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1 Problem 1

Expand the following functions, which are periodic in 2π
L , in Fourier series (i) f (x) = 1 − |x |

L

for −L
2 ≤ x ≤ L

2 . (ii) f (x) = ex for −L
2 ≤ x ≤ L

2

Solution

1.1 Part 1

The following is a plot of the function f (x) = 1 − |x |
L . In the plot below L = 1 was used for

illustration.
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Figure 1: Function plot

L = 1;

f[x_] := 1 - Abs[x]/ L;

p = Plot[f[x], {x, -L/ 2, L/ 2},

AxesOrigin → {0, 0}, Frame → True,

FrameLabel → {{"f(x)", None}, {"x", "Plot of function for one period"}},

BaseStyle → 14,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → Red]

Export["../images/p1_plot_1.pdf", p]

Figure 2: Code used

The Fourier series of f (x) = is given by

f (x) =
a0
2
+

∞∑
n=1

an cos

(
2π
L
nx

)
+ bn sin

(
2π
L
nx

)
(1)



3

Where L is the period.

a0 =
2
L

∫ L
2

− L
2

f (x)dx∫ L
2

− L
2

f (x)dx is the area under the curve. Looking at the plot above shows the area is made up

of the lower rectangle of area 1
2L and a triangle whose area is

( 1
2L

) ( 1
2

)
. Therefore the total area

is 1
2L +

1
4L =

3
4L. Hence

a0 =
2
L

(
3
4
L

)
=

3
2

And

an =
2
L

∫ L
2

− L
2

f (x) cos

(
2π
L
nx

)
dx

Since f (x) is an even function, the above simplifies to

an =
4
L

∫ L
2

0
f (x) cos

(
2π
L
nx

)
dx

=
4
L

∫ L
2

0

(
1 −

x

L

)
cos

(
2π
L
nx

)
dx

=
4
L

(∫ L
2

0
cos

(
2π
L
nx

)
dx −

1
L

∫ L
2

0
x cos

(
2π
L
nx

)
dx

)
=

4
L

( [
sin

(
2π
L
nx

) ] L
2

0
−
1
L

∫ L
2

0
x cos

(
2π
L
nx

)
dx

)
=

4
L

( [
sin

(
2π
L
n

(
L

2

)
− 0

) ]
−
1
L

∫ L
2

0
x cos

(
2π
L
nx

)
dx

)

=
4
L

©­­«
0︷   ︸︸   ︷

[sinπn] −
1
L

∫ L
2

0
x cos

(
2π
L
nx

)
dx

ª®®¬
= −

4
L2

∫ L
2

0
x cos

(
2π
L
nx

)
dx

Using integration by parts: Letu = x,dv = cos
( 2π
L nx

)
thendu = 1,v =

sin
( 2π
L nx

)
2π
L n

= L
2πn sin

( 2π
L nx

)
.
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The above integral becomes∫ L
2

0
x cos

(
2π
L
nx

)
dx =

(
L

2πn
x sin

(
2π
L
nx

) ) L
2

0
−

L

2πn

∫ L
2

0
sin

(
2π
L
nx

)
dx

=

(
L

2πn

(
L

2

)
sin

(
2π
L
n
L

2

)
− 0

)
−

L

2πn

(
−
cos

( 2π
L nx

)
2π
L n

) L
2

0

=
L2

4πn
sin (nπ ) +

L2

4π 2n2

(
cos

(
2π
L
n

(
L

2

) )
− 1

)
=

L2

4π 2n2
(cos (πn) − 1)

Therefore

an = −
4
L2

(
L2

4π 2n2
(cos (πn) − 1)

)
=

1
π 2n2

(1 − cos (πn))

The above is zero for even n and 2L2

4π 2n2
for odd n. Therefore the above simplifies to

an =
2

π 2n2
n = 1, 3, 5, · · ·

Because f (x) is an even function, then bn = 0 for all n. The Fourier series from (1) now becomes

f (x) =
3
4
+

∞∑
n=1,3,5,···

2
π 2n2

cos

(
2π
L
nx

)
To verify the above result, the Fourier series approximation given above was plotted for in-
creasing n against the original f (x) function in order to see how the approximation improves
as n increases. Using L = 2, the result is given below.

The original function is in the red color. The plot shows that the convergence is fast (due to
the 1

n2
term). The convergence is uniform. After only 4 terms, the error between f (x) and its

Fourier series approximation becomes very small. As expected, the error is largest at the top
and at the lower corners where the original function changes more rapidly and therefore more
terms would be needed in those regions compared to the straight edges regions of the function
f (x) to get a better approximation.
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Figure 3: Fourier series approximation, part 1

ClearAll[L, x, n, a]

L = 2;

a[n_] := 2/(Pi^2 n^2);

fApprox[x_, nTerms_] := 3/ 4 + Sum[a[n] Cos[2 Pi/ L n x], {n, 1, nTerms, 2}]

p = Table[

Plot[{f[x], fApprox[x, i]}, {x, -L/ 2, L/ 2},

Frame → True,

FrameLabel → {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue},

ImageSize → 400,

BaseStyle → 16],

{i, 1, 7, 2}

];

p = Grid[Partition[p, 2]]

Export["../images/p1_plot_2.pdf", p]

Figure 4: Code used
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1.2 Part 2

The following is a plot of the function f (x) = ex . In this plot, L = 1 was used.

x
f(
x)

Plot of function for one period

Figure 5: Function plot part 2

L = 1;

f[x_] := Exp[x];

p = Plot[f[x], {x, -L/ 2, L/ 2}, AxesOrigin → {0, 0},

Frame → True,

FrameLabel → {{"f(x)", None}, {"x", "Plot of function for one period"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red]

Export["../images/p1_plot_3.pdf", p]

Figure 6: Code used

The Fourier series of f (x) = is given by

f (x) =
a0
2
+

∞∑
n=1

an cos

(
2π
L
nx

)
+ bn sin

(
2π
L
nx

)
(1A)

Where L is the period and

a0 =
2
L

∫ L
2

− L
2

f (x)dx

=
2
L

∫ L
2

− L
2

exdx

=
2
L
[ex ]

L
2

− L
2

=
2
L

[
e
L
2 − e−

L
2

]
=

4
L

[
e
L
2 − e−

L
2

2

]
=

4
L
sinh

(
L

2

)
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And

an =
2
L

∫ L
2

− L
2

f (x) cos

(
2π
L
nx

)
dx

=
2
L

∫ L
2

− L
2

ex cos

(
2π
L
nx

)
dx (1)

Integration by parts: Let u = cos
( 2π
L nx

)
,du = −2πn

L sin
( 2π
L nx

)
and let dv = ex ,v = ex ,

therefore

I =

∫ L
2

− L
2

ex cos

(
2π
L
nx

)
dx

=

[
ex cos

(
2π
L
nx

) ] L
2

− L
2

−

∫ L
2

− L
2

−
2πn
L

sin

(
2π
L
nx

)
exdx

=

[
e
L
2 cos

(
2π
L
n
L

2

)
− e−

L
2 cos

(
2π
L
n

(
−
L

2

) ) ]
+
2πn
L

∫ L
2

− L
2

sin

(
2π
L
nx

)
exdx

=
[
e
L
2 cos (πn) − e−

L
2 cos (πn)

]
+
2πn
L

∫ L
2

− L
2

sin

(
2π
L
nx

)
exdx

= cos (πn)
(
e
L
2 − e−

L
2

)
+
2πn
L

∫ L
2

− L
2

sin

(
2π
L
nx

)
exdx

= 2 cos (πn) sinh

(
L

2

)
+
2πn
L

∫ L
2

− L
2

sin

(
2π
L
nx

)
exdx

Integration by parts again, let u = sin
( 2π
L nx

)
,du = 2πn

L cos
( 2π
L nx

)
and dv = ex ,v = ex . The

above becomes

I = 2 cos (πn) sinh

(
L

2

)
+
2πn
L

( [
ex sin

(
2π
L
nx

) ] L
2

− L
2

−

∫ L
2

− L
2

2πn
L

cos

(
2π
L
nx

)
exdx

)
The term

[
ex sin

( 2π
L nx

) ] L
2

− L
2

goes to zero since it gives sin (nπ ) and n is integer. The above
simplifies to

I = 2 cos (πn) sinh

(
L

2

)
+
2πn
L

(
−
2πn
L

∫ L
2

− L
2

cos

(
2π
L
nx

)
exdx

)
= 2 cos (πn) sinh

(
L

2

)
−
4π 2n2

L2

∫ L
2

− L
2

cos

(
2π
L
nx

)
exdx
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Since
∫ L

2

− L
2

cos
( 2π
L nx

)
exdx = I the above reduces to

I = 2 cos (πn) sinh

(
L

2

)
−
4π 2n2

L2
I

I

(
1 +

4π 2n2

L2

)
= 2 cos (πn) sinh

(
L

2

)
I =

2 cos (πn) sinh
( L
2

)
1 + 4π 2n2

L2

Using the above in (1) gives

an =
2
L

2 cos (πn) sinh
( L
2

)
1 + 4π 2n2

L2

=
2L2

L

2 cos (πn) sinh
( L
2

)
L2 + 4π 2n2

=
4L

L2 + 4π 2n2
cos (πn) sinh

(
L

2

)
Next, bn is found:

bn =
2
L

∫ L
2

− L
2

f (x) sin

(
2π
L
nx

)
dx

=
2
L

∫ L
2

− L
2

ex sin

(
2π
L
nx

)
dx (2)

Integration by parts: Letu = sin
( 2π
L nx

)
,du = 2πn

L sin
( 2π
L nx

)
and let dv = ex ,v = ex , therefore

I =

∫ L
2

− L
2

ex sin

(
2π
L
nx

)
dx

=

[
ex sin

(
2π
L
nx

) ] L
2

− L
2

−

∫ L
2

− L
2

2πn
L

cos

(
2π
L
nx

)
exdx

But
[
ex sin

( 2π
L nx

) ] L
2

− L
2

goes to zero as sin (πn) = 0 for integer n and the above simplifies to

I = −
2πn
L

∫ L
2

− L
2

cos

(
2π
L
nx

)
exdx

Integration by parts again: let u = cos
( 2π
L nx

)
,du = −2πn

L sin
( 2π
L nx

)
and dv = ex ,v = ex . The

above becomes

I = −
2πn
L

( [
ex cos

(
2π
L
nx

) ] L
2

− L
2

−

∫ L
2

− L
2

−
2πn
L

sin

(
2π
L
nx

)
exdx

)
= −

2πn
L

(
2 cos (πn) sinh

(
L

2

)
+
2πn
L

∫ L
2

− L
2

sin

(
2π
L
nx

)
exdx

)
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But
∫ L

2

− L
2

sin
( 2π
L nx

)
exdx = I and the above reduces to

I = −
2πn
L

(
2 cos (πn) sinh

(
L

2

)
+
2πn
L

I

)
I = −

4πn
L

cos (πn) sinh

(
L

2

)
−
4π 2n2

L2
I

I

(
1 +

4π 2n2

L2

)
= −

4πn
L

cos (πn) sinh

(
L

2

)
I =

−4πn
L cos (πn) sinh

( L
2

)
1 + 4π 2n2

L2

=
−4πnL cos (πn) sinh

( L
2

)
L2 + 4π 2n2

Using the above in (2) gives

bn =
2
L

−4πnL cos (πn) sinh
( L
2

)
L2 + 4π 2n2

=
−8πn

L2 + 4π 2n2
cos (πn) sinh

(
L

2

)
Therefore, from (1A) the Fourier series is

f (x) =
2
L
sinh

(
L

2

)
+

∞∑
n=1

4L
L2 + 4π 2n2

cos (πn) sinh

(
L

2

)
cos

(
2π
L
nx

)
−

8πn
L2 + 4π 2n2

cos (πn) sinh

(
L

2

)
sin

(
2π
L
nx

)
(3)

To verify the result, the above was plotted for increasing n against the original f (x) function
to see how the approximation improves as n increases. Using L = 2, the result is displayed
below. The original function is in the red color.

Compared to part (1), more terms are needed here to get good approximation. Since the original
function is piecewise continuous when extending over multiple periods, the convergence is no
longer a uniform convergence. At the point of discontinuity, the approximation converges to
the average value of the original function at that point. At about 20 terms the approximation
started to give good results. Due to Gibbs phenomena, at the points of discontinuities, the error
is largest. Here is a plot showing one period
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Figure 7: Fourier series approximation, showing one period
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ClearAll[L, x, n, a]

L = 2;

f[x_] := Exp[x];

a[n_] := 4 L/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

b[n_] := -8 Pi n/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

fApprox[x_, nTerms_] := 2/ L Sinh[L/ 2] + Sum[a[n] Cos[2 Pi/ L n x] + b[n] Sin[2 Pi/ L n x], {n, 1, nTerms, 1}]

p = Table[

Plot[{f[x], fApprox[x, i]}, {x, -L/ 2, L/ 2},

Frame → True,

FrameLabel → {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue}, ImageSize → 400, BaseStyle → 16],

{i, 1, 20, 2}

];

p = Grid[Partition[p, 2]]

Export["../images/p1_plot_4.pdf", p]

Figure 8: Code used

In the following plot, 3 periods are shown to make it easier to see the effect of discontinuities
and the Gibbs phenomena
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Figure 9: Fourier series approximation, showing 3 periods
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ClearAll[L, x, n, a]

L = 2;

f[x_] := Piecewise[{

{Exp[x + L], -3/ 2 L < x < -L/ 2},

{Exp[x], -L/ 2 < x < L/ 2},

{Exp[x - L], L/ 2 < x < 3/ 2 L}}

];

a[n_] := 4 L/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

b[n_] := -8 Pi n/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

fApprox[x_, nTerms_] := 2/ L Sinh[L/ 2] + Sum[a[n] Cos[2 Pi/ L n x] + b[n] Sin[2 Pi/ L n x], {n, 1, nTerms, 1}];

p = Table[

Plot[{f[x], fApprox[x, i]}, {x, -3/ 2 L, 3/ 2 L},

Frame → True, FrameLabel → {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue},

ImageSize → 400, BaseStyle → 16],

{i, 1, 10, 1}

];

p = Grid[Partition[p, 2]]

Export["../images/p1_plot_5.pdf", p]

Figure 10: Code used
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2 Problem 2

Find the general solution of

1. 2x3y′ = 1 +
√
1 + 4x2y

2. ex siny − 2y sinx +
(
y2 + ex cosy + 2 cosy

)
y′ = 0

3. y′ + y cosx = 1
2 sinx

Solution

2.1 part 1

This ODE is not separable and it is also not exact (It was checked for exactness and failed the
test). The ODE is next checked to see if it is isobaric. An ODE y′ = f (x,y) is isobaric (which is
a generalization of a homogeneous ODE) if the substitution

y (x) = v (x)xm

Changes the ODE to be a separable one in v (x). To determine if it isobaric, a weight m is
assigned to y and to dy, and a weight of 1 is assigned to x and to dx , then if anm could be
found such that each term in the ODE will have the same weight, then the ODE is isobaric and
it can be made separable using the above substitution. Writing the above ODE as

2x3dy =
(
1 +

√
1 + 4x2y

)
dx︷︸︸︷

2x3dy −
︷︸︸︷
dx −

︷          ︸︸          ︷√
1 + 4x2ydx = 0

Adding the weights of the first term above gives 2x3dy → 3 +m. The next term weight is
dx → 1. The next term weight is

√
1 + 4x2ydx → 1

2 (2 +m)+ 1 = 2+ m
2 . Therefore the weights

of each term are
{3 +m, 1, 2 +

m

2
}

Each term weight can be made the same by selectingm = −2. This value makes each term have
weight 1 and the above becomes

{1, 1, 1}

Therefore the ODE is isobaric. Using this value of m the substitution y = v
x2

is now used to
make the original ODE separable

dy

dx
=

1
x2

dv

dx
− 2

v

x3
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The original ODE now becomes (where each y is replaced by v
x2
) separable as follows

2x3
(
1
x2

dv

dx
− 2

v

x3

)
= 1 +

√
1 + 4x2

v

x2

2x
dv

dx
− 4v = 1 +

√
1 + 4v

2x
dv

dx
= 1 +

√
1 + 4v + 4v

Solving this ODE for v (x)
dv

1 +
√
1 + 4v + 4v

=
1
2x

dx

Integrating both sides gives ∫
dv

1 +
√
1 + 4v + 4v

=
1
2
ln |x | + c (2)

The integral above is solved by substitution. Let
√
1 + 4v = u, hence du

dv =
1
2

4√
1+4v

= 2
u or

dv = 1
2udu. Squaring both sides of

√
1 + 4v = u (and assuming 1 + 4v > 0) gives 1 + 4v = u2

or v = u2−1
4 . Therefore the LHS integral in (2) becomes∫

1

1 +
√
1 + 4v + 4v

dv =
1
2

∫
u

1 + u + 4
(
u2−1
4

) du
=

1
2

∫
u

u + u2
du

=
1
2

∫
1

1 + u
du

=
1
2
ln |1 + u |

Using this result in (2) gives the following (the absolute values are removed because the constant
of integration absorbs the sign).

1
2
ln (1 + u) =

1
2
lnx + c

ln (1 + u) = lnx + 2c

Let 2c = C0 be a new constant. The above becomes

ln (1 + u) = lnx +C0

e ln(1+u) = e lnx+C0

1 + u = eC0x

1 + u = Cx

Where C = eC0 is a new constant. Therefore the solution is

u (x) = Cx − 1
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Since u (x) =
√
1 + 4v then the above becomes

√
1 + 4v = Cx − 1

1 + 4v = (Cx − 1)2

v (x) =
(Cx − 1)2 − 1

4

But y = v
x2

therefore the above gives the final solution as

y (x) =
(Cx − 1)2 − 1

4x2

Where C is the constant of integration.

2.2 Part 2

ex siny − 2y sinx +
(
y2 + ex cosy + 2 cosx

)
y′ = 0

The first step is to write the ODE in standard form to check if it is an exact ODE

M(x,y)dx + N (x,y)dy = 0

Hence

M(x,y) = ex siny − 2y sinx

N (x,y) = y2 + ex cosy + 2 cosx

Next, the ODE is determined if it is exact or not. The ODE is exact if the following condition is
satisfied

∂M

∂y
=
∂N

∂x

Applying the above on the given ODE results in

∂M

∂y
= ex cosy − 2 sinx

∂N

∂x
= ex cosy − 2 sinx

Because ∂M∂y =
∂N
∂x , then the ODE is exact. The following equations are used to solve for the

function ϕ (x,y)

∂ϕ

∂x
= M = ex siny − 2y sinx (3)

∂ϕ

∂y
= N = y2 + ex cosy + 2 cosx (4)

Integrating (3) w.r.t x gives ∫
∂ϕ

∂x
dx =

∫
ex siny − 2y sinxdx

ϕ (x,y) = ex siny + 2y cosx + f (y) (5)
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Where f (y) is used as the constant of integration because ϕ (x,y) is a function of both x and y.
Taking derivative of (5) w.r.t y gives

∂ϕ

∂y
= ex cosy + 2 cosx + f ′(y) (6)

But (4) says that ∂ϕ∂y = y
2 + ex cosy + 2 cosx . Therefore by equating (4) and (6) then f ′ (y) can

be solved for:
y2 + ex cosy + 2 cosx = ex cosy + 2 cosx + f ′(y) (7)

Solving the above for f ′(y) gives
f ′(y) = y2

Integrating w.r.t y gives f (y) ∫
f ′dy =

∫
y2dy

f (y) =
1
3
y3 +C1

Where C1 is constant of integration. Substituting the value of f (y) back into (5) gives ϕ (x,y)

ϕ = ex siny + 2y cosx +
1
3
y3 +C1

But sinceϕ itself is a constant function, sayϕ = C0whereC0 is new constant, then by combining
C1 and C0 constants into a new constant C1, the above gives the solution

C1 = ex siny (x) + 2y (x) cosx +
1
3
y3 (x)

The above is left in implicit form for simplicity.

2.3 Part 3

y′ + y cosx =
1
2
sin (2x)

This ODE is linear iny. It is solved using an integrating factor µ = e
∫
cosxdx = esinx . Multiplying

both sides of the ODE by µ makes the left side an exact differential

d (yµ) =
1
2
µ sin (2)xdx

Integrating both sides gives

yµ =
1
2

∫
µ sin (2x)dx +C

yesinx =
1
2

∫
esinx sin (2x)dx +C (1)
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The above integral can be solved as follows. Since sin (2x) = 2 sinx cosx therefore then

I =
1
2

∫
esinx sin (2x)dx =

∫
esinx sinx cosxdx

Using the substitution z = sinx , then dz = dx cosx and the above becomes

I =

∫
ezzdz

Integrating the above by parts:
∫
udv = uv −

∫
vdu. Let u = z,dv = ez → du = 1,v = ez , and

the above becomes

I = zez −

∫
ezdz

= zez − ez

= ez (z − 1)

Since z = sinx the above reduces to

I = esinx (sin (x) − 1)

Substituting this back in (1) results in

yesinx = esinx (sin (x) − 1) +C

Therefore the final solution is

y (x) = sin (x) − 1 +Ce− sinx

Where C is the constant of integration.
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3 Problem 3

Find general solution of

1. y′′′ − 4y′′ − 4y′ + 16 = 8 sinx

2. a2y′2 =
(
1 + y′2

) 3
Solution

3.1 Part 1

y′′′ − 4y′′ − 4y′ = 8 sinx − 16

This is linear nonhomogeneous ODE with constant coefficients. Solving first the homogeneous
ODE y′′′− 4y′′− 4y′ = 0. Since the term y is missing from the ODE then the substitution y′ = u
reduces the ODE to a second order ODE

u′′ − 4u′ − 4u = 0 (1)

Let u = eλx . Substituting this into the above and simplifying gives the characteristic equation

λ2 − 4λ − 4 = 0

The Roots are λ = − b
2a ±

1
2a

√
b2 − 4ac or

λ =
4
2
±
1
2

√
16 − 4 (−4)

= 2 ±
1
2

√
32

= 2 ± 2
√
2

= 2
(
1 ±

√
2
)

Hence the solution to (1) is given by linear combinations of eλ1x , eλ2x as

uh (x) = c1e
2
(
1+

√
2
)
x
+ c2e

2
(
1−

√
2
)
x

But since y′ = u, then y is found by integrating the above

yh =

∫
c1e

2
(
1+

√
2
)
x
+ c2e

2
(
1−

√
2
)
x
dx

= c1
e
2
(
1+

√
2
)
x

2
(
1 +

√
2
) + c2 e

(
2−2

√
2
)
x

2
(
1 −

√
2
) +C3
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To simplify the above, let c1

2
(
1+

√
2
) = C1,

c2

2
(
1−

√
2
) = C2, where C1,C2 are new constants. The

above simplifies to

yh = C1e
2
(
1+

√
2
)
x
+C2e

(
2−2

√
2
)
x
+C3

The above solution is homogeneous solution to the original ODE. Next, the particular solution
is found. Since the RHS of the original ODE is sinx − 16 then choosing yp to have the form

yp = A sinx + B cosx + kx

Therefore

y′p = k +A cosx − B sinx

y′′p = −A sinx − B cosx

y′′′p = −A cosx + B sinx

Substituting these back into the original ODE y′′′ − 4y′′ − 4y′ = 8 sinx − 16 gives

(−A cosx + B sinx) − 4 (−A sinx − B cosx) − 4 (k +A cosx − B sinx) = 8 sinx − 16

−A cosx + B sinx + 4A sinx + 4B cosx − 4A cosx + 4B sinx − 4k = 8 sinx − 16

cosx (−A + 4B − 4A) + sinx (B + 4A + 4B) − 4k = 8 sinx − 16

cosx (−5A + 4B) + sinx (5B + 4A) − 4k = 8 sinx − 16

Comparing coefficients gives the following equations to solve for the unknowns A,B,k

−4k = −16

−5A + 4B = 0

5B + 4A = 8

The second equation gives B = 5
4A. Using this in the third equation gives 5

( 5
4A

)
+ 4A = 8,

solving gives A = 32
41 . Hence B =

5
4

( 32
41

)
= 40

41 . The first equation gives k = 4. Therefore the
particular solution is

yp = A sinx + B cosx + kx

=
32
41

sinx +
40
41

cosx + 4x

Now that yh and yp are found, the general solution is found as

y = yh + yp

= C1e
2
(
1+

√
2
)
x
+C2e

(
2−2

√
2
)
x
+C3 +

32
41

sinx +
40
41

cosx + 4x

Where C1,C2 are the two constants of integration.
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3.2 Part 2

a2y′2 =
(
1 + y′2

) 3
Let y′ = A, the above becomes

a2A2 =
(
1 +A2) 3

= 1 + 3A2 +
(3) (2)
2!

A4 +
(3) (2) (1)

3!
A6

= 1 + 3A2 + 3A4 +A6

Hence the polynomial is
A6 + 3A4 +A2 (

3 − a2
)
+ 1 = 0

Let A2 = B and the above becomes

B3 + 3B2 + B
(
3 − a2

)
+ 1 = 0

With the help of the computer, the cubic roots of the above are

B1 =
3

√√
1
4
a4 −

1
27

a6 −
1
2
a2 +

1
3

a2

3

√√
1
4a

4 − 1
27a

6 − 1
2a

2

− 1

B2 =
1
2
i
√
3

©­­­­«
3

√√
1
4
a4 −

1
27

a6 −
1
2
a2 −

1
3

a2

3

√√
1
4a

4 − 1
27a

6 − 1
2a

2

ª®®®®¬
−
1
2

3

√√
1
4
a4 −

1
27

a6 −
1
2
a2 −

1
6

a2

3

√√
1
4a

4 − 1
27a

6 − 1
2a

2

− 1

B3 = −
1
2

3

√√
1
4
a4 −

1
27

a6 −
1
2
a2 −

1
2
i
√
3

©­­­­«
3

√√
1
4
a4 −

1
27

a6 −
1
2
a2 −

1
3

a2

3

√√
1
4a

4 − 1
27a

6 − 1
2a

2

ª®®®®¬
−
1
6

a2

3

√√
1
4a

4 − 1
27a

6 − 1
2a

2

− 1

Therefore A1 = ±
√
B1,A2 = ±

√
B2,A3 = ±

√
B3 or, since y′ (x) = A , then there are 6 solutions,

each is a solution for one root.

dy1
dx
= +

√
B1

dy2
dx
= −

√
B1

dy3
dx
= +

√
B2

dy4
dx
= −

√
B2

dy5
dx
= +

√
B3

dy6
dx
= −

√
B3
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But the roots ±Bi are constants. Therefore each of the above can be solved by direct integration.
The final solution which gives the solutions

y1 =
√
B1x +C1

y2 = −
√
B1x +C2

y3 =
√
B2x +C3

y4 = −
√
B2x +C4

y5 =
√
B3x +C5

y6 = −
√
B3x +C6

Where the constants Bi are given above.
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