + uyy = 0.

∂u

∂x
=

1
4
−
1
4

(
3x2 − 3y2

)
∂2u

∂x2
= −

6
4
x

And

∂u

∂y
=

6
4
xy

∂2u

∂y2
=

6
4
x

Therefore ∂2u
∂x 2 +

∂2u
∂y2 = 0.

Now the boundary conditions u (x,y) = xy2 are also verified. This condition applies when
x2 + y2 = 1 or y2 = 1 − x2. Substituting this into (6) gives

u (x,y)@D =
1
4
x −

1
4

©­­­«x
3 − 3x

y2︷   ︸︸   ︷(
1 − x2

) ª®®®¬
Simplifying gives

u (x,y)@D =
1
4
x −

1
4

(
x3 −

(
3x − 3x3

) )
=

1
4
x −

1
4
x3 +

1
4

(
3x − 3x3

)
=

1
4
x −

1
4
x3 +

3
4
x −

3
4
x3

= x − x3

= x
(
1 − x2

)
= xy2

Verified. This is 3D plot of the solution
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In[76]:= ParametricPlot3D[{r Cos[t], r Sin[t], r/ 4 Cos[t] - r^3/ 4 Cos[3 t]},

{r, 0, 1}, {t, 0, 2 Pi}, AxesLabel → {x, y, "u(x,y)"},

PlotLabel → "3D plot of solution to problem 4", ImageSize → 500]

Out[76]=

This is a contour plot
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In[96]:= ContourPlot[1 / 4 x - 1 / 4 (x^3 - 3 x y^2), {x, -1, 1}, {y, -1, 1}, AxesLabel → {x, y},

Contours → 50, PlotLegends → Automatic, ColorFunction → "Pastel",

Epilog → {Thick, Circle[]},

PlotRange → {-1, 1},

RegionFunction → Function[{x, y, z}, Norm[{x, y}] < 1.]]

Out[96]=
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-0.351
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0.117

0.234

0.351
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