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1 Problem 1

. . . . 1
Using series expansion evaluate the integral I = Io In (}J_’—z) i—x
Solution

We first need to find the Taylor series for In (if—ﬁ) expanded around x = 0. Since

in(122) =m0 ()

=Iln(1 +x)+ln(%)

=In(1+x)—In(1-x) (1)
Looking at In (1 + x), where now f (x) = In(1 + x), then we see that f’ (x) = ﬁ,f” (x) =
o [0 = gh fY (0 = -2, -+ therefore
x? x3 x*
In(1+x) = £(0) +xf () + " (0) + - f" O+ - f P (©) + -
x2 xd x ' '
=0+x——+———+--- (2)
2 3 4
Similarly for In (1 — x), where now f’(x) = %, "(x) = ﬁ,f”’ (x) = (l:i)g,f(‘*) (x) =
——23_ ... therefore

(1-x)*

1Mhﬂ=ﬂ®ﬂf@+§W@+§W@+§NWH~-

x2 x* x*
_g-x- T X S 3)
2 3 4
Using (2,3) in (1) gives the series expansion for In ({£) as
1+x x> x xt x2 xd o«
In =(x-=+=-" 4. | - [x-=-=- 4
1—x 2 3 4 2 3 4
2 2 2
=2X+ =X+ =X A+ =X A (4)
3 5 7

Using (4) in the integral given results in

! 2., 25 2, dx
I= X+ =X+ =x"+=x"+--- | —
0 3 5 7

1
2 2 2
:J 2+ =x? + =x*+ =x%+ - | dx
o 37 T5 7




Which simplifies to
21 21 21
[=2+2-+2-42=
33 55 77
2 2 2
=2+ +—=+—+—+

i 1
-9 (5)
Za (2n +1)°
The following are two methods to obtain closed form sum for > | e +1) . The first method is
based on writing
> 1 had 1 i 1
DY R e ©
n=1 n2 n=1 (Zn)z n=0 (27’1 + 1)2
Where the sum on the left is broken into odd and even terms on the right, as in
1 1 1 1 _ 1 1 1 1 1
1+§+§+E+§+"'— §+E+ +F+§+§+
But, from lecture Sept. 12, 2018, we showed in class that
=1 72
—=0(2)== 7
Yp=l@=7 )

(This is called the Basel problem, and the above closed form sum was first given by Euler in
1734). Now using (7) into (6) results in
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Another way to obtained closed form sum for 37’

L is to use Fourier series. Considering
n=0 (2n+1)

the Fourier series for the following periodic function

—X —-T<x<0
xX) =
f() {O 0<x<nm

Using
fx)=— 4+ ZA cos (nx) + ZB sin (nx)



Therefore .
1(° —1 (x* -1 -1 1
Aoz—f e o I e
T ), T \2)_, 2« T2 2
And
Ap = — x cos (nx)dx = (—2)
T J_x n
_1 0 _1 n+1
B":_J xsin(nx)dx:( ) /s
T -
Hence the Fourier series for f (x) is
T 1 [} 1+ (_1)n+1 1 [} (_1)n+1 .
xX)=——-— >, ————cos(nx)— — 7 (sin nx
f0=F - S s - 3 (sin n)
1 21+ (-1 n+l n+1
:E——Z(—Z)cos(nx) Z( ) sin (nx)
4 T n=1 n n=0

Evaluating the above at x = 0 then all the sin terms vanish and we obtain

[ 1+(_1)n+1

N N I RN
[

Therefore

(2n + 1)

> T
3]
1 ?

n=
Sary

“—(2n+1)°

Now that we found closed form sum for > we can find the value of the integral.

Since I =2 X% then

n=0 (2n+ 1)2’

(=) (%)

n=0 (2p +1)2’




2 Problem 2

LetI(x) = Jo efOdt with f () =t - <, find a large x approximation for this integral.

Solution

(00

I= exp (xf (t))dt

JOo

(00 et
= exp (x(t——))dt
Jo X

= exp (xt —e€') dt

o]

= | exp(F(1)dt (1)

JO

Where F (t) = xt — e'. We need to find saddle point where F (¢) is maximum. Hence

%F(t)zo
x—e'=0

el =x

to = In(x)

Where t is location of ¢ where F (t) is maximum. We called this in class t,.q. We now expand
F (t) around t, using Taylor series

F ()= F )+ F' (1) (= 1) + 2F” (1) (£ = o)+ - @)
But

F(t) = x1n (x) — e™*

=xlnx—x
And F’ (t) = x — €', hence as expected F’ (t)) = 0. And F” (t) = —¢’, therefore F” (t;) = —e™* =

—x. We see also that F” (t;) < 0, which means the saddle point was a maximum and not a
minimum (since x is positive). Using these in (2) gives

F(t)~ (xInx —x) + %(—x) (t - Inx)?

1
=xlnx-x-— Ex(t—lnx)2



Substituting the above into (1) gives

Oo 1
I:J exp (xlnx—x—ax(t—lnx)z) dt
0

= Joo exp (xInx) exp (—x) exp (—%x (t—1In x)z) dt

0

0 1
exp (x Inx) exp (—x) J exp (—Ex (t—1In x)z) dt
0
= xXe X J e—%x(t—lnx)zdt (3)
0

Now, since the peak value where F (¢) occurs is on the positive real axis, because t, = In (x),
therefore x > 1 to have a maximum, and assuming a narrow peak, then all the contribution

0 2
to the integral comes from x close to the peak location, so we can change Jo e~ 2X(t- gy 1o

Jio e~ 202" gt wwithout affecting the final result. Therefore (3) becomes
I=x%e" JOO e~ 2x(t-nx)’ gy (4)

o [P - ix(t-Inx)? ian i ® emalt=b)’ gy = [
Now comparing j_oo e XY dt to the Gaussian integral J_m e dt = \/Z , shows that
a = 5 for our case. Hence

on e—%x(t—lnx)zdt — 2_77"
oo x

Therefore (4) becomes

For large x.



3 Problem 3

Evaluate the following integrals with aid of residue theorem a > 0. (a) L;X’ ——dx (b) L‘:o

cos(ax)
x4+1 dx

x2+1

3.1 Part(a)

Since the integrand is even, then

> > » Rz
-R +R

Figure 1: contour used for problem 3

Therefore

R— o0

0 R
jgf(z)dz: limj f(x)dx + limj f(x)dx]| + limJ f(z)dz
J R—co ) _p R 0 R—e0 Jop
Using Cauchy principal value the integral above can be written as
R
3€f(z)dz: limf f(x)dx + limf f(2)d
2 R— o0 R R— o0 Cr

= 27i Z Residue

1
z4+1

Where 3 Residue is sum of residues of for poles that are inside the contour C. Therefore

the above becomes

R
lim J f(x)dx = 2mi Z Residue — lim J f(z)dz
R—oo J_p R—oeo Jop

0 1 1
dx = 2ri Residue — lim dz 1
joox4+1 Z R—o0 CRZ4+1 )



Now we will show that limg_, e ICR #dz = 0. Since
1

J " dz| < ML
Cr z:+1

= |f (D)l max (7R) (2)

But
1

EETIERY
Hence, and since z = R ¢!’ then
1

|min |z2 + i|min

1 @l < 77—

But but inverse triangle inequality |22 — i| > |z|* + 1 and |z2 + i| > |z|? — 1, and since |z| = R
then the above becomes
1
<
T (RR+1)(R2-1)
1
R*—1

1 TR
dz| £ ——
CRZ4+1 Rt —1

Then it is clear that as R — oo the above goes to zero since limg_, R’f—fl = limp e 1_Rl = (T) =0.

R4

|f @,

Therefore (2) becomes

Then (1) now simplifies to

© 1
J dx = 2mi Z Residue (2A)

o X+ 1

1
z4+1

We just now need to find the residues of located in upper half plane. The zeros of the

T x
denominator z4+1 = O areatz = —1¢ = (€'™) *, then the first zero is at e’ 4, and the second zero
at e!li+%) = ¢i(17) and the third zero at e/(i7*%) = ¢(i7) and the fourth zero at ¢!(i7%) = ¢ii7,

Hence poles are at

»IQ

Z1=¢€

Z9 = eiim
23 = €li”
Z4 = elim

Out of these only the first two are in upper half plane z; and z;. Hence

Residue (z;) = li_)m (z—2z1) f(2)

1
lim (z -
Zl_m( z1) I




Applying L’Hopitals

Il
=n

Residue (z1)

Similarly for the other residue

Residue (z5) = Zli_)nzq (z—22) f(2)

= 1i -
Yim (z - z,) 7—
Applying L’Hopitals
. .1
Residue (z5) = lim —
2025 423
B 1
4 (ei%” ) ’
1
4e'%
1
 4eit

Hence (2A) becomes

| 1 1
dx =2mi | —5 + —3

= 2mi (ﬁ)
4i

1
=-V2
2\/_71

But J;o L_dx = %Jio L_dyx, therefore

x4+1 x4+1

[} o=

X
0 x4+1 4
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3.2 Part (b)

Since the integrand is even, then

1J‘°° cos(ax)d
x

I=-
2J) 0 X2+1

We will evaluate fio %dx and at the end take the real part of the answer. Considering the
following contour

> > » Rz
_R +R

Figure 2: contour used for part b

R—o0

0 R
ﬂgf(z)dz = | lim J f(x)dx + lim J f(x)dx] + lim J f(z)dz
J R—oo J_p 0 R—oo Jop
Using Cauchy principal value the integral above can be written as
R
ng(z)dz = lim J f(x)dx + lim J f(z)d
R—oo )_p R—oo Cr
c
= 27 Z Residue

az

el
x2+1

Where 3 Residue is sum of residues of for poles that are inside the contour C. Therefore

the above becomes

R
lim J f(x)dx = 2mi Z Residue — Rlim f(z)dz
_R —00 Cr

R— oo
o eiax eiaz
j dx = 2mi Z Residue — lim dz (1)
o X2 +1 R—00 CR22+1
Now we will show that limg_, e ICR Zezﬁdz = 0. Since

<ML

= | f (2] pax (7R) (2)

eiaz
dz
JCR zZ2+1
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But

iaz
e

(z=i)(z+1)

eia(x+iy)

- (z—=i)(z+1)

elax—ay

T Gz-(z+i)
iaxe—ay

f(2) =

e
(2= (z+1)
Hence

| lazlmax |e_ay|max

|f (@)l imax = : .
Tz = ilin 12+ ] i

| e_ay | max

TR+DR-1)
— | e_aylmax

R? -1

Since a > 0 and since in upper half y > 0 then |[e™¥| ., = |e‘aR |mx = 1. Jordan inequality was

not needed here, since there is no extra x in the numerator of the integrand in this problem.

The above now reduces to )

|f(Z)|mX = R2_1

eiaz TR
.S
Cr % +1 Ré-1

R — oo the above goes to zero since limg_, R’Zf—i = limg 0

Equation (2) becomes

lf_l =%=0. Equation (1) now

R? !

simplifies to

(o] eiax
J = 1dx = 27i E Residue
e X

We just now need to find the residues of 2211 that are located in upper half plane. The zeros of

the denominator z® + 1 = 0 are at z = +i, hence poles are at

lei

Zzz—i
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Only z; is in upper half plane. Therefore

Residue (z;) = Zli_)rrzl (z—2z1) f(2)

iaz

e
=lim(z-z
S e
eiaz
= lim
zZ—2Z7 (Z —_ Zz)
eia(i)
ET))
e—a
T 20
Since Jio xia_fl dx = 2ri 3, Residue then
ey} eiax e—a
J dx = 2mi|—
o X+ 1 2i
= e ?
Therefore

e} eiax 1 0 %
J n dx:—J m dx
0o X*+1 2 J_0x*+1

But real part of the above is
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4 Problem 4

Using residues evaluate(a) f(f” mde for |a] < 1 (b) L;r (cos (0))*" d6 for n integer.

4.1 Part(a)

Using contour which is anti-clockwise over the unit circle

Sz
A

» Rz

Figure 3: contour used for problem 4

Let z = ¢'%, hence dz = dfie’ = dfiz. Using cos 0 = Z“in then the integral can be written in
complex domain as

3@ édz 23€ %dz
z+z‘1:_' 1
J1+ai 1C2+a(z+z)

_23€ dz
CiJ2z+az’+a
C
2 dz

ai) 22 + 2z +1
19

ng dz

ai J (z — z1)(z — z0)
C
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Where z, z, are roots of z% + %z + 1 = 0 which are found to be (using the quadratic formula) as

~1-V1-a?

zZ1 =

a
-1+ V1 -a?

a

Z2 =

Since |a| < 1 then only z; will be inside the unit disk for all a values. Therefore

2 dz 2 o
—_3[; = | —| 27i Residue (z,)
ai J (z —z1)(z — z9) ai

c

4
= Residue (z5) (1)

Now we will find the Residue (z;) where in this case f (z) = m Hence

Residue (z5) = zh—>n; (z—22) f(2)

1
= lim (z —
D P YT
li 1
= 11im
b e
1

) - ()

a

2V1 — a2

Using the above result in (1) gives

JZ” L e (4 a
o l+acos® a" 2V1 — a2

Using Maple, verified that the above result is correct.

> restart;
integrand:=1/(l+a*cos (x)):
int(integrand,x=0..2*Pi) assuming -1<a and a<l;

I
J=a+1

Figure 4: Verification using Maple

4.2 Part (b)

Since integrand is even, then f: (cos (0))*" df = % foz " (cos (9))*" d. Using same contour as in

2427}

part (a), and letting z = €'Y, hence dz = dfie'® = dfiz and using cos 6 = >

then the integral
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can be written in complex domain as

2w
2n _
. (cos (0))“"dO = 3g
C
1
i

o)
1 1\*" dz
=—0Plz+ - —
4" | z z
C
» 2 2n
1 z°+1 d
=—0Q0 —
4" | z z
C
1 ((2+1)"dz
=—0 —
4”lu Z2n
C
o (2 2n
1 [(#+1)
BT
C

2 2n
Considering f (z) = (Zz;i)l , this has a pole at z = 0 of order m = 2n + 1. Therefore

1 [(2+1)™ 1\,
—Q@—————dz = | —| 2niResidue (z = 0) (1)
4]

So we now need to find residue of f (z) at z = 0 but for pole of order m = 2n + 1. Using the

formula for finding residue for pole of order m gives

dm—l 7 — 2z m -
Residue (z9 = 0) = zlgl;,lo ph ( (moz 1{'( )

But m = 2n + 1, and z; = 0, hence the above becomes

. . d2n 22n+1 (22 + 1)2"
Reside (0) =i oy

_ 1 1 2n ( 2 + 1)2n
~ (2n)! 50 | dz2n 2

Equation (1) becomes

2

2n
(cos(8))"do = (41) o ((22)! lim ((jzz" (22 + 1)2”))

Therefore

d . 1(1 1 . (ad" n
L (cos (0))*" df = 3 (E) 27 ((Zn)! Zl_l_r)r(l) (dzz” (2% + 1)2 ))
1

T . d2n 2 2n
~ 4n (2n)! ll—{% (dzz” (=" +1) )
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Will now try to obtained closed form solution. Trying for different n values in order to see the
pattern. From few lectures ago, we learned also that

I‘(n+%):l.3.5 ..... (Zn—l)\/E

Now will generate a table to see the pattern

n 4,, (2n), lim,_, (jm (2% + 1) ) result of integral | T (n + %)

1] g lime & (2 +1)° 3 r(1+i) =¥
e YRS L Fa ) o
3 %fhmz_,odé(z +1) 51_’6f F(3+%) :15§/E
4 ﬁ%lmz_,od—sg(z +1) % 1‘(4+%):10?f
| S lmen s (e |8 For ) T

Based on the above, we see that I = % which is verified as follows
n | result of integral | T (n + 3) w
1E raey =% My,
2| % reey =2 | U0y
E rpeg) =2 | e s
4 31577; T (4+ %) = 105132/2 ﬁ(;?f) = (241;)(51;/)_) = 1§§f = 13258”
5 | 2 riseg) =2 | ) e v

Therefore
\rT (n + %)

n!

J” (cos (0))*"do =
0
(22+1)""

Tried to do pole/zero cancellation on the integrand of 3§ s dz in order to find a simpler

C
method than the above but was not able to. The above result was verified using the computer
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Assuming[Element [n, Integers] &n > 0, Integr‘ate[Cos[x]Z", {x, 0, 7r}] ];
TraditionalForm[%]

Va rfn+1)

n!

Figure 5: Verification using Mathematica
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