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0.1 Problem 1

1. Use a Taylor table to derive a third order accurate scheme for a 1st derivative. Use 4 grid points:

two points to the left, one at the point of interest, and one to the right:
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Be sure to verify that it is third order accurate (e.g. not 2nd or 4th).
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We now set up the Taylor table as explained in the lecture notes using / in place of dx for the spatial
grid spacing in order to simplify the notation. Since we want to find 4 unknowns (4, b,c,d), then we
need at least 4 columns. But we generate 5 in order to check for the order of the error using the last
column. Therefore, the Taylor table with 5 columns is
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We now add the coeflicients 4, b, ¢, and d to obtain
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Expanding and summing each column gives
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Since first derivative approximation is sought, we want the
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—z column to sum to one, and the other



columns to sum to zero. This gives four equations to solve for a,b,c and 4

a+b+c+d=0
(-2a-b+d)h=1

b d
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Since h # 0 these reduce to
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Solving gives a = ;—h,b = —%,c = %,d = 3l_h Therefore (1) becomes
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To determine the truncation error the last column in the Taylor table above is checked if it sums to
non-zero. If the sum turns out to be zero, the next column after that must then be checked.
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Since the sum is not zero, there is no need to check any more columns and the truncation error is
verified to be third order O (1%).

0.2 Problem 2

2. Use the spectral analysis method to find the effective wave number for this method. Plot the real
and imaginary components of Kefrective. COmpare with the exact wave number and comment on any

differences.

Using result from problem 1

ou Uji_p —6u;_q + 3u; +2u;

ox| 6h (1)
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Using
u(x) = E 1ol
k
Where il are the Fourier coefficients, which are functions of k, and are complex numbers in general

. Looking at one mode only (one specific k), then we let k run over its range, where k is called the
wave number which is related to the wave length A by

2m
k=—
A

j above is V-1(We could also have used 7 for ¥-1 but it looked very close to the index i and can be
confusing). Henc

u (x) = el

Equation (1) now can be written as

= (jk) u () 2)

For finite difference the above can be written as
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And the goal is to determine (]k) using (1) above and compare it to the actual (jk) from (2). From
(1) we obtain for the RHS
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Therefore the effective wave number(jk) p is
e
gty 3y ot
(), =
eff 6h
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1We could also write u (x) = f,¢** instead of u (x) = fi,e 7. Both are valid expressions, but the first one is more common.



Therefore

complex part real part

inkh—sin2kh\ 1
(jk)gff:j(Ssm h6hsm )+@(0052kh—4coskh+3)

We see that (]k) o has both a complex part and a real part. But the exact wave number (]k) is only
e
complex. This is the first major difference we see. Now we will plot the real and the imaginary parts
of (jk) . The complex part is
()., plex p
. 8 sin kh — sin 2kh
(jk =
gffcomplcx 6

And the second is the real part
_ cos2kh —4coskh +3

ik
(] )Effreal 6
We now use x for kh as the argument to simplify the notation and plot it

8sin x — sin 2x
kgffcomplcx (X) = 6
And the real part is

cos2x —4cosx +3
keffreal (x) = 6

The plots of the imaginary part is given below

flx_] := (8 Sin[x] - Sin[2 x])/6

Plot[{x, f[x]}, {x, 0, Pi}, Frame -> True,

FrameTicks -> {{Automatic, None}, {Range[0, Pi, Pi/4], None}},
FrameLabel -> {{Text@Style["effective k dx"],

None}, {Text@Style["Actual k dx"],

Text@Style[

Column[{"Effective wave numbers",

"First derivative Imaginary component"l}, Alignment -> Center],
Bold]}}, BaseStyle -> 14,

PlotLegends -> {"Exact", "3rd order"}, GridLines -> Automatic,
GridLinesStyle -> Directive[LightGray, Dashed],

PlotStyle -> {Red, Blue}]




Effective wave numbers
First derivative Imaginary component
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Discussion: We see from the above that the imaginary part of the effective wave number is accurate
and close to the exact value for small wave numbers. After about ki = g, then it is no longer accurate.
Smaller k implies larger wave length A which in turn puts a limits of the grid size h.

The real part plot is below

flx_] := (Cos[2 x] - 4 Cos[x] + 3)/6

Plot[{0, f[x]}, {x, O, Pi}, Frame -> True,

FrameTicks -> {{Automatic, None}, {Range[O, Pi, Pi/4], Nonel}},
FrameLabel -> {{Text@Style["effective k dx"],

None}, {Text@Style["Actual k dx"],

Text@Style[

Column[{"Effective wave numbers",

"First derivative Real component"l}, Alignment -> Center],
Bold]}}, BaseStyle -> 14, PlotLegends -> {"Exact", "3rd order"},
GridLines -> Automatic,

GridLinesStyle -> Directive[LightGray, Dashed],

PlotStyle -> {Red, Blue}]




Effective wave numbers
First derivative Real component
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Discussion: The exact value is zero for all wave numbers, since we know from the above, that the
exact effective k has only complex part and no real part. but the effective k is only as accurate and
close to zero for much smaller wave numbers. After about ki = g it is no longer accurate. Having a
real part in the effective wave number, implies the finite difference scheme will introduce damping
effect in the result.

real[x_] := (Cos[2 x] - 4 Cos[x] + 3)/6

im[x_] := (8 Sin[x] - Sin[2 x])/6

Plot[{reallx], im[x]}, {x, O, Pi}, Frame -> True,
FrameTicks -> {{Automatic, None}, {Range[0, Pi, Pi/4], None}},
FrameLabel -> {{Text@Style["effective k dx"],

None}, {Text@Style["Actual k dx"],

Text@Style[

Column[{"Effective wave numbers",

"First derivative Real vs. Imaginary components"},
Alignment -> Center], Bold]}}, BaseStyle -> 14,
PlotLegends -> {"Real 3rd order", "Imaginary 3rd order"},
GridLines -> Automatic,

GridLinesStyle -> Directive[LightGray, Dashed],

PlotStyle -> {Red, Blue}]




Effective wave numbers
First derivative Real vs. Imaginary components
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0.3 Problem 3

3. One way to generate finite difference expressions is to use points between grid points such as:
Ui —Yiap

dx
Then the (i+%2) and (i-%2) are defined by interpolation according to the method one wants to
generate. (Note, this is common in finite volume methods). Use this approach and 3 point Lagrange
interpolation (upwind) on a uniform grid to define the % cell points. Then analyze the method to
determine its Taylor series accuracy. Discuss.

Hint: for this method you will end up using points at (i-2) (i-1) (i) and (i+1)

du _ uipp()-ui1p(x)
dx i h
lation. There are 4 points needed. The following diagram shows the cell structure used
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When interpolating u;,1, (x), the following 3 points are used
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Therefore
Ui () = ui—q () + u; () + 41 ()
3 (x = x;) (x = x341) (x = x;_1) (x = Xi41) (x = x;_1) (x = x;)
=u; 4 ) .
' (i1 — x7) (xj21 = Xi41) l(xi = Xi-1) (x; = Xiy1) " (Xir1 = Xi1) (Xip1 — X7)

When x is midpoint between x;,; and x;, then the above reduces to (where & = dx) which is the grid

size between each point: (g)(g?) (Eh)(?g) (ih)(g)

Chy2n T En @y o)
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1 3
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When x is midpoint between x; and x;_;, then the above reduces to (where h = dx) which is the grid

size between each point:
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To determine the Taylor series accuracy, we expand the RHS around x;

1
A= — (3”1‘ - 71/11'_1 + 3ui+1 + Ml'_z)

8h
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Therefore this is first order accurate.
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