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1 Problem 1

1.1 Part (a)

Use Cauchy-Riemann equations to determine if |z| analytic function of the complex variable
z.

Solution
f(2) =z

Let z = x + iy, then

F2) = (x*+1?)

=u+iv

Hence

W
(%

Cauchy-Riemann equations are

—_— == 1
ox Oy W
ou Jdv

- = 2
Jdy Ox @

First equation above gives 22 = 0 and & = 1 _2X_ which shows that 22 # % Therefore |z|
Jdy Ox 2 dy 0x
is not analytic.

1.2 Part (b)

Use Cauchy-Riemann equations to determine if Re (z) analytic function of the complex variable
z.

Solution
f(z) =Re(z)
Let z = x + iy, then
f@)=x
=u+iv

Hence



Cauchy-Riemann equations are

ou Jdv
_— == 1
ox 0Oy W)
du Jv

= 2
Jdy Ox @)

First equation above gives g—;’ =0and % = 1, which shows that g—z * %. Therefore Re (z) is

not analytic.

1.3 Part(c)

Use Cauchy-Riemann equations to determine if e$"?

zZ.

analytic function of the complex variable

Solution

f (z) = €*"7 is analytic since we can show that exp (z) is analytic by applying Cauchy-Riemann
(C-R), and also show that sin (z) is analytic using C-R. Theory of analytic functions it says that
the composition of analytic functions is also an analytic function, which means e¥"7 is analytic.
But this problems seems to ask to use C-R equations directly to show this. Therefore we need
to first determine the real and complex parts (u, v) of the function e¥"*. Since

z—z1

2i

sinz =
Then

f(Z) — esinz

z—z1
- P Ty

z -1
= €xp (Z) exXp g




But z = x + iy and the above expands to

)+isin(1X(1—(x2+y2))

x% + y?

(sinz) = exp [ - (x + i) -
exp(sinz) =exp | —(x+iy)| exp | ———
P P12 Y P 2i (x + iy)
—i +1 i 1
=exp|—x+-y|exp|=
P13 2 7] P 2(x+iy)
—i +1 i X - iy )
=exp|—x+-y|exp|= _ _
P17 ] P 2 (x +iy) (x — iy)
=i 1 i x—iy
= exp ?x+§y exp §x2+y2
B —1 1 i x iy
TP\ RY) P |3 x2+y?  x%+ P
—i +1 i x +1 Y
=exp|—x+ -y|exp|= =
P13 2 7] P 2x2+y?  2x%+y?
—i 1 i x 1 vy
=exp|—x|exp|-y|exp|-——]exp|=
P13 PlaY] =P 2x%2 +y? P 2x2+y?
Collecting terms gives
(sinz) 1 +1 i x i
exp(sinz) =exp |-y + = exp|-——— — =x
P Pl32Y 2x% + y? P 2x2+y? 2
1y (1+ (x* +4?)) i x i .
= = = - +
P13 x% + y? xp 2x%+ 1?2 2(x2+y2)x(x y)
1y (14 (x*+3%)) 1x(1- (" +y7))
=exp|= exp | i=
Pz x? + y? Pl% x? + y?
1y (1+(x*+v%)) 1x (1-(x*+9%))
=exp|= cos|—
P13 x% + y? 2 x% + y?
y+y(x*+1%) x=x(x*+y°)\ . (y+y(x®+y)
= +
xp 2(x2+9y?) cos 2(x2+1y?) HEXp 2(x2+9y?)
Therefore, since exp (sin z) = u + iv, then we see from above that
e [T YY) (1x—x (4
- 9P\ x% +1? 2 x2+y?
e [T YY) L (1x-x (YY)
P13 x% + y? 2 x2+y?

o

|

1x—x(x*+y?)

2 (x*+y?)

Now we need to check the Cauchy-Riemann equations on the above u, v functions we found.

ox Oy
ou _ 0v

_6_y_a

(1)
(2)

|



Evaluating each partial derivative gives

@_i ly+y(x2+y2) 1y+y(x2+y2) 1x—x(x2+y2)
Ox dx\2  x2+y? P13 x? + y? %12 x? +y?
1y+y(x*+v%))\ d 1x —x (x* + 9%
AP x? + y? dx O \2 x? + y?
C12yx (P 4+ yP) — (y+y (2 +y7)) 2x (1y((x2+y2)+1)) (1X(1—(x2+y2)))
= - 5 exp | = — cos | = -
2 (x2 +y%) 2 x“+y 2 x“+y
1y+y(x®+y?)) . (1x-x(x®+y?)\ d (x-x(x*+?)
—exp|= sin | = —
2 x?+y? 2 x4yl dx \ 2(x%+y?)
. —xy 1y ((x*+v%) +1) x(1-(x*+9°))
_—(x2+y2)2 exp 5 PR cos )
y+y(x®+9%)\ . (x—x(x*+%)) ((1-3x*-v%) (x**+ %) — (x —x (x* + %)) 2x
TP TGz )Y 2(x* +y?) 2 (x2 + y2)°
—-xy (1y(x2+y2+1)) (1x(1—(x2+y2)))
=—72 _exp[-————"]cos|-
(x2 + y?)? 2 x?+y? 2 x? +y?
(1y(x2+y2+1)) ) (x—x(x2+y2))((—x4—2x2y2—x2—y4+y2))
—exp|-——F—"]si
ey 262+ ) 2 (2 + 47

The above can be simplified more to become

du _ -1 y (x> +y*+1)
dx 2(x2 + y2)° = 2(x%+y?)
x —x (x* + ) x —x (x* + )

3)

+ (—x4 —2xtyt —xt -yt + yz) sin

[ny cos

2 (x? +y?) 2 (x? +y?)

dv o . _ 1Yty (P +y?) | o (1 xex(x+y)
Now we evaluate ay to see if it the same as above. Since v = exp (2 R sin | 5 )



then
v d (y+y(x*+y?) y+y(x*+v°) x —x (x* + y?)
Ay dy\ 2(x%+1y?) 2(x?+14?) 2(x2+9y?)
y+y(x2+y2) x — xx+y d (x— xx+y
+ —_—
R (x%2 +y?) R (x2+1y?) dy 2(x2+1y?)
3 1(1+x2+3y2)(x2+y) (y+y( +y2))2y y+y(x +y) . x—x(x2+y2)
== exp R sin O
2 (x2 + y2)? 2(x*+y°) 2(x* +y?)
y+y(x*+4°) x—x (x*+ %)\ (1(=2xy) (x* +y?) — (x —x (x* + ¥%)) (2y)
+ exp TR cos ) = Y
2(x* +v7?) 2(x*+y?) )2 (x* +y%)
_ 1x4+2x2y2+x2+y4—y2 » y+y(x+17) o 1x—x(x2+y2)
2 (x? + y2)2 2 (x? + y?) 2 x2 + 12
y+y(x*+v°) x—x(x*+v%)\ (1 —2xy
+ exp cos =
2(x* +v%) 2(x*+y?) 2 (x2 + y2)?
_ 1x4+2x2y2+x2+y4—y2 N y+y(x+172) ; 1x—x(x2+y2)
2 (x? + y2)2 p 2 (x2 + y?) 2 x2 + 12
y+y(x*+y°) x - x (x* + ) xy
— exp cos
2(x?+14?) 2(x%+1y?) (x2 + y2)°
Simplifying the above more gives
dv -1 y+y (e +v°)
— = ex
9y 2(x? + y2)? 2(x* +y?)
x—x(x*+¢°) 4 20 a4 oy XX (X +7)
[nycos 2T ) + (—x* - 2x°y° —x* = y* + y°) sin 21 ) (4)

Comparing (3) and (4) shows they are the same expressions. Therefore the first equation is
verified.

ou _dv
dx  dy
2 2
Now we verify the second equation _?’_Z = g—;. Since u = exp (%%) cos (%(x(z+y+;)/))



then
du _d (1y+y(x*+v°) y+y(x*+v°) 1x—x (x* +9?)
dy dy\2 (x2+y?) * 2(x2+y2) €08 x? + 1?2
y+y(x*+y? 1x —x (x* +y?) 1x - x (x* + y?)
xp 2(x2+1y?) sin 2 x2+y? x? + y?
(1 x?+3y%) (2P +y?) - (y+y (x° +y)) (y+y(x +y)) (X—X(x2+y2)
= exp T cos >
2 (x2 + y2)° 2(x*+y%) 2(x* +y°)
y+y (497 . (1x=-x(x*+v?))\ (2y) (x* + ) = (x —x (x* + 4?)) 2y
— exp sin | -
2(x? +y?) 2 x2+yl 2(x2 + y?)’
_ (x* + 2x%% + x* + y* — ) o y+y(x*+v°) o x —x (x% + y?)
2 (x% + 42)° 2(x*+y?) 2(x*+y?)
y+y (x2 + y2) C(1x—-x (x2 + yz) (—2y) (x2 + yz) - 2yx + 2yx (x2 + yz)
— exp n|-
2(x? +4?) 2 X2+l 2(x2 + y2)’
B (x4+2x2y2+x2+y4—y2) (y+y(x2+y2)) (1x—x(x2+y2))
- 2 €Xp 24 42 cos |5 24 42
2(x2+1y?) 2(x*+y?) 2 Xty
y+y(x*+y? 1x —x (x* +y?) yx
+ exp in
2(x2+1y?) 2 x? + y? (x2+yz)2

The above can simplified more to give

du 1 y+y(x*+v°)
— = ex
9y 2(x? +y2)? 2(x% +y?)
4 2.2, .2, 4 2 x—x(x* + 1) - x—x(x*+y°)
(x +2x"y" +x" +y —y)cos 262+ 00 + 2xy sin 262 + 70
Hence
—0u: 1 eXp(y+y(x2+y2))
9y 2(x%+y?)° 2(x% +y?)
2, .2 2, .2
4 22, .2 4_ 2 x = x (x* +¢°) - x—x(x*+y°)
[—(x +2x%y° + x° +y* — y°) cos 221 ) — 2xy sin 22 ) (5)

|



ly+y(x2+y2) ) . (lx—x(x2+y2) ) then

And since v = exp (2 «rp) ) S\ 2 TG

dv _d (1y+y(x2+y2))ex (y+y(x2+y2))Sin(lx—x(x2+y2))

Ox  dx\2  x+? 2(x?+94?) 2 x2+y?
y+y(x2+y2) 1x—x(x2+y2) d 1x—x(x2+y2)
+ — [ —
W (x%2 +y?) 2T s y? dx \2  x?2+4y?
1 (2xy (®+yP) —(y+y(x®+y7)) 2x y+y(x*+4%)\ . (1x-x(x*+v?
2 (x? +y?)’ TPlT2e ey )T 2T ey
y+y(x*+y°) 1x—x (x+9%) | ((1-3x"—9%) (¢ +7%) — (x—x (x* + 7)) 2x
+ exp os|—
2(x2+1y?) 2 x? + y? 2(x% + y2)2
—xy 1y+y (P +y)\ . (x—x(x*+P)
= —eX - S
(x? + )’ 2 x4y 2(x*+v?)
y+y(x*+v°) x—x (x® + %) [—x* — 2x%y% — x% — y* + ¢
+ exp B co - Y
2(x*+y°) 2(x*+y?) 2(x%+v?)
The above can simplified more to give
dv 1 y+y(x*+y’)
— = ex
x 2 r gy P\ 26 v )
4 2.2, .2, 4 2 x—x(x* +v%) - x—x(x*+y’)
[—(x +2x%y° + x° + y* — y°) cos ) — 2xy sin 21 ) (6)
Comparing (5,6) shows they are the same, i.e.
—O0u _ dv
dy  Ox
C-R equations are satisfied, and because it is clear that all partial derivatives g—“, ?, %, % are
X7 0y’ ox’ oy

continuous functions in x, y as they are made up of exponential and trigonometric functions
which are continuous, then we conclude that f (z) = e*"7 is analytic function everywhere.

2 Problem 2

2.1 Part(a)

Represent £ by its Maclaurin series and give the region of validity for the representation.
Next expand this in powers of 1 to find a Laurent series. What is the range of validity of the
Laurent series?

Solution

Maclaurin series is expansion of f (z) around z = 0. Since f (z) has simple pole at z = 3, then
the region of validity will be a disk centered at z = 0 up to the nearest pole, which is at z = 3.



Hence |z| < 3 is the region.

z+3

z—3
z+3

_z+3( 1)
-3 \1-%

Now we can expand using Binomial to obtain

f(Z)=3+Z(1+§+(5)2+(3)3+...)

f @

-3 3 3

D) e e )

R [ R RRE [EId

R S N

To expand in negative powers of z, or in %, then

z+3

)

_z+3 1
=— _%
For |%| < 1or |z| < 3 the above becomes

f @ Z:3(1+§+(§) +(§) +)
3

Il
—_

—_

_I_

N |
~————
—

—_

+
N | W

w +
—_
N | W»W
~————
Do

+
—_
N | W
N'w S —
w

+

) -

z

3

3

) e
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This is valid for |z| > 3. The residue is 6, which can be confirmed using

Residue (3) = li_rg (z-3)f(2)

z+3
= lim (z — 3)
z—3 z—3
= lim (z + 3)
z—3
=6
Summary
2,_2,2_2.3_ 24
Flo) =2 = —1-%z-5z"— 52— g2 - z[ <3
z-3 6 , 18 , 54
1+2+35+35 4+ |z| >3
z z z

2.2 Part (b)

Fill'ld Laurent series for m in each of the following domains (i) |z| < 1 (i) 1 < |z| < 3 (iii)
z| >3

Solution

The possible region are shown below. Since there is a pole at z = —1 and pole at z = 3, then
there are three different regions. They are named A, B, C in the following diagram

Region C' is |z| > 3, Hence the
series expansion will contain only a
principal part and no analytical
part.

Region A contains no poles inside. Region B is annulus region

Disk centered at zero up to the between region which is analytic up
nearest pole at z = —1. Hence the to the next pole at z = 3. Hence
series expansion will contain only the series expansion will contain

an analytical part and no principal both an analytical part and a

part. principal part.

Figure 1: Laurent series regions
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First the expression m is expanded using partial fractions

z A B

Cr1)(z-3) (@+D (z-3) (1)

Hence
z=A(z-3)+B(z+1)
=z(A+B)-3A+B

The above gives two equations
A+B=1
0=-3A+8B
First equation gives A = 1 — B. Substituting in the second equation gives 0 = =3 (1 — B) + B or
0 = -3 + 4B, hence B = ?1, which implies A = 1 — % = 71;’ therefore (1) becomes
z _11 3 1
(z+1)(z-3) B 4(z+1) 4(z-3)

Considering each term in turn. For }Lﬁ, we can expand this as

1

—(1—z+22 -2+ 4+ zl <1 2a
4(z+1) 4( ) 2] (2a)

1

1 1 1 1 1 1 2 1 3 1 4
Z(z+1):_z(1+%) :E(l_(;)+(;) _(;) +(;) —) lz] >1  (2b)

And for the term %(213), we can expand this as

o 1 S R R E I BT

301 3001 3 3\ (3\° (3\°
- = — =—|1+(=]+[=] +|-| + |z| >3 (3b)
4(z-3) 42(1—2) 4z z z z

Now that we expanded all the terms in the two possible ways for each each, we now consider

each region of interest, and look at the above 4 expansions, and simply pick for each region
the expansion which is valid in for that region of interest.

For (i), region A: In this region, we want |z| < 1. From (2,3) we see that (2a) and (3a) are valid

expansions in |z| < 1. Hence

F4 1 2 3 4 1 z z\2 (z\3 [(z\4
i) - e 2 (B (B (B)
(z+1)(z-3) 4 4 3 \3 3 3

1 1 z ¢ 2
=-(1-z+22-2+2" - ) - [T+ 2+ =+ =+ =+
4 3 9 27 81
1 1 1, 1, 1, 1z 22 2
=|l-—--z+-2"—--2+ -2 —|l-t=+=+—=+—=—+---
4 4 4 4 4 4 12 3 108 324
1 z 1, 2 1, 2 1, z4
= ——Z - — — - — =7z - — [ ———
4 12 4 36 4 108 4 324
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For (ii), region B: This is for 1 < |z| < 3. From equations (2,3) we see that (2b) and (3a) are
valid in this region. Hence

SR H R ERIE IR B (S R R

1 1 1 1 1 z 2 3 z*
=—|1- — =t == | -=|1+=-"+t—=—+—+—+
4z z2 3 4 3 9 27 81
1 1 1 1 1 z z2 2 4
=l—-—+—=-—4+—- |- |- t=+=4+—=+ =+
4z 472 423 4z% 475 4 12 36 108 324
principal part analytical part
1 1 1 1 1 1 z 2 2 #®

+ + +
4z>  4z*  4z3 422 4z 4 12 36 108 324

The residue is by looking at the above. The value for the residue can be verified as follows.

Using
f @
2”1§(Z ) n+1

Where in the above z; is the location of the pole and n is the coefficient of the zi” is the principal
part. Since we want the residue, then n = 1 and the above becomes

1
- o @z
C

In the above, the contour C is circle somewhere inside the annulus 1 < |z| < 3. It does not
matter that the radius is, as long as it is located in this range. For example, choosing radius 2
will work. The above then becomes

1 z
= %TF(H De-3)" G)
C

However, since f (z) is analytic in this region, then é; f (z)dz = 27i 3, (residues inside). There

C
is only one pole now inside C, which is at z = —1. So all what we have to do is find the residue
atz = -1

Residue (-1) = Zli)rr_ll (z+1) f(2)

z
=1 1) — ¥
zi»m1(z+ )(z+1)(z—3)
= lim £
_z—>—1 (2—3)
-1

(-1-3)
1
4
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Using this in (5) gives
1 1
b1 = — (2%1—)

Which agrees with what we found in (4) above.

For (iii), region C: This is for |z| > 3. From (2,3) we see that (2b) and (3b) are valid expansions
in z > 3, Hence

R R E RO R RO

:--.+_+_+_+_

This is as expected contains only a principal part and no analytical part. The residue is 1. This
above value for the residue can be verified as follows. Using

f @
27”§(Z z ) n+1

Where in the above z is the location of the pole and n is the coefficient of the Z; is the principal
part. Since we want the residue, then n = 1 and the above becomes

1
- o @z
C

In the above, the contour C is circle somewhere in |z| > 3. It does not matter that the radius is.
The above integral then becomes

1 z
- %f]g(u De-3% @)
C

However, since f (z) is analytic in |z| > 3, then 3€ f (z)dz = 27i 3, (residues inside). There are

C
now two poles inside C, one at z = —1 and one at z = 3. So all what we have to do is find the
residues at each. We found earlier that Residue (—1) = i. Now

Residue (3) = 2'1_r>n3 (z-3)f(2)

= lim (= - )(z+1)(z—3)

lim
-3 (z+ 1)
3

4



Therefore the sum of residues is 1. Using this result in (7) gives
1 1 3
by = —|27mi|-+ -
27i 4 4
=1

Which agrees with what result from (6) above.

Summary of results

14

222 - L3+ 874 -

Z+ 27

Nel |V}

(=R

fz)= (Z+1)(z =) ts 4z4 423 T 472 47 127 3 108 324
e+ BT 21
z Z V4 z

5——+———+————————————--

|z|] <1
1<zl <3
|z] >3

3 Problem 3

3.1 Part(a)

. -2z S . Y
Use residue theorem to evaluate ﬂge?dz on contour C which is circle |z| = 1 in positive sense.

Cc

Solution

For f (z) which is analytic on and inside C, the Cauchy integral formula says
3€f (z)dz = 2mi Z Residue (z = zj)
& J

Where the sum is over all residues located inside C. for f (z) =

d™ ! (z—zp)"
o dzm 1 (m—1)!

f@

Residue (z9) = hm

Hence for m = 2 and z; = 0 the above becomes

d
Residue (0) = Iir% d—z2 f(z)
zZ— zZ

-2z
d ,e

=lim —z >

z—0 dz z
1 d 2z
= lim —e

z—0 dz
= lim (—Ze 22)

z—0

(1)

¢ there is a simple pole at
z = 0 of order 2. To find the residue, we use the formula for pole or order m given by
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Therefore (1) becomes

e—22
5[5 —dz = 27i (-2)
z

C

= —4ri

3.2 Part (b)

Use residue theorem to evaluate ngez dz on contour C which is circle |z| = 1 in positive sense.
C

Solution

The singularity is at z = 0, but we can not use the simple pole residue finding method here,
since this is an essential singularity now due to the e term. To find the residue, we expand
f (z) around z = 0 in Laurent series and look for the coefficient of % term.

f(z)=ze
11 11
=zll+-+-——4+——+---
z 222 3123
11 11
=z+1l+-—+==+
2z 3122
Hence residue is % Therefore
1
jgze%dz = 27i (—)
2
C
= i

3.3 Part (c)

Use residue theorem to evaluate 3@;‘:25 dz on contour C which is circle |z| = 1 in positive sense.
2

c

Solution

f@



Hence there is a simple pole at z = 0 and simple pole at z = %

And

Therefore

Residue ( 1)
2

Residue (0) = Ii_I)l(l) (2) f (2)

. z+2
=limz

SPTPR

I z+2
= lim

ST
_ 2

1
2
=-4

i [e-3)

z—1

2
2
z+2

z(z-3)

N|=

dz = 2mi(5—4)

= 2mi

. 1 z+2
lim (z——)—1

16
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