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1 Chapter 10.1, Problem 9

Problem Either solve y”’ + 4y = cos x with y’ (0) = 0,y’ () = 0 or show it has no solution.
Solution The homogeneous solution yj can be easily found to be

yp, = c1 cos (2x) + ¢, sin (2x)

Therefore the basis solutions are

Y1 = COS 2x
Yy, = sin 2x
And
y; = —2sin2x
Y, = 2C08 2x
Hence

yy, (x) = —2¢; sin 2x + 2c; cos 2x

To find particular solution, let
yp = Acosx

The original ODE becomes

—Acosx +4Acosx = cosx

3Acosx = cosx
1

A=-
3

Hence the full solution is

y(x)=yn+yp
1
= —2c; sin 2x + 2c5 cos 2x + 5 COS X
Therefore .
Y’ (x) = —4c; cos 2x — 4c; sin 2x — 3 sin x
First B.C. gives
y' (0) =0 = —4¢;
Cc1 = 0
Therefore the solution now becomes y (x) = 2¢, cos 2x + % cosx and y’ (x) = —4c, sin 2x — % sin x.

The second B.C. gives

y () = 0 = —4c, (0)
0 = —4c, (0)

Hence ¢, can be any value. Therefore, there is no unique solution. There are infinite number of

solutions.
Final solution is

1
Y (x) = 2¢c; cos 2x + 3 cos x

5



Since 2¢, is constant, we can rename it to A and write the above as

_ 1
y(x) = Acos2x + 3 cosx

To verify that there is no unique solution, we set up W where y; = cos 2x, y, = sin 2x, and y1, y
as found above. These are the two basis solutions for the homogeneous ODE.

y; (0) 4, (0)
yy () y; ()
Since W = 0, this implies there is no unique solution. Therefore the ODE can has no solution, or

it can have an infinite number of solutions. In this case, as shown above, it has infinite number
of solutions.

‘02

=0
0 z‘

2 Chapter 10.1, Problem 12

Problem Either solve x?y” + 3xy’ + y = x* with y (1) = 0,y (e) = 0 or show it has no solution.

Solution The homogeneous solution is first found. This is a Euler ODE. Let y, = x", then
Yy, = rx’ L, y, =r(r-1) x"~% and the homogeneous ODE becomes

rr=1x"+3rx" +x" =0

r(r—=1)+3r+1=0

PP—r+3r+1=0

rP+2r+1=0

r+D(r+1)=0

Hence double roots. Therefore the solution is
1 1
yp = Cly_c + cz;lnx

To find particular solution, let y, = ¢; + cox + c3x®. Plugging this in original ODE gives
%% (2¢3) + 3x (cz2 + 2c3%) + (o1 + 2 + c3x%) = x*
x2(2¢3) + ¢1 + x (3¢2 + ¢2) + x2 (605 + ¢3) = x°

Comparing coefficients gives

0120
4C2:0
903:1

Hence solutionis ¢ = 0,¢; =0, ¢35 = %. Therefore y, = %xz and the full solution is

y(x)=01%+02%lnx+%x2 (1)

Boundary conditions are now applied to find ¢y, c;. First BC gives

1
0:C1+C2h’11+5

0 +1
=c —
T
1
C1 = ——
17



Second BC y (e) = 0 gives

Therefore the solution (1) becomes

y() =k + 3+ (52) Linx

Therefore solution exist and is unique. This is verified using W where now y; = %, Yy = % Inx.

These are found above as the bases solutions for the homogeneous ODE.

1
== #0
e

1

e

y1 (1) y2 (1)
yi(e) y2(e)

Q= O

This confirms that a unique solution exists.

3 Chapter 10.1, Problem 14

Problem Find eigenvalue and eigenfunction of y” + Ay = 0 with y (0) = 0,y’ («) = 0.
Solution
Assuming the solution is y = Ae", then the characteristic equation is
rP+1=0

M

Case A <0

In this case —A is positive and hence V-2 is also positive. Let V-1 = p where p > 0. Hence
the roots are +p. This gives the solution

y = ¢1 cosh (ux) + ¢ sinh (ux)
First BC gives
0= C1
Hence solution becomes
y (x) = ¢, sinh ()
Second BC gives

y’ (x) = pcy cosh (ux)
0 = picy cosh (urr)

But cosh pmr # 0, hence only other choice is ¢; = 0, leading to trivial solution. Therefore A < 0 is
not eigenvalue.



Case A = 0, then the homogenous solution is
y(x) =c1+cx

First BC gives

0= C1
Hence solution becomes
y(x) = cox
Second BC gives
y (x) =c;
0= Co

Leading to trivial solution. Therefore A = 0 is not eigenvalue.
Case A > 0, then the homogenous solution is

y (x) = c; cos (\/Ix) + ¢, sin (\/ix)

First BC gives
0= C1

Hence solution becomes

Y (x) = ¢y sin (\/Zx)
Second BC gives
y (x) = Ve, cos (\ﬁx)
0= \/Icz cos (\/In)

Non-trivial solution requires cos (\/In’) =0or Vir = “tforn =1,3,5,- . Therefore

\/Z:E n=1,3,5,:--

2

Hence the eigenvalues are
n\ 2
A,,:(E) n=1,3,5--

And the corresponding eigenfunction is sin (4x) for n = 1,3,5, - - -. The solution is
IS} ) n
y(x) = Z cp sin (—x)
n=1,35, 2

4 Chapter 10.1, Problem 20

Problem Find eigenvalue and eigenfunction of x?y” — xy’ + Ay = 0 withy (1) = 0,y (L) = 0,L > 1
Solution



This is Euler type ODE. Using standard substitution, ley y = x". The ODE now becomes
r(r—-D)x"2—xrx" M+ x" =0
r(r—=1)—r+A=0
rP—2r+1=0

The above is called the characteristic equations. Its roots give the solution. The roots are

— Vp2 — V4 —
_ bi b 4ac:21 4 4/1=1im

2a 2

r

casel -1 >0
Let 1 — A = p? for some real p. Then the roots are 1 + y and hence the solution is

Yy =cix + cox?

= cix1TH 4 opxTH
1

=x|cix* +c—
xH

At first BC y (1) = 0 the above gives
0=c1 +cy

1
0=cil* +cy—

LH
_ ClLZ‘u + ¢
= T
Hence
Cley +c3=0
But ¢y, = —cy, therefore

Cleu —C = 0
C1 (sz - 1) =0
For arbitrary L > 0 the above can only be satisfied if ¢; = 0. This means both c;, c; are zero. Hence
1—A > 0 is not possible.
case1 -1 =0
Hence the roots now are r = 1. Double root. We now in the case of double root the solution
can be written as

y=cx" +cx Inx

=cix+cxlnx

At first BC y (1) = 0 the above gives
0= C1

Therefore the solution now becomes y = cyx In x. At second BC y (L) = 0

0=cLInL
0= Czh'lL

9



Since L > 0 then only possibility is that ¢, = 0.This means both ¢y, ¢, are zero. Hence 1 — A = 0 is

not possible.
case 1 -1 <0
Let 1 — A = —p? for some real pi. Then the roots are 1 + iy and hence the solution is

Yy =c1x + cox
= ¢ x T 4 ey 17K
= x (c1x™ + cpx7™)
The above can be written as
iy —ip
y=x (clelnx + coe¥ )

— 5 (clei,ulnx + CZe—iylnx)
Hence cjel# 0% 4 ¢ e-inlnx
y = x(C;y cos (plnx) + Cy sin (1 1n x))
First BC y (1) = 0 the above becomes
0=Crcos(uln1) + Cysin(ulni)
=C
Therefore the solution is
y = xCy sin (pInx)
For second BC y (L) = 0 the above becomes
0=LCysin(plnL)
0=Cysin(ulnlL)

Non-trivial solution requiressin (uInL) = 0or yInL = nx forn = 1,2,3, - - -. This means
dd 1,2,3
= - n=142>3---
K InL
Butl1-A1= —/12, orA=1+ /12, therefore
ni \ 2
A :1+(—) n=123,---
" InL

These are the eigenvalues. The corresponding eigenfunctions are from (1)

Yn (x) = cpx sin (u, Inx)

= ¢px sin (\Mn —1ln x)

1+ (1’;1—]1)2—1lnx)

|
3}
3
<
172}
—
=]

Hence the solution is

can be written as C; cos (¢ Ilnx) + C; sin (¢ In x). This is done using
Euler relation and the new constants C;, C, are not the same as ¢y, ¢o. The solution becomes



5 Chapter 10.1, Problem 22

22. Consider a horizontal metal beam of length L subject to a vertical load f (x) per unit length.
The resulting vertical displacement in the beam y(x) satisfies the differential equation

d*y
Elw =f(0),

where E is Young’s modulus and 7 is the moment of inertia of the cross section about
an axis through the centroid perpendicular to the xy-plane. Suppose that f(x)/EI is a
constant k. For each of the boundary conditions given below, solve for the displacement
y(x),and plot y versus x in the case that L =1 and k = —1.

(a) Simply supported at both ends: y(0) = y"(0) = y(L) = y"(L) =0
(b) Clamped at both ends: y(0) = y'(0) = y(L) = y'(L) =0
(c) Clamped atx =0, free atx = L: y(0) = y'(0) = y"(L) =y" (L) =0

This is standard ODE with constant coefficients. Just integrating and substitutions.

6 Chapter 10.2, Problem 13 (With interactive animation)

Problem Sketch the graph of f (x) = —x,—L < x < L where f (x + 2L) = f(x) and find the
Fourier series of the function
Solution

Sketch of function

A

This is an odd function. Only b,, needs to be evaluated.

1 T/

. 2r
b, = T_/2 —T/zf(X) sin (n?x)

T is the period of f (x) which is 2L. The above becomes

1 IL ) s
b, = - —x sin (n—x)
LJ)_; L

11



Since x is odd and sin is odd then the product is even and the above simplifies to

b, = _TZ OLxsin (n%x) (1)

Using integration by parts fudv = uv — fvdu where u = x,dv = sin (nFx), therefore du = 1
and

v=———"""=—0s
nZt niw

cos (nfx) -L (nzx)
L

Integral (1) becomes

—2([-L L n
b, = — —x cos |n— x) - — cos (n—x) dx
L 0 0o hm L
-2 ([-L?
= — —cos(mr) 0 + — cos E ) dx
L L
-2 L1 T \1L
= — —cos(nﬂ)+——[sm( )]
L nmw n” L 0
-2 (-L? -L?
= — (— cos (nm) + — [sin (nx) — 0] )
L \ nn n2m?
A
=T cos )
2L
= — cos (nx)
niw
Forn=1,2,3,---. Looking at few n values gives
2L 2L
bn=—( ) —(=1), -
3

E (—1)n

Therefore the Fourier series is

(o)

fx)= Z:; % (=1)" sin (%x)
i sin (nLﬂx)

The following is an animation showing how the Fourier series converges to the function as
more terms are added. This animation runs inside the PDF (need to use standard PDF reader to
run the animation. Might not run inside Chrome or Firefox own browser PDF reader).

12



number of terms 881

f(x)
1.0
-0 -05 05 A0
~05[ .
_1_[3:_ ™
BRCIRIEE)

7 Chapter 10.2, Problem 18 (With interactive animation)

Problem Sketch the graph and find the Fourier series of the function

0 -2<x<-1
fx)=1 x -1<x<1
0 1<x<2

And f(x+4)=f(x)
Solution

Sketch of function

1.01

0.5¢

-0.5F

-1.0[,

f (x) is an odd function. Therefore only b, needs to be evaluated.

L n
b, = % J_Lf(x) sin (Tnx)

13



2L is the period of f (x) which is 4. Hence L = 2. The above becomes

2

by, = % I, f (x)sin (%x)
= % J__: f(x)sin (n?ﬂx) + J_ll f (x)sin (n?nx) + sz(x) sin (%Tx))
= %:1 f (x)sin (%x)
= % :_11 X sin (%x)

Since x is odd and sin is odd then the product is even and the above simplifies to
V' nm
b, = | xsin (—x) (1)
0 2

Using integration by parts Iudv = uv — Ivdu where u = x,dv = sin (%*x), therefore du = 1
and

v=-— = —cos|—x
"7 nmr
Integral (1) becomes
-2 T 1 1o T
b, = — [x cos n—x)] — | —cos (n—x) dx
ni 0 o nmw 2
-2 2 (! T
T ] + — | cos (n—x) dx
nw Jo 2

Il

—_—
|

| &

(@)

o

7]
—_

=

2

-2 4  (n
= —cos( T +—s1n(—7r)
nw n?mr? 2

2
2 . (n 2 n
b, =|— Sll’l(gﬂ')——COS(Eﬂ') n=123,---

The Fourier series is

1= 53| (i) an (3] - 2 con () an (37

n=1 nrx

)
)+ 2oL fsn (v
|

Therefore

The following is an animation showing how the Fourier series converges to the function as
more terms are added. This animation runs inside the PDF (need to use standard PDF reader to
run the animation. Might not run inside Chrome or Firefox own browser PDF reader).
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8 Chapter 10.3, Problem 2

Problem Assume the function is periodically extended outside the original interval. (a) Find the
Fourier series of the extended function. (b) Sketch the graph of the function to which the series
converges for three periods.

—-T<x<0

0<x<m

-1,

Solution
This is plot of the above function for one period, and then for 3 periods

Sketch of function over one period

3.0

::’1.5%

00"

15



Sketch of function over 3 periods

30F
25F

20F

05F

0.0F
L1 L L L L L L L L L L L

-6mr -5 -4m 3w -2m -m 0 T 2mr 3w 4w 5m 6

X

8.1 parta

The calculation of the Fourier series will have a,,, b,, and will follow same methods as before. The
period here is 2.

8.2 parth

Since both f (x) and f’ (x) are piecewise continuous, then the Fourier series will converge to the
function f (x). But at the points where f (x) has jumps (such as at x = +) the Fourier series will
converge to the average value of f (x) at these points.

9 Chapter 10.3, Problem 4

Problem Assume the function is periodically extended outside the original interval. (a) Find the
Fourier series of the extended function. (b) Sketch the graph of the function to which the series
converges for three periods.

flx)=1-x* -1<x<1

Solution
This is plot of the above function for one period, and then for 3 periods

Sketch of function over one period

16



Sketch of function over 3 periods

1.0

-6 -6 2m-6 3m-6

9.1 parta

The calculation of the Fourier series will have only a, since f (x) is even, and will follow same
methods as before. The period here is 2.

9.2 parth

Since both f (x) and f” (x) are piecewise continuous, then the Fourier series will converge to the
function f (x) for all x.

10 Chapter 10.4, Problem 17

Problem (a) Find the Fourier series of the given function (b) Sketch the graph of the function to
which the series converges for three periods.

fx)=1 0<x<m

Use cosine series, with period 27.
Solution
Extending this as even function gives

fex)=1 —T<x<m
Hence, since period is 27, then L = 7 now and

1t 1 (" 2 (™
a0=zJ_Lfe(x)dx=;J dx=—J dx =2

-7 T Jo
And

1 (L 2 (T 2
an = I J_L fe (x)cos (n%x) dx = p J‘O cos (nx)dx = oy (=sin(nx))y =0

Therefore the cosine extension Fourier series is

a (o]
f(x)= 24 Z an cos (nx)
2 n=1
S 2
=1

17



11 Chapter 10.4, Problem 18 (With interactive animation)

Problem (a) Find the Fourier series of the given function (b) Sketch the graph of the function to
which the series converges for three periods.

fx)=1 0<x<m

Use sin series, with period 2.
Solution
Extending this as odd function gives

1 O<x<m

f"(x)z{ -1 —r<x<0

Hence, since period is 2, then L = & now and, since this is an odd function, only b, terms will
show up

1 (F . (nm
b, = I J_L fo (x)sin (Tx) dx
1 Vs
= — J fo (x) sin (nx) dx
T J-n
But now f;, (x) sin (%£x) is even, therefore the above simplifies to

bn

; Lﬂ fo (x) sin (nx) dx

2 J‘ sin (nx) dx
7

0

_ 2 (cos(nx))”

T n 0

-2
= — (cos(nm)—1)
niw
-2
= = (1"-
ni
Therefore the sine extension Fourier series is
f(x)= Z b, sin (nx)
n=1
231
= — Z — (=1" = 1) sin (nx)
T An

The following is an animation showing how the Fourier series converges to the function as
more terms are added. This animation runs inside the PDF (need to use standard PDF reader to
run the animation. Might not run inside Chrome or Firefox own browser PDF reader).
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12 Chapter 10.5, Problem 7

Problem Find solution to u; = 100uy, with 0 < x < 1,¢ > 0 and boundary conditions u (0, t) =
u (1,t) = 0 and initial conditions u (x, 0) = sin (27x) — sin (57x)

Solution

The fundamental solution for this problem with homogenous B.C. was derived in earlier
problem and it is given as

u(x,t) = i cne Kt sin (\/Ex)
n=1

Where in this problem k = 100 and A, = (mr)2 ,n=1,23,.... The ¢, terms is the Fourier sine
coefficients of the initial conditions. But the initial conditions is already expressed as sum of
sine terms. Therefore the ¢, coefficient can be read directly from f (x), giving ¢, = 1,¢5 = —1.
Therefore only two terms exist in the sum above, leading to the solution

—(27)%(100)¢ _(57)%(100)¢

u(x,t) = coe sin (27x) + cse sin (57x)

—4007%t

=e sin (27x) — e~ 230007¢

sin (57x)

13 Chapter 10.5, Problem 10 (With interactive animation)

Problem Solve u; = uyy, with 0 < x < L and L = 40cm and boundary conditions u (0,t) =
u (L, t) = 0° with initial conditions

x 0<x<20

0) =
u(x,0) {40—x 20 < x < 40

Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier
problem and it is given as

u(x,t) = i cne Kt sin (\/Ex)
n=1

19



2

Where in this problem k = 1 and A, = (%) ,n=1,2,3,....and L = 40 cm. To find ¢,, initial

conditions are used. Att =0 .
fx)= Z cp Sin (\/Ex)
n=1

Applying orthogonality result in
9 (L
Cp = —J f (x)sin (\/A—nx) dx
LJo
9 (20
— (J x sin (\/Zx) dx + J
0

= 40 )
2 (3200 . (mt)

= — sin [ —
40 \ n272 2

160 . (n;t)
= sin | —
n?m? 2

40

. (40 — x) sin (\/Zx) dx)

Hence the solution is
160 had 1 ni nx\2 ni
u(x,t)=— — sin (—) e_(W) 'sin (—x)
Cet) m? ; n? 2 40

The following is an animation of the above solution for 510 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).

time BE@ seconds

u(x,t)
20

10}

]
T

T (1)
[ 10 20 30 40

I
n
§ i

K>

14 Chapter 10.5, Problem 11 (With interactive animation)

Problem
Solve u; = uyy, with 0 < x < L and L = 40cm and boundary conditions u (0, t) = u (L, t) = 0°

with initial conditions
0 0<x<10

u(x,00={ 50 10<x<30
0 30<x<40

20



Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier
problem and it is given as

u(x,t) = i cne Kt sin (\/Ex)
n=1

Where in this problem k = 1 and A, = (”T) 2 ,n=1,2,3,....and L = 40 cm. To find c,, initial
conditions are used. At t =0

fx)= 2 cp Sin (\/Ex)

Applying orthogonality result in
9 (L
Chp=— J f (x)sin (\//lnx) dx
L Jo
2 10 .
= m (J 0sin (\Mnx) dx + J

0 1
9 (30

= — J 50 sin (\/Anx) dx
40 Jqo
200 nr . nrw

= — sin — sin —
nr 4 2

30 40

) 50 sin (\/Zx) dx + Lo 0 sin (\/Zx) dx)

Hence the solution is
200 1 nr nm )2 nr
u(x,t)= — Z — sin (—) sin (—) e (50)" sin (—x)
Toin 4 2 40
The following is an animation of the above solution for 510 seconds. This runs inside the PDF

(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).

time BBP@ seconds

e

u(x,t)
60

50f

40}
30}

20k
10

[:| :vmvﬂun\'_pn ﬁ JI I 1 I L 1 L I L I 1 n n\'_pﬁunvnvﬂ_}ﬁ, ic_m:l
: Yo 20 3 =

K>
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15 Chapter 10.6, Problem 5

Problem Find steady state solution that satisfies the given boundary conditions u; = a®u,, with
u(0,t) = 0,u, (L,t) =0
solution at steady state

v (x)=0
v(0)=0
v (L)=0

Solution to the above ODE is v (x) = ¢1x + ¢3. At x = 0, this leads to ¢; = 0. Therefore the solution

now becomes v (x) = ¢;x and v’ (x) = ¢;. Second boundary condition implies ¢; = 0 as well.
Therefore
v(x)=0

is the steady state solution.

16 Chapter 10.6, Problem 7

Problem Find steady state solution that satisfies the given boundary conditions u; = a®u,, with
uy (0,1) —u(0,t) =0,u(L,t)=T
solution at steady state

v’ (x)=0
v (0)-v(0)=0
v()=T

Solution to the above ODE is v (x) = ¢;x + ¢3. At x = 0, this leads to ¢; — ¢; = 0. Second boundary
condition implies ¢;L + ¢; = 0. Two equations in 2 unknowns

01—02:0

aqL+c, =T

From first equation, ¢; = ¢,. Second equation becomes ¢, (1 + L) = T or ¢; = % Therefore the
steady state solution
T T

v(x)= —x+ ——
1+L 1+L

T
— 1+
AR

17 Chapter 10.6, Problem 9 (With interactive animation)

Problem Let L = 20 cm, with initial temperature 25°C, an initial conditions u (0, x) = 0, u (L, 0) =
60°C. (a) Find u (x, t). (b) Plot initial temperature distribution, final steady state solution and
solution are two intermediate times on same axes. (c) Plot u vs. t for x = 5, 10, 15. (d) determine
how much time has elapsed before the temperature at x = 5 cm comes and remains with 1% of
the steady state value. Use o = 0.86

solution
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Uy = 2

A Ux
u(0,x) =0
u(L,0) = 60

Let solution be u (x,t) = w(x,t) + v (x) where v (x) is solution to v’ (x) = 0 with boundary
conditions v (0) = 0, v (L) = 60. Hence the solution is

v(x)=c1x + ¢
At x = 0, this leads to ¢, = 0. Therefore solution is v (x) = ¢1x. At x = L, 60 = ¢;L or ¢;
g—g = 3. Therefore

v(x) =3x
Hence the complete solution is

u(x,t) = (i cne_“zl"t sin (\/Zx)) +3x
n=1

Where A, = ("T”) 2forn = 1,2,3,---.c, is now found from initial conditions. Att = 0
25 = (Z ¢y sin (\//lnx)) + 3x
n=1
25 —3x = Z ¢, sin (\//Inx)
n=1

Applying orthogonality gives

L L
J (25 — 3x) sin (\Mnx) dx =cp—
o 2

9 (L
Cp = I J (25 — 3x) sin (\Mnx) dx
0
2 L
= — I (25 — 3x) sin (\/Anx) dx
20 J,
Integrating gives ¢, = 50+7r?7(r_1) " Therefore the solution is

u(x,t) = (i We_“%’t sin (\/A—nx)) + 3x
n=1

The following is an animation of the above solution for 20 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).
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time B.88 seconds

u(x,t)
60

a0f
30}

10}

0

: : Cen : ¥ (cm)
10 15 20

K>

18 Chapter 10.6, Problem 10

[ p [

10. (a) Let the ends of a copper rod 100 cm long be maintained at 0°C. Suppose that the
center of the bar is heated to 100°C by an external heat source and that this situation is
maintained until a steady state results. Find this steady state temperature distribution.
(b) Atatimer = 0 [after the steady state of part (a) has been reached], let the heat source
be removed. At the same instant let the end x = 0 be placed in thermal contact with a
reservoir at 20°C, while the other end remains at 0°C. Find the temperature as a function
of position and time.

(c) Plot u versus x for several values of ¢. Also plot u versus ¢ for several values of x.

(d) What limiting value does the temperature at the center of the rod approach after a
long time? How much time must elapse before the center of the rod cools to within 1°C
of its limiting value?

solution
To do.

19 Chapter 10.7, Problem 3 (With interactive animation)

Problem Consider elastic string of length L with ends held fixed. Let initial position u (x, 0) = f (x)
and u; (x,0) = 0. Let L = 10,a = 1. (a) Find u (x, t). (b) Plot u (x, t) vs x for 0 < x < 10 and for
several values of time between t = 0 and t = 20 (c) Plot u (x, t) vs. t for 0 < ¢ < 20 and for several
values of x (d) Construct an animation of the solution for at least one period. (e) Describe the

motion of the string. Let f (x) = f"‘(ﬁ—;’”z
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solution Since domain is finite, it is easier to use the series solution for wave equation than
D’Alembert solution. This is given by

u(x,t) = i Cp COS (\/Eat) sin (\/A—nx)
n=1

L
Where 1, = (%)Z,n =1,23,--- and ¢, = %fo £ (x)sin (\Mnx) dx. Hence, since a = 1 and
L = 10, the solution becomes

> nix nr
u(x,t)= c cos(—t) sin(—x)
Ce1) nZ:; " 10 10

2 Jlo 8x(L—x)* . (nm
Cp = — ———~sin (—x) dx
10 J, L3 10

2 (Y8x(10-x)* .| (nx
= — —————sin (—x) dx
10 J, 103 10

Integrating gives
322+ (="
B n3x3

u(x,t) = = Z 2 +( Ol (%t) sin (%x)

Hence solution is

The following is an animation of the above solution for 50 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).

time B.88 seconds

ufx, t)

=
(a3
I

0.4

0.2

02 04 06 08 10

K>

20 Chapter 10.7, Problem 7 (With interactive animation)

Problem Consider elastic string of length L with ends held fixed. Let initial position u (x,0) = 0
and u; (x,0) = g(x). Let L = 10,a = 1. (a) Find u (x, t). (b) Plot u (x,t) vs x for 0 < x < 10 and
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for several values of time between t = 0 and t = 20 (c) Plot u (x,t) vs. t for 0 < t < 20 and for

several values of x (d) Construct an animation of the solution for at least one period. (e) Describe
Ry

the motion of the string. Let g (x) = M(ﬁ—f)

solution Since domain is finite, it is easier to use the series solution for wave equation than

D’Alembert solution. The eigenvalue ODE is gives solution for A > 0 as
X, (x) = ¢y sin (\/)Lnx)

Where A,, = ("T”) 2 ,n=1,2,3,--- The time solution is T, (t) = A, cos (\//Tnat) + B, sin (V/l_nat).

At t = 0, this gives 0 = A,,. Therefore T}, () = B, sin (\Mnat) . Hence the complete solution is

8

w6 t) = 2 enTn (1) X0 ()
i sin (\/Zat) sin (\/Zx)
To find ¢, time derivative of the above is taken giving
ﬁu(x t) = ic \/A_cos (\/A_at) sin (\/A_x)
at ’ i n n n n

At t = 0 the above becomes

()= 3} en T sin (V2]

Applying orthogonality

JLQ(X) sin (\/Zx) dx = \/A—ncnji
0

g(x) sin \/_x)

Cn =

L\/_

2
Sx(L—x) ,L =10,a = 1 the above becomes

I3

Hence since g (x) =

Cpn =

2 0 ex(10-x)* . (nx
— 3 sin (—x) dx
10 (22) Jo 10 10

Integrating the above gives
320 (2 + (-1)")
n= ntmrt
Therefore the solution is
203202 + (-1)")
u(x,t) = Z TTn () X (x)

n=1

320 2+ (-1
Z ( ) sin (\/ at) sin (\/ x)
n=1
Where A, = (%)2,71 =1,2,3,---
The following is an animation of the above solution for 40 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).
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21 Chapter 10.7, Problem 9

9. If an elastic string is free at one end, the boundary condition to be satisfied there is that
u, = 0. Find the displacement u(x,?) in an elastic string of length L, fixed at x = 0 and
free at x = L, set in motion with no initial velocity from the initial position u(x,0) = f(x),
where f is a given function.

Hint: Show that the fundamental solutions for this problem, satisfying all conditions
except the nonhomogeneous initial condition, are

u,(x,t) = sin A, x cos A,at,

where A, = 2n — 1)n/(2L),n = 1,2,.... Compare this problem with Problem 15 of Sec-
tion 10.6; pay particular attention to the extension of the initial data out of the original
interval [0, L].

solution
The eigenvalue ODE is

X (x) = Acos (\ﬁx) + Bsin (\ﬁx)

Boundary condition at x = 0 gives
0=A
Therefore the solution becomes X (x) = Bsin (\/ix) And X’ (x) = BVAcos (\/zx) Applying

boundary conditions at x = L gives

0 = BV cos (\/XL)
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Therefore

2 2 2
Hence
M= p=1,35, -
2L
2n—1
1/An:u n=123,---
2L
Therefore
2n—1
X, (x)=c¢y sin((nz—L)”x)
And

T, (t) = A, cos (\/Eat) + B, sin (\/A—nat)
T! (t) = —ApayA, sin (\/Eat) + Bpay/A, cos (\/Zat)

Since initial velocity is zero, the above gives

0= Bna\/z
T, (t) = A, cos (\/Eat)

Therefore the complete solution becomes

u(x,t) = ni:; Cp COS (%at) sin (%x)

Which means B,, = 0. Hence

cn is found from initial position by applying orthogonality.

22 Chapter 10.7, Problem 10

10. Consider an elastic string of length L. The end x = 0 is held fixed, while the end x = L
is free; thus the boundary conditions are u(0,7) = 0 and u,(L,t) = 0. The string is set in
motion with no initial velocity from the initial position u(x,0) = f(x), where

£ 1, L2—-1<x<L/2+1 (L>2),
X) =

0, otherwise.
(a) Find the displacement u(x, ).

(b) With L =10 and a = 1, plot u versus x for 0 < x < 10 and for several values of ¢. Pay
particular attention to values of ¢ between 3 and 7. Observe how the initial disturbance is
reflected at each end of the string.

(c) With L =10 and a = 1, plot u versus ¢ for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

Solution
Straight forward.
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23 Chapter 10.8, Problem 3

3. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x <a,0 <y < b,
that satisfies the boundary conditions

u(0,y) =0, u(a,y) =f», 0<y<b,
u(x,0) = h(x), u(x,b) =0, 0<x<a.
Hint: Consider the possibility of adding the solutions of two problems, one with homo-

geneous boundary conditions except for u(a,y) = f(y), and the other with homogeneous
boundary conditions except for u(x,0) = h(x).

(b) Find the solution if 4(x) = (x/a)?> and f(y) = 1 — (y/b).
(c) Leta =2 and b = 2. Plot the solution in several ways: u versus x, & Versus y, i versus
both x and y, and a contour plot.

Solution
To do.

24 Chapter 11.1, problem 12

Convert to form (py’) + q(x)y =0
Yy’ —2xy" + Ay =0

Solution
Writing the ODE as p (x) y” + Q (x)y” + R(x) y = 0, hence

p(x)=1
Q(x)=—-2x
R(x)=2

Then the new form is (i (x) p (x) y’)" + p(x) R (x) y = 0, where

1 IX Qs) g¢
xX) = ——e P(s)
p(x) T

— efx —2sds

= e_x2

Therefore the new form is ,
2 2
(e_x y') +e ¥ Ay=0

25 Chapter 11.1, problem 13

Convert to form (py’) + q(x)y =0

Xy +xy + (x*-0%) y=0
29



Solution
Writing the ODE as p (x)y”" + Q (x)y’ + R(x)y = 0, hence

p(x) = x
Qx)=x
R(x) = (x* —0?)

The new form is (u (x) p (x) y’)" + p (x) R(x) y = 0, where

x Q(s)
i (x) = Lej Pis) 45

p(x)
iefx %ds

Therefore the new form is

26 Chapter 11.1, problem 18

18. Consider the boundary value problem
Y+ 4 + @4 +90)y =0, y(0)=0, »y(L)=0.

(a) Determine, at least approximately, the real eigenvalues and the corresponding eigen-
functions by proceeding as in Problem 17(a, b).

(b) Also solve the given problem directly (without introducing a new variable).

Hint: In part (a) be sure to pay attention to the boundary conditions as well as the ditferential
equation.

Solution

26.1 part (a)

Lety(x) =s(x)u(x). Theny’ =s'u+su’ and y” =s"u+s'u"+s'u' +su” =s"u+2(s'v)+su”.
Therefore the original ODE becomes

sS"u+2('u" ) +su” +4(G"'u+su’)+(4+9)su=0
Collecting terms in u gives

su” +u' (28" +4s)+ (s" +4s" + (4 +9)s)u=0

30



Making u’ term vanish requires that 2s’ + 4s or s” + 2s = 0. Hence % (se?*) = 0ors = e ¥,

Hence s’ = —2¢72*, 5" = 4¢~2*. Substituting these into the above gives

e U + (467 +4(-2e7) + 4+ ) e ) )u=0
u' +(4+4(-2)+(@4+9)u=0

u' +(4-8+4+90)u=0

u”" +9u=0

Let 91 = A so the above becomes
u' +Au=0

With boundary conditions u (0) = % =0andu’ (L) = Z:((B = 0. This was solved before, the
eigenfunctions of the above are
sin ( inx)

N ni\ 2
/1,1:(—) n=135,---
2L

Dy (x)

But /in = 9], therefore the above becomes

®, (x) = sin (3\/Zx)

1 /nm\2

/1,1:—(—) n=1273,---
9 \2L

Or

®, (x) = sin (%x)

Now the eigenfunction is normalized
1
|t ot ax =1
0
1
k2 J ®, (x)*dx =1
0

1
kif sin? (27x) dx = 1
T

L
kf,E =1
2
kn = Z
Hence
2
k, = I
And

o, (x) = \/%sin (%x)

Mapping back to y (x) = s (x) u (s), and since s (x) = e™?* then the eigenfunction in y space is

2
O, (x) = e_zx\/;sin (%x) n=13,5,---

31



26.2 Partb

Now the ODE is solved directly. y”” + 4y’ + (4 + 94) y = 0. The characteristic equation is
rPH4r+(4+91) =0

Hence roots are

—b+ Vb —4ac —4++16-4(4+94)

r =
2a 2
-4+ V16 — 16 — 361
= 5 =-2+3V-A

We know that A > 0. So the roots are r = —2 + iV and the solution is
y(x) =e ™ (A cos (\ﬁx) + Bsin (\/Zx))
Applying boundary conditions y (0) = 0 leads to A = 0. So the solution becomes
y(x) = e *Bsin (\/zx)

Hence

y’ (x) = —2¢"**Bsin (\/Ix) + e *BVcos (\/Zx)

Applying second B.C. y’ (L) = 0 the above becomes

0 =—2¢"2LBsin (\/IL) + e 2'BV2 cos (\/IL)
=B (—2 sin (‘ﬁL) + VAcos (\ﬁL))

Non-trivial solution requires that

—2sin (\/IL) + VAcos (\/IL) =0
—2tan \/IL + \/I =0
tan \/EL = l‘ﬁ

2

Hence the direct method finds that the eigenvalues A, are the solutions to the above nonlinear

equation and the corresponding eigenfunctions are e sin (\Mnx).

27 Chapter 11.1, problem 19

Determine the real eigenvalues and eigenfunctions.

y'+y + Ay +y)=0
y' (0)=0
y(1) =0
Solution

Writing the ODE as
Y +(1+ )y +Ay=0

32



Case A =0

y +y =0
The characteristic equation is
rP+r=0
r(r+1)=0
The roots are r = 0, —1. Hence the solution is y = ¢; + c;e™*. Hence y’ = —cye™*. First BC gives

Y’ (0) = 0 = 0 = —c;. Therefore the solution becomes y = c;. Second BC gives y (1) =0 — 0 = ¢;.
Therefore trivial solution and A = 0 is not eigenvalue.
Case A < 0 Let A = —m? for some real m. The ODE becomes

y'+(1-m?)y -mPy=0

The characteristic equation is
rrr(1-m?)r-m*=0

A1 = m2)? + 4m?

V1 +m* - 2m? + 4m?

The roots are

—_
—
+
3

N

o

1
[\
H+ +
Nl= N N[ = DN -

=
+
3

vN

(1—m? (12
Hence roots are r; = (12m ) 4 1(1+m?) =m?andr, = (12m ) _ 3 (1+m?) = —1. Therefore

the solution is

2 _
y=cem* +ce

Hence y’ = mzclemzx — cpe™™. First BC gives ¢’ (0) = 0 — 0 = m?c; — ¢, or ¢; = m?c;. Therefore
the solution becomes

2 _
y=ce™* +mice™

2 -
=c (e’"x+m2e x)

Second BC gives y(1) =0 — 0 = ¢4 (em2 + mze_l) therefore ¢; = 0 and trivial solution. Hence

A < 0 is not eigenvalue.
Case A > 0 The characteristic equation is

P+ +)r+1=0

The roots are

—(+A) 1 .
r= 5 + 2\/(1+/1) 4A
:wi%\/1+)t2+2)t—4/1
=Mil (1— )
2 2
=Mil(1—l)
2 2

w
w



Hence roots are r; = _71 1+A)+ %(1 —A)=-Aandr, = _71 (1+4) - %(1 — A) = —1. Therefore

the solution is

y=cre M 4+ e

Hence y’ = —Acie™ — cpe™*. First BC gives y’ (0) =0 — 0 = —Ac; — ¢ or ¢z = —Acy. Therefore
the solution becomes

Y= cre ™ = Jere™

=y (e_’lx - )Le_x)

Second BC gives y (1) = 0 — 0 = ¢; (e™* — Ae™!) For non-trivial solution, we need e™* — e ™! = 0.
The solution to thisis A = 1.
When A = 1 the eigenfunction is

y(x)=ci(e™—e™)=0

But eigenfunction can not be zero. Therefore there is eigenvalue when A > 0. Hence for all cases,
there is no eigenvalue with corresponding nonzero eigenfunction.

28 Chapter 11.1, problem 20

Determine the real eigenvalues and eigenfunctions.

Xty = A(xy' —y) =0
y(1)=0
y@ -y (@)=0

Solution
This is a Euler ODE. x%y” — Axy’ + Ay = 0. Lety = x", theny’ = rx" "L,y = r(r — 1) x" 2.
The ODE becomes

r(r—-D)x"2 = dxrx™ M+ Ax" =0
rr=1D)x"=Arx" +Ax" =0
rr—=1)—-Ar+4A=0

CasedA=0
The characteristic equation becomes

rir—=1)=0
The roots are r = 0, r = 1, hence the solution is
Y =21+ X

AtBCy(1) =0 — 0 = ¢; + co. Hence ¢; = —c; and the solution becomes y = ¢; — ¢;x = ¢1 (1 — x).
Hence y’ = —c;. Second BC y (2) — y’ (2) = 0 gives

0:C1(1—2>+Cl
0=—C1+C1
0=0

34



Therefore any c¢; will work. Giving a solution
y=c1(1-x)

Therefore A = 0 is an eigenvalue with eigenfunction ®, (x) = 1 — x.
Case A < 0 Let A = —m?. The characteristic equation becomes

r(r—1)+m2r—m2:O
Per+mir-m’=0

r2+r(m2—1)—m2=0

The roots are

—(m? -1
r= (m” 1) + 1\/(m2 —1)% + 4m?
2 2
2
—(m?-1
= (m2 ) i%\/m‘*—2m2+1+4mZ
2
—(m? -1
= (m )il (1 + m?)?
2 2
= (m* 1) £ (14 )
Roots are r = —3 (m*—1) + 3 (1+m?) = lorr = =3 (m*—1) — 3 (1+m?) = —m?. Hence
solution is )
m

Yy =c1x +cx
At BC y(1) = 0 — 0 = c,. Therefore the solution is y = c;x and y’ = ¢;. Second BC gives
y(2) -y’ (2)=0o0r
0= 261 —C
0= C1
Hence trivial solution. So A < 0 is not an eigenvalue.

Case A >0
The characteristic equation becomes

PP—r—lr+1=0
rP—r(1+A)+1=0

The roots are

1+4 1
r=Li—\/(1+)L)2—4)L
2 2
:#13V1+A2—2A
1+14 1
==+ —4/(1-2)°
S5V -4
1+4 1
= — 4+ — (1 —
;514

_1 1 _ _1 1 _ L
Rootsarer = 5 (1+A)+5;(1—-A)=1orr =35 (1+4) -5 (1-4)=A Hence solution is
y:(31X+C2XA

This is similar to the case above for A < 0. Hence there is no eigenvalue for A > 0.
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29 Chapter 11.2, problem 1

Determine the normalized eigenfunction for

y'+ Ay =0 (1)
y(0)=0
y' (1)=0

Solution
The eigenfunction for the above problem can be easily found using chapter 10 methods to be

<1>n(x)=sin(\/xx) n=13,5,---

Where

A:—:—
"ol 2

The normalized ®,, (x) = k,®,, (x). Where

1
J CiJfl(x)dx:I
0

Hence solving the above for k, gives

f (kn®y () dx = 1
0

1
k,zl‘[ % (x)dx =1

0

But fol % (x)dx = Iol sin? (\/Zx) dx = fol sin? (%x) dx = % Hence the above becomes

Therefore

b, (x) = V20, (x)

. (nm
= 251n(7x) n=135---

_ {\/Esin(%x) ,«/Esin(%”x) ,\/Esin(s?ﬂx),---}

30 Chapter 11.2, problem 2

Determine the normalized eigenfunction for

Yy +Ay=0 (1)
y' (0)=0
y(1)=0

36



Solution
The eigenfunction for the above problem can be found using chapter 10 methods to be

CDn(X)=cos(\/Zx) n=135--

Where
nr  nw

n= =

2L 2
The normalized &, (x) = k,®, (x). Where

1
J P2 (x)dx =1

0

Hence solving the above for k, gives
1
| ttn =1
0
1
k,zlJ‘ ®% (x)dx =1
0

But J; % (x)dx = fol cos? (\/)L_nx) dx = f; cos? (%x) dx = % Hence the above becomes

Therefore

(i)n (x) = \/Eq)n (x)

nm
= ZCos(Tx) n=135,:--

_ {ﬁ (Zx) . Vacos (37”,() VZcos (57”,() }

31 Chapter 11.2, problem 3

Determine the normalized eigenfunction for

y' +Ay=0 (1)
¥ (0)=0
¥y (1)=0

Solution
The eigenfunctions are first found. Let the solution be y = Ae”™. This leads to the characteristic
equation

rP+l=0

M

Case A <0
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In this case —A is positive and hence V—A is also positive. Let V—-A = p where p > 0. Hence
the roots are +p. This gives the solution
y = c1 cosh (ux) + c; sinh (px)
y" = cypsinh (ux) + czp cosh (ux)

First B.C. y’ (0) = 0 gives

0=cyp
Cy = 0
Hence solution becomes
y (x) = ¢; cosh (x)

Second B.C. y’ (1) = 0 gives
0 = ¢y sinh (p)

But sinh () can not be zero since i # 0, hence ¢; = 0, Leading to trivial solution. Therefore 1 < 0
is not eigenvalue.
Let A = 0, The solution is

y(x) =cq +cox

First B.C. y’ (0) = 0 gives

0= Co
The solution becomes
y(x)=rc
Second B.C. y’ (1) = 0 gives
0=0

Therefore ¢; can be any value. Therefore A = 0 is an eigenvalue and the corresponding eigenfunc-
tion is any constant, say 1.
Case A > 0, The solution is

Y (x) = ¢y cos (\/Ix) + ¢o sin (\/Zx)
y' (x) = —61\/Isin (\ﬁx) + cz\ﬁcos (\ﬁx)

First B.C. y’ (0) = 0 gives

0202\/1

CzZO

The solution becomes

Y (x) = ¢y cos (\/zx)

Second B.C. y’ (1) = 0 gives
0= —cl\/zsin (\/I)

For non-trivial solution, we want sin (\/I) =0or VA=nxforn=1,23,-- Therefore

/1,,=(nit)2 n=123,---
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And the corresponding eigenfunctions are

<Dn(x):cos(\/zx) n=123,---
Hence

Dy (x)=1

CDn(x):cos(\/Ex) n=12.3,---

The normalized &, (x) = ko®, (x). Where

rr(x)cbg (x)dx =1

0

But r (x) = 1. Therefore solving the above for k, gives

1
j (koo (x))? dx = 1
0
1
kgj dx =1
0
ko =1

Andforn=1,2,3,--- we obtain
1
)
L s (x)dx =1

f (kn®y () dx = 1

0

1
kiJ % (x)dx =1
0

1
ki[ cos® (Vnrx) dx = 1
0

1
But Jo cos? ( mrx) = =. Hence the above becomes

1
2

Therefore

Andforn=1,2,3,---

@, (x) = V20, (x)
= V2cos (nrx)

= {\/Ecos (7x), V2 cos (27x), V2 cos (37x), - - - }
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32 Chapter 11.2, problem 4

Determine the normalized eigenfunction for

y'+Ay=0 (1)
y' (0)=0
y () +y(1)=0
Solution

The eigenfunctions for the above problem are first found. Let the solution be y = Ae™. This
leads to the characteristic equation

rP+l=0
r=+V-1
Case A <0
In this case —A is positive and hence V—A is also positive. Let V—-A = y where g > 0. Hence
the roots are +p. This gives the solution
y = c1 cosh (ux) + c; sinh (px)
y" = cypsinh (ux) + czp cosh (ux)

First B.C. y’ (0) = 0 gives

0=cyp
Cy = 0
Hence solution becomes
y (x) = c; cosh (ux)
Second B.C. y (1) + y’ (1) = 0 gives

0 = ¢q (cosh () + p sinh (1))

But sinh (y) can not be negative since its argument is positive here. And cosh  is always positive.
In addition cosh (i) + u sinh (1) can not be zero since sinh (p) can not be zero as 1 # 0 and cosh (p)
is not zero. Therefore ¢; = 0, Leading to trivial solution. Therefore A < 0 is not eigenvalue.
Case A = 0, The solution is
y(x) =c1+cox

First B.C. y’ (0) = 0 gives

0= Co
The solution becomes
y(x)=rc
Second B.C. y (1) + y' (1) = 0 gives
0= C1

This gives trivial solution. Therefore A = 0 is not eigenvalue.
Case A > 0, The solution is

y(x) = ¢y cos (\ﬁx) + ¢y sin (\ﬁx)
y (x) = —c; VA sin (\/Zx) + ¢y VA cos (\/Zx)
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First B.C. y’ (0) = 0 gives
0= Cg\/z
Cy = 0

The solution becomes

y(x) = ¢ cos («/Zx)
Second B.C. (1) + ¢’ (1) = 0 gives
0 =c; cos (\/I) — ¢;VAsin (\/Z)
= 1 (cos (V) = Visin (VI) )
For non-trivial solution the above implies
cos (\/Z) ~ Vsin (\/i) -0 (1)

Therefore the eigenvalues are the solution to the above nonlinear equation. And the corresponding

eigenfunctions are
®,, = cos (\/Anx) n=123,---

Where 4, are the roots of equation (1).
The normalized @, = k,®, eigenfunctions are now found.

1
J r(x) @idx =1
0
Since the weight function is r (x) = 1, then

1
J drdx =1

0

1
Jﬁﬁh:l
0

1
@Iﬁw=1

0

k2 Jl cos’ (\/A_nx) dx =1
0

1
1 . sin2ax 1 . sin me sin(2v2,, 2\/)Tn+sin ZVE
But J, cos (ax)dx = (5 + %), = (+(—w)) i (*%) i (—w())
Hence the above becomes ’
K = -
" 2\/E+sin(2m)
W,

WVin
2V, + sin (2V7s)
But sin (2a) = 2 sin a cos a and the above can be written as
_ Win
2V + 2sin (VA ) cos VA
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But from (1) earlier, we found cos (\ﬁ) —VAsin (\/Z) = 0 or cos (\/Z) = VAsin (\/I) . Substitut-

ing this into the above gives
_ Wi,
2V + 2V sin (V)

And since A, # 0 the above simplifies to

k2

k% = 2
" 1 + sin? (\//1_,1)
_ 4
B 4 + sin? (\//1_,,)
Therefore
kn = 2

1 + sin® (\/)L_n)

Since there is no closed form solution to A, as it is a root of nonlinear equation YA, tan (V/lnL) =
1.
Hence the normalized eigenfunctions are

d, = k,®,

R P
1 + sin® (\//1_,1)

33 Chapter 11.2, problem 5

Determine the normalized eigenfunction for

y' -2y +(1+)y=0 (1)
y(0)=0
y(1)=0

Solution
Lety(x) = s(x)u(x). Theny’ = s'u+su’ andy” = s"u+s"v’+s'v'+su”" = s"u+2(s'u")+su”.
Therefore the original ODE becomes
s"u+2G6u)+su”’ -2 u+su )+ (1 +AD)su=0
Collecting terms in u the above becomes
su” +u' (28" —=25)+u((1+A)s+s”"-2s)=0
To get rid of u” we therefore want 2s” —2s = 0 or s’ —s = 0. Hence the integrating factoris [ = e™*
and the solution is obtained from % (se™) = 0 or s = e*. Therefore, if s = e* then the original
ODE becomes
eu’ +u((1+1)eX+e*-2e5)=0
u +u((1+A)+1-2)=0
u +u((1+A)-1)=0
u +Au=0
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With the boundary conditions u (0) = % = @ =0andu(1) = % = 0. Hence we need to find
the eigenfunctions for

u' +Au=0
u(0)=0
u(1)=0

But this we did before. It has @, (x) = sin (nzx) for n = 1,2, - - -. And the normalized &, (x) =
V2 sin (nzx). Mapping this normalized eigenfunction back to y(x) using the transformation
y (x) = s (x) u (x) gives the normalized eigenfunction in y space as

d, (x) = e¥V2 sin (n7x) n=123,---

34 Chapter 11.2, Example 1 redone. page 690

Here, example 1 is solved again, but without using normalization. Showing that one does not
need to normalize the eigenfunctions as the book shows and will get same answer. Solve

y' +2y=—x (1)

With boundary conditions y (0) = 0,y (1) + y’ (1) = 0. Using the method of eigenfunction expan-
sion without normalization.

The idea behind solving using eigenfunction expansion, is that
=y +q () y(x) = pr(x)y(x) + f (x) (14)
Is solved using the eigenfunctions of the corresponding homogeneous eigenvalue ODE
= (py) +q(x)y (x) = Ar (x) y (x) (24)

Where in (1A) p is just a constant. And in (2A), A is an eigenvalue. Writing (1) in same form as
(1A) leads to

—(y) -2y =x
-(y) =2y+x (3A)
Therefore y = 2 and r (x) = 1. The corresponding homogeneous eigenvalue problem is
- () =y (x)

Or
Yy +Ay(x) =0

With boundary conditions y (0) = 0,y (1) + y’ (1) = 0. The solution of the above is used to solve
(3A), which is the original ODE. The solution to the above eigenvalue problem was done before.
The result is that A, is the solution of nonlinear equation

sin (\/Ix) + VAcos (\/zx) =0
Solving this numerically for the first 10 eigenvalues gives

An = {4.116, 24.139, 63.659, 122.889, 201.851, 300.55, 418.987, 557.162, 715.077, 892.73 }
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And the eigenfunctions are

q>n(X)=sin(\/Ex) n=123,--

Notice that the eigenfunction above is not normalized as in the text book. Now assuming that
the solution of the original nonhomogeneous ODE (3A) is given by

Yy (x) = Z bnq)n (x)
n=1

Where b,, is unknown as of now and substituting the above into (3A) gives

(o) (o8]

d? >
_W Z bnq)n (x) =2 Z bnq)n (x) + Z ‘an)n (x)
n=1 n=1 n=1

Where X7 | ¢ ®, (x) is the eigenfunction expansion of the forcing terms —x. In this expression
qn is still not known. Now assuming that differentiation can be moved inside the summation
above (this needs conditions which assumed valid here). The above equation now becomes

- Z anD;: (x) -2 Z b,®p (x) = Z qn®n (x) (1A)
n=1 n=1 n=1

gn is now found. This is done by applying orthogonality as follows. Let x = X | ¢, ®, (x).
Multiplying both sides by ®,, (x) and integrating over the domain gives

Jl x®p, (x)dx = i qn Jl D, (x) Dy, (x) dx
0 n=1

0

1 1
J x®,, (x)dx = q, J @2 (x)dx (2)

0 0

Since ®,, (x) is not normalized, one can not replace the integral by 1 as in the book. But since
d, (x) = sin (\/Ex) the integrals can be evaluated as follows. The right side of (2) is

Jol sin® (\/Ex) dx = % - Sm4(2—\/)[_\/’:1_n) (3)

And the left side of (2) is found by integration by parts
1 1
J x®p, (x)dx = J x sin (\/A_nx) dx
0 0
_sinVA, — VA, cos VA,

4
- (@)
Using (3) and (4) in (2) gy, is solved for giving
in VI - Vpeos VT (1 s (V7]
T B PR
_ sin VA, = VA, cos VA, )
o anfevm)
In |- =
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Now that g, is known, b, is found from (1A)
=2 bn® (1) =2 3 bn @i (1) = 3 gn®u (x)
n=1 n=1 n=1

Since ®,, (x) = sin (\//Tnx) then @/, (x) = VA, cos (\//Tnx) , @7 (x) = —A, sin (\//Tnx) =—1,P, (x)

and the above simplifies to

i bpAn @y (x) — 2 i bp®y (x) = i qn®n (x)
n=1 n=1 n=1

Canceling summations and also @, (x) since ®, (x) # 0 the above simplifies to

buln — 2by = qn

Hence the solution to the original ODE is
y(x) = Z bp®y, (x)
=1
= Z ()an_ 2) sin (\/ZX)

Using the value found for g, in (5), the above becomes

sin VI ~ Vg cos Vi
y(x) = Z T p o) in (vZnx) ©
2 A,

The above is the solution, found without normalization. The book solution is

y(x) = Z o (A — (Hcosj(m))sm(«/ﬂx) ™)

To show that (6) and (7) are actually the same, they are plotted against each others, using 10 terms
in the sum, which is more than enough. The result shows identical plots.
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Find eigenvalues numerically

ClearAll[y, z, X, ]
eigenvalues = x /. NSolve[Sin[x] + xCos[x] == ©&&0 < x < 30, x];
z = eigenvalues”~2

(4.11586, 24.1393, 63.6591, 122.889, 201.851, 300.55, 418.987, 557.162, 715.077, 892.73}
This is the solution without normalization

max = Lengthez;

sin[VX] - VX cos[VX]

yApproxNoNormalization[x ] := Sum[A =z[[n]]; Sin['\/T x] > {n, 1, max)]

A(X-2) [

(, sinzﬁ)
27 T ava

Plot [yApproxNoNormalization[x], {x, @, 1}, GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle -» Red, PlotLabel -» "No normalization"]

No normalization

0.2 04 06 08 1.0

This is the solution using normalization (book solution)
Sin[ﬁ]
A(r-2) (1+cos[ﬁ]2)

Plot [yApproxBook [x], {x, @, 1}, GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red, PlotLabel » "Using normalization"]

yApproxBook [x ] := 4Sum[) =z[[n]];

sin[VX x], (n, 1, max}];

Using normalization

02 04 06 08 1.0

They also plotted against the solution found using standard methods, which is
sin (\/Ex)
sin (\/E) + V2 cos (\/5)

And both (6,7) matched exactly the above solution.

_ X
y= 2

35 Chapter 11.2 Problem 14

Determine if the given boundary value problem is self-adjoint

v +y +2y=0
y(0)=0
y(1)=0

Solution
The ODE can be written as (y’ + y)" + 2y = 0. Hence the operator is

Llyl=@ +y)' +2y
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The ODE is self-adjoint if
(L[u],v) = (u, L[v])

For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side
of the above equation and see if the right side can be arrived at. By definition

rl
L[u] vdx

(L[u],v)

Jo

rl

= | [@ +uw) +2u| vdx
Jo

rl

= | W +u) v+uvdx

Jo

dv

u
rl ———~ Jl

—
=| W+u' v de+
Jo

uvdx (1)
0

integration by parts of the above gives

1 1
(L{u],v) = [ +u)v]y - L W +u)v'dx + L uvdx

1 1
= [ +u)v] - J (u'v" +uv’)dx + j uvdx
0

0

1 1 1
= [ +u)v]; - (J u'v'dx + J uv'dx) + J‘ uvdx

0 0 0

Integrating by parts the term fol w'v'dx = [uv']y - fol uv” dx the above becomes

(L[u],v) = [( +u)v]} - ([uv'](l) - jl uv” dx + Jl uv’dx) + Jl uvdx

0 0 0

1 1 1
= [ +u)v—uv]y— (—J uv” dx + J uv'dx) + J uvdx

0 0 0

1 1 1
= [ +u)v—ud]y+ I uv” dx — I uv’dx + J uvdx

0 0 0

1
= [ +u)v—ud]y+ ‘[ (" —v" +v)udx
0

The above can never be (u, L [v]) even if the boundary terms vanish, since f; (0" —v' +v)udx #

Jo (v” + v’ + v) udx. There is a different sign in the operator obtained. Hence the ode is not self adjoint.

36 Chapter 11.2, Problem 15

Determine if the given boundary value problem is self-adjoint

(1+x*) y" +2xy’ +y=0
y'(0)=0
y()+2y (1) =0

Solution
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The ODE can be written as
(1+2%) y) +y=0
The operator
Llyl=((1+2%) y) +y
The ODE is self-adjoint if
(L{u],v) = (u,L[v])

For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side
of the above equation and see if the right side can be arrived at. By definition

(L[u],v) = HL[u] vdx
= [ [((1 +x7%) u’)/+u] vdx
= (! ((1 +x2) u')’v + uvdx

1 1
= ((1+x%) u’)'vdx+f uvdx (1)

Jo 0

Starting with the first integral in (1) and using integration by parts

dv
1/_/%

Jl ((1+x%) w') vdx = L ((1+x?) u'),/-/v\dx

0

u

By integration by parts, where Judv = |uv| — jvdu, the above becomes

1

[[ ey eax= (e el = [ 1) wotan

u dv
1] —m

=[(1+x% u’v](l) —J‘ (1+x%) v o dx
0
Doing integration by parts again. But notice the choice of u and dv made above. This is important
in order to get to the form needed. The above becomes

Jl ((1+2) ) vdx = [(145) wo] - ([u (147 o]} - Ll ((1+2) v')’udx)

0

= [(1 +x*) u'v—u(1+x% v'](l) + Ll ((1+x% v'),udx

Going back to (1) and adding the second integral which is left there gives

1 1

((1+ xz) v’)'udx + J uvdx

(L[u],v) = [(1 +x%) uw'v—u(1+x% v'](1)+J
0

0
1

= [(1 +x2) u'v—-u(l +x2) v'](1)+ L [((1 +x2) v')’ +v] udx

But J; [((1 +x%) V) g v] udx = (u, L [v]), hence the above becomes

(L[u],v) = [(1 +x%) uw'v—u(1+x%) v'](l) + {u, L[v]) (2)
48



We are almost there. If the boundary terms above all go to zero, then it is self-adjoint. If the
boundary terms do not vanish, then the problem is not self adjoint. Evaluating the boundary
terms in (2)

A= [(1+x2) u'v—u(l+x% v'](l)

=[2v’ (D)o (1) - 2u (1) 0" (D] = [w (0)v (0) —u(0) v (0)]
Since u’ (0) = 0 and v’ (0) = 0, from the given boundary conditions, then above simplifies to
A=2@w (Do) -u@)o (1)
But u (1) = —2u’ (1) and v (1) = —2v’ (1), hence the above becomes

A=2@ (1)(-20" (1) - (=20 (1)) 2" (1))
=4(-u' (Do’ (1) +u' (1) (1))
=0

Since the boundary terms A vanish, then from (2)

(L[u],v) = (u,L[v]) (3)

Hence the ODE is self-adjoint.

37 Chapter 11.2, Problem 16

Determine if the given boundary value problem is self-adjoint

y'+ry=2y
y(0) -y (1)=0
y'(0)-y(1)=0

Solution
The operator is

Llyl =y" +y
The ODE is self-adjoint if
(L{u],v) = (u,L[v])
For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side

of the above equation and see if the right side can be arrived at. By definition

rl

(L[u],v) = | L[u]vdx
0

rl
= | W' +u)vdx
0

rl 1

= | u’vdx+ J uvdx

Jo 0
dv u
ul/r N 1
= u v dx+ | uvdx (1)
Jo 0
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Integrating by parts

dv u
1 —— =" 1
(Lu],v) = [u'v]; - j u v odx+ I uvdx
0 0

Integrating by parts again

0 0

(L[u],v) = [u'v]; - ([uv’](l) - Jl uv”dx) + Jl uvdx

1 1

uv”dx + J uvdx
0

= [u'v —ud']y + J

01
= [u'v - uv'](l) + J (" +v)udx
0
= [u'v - uv'](l) + {u, L[v]) (2)

Hence if the boundary terms vanish, then it is self adjoint else it is not. Evaluating the boundary
terms in (2)

A = [u'v—uv'];

=W (Do) -u@®)o (D] - [u' (0)v(0) - u(0) v (0)]

But u’ (1) = u(0) and v’ (1) = v(0) and ¥’ (0) = u (1) and v’ (0) = v (1) from the given boundary
conditions. Substituting these into the above gives

A=[u)v(1)-u(1)v(0)]-[u@)v(0)-u()ov(1)]
= 2u(1) v (0)
£0

Since the boundary terms A do not vanish, then from (2)
(L{u],v) # (u,L[v])

Hence the ODE is not self-adjoint.

38 Chapter 11.2, Problem 17

Determine if the given boundary value problem is self-adjoint

(1+x}) y" +2xy’ +y=1(1+x%)y
¥ (O -y (1) =0
y' (0)+2y(1)=0

Solution
The ode can be written as

(1+x%) ) +y=2(1+x") y
Hence the operator is
Llyl = ((1+x%) y') +y
The ODE is self-adjoint if
(L[u],v) = (u, L[v])
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For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side
of the above equation and see if the right side can be arrived at. By definition

r1

(L[u],v) L[u] vdx

r1
= (((1+x2) u'),+u) vdx
0
do

= ((1+x2)u')’ v dx+J uvdx

JO 0

Integrating by parts

1 1

(1 + xz) u'v'dx + J uvdx

0

(Lu],v) = [(1+x%) u’v](l) —L

—

= [(1+x2) u’v]é—f (1+x%) 0 o dx+J‘ uvdx
0 0

Integrating by parts
1 1
(Lu],v) = [(1 +x?%) u'v] (1) - ([u (1+x%) v'] (1) - J ((1+x%) v')’udx) + J uvdx
0

=[(1+x*) uv—u(1+x? v'](l)+JO

S [+ ) wo—u(1+2%) ] + L [((145%) ) + 0] udx

[(1+x%) wv—u(1l+x?) v'](1)+ (u, L[v])

1 1

((1 + xz) v')’udx + J‘ uvdx

0

Therefore, if the boundary terms vanish, then the ODE is self adjoint.
A=[2u" (1)v()-2u(1)v" (1] - [u' (0)v(0) = u(0) " (0)]

But ¥’ (1) = u(0) and v’ (1) = v(0) and u’ (0) = 2u(1) and v’ (0) = 2v (1), from the given
boundary conditions. Substituting these in the above gives
A=[2u(0)v(1)—2u(1)v(0)] —[2u(1)v(0) — u(0)2v(1)]
=2u(0)v(1)—2u(1)v(0) —2u(1)v(0)+u(0)2v(1)
=4u(0)v (1) —4u(1)v(0)
=0

Hence (L [u],v) = (u, L[v]), therefore the ODE is self-adjoint.

39 Chapter 11.2, Problem 18

Determine if the given boundary value problem is self-adjoint

y' +Ay=0

y(0)=0

y(m)+y (r)=0
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Solution
The ode can be written as

Hence L [y] = y”. The ODE is self-adjoint if

(L{u],v) = (u,L[v])

For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side
of the above equation and see if the right side can be arrived at. By definition

T

(L[u],v) :‘[ L[u] vdx

0
T

= J u vdx
0

T

(L[u],v) =[u'"v]; — L u'v'dx

Integrating by parts once

Integrating by parts again

(L{u],v) = [u'v]; — ([uv']g - J” uv”dx)

0

= [v'v-u]y + j uv” dx
0
= [wo—u/J7 + (w L[o])

Now we will check if the boundary terms vanish or not.

A=[uv-ud]y

= [u' (m)v (m) —u () v’ ()] = [u' (0) v (0) — u (0) v (0)]
Since u (0) = 0, v (0) = 0 then the above simplifies to
A=u'(m)v(r)-u(r)v (x)
But u’ () = —u (x) and o/ () = —v () the above becomes

A=-u(m)v(r)+u(r)ov(r)
=0

Hence (L [u],v) = (u, L [v]) and the ODE is self adjoint.

40 Chapter 11.3, Problem 1

Solve by method of eigenfunction expansion

Yy’ +2y=—x
y(0)=0
y(1)=0

Solution
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The corresponding homogeneous eigenvalue ODE is y”” + Ay = 0 with y (0) = 0,y (1) = 0.

This was solved before.

®, (x) = V2 sin (\/Zx)

/lnz(mr)2 n=1273,---

Hence eigenvalues are A, = {nz, 472 972, ... } None of the eigenvalues is 2. Therefore the

solution to the original ODE can be assumed to be
y=> byd, (x)
n=1
Substituting this into the original ODE gives
Z b, ®” (x) + 2 Z bd, (x) = -
n=1 n=1
Expanding —x using same basis function as the solution gives
2 3bn®y () +2 D badn (%) = D7 gn®n (%)
n=1 n=1 n=1
Where g, is found by applying orthogonality on
X = Z qn&)n (x)
n=1
1 . 00 1 . .
[ b = 300 [ 008 00
0 n=1 0
1 A
=dqm J (D?n (x)dx
0

Since normalized, fol <i>,2n (x) dx = 1 and the above simplifies to

1
—J x®,, (x)dx = qm

0

But ®,, (x) = V2 sin (n7x) and the above becomes

1
—\/EJ x sin (nzx) dx = qp
0

sin ax

Using fx sin (ax) dx = — *224% the above gives

\Z ( sin (mrx) X COS (nﬁx))
(nr)’
N (sm (nm)  cos (mr

(n7)?

E
( cos (mr) )
B

171
( nr
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Now that g, is found, then b, can be solved for form (2) above giving

ibné x)+ZZbCI> (x)—Z\/_( )cp (x) (2A)

n=1

But &/ (x) = —A,®, (x) since the eigenfunction satisfy the ode y”” = —Ay and the above simplifies

to
—Zb/lfb(x)+22b®(x) Z\/'( )@(x)

Since ®, (x) # 0 the above simplifies to

b A, + 2b, = x/E(_l )

niw

Therefore
()
2= Ay
__ Ve
(2- (n7r)2) nr

by =

Therefore the solution from (1) is

y= >, ———— )

n=1 2 - (n”) ) n(X)

But &, (x) = V2®,, (x) = V2 sin (n7x) and the above becomes

0o (_1)11 -
y=2 ; —(2 ) sin (nzrx)
Or 1y
[e) -1 n+
y=2 ; (P —2) sin (nzx)

41 Chapter 11.3, Problem 2

Solve by method of eigenfunction expansion

Yy’ +2y=—x
y(0)=0
y'(1)=0

Solution
The corresponding homogeneous eigenvalue ODE is y”” + Ay = 0 with y (0) = 0,y" (1) = 0.
This was solved before.

®, (x) = sin (\/Ex)
nm\ 2

/1,,2(7) n=13,5,---
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Or, to keep the sum continuous, it can be written as

)an((Zn—l)%)z n=1,273,---

The normalized eigenfunctions weight k;, is found from solving L: k% sin® (% x) dx = 1 which

results in k,, = V2
Hence

(iDn(x)z\/Esin((Zn—l)gx) n=1,23,---

The eigenvalues are 1, = {(E) 2 ,9 (%) 2 ,25 (%) 2 S } None of the eigenvalues is 2. There-

2
fore the solution to the original ODE can be assumed to be

y= Z bnci)n (x)
n=1
Substituting this into the original ODE gives
Z bp® (x) + 2 Z bd, (x) = —x
n=1 n=1
Expanding —x using same basis function as the solution gives
Z bn(i);, (x) +2 Z bnci)n (x) = Z qnci)n (x)
n=1 n=1 n=1
Where ¢, is found by applying orthogonality on

-X = Z ani)n (x)
n=1

_ Il x®, (x) dx = i qn r ®, (x) Dy (x) dx

0 n=1 0
1
- qmj &2, (x) dx
0

Since normalized, fol &2 (x)dx = 1 and the above simplifies to

1
—J x®,, (x) dx = g

0

But &, (x) = V2sin ((2n-1) %x) and the above becomes

—ﬁjl x sin ((Zn -1) %x) dx = qn
0

Using Jx sin (ax) dx = 884X — XL8AX the ahove gives
a? a

3 (sin ((2n—-1) Zx) _ xcos ((2n-1)Zx) )1 ~

(2n-1)Z)° (2n-1)%

3 (sin ((2n—-1) Zx) _ cos ((2n-1) Zx) )1 _a,

(2n—-1)Z)° (2n-1)%

_\/E(sin((Zn—l)%)) o

(2n-1)Z)?
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Using sin ((2n — 1) £) = — cos (nr) which forn = 1,2,3,- - - can be written as — (—1)" or (-1)"*,
The above simplifies to
_‘/E( (_1)n+l ) _q
m\2 n
(2n-1)%)

NG (- —
2((<2n—1>%)2 ?

Now that g, is found, then b, can be solved for form (2) above giving

STl ()23 a1 = 3~V g (24)
n=1 n=1 n=1 ((Zn - 1) %)

But &/ (x) = —A,®, (x) since the eigenfunction satisfy the ode y”” = —Ay and the above simplifies

to
=S by (1) +2 > by (x) = f} (-1)" v2
n=1 n=1

®, (x)
n=1 (2n-1)% )

Since ®, (x) # 0 the above simplifies to

—byAn + 2b, = L\Ez
(en-1)%)

Therefore

(=D"V2
_ (en-1%)°
2—-A,
(=D"V2
(2n-1)Z)*
(2 —(2n-1) g)z)
(-1" V2

) (2 —(2n-1)? (g)z) (en-1)%)*

Therefore the solution from (1) is

> (-D" V2
- ;(2 (2n-1) (% ))((zn—1)§)2

&, (x)

But &, (x) = V2®, (x) = V2sin ((2n-1) Zx) and the above becomes

. zi (_1)n+1
= (@n-17 (5)*-2) (en-1 %)’

sin ((Zn -1) %x)

Since (2n—-1) % = (n- %) 7, the above can also be written as (to match back of book solution)

. 221 ( _ %)Zﬂi__l)zn)t(n_ 1) n)* Sin((n_ %) ﬂx)
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42 Chapter 11.3, Problem 3

Solve by method of eigenfunction expansion

Yy’ +2y=—x
y' (0)=0
y'(1)=0

Solution
The corresponding homogeneous eigenvalue ODE is y” + Ay = 0 with y’ (0) = 0,y (1) = 0.
This was solved above in Chapter 11.2, problem 3. The eigenvalues are

An = {0, 72, (2m)?, (3m)%, - - }
= (nr)? n=0,12,---

The normalized eigenfunctions are
Do (x) =1

Andforn=1,2,3,---

®, (x) = V2@, (x)
= V2cos (nrx)

= {\/5 cos (rx), V2 cos (27x), V2 cos (3x), - - - }
Since none of the eigenvalues is 2, the solution to the original ODE can be assumed to be
y= Z bn(i)n (x) (1)
n=0
Substituting this into the original ODE gives
Z by ® (x) + 2 Z b,d, (x) = —x
n=0 n=0
Expanding —x using same basis function as the solution gives
Db () +2 D ba®n (x) = D ca®a (x) ()
n=0 n=0 n=0
Where ¢, is found by applying orthogonality on
—-x = Z en®, (x)
n=0

1 s8] 1
- I x®,, (x)dx = Z en | ®n(x) Dy (x)dx
0 n=0

0

1
=Cm J ﬁ)fn (x)dx
0

Since normalized then L)l & (x)dx = 1 and the above simplifies to

1
—J x®, (x)dx = ¢,
0
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For n = 0 the eigenfunction is ®, (x) = 1 and the above gives ¢, = —% [xz] é = —% and forn > 0

the eigenfunction is &, (x) = V2 cos (nzx) and the integrals becomes

1
—\/EJ x cos (nrx)dx = ¢,
0

Using fx cos (ax)dx = <54% + M the above gives
¢ = 3 (cos (nrx) e sin (m'rx))
(nm)? nit 0
-3 (cos (nr) N sin(nr) 1 )
(nr)® o (nn)?
_ .\ (cos (nm) 1 )
) (nm)? (ar)
( )Z(cos(mt)—l) n=12---

When n is odd then ¢, = % and when n is even it is zero. Now that g, is found, then b, can

be solved for form (2) above giving
DUba®) () +2 D" bp®y (x) = D ep®n (x) (2A)
n=0 n=0 n=0

But &/ (x) = —1,®, (x) since the eigenfunction satisfies the ode y”’ = —Ay and the above simpli-
fies to

=S by (1) 423 b (1) = S by (3)
n=0 n=0 n=0

Since &, (x) # 0 the above simplifies to

—byA, +2b, = ¢,
Cn
b, =
T2,
Therefore the solution from (1) is
T e ey
n=0 2~ An

5 )L q)g (X) + Z 2= Anq) (X)

1,3,5

But Ay = 0,¢y = —%and d, (x) = 1, therefore the above becomes
2v2
1 > (nx)?
y(x)=—--+ —__~2cos (nnx)
1 > 2V2
=——+ \/2_ 2\/§cos (nmx)
4 {35 (2 — (nm) ) (nm)
1 s 1
=—---4 cos (nrx)
TP Ve Yo
To make the sum continuous, let m = (2n — 1) and now m runs from 1, 2, 3, - - - and above becomes
1 > cos((2n —1) rx)
Y =—-a >

4 55 ((@n-1D)n)?-2) (2n—1) )
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43 Chapter 11.3, Problem 10

Determine if there is any value of the constant a for which the ODE has a solution. Find the
solution for each such value

y"+ﬂ2y:a+x

y(0)=0
y(1) =0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE y”’ + Ay = 0 with same
homogenous boundary conditions are A, = (mr)2 forn = 1,2,---. Therefore one can see that

A is eigenvalue in the original ODE y”” + 7%y = a + x. This means there is a solution (which
will be non unique) only if the forcing function is orthogonal to the specific eigenfunction ®; (x).
Therefore the condition is

1
[ Feewar=o
0
Jl (a+ x)sin(rx)dx =0
0

1 1
I asin (rx) dx + J xsin(rx)dx =0

0 0

cosmx\1! sintx xcosmx|'
a (— ) + 5~ =0
/0 T T 0
a sinmt  cosm
——(cosmt—1)+ = ]=0
/s /1 b/
a -1
—=(-1-1)+ ——] =0
T /s
2a 1
—+—=—=0
T
Hence
-1
a=—
2
Only when a is the above value, is there a solution. The original ODE is now solved using the
direct method (meaning, not eigenfunction expansion) when a = _71 as follows. Solve

1
//+ 2 - _Z 4
y Ty 2 X
y(0)=0
y(1)=0

The homogeneous solution is easily found to be y, = Acos (nx) + Bsin (7x). Since the RHS is a
polynomial, let the particular solution be y, = ¢; + cox. Then y}’7 = ¢y and yj’,' = 0. Then

1
7% (c1 + cox) = -3 +x

2

C17T2+027Tx=—§+x
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1

2 _ _ 1 2 _ 1 _ 1 _ 1 .
Therefore com = 1 0r ¢y = - and ¢;m° = —sorc¢; = —5,7- Henceyp = —5 5 + —x. The solution

2
is
Y=Yn+1Yp

. 1
= Acos (7x) + Bsin (rx) — — + —x
21 T

Applying boundary conditions, at y (0) = 0 the above becomes

0=A !
B 272
A= 1
T o2
Hence the solution becomes
(x) = = cos (x) + Bsin (zx) - — + —
x) = — cos (mx sin(rx) - — + —x
y 272 272 g2
At y (1) = 0 the above gives
1 1 1
0=——=cos(r)+Bsin(7r)— — + —
272 () () 272 g2
S N T
Com? 2m? g2
0=0

Therefore B can be any value. Hence the final solution is

y(x)= # cos (mx) + Bsin (rx) + # (x - %)

The solution is not unique as expected. Any arbitrary value of B gives a solution.

44 Chapter 11.3, Problem 11

Determine if there is any value of the constant a for which the ODE has a solution. Find the
solution for each such value

Yy +4rty=a+x
y(0)=0
y(1)=0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE y” + Ay = 0 with same ho-

mogenous boundary conditions are A, = (nx)? forn = 1,2, - -. Therefore A, = 47 is eigenvalue
in the original ODE y”” + 4%y = a + x. This means there is a solution (which will be non unique)
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only if the forcing function is orthogonal to the eigenfunction ®; (x). Therefore the condition is

_rf@mawwx=o

0

Jl (a+x)sin(2zx)dx =0
0

1 1
J asin (27x) dx + J xsin (2zx)dx =0
0 0
cos2mx\ ! N sin (27rx)  xcos(27x)
a — —
2/, 452 27

1

0
sin 27 cosZn} _ 0

4572 2

1 }
—— 1 =0
21

1
— =0
21

a
——(cos2r — 1)+
27

a
——(1-1)+
5 1=1

But this is not possible. Hence there is no a which makes fo (a + x) sin (27rx) dx = 0. This means
there is no solution for any a.

45 Chapter 11.3, Problem 12

Determine if there is any value of the constant a for which the ODE has a solution. Find the
solution for each such value

y' +r’y=a
y' (0)=0
y'(1)=0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE y”’ + Ay = 0 with same
homogenous boundary conditions are Ay = 0 and A, = (mr)2 forn=1,2,---.Therefore 1; = 72
is eigenvalue in the original ODE y”’ + 7%y = a + x. This means there is a solution (which will be

non unique) only if the forcing function is orthogonal to ®; (x). The eigenfunctions in this case
are @, (x) = cos (nnx). Therefore the condition is

1

[ Feemar=o
0

Jl acos(mx)dx =0

0
. 1
sin x
a =0
T 0

20)=0
JT

Hence any a will satisfy this. Therefore there is a solution for any a. The solution is

y = Acos (nx) + Bsin (nx) + y,
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Since the RHS is a constant, let y, = k. This leads to m’k=aork= % Hence the solution is
) a
y = Acos(rx) + Bsin (7x) + —
T

Or
y’ (x) = —wAsin (rx) + B cos (7x)

At y’ (0) = 0 the above becomes
0=Br

Hence B = 0 and the solution now becomes
a
y = Acos(rx) + —
T
Yy’ = —An sin (7x)

At y (1) = 0 the above becomes

0=—-Arsinm
= ~A(0)

Therefore A is arbitrary. Any A will give a solution. Hence the final solution is

y = Acos (mx) + =5

For any A and where a is the given a in the original ODE which can take in any value.

46 Chapter 11.3, Problem 13

Determine if there is any value of the constant a for which the ODE has a solution. Find the
solution for each such value

y” + 7*y = a — cos x

y(0)=0
y(1)=0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE y”’ + Ay = 0 with same
homogenous boundary conditions are Ay = 0 and A, = (mr)2 forn=1,2,---. Therefore A; = 72

is eigenvalue in the original ODE y” + 7%y = a — cos nx. This means there is a solution (which
will be non unique) only if the forcing function is orthogonal to ®; (x). The eigenfunctions in this
case are @, (x) = sin (nrx). Therefore the condition is

1
J fx) @1 (x)dx =0
0
Jl (a — cos mx) sin (nrx)dx = 0
0

1 1
J asin (rx)dx — I cos (rrx) sin (rx)dx = 0
0 0
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Using sin Acos B = % (sin (A — B) + sin (A + B)) then sin (7x) cos (7x) = % (sin (0) + sin (27x)) =
% sin (27rx) and the above becomes

1 1t
J asin (rx)dx — = J sin (27x)dx =0
0 2 Jo

a 1
—— [cos mx]y + — [cos (22x)]; = 0
T 41

a 1
——(cost—1)+ —(cos(2r)—1)=0

T 4
2a

=0
b

Hence a = 0. Therefore there is a solution only when a = 0. The original ODE then becomes
y" + 7’y = — cos wx
The homogenous solution is
yp = Acos(7x) + Bsin (7x)
Since the forcing function matches one of the basis solution, then the particular solution guess is
multiplied by extra x. Therefore
Yp = x (c1 cos (mx) + ¢z sin (7x))

yI') = ¢ cos (rx) + ¢o sin (7rx) + x (—cy 7 sin (7rx) + cor cos (7x))

124

Yp

sin (7x) (—2¢7m — Czﬂ'zx) + cos (mx) (2com — clxn'z)

Substituting back into the ODE gives

sin (7x) (—2c17w — Czﬂ'zx) + cos (mx) (2com — clxnz) + 72 (x (cq cos (x) + ¢z sin (7x))) = — cos 7x
sin (7x) (=217 — cam*x + mxcy) + cos (mx) (2c27 — c1x7® + wPxc;) = — cos mx
—2¢q7 sin (7rx) + 2¢om cos (mx) = — cos Tx
Hence
—2c1t =0
2com = —1
Or
1 = 0
1
Co = ———
2 21
Therefore
" sin (x)
= ——xsin(7x
r 27

And the general solution is
1
y (x) = Acos (x) + Bsin (rx) — z—x sin (7rx)
Vs

At y (0) = 0 the above becomes
0 = Acos (rx)

Hence A = 0 and the solution now becomes

y (x) = Bsin (nx) — %x sin (7rx)

One can stop here, since it is known that the solution is not unique and must contain an arbitrary
constant. It is not possible to solve for B using the second boundary conditions.

63

—cy7r sin (7x) + ¢z cos (7rx) + (—cy 7w sin (7x) + c27r cos (x)) + x (—ey7° cos (x) — co” sin (7x))



47 Chapter 11.3, Problem 16

Show that the problem y” + 72y = 7%x,y (0) = 1,y (1) = 0 has solution y = ¢; sin 7x+c; cos Tx+x
also show that the solution can not be obtained by splitting the problem as suggested in problem
15 since neither of the two subsidiary problems can be solve in this case.

Solution

To attempt to solve the problem by splitting, the solution is first assumed tobe y = u + v
where u is the solution to u”” + 7%u = 0,u(0) = 1,u (1) = 0 and v is the solution to v’ + 7%v =
7%x,v(0) = 0,0 (1) = 0. Let us now try to solve the u ODE. The solution is

u(x) = Acos mx + Bsin x

Applying first BC u (0) = 1 gives A = 1. Hence the solution becomes u = cos 7x + Bsin rx.
Applying second BC u (1) = 0 gives

0 =cosmt+ Bsinx

0=1+Btansx
-1 -1

" tanr 0

Therefore there is no solution for u. Hence no solution is possible by splitting it was suggested
in problem 15 for this problem. Now the problem is solved using the direct method. The homoge-
neous solution is

yp = Acosx + Bsin x

Since the forcing function 7%x is a polynomial, let y, guess be y, = kxsubstituting this back into

the ODE gives k = 1. Hence the solution becomes

Y=YntYp
=Acosmx + Bsinzmx + x

Applying first BC y (0) = 1 gives 1 = A. Hence the solution now becomes y = cos 7x+ B sin 7x +x.
Applying second BC y (1) = 0 gives

0=cosmt+Bsinm +1
0=-1+Btanz +1
0=Btanr

0 = B(0)

Therefore, any B will work. Hence the solution is not unique. Let B = 1. Therefore the final
solution is
Yy = cos X + sinwx + x

This is solution is not unique. This is also a solution y = coszx + 3sinzx + x and also this
y = cos tx + 100 sin x + x and also y = cos 7x + x and so on.

48 Chapter 11.3, Problem 19 (With interactive animation)

Use eigenfunction expansion to solve

U = Uyxy — X

64



With initial condition u (x, 0) = sin (%) and boundary conditions u (0, %) = 0,u, (1,) =0

Solution

The homogenous PDE is first solved to find the eigenfunctions, and these are used to expand
the non-homogenous term —x in the PDE. By separation of variables, the spatial eigenvalue ODE
is

X" +AX =0
X(0)=0
X' (1)=0

The eigenfunctions for this ODE are @, (x) = sin (\/Ex) with A,, = (%) ®forn=1,3,5-.o0r
An = (2n — 1) (%)2 forn=1,2,3, - . with now @, (x) = sin ((2n - 1) %x)

The normalized eigenfunctions are ®, (x) = V2sin (\/)L_nx) . Using these, the original PDE is
now solved by assuming the solution is

u(x,t) = i by (1) &y (x)

The coefficient b, (t) must be a function of time, since it includes all time contributions to the
solution. Substituting the above back into the original PDE gives

o) R d2 0o R [ .
Z by, (1) @y (x) = dx? Z by () @p (x) + Z cn®p (x)
n=1 n=1 n=1

Where 3, cn®, (x) is the eigenfunction expansion of —x. Assuming term by term differentiation
is allowed (can be shown to be justified here), the above becomes

Z b;z (1) ci)n (x) = Z by (t) ci);l/ (x) + Z Cnci)n (x)
n=1 n=1 n=1

But &/’ (x) = —1,®,, (x) then the above becomes

(b’ () + Anby (1) B, (x) = chrb (x) (1)

n=

Now ¢, is found. Since —x = Zfl":l cn®, (x), then applying orthogonality gives
1

- Jl r (x) x®,, (x)dx = i en | 7 (x) D (x) Dradx
0 =1 Jo

But the weight r (x) = 1, hence the above simplifies to

1 1
—J x®,, (x)dx = C"I Ci)fn (x)dx
0

0

. . . . 1 -
Since eigenfunctions are normalized, then Io r (x) @2, (x) dx = 1 and the above reduces to

1
Cp = —J x®,, (x)dx
0

= —le 2sin ((Zn -1) %) dx

o\ [sin (2n—1)Zx) xcos((2n-1)%x) ] '
0

(en-1nz)>  @-1%
N sin ((2n - 1) %) _ cos ((2n—1) %)
(en-1)Z)° 2n-1)%
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But cos ((Zn -1) %) = 0 for all n, and the above now simplifies to

2sin (2n-1) %)
(en-1)Z)°
2sin (2n-1) %)

((2n - 1) 7)°

Cp = —

But sin ((2n - 1) %) =(-1)""'forn=1,23,- -, hence the above becomes
(_1)n—1
((2n-1) 7'[)2
(-1)"
((2n— 1) n)?

Now that ¢, is found, (1) is used to solve for b, (t)

cp=—-4

i (b;z (t) + /Inbn (t)) (i)n (x) = i Cn(i)n (x)

n=1

The above simplifies to
b, (t) + Anby (1) = ¢

The integrating factor is el ndt = ¢lnt therefore 4L (b, (t)e*nt) = c,e’n!. Integrating gives

t
b, (t) €' = b (0) + ¢y I e’ ds

0

t
b, (t) = b(0)e Mt + cne_’lnt‘[ e ds
0
Ant (eAnt - 1)
An

=b(0)e ! + /Cl—n (1 - e_/l"t)

=b(0)e ! + cpe”

Therefore the solution becomes

u(x,t) = i by () Dn (x)
n=1

= f] (b(o) et 4 S (1 - e_/l"t)) ®, (x)

n=1 An
At t = 0, the initial conditions is u (x, 0) = sin (”7"), therefore the above becomes

sin (”7’“) - i (b(o) + ;— (1- 1)) b, (x)

n=1

= > 5(0) by (x)
n=1
- 2 b (0) V2 sin ((zn ~1) %x)

Hence only n = 1 gives a solution for b (0), and therefore the above becomes
sin (E) = b(0) V2sin (Ex)
2 2
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- L
b(O) = &
Therefore the solution (2) now becomes
e’llt -1 . &) n .
u(x,t) = (b 0)e Mt + cle_’llt% D (x) + nzzz Z (1 - e_/l"t) D, (x)
Where
_ (-1"
Ch = —_—
((2n— 1))
1
b(0)=—
V2

)an((Zn—l)%)z n=1,273,--
Cﬁn (x) = V2 sin ((Zn— 1) %x)

Hence the solution (3) becomes

7{2
1 e (eTt -1
u(x,t) = Te_Tt +cie 1!t > V2 sin (—x)
2 T
> c 72 T
S (1) Vi (1 )
n=2 (2n— 1) Z- 2

To make it the same as back of the book solution, some more manipulation is needed.

2

u(x,t)y=e ¢t sm(2 )+4\/_—e Tt ( Tt—l) sin(gx)

4c p.d )2 T
V2SS ¥ -(en-DF) t( (en-1)Z)%t _ 1) . ( on—1 " )
E e e sin((2n—1) 5

Or
u(x,t) =e 7"sin (Ex) L4V L (1 - e_Tt) sin (zx)
2 2 2
> 4c, (o x)2 T
+ V2 —(l—e((zn 1)z)t)sin(2n—1—x)

HZ:; (2n —1)* 72 ( ) 2

Or
u(x,t)y=e ¢t sm(2 )+4\/_—sm( )—4\/_—6T sin(Ex)
+ \/_Z (1 _ e (@en-DF) t) sin ((Zn -1) Ex)
(2n— 1)2 2 2

Or



The back of the book uses ¢, = 4{% instead of ¢, = 4\/_W as was done in this
solution. Therefore, changing c, to be as the back of the book means flipping the sign of each cj,.

(or multiplying by —1). Hence the solution becomes now the same as the back of the book

ulx,1)=v2 [—40—12 + (% + 4%) e"ff] sin (%x)

iz (2n— 1)2 = (1 - e‘((zn—l)%)zt) sin ((Zn _1) %x)

Where in the above,
(_1)n+1

(2n-1)7)°

Both solutions are the same. The sign is either added to ¢, or left outside. This completes the
solution.

The following is an animation of the above solution for 1.8 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).

cn, =4V2

time BP@ seconds

ufx. 1)
10,

08|
06}
04
02|
02 ' '

0.4

K>

49 Chapter 11.3, Problem 20 (With interactive animation)

Use eigenfunction expansion to solve

Uy = Uy + !
With initial condition u (x, 0) = 1 — x and boundary conditions u, (0,¢) = 0, uy (1,t) +u(1,£) =0
Solution
The homogenous PDE is solved first to obtain the eigenfunctions. These are then used to ex-
pand the non-homogenous term e’ in the PDE. By separation of variables, the spatial eigenvalue
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ODE is

X"+AX =0
X' (0)=0
X (1) + X (1) = 0

The eigenfunctions for this ODE were found earlier in problem 4, Chapter 11.2. They are
(i)n = kn®,

= V2 cos (\/A—nx)
1 + sin® (\//1_,1)

Where A,, are the roots of
cos (\/A—n) - \/Esin (\/A—n) =0

Forn =1,2,3,---. Using these, the original PDE is now solved by assuming the solution is

u(x, t) = i bn (£) &y (x)
n=1

The coefficient b, (t) must be a function of time, since it includes all time contributions to the
solution. Substituting the above back into the original PDE gives

(o] 2 oo ]
PICACERCEE SPABE NS WG He
n=1 n=1 n=1

Where >3 ¢, (t) ®,, (x) is the eigenfunction expansion of e~*. In the above ¢, (¢) is now a func-
tion of time, since the forcing function depends on time in this problem. Assuming term by term
differentiation is allowed the above becomes

Db () Dn () = D ba () D)) (%) + D cn (1) Dp ()
n=1 n=1 n=1
But &/’ (x) = —A,®,, (x) therefore

2 (b (8) + Anbn (1) P (x) = Z_] cn (1) &y (x) (1)

n=1

Now ¢, (t) is found. Since e™* = 2% ¢, (t) &, (x), then applying orthogonality gives

Jl r(x)e td,, (x)dx = i cn (1) Jl r (x) @, (x) D,dx
0

0 n=1

But the weight r (x) = 1, hence the above simplifies to
1 1
e’ J D, (x)dx = cp (t) J 2 (x)dx
0 0

. . . . 1 .
Since eigenfunctions are normalized, then Io r (x) @2, (x) dx = 1 and the above reduces to

1
e’ J D,y (x)dx = cp (1)
0
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Hence

cn(t)=e! Jl ky cos (\/Zx) dx

0

=e! k/'{n [sin (\/A—nx)];
=e! j/’{_ sin (\/Z) (2)

n

To make it match the way the back of the book expressed the above, let us write
cn(t) =e‘ep

Where now

Cp = \]/c;_n sin (\/E)

This makes it easier to verify the final solution found here is the same as the back of the book.
Now that ¢, () is found, (1) is used to solve for b,, (t)

i by, (1) + Anby (1)) <I> (x) = Ze cn®p (%)
n=1

The above simplifies to
bl (t) + Anby (1) = e ¢y

[ Andt

The integrating factor is e = e’ therefore <L (b, (t) e’n!) = e~'c,etn!. Integrating gives

t
b, (t) et = b(0) + ¢y J e S’ ds
0
t

b () = b(0) e + cpent J (1) g

0

(/1,,—1)3]
e
=b(0 —Ant+ —Ant[
(0)e Cne€ A —1
A=t _ 1
= b(0)e Mt + cpent S 3
(0)e Cn€ 1 —1 3)
Using the above in u (x,t) = X7 b (1) &, (x) gives the solution as
0 e</1n_1)t -1
u(x,t) = >, [b(0) e +cpe ! —— | &, (x) (1)
n=1 An -1

At t = 0, the above simplifies to
1-x= ib(o)ti)n(x)
n=1
Applying orthogonality gives
J r(x)(1—x)®,, (x)dx = Zb(o) r(x)d> (x) D,y (x) dx

Il r(x)(1 = x)®p, (x)dx = b(O)J r(x)@fn (x)dx
0 0
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But r(x) = 1 and JOI r(x) dADEn (x)dx = 1 therefore
b(0) = r (1-x)d, (x)dx
01 1
= J d, (x)dx —J x®,, (x)dx
0 0
=ky (Ll ®, (x)dx — Ll x®,, (x) dx)
But @, (x) = cos (\//Tnx) , hence the above becomes
b(0) =k, (J: cos (\/A_nx) dx — Ll X COS (\/Zx) dx)
-sin (\//Tnx) ‘1 [cos (\//Tnx) X sin (\//Tnx) ‘1)
0

+
A N

VA, n n
(V1) ) se(VE)
T, T
Vi) i sl

—sin cos (\//1_
Vi | | M
sin ( cos (\//1_,,) sin (\/E) 1
Vi, A VI
AR

Now that b (0) is found, then the solution (4) becomes

)= 35 (52 (1 cos (VB )) e 1 o

1

55 5 (- eos () g =) e ()

But k,, = V2 , hence the above becomes

1+sin2(m)

cos (\//l_nx)
1 + sin® (\/A_n)

> c
u(x,t) = \/52 (ane—lnt L_n (e—t _ e—xnt)
~ An—1

Where




And

Cp = \]/C;_n sin (\/Z)

V2 sin (\//1_,,)
\//1_,, 1 + sin® (\/)L_n)

The following is an animation of the above solution for 6 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).

time BP@ =zeconds
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50 Chapter 11.3, Problem 22 (With interactive animation)

Use eigenfunction expansion to solve
U = Upx +e 1 (1=x)

With initial condition u (x, 0) = 0 and boundary conditions u (0, t) = 0, u, (1,£) =0

Solution

The homogenous PDE is solved first to obtain the eigenfunctions. These are then used to
expand the non-homogenous term e~ (1 — x) in the PDE. By separation of variables, the spatial
eigenvalue ODE is

X"+AX =0
X (0) =0
X' (1)=0
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The eigenfunctions for this ODE were found earlier. They are
o, =k, 0,

= V2sin (\/Zx)

Where A, = (%)Zforn: 1,3,5,---.Or

=\/§sin(\/Zx)
A = ((2n—1)§)2 n=123 -

The original PDE is now solved by assuming the solution is

wGet) = S by (08, ()
n=1

The coefficient b, (t) must be a function of time, since it includes all time contributions to the
solution. Substituting the above back into the original PDE gives

(o] 2 oo o]
STE G () = 3 b (08, () + Y (0 ()
n=1 n=1 n=1

Where X7 ¢, (t) ®,, (x) is the eigenfunction expansion of e~ (1 — x). In the above ¢, () is now
a function of time, since the forcing function depends on time in this problem. Assuming term
by term differentiation is allowed the above becomes

PIWACLARED WACLACEDIALLA®
But CTD;{ (x) = =1, ®,, (x) therefore
i by () + Anbn (1)) B (x) = 2 6 (1) () "
Now cj, (t) is found. Since e (1 —x) = X7 ¢, (¢) ®,, (x), then applying orthogonality gives

Jl r(x)e t(1-x)d,, (x)dx = i cn (1) Jl r (x) @, (x) Ddx
0 =1 0

But the weight r (x) = 1, hence the above simplifies to
1 X 1
-t J (1=x)Dy (x)dx =cpy (t)J % (x)dx
0 0

. . . . 1 -
Since eigenfunctions are normalized, then Io r (x) @% (x)dx = 1 and the above reduces to

X J (1= %) &y (x) dx = ¢ (1)
0
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Hence

cn(t)=e! ‘Ll (1 —x)ky, sin (\/A—nx) dx
=3 [ sin (V) = [ xsin (V)]

Y1 | i (‘M_"x) _ [Sin\//l_nx _ xcos Vx|
Vin An Vi,

0

I Vi VI

_etVa :‘“’S(W ‘ lv— v—]

s — cos \//Tn) Ll _sin\//l_,,_'_cosx/A_H
Via Vi, An Via

cos -
=e—fj—f( —sm\/—) (2)

But A, = (2n— 1) 7, therefore sin (2n—1) %) = {1,-1,1,-1,---} or (-1)""! and the above
becomes

en(t) =€ (\/_ (0"
T (VA )
(J—+( ")

To make it match the way the back of the book expressed the above, let us write

>“|<| >"|<| >‘“I

cn(t)=elc,
Where
2
V(T + ) (24)
An
Now that ¢, (t) is found, (1) is used to solve for b,, (t)

350500+ A () ) = S e 1)

The above simplifies to
b:z (t) + Anby (t) = e_tcn
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The integrating factor is el ndt = ¢lnt therefore L (b, (t)e*nt) = e~'c,e’n?. Integrating gives

t
b, (t) et = b(0) + ¢y ‘[ e S ds
0

t
by () = b(0) e Mt 4 cne_A"tJ eAn=Ds g
0

[eVnm1s]
e
=b(0 —Ant + —Ant
(0)e cne p—
A=t _ 1
=b(0)e ! 4 cpe it = 3
(0)e Cn€ T —1 3)
Using the above in u (x,t) = X7 b (1) &, (x) gives the solution as
o (=Dt _ 1\
u(x,t) = Z b(0)e ! 4 cpe it —— | D, (x) 4)
n=1 An -1

At t = 0, the initial conditions are zero, and above simplifies to
0=">b(0)d, (x)
n=1

Which implies b (0) = 0. Now that b (0) is found, then the solution (4) becomes

ol g
u(x,t) = Z cpe " T O, (x)
n=1 n
) t_ o —Ant
:\/Ezcn(e)L N )sm( Anx)
n=1 n—

Where ¢, = A_\f (\//TH + (—1)") and A, = ((2n - 1) %) ? This completes the solution.

The solution was animated and verified it is correct against a numerical solution.

The following is an animation of the above solution for 5 seconds. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome or Firefox
own browser PDF reader).

time B.88 seconds

u(x,t)
012

0 10f
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51 Chapter 11.3, Problem 24 (With interactive animation)

Solve
U = Uyyx — 2

With initial condition u (x, 0) = x*> — 2x + 2 and boundary conditions u (0,) = 1,u(1,t) = 0
Solution
Let
u(x,t) =wi(x,t)+ov(x)

where v (x) is steady state solution which only needs to satisfy the non-homogenous boundary
conditions and w (x; t) is the transient solution which needs to satisfy the homogeneous boundary
conditions.

At steady state, the PDE becomes an ODE

0=20"(x)—2
This has the solution
v (x) = c1 + cpx + x*

Where x? is the particular solution. From boundary conditions v (0) = 1, (1) = 0, the solution
becomes
v(x) =1-2x+x°

Hence u (x,t) = w(x, t) + 1 — 2x + x?. Substituting this into the PDE u; = u,, — 2 results in
Wi = Wyye + 07 (x) — 2

= Wyx +2-2

= Wxx

Hence the PDE to solve is w; = wy, with w(0,¢) = 0,w(1,t) = 0. This heat PDE was solved
before. Its solution is

w(x,t) = i cne ! sin (\/Zx) (1)
n=1

Where A, = (nr)? forn = 1,2,3,---. At t = 0, since u (x,0) = w(x,0) + v (x) then w(x,0) =
u (x,0) — v (x) which gives

w(x,0) = (x* —2x +2) — (1 -2x +x?)
=1

Hence at t = 0, (1) becomes

1= i cp sin (\/Zx) (1A)
n=1
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Applying orthogonality gives
1
- _1
L sin (\/Zx) dx = 2cn
1
Cp = ZJ sin (\/Zx) dx

—— |cos \/)Ln) - 1]
VAn
-2
= — [cos(nr) — 1]

nmw

For even n the above is zero. And for odd n the above becomes
Ch = — n=13,5"---
nmw

Therefore from (1) the solution to w (x, t) is

4 > 1
w, == > —e Mt sin (\Mnx)
T p=1,35,-.-

The above can also be written as

4 & 1
w(x,t) = ~ nz_; n_ 1)e_(2”_1)2”2t sin ((2n — 1) x)

Now, since u (x, t) = w (x, t) + v (x), then the final solution is

4 & 1
u(x,t)=x2—2x+1+—2

-@2n-1°7%t _:
—e sin((2n — 1) rx
PO Ty ((2n - 1) 7x)

The following is an animation of the above solution for half second. This runs inside the PDF
(need to use standard PDF reader to run the animation. Might not run inside Chrome browser
PDF reader).
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52 Chapter 11.3, Problem 25 (With interactive animation)

Solve
Up = Uy — T2 COSTX

With initial condition u (x, 0) = cos (%”x) —cos (7rx) and boundary conditions u, (0, ) = 0,u (1,t) =
1

Solution

Let

u(x,t) =wix,t)+o(x)

where v (x) is steady state solution which only needs to satisfy the non-homogenous boundary
conditions and w (x, t) is the transient solution which needs to satisfy the homogeneous version
of boundary conditions.

At steady state, the PDE becomes an ODE

0 =" (x) — 7% cos mx
This ODE can be easily solved giving
v(x) = —cos(x)
Hence u (x,t) = w(x, t) — cos (rx). Substituting this into the PDE u; = uy, — 72 cos 7x results in
W = Wex + 0" (x) — % cos x
But v’ (x) = 7 sin (7x) and v” (x) = 72 cos (rx). The above becomes
Wi = Wxx

With boundary conditions wy (0, ) = 0, w (1, t) = 0. This was solved before. It has the solution

w(x,t) = i cne 7t cos (\/Zx) (1)

n=1,3,5,
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Where A, = (%)zwithn =1,3,5---. Att =0, from u (x,0) = w(x,0) + v (x), then w(x,0) =
u(x,0)—v(x)or

w(x,0) = cos (%Tx) —cos (x) + cos (7x)

=cos|—x
2

Therefore, from (1) and at ¢t = 0 we obtain

(o)

w(x,0) = Z Cp, COS (\/)Lnx)
n=1,3,5,-
(37r ) & nm
cos | —x| = Z Cp COS (—x)
2 n=1,3,5,- 2

Therefore, only for n = 3 is there a solution. Therefore c¢; = 1. Hence (1) becomes

w(x, t) = e ™ cos (\//1—3x)

— e_(%r)zt CcOS (3_]Tx)
2
Therefore the final solution is

u(x,t) =wix,t)+ov(x)
2 3
= —cos(7mx) + e T cos (?x)

The following is an animation of the above solution for half second. This runs inside the PDF

(need to use standard PDF reader to run the animation. Might not run inside Chrome browser
PDF reader).
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53 Chapter 11.3, Problem 28

Part (a) Show that by method of variation of parameters that general solution to y”’ (x) = —f (x)
can be written as

y:cl+czx—Jx(x—s)f(s)ds
0

part (b). Let the solution required to satisfy boundary conditions y (0) = 0,y (1) = 0. Show that
1 =0, = fol (1-x)f(s)ds
part (c). Defining G (x, s) = {

asy(x) = fol G(x,s) f(s)ds
Solution

s(1—-x) 0<s<
x(1-5) x<s<1

show that the solution can be written

53.1 Part(a)
The solution is y = yj, + y,. Where y;” = 0. This has the solution
Yp = C1 + 02X

In this expression, the basis solutions are

=1

Yz = X.
The particular solution is now found using variation of parameters, where it is assumed that

Yp = Y1U1 + Yol (1)

And uyq, u, are two functions to be determined. Using the standard formulas for finding uq, u,
gives
"y = ¥ —yoF (s)
o W(s)
Where in the above, F (s) is the forcing function in the RHS of the original ODE which is — f (x)
here, and W is the Wronskian. The Wronskian is found as follows

ds (2)

W=7 Y
Y1 Y
Substituting y; = 1,y, = x in the above gives
1 x
w=ly 3=

Therefore (2) becomes

w = f s (—f (s))ds

0

= Jx sf(s)ds (3)

0
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Similarly, u; is found using

YY1 F(s)
o W(s)

- [ s (4)

ds

Uy =

Using (3,4) in (1) gives the particular solution as

vp=u | srerds—u [ rei
= r‘xsf(s)ds—xjxf(s)ds
0 0

rX x
= sf(s)ds—j xf (s)ds
0 0

—[s-xfe)ds
JO

- [[x=sr0as

Now that particular solution is found, the complete solution is found from y = y, + y,, giving
X
y:cl+czx—J (x—35) f(s)ds (5)
0

53.2 Part (b)
Using the BC y (0) = 0 on (5) gives

0=1c —Jo—sf(s)ds

0
C1:0

Hence c¢; = 0 and the solution (5) now becomes
yzczx—J‘ (x—s)f(s)ds (6)
0
Using the second BC y (1) = 0 the above becomes
1
Ozcz—J (1-3s)f(s)ds
0
1
o=| a-9reds
0
Hence the solution (6) now becomes
1 X
y=x[ a-9r@d-[ x-9red
0 0

1 x
:J x(l—s)f(S)ds—JO (x =) £ (s)ds

0
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Writing JOI x(1-3s)f(s)ds= f;c x(1-s)f(s)ds+ f; x (1 —s) f (s)ds then the above becomes

Y= Lxx(l—s)f(s)ds+£x(l—s)f(s)ds—Lx(x—s)f(s)ds

Combining the first and third integrals gives

X

Y= . [x(l—s)—(x—s)]f(s)ds+J x(1=3s)f(s)ds

= [x—xs—x+s]f(s)ds+f1x(1—s)f(s)ds

Jo

= mx(—xs+s)f(s)ds+j1x(1—S)f(s)ds
0

X

= ”xs(l—x)f(s)ds+Jlx(1—s)f(s)ds (7)
0 x

oJ

Which is the result required to show.

53.3 Part (c)

From part (b) above, the solution in (7) can be written as

x 1
y=J GL (x,s)f(s)ds+f Gr(x,s) f (s)ds (8)
0 x
Where (.%) ( )
] GL(xe,x) [ s(1-x 0<s<x
G(x,s)—{ Gr (x,s) _{ x(1-s) x<s<1

Hence (8) can be combined into one integral

y=£G&Mf®%

54 Chapter 11.3, Problem 29

By using procedure in problem 28 show that solution to y”’ + y = —f (x),y(0) = 0,y (1) = 0 is

y=£G@@f@

Where

sin(s) sin(1—x)

G (x’ S) = { sin(xs)irsli(rllgl—s)

X
sin(1) 1

<s<
x<s<
Solution
Lety = yn+yp. Where yj, is solution to y;’+y, = 0. This has the solution yj, = ¢; cos x+c; sinx.
Hence the bases solutions are
Y1 = COSX

Yy = sinx
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And therefore the Wronskian is

cosx sinx .
W=y1 y? = . =cos’x +sin‘x =1
T —sinx cosx
Hence .
—yF (s)
U = ds
0o W(s)

Where in the above, F (s) is the forcing function in the RHS of the original ODE which is —f (x)
here, and W is the Wronskian. Therefore

4 = j —sin(s) (=f (5)) ds

0

= [Csme £ eas

0

Similarly, u, is found using

_ [T yiF(s)
L) we)

- [Ccosrena

0

ds

Hence the particular solution is
Yp = YU + Yoz

= cos (x) Lx sin(s) f (s)ds — sin (x) ‘[Ox cos(s) f(s)ds

= Jx cos (x)sin(s) f (s)ds — J sin (x) cos (s) f (s)ds

0 0

= L (cos (x)sin(s) — sin (x) cos (s)) f (s)ds

Applying (sin Acos B — cos Asin B) = sin (A — B) to the integrand above, where A = x,B = s
gives

yp = —JX sin(x —s) f (s)ds

0

Therefore the solution is

Y=Yt
= (cycosx + ¢y sinx) — J sin(x —s) f (s)ds (1)
0

Applying BC y (0) = 0 the above becomes

0
0=r¢c —J sin(-s) f (s)ds
0
(,‘1:0

And the solution (1) simplifies to

y(x) = cysinx — Jx sin(x —s) f (s)ds (2)
0
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Applying BC y (1) = 0 the above becomes

y(x) =cysinl —Jl sin(1—s) f(s)ds
0

Hence

Cy =

Jl sin(1—s) f(s)ds
0

sin 1

The solution in (2) now becomes

. 1 x
y(x) = 22)1( L sin (1 —s)f(s)ds—J‘O sin(x —s) f(s)ds
[ . *
=7 L sin x sin (1 —s)f(s)ds—f0 sin(x —s) f(s)ds

Writing fol sinxsin(1—s) f(s)ds = f;( sinxsin(1 —s) f(s)ds+ Ji sinx sin (1 —s) f (s)ds then
the above becomes

y(x) = sirll 1 (Lx sinxsin (1 —s) f (s)ds + Ll sinxsin(1—s) £ (s) ds) - Lx sin (x — 5) £ (s) ds
[T [Csin - pase [ IO
- sinl(l) Lx (sinx sin (1 — ) — sin (1) sin (x — 5)) £ (s) ds + Ll %((11)_3) Fls)ds (3)

Using sin (A — B) = sin Acos B — cos Asin B, where now A = 1, B = s, then
sin(1—s)=sinl1coss—cos1lsins

And also
sin (x —s) = sinx coss — cosx sin s

Using the above two relations in first integral of (3) whichis I = f(')x (sinxsin (1 —s) — sin (1) sin (x — s)) f (s)ds
gives

X

I=| (sinx(sinlcoss—coslsins)—sin1(sinxcoss — cosxsins)) f (s)ds

Jo

X

= | (sinxsinlcoss—sinxcoslsins—sin1sinxcoss + sin1cosxsins) f (s)ds
Jo

rX

= | (—sinxcoslsins+ sinlcosxsins) f(s)ds

Jo

rX

= | (sins(sinlcosx —sinxcos1)) f(s)ds

r

= ) (sinssin(1—x)) f (s)ds

Jo

Substituting the above result in (3) results in

y(x) = Jx sin s sin (1 _x)f(s)ds+J1 sinxsin(l—s)f(s)ds @

0 sin 1 . sin (1)
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Let

sin(s) sin(1—x)

G (x’ S) = { sin(xs)irsli(rllgl—s) x P ;

sin(1)

Then the solution (4) can be written as

1
mm=LGumf@w

55 Chapter 11.3, Problem 31

By using procedure in problem 30 find Green function and express solution as definite integral
for

_y// — f(x)
y' (0)=0
y(1)=0

Solution

The first step is to determine y; (x), y» (x). These are the two fundamental solutions of y”’ = 0.
As the book says, to simplify the derivation, y; (x) is selected to be the solution that satisfies the
boundary conditions at the left end of domain (x = 0 in this problem) and y, (x) satisfies the
boundary condition on the right end (x = 1).

The homogeneous solution to y”" = 0 is

Yn (x) = ¢y + cox

Therefore y; (0) = 0. This gives ¢, = 0. Hence

y1(x) =1
The second boundary conditions y, (1) = 0 gives 0 = ¢; + ¢z, or ¢; = —cz and this leads to
Y2 (x) = c2 (-1 +x). Or
Yy (x)=x-1

Given y1, y2 found above, the next step is to determine the Wronskian as follows

Uyr Y2

W =
(x) oy

0 1

‘1 x—l‘
= =1

Therefore, Green function is now computed using equation (iv) on page 701 of text book giving

G(x,s) = 1 { y1(ya(x) 0<s<x

POWKX) | y1(x)y2(s) x<s<1

But p(x) = 1 and W (x) = 1, and using values found earlier for y;, y,, the above becomes

_ ) -1 0<s<x
G(x,s) = 1{(5—1) x<s<1
_x-1 0<s<x
Tl os—1 x<s<1
Hence the solution is )
v = | 6o f s 1)
0
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To verify this solution, it is compared to solution to same ODE using the direct method. Let
f (x) = x. Hence the ODE is

_y// =x
y' (0)=0
y(1)=0

The solution found above in (1) can now be found as

1

y(x) = Jx G (x,s) sds +J G (x,s)sds

0 x

= Jx(l —x)sds+J1 (1—s)sds

0 x

=|l—-x—| +|=—-—
2 T2/, \z2 3/,

I
—_—
0| R,

|
0| %,
N —

+
—_—
—_——
DN | =

|
W =
N ——

|
—_——
| R,

|
w|><w
N ——
N —

- X (2)

Verification The solution is verified by solving the same problem using the direct method. The
homogenous solution is y, = ¢1 + ¢,x. Since the forcing function is —x, let the particular solution
be y, = kx?, Yy, = 3kx?,y” = 6kx. Therefore 6kx = —x or k = %1. Therefore the particular
solution is y,, = %xS and the general solution is
13
y(x) =c1 +cox — gx
Applying BC y’ (0) = 0 gives
Cy = 0

Hence the solution becomes y (x) = ¢; — %x3. Applying BC y(1) = 0 gives 0 = ¢; — % orcy =
Therefore the solution is Lo
3

y(x) = e 3)
Which is the same answer found using Green function method. Of course in this case the direct
method is much simpler and easier to find. The advantage of Green method, is that once the
G (x, s) is found, then for any new f (x) only integration is needed to find the new solution, since
G (x, s) does not change when f (x) changes. The direct method requires one to find the particular
solution each time, and to determine the constants ¢, c; again from boundary conditions each
time f (x) changes since the particular solution changes when f (x) changes. With Green function
method, all the work in using G (x, y) is done in the integration step only. The solution found

using Green function already incorporated the boundary conditions in it.

56 Chapter 11.3, Problem 32

By using procedure in problem 30 find Green function and express solution as definite integral
for

-y’ =f(x)
y(0)=0

y(H+y (1)=0
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Solution

The first step is to determine 1 (x), y2 (x), where these are the fundamental solutions of
y” = 0 where y,; (x) satisfies the boundary conditions at the left end of domain (x = 0) and y, (x)
satisfies the boundary condition on the right end (x = 1).

Since the homogeneous solution to y”” = 0 is

U (x) = €1 + Cox
Then y; (0) = 0 gives ¢; = 0. Therefore
yi(x) =x
And to satisfy y, (1) + y, (1) = 0 then

0:(01+C2)+Cg

Cc1 = —202
Therefore
Yz (x) = —2¢5 + cox
=c(x—2)
Hence
Yy (x) = x — 2

Now that yy, y, are found, the next step is to find the Wronskian.

x x-—-2
1 1

Yyr Y2

w =
(x) 'y

‘ =x—-(x—-2)=2
Therefore, Green function is, using equation (iv) on page 701 of text book

G(x,s) = ! { y1(s)ya(x) 0<s<x

pOWE) | y1(0)y2(s) x<s<1
But p(x) = 1 and W (x) = 1, and using values found earlier for y, y,, then the above becomes

-1 s(x-2) 0<s<x
G(x’s)_j{x(s—z) x<s<1

{M 0<s<x

2
s x<s<i

And the solution is

ym9=LG@@f®% 1)

To verify this solution, it is compared to solution to same ODE using the direct method. Let
f (x) = x. Hence the ODE is

_y// =5
y' (0)=0
y(1)=0
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The solution found above in (1) is now found as

1

y(x) = Lx G(x,s)sds + J G(x,s)sds

X

x _ 1 _
= I $(2 x)sds + J x (2 S)sds
o 2 . 2

1

_1 (2s% — xs?) ds+lf (2xs — xs°) ds
2 0 2 x
1(253 s) 1( ) 53)1
== —x= xs? —x—
2\3 773,72 3,
SRRV | [ AN (ENE
=5 &)+ 2((x 3) (x 3))
:%(Zx—xg) 2

Verification The solution is now verified by solving the same problem using the direct method.
The homogenous solution is y, = c¢; + czx. Since the forcing function is —x, let the particular

solution be y, = kx3,y1’, = 3kx%,y” = 6kx. Therefore 6kx = —x or k = 2. Therefore the

particular solution is y, = %lxg’ and the general solution is

1
y(x) =c +cox — gx3

Applying BC y (0) = 0 gives
1 = 0

Hence the solution becomes

Applying BC y (1) + ¢y’ (1) = 0 gives

0=2¢c,—=
1
2= 3
Therefore the solution is
1 1
y(x) = 3%~ gxg
== (2x - x3) (3)

Which is the same as (2) using Green function.
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57 Chapter 11.3, Problem 33

By using procedure in problem 30 find Green function and express solution as definite integral
for

-y +y) =[x
y' (0)=0
y(1)=0
Solution
The first step is to determine y; (x), y; (x), where these are the fundamental solutions of
y” + y = 0 where y; (x) satisfies the boundary conditions at the left end of domain (x = 0) and

Yy, (x) satisfies the boundary condition on the right end (x = 1).
Since the homogeneous solution to y”” + y = 0 is

yp (x) = ¢ cosx + ¢y sinx
Then y] = —c; sinx + ¢; cos x and y; (0) = 0 leads to c; = 0, therefore

yp (x) = cosx

cos(1)

And to satisfy y, (1) = 0 then 0 = ¢y cos 1 + ¢y sin 1, hence ¢; = —¢; (D) therefore
cos(1) .
Yz (x) = c; cos x — ¢1— sin x
sin (1)
s(1) .
=¢ |cosx — sin x
! sin (1)
Hence
x) cos(1) .
X) = cosx — sin x
V2 sin (1)
Now that y;, y, are found, the next step is to determine the Wronskian.
W (x) = Y1 Y2
Yy Y
( cos(1) . )
cos x cos x — =2 sin x
_ sin(1)
- . . cos(1)
—sinx — (smx + S €08 x)
. cos (1) . cos(1) .
= —cosx |sinx + — cosx| +sinx [cosx — — sin x
sin (1) sin (1)
o cos() cos(1) _
= —cosxsinx — — cos” x + sinx cos x — — sin® x
sin (1) sin (1)
cos (1
= —— (1) (cos® x + sin® x)
sin (1)
_cos(1)
~ sin(1)

Therefore, Green function is, using equation (iv) on page 701 of text book

G(x,s): -1 { yl(s)yZ(x) 0<s<x

pPOWKX) | y1(xX)y2(s) x<s<1
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But p(x) = 1 and W (x) = 1, and using values found earlier for y;, y,, then the above becomes

(using p(x) = 1)

) -1 coss (cosx - 2?58)) sinx) 0<s<x
G(x,s) =

—%((11; cos X (coss - zﬁf((ll; sins) x<s<1

_ sin (1) | coss (COSX - zfj((ll)) sin x) 0<s<x

cos(1) | cosx (coss - 3’;8; sins) x<s<1

cos(1)
cos x
cos(1)

€085 (sin (1) cos x — cos (1) sin x) 0<s<x
h (sin (1) coss — cos (1) sin s) x

Using sin Acos B — cos Asin B = sin (A — B) then sin (1) cosx — cos(1)sinx = sin(1 — x) and
sin (1) coss — cos (1) sins = sin (1 — s) and the above becomes

COSS :
G(X,S):{ o Sin(1-x)  0<s<x

CC::(;‘) sin (1 —s) x<s<1

And the solution is )
y(x,s) = J G(x,s) f(s)ds
0

To verify this solution, it is compared to the solution to same ODE using the direct method. Let
f (x) = x. Hence the ODE is

-y +y) =x
y' (0)=0
y(1)=0

The solution found above in (1) is now computed as
1

y(x) = Jx G(x,s)sds + J G (x,s) sds

0 x
x 1
= J €089 sin (1 — x) sds + J COSX_in (1—s)sds
o cos(1) , cos (1)
= Il + IZ (1)

The first integral is

sin(1—x) (*

1= T(l) . scos sds
(1 —
= %(1)}() (coss + ssins)y
(1 —
= M(cosx+xsinx— 1)
cos (1)
The second integral is
1
cosx )
L = cos (1) L ssin(1—s)ds
e (scos(s — 1) —sin (s — 1))%
cos (1)
= S ((cos(1=1) = sin(1 = 1)) = (xcos (x — 1) — sin (x — 1))
cos (1)
- osx (1—=(xcos(x—1)—sin(x —1)))
cos (1)
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Hence (1) becomes

sin (1 — x) . Cos X
———~(cosx+xsinx —1) +
cos (1) cos (1)

y(x) = (1—=(xcos(x—1)—sin(x —1)))

1
= (cosxsin(1 —x)+ xsinxsin(1 —x) —sin(1 — x) + cosx — x cos x cos (x — 1) — cos x sin (x — 1))

cos (1)

1
= (xsinxsin(1 —x) —sin(1 — x) + cosx — x cos x cos (x — 1))
cos (1)

1
= N (x (sinx sin (1 — x) — cos x cos (x — 1)) — sin (1 — x) + cos x)
cos

But sin A sin B—cos A cos B = — cos (A + B), using this in the above, where now x = A, B = (1 — x)
gives

y(x) = colsl (x(—cos(x+1—x))—sin(1—x)+ cosx)

1
= (—=xcos(1) —sin(1 — x) + cos x)
cos1

cosx  sin(1-x)
cos(l)_ cos (1) B

(2)

Verification The solution is now verified by solving the same problem using the direct method.
The homogenous solution to y”’ +y = 0is y, = ¢; cos x + ¢, sin x. Since the forcing function is —x,
let the particular solution be y, = kix,y;, = k1,y” = 0. Therefore kyx = —x or k = —1. Therefore
the particular solution is y, = —x and the general solution is

y(x) =cicosx +cpsinx — x
Now BC y’ (0) = 0 is applied. y’ (x) = —cy sinx + ¢z cosx — 1, therefore

0=Cz—1

Cz=1

Hence the solution becomes
y(x) =cicosx +sinx — x

Applying BC y (1) = 0 gives

0=cycos(1l)+sin(1)—1

1—sin(1)
g =—"—°=
! cos (1)
Therefore the solution is
1—sin(1
y(x) = ﬂcosx +sin(x) — x
cos (1)
_ Cosx —cosx sin (1) +sin () - x
cos (1) cos (1)
_cosx  sin(x)cos(1)— cosxsin(1)
~ cos(1) cos (1)
But sin (x) cos (1) — cos x sin (1) = sin (x — 1) = —sin (1 — x), hence the above becomes
() = &35~ S~ ®)

Which is the same solution in (2) found using Green function.
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58 Chapter 11.3, Problem 34

By using procedure in problem 30 find Green function and express solution as definite integral

for
-y = f(x)
y(0)=0
y'(1)=0
Solution

The first step is to determine y; (x), y; (x), where these are the fundamental solutions of
y” = 0 where 1 (x) satisfies the boundary conditions at the left end of domain (x = 0) and y, (x)
satisfies the boundary condition on the right end (x = 1).

Since the homogeneous solution to y”” = 0 is

yp (x) =c1 + cox
Then y; (0) = 0 gives ¢; = 0. Therefore
yi(x) =x
And to satisfy y; (1) = 0 then 0 = c,. and this leads to
Y2 (x) =1
Now that y;, y, are found, the next step is to find the Wronskian.

x 1
1 0

Y1 Y2

Y Y,

W(x) =

‘Z_l

Therefore, Green function is, using equation (iv) on page 701 of text book

-1 Y1 () Y2 (s) 0<s<x
Glx,s)= ———
= W { B y() x<s<
But p(x) = 1 and W (x) = —1, and using values found earlier for y;, y,, then the above becomes
S 0<s<x
G(x’s)_{ x x<s<1
And the solution is 1
y(x,s) = J G(x,s) f(s)ds (1)
0

To verify this solution, it is now compared to the solution to same ODE using the direct method.
Let f (x) = x. Hence the ODE now is

_yll — x
y(0)=0
y'(1)=0
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The solution found above in (1) is now computed as

y(x) = Lx G(x,s)sds + Jl G(x,s)sds

X

= Lx (s) sds + Ll (x) sds

3 0 2 x

Il
|
2
+
I
=
|
Y
\—[/\)

(2)

Verification The above solution is now verified by solving the same problem using the direct
method. The homogenous solution to y”’ = 0 is y, = ¢1 + cpx. Since the forcing function is —x,

=1

the particular solution is y, = Z'x* and the general solution is

6

1
y(x) =c1 +cox — gx?’

BC y(0) = 0 gives ¢; = 0. The solution becomes y (x) = cx — %x3 and y’ (x) = ¢; — %xz. BC

y’ (1) = 0 gives

0 1
=Cy — —
279
1
Cy = —
27
Hence the solution becomes
( ) 1 14
X)=—x— —-Xx
y 2 6

Which is the same solution in (2) found using Green function.

59 Chapter 11.4, Problem 1

Find formal solution to
—(xy’) = pxy + f (x)

where y, y’ bounded as x — 0and y (1) =0
Solution
The given ODE can be written as

~ Ly =gy + AL
X X

The corresponding homogeneous ODE

1 neo_
—;(xy) =y

(2)

Where p = x, g = 0, r = x. This was solved in the textbook at page 707. The fundamental solution

is given by y, = @, (x) = Jo (\//Tnx) where the eigenvalues A, are the roots of J, (\/Z) = 0.
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These eigenfunctions are not normalized. Therefore, the solution of the inhomogeneous ODE (1)
can be now written as

y(x) = Z by ®p (x)
n=1
Using this in (1) gives
1 "/ > >
X (xy) =p Z bn®y (x) + Z cn®p (%)
n=1 n=1

But from (2), —% (xy’)’ can be replaced by Ay, so the above becomes

S hba®n () = 1 3 bu® () + 3 0y () 3)
n=1 n=1 n=1
Where - )
x
nZ; cn®p (x) = T

¢n is now found by orthogonality. Multiplying both sides of the above by r (x) ®,, (x), where the
weight r (x) = x, and integrating gives

1 xwfbm (x)dx = i Cn 1 x®p, (x) Dy (x) dx
0 x n=1 0

1 00 1
‘[ f(x) D, (x)dx = Z cn | x®@, (x)®,, (x)dx
0 n=1 0
Due to orthogonality of the eigenfunctions, the above simplifies to

o f )@ () dx
Iol x®? (x) dx

(4)

Cn

Since ®, (x) is not normalized, f; x®?% (x) dx can not be replaced by 1. The above is left as is.
Substituting (4) in (3) and simplifying gives

Anbn = by + ¢y
Cn

b, =
(An - ﬂ)

Where A,, # p1. Hence the formal solution y = 3" | b,®, (x) can be written as

v = 3 s (Vi)

n=1 (An

Using (4) in the above gives

y(x)=§]

n=1

f(: f(x) @, (x)dx Jo (\/)L_nx)
Jol x®7, (x) dx (An —p)
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60 Chapter 11.4, Problem 2

Consider BVP
- (xy')" = Axy
where y, y’ bounded as x — 0 and y’ (1) = 0. (a) Show that Ay = 0 is eigenvalue corresponding

to &y = 1. If A > 0 show formally that the eigenfunctions are given by &, = J; (\//Tnx) where

VA, is the n*" positive root in increasing order of I (\//1_,,) = 0. It is possible to show there are
infinite sequence of such roots.

(b) Show that if m = 0,1,2,--- then f; x®p (x) @y, (x)dx = 0,m # n.

(c) Find formal solution to nonhomogeneous problem — (xy’)’ = uxy + f (x), where y,y’
bounded as x — 0 and y’ (1) = 0, where f is given continuous function on 0 < x < 1 and y is
not eigenvalue of the corresponding homogeneous ODE.

Solution

60.1 Part (a)

The given ODE can be written as
xy” +y +Axy =0 (1)

_ dy _ dydr _ dy d*y _ d (dy _OPydt _ Py 7 gL
Lett = \/Ix,thenﬁ = drdx — E\/Iandw = E(Eﬁ) = \/IWE = ‘/Id—‘/z—/l

<

[

12 12
Hence (1) becomes

t
Vi
VA" (1) + Ay’ (1) + VAty () = 0

Ay (1) + VA () + %y(t) =0

Since problem says that A > 0, then dividing by VA the above simplifies to

ty” ) +y () +ty () =0

This is Bessel ODE of zero order. Its solution is y (t) = ¢y Jy (t) + c2Y, (t). Where J, (0) = 0 and
lim;_,o Yy (#) — oo. Hence a bounded solution requires that c; = 0. Therefore the solution becomes

y(t) =cilo(t)

or in terms of x

y(x) = c1)o (\/Ix)

To satisfy the second boundary condition, since y’ (x) = c1J; (\/Xx) = —c1h (\/Zx) Therefore
the eigenvalues are roots of

]1 (‘/Zx) =0
Plotting J; (\/zx) shows that the first roots are A = 0. Numerically, the first few eigenvalues are
A = {0, 14.682,49.2185, 103,499, 177.532, - - - } ()

Hence the fundamental solution is y (x) = Jo (\/)L_nx) where A, is given by above. When 1 =
0, Jo (0) = 1. Therefore the eigenfunction associated with A = 0 is &, (x) = 1. Since there are infi-

nite eigenvalues (2), there are infinite eigenfunctions @, (x) = J, ( V/lnx) wheren=0,1,2,3,---
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60.2 Part (b)

Let @, (x),®,, (x) be any two eigenfunctions of (xy’)" + Axy = 0. Therefore each satisfies the
ODE. Hence

(x®,)" + Apx®, (x) = 0 (3A)
(x®@,)" + Apx@p, (x) = 0 (3B)

Multiplying (3A) by ®,,, and (3B) by @, and subtracting gives

Dy (x@)" + Apx @y @y, (x) = @y (XD,) " = Ay x @@y (x) = 0
Dy (x@)" = @y (x@,) " + (A = A) XDy (x) = 0

Integrating from 0 - - - 1 gives

1 1 1
J Dy, (x@),)" dx - J D, (x@),) dx + Ay — Am)J x®, P, (x)dx =0 (4)
0

0 0
Integrating Jo (x®; ) dx by parts gives

u dv
1 —r—_— . 1
J O (x@}) dx = [Dpx®) |, —J @/, (x®},) dx (5A)
0

And similarly, Integrating Jo (x®; ».) dx by parts gives

u dv
1 r——" ) 1
J @, (xp,) dx = [©nx®),], —J @/, (x ]

m

) dx (5B)
0

Substituting (5A,5B) back in (4) gives

[@mx®) ], ~ J

0

1 1 1
@), (x®,) dx — [CIJnxCID;n](l) + J‘ @), (x®,) dx + (An — Am)J x®, @, (x)dx =0
0 0

The above simplifies to
1
[@mx®), — <I>nx<I>;n](1) +(Ap — Am)J x®, P, (x)dx =0 (6)
0

The boundary terms above simplifies to
[©mx®), — @, xD), ] 0 = [Pm (1) @), (1) = @, (1) D, (1)]
But @/, (1) and @, (1) are zero. This is because of the given boundary conditions y’ (1) = 0. Hence

[®mx®), — @pxD),] :) = 0. Therefore (6) now simplifies to

1
(An - Am)f x®, 0., (x)dx =0
0
But since A, — 4, # 0, since these are different eigenvalues, then one concludes that

1
J x®,®,, (x)dx =0
0

Which is the result asked to show.
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60.3 Part (c)

The problem to solve is written as

-Gy = py+ L *)

The solution to the corresponding homogeneous ODE —% (xy’)" = Ay was found in part (a). Using
eigenfunction expansion, the solution of the nonhomogeneous ODE (A) can then be written as

y(x) = D bp®y (x) (7)
n=0

Where @, (x) = Jo (\//Tnx) ,n = 0,1,2,--- and A, are roots of —J; (\/I) = 0. Using (7) in
—(xy') = pxy + f (x) gives

l [ee) (o)
- (xy,), =X Z bp®y, (x) + Z cn®p (x)
x n=0 n=0

But since —% (xy’)" = Ay from part (a), then the above becomes

i Anbn @, (x) =H i b,®, (x) + i cn®p (x) (8)
n=0 n=0 n=0
Where - )
X
;) cn®y (X) = T

¢n is now found by orthogonality. Multiplying both sides of the above by r (x) ®,, (x), where the
weight r (x) = x, and integrating gives

Jl x&q)m (x)dx = ¢ J’l x®p (x) Dy (x) dx + i Cn 1 x®p (x) @py (x) dx
0 X 0 n=1 0
1

Jl f(x)®p, (x)dx = ¢ Jl x®g (x) Dy, (x) dx + i cn | x®@, (x) P, (x)dx 9)
0

0 n=1 0

For m = 0, the eigenfunction is ®, (x) = 1, and the above becomes

1 1
Jf(x)dx:cojxdx
0 0
51,73
=Cy|— = —
2], 2

1
co = ZJ f(x)dx (10)
0

Therefore

For m > 0, (9) becomes
1 =) 1
[ r@en@ar=3 e [ x@0000 00 dx
0 n=1 0

Due to orthogonality of the eigenfunctions from part (b) L: x®,, (x) @y, (x)dx = 0 for m # n, and
the above simplifies to

[ f @@ () dx
fol x®? (x)dx
97
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Since @, (x) is not normalized, f; x®?% (x) dx can not be replaced by 1. The above is left as is.
Substituting (10,11) in (8) and simplifying gives

i Anbn®, (x) = i bn®, (x) + i cn®y (x) (12)
n=0 n=0 n=0

For n = 0 only, and since A, = 0 then (12) gives
0 = pby®g (x) + co®@o (x)

But @ (x) = 1, hence

Ozybo-l‘C()
boz—@
U

For n > 0, then (12) gives

S dbnn (0 = 1S bubn (1) + > enb (3)
n=1 n=1 n=1

Anbn = by + ¢y

Cn
b, =
T (- )
Where A,, # p1. Hence the formal solution y = 3" | b,®,, (x) can be written as

Y (x) = body (x) + i by (x)

=_c_0+i(/1 o (Vi)
v L@k (\/Ex) dx
—H) I xJ? (\/_x) dx

—Z Llf(x)dx+z i Jo (VAnx)

v L f@U (\/)t_nx) dx
k) £

y(x)=—§£f(x)dx+zz Jo (VAa)

61 Chapter 11.4, Problem 3

Consider — (xy’)" + k;zy = Axy. with y,y” bounded as x — 0 and y (1) = 0, where k is positive
integer. (a) using t = Vx show the ODE reduces to Bessel of order k. (b) show formally that
the eigenvalues Ay, Ay, --- of the given differential equation are the squares of positive zeros
of Jk (\/I) and that the corresponding eigenfunctions are &, (x) = Ji (\//_1x) It is possible to

show there as infinite sequence of such zeros. (c) Show that the eigenfunctions ®,, (x) satisfy the
orthogonality relation

1
J x®,, (x) P, (x)dx =0 m#n
0
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(d) Determine the coefficients of the formal series expansion f (x) = X, a,®, (x). (e) Final
formal solution of the nonhomogeneous problem

k.2
—(xy")" + ~y=pxy+ f(x)

With y, y’ bounded as x — 0 and y (1) = 0, where f is given continuous function on 0 < x < 1
and p is eigenvalue of the corresponding homogeneous problem.
Solution

61.1 part (a)
The ODE to solve is
, Kk
-(xy) + —y-Axy=0
x

Note: The problem seems to not have mentioned that A > 0 here as well, as in the problem above
it. This condition is needed to fully solve this problem with y, y’ bounded as x — 0 and y (1) = 0.
The ODE can be written as

=0 (1)

d d d d? d
Lett = Vix, then 3 = $4t = VT and $4 = £ (9VI) = VASY 4L = VITIVI = A4,

Hence (1) becomes
T/ly" 1)+ YAy’ (£) + y (1) (/1— - —\/I)
NI @)+ Vi 0+ Iy ) - ’%)
y =

2.1

'y +ty’ + (2 - KP)

This is Bessel ODE of k order.

61.2 Part (b)

The solution to the above ODE is known to be

y(t) = crJi (t) + c2Yi (2)

Where Ji (0) = 0 and lim;_,q Y () — oo. Hence a bounded solution requires that ¢, = 0. Therefore
the solution becomes

y(t) = cJi (1)

Or in terms of x

y(x) = ek (\/Zx)

To satisfy the second boundary condition y (1) = 0 gives

c1Jr (\/I) =0
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Non-trivial solution implies Jj (\/I) = 0. Therefore the eigenvalues are the square of positive

roots of this equation. Even though there are negative and positive roots for Ji (\/Z) = 0 but for
real root, A must be non-negative. It assumed A > 0. There are infinite number of positive roots
for Ji (\/I) = 0. Hence the eigenfunctions are

CDn(X)=]k(\/Zx) n=1273,:--

Where A, are square of the all positive zeros of Ji (\/I) =0.

61.3 Part(c)

Show that the eigenfunctions @, (x) satisfy the orthogonality relation

1
J x®p, (%)@, (x)dx =0 m#n
0

Let @, (x), P, (x) be any two eigenfunctions of — (xy’)" + k;zy = Axy where now &, (x) =

Tk (\/)L_nx) and @, (x) = Ji (\me) . Therefore each satisfies the ODE. Hence

— (x®;) " + k;@,, (x) = Apx®, (x) =0 (3A)

- (x@.,) " + k;cbm (x) = Apx®@p, (x) = 0 (3B)

Multiplying 3A by ®,,, and 3B by &, and subtracting gives

2 2
~®p, (x@) " + cpmk—@n (%) = 1y x @, @), (x) — (— (@, x®,,)" + k—c1>n<1>m (%) = 1x®,®p, (x)] =0
X X

, k? , kP
@y, (x@),)" + — @Dy (x) = Anx P @y, (x) + @y (xD),) " — — PPy, (%) + Ay x PPy (x) = 0
x x

— (x®@,)" + (x®@,)" + (Am = An) X @y (x) = 0

Integrating from 0 - - - 1 gives
1 1 1
J D,y (xP),) "dx - J D, (x@),) "dx + (A, — Am)j x®,®,, (x)dx =0 (4)
0 0 0
Integrating Jol D,y (xP),) " dx by parts gives
u dv
NN . 1
J D (x®),) dx = [Pmx®),], —J @, (x®},) dx (5A)
0
And similarly, Integrating f; @, (x®},)" dx by parts gives
u dv
1 —r—_—" . 1
J ®, (x®p,) dx = [©px®), |, - j @, (x®,,) dx (5B)
0 0

Substituting (5A,5B) back in (4) gives

1 1 1
[(Dmx@;l](l) - J @), (x@),) dx - [cpnxcp;n]; + J @), (x@),) dx + (A, — }Lm)J x®,®,, (x)dx =0
0 0 0
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The above simplifies to
) 1
[©mx®), — @ux®), |, + (An — Am)J x®, D, (x)dx =0 (6)
0

Let A = [<I>mx<l>;1 - CIDnXCD;n] (1), then the boundary terms above simplifies to

A = [0 (1) @, (1) = @n (1) @, (1)] = lim [xDp () D7, (x) = xp (x) 7, ()]

But @, (1) and ®,, (1) are zero. This is because of the given boundary conditions. Hence the above
simplifies to

[fl)mx(I);l O, xP;, ]0 hm x (P, (x) D), (x) — Py (x) D), (%)) )

But since both @, (x), @, (x), ®;, (x), ®;, (x) are bounded as x — 0 then the above vanishes. This
means the all the boundary terms are zero and (6) simplifies to

1
An - Am)f x®, P, (x)dx =0
0
But since A, — A, # 0, since these are different eigenvalues, therefore

1
J x®,P,, (x)dx =0

0
Which is the result asked to show.

61.4 Part (d,e)

This is both parts combined. To solve — (xy’)" + k;zy = pxy + f (x), we start with dividing by x to
get the ODE to the form
1, K (x)
-Gy + Gy = u+f (1)

The homogeneous ode —% (xy") + i—; y = Ay was solved in part (a,b). And since the problem says
that A # y, then the solution to the above nonhomogeneous ODE is

y(x) = D bn®p (x) (1)
n=1
Where @, (x) are eigenfunctions of the homogeneous ODE found above to be

‘Pn(x)=Jk(\/A_nx) n=1,23--

Substituting (2) in RHS of (1) gives
1 " k2 = -
X (xy’)" + Fy =H Z bn®y (x) + Z cn®p (x)
n=1 n=1

Where X7, ¢, ®, (x) = @ But —% (xy’) + )’j—iy = Ay from part (a,b). Therefore the above
becomes

i Anbn®p (x) = p i b,®, (x) + i cn®@, (x)
n=1 n=1 n=1
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Anbn = by + ¢y

c
b, = —=
An— 1

What is left is to to find ¢, (called a, in this problem). Since >, ¢, @, (x) = @, then applying
orthogonality gives

Cn jl r (x) ®% (x)dx = Jl r(x &Cl)n (x)dx

0 0 X

But r (x) = x, and the above becomes

Cn Jl x],f (\/A—nx) dx = Jl () Jk (\/Ex) dx
0 0
) [3 £ @)k (\//Tnx) dx
e Iol xJ? (\//Tnx) dx

This complete the solution.

y(x) = 2 bnJk (\/A—nx)
= ,,ij{ n ﬂ]k (\/A—nx)

An —
i [y £ @) Ji (\//Tnx) dx Ji (\/EX)

L Jo (V) de AT

62 Chapter 11.4, Problem 4

Consider Legendre equation — ((1 — x?) v) " = Ay subject to boundary conditions y (0) = 0 with
y,y’ bounded as x — 1 and ®; (x) = P;(x), @5 (x) = P3(x), D, (x) = Pyp—1 (x) corresponding
to eigenvalues Ay = 2,1, =4-3,--- , 1, = 2n(2n —1). (a) Show that the eigenfunctions ®, (x)
satisfy the orthogonality relation

JIQDm(x)(Dn(x)dx:O m#n
0

(b) Final formal solution of the nonhomogeneous problem — ((1 — x?) y’) "= py + f (x) where
y (0) = 0 with y, y’ bounded as x — 1 where f (x) is continuous function on 0 < x < 1 and p is
not eigenvalue of — ((1 — x?) y’) "=y

Solution

62.1 Part(a)

Let @, (x), ®,, (x) be any two eigenfunctions of — ((1 — x?) y’) " = )y associated with eigenvalues
An, Am, where @, (x) = P, (x) and ®,,, (x) = P,, (x). Therefore each satisfies the ODE. Hence

(1-x%) @, (x))" +2,@p = 0 (3A)
(1=x%) @, (x)" + Am®m = 0 (3B)
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Multiplying 3A by ®,, and 3B by ®,, and subtracting gives

D (1= %) ), () + 24P = (@ (1= 2%) @, (1) + Ay ) = 0
D ((1=x%) @ (%)) = @ ((1=x%) @, (%) + (An = Ap) @ @py = 0

Integrating from 0 - - - 1 gives (all upper limits below show be lim,_,(- Iol " instead of f; but to
simplify notation, the latter is used and at the end, it is switched back to former.

1

@, ((1-x%) @, (x)) dx + (An — Am) r O, D, (x)dx =0 (4)
0

[ (1) @7 00 - |

0 0

u dv

— )
@, ((1-x%) @), (x)) dx is integrated by parts, giving

The first integral in (4) _[01

1

L D (1= x) @) (1)) dx = [@ (1 - x°) @ ()] - L o ((1-+%) @, (x)) dx

= [®m (1-x%) @, (x)](l) - L @), ((1-x%) @, (x)) dx (4A)

u dv

—
Similarly, the second integral in (4) fol @, ((1-x%) @, (x)) "dx is integrated by parts, giving

1

Ll @y (1= x2) @ (1) dx = [ @ (1 - x2) @ ()] - L o' ((1-x%) ®, (x)) dx

= [®m (1-x%) @), (x)](l) - Ll @, ((1-x%) @, (x)) dx (4B)

Substituting (4A) and (4B) back into (4) gives

1

[ (1-57) @, 0]} - [ (1= ) &, () -
0
([cpm (1-2%) @, ()] - r @' ((1- %) ¥, (x)) dx)

’ 1
+ (A, - Am)J $,0,, (x)dx =0

0

Terms cancel and the above reduces to
(@ (1-x%) @, ()], = [®m (1 x%) @} ()], + (An — Am)f ®,®,, (x)dx = 0
0

(@ (1 - x%) @, (x) — Py, (1 —x7) @), (x)](l) + (A - Am)fl ®,P,, (x)dx =0 (5)
0

Let A = [@p, (1= x?) @), (x) — D (1 — x%) @, ()] (1). The boundary terms above are evaluated as
follows

A= 31c1Lnl [@m (x) (1= x%) @), (x) = Ppy (x) (1 = x%) @, (x)] = (Prm (0) @}, (0) — Dy, (0) D}, (0))
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Since ®,, (0) = 0, ®,, (0) = 0, the above simplifies to
A= lim1 [d)m (x)(1- xz) P (x) = Dy (x) (1 - xz) 0} (x)]

= lim (1 - x) [®p () 7, (x) = Dy (x) ¥}, ()]

Since @, (x), D}, (x), Dy, (x) D), (x) are all bounded as x — 1 then the above goes to zero in the
limit. Which means all boundary conditions term vanish. Hence (5) reduces to

1
(o - Am)L By () dx = 0

But since A,, — A, # 0, since these are different eigenvalues, therefore
1
J D, D, (x)dx =0
0

Which is the result asked to show.

62.2 Part (b)

Since A # p, then the the solution to nonhomogeneous ODE is
y(x) = D bn®y (x) (1)
n=1

Where @, (x) are eigenfunctions @, (x) = Py,_1) (x). Substituting (1) in — ((1 - x?) y’)" = uy +
f (x) gives

- ((1 _x2) y,), = ﬂZlbnq>n (x) + chq)n (x)

n=1

Where 3% ¢, @, (x) = f (x). But — ((1 - x?) v//) " = Ay, therefore the above becomes

i Anbn®p (x) = p i b,®, (x) + i cn®, (x)
n=1 n=1 n=1

Anbn = by + ¢y,
Cn

_)Ln_,u

What is left is to to find c,. Since 2} | ¢, @, (x) = f (x), then applying orthogonality gives

1 1
an r (x) ®% (x)dx = J r(x) f (x)®, (x)dx

0 0

But r (x) = 1, and the above becomes

1 1
en || P 0 = £ Ranny ()

_ Jo f 6 Panmy) (o) dx
Jo Py () dx

Cn

104



This complete the solution.

8

y(x) = Zb Pan-1) (%)

n=1

P(Zn 1 (x)

M8 ||M8

/1
J f(x) Pan-y) (x) dx Pion-1) (x)
I (2n-1) (X) dx An = K

3
Il
—_

63 Chapter 11.4, Problem 5

Equation (1 —x?) y” — xy’ + Ay = 0 is Chebyshev’s equation. (a) show it can be written as

' A
—(Vl—xzy') =Wy —1<x<1
- x

(b) consider boundary conditions y, y’ bounded as x — —1 and x — +1. Show that the problem
is self adjoint. (c) Show that

'L,
-1 V1 -—x?
Where T, (x) are the eigenfunctions :Ty (x) = 1, T} (x) = x, T (x) = 1 — 2x?%, - - - and eigenvalues
are \, =n’forn=0,1,2,---
Solution

63.1 Part(a)
Writing the ODE (1 - x?) y” —xy’ + Ay = 0 as
P(x)y"+Qx)y +R(x)y =0

Where P (x) = (1 - x?),Q (x) = —x, R(x) = A, then the integrating factor is

= LI Fax
1 I(l:;)dx
= e
(1-x?)

But f ﬁdx = %lnll - x2|, therefore e21=*| = V1 — 2 and the above becomes = —

1-x2°
Hence the SL form is

(uPy’) + pR (x)y = 0

! (1—x2)y')’+ ! Ay=0
V1 — x? V1 — x?
’ 1
(V1= <2y =
(Vimey) = =g
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63.2 Part (b)

A problem is self adjoint if
(L{u],v) = (u,L[v])
Where u, v are any two arbitrary eigenfunctions of the ODE which therefore by definition satisfy

the ODE and the boundary conditions as given. Starting with (L [u], v) and it is evaluated to see
if it leads to (u, L [v]). The operator is defined as (from part (a)) as

L[y] =—(\/1——xzy’),= —_y

1 —x2

Therefore
do

e e u
’

(L[u],v) = J_ll - (mu) o dx

Integrating by parts gives

(L[u],v) = [— (mu') v] 1_1 - le - (mu') v'dx

u

—_——
—

= [— (mu') v] 1_1 - J_l - (mv') u dx

dv

Integrating by parts again gives

(Llul o) = |~ (V=) o

-1 -1

(=)o - - () ]

r 1 1 ’
= [-V1-x2u'v+V1- xzv'u] + j - (Vl - xzv’) udx
] -1 J

= >\/1 - x2(v'u - u’v)] il + (u, L [v])

1
Therefore the ODE is self adjoint if the boundary terms vanish. Let A = [‘Vl —-x2(W'u—-u'v)| .

-1
Evaluating this gives

A= J161_>rn1 V1-x%@0 (x)u(x)—u (x)v(x)) — xli_)nzl V1-x%0 (x)u(x)—u (x)v(x))

But since u,u’ are bounded as x — —1 and x — +1 and also v, v’ are bounded as x — —1 and
x — +1, then this shows that A — 0. Therefore

(L[u],v) = (u, L[v])
Hence the ODE is self adjoint.

63.3 Part(c)

Since T, (x), Ty, (x) are two eigenfunctions of — (V 1- xzy’) = \/1172/@ then each satisfies the
X
ODE. Hence

(WT;)’ + \/11——x2A"Tn -0 (3A)
(Vi—xry) + — —
V]l —x
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Multiplying 3A by T,,, and 3B by T}, and subtracting gives

T (VI=°T;) "y vl_AnTan - (Tn (WT,;)' + —AanTm) =0

1 —x2 1 — x?2

T, (WT,;)' T (WT,;)' + (= Am) ﬁTan -0

Integrating from —1- - - 1 gives

Jl Ty (WT,;)'dx - J

-1 -1

1 ’ 1 T.T
To | V1= x%T, ) dx+ (A, —Am)j 2% dx=0 (1)
( ) -1 V1 —x2

Integrating by parts the first integral in (1) above gives
1 , 1 1
J T, (V1 - xZT,;) dx = [me/l - xZT,;] - j T, (V1 - xZT,;) dx (1A)
-1 - -1
Integrating by parts the second integral in (1) gives
1 , 1 1
J T, (V1 =x7Ty,) dx = [:r,,\/1 - sz,'n] - J T/ (V1 - sz,'n) dx (1B)
-1 -1 -1
Substituting (1A) and (1B) back into (1) and simplifying gives
1 11 "t T,T,
[me/l - xZT,;] - [T,,\h T =) | —Edx =0
-1 1-1 J-1 V1 —x2

11 rl T T
_ ¥27! _ _ 427 _ m-n —
[Tm\/l ST, - TLVT=T, |+ A | ldx=0

11 rl T.T
V1 - x2 (T, T, - T,T,, +(An = Am) 2T dx=0 (1C)
[ ( )_—1 J-o1 V1 — x2

1
Let A = [\/1 =X (TT, - TnT,;)] , then
-1

A= J1{1_)rr11 V1 —x2 (T, (x) T, (x) = Tn (x) Ty, (%)) — xh—>n}1 V1 —x2 (T (x) T, (x) = Ty (x) T, (x))

But since T, (x), Tp, (x), T, (x), T,, (x) are all bounded as x — —1 and as x — +1, then A — 0.
Therefore (1C) becomes

UT,T,
(An—am)I mR dx =0
-1 V1 —x?

But since A,, # A, since m # n, then
! Tan

dx=0
-1 V1 — x2

Which is what we are asked to show.

64 Chapter 11.5, Problem 2 (With interactive animation)

Find displacement u (r, t) in vibrating circular elastic membrane of radius 1 that satisfies the
boundary conditions
u(L,H)=0  t>0
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And initial conditions

u(r,0)=0
ur (r,0) =g(r)

For 0 < r <1, where g(1) = 0.
Solution
The wave equation is u;; = a? (uxx + uyy). In polar coordinates this becomes

1 1 1

— Ut = Upr + —Ur + —Uge
a r r

Due to circular symmetry, the above simplifies to

1

—SUtt = Upr + —Ur
a r

Applying separation of variables. Let u = T (t) R (r). Substituting this in the above PDE gives
1 144 r” 1 ’
—T"R=R'T +-RT
a r

Dividing by RT results in
1 TN R/l 1 RI
Sl el
a’> T R rR
Where A is the sepration constant. For A > 0 (it is known A = 0 is not eigenvalue, as well as there
are no negative eigenvalues.) The above gives two ODE

—)2

T” + A2a*T =0
And
rR”(r)+R (r)+ A*rR(r) =0 (1)

With the boundary conditions R (1) = 0 and to R (0) is bounded. This comes from physics, since
one expects the vibration not to blow up in the center of the membrane. The ODE (1) is now
transformed to Bessel ODE using

E=Ar
Hence 4R = d—lgd—f = /13—? and Zz—rlf = AZ%. Therefore (1) becomes

%)LZR” (&) + AR’ (&) + /12§R & =0

The above simplifies to
ER" () + R (§) +ER(£) =0

The above is Bessel ODE of order zero. Its solution is

R(&) = c1Jo (&) + c2Yo (&)

Converting back to r the above becomes
R(r) = c1Jo (rd) + c2Yo (rd)

Since R(r) is bounded as r — 0, then ¢; = 0 as Y, (rA) blows up at r = 0. Therefore the radial
solution becomes

R(r) = cio (r2)
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At boundary conditions R (1) = 0 the above becomes
0 =cijo(d)

Non trivial solution requires Jy (A1) = 0. Therefore the eigenvalues are the the positive roots of
Jo (1) = 0. The first few eigenvalues are A; = 5.78319, A, = 30.4713, A3 = 74.887, - - - . Hence

R, (r) = cnJo (Anr) n=123,---

Now the time ODE is
T + 2*a°T = 0

Since A > 0 then the solution is

T, (t) = A, cos (A,at) + By, sin (A,at)
Therefore the fundamental solution is

up (r,1) = Tn (t) Ry (r)

And by superposition, the general solution is

u(r,t) = i (Ap, cos (Apat) + By sin(A,at)) Jo (Anr) (1A)

n=1

Where the ¢, is merged into A, B, due to the product. At t = 0 and since u(r,0) = 0, the
above becomes

0= ZAnJO (Anr)
n=1

Hence A, = 0. The solution simplifies to

u(r,t) = i By, sin (Apat) Jo (A1)
n=1

Taking time derivative gives
uy (r,t) = Z BnAnacos (Anat) Jo (Anr)
n=1

At t = 0, and from initial conditions, the above becomes
g(r)= Z BnAnao (Anr)
n=1

Applying orthogonality, and since the weight is r, therefore

1 1
j rg (r) Jo (Ayr)dr = BnAnaJ r]o2 (Apr)dr

0 0
g o ! s rlg(rno(anr)dr o
Ana Io rJ¢ (Anr)dr

Therefore the final solution is

u(r,t) = i By sin (Anat) Jo (A1)
n=1

With B,, given by (2).

The following is an animation of the above solution. a = 0.2 and g(r) = r was used. This
runs inside the PDF (need to use standard PDF reader to run the animation. Might not run inside
Chrome browser PDF reader).
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65 Chapter 11.5, Problem 3 (With interactive animation)

Find displacement u (r, t) in vibrating circular elastic membrane of radius 1 that satisfies the
boundary conditions
u(l,H)=0  t>0

And initial conditions
u(r,0)=f(r)
uy (r,0) =g (r)

For 0 < r < 1, where g(1) = 0.

Solution

The same steps are used to reach the general solution as was done in the above problem. The
difference is when initial conditions are used to determine the coefficients.

The general solution from the above problem was found to be

u(r,t) = i (Ap cos (Anat) + By sin (Anat)) Jo (Anr) (1A)
n=1
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Att=0 .
f(r) = ZAnJO (Anr)
n=1

Applying orthogonality, and since the weight is r results in

J‘l I’f (r) Jo(Apr)dr = A, Jl r]02 (Anr)dr
0 0

L L0 sOwnar
f; rJe (Anr)dr

Taking time derivative of the solution (1A)

[Se]

u;(r,t) = Z -A, \/A_na sin (Anat) + ByAnacos (A,at) Jo (Anr)

n=1

At t = 0, and from initial conditions, the above becomes

g(r) = Z BnAnalo (Anr)
n=1

Applying orthogonality, and since the weight is r, therefore

1 1
J rg (r) Jo (Aur)dr = anlnaj r]o2 (Apr)dr
0 0
5 1ﬁ?mkamm "
Ana Io rJi (Aur)dr

The two coefficients A,,, B,, are now found. Therefore the final solution is

u(r,t) = Z (A,, cos (\/A—,,at) + B,, sin (\/Zat)) Jo (\/Zr)
n=1
With A, given by (2) and B, given by (3)
The following is an animation of the above solution. a = 0.2, g(r) = r and f(r) = 1 — r was
used. This runs inside the PDF (need to use standard PDF reader to run the animation. Might not
run inside Chrome browser PDF reader).
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66 Chapter 11.5, Problem 4

The wave equation in polar coordinates is

1

Ut = Urr + —u, + —U6o

a r r

Show that if u (r,0,t) = R(r)®(0) T (t) then R,®, T satisfy the ODE’s

r’R” +rR + (A*r* —=n*) R=0
0" +n’0 =0
T"” + 22a*T =0

Solution
Letu(r,0,t) = R(r)© (0) T (t). Substituting in the wave PDE gives

1 1 1
—T"RO =R"TO + ~R'TO® + —O"RT
a? r r2
dividing by ROT gives
1T”_R”+1R'+ 10”7 2
2T R rR r20
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Where A is separation constant. The above now become

lT_” =_)2
at T
R/I 1R/ 1 @//
— =+ =—=-22
R rR r20
The second ODE above can now be written as
RII R/ 144
PPe— tr—+ — = —r?)?
R R C)
144 Rl @II
Pe—tr—+r’2=—-——=n°
R R ®

Where n is the new separation constant (I do not like using n for this, but this is what the book

did). The above now gives the ODE’s

144
C)
4 ’
rP— +r—+ri% = n?

R R
Therefore (1,2,3) becomes

T" +a* AT =0
®” +n’® =0
r’R” +rR' + (r*2* = n*) R=0

Which is what the problem asked to show.

67 Chapter 11.5, Problem 5

(1A)
(2A)
(34)

In the circular cylindrical coordinates r, 8, z defined by

x =rcost
y=rsind
z=1z

Laplace equation is
1 1

Urr + —Ur + —Ugg + Uzz = 0
r r

(a) Show that if u (r,6,t) = R(r)© (0) Z (z) then R, ©, Z satisfy the ODE’s

r’R” +rR + (A*r* —=n*) R=0
®” +n*@ =0
7' -2Z=0

(b) Show that if u (r, 8, z) is independent of 6 then the first equation in (a) becomes

PR +rR + 2%r*R =0

The second is omitted altogether and the third is unchanged.
Solution
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67.1 Part(a)

Letu(r,6,z) = R(r)© () Z (z). Substituting in the wave PDE u,, + %ur + rizugg + Uy,

1 1
R"®Z + -R'OZ + —2@)”RZ +Z"RO =0
r r

dividing by R®Z gives
R// 1 RI 1 @// Z// )
—t——+t—=—-—=-1
R rR r20 z
Where A is separation constant. The above now become
Z'-2Z=0
RII 1 Rl 1 @H
— =t =—=-22
R rR r2e
The second ODE above can now be written as
R// R/ @//
rP—4r— 4+ — = —r’)?
R R ©
R// R’ @//
P—tr—+ri=——=n?
R R €]
Where n is the new separation constant. The above now gives the ODE’s
@//
—_ = nz
S
rP—4r—+ri22=n?
R R
Therefore (1,2,3) becomes
Z'-2Z=0
0" +n*0=0

r’R” + rR + (rz/l2 - nz) R=0

67.2 Part (b)

= 0 gives

(3)

(1A)
(2A)
(34)

When no dependency on 6 then the ODE becomes u,, + %ur +uy, =0.Letu(r,z) = R(r)Z (2).

Substituting into the wave PDE

1
R'Z+-R'Z+Z"R=0
r

dividing by RZ gives
R// 1 R/ Z// 5
—_t-— = —— = —/1
R rR V4
The above gives
R// 1 R/
— +-—=-)?
R rR
_Z// _ _/12
Z

1
R'+-R +A*R=0
r
7" -NZ=0
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68 Chapter 11.5, Problem 6

Find steady state solution in semi-infinite rod 0 < z < 00,0 < r < 1 if the temperature is
independent of 6 and approaches zero as z — co. Assume u (7, z) satisfies boundary conditions

u(l,z)=0 z>0
u(r,0) = f(r) 0<r<i1

Solution
The PDE is

1
Urr + —Up + Uy, =0
r

By separation of variables, as was done in problem 5 above, this gives

R+ 1R 4 A2R = 0 1)

r

R(1)=0
lin})R (0) — bounded
And

Z"-2Z=0 (2)
Z(0) = f(r)

lim Z(r) — 0

The solution to (2) is known to be
R (1’) =cnlo ()Lnr)
Where 4, are the positive roots of Jy (1,) = 0. The solution to (2) is

Z (z) = Ape™* + Bpe n?
Since u goes to zero as z — oo, then this implies A, = 0. Hence
Z (z) = Bpe *n*

Hence the overall solution becomes
u(r,z) = > Bue % Jo (Anr)
n=1

Where ¢, is combined with B,. To find By, using the final boundary condition u (r,0) = f(r)
gives

£ =S Budo (ar)
n=1

Applying orthogonality and using the weight of r gives

J‘1 l’f (r) Jo (Apr)dr = B, Jl r](ﬂz (Apr)dr
0 0

ol f Ok Ganydr
f; rJ¢ (Anr)dr

Hence the solution is now complete. It is given by

wrpy = SR TT OB

n=1 L: rJE (Anr)dr
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69 Chapter 11.5, Problem 7

7. The equation
Uy + Uy + kKv=0

is a generalization of Laplace’s equation and is sometimes called the Helmholtz!'? equation.

(a) In polar coordinates the Helmholtz equation is
Uy + (1/1) 0y 4+ (1/7)vge + k*v = 0.
If v(r,0) = R(r)® (), show that R and © satisfy the ordinary differential equations
PR +rR + (K*r* —)3»)R=0, ©"+2°0=0.

(b) Consider the Helmholtz equation in the disk r < c. Find the solution that remains
bounded at all points in the disk, that is periodic in 6 with period 27, and that satisfies the
boundary condition v(c, 6) = f(6), where f is a given function on 0 < 6 < 2.
Hint: The equation for R is a Bessel equation. See Problem 3 of Section 11.4.

Solution

69.1 Part(a)
Substituting v (r, 8) = R(r) © (0) into the PDE gives

’” 1 ’ 1 ’” 2
R"®+ -R'©+ 0"R+k"RO =0
r r
Dividing by RO gives

RII 1 Rl 1 @Il

to—+——+k*=0
R rR r2e
R// RI @/I
rPP— tr—+rkl=—— = )%
R R (S

Where A is the separation constant. This gives
144 ’

Pt r— +2%kE = A2 =0
R R

And .,
_ ®_ =22
®

Hence

rR” +rR + R (r’k* - n®) =0
Q" +20=0
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69.2 Part (b)

Starting with ©”" + A2© = 0. The eigenvalue A can not be negative. The following two cases are
considered.

Case A =0

Solution is

0 (9) =10+
The boundary conditions are periodic with period 2, meaning
©(0) =0 (27)
Q' (0) =0’ (27)
Applying first BC gives
Cy =C12m + ¢ (1)

Applying second BC gives
1 =0C (2)

So ¢; can be any value. But to solve (1) ¢; must be zero. Hence first BC now gives
Co = Cy

Which means c; can be any value, say 1. Therefore A = 0 is an eigenvalue with eigenfunction
CI)() (9) =1

Case A >0

The solution now is

©(0) = Acos (A0) + Bsin(A9)

The boundary conditions are periodic with period 27, meaning

©(0) = © (27)
©'(0) = @' (27)

Applying the above boundary conditions gives

A = Acos(A2r) + Bsin (A27)
BA = AAsin (A27) + BA cos (A27)

This means A must be an integer n = 1, 2, - - - for the above relations be satisfied. Since only when
n is an integer, the above gives A = A and BA = BA. Hence the eigenfunction in this case is

®, (0) = Ay, cos (nf) + By, sin (nd) n=12---

Now that the eigenvalues are found, the solution to the R ODE is found. Summary of the above

result: The eigenvalues are n = 0 with eigenfunction ®, (f) = 1 and n = 1, 2,3, --- with eigen-
function ®, (0) = A, cos (nf) + B, sin (nd).
CaseA=n=0

In this case, the R ODE above r?R” + rR’ + R (rzk2 - Az) = 0 reduces to
r*R” + rR’ + Rrék? = 0

let
t=rk



Therefore R’ (r) = R’ (t) k and R” (r) = R” (t) k. Substituting these in the above ODE gives

t2

t t?
v k*R” (t) + EkR’ (r) + Rﬁkz =0

t’R” (1) + tR' (t) + t’R(t) = 0
This is now Bessel ODE of order zero. Its solution is
Ro (t) = AoJo (t) + BoYo (1)
Converting back to r, the above becomes
Ry (r) = AoJo (rk) + BoYo (rk)
Since R is bounded at r = 0, this implies By = 0, since Y, (rk) blows up at r = 0. Hence

Ry (r) = AoJo (rk)

This is the solution for eigenvalue n = 0.
CaseA=n>0
The Bessel PDE now has the form r?R” (r) + rR’ (r) + (r?k? — n®) R(r) = 0. To convert the
ODE to standard Bessel form let
t=rk

Therefore R’ (r) = R’ (t) k and R” (r) = R” (t) k. Substituting these in the above ODE gives
ﬁsz” (t) + EkR' (r)+R ﬁkz -n?l =0
k2 k k2 B
t?R” (t) +tR () + R(t) (t* —n*) =0
This is now Bessel ODE of order n. Its solution is
R, (t) =AnJn (t) + B, Y, (t)
Converting back to r, the above becomes

Ry (r) = ApJn (rk) + B, Y, (k)

Since R is bounded at r = 0, this implies B, = 0, since Y,, (rk) blows up at r = 0. Hence R(r) =
ApJy (rk). This is the solution for eigenvalue n > 0.
Hence the fundamental solution is

v (r,0) = Og (0) Ry ()
= AoJo (rk)

Since @ (f) = 1 and

Un (1,0) = @, (0) Ry (1)
= (A cos (n) + By, sin(nh)) J, (rk)

Where the constants are combined. Therefore the general solution becomes

v(r,0) = Ao (rk) + i (Ap cos (nf) + By, sin (nf)) J, (rk) (3)
n=1
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Constants Ay, Ay, B, are found from boundary conditions. At r = ¢, u(c, 8) = f (6) and the above
becomes

f(0)=AJ (ck)+ Z (A, cos (n) + By, sin(n0)) J, (ck)
n=1
For n = 0 only and applying orthogonality
2m 2m
J f(6)do = J AoJo (ck)do
0 0

2m 27
f f(9>de:AOJo<ck>j 46
0 0

= 27TA()]0 (Ck)
Hence -
_Jo f(6)de
© 7 2m)y (ck)
Andforn >0

rﬂ f(0)sin(mb)do = i 7 (A, cos (nb) + B, sin (n#)) sin (m0) J,, (ck) do
0 n=19J0

0 27 00 27
= Z Tn (ck) Ay J cos (n#) sin(m0) dod + B, Z T (ck) J sin (nd) sin (m#) do
n=1 0 n=1 0

But IOZH cos (n6) sin (m0) df = 0 for all n, m and the above now is solved for B,

7 f(0)sin(mb)db = B, i T (ck) JM sin (nd) sin (m#) do
0 =1 0

2
= By Jm (ck) ‘[ sin? (m0) do
0

= BimJm (ck) 7
Hence .
_Jo f(0)sin (n0) do
" 7 Jn (ck)
Similarly, to find A,
2 () 2
I f(6) cos(mB)do = Z (A, cos (n) + By, sin (nf)) cos (mO) J, (ck) do
0 n=14J0

= i Jn (ck) Ay Jzn cos (nf) cos (mf)do + B, i T (ck) JZH sin (nf) cos (m6) do
n=1 0

0 n=1

But Jjﬂ sin (n@) cos (mf@) dO = 0 for all n, m and the above now is solved for A,

2

i f(0)sin(mb)do = A, i Tn (ck) Jzn cos (n#) cos (mf) do
0 =1 0

2

= ApJm (ck) J cos? (mb) df
0

=AmnJm (Ck) T
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Hence

) [27 £ (8) cos (n) d6
" 7 Jn (ck)

The complete solution from (3) becomes

v(r,0) = AgJo (rk) + i (A, cos (nf) + B, sin (nh)) J, (rk)
n=1

N RAGL
* 7 2nmJ (ck)
o™ f(0)sin (n6) do
" 7] (ck)
o £(8) cos (nd) d6
" 7] (ck)

70 Chapter 11.5, Problem 8

8. Consider the flow of heat in a cylinder 0 <r < 1,0 <0 < 2w, —00 < z < oo of radius 1
and of infinite length. Let the surface of the cylinder be held at temperature zero, and let
the initial temperature distribution be a function of the radial variable r only. Then the
temperature u is a function of r and ¢ only and satisfies the heat conduction equation

o lu,, + A/ryu,] = u,, O<r<l1, t>0,
and the following initial and boundary conditions:
ur,0)=f(r, 0=r=1,
u(l,t) =0, t>0.
Show that N
w(r.t) = culo(har)e i,

n=1

where Jy(A,)) = 0. Find a formula for c,.

Solution
Let u (r,t) = R(r) T (t). Substituting into the PDE gives

1 ’ 124 1 ’
—T'R=R"T+-R'T
a r
Dividing by RT gives

1T R’ 1R _

—_— = +-—=-2?
a’ T R rR
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Where A is the separation constant. This gives the ODE

1

R’'+ =R+ MR=0
r

rR” + R+ A*rR=0

(rR) +A**R=0 (1)
With BC
R(1)=0
li_r)r(l)R (r) — bounded
And

T +a?A’R=0 (2)

ODE (1) is Sturm Liouville ODE where p = r, ¢ = 0 and the weight is r. The eigenvalue can not
be negative. Two cases to consider.

Case A =0

The ODE becomes (rR’)" = 0 which has solution rR’ = ¢; or r% = ¢y ordR = <dr.Integrating
gives

R(r)=ciInr+c;

Since R is bounded at r = 0, then ¢; = 0. The solution becomes R (r) = c,. Since R (1) = 0 then
¢z = 0. Hence trivial solution. Therefore A = 0 is not an eigenvalue.

Case A >0

The ODE now becomes rR” (r) + R(r) + A2rR(r) = 0. Let t = Ar. Hence R’ (r) = AR’ (t) and
R” (r) = A?R” (t) and the ODE becomes

t t
ZAZR” (t)+ AR’ (¢) + )LZIR =0

tAR” (t) + AR"(t) + AtR(t) = 0
tR"(t) +R (1) +tR(t) =0

This is Bessel ODE of order zero. Its solution is

R (t) = c1)o (t) + Y, (t)

Converting back to r

R (7‘) =cio (/1?') + Y, (/1?‘)
Since R is bounded at r = 0 then ¢, = 0 and the solution becomes
R (r) =clo (/17')

Since R (1) = 0 then
0=rciJo(A)

For nontrivial solution, J, (1) = 0. This gives the eigenvalues as the positive roots of J, (1) = 0.
Hence the solution is

R, (1’) =cnlo (/1,17‘)
Where A, are roots of J, (1) = 0forn =1,2,3,---. The Time ODE (2) has solution

T, (t) = Ape 4t
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Hence the final solution is

u(r,t) = > cne o (Aar)
n=1

Where constants A, ¢, are combined into ¢,. ¢, is now found from initial conditions. At ¢t = 0
the above becomes

w(r,0)= ()= > endy Uar)

The weight is r, since the R ODE in S.L. form s (rR’)’+A%rR = 0. Therefore, applying orthogonality
gives

‘[1 rf (r) Jo(Apr)dr = cy Jl r]oz (Anr)dr
0

0
o rf @) Jo Gy
L: rJe (Anr)dr

This completes the solution.

=3 [ rf (1) Jo Qar)dr

n=1 f; rJ3 (Aur)dr

e_/lflaz z‘JO (Anr)
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71 Chapter 11.5, Problem 9

9. Inthe spherical coordinates p,0,¢ (p > 0,0 < 6 < 27,0 < ¢ < 7) defined by the equations
X = pcosfsing, y = psinésin ¢, 7 = pcosa,
Laplace’s equation is
071, + 211, + (€SC* P)utgy + gy + (cOt P)uy = 0.

(a) Show that if u(p,6,¢) = P(p)© ()P (¢), then P, ©, and & satisfy ordinary differential
equations of the form

0*P" +2pP — u*P =0,
Q"+ =0,
(sin® )" + (sin ¢ cos p)d’ + (u?sin’ ¢ — A2)d = 0.

The first of these equations is of the Euler type, while the third is related to Legendre’s
equation.

(b) Show that if u(p,6,¢) is independent of 6, then the first equation in part (a) is
unchanged, the second is omitted, and the third becomes

(sin® ¢)®" + (sin ¢ cos ) D’ + (u*sin® p)d = 0.

(c) Show that if a new independent variable is defined by s = cos ¢, then the equation for
® in part (b) becomes

d*® do
(1—S2)F—2S$+M2q)=0, —1§S§1

Note that this is Legendre’s equation.

Solution

71.1 Part (a)

Let
u(p,0,¢) = P(p)©(0)P(¢)
Substituting the above in the Laplace PDE given results in

p*P"@d + 2pP’'@® + (csc’ ¢) ©”PD + d”PO + cot (§) D'PO = 0

Dividing by PO® gives
124 ’ @Il 7 @I
pz? + 2'0? + (CSC2¢) E + E +C0t(¢) 6 =0
P// P/ @/’ (D/I (D/
Pz? +2pp = (csc ¢) o o @y = I
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Where p is the first separation constant. The above gives
9 44 ’ 9
— +2p— =
P p Pp =H
@N q)ll (I)l

——COt(@a—llz:O

- (csc2 ) 5 " T

The first ODE above becomes
p*P” + 2pP’ — Py =0

And the second equation is now separated again into two additional ODE’s as follows

e” 1 @’ coty @ woo
© csc2p & csclhp D csctgp
1 @ cot(p)d’ oo e’

csc?d & csctp D sty ©
Where A is the second separation constant. The above gives the following two ODE’s

0" +220=0

And, since csc? § = —— and cot (¢) = ﬁ the third ODE is

sin? ¢

®”  sin® ¢ @’
.2 2 :2 2
sin“ p— + — +u°sin“ g = A
¢ ® tang P a ¢

124 ’

P P
sin? ng + sin ¢ cos ¢6 + p? sin® ¢ = A?
(sin® ¢) @ + (sinpcos #) @’ + (p*sin® g — A*) @ = 0

71.2 Part (b)
If u is independent of 0 then the PDE simplifies to

pzupp +2pu, + ugg + cotpuy = 0

Let

u(p, ) =P(p) 2 ()

Substituting the above in the Laplace PDE (1) results in
p*P"® + 2pP'® + ®"P + cot (¢) &P = 0
Dividing by P® gives

P// Pl q)II q)l
2

— +2p— +—+cot(¢p) —=0
Pyttt CO(¢)(D

144 ’ 7

@’
2 2
+2 = t =
p P cot (¢) u

Where p is the first separation constant. The above gives

12 ’

2 _y2p— =4°
P+ 2 = h

124 ’

) o
—E—cot(gb)g—,uz =0
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The first ODE above becomes
p*P” +2pP" — I*P = 0
And the second ODE becomes
—@"” —cot(¢p) D' — p*® =0

"+ '+ P =0
tangb K
o+ < ¢c1> +PD =0

sin ¢

(sin@) @” + (cos §) @’ + (p®sing) @ =
Multiplying again by sin ¢ to get it to the form needed gives
sin® p@”’ + (sin ¢ cos §) @’ + (u* sin® ¢) @ =

(2)

Therefore the first PDE in P (p), the second ODE in © (6) is now eliminated, and the third ODE

changes to the above.

71.3 Part (c)

The equation for ¢ found in part (b) is

sin® ¢d¢2 + (sin ¢ cos ¢) dqﬁ + (¢ sin* ¢) @ =
Let s = cos ¢, then
@ _dods
d¢ ~ ds d¢

o

= -, (-sing)
d*® d (do
o (d—)

= K (Sm $) - — (COS 9)

And

sin ¢))

Substituting (2 3) into (1) gives

sin? gb (sm $) - — (cos ¢)) + (sin ¢ cos ¢) (— (- sin ¢)) + (pPsin @) @ =

Dividing by sin® ¢ gives

d*® do do
?sinng— Ecosd) —cos¢g + 20 =0
2

o do
— sin ¢—2d—cos¢+p2d>:0
s

ds2
But cos ¢ = s and sin ¢ = 1 — cos? ¢ = 1 — s2, therefore the above reduces to
(1-5%) — ¢ _2s®® 4 o=
-5 s— =
st~ “ds T F

Which is Legendre’s equation.
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72 Chapter 11.5, Problem 10

10. Find the steady state temperature u(p, ¢) in a sphere of unit radius if the temperature is
independent of 0 and satisfies the boundary condition

u(l,¢) = f(¢), 0<¢p<m

Hint: Refer to Problem 9 and to Problems 22 through 29 of Section 5.3. Use the fact that
the only solutions of Legendre’s equation that are finite at both +1 are the Legendre
polynomials.

Solution
TO DO
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