HW 3, Physics 501 Fall 2018 University Of Wisconsin, Milwaukee

Nasser M. Abbasi

November 22, 2018

Compiled on November 22, 2018 at 2:03am

Contents

1	Prob	olem 1	2	
	1.1	Part (a)	2	
	1.2	Part (b)	2	
	1.3	Part (c)	3	
2 Problem 2		olem 2	8	
	2.1	Part (a)	8	
	2.2	Part (b)	10	
3	Problem 3			
	3.1	Part (a)	14	
	3.2	Part (b)	15	
	3.3	Part (c)	15	

1 Problem 1

1.1 Part (a)

Use Cauchy-Riemann equations to determine if |z| analytic function of the complex variable z.

Solution

$$f(z) = |z|$$

Let z = x + iy, then

$$f(z) = (x^2 + y^2)^{\frac{1}{2}}$$
$$= u + iv$$

Hence

$$u = \sqrt{x^2 + y^2}$$
$$v = 0$$

Cauchy-Riemann equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \tag{2}$$

First equation above gives $\frac{\partial v}{\partial y} = 0$ and $\frac{\partial u}{\partial x} = \frac{1}{2} \frac{2x}{\sqrt{x^2 + y^2}}$, which shows that $\frac{\partial v}{\partial y} \neq \frac{\partial u}{\partial x}$. Therefore |z| is not analytic.

1.2 Part (b)

Use Cauchy-Riemann equations to determine if $\operatorname{Re}(z)$ analytic function of the complex variable z.

Solution

$$f(z) = \operatorname{Re}(z)$$

Let z = x + iy, then

$$f(z) = x$$
$$= u + iv$$

Hence

$$u = x$$

$$v = 0$$

Cauchy-Riemann equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \tag{2}$$

First equation above gives $\frac{\partial v}{\partial y} = 0$ and $\frac{\partial u}{\partial x} = 1$, which shows that $\frac{\partial v}{\partial y} \neq \frac{\partial u}{\partial x}$. Therefore Re (z) is not analytic.

1.3 Part (c)

Use Cauchy-Riemann equations to determine if $e^{\sin z}$ analytic function of the complex variable z.

Solution

 $f(z)=e^{\sin z}$ is analytic since we can show that $\exp(z)$ is analytic by applying Cauchy-Riemann (C-R), and also show that $\sin(z)$ is analytic using C-R. Theory of analytic functions it says that the composition of analytic functions is also an analytic function, which means $e^{\sin z}$ is analytic.

But this problems seems to ask to use C-R equations directly to show this. Therefore we need to first determine the real and complex parts (u, v) of the function $e^{\sin z}$. Since

$$\sin z = \frac{z - z^{-1}}{2i}$$

Then

$$f(z) = e^{\sin z}$$

$$= \exp\left(\frac{z - z^{-1}}{2i}\right)$$

$$= \exp\left(\frac{z}{2i}\right) \exp\left(\frac{-1}{2iz}\right)$$

But z = x + iy and the above expands to

$$\exp(\sin z) = \exp\left(\frac{1}{2i}(x+iy)\right) \exp\left(\frac{-1}{2i(x+iy)}\right)$$

$$= \exp\left(\frac{-i}{2}x + \frac{1}{2}y\right) \exp\left(\frac{i}{2}\frac{1}{(x+iy)}\right)$$

$$= \exp\left(\frac{-i}{2}x + \frac{1}{2}y\right) \exp\left(\frac{i}{2}\frac{x-iy}{(x+iy)(x-iy)}\right)$$

$$= \exp\left(\frac{-i}{2}x + \frac{1}{2}y\right) \exp\left(\frac{i}{2}\frac{x-iy}{x^2+y^2}\right)$$

$$= \exp\left(\frac{-i}{2}x + \frac{1}{2}y\right) \exp\left(\frac{i}{2}\left(\frac{x}{x^2+y^2} - \frac{iy}{x^2+y^2}\right)\right)$$

$$= \exp\left(\frac{-i}{2}x + \frac{1}{2}y\right) \exp\left(\frac{i}{2}\frac{x}{x^2+y^2} + \frac{1}{2}\frac{y}{x^2+y^2}\right)$$

$$= \exp\left(\frac{-i}{2}x\right) \exp\left(\frac{1}{2}y\right) \exp\left(\frac{i}{2}\frac{x}{x^2+y^2}\right) \exp\left(\frac{1}{2}\frac{y}{x^2+y^2}\right)$$

Collecting terms gives

$$\exp(\sin z) = \exp\left(\frac{1}{2}y + \frac{1}{2}\frac{y}{x^2 + y^2}\right) \exp\left(\frac{i}{2}\frac{x}{x^2 + y^2} - \frac{i}{2}x\right)$$

$$= \exp\left(\frac{1}{2}\frac{y\left(1 + (x^2 + y^2)\right)}{x^2 + y^2}\right) \exp\left(\frac{i}{2}\frac{x}{x^2 + y^2} - \frac{i}{2\left(x^2 + y^2\right)}x\left(x^2 + y^2\right)\right)$$

$$= \exp\left(\frac{1}{2}\frac{y\left(1 + (x^2 + y^2)\right)}{x^2 + y^2}\right) \exp\left(i\frac{1}{2}\frac{x\left(1 - (x^2 + y^2)\right)}{x^2 + y^2}\right)$$

$$= \exp\left(\frac{1}{2}\frac{y\left(1 + (x^2 + y^2)\right)}{x^2 + y^2}\right) \left[\cos\left(\frac{1}{2}\frac{x\left(1 - (x^2 + y^2)\right)}{x^2 + y^2}\right) + i\sin\left(\frac{1}{2}\frac{x\left(1 - (x^2 + y^2)\right)}{x^2 + y^2}\right)\right]$$

$$= \exp\left(\frac{y + y\left(x^2 + y^2\right)}{2\left(x^2 + y^2\right)}\right) \cos\left(\frac{x - x\left(x^2 + y^2\right)}{2\left(x^2 + y^2\right)}\right) + i\exp\left(\frac{y + y\left(x^2 + y^2\right)}{2\left(x^2 + y^2\right)}\right) \sin\left(\frac{1}{2}\frac{x - x\left(x^2 + y^2\right)}{\left(x^2 + y^2\right)}\right)$$

Therefore, since $\exp(\sin z) = u + iv$, then we see from above that

$$u = \exp\left(\frac{1}{2} \frac{y + y(x^2 + y^2)}{x^2 + y^2}\right) \cos\left(\frac{1}{2} \frac{x - x(x^2 + y^2)}{x^2 + y^2}\right)$$
$$v = \exp\left(\frac{1}{2} \frac{y + y(x^2 + y^2)}{x^2 + y^2}\right) \sin\left(\frac{1}{2} \frac{x - x(x^2 + y^2)}{x^2 + y^2}\right)$$

Now we need to check the Cauchy-Riemann equations on the above u, v functions we found.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \tag{2}$$

Evaluating each partial derivative gives

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{d}{dx} \left(\frac{1}{2} \frac{y + y (x^2 + y^2)}{x^2 + y^2} \right) \exp \left(\frac{1}{2} \frac{y + y (x^2 + y^2)}{x^2 + y^2} \right) \cos \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \\ &+ \exp \left(\frac{1}{2} \frac{y + y (x^2 + y^2)}{x^2 + y^2} \right) \frac{d}{dx} \cos \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \\ &= \frac{1}{2} \frac{2yx (x^2 + y^2) - (y + y (x^2 + y^2)) 2x}{(x^2 + y^2)^2} \exp \left(\frac{1}{2} \frac{y ((x^2 + y^2) + 1)}{x^2 + y^2} \right) \cos \left(\frac{1}{2} \frac{x (1 - (x^2 + y^2))}{x^2 + y^2} \right) \\ &- \exp \left(\frac{1}{2} \frac{y + y (x^2 + y^2)}{x^2 + y^2} \right) \sin \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \frac{d}{dx} \left(\frac{x - x (x^2 + y^2)}{2 (x^2 + y^2)} \right) \\ &= \frac{-xy}{(x^2 + y^2)^2} \exp \left(\frac{1}{2} \frac{y ((x^2 + y^2) + 1)}{x^2 + y^2} \right) \cos \left(\frac{x (1 - (x^2 + y^2))}{2 (x^2 + y^2)} \right) \\ &- \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \sin \left(\frac{x - x (x^2 + y^2)}{2 (x^2 + y^2)} \right) \left(\frac{(1 - 3x^2 - y^2) (x^2 + y^2) - (x - x (x^2 + y^2)) 2x}{2 (x^2 + y^2)^2} \right) \\ &= \frac{-xy}{(x^2 + y^2)^2} \exp \left(\frac{1}{2} \frac{y (x^2 + y^2 + 1)}{x^2 + y^2} \right) \cos \left(\frac{1}{2} \frac{x (1 - (x^2 + y^2))}{x^2 + y^2} \right) \\ &- \exp \left(\frac{1}{2} \frac{y (x^2 + y^2 + 1)}{x^2 + y^2} \right) \sin \left(\frac{x - x (x^2 + y^2)}{2 (x^2 + y^2)} \right) \left(\frac{(-x^4 - 2x^2y^2 - x^2 - y^4 + y^2)}{2 (x^2 + y^2)^2} \right) \end{split}$$

The above can be simplified more to become

$$\frac{\partial u}{\partial x} = \frac{-1}{2(x^2 + y^2)^2} \exp\left(\frac{y(x^2 + y^2 + 1)}{2(x^2 + y^2)}\right)$$

$$\left[2xy\cos\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} + (-x^4 - 2x^2y^2 - x^2 - y^4 + y^2)\sin\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)}\right]$$
(3)

Now we evaluate $\frac{\partial v}{\partial y}$ to see if it the same as above. Since $v = \exp\left(\frac{1}{2}\frac{y+y(x^2+y^2)}{(x^2+y^2)}\right)\sin\left(\frac{1}{2}\frac{x-x(x^2+y^2)}{(x^2+y^2)}\right)$

then

$$\begin{split} \frac{\partial v}{\partial y} &= \frac{d}{dy} \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \sin \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \\ &+ \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \frac{d}{dy} \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \\ &= \left(\frac{1}{2} \frac{\left(1 + x^2 + 3y^2 \right) \left(x^2 + y^2 \right) - \left(y + y \left(x^2 + y^2 \right) \right) 2y}{\left(x^2 + y^2 \right)^2} \right) \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \sin \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \\ &+ \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \left(\frac{1}{2} \frac{\left(-2xy \right) \left(x^2 + y^2 \right) - \left(x - x \left(x^2 + y^2 \right) \right) \left(2y \right)}{\left(x^2 + y^2 \right)^2} \right) \\ &= \left(\frac{1}{2} \frac{x^4 + 2x^2y^2 + x^2 + y^4 - y^2}{2 \left(x^2 + y^2 \right)} \right) \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \sin \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \\ &+ \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \sin \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \\ &- \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \left(\frac{xy}{\left(x^2 + y^2 \right)^2} \right) \end{aligned}$$

Simplifying the above more gives

$$\frac{\partial v}{\partial y} = \frac{-1}{2(x^2 + y^2)^2} \exp\left(\frac{y + y(x^2 + y^2)}{2(x^2 + y^2)}\right)$$

$$\left[2xy\cos\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} + (-x^4 - 2x^2y^2 - x^2 - y^4 + y^2)\sin\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)}\right]$$
(4)

Comparing (3) and (4) shows they are the same expressions. Therefore the first equation is verified.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

Now we verify the second equation $-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$. Since $u = \exp\left(\frac{1}{2}\frac{y+y(x^2+y^2)}{(x^2+y^2)}\right)\cos\left(\frac{1}{2}\frac{x-x(x^2+y^2)}{(x^2+y^2)}\right)$

then

$$\begin{split} \frac{\partial u}{\partial y} &= \frac{d}{dy} \left(\frac{1}{2} \frac{y + y (x^2 + y^2)}{(x^2 + y^2)} \right) \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \cos \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \\ &- \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \sin \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \frac{d}{dy} \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \\ &= \frac{(1 + x^2 + 3y^2) (x^2 + y^2) - (y + y (x^2 + y^2)) 2y}{2 (x^2 + y^2)^2} \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \cos \left(\frac{x - x (x^2 + y^2)}{2 (x^2 + y^2)} \right) \\ &- \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \sin \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \frac{(-2y) (x^2 + y^2) - (x - x (x^2 + y^2)) 2y}{2 (x^2 + y^2)^2} \\ &= \frac{(x^4 + 2x^2y^2 + x^2 + y^4 - y^2)}{2 (x^2 + y^2)^2} \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \cos \left(\frac{x - x (x^2 + y^2)}{2 (x^2 + y^2)} \right) \\ &- \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \sin \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \frac{(-2y) (x^2 + y^2) - 2yx + 2yx (x^2 + y^2)}{2 (x^2 + y^2)^2} \\ &= \frac{(x^4 + 2x^2y^2 + x^2 + y^4 - y^2)}{2 (x^2 + y^2)^2} \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \cos \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \\ &+ \exp \left(\frac{y + y (x^2 + y^2)}{2 (x^2 + y^2)} \right) \sin \left(\frac{1}{2} \frac{x - x (x^2 + y^2)}{x^2 + y^2} \right) \frac{yx}{(x^2 + y^2)^2} \end{split}$$

The above can simplified more to give

$$\frac{\partial u}{\partial y} = \frac{1}{2(x^2 + y^2)^2} \exp\left(\frac{y + y(x^2 + y^2)}{2(x^2 + y^2)}\right)$$

$$\left[(x^4 + 2x^2y^2 + x^2 + y^4 - y^2) \cos\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} + 2xy \sin\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} \right]$$

Hence

$$\frac{-\partial u}{\partial y} = \frac{1}{2(x^2 + y^2)^2} \exp\left(\frac{y + y(x^2 + y^2)}{2(x^2 + y^2)}\right) \\
\left[-(x^4 + 2x^2y^2 + x^2 + y^4 - y^2)\cos\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} - 2xy\sin\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} \right] \quad (5)$$

And since $v = \exp\left(\frac{1}{2} \frac{y + y(x^2 + y^2)}{(x^2 + y^2)}\right) \sin\left(\frac{1}{2} \frac{x - x(x^2 + y^2)}{(x^2 + y^2)}\right)$ then

$$\begin{split} &\frac{\partial v}{\partial x} = \frac{d}{dx} \left(\frac{1}{2} \frac{y + y \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \sin \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \\ &+ \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \frac{d}{dx} \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \\ &= \frac{1}{2} \left(\frac{2xy \left(x^2 + y^2 \right) - \left(y + y \left(x^2 + y^2 \right) \right) 2x}{\left(x^2 + y^2 \right)} \right) \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \sin \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \\ &+ \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{1}{2} \frac{x - x \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \left(\frac{\left(1 - 3x^2 - y^2 \right) \left(x^2 + y^2 \right) - \left(x - x \left(x^2 + y^2 \right) \right) 2x}{2 \left(x^2 + y^2 \right)^2} \right) \\ &= \frac{-xy}{\left(x^2 + y^2 \right)^2} \exp \left(\frac{1}{2} \frac{y + y \left(x^2 + y^2 \right)}{x^2 + y^2} \right) \sin \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \\ &+ \exp \left(\frac{y + y \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \cos \left(\frac{x - x \left(x^2 + y^2 \right)}{2 \left(x^2 + y^2 \right)} \right) \left(\frac{-x^4 - 2x^2y^2 - x^2 - y^4 + y^2}{2 \left(x^2 + y^2 \right)^2} \right) \end{split}$$

The above can simplified more to give

$$\frac{\partial v}{\partial x} = \frac{1}{2(x^2 + y^2)^2} \exp\left(\frac{y + y(x^2 + y^2)}{2(x^2 + y^2)}\right)$$

$$\left[-(x^4 + 2x^2y^2 + x^2 + y^4 - y^2)\cos\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} - 2xy\sin\frac{x - x(x^2 + y^2)}{2(x^2 + y^2)} \right]$$
(6)

Comparing (5,6) shows they are the same, i.e.

$$\frac{-\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

C-R equations are satisfied, and because it is clear that all partial derivatives $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ are continuous functions in x, y as they are made up of exponential and trigonometric functions which are continuous, then we conclude that $f(z) = e^{\sin z}$ is analytic function everywhere.

2 Problem 2

2.1 Part (a)

Represent $\frac{z+3}{z-3}$ by its Maclaurin series and give the region of validity for the representation. Next expand this in powers of $\frac{1}{z}$ to find a Laurent series. What is the range of validity of the Laurent series?

Solution

Maclaurin series is expansion of f(z) around z = 0. Since f(z) has simple pole at z = 3, then the region of validity will be a disk centered at z = 0 up to the nearest pole, which is at z = 3.

Hence |z| < 3 is the region.

$$f(z) = \frac{z+3}{z-3}$$

$$= \frac{z+3}{-3\left(1-\frac{z}{3}\right)}$$

$$= \frac{z+3}{-3}\left(\frac{1}{1-\frac{z}{3}}\right)$$

Now we can expand using Binomial to obtain

$$f(z) = \frac{3+z}{-3} \left(1 + \frac{z}{3} + \left(\frac{z}{3} \right)^2 + \left(\frac{z}{3} \right)^3 + \cdots \right)$$

$$= \left(-1 - \frac{z}{3} \right) \left(1 + \frac{z}{3} + \left(\frac{z}{3} \right)^2 + \left(\frac{z}{3} \right)^3 + \cdots \right)$$

$$= \left(-1 - \frac{z}{3} \right) + \left(-1 - \frac{z}{3} \right) \left(\frac{z}{3} \right) + \left(-1 - \frac{z}{3} \right) \left(\frac{z}{3} \right)^2 + \left(-1 - \frac{z}{3} \right) \left(\frac{z}{3} \right)^3 + \cdots$$

$$= -1 - \frac{z}{3} - \frac{z}{3} - \left(\frac{z}{3} \right)^2 - \left(\frac{z}{3} \right)^2 - \left(\frac{z}{3} \right)^3 - \left(\frac{z}{3} \right)^3 - \left(\frac{z}{3} \right)^4 + \cdots$$

$$= -1 - \frac{2}{3}z - \frac{2}{9}z^2 - \frac{2}{27}z^3 - \frac{2}{81}z^4 - \cdots$$

Or

$$f(z) = -1 - \sum_{n=1}^{\infty} \frac{2}{3^n} z^n$$

To expand in negative powers of z, or in $\frac{1}{z}$, then

$$f(z) = \frac{z+3}{z\left(1-\frac{3}{z}\right)}$$
$$= \frac{z+3}{z}\left(\frac{1}{1-\frac{3}{z}}\right)$$

For $\left|\frac{3}{z}\right| < 1$ or |z| < 3 the above becomes

$$f(z) = \frac{z+3}{z} \left(1 + \frac{3}{z} + \left(\frac{3}{z} \right)^2 + \left(\frac{3}{z} \right)^3 + \cdots \right)$$

$$= \left(1 + \frac{3}{z} \right) \left(1 + \frac{3}{z} + \left(\frac{3}{z} \right)^2 + \left(\frac{3}{z} \right)^3 + \cdots \right)$$

$$= \left(1 + \frac{3}{z} \right) + \left(1 + \frac{3}{z} \right) \frac{3}{z} + \left(1 + \frac{3}{z} \right) \left(\frac{3}{z} \right)^2 + \left(1 + \frac{3}{z} \right) \left(\frac{3}{z} \right)^3 + \cdots$$

$$= 1 + \frac{3}{z} + \frac{3}{z} + \left(\frac{3}{z} \right)^2 + \left(\frac{3}{z} \right)^2 + \left(\frac{3}{z} \right)^3 + \left(\frac{3}{z} \right)^3 + \left(\frac{3}{z} \right)^4 + \cdots$$

$$= 1 + \frac{6}{z} + \frac{18}{z^2} + \frac{54}{z^3} + \cdots$$

This is valid for |z| > 3. The residue is 6, which can be confirmed using

Residue (3) =
$$\lim_{z \to 3} (z - 3) f(z)$$

= $\lim_{z \to 3} (z - 3) \frac{z + 3}{z - 3}$
= $\lim_{z \to 3} (z + 3)$
= 6

Summary

$$f(z) = \frac{z+3}{z-3} = \begin{cases} -1 - \frac{2}{3}z - \frac{2}{9}z^2 - \frac{2}{27}z^3 - \frac{2}{81}z^4 - \dots & |z| < 3\\ 1 + \frac{6}{z} + \frac{18}{z^2} + \frac{54}{z^3} + \dots & |z| > 3 \end{cases}$$

2.2 Part (b)

Find Laurent series for $\frac{z}{(z+1)(z-3)}$ in each of the following domains (i) |z| < 1 (ii) 1 < |z| < 3 (iii) |z| > 3

Solution

The possible region are shown below. Since there is a pole at z = -1 and pole at z = 3, then there are three different regions. They are named A, B, C in the following diagram

Figure 1: Laurent series regions

First the expression $\frac{z}{(z+1)(z-3)}$ is expanded using partial fractions

$$\frac{z}{(z+1)(z-3)} = \frac{A}{(z+1)} + \frac{B}{(z-3)} \tag{1}$$

Hence

$$z = A(z - 3) + B(z + 1)$$

= $z(A + B) - 3A + B$

The above gives two equations

$$A + B = 1$$
$$0 = -3A + B$$

First equation gives A = 1 - B. Substituting in the second equation gives 0 = -3(1 - B) + B or 0 = -3 + 4B, hence $B = \frac{3}{4}$, which implies $A = 1 - \frac{3}{4} = \frac{1}{4}$, therefore (1) becomes

$$\frac{z}{(z+1)(z-3)} = \frac{1}{4} \frac{1}{(z+1)} + \frac{3}{4} \frac{1}{(z-3)}$$

Considering each term in turn. For $\frac{1}{4}\frac{1}{(z+1)}$, we can expand this as

$$\frac{1}{4}\frac{1}{(z+1)} = \frac{1}{4}\left(1 - z + z^2 - z^3 + z^4 + \cdots\right) \qquad |z| < 1$$
 (2a)

$$\frac{1}{4}\frac{1}{(z+1)} = \frac{1}{4z}\frac{1}{\left(1+\frac{1}{z}\right)} = \frac{1}{4z}\left(1-\left(\frac{1}{z}\right)+\left(\frac{1}{z}\right)^2-\left(\frac{1}{z}\right)^3+\left(\frac{1}{z}\right)^4-\cdots\right) \qquad |z| > 1 \qquad (2b)$$

And for the term $\frac{3}{4}\frac{1}{(z-3)}$, we can expand this as

$$\frac{3}{4}\frac{1}{(z-3)} = -\frac{1}{4}\frac{1}{\left(1-\frac{z}{3}\right)} = -\frac{1}{4}\left(1+\frac{z}{3}+\left(\frac{z}{3}\right)^2+\left(\frac{z}{3}\right)^3+\left(\frac{z}{3}\right)^4+\cdots\right) \qquad |z| < 3 \qquad (3a)$$

$$\frac{3}{4}\frac{1}{(z-3)} = \frac{3}{4z}\frac{1}{\left(1-\frac{3}{z}\right)} = \frac{3}{4z}\left(1+\left(\frac{3}{z}\right)+\left(\frac{3}{z}\right)^2+\left(\frac{3}{z}\right)^3+\cdots\right) \qquad |z| > 3$$
 (3b)

Now that we expanded all the terms in the two possible ways for each each, we now consider each region of interest, and look at the above 4 expansions, and simply pick for each region the expansion which is valid in for that region of interest.

For (i), region A: In this region, we want |z| < 1. From (2,3) we see that (2a) and (3a) are valid expansions in |z| < 1. Hence

$$\frac{z}{(z+1)(z-3)} = \frac{1}{4} \left(1 - z + z^2 - z^3 + z^4 + \cdots \right) - \frac{1}{4} \left(1 + \frac{z}{3} + \left(\frac{z}{3} \right)^2 + \left(\frac{z}{3} \right)^3 + \left(\frac{z}{3} \right)^4 + \cdots \right)$$

$$= \frac{1}{4} \left(1 - z + z^2 - z^3 + z^4 - \cdots \right) - \frac{1}{4} \left(1 + \frac{z}{3} + \frac{z^2}{9} + \frac{z^3}{27} + \frac{z^4}{81} + \cdots \right)$$

$$= \left(\frac{1}{4} - \frac{1}{4}z + \frac{1}{4}z^2 - \frac{1}{4}z^3 + \frac{1}{4}z^4 - \cdots \right) - \left(\frac{1}{4} + \frac{z}{12} + \frac{z^2}{36} + \frac{z^3}{108} + \frac{z^4}{324} + \cdots \right)$$

$$= -\frac{1}{4}z - \frac{z}{12} + \frac{1}{4}z^2 - \frac{z^2}{36} - \frac{1}{4}z^3 - \frac{z^3}{108} + \frac{1}{4}z^4 - \frac{z^4}{324} - \cdots$$

$$- \frac{1}{3}z + \frac{2}{9}z^2 - \frac{7}{27}z^3 + \frac{20}{81}z^4 - \cdots$$

For (ii), region B: This is for 1 < |z| < 3. From equations (2,3) we see that (2b) and (3a) are valid in this region. Hence

$$\frac{z}{(z+1)(z-3)} = \frac{1}{4z} \left(1 - \left(\frac{1}{z}\right) + \left(\frac{1}{z}\right)^2 - \left(\frac{1}{z}\right)^3 + \left(\frac{1}{z}\right)^4 - \dots \right) - \frac{1}{4} \left(1 + \frac{z}{3} + \left(\frac{z}{3}\right)^2 + \left(\frac{z}{3}\right)^3 + \left(\frac{z}{3}\right)^4 + \dots \right)$$

$$= \frac{1}{4z} \left(1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \frac{1}{z^4} - \dots \right) - \frac{1}{4} \left(1 + \frac{z}{3} + \frac{z^2}{9} + \frac{z^3}{27} + \frac{z^4}{81} + \dots \right)$$

$$= \left(\frac{1}{4z} - \frac{1}{4z^2} + \frac{1}{4z^3} - \frac{1}{4z^4} + \frac{1}{4z^5} - \dots \right) - \left(\frac{1}{4} + \frac{z}{12} + \frac{z^2}{36} + \frac{z^3}{108} + \frac{z^4}{324} + \dots \right)$$
principal part
analytical part
$$= \dots + \frac{1}{4z^5} - \frac{1}{4z^4} + \frac{1}{4z^3} - \frac{1}{4z^2} + \frac{1}{4z} - \frac{1}{4z} - \frac{z^2}{12} - \frac{z^3}{36} - \frac{z^3}{108} - \frac{z^4}{324} - \dots$$

The <u>residue</u> is $\frac{1}{4}$ by looking at the above. The value for the residue can be verified as follows. Using

$$b_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z - z_{0})^{-n+1}} dz$$

Where in the above z_0 is the location of the pole and n is the coefficient of the $\frac{1}{z^n}$ is the principal part. Since we want the residue, then n = 1 and the above becomes

$$b_1 = \frac{1}{2\pi i} \oint_C f(z) \, dz$$

In the above, the contour C is circle somewhere inside the annulus 1 < |z| < 3. It does not matter that the radius is, as long as it is located in this range. For example, choosing radius 2 will work. The above then becomes

$$b_1 = \frac{1}{2\pi i} \oint_C \frac{z}{(z+1)(z-3)} dz \tag{5}$$

However, since f(z) is analytic in this region, then $\oint_C f(z) dz = 2\pi i \sum$ (residues inside). There

is only one pole now inside C, which is at z = -1. So all what we have to do is find the residue at z = -1.

Residue (-1) =
$$\lim_{z \to -1} (z + 1) f(z)$$

= $\lim_{z \to -1} (z + 1) \frac{z}{(z + 1)(z - 3)}$
= $\lim_{z \to -1} \frac{z}{(z - 3)}$
= $\frac{-1}{(-1 - 3)}$
= $\frac{1}{4}$

Using this in (5) gives

$$b_1 = \frac{1}{2\pi i} \left(2\pi i \frac{1}{4} \right)$$
$$= \frac{1}{4}$$

Which agrees with what we found in (4) above.

For (iii), region C: This is for |z| > 3. From (2,3) we see that (2b) and (3b) are valid expansions $\overline{\text{in } z > 3}$. Hence

$$\frac{z}{(z+1)(z-3)} = \frac{1}{4z} \left(1 - \left(\frac{1}{z}\right) + \left(\frac{1}{z}\right)^2 - \left(\frac{1}{z}\right)^3 + \left(\frac{1}{z}\right)^4 - \dots \right) + \frac{3}{4z} \left(1 + \left(\frac{3}{z}\right) + \left(\frac{3}{z}\right)^2 + \left(\frac{3}{z}\right)^3 + \dots \right)$$

$$= \left(\frac{1}{4z} - \frac{1}{4z^2} + \frac{1}{4z^3} - \frac{1}{4z^4} + \frac{1}{4z^5} - \dots \right) + \frac{3}{4z} \left(1 + \frac{3}{z} + \frac{9}{z^2} + \frac{27}{z^3} + \dots \right)$$

$$= \left(\frac{1}{4z} - \frac{1}{4z^2} + \frac{1}{4z^3} - \frac{1}{4z^4} + \frac{1}{4z^5} - \dots \right) + \left(\frac{3}{4z} + \frac{9}{4z^2} + \frac{27}{4z^3} + \frac{81}{4z^4} + \dots \right)$$

$$= \dots + \frac{20}{z^4} + \frac{7}{z^3} + \frac{2}{z^2} + \frac{1}{z}$$

This is as expected contains only a principal part and no analytical part. The <u>residue</u> is 1. This above value for the residue can be verified as follows. Using

$$b_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z - z_{0})^{-n+1}} dz$$

Where in the above z_0 is the location of the pole and n is the coefficient of the $\frac{1}{z^n}$ is the principal part. Since we want the residue, then n = 1 and the above becomes

$$b_1 = \frac{1}{2\pi i} \oint_C f(z) \, dz$$

In the above, the contour C is circle somewhere in |z| > 3. It does not matter that the radius is. The above integral then becomes

$$b_1 = \frac{1}{2\pi i} \oint_C \frac{z}{(z+1)(z-3)} dz$$
 (7)

However, since f(z) is analytic in |z| > 3, then $\oint_C f(z) dz = 2\pi i \sum$ (residues inside). There are

now two poles inside C, one at z=-1 and one at z=3. So all what we have to do is find the residues at each. We found earlier that Residue $(-1)=\frac{1}{4}$. Now

Residue (3) =
$$\lim_{z \to 3} (z - 3) f(z)$$

= $\lim_{z \to 3} (z - 3) \frac{z}{(z + 1)(z - 3)}$
= $\lim_{z \to 3} \frac{z}{(z + 1)}$
= $\frac{3}{4}$

Therefore the sum of residues is 1. Using this result in (7) gives

$$b_1 = \frac{1}{2\pi i} \left(2\pi i \left(\frac{1}{4} + \frac{3}{4} \right) \right)$$
$$= 1$$

Which agrees with what result from (6) above.

Summary of results

$$f(z) = \frac{z}{(z+1)(z-3)} = \begin{cases} -\frac{1}{3}z + \frac{2}{9}z^2 - \frac{7}{27}z^3 + \frac{20}{81}z^4 - \cdots & |z| < 1\\ \cdots + \frac{1}{4z^5} - \frac{1}{4z^4} + \frac{1}{4z^3} - \frac{1}{4z^2} + \frac{1}{4z} - \frac{1}{4} - \frac{z}{12} - \frac{z^2}{36} - \frac{z^3}{108} - \frac{z^4}{324} - \cdots & |z| < 3\\ \cdots + \frac{20}{z^4} + \frac{7}{z^3} + \frac{2}{z^2} + \frac{1}{z} & |z| > 3 \end{cases}$$

3 Problem 3

3.1 Part (a)

Use residue theorem to evaluate $\oint_C \frac{e^{-2z}}{z^2} dz$ on contour C which is circle |z| = 1 in positive sense.

Solution

For f(z) which is analytic on and inside C, the Cauchy integral formula says

$$\oint_C f(z) dz = 2\pi i \sum_j \text{Residue} (z = z_j)$$
(1)

Where the sum is over all residues located inside C. for $f(z) = \frac{e^{-2z}}{z^2}$ there is a simple pole at z = 0 of order 2. To find the residue, we use the formula for pole or order m given by

Residue
$$(z_0) = \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \frac{(z - z_0)^m}{(m-1)!} f(z)$$

Hence for m = 2 and $z_0 = 0$ the above becomes

Residue (0) =
$$\lim_{z \to 0} \frac{d}{dz} z^2 f(z)$$
=
$$\lim_{z \to 0} \frac{d}{dz} z^2 \frac{e^{-2z}}{z^2}$$
=
$$\lim_{z \to 0} \frac{d}{dz} e^{-2z}$$
=
$$\lim_{z \to 0} (-2e^{-2z})$$
=
$$-2$$

Therefore (1) becomes

$$\oint_C \frac{e^{-2z}}{z^2} dz = 2\pi i (-2)$$
$$= -4\pi i$$

3.2 Part (b)

Use residue theorem to evaluate $\oint_C ze^{\frac{1}{z}}dz$ on contour C which is circle |z|=1 in positive sense.

Solution

The singularity is at z=0, but we can not use the simple pole residue finding method here, since this is an essential singularity now due to the $e^{\frac{1}{z}}$ term. To find the residue, we expand f(z) around z=0 in Laurent series and look for the coefficient of $\frac{1}{z}$ term.

$$f(z) = ze^{\frac{1}{z}}$$

$$= z\left(1 + \frac{1}{z} + \frac{1}{2}\frac{1}{z^2} + \frac{1}{3!}\frac{1}{z^3} + \cdots\right)$$

$$= z + 1 + \frac{1}{2}\frac{1}{z} + \frac{1}{3!}\frac{1}{z^2} + \cdots$$

Hence residue is $\frac{1}{2}$. Therefore

$$\oint_C ze^{\frac{1}{z}} dz = 2\pi i \left(\frac{1}{2}\right)$$

$$= \pi i$$

3.3 Part (c)

Use residue theorem to evaluate $\oint_C \frac{z+2}{z^2-\frac{z}{2}} dz$ on contour C which is circle |z|=1 in positive sense.

Solution

$$f(z) = \frac{z+2}{z^2 - \frac{z}{2}}$$
$$= \frac{z+2}{z(z-\frac{1}{2})}$$

Hence there is a simple pole at z = 0 and simple pole at $z = \frac{1}{2}$

Residue (0) =
$$\lim_{z \to 0} (z) f(z)$$

= $\lim_{z \to 0} z \frac{z+2}{z(z-\frac{1}{2})}$
= $\lim_{z \to 0} \frac{z+2}{(z-\frac{1}{2})}$
= $\frac{2}{-\frac{1}{2}}$
= -4

And

Residue
$$\left(\frac{1}{2}\right) = \lim_{z \to \frac{1}{2}} \left(z - \frac{1}{2}\right) f(z)$$

$$= \lim_{z \to \frac{1}{2}} \left(z - \frac{1}{2}\right) \frac{z+2}{z\left(z - \frac{1}{2}\right)}$$

$$= \lim_{z \to \frac{1}{2}} \frac{z+2}{z}$$

$$= \frac{\frac{1}{2} + 2}{\frac{1}{2}}$$

$$= 5$$

Therefore

$$\oint_C \frac{z+2}{z^2 - \frac{z}{2}} dz = 2\pi i (5-4)$$

$$= 2\pi i$$