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1 Problem 1

Problem Solve the boundary value problem

y' () -y(x)=x (1)

withy (0) =1,y(1) =1
solution
The general solution is the sum of the homogeneous and the particular solution

Y=yp+yp (2)

Where yj, (x) is the homogeneous solution of y;" —y;, = 0. Since this is a constant coefficients ODE,
the characteristic equation is found by assuming y; = e"* and substituting this into y”’ (x)—-y (x) =
0 and finding the roots. This results in

Therefore the two linearly independent basis solutions are y; = e* and y, = e™*. The homoge-
neous solution is a linear combination of these two basis solutions. In other words

yp (x) = cre* +cpe™™

Before proceeding to find the general solution, a check is made now to determine if a unique
solution exists or not. The Wronskian W (x) is

606

el ¢!

y1(0) y2(0) _
y1 (1) y2(2)

Since W (x) # 0, then a unique solution exists.
The particular solution is now found using the method of undetermined coefficients. Since
the RHS is polynomial, let the particular solution guess be the following polynomial

yp = A+ Bx + Cx?
Therefore y,, = B + 2Cx and y; = 2C. Substituting these into the original ODE (1) gives

2C- (A+Bx+Cx*) =x
x2(-C)+x(-B)+ (2C - A) = x



Comparing coefficients of both sides results in

-C=0
-B=1
2C-A=0
Solving for the coefficients gives
C=0
B=-1
A=0

Therefore the particular solution is now found as

yp:A+Bx+Cx2

==X

The full solution from (2) becomes

Yn
—_—

y=ce+cer—x 3)
Boundary conditions are now used to determine ¢; and c;. At x = 0 the above becomes
l=c1+c (4)
And at x = 1 (3) gives

1=cle+cze_1 -1

cre+ce =2 (5)
Equations (4,5) are now solved for ¢y, ¢;. From (4), ¢; = 1 — ¢2. Substituting this into (5) gives

(1—cye+ce ! =2

c2(—e+e_1)+e:2

Cy =
el —e

Therefore
2—e

01:1—

Hence the general solution (3) becomes

2—e 2-e _
y(x):(1—6_1_e)ex+(e_l_e)e Y —x

el -2 2-e)e™
y(x):(_1 ) s -
el—e el—e

This is a plot of the above solution
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2 Problem 2

Problem Find the Fourier sine series for f (x) = x (1 —x),0 < x < 1. Use the result to evaluate

the infinite series 1—13 - % + 5% - 7—13

solution
This is a plot of the function f (x) =x(1-x),0 <x <1

Plot of x(1-x)

In the above
L=1

To obtain the Fourier sine series, the function is first odd extended to —1 < x < 0 and after the
extension is made, it is repeated using a period 2L so that it becomes a periodic function. Here is
a plot of the periodic function, called f, (x) now. One period is shown in this plot for illustration.

Plot of odd extension of f(x)

fo(x)

Since f, (x) is an odd function, its Fourier series will contain b, terms only. The b, terms are

given by the standard formula
1 L
b, = I J_L fo (x) sin (%x) dx
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But f, (x) is odd function and sine is also odd, therefore the product is an even function, and the
above simplifies to

b, = % LL fo (x) sin (%x) dx

But over 0 < x < 1, the function f, (x) is the same as the original function f (x) which is the
non-periodic function given. Therefore the above can be written as

b, = % LLf(x) sin (%x) dx

Since L = 1 in this problem, the above simplifies to

b,=2 fol f (x) sin (n7rx) dx

And since f (x) = x (1 — x), and the above becomes

1
b, = ZJ (x - xz) sin (nzx) dx
0

0 0
=2 -DL) (1)

=2 (Jl x sin (nzx) dx — Jl x% sin (nzx) dx)

These two integrals are solved using integration by parts. Considering I; = Io x sin (nzrx) dx and

1

E) cos (nrx).

using fudv = uv — Jvdu. Let u = x,dv = sin(nzx), thendu = 1 and v = —(
Hence

I =uv—jvdu

1
= (—x (i) cos (mrx)) + 1 Jl cos (nzx) dx
nr 0

0 niw

e (sin (n7x))g

-1, 1
= (E (-1) ) + - (sin(nr) — 0)
( 1
(

For the second integral, let I, = I; x?sin (nx)dx and u = x?, dv = sin (nzx), therefore du =

2x,v = —— cos (nzrx). Hence
ni

uv—Jvdu
L

1 1
(—x2 — cos (mtx)) + — J x cos (nmx) dx
ni 0

0 nimr

I

= (—% (—1)n) + % Ll x cos (nrx) dx
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The above integral in the RHS is also found by integration by parts. Let u = x, dv = cos (nzx) or
du=1,0= % sin (nrx). The above becomes

n+1 [ 1
L= 1) + 2 (xi sin (mrx)) L Jl sin (nzx) dx]
nr nz |\ nx o NnrJo
n+ [ 1
= )" + 2 0-— 1 (—L cos (mrx)) }
nr nz | nx\ nx 0
B (_1)n+1 2 [ 1
= + — | oy (cos (nm) — 1)]
B (_1)n+1 2 .
= o (0=

Substituting Iy, I, found above back into equation (1) gives the final result

_1\n+1 _q1\h+l
by =2 ( 2[ —(( 2{ + (ni)3 ((—1)”—1)))
_ (_1)n+1 (_1)n+1 2 "
=2 ni B nit - (nﬂ')3 ((_1) - 1))
_, (_1)n+1 ~ (_1)n+1 ~ 2(_1)n s 2 )
ni nw (mr)3 (nn)3
e )
e’ ()
» 1—(—1)")
(nr)®

For odd n, the above gives

o= {4(%)’4(<3i>3)’4(<5i>3)""}
BT

And for even n all b,, = 0. Therefore

_8 = oo
bn — (n”)S n 13 33 59
0 otherwise

The Fourier sine series for f (x) can now be written as

f(x)= Z b, sin (nrx)
n=1,35,---
8 1 .
== 5 sin (nrx)
n=1,3,5,---

Since f (x) = x (1 — x), the above is the same as

1 . 1 1 1
x(1-x)=38 = sin (7x) + B3 sin (37x) + 5.3 sin (57x) + 753 sin (77x) + - - -



To obtain the required result, let x = % in the above, which gives

1 1 1 8 1 . (n) N 1 (3 N 1 . (5 N 1 (7 N
—[1-=-]=8|—=—=sin|— ——sin|-x ——sin|-x ——sin|-x
2 2 1373 2 3373 2 5373 2 7373 2

1 8 (1  y« 1 . (3 1 . (5 1 . (7
- =— —sm(—)+—s1n —nm|+—Zsmn|-m|+_—zsm|-m|+---
4 g3\13 2 33 2 53 2 73 2
31 1 1 1

+ +
32 13 33 5 73

The above can also be written as



3 Problem 3

Problem Find the solution to heat equation u; = u,, with initial conditions u (x, 0) = f (x) with
f(x)=x(1-x),0 <x < 1and boundary conditions u (0, ) = u(1,¢) = 0. Approximate u (%, 1)
to 10 decimal places.

solution

Using separation of variables, let u (x, ) = X (x) T (t). Substituting this back into the PDE
gives

T'X =X"T
T/ X//
— = = —A
T X

Where the separation constant is some real value —A. This gives the following two ODE’s to solve

T +AT =0 (1)
X"+AX =0 (2)

Starting with the spatial ODE in order to obtain the eigenvalues and eigenfunctions. The boundary
conditions on the spatial ODE become

X(0)=0
X(1)=0

Since equation (2) is a constant coefficient ODE, its characteristic equation is r? + A = 0, which
has the solution r = +V—A, therefore its solution is given by

X(x)=cre™ +ce™

= eV Tx gV @)

+ coe”
There are three cases to consider, depending on if A < 0,4 = 0,1 > 0. Each one of these cases
gives a different solution that needs to be examined to see if the solution satisfies the boundary
conditions.

Case 1 Assuming A < 0. Therefore —] is positive and V-2 is also positive. Let V-1 = y1, where
1 is some positive number. The solution (3) can now be written as

X (x) = cie"™ + cpe™H* (3A)

This can be rewritten in terms of the hyperbolic trig functions (to make it easier to manipulate)
as
X (x) = ¢y cosh (ux) + ¢, sinh (ux) (3B)

Where the constants c¢; in (3A) are different from the constants in (3B), but kept the same for
simplicity of notation so as not to introduce new constants. Applying left boundary conditions
to (3B) results in

0= C1

The solution (3B) now reduces to
X (x) = ¢y sinh (ux)

Applying right side boundary conditions to the above results in

0 = ¢, sinh (i)
8



But sinh () # 0 since it was assumed y is not zero and sinh is only zero when its argument is zero.
The only possibility thenis c; = 0, which leads to trivial solution. Therefore A < 0 is not an eigenvalue.
Case 2. Assuming A = 0. The ODE becomes X’ = 0, which has the solution

X(x)=cix+c

Applying left side B.C. gives

0= Co
The solution now reduces to
X (x) =c1x
Applying right side B.C. gives
0= C1

Leading to the trivial solution. Therefore A = 0 is not an eigenvalue.

Case 3 Assuming A > 0. In this case equation V—-A is complex and equation (3) can be ex-
pressed in terms of trig functions using Euler relation which results in

X (x) = ¢y cos (\ﬁx) + ¢y sin (\/zx) (4)

Applying left side B.C. gives
0= C1

Solution (4) now reduces to
X (x) = ¢z sin (\ﬁx) (5)
Applying right side B.C. gives
0 =cysin (\/I)

Non-trivial solution implies sin (\/I) =0or VA =nrforn=1,2,3,---.Therefore the eigenvalues
are
A = (nr)? n=123, -

And the corresponding eigenfunctions from (5) are
X, (x) = cp sin (\/Zx) (6)
Now that the eigenvalues are known, the solution to the time ODE (1) can be found.
T+, T=0
This has the solution (using an integrating factor method)
T, (1) = e (7)

The constant of integration is not needed for (7) since it will be absorbed with the constant of
integration coming from solution of the spatial ODE (6) when these solutions are multiplied with
each others below. Therefore the fundamental solution is

Up (x,t) = Ty (t) X (x)



Linear combination of fundamental solutions is also a solution (since this is a linear PDE). There-
fore the general solution is given by

u(x,t) = Z Up
n=1

T () X (x)

n=1
Z cne Mt sin (\/)Lnx) (8)
n=1
Initial conditions is now used to determine c,, . At t = 0, u(x,0) = f (x) and the above becomes

fx)= 2 cp sin (\/Zx)

Multiplying both sides of the above equation by eigenfunction sin (V/lmx) and integrating over
the domain of f (x) gives

Ll f(x)sin (\//Ex) dx = Jl i cp sin (\/Ex) sin (\//mx) dx

0 n=1

Interchanging the order of summation and integration gives

J: f (x)sin (\/Ex) dx = i Ch Ll sin (\/Zx) sin (\//Ex) dx

n=1

By the orthogonality of the sine functions, all terms in the right side vanish except when n = m,
leading to

Ll f (x)sin (\/ﬂx) dx = ¢ ‘Ll sin® (\/)Ex) dx

Therefore (replacing m back to n now, since it is arbitrary)

1
c,,=2] f(x)sin(x/ﬂx)dx n=1273,---
0

But VA,, = nx, hence
1
cn=2j f (x)sin (n7x) dx n=1,2,3,---
0

Since f (x) is the same as in problem 2, the above shows that ¢, is the same as b,, found in problem
2 above. This means c,, is the sine Fourier series coefficients of f (x) which was found in problem
2. Using that result obtained earlier

8
=1,3,5, -
ch = l’)n = (n71')3 " .
0 otherwise
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Using the above in (8), the general solution is therefore

8 > 1
u(xt)=— Z —3e_/1"t sin (\/)L,,x)
T n=1,35,---
8 > 1
=— Z —36_"2”2t sin (nzx)
T n=13,5,..-

The Following is plot of the solution for increasing values of time starting from ¢ = 0, using 10
terms in the sum. At about t = 0.3 seconds, the temperature reduces to almost zero.

u(x,t) at time =0 u(x,t) at time =0.05 u(x,t) at time =0.1

2 Z Z
=1 =1 =1

X X X

u(x,t) at time =0.15 u(x,t) at time =0.2 u(x,t) at time =0.25

2 5 Z
=1 =1 =1

X X X

To approximate u (%, 1) to 10 decimal places, first the solution is written at x = % and t = 1.
From above, the solution is

1 8 > 1 T
u (—, 1) == Z —Se_”z”2 sin (n—)
2 T p=1,3y5,-- 1 2

Due to the fast convergence, only one term was needed. Result for n = 1 and n = 3 are

1 8 g2 . (T

u|=,1] = —= (e sin (—)) = 0.000013345216966776341
2 3 2
1 8 a2 . (T 1 g2 . T

us | =, 1| = —|e sin (—) + —e sin (3—) = 0.000013345216966776341
2 3 2 27 2
The above shows that the solution u; (%, 1) did not change beyond the first 10 decimal points
when adding one more term in the series. Therefore, only one term is needed. Therefore, the final
result (rounded to 10 decimal points) is

u(3,1) =0.0000133452
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4 Problem 4

Problem Solve u; + u = uy, with initial conditions u (x,0) = f (x) and boundary conditions
u(0,t) =u(L,t) =0.

solution

Using separation of variables, let u (x,t) = X (x) T (¢). Substituting this back into the PDE
gives

T'X+TX=X"T

Where the separation constant is some real value —A. This gives the following two ODE’s to solve

T"+(1+A)T =0 (1)
X" +AX =0 (2)

Starting with the spatial ODE in order to obtain the eigenvalues. The boundary conditions on the
spatial ODE become

X(0) =0
X(1)=0

The above boundary value ODE was solved in problem 3. The eigenvalues were found to be

2
A,,:(E) n=1,23,-
L

And the corresponding eigenfunctions are

X, (x) = ¢ sin (\/Anx)
The solution to the time ODE (1) using integrating factor method is
T(t) — e—(1+/1n)t

Therefore, as before, the general solution is obtained by linear combination of the fundamental
solutions giving

u(x,t) = i cpe” A gin (\/Zx) (3)
n=1

Initial conditions are used to determine c¢,. Att = 0, u (x,0) = f (x) and the above becomes
fx)= Z cp sin (\/Anx)
n=1

Multiplying both sides by sin (V/lmx) and integrating over the domain of f (x) gives

L L oo
J f(x)sin (\/Amx) dx = Z cp sin (\Mnx) sin (\/)me) dx
0 0 n=1

Interchanging the order of summation and integrating gives

(o8]

J‘OLf(X) sin (\//Ex) dx = Z cn LL sin (\//l—nx) sin (\/A_mx) dx

n=1
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By orthogonality of sine functions, all terms in the right side vanish except when n = m, leading
to

JOL f(x)sin (\/Ex) dx = ¢ LL sin® (\/A_,,m) dx

L
Cm—

2

Therefore L
2
cp = ZI f(x)sin (\//Inx) dx n=123,--- 4)
0

But V1, = ”T”, hence
2 (F n
C"ZZJO f(x)sin(%x)dx n=123,---

The above shows that c,, is the Fourier sine series of f (x). Since f (x) is not given, explicit solution
for ¢, can not be found. Therefore the final solution is

u(x,t)

Z cpe 1At gin (\/Zx)

=1

S

[
[e9)

53 (2 [7 s rsin (V) d) 44 sin (V32

n=1 0

With 1, = (22)°.
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