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1 Problem 1

Problem Solve the boundary value problem

y ′′ (x) − y (x) = x (1)

with y (0) = 1,y (1) = 1
solution
The general solution is the sum of the homogeneous and the particular solution

y = yh + yp (2)

Whereyh (x) is the homogeneous solution ofy ′′
h −yh = 0. Since this is a constant coefficients ODE,

the characteristic equation is found by assumingyh = erx and substituting this intoy ′′ (x)−y (x) =
0 and finding the roots. This results in

r 2 − 1 = 0

r = ±1

Therefore the two linearly independent basis solutions are y1 = ex and y2 = e−x . The homoge-
neous solution is a linear combination of these two basis solutions. In other words

yh (x) = c1e
x + c2e

−x

Before proceeding to find the general solution, a check is made now to determine if a unique
solution exists or not. The WronskianW (x) is����y1 (0) y2 (0)

y1 (1) y2 (2)

���� = ����e0 e−0

e1 e−1

���� = ���� 1 1
e1 e−1

���� = e−1 − e , 0

SinceW (x) , 0, then a unique solution exists.
The particular solution is now found using the method of undetermined coefficients. Since

the RHS is polynomial, let the particular solution guess be the following polynomial

yp = A + Bx +Cx2

Therefore y ′
p = B + 2Cx and y ′′

p = 2C . Substituting these into the original ODE (1) gives

2C −
(
A + Bx +Cx2

)
= x

x2 (−C) + x (−B) + (2C −A) = x

Comparing coefficients of both sides results in

−C = 0

−B = 1

2C −A = 0

Solving for the coefficients gives

C = 0

B = −1

A = 0

Therefore the particular solution is now found as

yp = A + Bx +Cx2

= −x
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The full solution from (2) becomes

y =

yh︷         ︸︸         ︷
c1e

x + c2e
−x − x (3)

Boundary conditions are now used to determine c1 and c2. At x = 0 the above becomes

1 = c1 + c2 (4)

And at x = 1 (3) gives

1 = c1e + c2e
−1 − 1

c1e + c2e
−1 = 2 (5)

Equations (4,5) are now solved for c1, c2. From (4), c1 = 1 − c2. Substituting this into (5) gives

(1 − c2) e + c2e
−1 = 2

c2
(
−e + e−1

)
+ e = 2

c2 =
2 − e

e−1 − e

Therefore
c1 = 1 −

2 − e

e−1 − e

Hence the general solution (3) becomes

y (x) =

(
1 −

2 − e

e−1 − e

)
ex +

(
2 − e

e−1 − e

)
e−x − x

=

(
e−1 − e − 2 + e

)
e−1 − e

ex +
2 − e

e−1 − e
e−x − x

Or

y (x) =

(
e−1 − 2

)
e−1 − e

ex +
(2 − e) e−x

e−1 − e
− x

This is a plot of the above solution
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Plot of solution to problem 1
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2 Problem 2

Problem Find the Fourier sine series for f (x) = x (1 − x) , 0 ≤ x ≤ 1. Use the result to evaluate
the infinite series 1

13 −
1
33 +

1
53 −

1
73 · · ·

solution
This is a plot of the function f (x) = x (1 − x) , 0 ≤ x ≤ 1

x

f(
x)

Plot of x(1-x)

In the above
L = 1

To obtain the Fourier sine series, the function is first odd extended to −1 ≤ x < 0 and after the
extension is made, it is repeated using a period 2L so that it becomes a periodic function. Here is
a plot of the periodic function, called fo (x) now. One period is shown in this plot for illustration.

x

fo
(x
)

Plot of odd extension of f(x)

Since fo (x) is an odd function, its Fourier series will contain bn terms only. The bn terms are
given by the standard formula

bn =
1
L

∫ L

−L
fo (x) sin

(nπ
L
x
)
dx

But fo (x) is odd function and sine is also odd, therefore the product is an even function, and the
above simplifies to

bn =
2
L

∫ L

0
fo (x) sin

(nπ
L
x
)
dx

But over 0 < x < 1, the function fo (x) is the same as the original function f (x) which is the
non-periodic function given. Therefore the above can be written as

bn =
2
L

∫ L

0
f (x) sin

(nπ
L
x
)
dx

Since L = 1 in this problem, the above simplifies to

bn = 2
∫1
0
f (x) sin (nπx)dx
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And since f (x) = x (1 − x), and the above becomes

bn = 2
∫ 1

0

(
x − x2

)
sin (nπx)dx

= 2

(∫ 1

0
x sin (nπx)dx −

∫ 1

0
x2 sin (nπx)dx

)
= 2 (I1 − I2) (1)

These two integrals are solved using integration by parts. Considering I1 =
∫1
0
x sin (nπx)dx and

using
∫
udv = uv −

∫
vdu. Let u = x,dv = sin (nπx), then du = 1 and v = −

( 1
nπ

)
cos (nπx).

Hence

I1 = uv −

∫
vdu

=

(
−x

(
1
nπ

)
cos (nπx)

) 1
0
+

1
nπ

∫ 1

0
cos (nπx)dx

=

(
−1
nπ

cos (nπ )

)
+

1

(nπ )2
(sin (nπx))10

=

(
−1
nπ

(−1)n
)
+

1

(nπ )2
(sin (nπ ) − 0)

=

(
−1
nπ

(−1)n
)

=
(−1)n+1

nπ

For the second integral, let I2 =
∫1
0
x2 sin (nπx)dx and u = x2,dv = sin (nπx), therefore du =

2x,v = − 1
nπ cos (nπx). Hence

I2 = uv −

∫
vdu

=

(
−x2

1
nπ

cos (nπx)

) 1
0
+

2
nπ

∫ 1

0
x cos (nπx)dx

=

(
−

1
nπ

(−1)n
)
+

2
nπ

∫ 1

0
x cos (nπx)dx

The above integral in the RHS is also found by integration by parts. Let u = x,dv = cos (nπx) or
du = 1,v = 1

nπ sin (nπx). The above becomes

I2 =
(−1)n+1

nπ
+

2
nπ

[ (
x

1
nπ

sin (nπx)

) 1
0
−

1
nπ

∫ 1

0
sin (nπx)dx

]
=

(−1)n+1

nπ
+

2
nπ

[
0 −

1
nπ

(
−

1
nπ

cos (nπx)

) 1
0

]
=

(−1)n+1

nπ
+

2
nπ

[
1

(nπ )2
(cos (nπ ) − 1)

]
=

(−1)n+1

nπ
+

2

(nπ )3
((−1)n − 1)

Substituting I1, I2 found above back into equation (1) gives the final result

bn = 2

(
(−1)n+1

nπ
−

(
(−1)n+1

nπ
+

2

(nπ )3
((−1)n − 1)

) )
= 2

(
(−1)n+1

nπ
−
(−1)n+1

nπ
−

2

(nπ )3
((−1)n − 1)

)
= 2

(
(−1)n+1

nπ
−
(−1)n+1

nπ
−
2 (−1)n

(nπ )3
+

2

(nπ )3

)
= 4

(
−
(−1)n

(nπ )3
+

1

(nπ )3

)
= 4

(
1 − (−1)n

(nπ )3

)
For odd n, the above gives

bn =

{
4

(
2
π 3

)
, 4

(
2

(3π )3

)
, 4

(
2

(5π )3

)
, · · ·

}
= 8

{(
1
π 3

)
,

(
1

(3π )3

)
,

(
1

(5π )3

)
, · · ·

}
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And for even n all bn = 0. Therefore

bn =

{
8

(nπ )3
n = 1, 3, 5, · · ·

0 otherwise

The Fourier sine series for f (x) can now be written as

f (x) =
∑

n=1,3,5, · · ·
bn sin (nπx)

=
8
π 3

∑
n=1,3,5, · · ·

1
n3

sin (nπx)

Since f (x) = x (1 − x) , the above is the same as

x (1 − x) = 8

(
1
π 3 sin (πx) +

1
33π 3 sin (3πx) +

1
53π 3 sin (5πx) +

1
73π 3 sin (7πx) + · · ·

)
To obtain the required result, let x = 1

2 in the above, which gives

1
2

(
1 −

1
2

)
= 8

(
1

13π 3 sin
(π
2

)
+

1
33π 3 sin

(
3
2
π

)
+

1
53π 3 sin

(
5
2
π

)
+

1
73π 3 sin

(
7
2
π

)
+ · · ·

)
1
4
=

8
π 3

(
1
13

sin
(π
2

)
+

1
33

sin

(
3
2
π

)
+

1
53

sin

(
5
2
π

)
+

1
73

sin

(
7
2
π

)
+ · · ·

)
π 3

32
=

1
13

−
1
33
+

1
53

−
1
73
+ · · ·

The above can also be written as
π 3

32
=

∞∑
n=1

(−1)n+1

(−1 + 2n)3
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3 Problem 3

Problem Find the solution to heat equation ut = uxx with initial conditions u (x, 0) = f (x) with
f (x) = x (1 − x) , 0 ≤ x ≤ 1 and boundary conditions u (0, t) = u (1, t) = 0. Approximate u

( 1
2 , 1

)
to 10 decimal places.

solution
Using separation of variables, let u (x, t) = X (x)T (t). Substituting this back into the PDE

gives

T ′X = X ′′T

T ′

T
=
X ′′

X
= −λ

Where the separation constant is some real value −λ. This gives the following two ODE’s to solve

T ′ + λT = 0 (1)
X ′′ + λX = 0 (2)

Starting with the spatial ODE in order to obtain the eigenvalues and eigenfunctions.The boundary
conditions on the spatial ODE become

X (0) = 0

X (1) = 0

Since equation (2) is a constant coefficient ODE, its characteristic equation is r 2 + λ = 0, which
has the solution r = ±

√
−λ, therefore its solution is given by

X (x) = c1e
rx + c2e

−rx

= c1e
√
−λx + c2e

−
√
−λx (3)

There are three cases to consider, depending on if λ < 0, λ = 0, λ > 0. Each one of these cases
gives a different solution that needs to be examined to see if the solution satisfies the boundary
conditions.

Case 1 Assuming λ < 0. Therefore −λ is positive and
√
−λ is also positive. Let

√
−λ = µ,where

µ is some positive number. The solution (3) can now be written as

X (x) = c1e
µx + c2e

−µx (3A)

This can be rewritten in terms of the hyperbolic trig functions (to make it easier to manipulate)
as

X (x) = c1 cosh (µx) + c2 sinh (µx) (3B)

Where the constants ci in (3A) are different from the constants in (3B), but kept the same for
simplicity of notation so as not to introduce new constants. Applying left boundary conditions
to (3B) results in

0 = c1

The solution (3B) now reduces to
X (x) = c2 sinh (µx)

Applying right side boundary conditions to the above results in

0 = c2 sinh (µ)

But sinh (µ) , 0 since it was assumed µ is not zero and sinh is only zero when its argument is zero.
The only possibility then is c2 = 0,which leads to trivial solution.Therefore λ < 0 is not an eigenvalue.

Case 2. Assuming λ = 0. The ODE becomes X ′′ = 0, which has the solution

X (x) = c1x + c2

Applying left side B.C. gives
0 = c2

The solution now reduces to
X (x) = c1x

Applying right side B.C. gives
0 = c1

Leading to the trivial solution. Therefore λ = 0 is not an eigenvalue.
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Case 3 Assuming λ > 0. In this case equation
√
−λ is complex and equation (3) can be ex-

pressed in terms of trig functions using Euler relation which results in

X (x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
(4)

Applying left side B.C. gives
0 = c1

Solution (4) now reduces to
X (x) = c2 sin

(√
λx

)
(5)

Applying right side B.C. gives
0 = c2 sin

(√
λ
)

Non-trivial solution implies sin
(√

λ
)
= 0 or

√
λ = nπ forn = 1, 2, 3, · · · .Therefore the eigenvalues

are
λn = (nπ )2 n = 1, 2, 3, · · ·

And the corresponding eigenfunctions from (5) are

Xn (x) = cn sin
(√

λnx
)

(6)

Now that the eigenvalues are known, the solution to the time ODE (1) can be found.

T ′ + λnT = 0

This has the solution (using an integrating factor method)

Tn (t) = e−λnt (7)

The constant of integration is not needed for (7) since it will be absorbed with the constant of
integration coming from solution of the spatial ODE (6) when these solutions are multiplied with
each others below. Therefore the fundamental solution is

un (x, t) = Tn (t)Xn (x)

Linear combination of fundamental solutions is also a solution (since this is a linear PDE). There-
fore the general solution is given by

u (x, t) =
∞∑
n=1

un

=
∞∑
n=1

Tn (t)Xn (x)

=
∞∑
n=1

cne
−λnt sin

(√
λnx

)
(8)

Initial conditions is now used to determine cn , . At t = 0, u (x, 0) = f (x) and the above becomes

f (x) =
∞∑
n=1

cn sin
(√

λnx
)

Multiplying both sides of the above equation by eigenfunction sin
(√

λmx
)
and integrating over

the domain of f (x) gives∫ 1

0
f (x) sin

(√
λmx

)
dx =

∫ 1

0

∞∑
n=1

cn sin
(√

λnx
)
sin

(√
λmx

)
dx

Interchanging the order of summation and integration gives∫ 1

0
f (x) sin

(√
λmx

)
dx =

∞∑
n=1

cn

∫ 1

0
sin

(√
λnx

)
sin

(√
λmx

)
dx

By the orthogonality of the sine functions, all terms in the right side vanish except when n =m,
leading to ∫ 1

0
f (x) sin

(√
λmx

)
dx = cm

∫ 1

0
sin2

(√
λmx

)
dx

= cm
1
2
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Therefore (replacingm back to n now, since it is arbitrary)

cn = 2
∫ 1

0
f (x) sin

(√
λnx

)
dx n = 1, 2, 3, · · ·

But
√
λn = nπ , hence

cn = 2
∫ 1

0
f (x) sin (nπx)dx n = 1, 2, 3, · · ·

Since f (x) is the same as in problem 2, the above shows that cn is the same as bn found in problem
2 above. This means cn is the sine Fourier series coefficients of f (x)which was found in problem
2. Using that result obtained earlier

cn = bn =

{
8

(nπ )3
n = 1, 3, 5, · · ·

0 otherwise

Using the above in (8), the general solution is therefore

u (x, t) =
8
π 3

∞∑
n=1,3,5, · · ·

1
n3

e−λnt sin
(√

λnx
)

=
8
π 3

∞∑
n=1,3,5, · · ·

1
n3

e−n
2π 2t sin (nπx)

The Following is plot of the solution for increasing values of time starting from t = 0, using 10
terms in the sum. At about t = 0.3 seconds, the temperature reduces to almost zero.

x

u(
x,
t)

u(x,t) at time =0

x

u(
x,
t)

u(x,t) at time =0.05

x

u(
x,
t)

u(x,t) at time =0.1

x

u(
x,
t)

u(x,t) at time =0.15

x

u(
x,
t)

u(x,t) at time =0.2

x

u(
x,
t)

u(x,t) at time =0.25

To approximate u
( 1
2 , 1

)
to 10 decimal places, first the solution is written at x = 1

2 and t = 1.
From above, the solution is

u

(
1
2
, 1

)
=

8
π 3

∞∑
n=1,3,5, · · ·

1
n3

e−n
2π 2

sin
(
n
π

2

)
Due to the fast convergence, only one term was needed. Result for n = 1 and n = 3 are

u1

(
1
2
, 1

)
=

8
π 3

(
e−π

2
sin

(π
2

) )
= 0.000013345216966776341

u3

(
1
2
, 1

)
=

8
π 3

(
e−π

2
sin

(π
2

)
+

1
27

e−9π
2
sin

(
3
π

2

) )
= 0.000013345216966776341

The above shows that the solution u1
( 1
2 , 1

)
did not change beyond the first 10 decimal points

when adding one more term in the series. Therefore, only one term is needed. Therefore, the final
result (rounded to 10 decimal points) is

u
( 1
2 , 1

)
= 0.0000133452
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4 Problem 4

Problem Solve ut + u = uxx with initial conditions u (x, 0) = f (x) and boundary conditions
u (0, t) = u (L, t) = 0.

solution
Using separation of variables, let u (x, t) = X (x)T (t). Substituting this back into the PDE

gives

T ′X +TX = X ′′T

T ′

T
+ 1 =

X ′′

X
= −λ

Where the separation constant is some real value −λ. This gives the following two ODE’s to solve

T ′ + (1 + λ)T = 0 (1)
X ′′ + λX = 0 (2)

Starting with the spatial ODE in order to obtain the eigenvalues. The boundary conditions on the
spatial ODE become

X (0) = 0

X (1) = 0

The above boundary value ODE was solved in problem 3. The eigenvalues were found to be

λn =
(nπ
L

) 2
n = 1, 2, 3, · · ·

And the corresponding eigenfunctions are

Xn (x) = cn sin
(√

λnx
)

The solution to the time ODE (1) using integrating factor method is

T (t) = e−(1+λn )t

Therefore, as before, the general solution is obtained by linear combination of the fundamental
solutions giving

u (x, t) =
∞∑
n=1

cne
−(1+λn )t sin

(√
λnx

)
(3)

Initial conditions are used to determine cn . At t = 0, u (x, 0) = f (x) and the above becomes

f (x) =
∞∑
n=1

cn sin
(√

λnx
)

Multiplying both sides by sin
(√

λmx
)
and integrating over the domain of f (x) gives∫ L

0
f (x) sin

(√
λmx

)
dx =

∫ L

0

∞∑
n=1

cn sin
(√

λnx
)
sin

(√
λmx

)
dx

Interchanging the order of summation and integrating gives∫ L

0
f (x) sin

(√
λmx

)
dx =

∞∑
n=1

cn

∫ L

0
sin

(√
λnx

)
sin

(√
λmx

)
dx

By orthogonality of sine functions, all terms in the right side vanish except when n =m, leading
to ∫ L

0
f (x) sin

(√
λmx

)
dx = cm

∫ L

0
sin2

(√
λmx

)
dx

= cm
L

2

Therefore

cn =
2
L

∫ L

0
f (x) sin

(√
λnx

)
dx n = 1, 2, 3, · · · (4)

But
√
λn =

nπ
L , hence

cn =
2
L

∫ L

0
f (x) sin

(nπ
L
x
)
dx n = 1, 2, 3, · · ·
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The above shows that cn is the Fourier sine series of f (x). Since f (x) is not given, explicit solution
for cn can not be found. Therefore the final solution is

u (x, t) =
∞∑
n=1

cne
−(1+λn )t sin

(√
λnx

)
=

∞∑
n=1

(
2
L

∫ L

0
f (x) sin

(√
λnx

)
dx

)
e−(1+λn )t sin

(√
λnx

)
With λn =

( nπ
L

) 2.
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