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My solution for mid-term practice exam. Math 320
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0.0.1 Problem 1

𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑏𝑃2 (𝑡) − 𝑎𝑃 (𝑡) + ℎ�

Part(a)

For 𝑎 = 6, 𝑏 = 1 the ODE becomes
𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑃2 (𝑡) − 6𝑃 (𝑡) + ℎ�

Critical points are given by 𝑑𝑃(𝑡)
𝑑𝑡 = 0. Hence solving for 𝑃 from

𝑃2 − 6𝑃 + ℎ = 0 (1)

𝑃𝑐 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=
6 ± √36 − 4ℎ

2
= 3 ± √9 − ℎ

We see now how 𝑃𝑐 depends on ℎ. For real valued 𝑃𝑐 we want 9 − ℎ > 0 or

ℎ < 9

Part(b)

For 𝑎 = 6, 𝑏 = 1, ℎ = 7 then
𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7�

And the critical 𝑃𝑐 values are from (1)

𝑃𝑐 = 3 ± √9 − 7

= 3 ± √2
= {4.4142, 1.5858}

To classify 𝑃𝑐 we look at little above and little below each critical value and see what the
slope is there. Depending on the sign of the slope around each critical point, we will know
if it stable, not stable, or semi-stable. For 𝑃𝑐 = 4.4142, lets look at 𝑃 = 5 and 𝑃 = 4

�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��
𝑃=5

= − (25 − 6 (5) + 7) = −2

�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��
𝑃=4

= − (16 − 6 (4) + 7) = 1

Since the slope is negative to the right of 𝑃𝑐 = 4.4142 and the slope is positive to the left of
𝑃𝑐 = 4.4142, this means 𝑃𝑐 = 4.4142 is stable.

For 𝑃𝑐 = 1.5858, let look at 𝑃 = 2 and 𝑃 = 1
�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��

𝑃=2
= − (4 − 6 (2) + 7) = 1

�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��
𝑃=1

= − (1 − 6 (1) + 7) = −2

Since the slope is positive to the right of 𝑃𝑐 = 1.5858 and the slope is negative to the left of
𝑃𝑐 = 1.5858, this means 𝑃𝑐 = 1.5858 is unstable.

Here is the phase plot
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3 +
√
23−

√
2

stableunstable

Here is sketch of the slope field diagram using the computer showing the two critical values
of 𝑃 (𝑡) found above, confirming that one is stable, and the other is not stable.

In[405]:= f[t_, y_] := -(y^2 - 6 y + 7)

p1 = StreamPlot[{1, f[t, y]}, {t, -2, 6}, {y, -1, 7}, Frame → False, Axes → True,

AspectRatio → 1/ GoldenRatio, AxesLabel → {"t", "P(t)"}, BaseStyle → 14,

PlotLabel → "Problem 1, part a", TicksStyle → Red, ImageSize → 400]

Out[406]=

-2 2 4 6
t

2

4

6

P(t)
Problem 1, part a

Part(c)

For 𝑎 = 6, 𝑏 = 1, ℎ = 7 then

𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7�

Since 𝑃 (0) = 3, then we see from part(b) sketch of slope field, that the solution curve will
move to the critical point 𝑃𝑐 = 3 + √2. Therefore for 𝑡 → ∞, 𝑃 (𝑡) = 3 + √2. Here is the slope
field diagram, with the solution curve marked as red showing it is moving to the equilibrium
solution.
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4

In[403]:= f[t_, y_] := -(y^2 - 6 y + 7)

p1 = StreamPlot[{1, f[t, y]}, {t, -2, 6}, {y, -1, 7}, Frame → False, Axes → True,

AspectRatio → 1/ GoldenRatio, AxesLabel → {"t", "P(t)"}, BaseStyle → 14,

StreamPoints → {{{{0, 3}, Red}, Automatic}}, PlotLabel → "Problem 1, part a",

TicksStyle → Red, ImageSize → 400]

Out[404]=

-2 2 4 6
t

2

4

6

P(t)
Problem 1, part a

0.0.2 Problem 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2
0 5 −𝑘 4
0 0 𝑘 𝑝 + 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Part (a)

Using 𝑝 = −3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2
0 5 −𝑘 4
0 0 𝑘 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

case (i) Last equation says that 𝑘𝑥3 = 0. If 𝑘 ≠ 0, then only 𝑥3 = 0 will satisfy the equation.

Which gives, from second equation 5𝑥2 − 𝑘𝑥3 = 4 or 𝑥2 =
4
5 . And from first equation −𝑥1 +𝑥2 +

𝑥3 = 2 or −𝑥1 = 2 − 𝑥2 = 2 −
4
5 . Hence 𝑥1 =

4
5 − 2 = −

6
5 Therefore 𝑘 ≠ 0 gives unique solution.

The solution in vector form is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6
5
4
5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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5

case (ii) There is no value of 𝑘 which gives no solution.

case (iii) If 𝑘 = 0 then we have 0 (𝑥3) = 0. Hence any 𝑥3 value will satisfy this. So there are

infinite number of solutions. Let 𝑥3 = 𝑡, hence from second equation 5𝑥2 − 𝑘𝑡 = 4 or 𝑥2 =
4+𝑘𝑡
5

and from the first equation −𝑥1 +
4+𝑘𝑡
5 + 𝑡 = 2 or −𝑥1 = 2 − 𝑡 −

4+𝑘𝑡
5 , hence 𝑥1 = 𝑡 +

1
5𝑘𝑡 −

6
5 . The

solution in vector form is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡 + 1
5𝑘𝑡 −

6
5

4+𝑘𝑡
5
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡 − 6
5

4
5
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑘=0

Part (b)

Using 𝑝 = −2
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2
0 5 −𝑘 4
0 0 𝑘 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

case (i) Last equation says that 𝑘𝑥3 = 1. If 𝑘 ≠ 0, then unique solution exist. But if 𝑘 = 0,
we have (0) 𝑥3 = 1 which is not possible. So for unique solution we need 𝑘 ≠ 0 for unique
solution.

case (ii) If 𝑘 = 0 we have (0) 𝑥3 = 1 which is not possible. Hence 𝑘 = 0 gives no solutions.

case (iii) There is no value of 𝑘 which gives infinite number of solutions.

0.0.3 Problem 3

𝑑𝑦
𝑑𝑥

= −
𝑦

(𝑥 − 1)
+

𝑒−𝑥

𝑥 − 1
; 𝑦 (0) = 2

part (a)

𝑑𝑦
𝑑𝑥

=
−𝑦 + 𝑒−𝑥

(𝑥 − 1)
Hence

𝑓 �𝑥, 𝑦� =
−𝑦 + 𝑒−𝑥

(𝑥 − 1)
This is continuous in 𝑥 except at 𝑥 = 1. And continuous for all 𝑦 . Hence solution exist in

region that does not include 𝑥 = 1. Now 𝜕𝑓
𝜕𝑦 =

−1
(𝑥−1) . We see also here that This is continuous

in 𝑥 except at 𝑥 = 1. No dependency on 𝑦. Hence solution exist and unique in some region
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6

that do not include 𝑥 = 1. So solve, we use integrating factor
𝑑𝑦
𝑑𝑥
+

𝑦
(𝑥 − 1)

=
𝑒−𝑥

𝑥 − 1
(1)

𝜇 = 𝑒∫
1

𝑥−1𝑑𝑥 = 𝑒ln(𝑥−1) = (𝑥 − 1)

Therefore, by multiplying both sides of (1) by 𝜇, we obtain
𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇

𝑒−𝑥

𝑥 − 1
𝑑
𝑑𝑥
�(𝑥 − 1) 𝑦� = (𝑥 − 1)

𝑒−𝑥

𝑥 − 1
= 𝑒−𝑥

Integrating both sides

(𝑥 − 1) 𝑦 = −𝑒−𝑥 + 𝑐

𝑦 (𝑥) =
𝑒−𝑥

1 − 𝑥
+

𝑐
𝑥 − 1

From initial conditions

2 =
1
1
+
𝑐
−1

𝑐 = −1

Hence the exact solution is

𝑦 (𝑥) =
𝑒−𝑥

1 − 𝑥
+

1
1 − 𝑥

=
𝑒−𝑥 + 1
1 − 𝑥

Since initial conditions is at 𝑥 = 0 and since we found above that solution region can not

include point 𝑥 = 1, then the solution region is −∞ < 𝑥 < 1

Here is a plot of the solution showing the singularity at 𝑥 = 1. For our case, the solution
curve is the one to the left of 𝑥 = 1 in this diagram
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7

In[424]:= s = y[x] /. First@DSolve[{y'[x] + y[x] / (x - 1) ⩵ Exp[-x] / (x - 1), y[0] ⩵ 2}, y[x], x];

Plot[s, {x, -5, 5}, Frame → True, FrameLabel → {{"y(x)", None}, {"x", "Problem 3 solution, part (a)"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400,

ExclusionsStyle → Red]

Out[425]=

-4 -2 0 2 4

-10

-5

0

5

10

15

20

x

y(
x)

Problem 3 solution, part (a)

Part (b)

In Forward Euler, we have

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 �𝑥𝑛, 𝑦𝑛�

In this problem 𝑓 �𝑥, 𝑦� = − 𝑦
(𝑥−1) +

𝑒−𝑥

𝑥−1 , hence

𝑦𝑛+1 = 𝑦𝑛 + ℎ �−
𝑦𝑛

(𝑥𝑛 − 1)
+

𝑒−𝑥𝑛
𝑥𝑛 − 1

�

For 𝑛 = 0, we have

𝑦1 = 𝑦0 + ℎ �−
𝑦0

(𝑥0 − 1)
+

𝑒−𝑥0
𝑥0 − 1

�

But 𝑦0 = 2 at 𝑥0 = 0, hence the above becomes

𝑦1 = 𝑦0 + ℎ �−
2
−1

+
1

0 − 1�

= 𝑦0 + ℎ

Therefore, after one step

𝑦 (ℎ) = 𝑦 (0) + ℎ

0.0.4 Problem 4

𝑑𝑦
𝑑𝑥

= −
5
2
𝑥4𝑦3; 𝑦 (0) = −1

Part (a)

𝑓 �𝑥, 𝑦� = −5
2𝑥

4𝑦3. We see that this is continuous for all 𝑥 and all 𝑦. 𝜕𝑓
𝜕𝑦 = −

5
23𝑥

4𝑦2. This is also
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8

continuous for all 𝑥 and all 𝑦. Therefore a solution exist and is unique in some region inside
−∞ < 𝑥 < ∞.

Now we solve the ODE. This is separable. Hence
𝑑𝑦
𝑦3

= −
5
2
𝑥4𝑑𝑥

Integrating
−1
2𝑦2

= −
1
2
𝑥5 + 𝑐

Applying initial conditions
−1
2
= 𝑐

Hence exact solution is
−1
2𝑦2

= −
1
2
𝑥5 −

1
2

=
−𝑥5 − 1
2

Hence −1
𝑦2 = −𝑥

5 − 1 or

𝑦2 =
−1

−𝑥5 − 1

=
1

𝑥5 + 1

𝑦 = ±
�

1
𝑥5 + 1

But since 𝑦 (0) = −1, then at this point, using the above solution, we see that −1 = ±�
1
1 .

Hence only the negative sign can be used, to satisfy the initial conditions. Therefore, the
solution becomes

𝑦 = −
�

1
𝑥5 + 1

Since the solution must be real, then 𝑥5 = −1 is not allowed (or 𝑥 = −1 is not allowed). And
since we started at 𝑥 = 0, then the solution is valid for

−1 < 𝑥 < ∞

Here is a plot of the solution curve
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9

In[449]:= ClearAll[y, x]

ode = y'[x] == -5 / 2 x^4 y[x]^3;

s = y[x] /. First@DSolve[{ode, y[0] ⩵ -1}, y[x], x]

Plot[s, {x, -2, 5}, Frame → True, FrameLabel → {{"y(x)", None}, {"x", "Problem 4 solution, part (a)"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400, ExclusionsStyle → Red]

Out[452]=
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x)

Problem 4 solution, part (a)

Part (b)

In rk2, we have

𝑘1 = 𝑓 �𝑥𝑛, 𝑦𝑛�

𝑢𝑛+1 = 𝑦𝑛 + ℎ𝑘1
𝑘2 = 𝑓 (𝑥𝑛+1, 𝑢𝑛+1)

𝑦𝑛+1 = 𝑦𝑛 + ℎ
1
2
(𝑘1 + 𝑘2)

In this problem 𝑓 �𝑥, 𝑦� = −5
2𝑥

4𝑦3, hence

𝑘1 = −
5
2
𝑥4𝑛𝑦3𝑛

For 𝑛 = 0, we have

𝑘1 = −
5
2
𝑥40𝑦30

But 𝑦0 = −1 at 𝑥0 = 0, hence the above becomes

𝑘1 = 0

Hence

𝑢1 = 𝑦0 + ℎ𝑘1
= 𝑦0
= −1
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10

And

𝑘2 = 𝑓 (𝑥1, 𝑢1)

= −
5
2
𝑥41𝑢31

= −
5
2
ℎ4 (−1)3

=
5
2
ℎ4

Hence

𝑦1 = 𝑦0 + ℎ
1
2
(𝑘1 + 𝑘2)

= −1 + ℎ
1
2 �
0 +

5
2
ℎ4�

=
5
4
ℎ5 − 1

0.0.5 Problem 5

𝑑𝑦
𝑑𝑡
= �𝑦 − 1�

3
2 ; 𝑦 (1) = 2

Here

𝑓 �𝑡, 𝑦� = �𝑦 − 1�
3
2

This does not depend on 𝑡. If 𝑦 < 1, then �𝑦 − 1�
3
2 will be complex valued. Hence for real

solution, we want 𝑦 ≥ 1. 𝜕𝑓
𝜕𝑦 =

3
2
�𝑦 − 1�

1
2 . This does not depend on 𝑡. Therefore a solution

exist and is unique in some region −∞ < 𝑡 < ∞. As long as 𝑦 ≥ 1. Hence TRUE

Note: When solving this, the solution came out to be 𝑦 (𝑡) = 𝑡2−6𝑡+13
(𝑡−3)2

, which means the solution

below up at 𝑡 = 3. i.e the solution is singular at 𝑡 = 3. Therefore, the subrange is −∞ < 𝑡 < −3.
(we were not asked to find the subrange?) Just to answer that there exist some subrange.
Here is a plot of the solution
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11

In[504]:= ClearAll[y, x]

ode = y'[t] ⩵ (y[t] - 1)^(3 / 2);

s = y[t] /. First@DSolve[{ode, y[1] ⩵ 2}, y[t], t]

Plot[s, {t, -10, 10}, Frame → True, FrameLabel → {{"y(t)", None}, {"t", "Problem 5 solution"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400, ExclusionsStyle → Red,

ExclusionsStyle → Red, Epilog → {Dashed, Red, Line[{{3, 0}, {3, 5}}]}]

Out[506]=
13 - 6 t + t2

(-3 + t)2

Out[507]=
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Problem 5 solution
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