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1 Problem 1

Find all possible values for (put into x + iy form)

1. log(l + \/§i)
2. (1+\/§i)2i

Answer

1.1 Part1

Let z = x + iy, where here x = 1,y = 3, then |z| = \/x2+y2 =V1+3=2andarg(z) = 0 =

y V3

arctan (£) = arctan (—) = Z = 60°. The function log (2) is infinitely multi-valued, given by

1 6~

log(z) =1n|z| +i(6y + 2nr) n=0,+1,+2,--- (1)
Where 0, is the principal argument, which is 60° in this example, which is when n = 0. This
is done to make log (z) single valued. This makes the argument of z restricted to -z < 6, < .
This makes the negative real axis the branch cut, including the origin. To find all values, we

simply use (1) for all possible n values other than n = 0. Each different n values gives different
branch cut. This gives, where In |z| = In (2) in all cases, the following

log(z)zln(2)+i(£) n=20

log (z) = 0.693 + 1.047i
= 0.693 + 7.330i
= 0.693 — 5.236i
= 0.693 + 13.614i
=0.693 — 11.519i

These are in (x + iy) form. There are infinite number of values. Picking a specific branch cuts
(i.e. specific n value), picks one of these values. The principal value is one associated with n = 0.



1.2 Part2

Let z = 1 + iV3, hence

flz)=2"
= exp (2ilog(2))
=exp (2i(In|z| +i(6y + 2nr))) n=0,+1,+2,---
Where in this example, as in first part, In|z| = In(2) = 0.693 and principal argument is
6o = & = 60°. Hence the above becomes

f(z) =exp (21’ (ln(2) +1i (% + 2n7r)))
= exp (Ziln (2) - (2?71 + 4n7t))
= exp (iln4 - (2?71 +4nn))

2
=exp (iln4)exp (— (?ﬂ + 4n7r))
= ¢ (5 +4n7) (cos(In4) + isin(In4))
= e~ (5 +4nm) oo (In4) + ie (5447 i (In4)

Which is now in the form of x + iy. First few values are

2 2

f(z)= e (%) cos (In4) + ie(5) sin (In4) n=0

= e (5+47) cos (In 4) + ie (547 sin (In4) n=1
= ¢~ (5747) ¢og (In4) + ie”(5747) gin (In4) n=-1
= ¢ (5487) cog (In4) + ie(5+87) gin (In4) n=2
= ¢~ (5787) ¢og (In4) + ie”(5787) gin (In4) n=-2

f(z) = 0.0226 + i0.121
=7.878 X 1078 +i4.222 x 10~/
= 6478 + i34713
=2.748 x 107 % +i1.472 x 10712
= 1.858 X 10° + i9.954 X 10°



2 Problem 2

Given that u (x, y) = 3x?y —y° find v (x, y) such that f (z) is analytic. Do the same for u (x, y) =
Y
x%+y?

Solution

2.1 Part (1)

u(x,y) = 3x%y — y°. The function f (z) is analytic if it satisfies Cauchy-Riemann equations

du Ov
== 1)
ox Oy
du Jv
S 2)
y Ox
Applying the first equation gives
ov
6xy = —
Xy 3y

Hence, solving for v by integrating, gives

v (x,y) = 3xy” + f (x) (3)

Is the solution to (3) where f (x) is the constant of integration since it is a partial differential
equation. We now use equation (2) to find f (x). From (2)

Jdv

- (3x* = 3¢°%) = —
(3x y) 0x

—3x2+3y2=%

But (3) gives g—;’ = 3y® + f’ (x), hence the above becomes

—-3x% +3y* = 3y* + ' (x)
' (x) = =3x% + 3y — 3¢/°

= —3x?

Integrating gives
f(x)= ‘[—szdx
= x+C

Therefore, (3) becomes
v (x,y) = 3xy” + f (x)
Or

v(x,y)=3xy> —x>+C




Where C is arbitrary constant. To verify, we apply CR again. Equation (1) now gives

ou  0v
dox Oy
6xy = 6Yx
Verified. Equation (2) gives
du _ dv
dy  Ox
—3x% + 3y2 = —3x% + 3y2
Verified.
2.2 Part(2)
u(x,y) = xZLerZ The function f (z) is analytic if it satisfies Cauchy-Riemann equations
Ju Ov
Lo 1)
ox 0Oy
Ju Ov
s 2)
Jdy Ox
Applying the first equation gives
2xy  0v
(a2 +y?)" By
Hence, solving for v by integrating, gives
y
v=-2x | ———=d
J(xz + 12)? Y
x
e fx) 3)

Is the solution to (3) where f (x) is the constant of integration since it is a partial differential
equation. equation (2) gives

1 2y? ov
T2 2 2" oy
x*+y? (x2 +y?) o0x

But (3) gives g—z = xz#ﬂ/z — # + f” (x), hence the above becomes

I 2y* I 2x° P
x2 + y2 (x2 + y2)2 xZ + y2 (x2 + y2)2
, 2 2 (y2 + xz)
Xyt (P +y?)

2 2
xX*+y? (P +yP)
=0




Hence
f)y=cC

where C is arbitrary constant. Therefore, (3) becomes

v(x,y)=5—5+C

x2+y?

To verify, CR is applied again. Equation (1) now gives

ou  0v
dox Oy
—2xy  —2xy

2+ ()
Hence verified. Equation (2) gives

ou v
dy  Ox
1 20 1 2x*
_x2+y2+(x2+22_x2+ 2 9. o2
y%) y* o (x*+y?)
—(x*+vy%) +2y*  x%+y? - 2x?
(x2 + y?)* (x? +y?)°
—x2+y2 _ —x2+y2
x2+1y2)?  (x2+y2)°

Verified.



3 Problem 3

Evaluate the integral (i) 3€ |z|? dz and (ii) §>21—2d2 along two contours. These contours are

C C

1. Line segment with initial point 1 and fixed point i

2. Arc of unit circle with Im (z) > 0 with initial point 1 and final point i

Solution

3.1 Part (1)

Yy
4 ($1,?J1)

(%0, ¥yo0)

Figure 1: Integration path

First integral We start by finding the parameterization. For line segments that starts at (xo, yo)
and ends at (xy, y1), the parametrization is given by

x(t) = (1 —1t)xo + tx
y () =1 -1t)yo + 1ty

For 0 < t < 1. Hence for z = x + iy, it becomes z (t) = x (¢) + iy (¢). In this case, xy = 1,y =
0,x; = 0,y; = 1, therefore

x(t)=(1-1)
y(t) =t
Using these, z (t) is found from

z(t) =x(t)+iy ()
=(1-t)+it



And

Z(t)=-1+i

Since |z|* = x% + y?, then in terms of ¢ it becomes

lz(1)|? = (1 —t)? + t*

Hence the line integral now becomes

1
J |z|2dz:J |z (1)|? 2 (¢)dt
c 0

= Ll ((1

= (-1+1)
= (-1+1i)
= (-1+1i)
= (-1 +i)
= (-1+1i)
= (-1+1i)

Hence

—t)? + %) (=1 +1) dt

rl

(1-1)? + t2dt
do

1+ 12— 2t + t2dt

Yo
1+ 2t2 =2t dt

JO

1 1 ) ~ 1 )
J;)dt+J0 2t°dt J; 2t dt
3\ 1 2\ 1
val5). ()
(t)o + 3/, 2/,
2]
1+=-2|=
3 2

Jcll

2dz:%(i—l)

second integral

Using the same parameterization above. But here the integrand is

1

72

Hence the integral becomes

1 1
—dz =
Jc z2 ‘ .[o

1
= (i-1)

N
(1 - ¢t) +it)?

((1—t) +it)? 2 (Bde

;dt
o ((1—1)+it)?

= (-1 (=)

Hence

Je

Zizdz:1+i




3.2 Part (2)

Y
A
7 xluyl)
r
0 1(3307110) -

Figure 2: Integration path

First integral Let z = re'® then % = rie'. When z = 1 then 6 = 0. When z = i then § = 2
hence we can parameterize the contour integral using 6 and it becomes

‘[ |z|* dz
c
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But r = 1, therefore the above becomes

olzlfdz=i-1

second integral

Using the same parameterization above. But here the integrand now

1 1

22 y2ei2f




Therefore

But r = 1, hence

10



11

4 Problem 4

Use the Cauchy integral formula

1 z
f(Zo) = &dz
2ri) z -z
c
To evaluate
(z+1)(z+2)
C

Where C is the circular contour |z + 1| = R with R < 1. Note that if R > 1 then a different
result is found. Why can’t the Cauchy integral formula above be used for R > 1?

Solution

The disk |z + 1| = R is centered at z = —1 with R < 1. The function

1

9= D@+

has pole at z = -1 and at z = —2.

N

Figure 3: Showing location of pole

In the Cauchy integral formula, the function f (z) is analytic on C and inside C. Hence, to use

Cauchy integral formula, we need to convert g (z) = m to look like Z_(;)) where f (z) is
analytic inside C. This is done as follows

1

1 _ @y
(z+1)(z+2) z-(-1)
@
z= (-1
Where now f (z) = m This has pole at z = —2. Since this pole is outside C then f (z) is

analytic on and inside C and can be used for the purpose of using Cauchy integral formula,



12

which now can be written as

1
1 _ (z+2)
3€(z e P SEZ %
C

f@
Z—( 1)

_ (i) f 1

Therefore, we just need to evaluate f (—1) which is seen as 1. Hence

1 _ .
3€(z+1)(z+z‘)dz = 27l (1)
C

To verify, we can solve this again using the residue theorem
3@9 (z) dz = 27i (sum of residues of g (z) inside C)
C

But g(z) =
becomes

m has only one pole inside C, which is at z = —1. Therefore the above

3€W1(Z+2) = 2ri(residue of g(z) at — 1) @)
C

To find residue at —1, we can use one of the short cuts to do that. Where we write Wl(zu) = %

where @ (z) is analytic at z = —1 and ®(—1) # 0. Therefore we see that ®(z) = ﬁ Hence
residue of m =d(z0) = ﬁ = 1. Equation (2) becomes

= 2mi

1
ag(z+ 1)(z+2)
C

Which is same result obtained in (1) by using Cauchy integral formula directly.

To answer last part, when R > 1, then now both poles z = —1 and = -2, are inside C. Therefore,
we can’t split Wl(ﬁz) into one part that is analytic (the f (z) in the above), in order to obtain

expression - f & ) in order to apply Cauchy integral formula directly. Therefore when R > 1 we

should use
jgg (z) dz = 2mi (sum of residues of g (z) inside C)
c



13

5 Problem 5

Evaluate the integral

2 [ 1 1
%ez (; - 2—3) dZ
C

Where he contour is the unit circle around origin (counter clockwise direction).

Solution

fis-2)

C

(=)
ff@

(z - Zo)3

dz

Where zy = 0 and where )
f@)=e (- 1)

But f (z) is analytic on C and inside, since e” is analytic everywhere and z — 1 has no poles.
Hence we can use Cauchy integral formula for pole of higher order given by

%(z f(z) Zﬂlf(n)( )

z )n+l

Where n = 2 in this case. Therefore, since z, = 0 the above reduces to

f (Z)

f " (0) (1)

Now we just need to find f” (z) and evaluate the result at zy = 0
f(z) = 2z¢% (z-1)+ e

" (z) = 2¢% (z—1) + 22 (2zez2 (z—1)+ ezz) + 2z€%

Hence

£ =-

3§de = _ori )

23
C

Therefore (1) becomes

To verify, we will do the same integration by converting it to line integration using parameteri-
zation on 0. Let z(0) = re!? but r = 1, therefore z 0) = el dz = ie'? dl. Therefore the integral



14

becomes

z—1 e (e? —1 .
3@622 2 dz = J e . ie'do
C

27 i6
i -1
:iJ eE”(e 4 )de
0 62’9

This is a hard integral to solve by hand. Using computer algebra software, it also gave —2ri.
This verified the result. Clearly using the Cauchy integral formula to solve this problem was
much simpler that using parameterization.
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