Cu s W N

N O

o My solution for mid-term practice exam. Math 320

11
12
13
14
15
16 December 30, 2019
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
11
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Nasser M. Abbasi (Discussion section 383, 8:50 AM - 9:40 AM Monday)

Contents

1 Problem 1f. . . . . . . . . e

g O N




N =

Y O o W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

36

39
40

2

0.0.1 Problem 1

dP (t) )

— - =—(bP () -aP () +h)
Part(a)
For a = 6,b =1 the ODE becomes

dP (t) )

— = —(P2(t) - 6P (t) + h)
Critical points are given by % = 0. Hence solving for P from

P2-6P+h=0 (1)
-b+ Vb2 -4 6+ V36 —4h
P, = +2a fc_2= : ~3+V9_h
We see now how P. depends on h. For real valued P. we want 9—h > 0 or
h<9

Part(b)
Fora=6,b=1,h =7 then

dP (t) )

7 :—(P (t)—6p(t)+7)
And the critical P, values are from (1)

P.=3+V9-7
=3+2
= [4.4142,1.5858)

To classify P, we look at little above and little below each critical value and see what the
slope is there. Depending on the sign of the slope around each critical point, we will know
if it stable, not stable, or semi-stable. For P, = 4.4142, lets look at P=5and P =4

—(p2(p — - _ (25— = _

(- (P2 () - 6P (t) + 7))P=5 (25-6(5)+7) = -2

(- (P2 () - 6P (t) + 7))P=4 =-(16-6A)+7)=1

Since the slope is negative to the right of P, = 4.4142 and the slope is positive to the left of
P, = 4.4142, this means P, = 4.4142 is stable.

For P, =1.5858, let look at P=2and P =1
(- (P2(t)-6P (1) + 7))P_2 =—(4-6(2)+7) =1

(- (P2 () - 6P (t) + 7))P=1 =—(1-61)+7)=-2

Since the slope is positive to the right of P. =1.5858 and the slope is negative to the left of
P, =1.5858, this means P, = 1.5858 is unstable.

Here is the phase plot



Cu s W N

N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

unstable stable
| ® - p—o—«
3—+2 342

Here is sketch of the slope field diagram using the computer showing the two critical values
of P(t) found above, confirming that one is stable, and the other is not stable.

eos= FLE_, ¥ 1 1= -(¥"2-6y+7)
pl = StreamPlot[ {1, f[t, v}, {t, -2, 6}, {y, -1, 7}, Frame -» False, Axes - True,
AspectRatio -» 1/ GoldenRatio, AxesLabel » {"t", "P(t)"}, BaseStyle - 14,
PlotLabel -» "Problem 1, part a", TicksStyle - Red, ImageSize - 400]

Problem 1, part a

Part(c)
Fora=6,b=1,h =7 then

dP(t) )
— = -(P2()-6P(t) +7)
Since P (0) = 3, then we see from part(b) sketch of slope field, that the solution curve will
move to the critical point P, =3 + V2. Therefore for t — oo, P(t)=3+ V2. Here is the slope
field diagram, with the solution curve marked as red showing it is moving to the equilibrium
solution.
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n403= [t _,y 1 :=-(Y*"2-6y+7)

pl = StreamPlot[ {1, f[t, v1}, {t, -2, 6}, {y, -1, 7}, Frame -» False, Axes - True,
AspectRatio -» 1/ GoldenRatio, AxesLabel -» {"t", "P(t)"}, BaseStyle » 14,
StreamPoints -» {{{{0@, 3}, Red}, Automatic}}, PlotLabel -» "Problem 1, part a",

TicksStyle - Red, ImageSize - 400]

Problem 1, part a

P(t)
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0.0.2 Problem 2
11 1 2
0 5 -k 4
0 0 k p+3
Part (a)
Using p = -3
11 1 2
0 5 -k 4
00 k O

case (i) Last equation says that kx; = 0. If k # 0, then only x; = 0 will satisfy the equation.

Which gives, from second equation 5x, —kx3 = 4 or x

4 4
x3:20r—x1:Z—xZ:Z—E.Hencexl:g—2:—

The solution in vector form is
X1
X2

X3

6

o U‘II»PU_I

N

[S2 1 [e)}

= %. And from first equation —x; +x, +

Therefore k # 0 gives unique solution.
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case (ii) There is no value of k which gives no solution.

case (iii) If k = 0 then we have 0(x;) = 0. Hence any x; value will satisfy this. So there are

. . . 4kt
infinite number of solutions. Let x3 = f, hence from second equation 5x, —kt =4 or x, = =

5
and from the first equation —x; + 4+Tkt +t=20r—x =2-t- 4+Tkt, hence x; =t + ékt - g. The

solution in vector form is

1 6 6
X1 t+ -kt — - t— -
_ Z+kt > _ 4 >
2171 5 |7 s
X3 t t -
Part (b)
Using p = -2
-11 1 2
0 5 -k 4
0 0 k 1

case (i) Last equation says that kx; = 1. If k # 0, then unique solution exist. But if k = 0,
we have (0) x3 = 1 which is not possible. So for unique solution we need k # 0 for unique
solution.

case (ii) If k = 0 we have (0) x3 = 1 which is not possible. Hence k = 0 gives no solutions.

case (iii) There is no value of k which gives infinite number of solutions.

0.0.3 Problem 3

dy Yy
dx (x—1)+x—1'y(0)_2
part (a)
dy —y+e™
dx  (x-1)
Hence
oy +e”

Fles) =%y

This is continuous in x except at x = 1. And continuous for all y. Hence solution exist in
If -1

region that does not include x = 1. Now Ey = o

in x except at x =1. No dependency on y. Hence solution exist and unique in some region

We see also here that This is continuous
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that do not include x = 1. So solve, we use integrating factor

8 y _y _

9 dx (X - 1) x—-1

10 U= ef %dx = eln(-1) = (x-1)
E Therefore, by multiplying both sides of (1) by u, we obtain

13 d
14 dx
15
16 dx

17 =e™*
18
19
20 (x-l)y=-e*+c
21 e c
22

23 From initial conditions

~

(1)

Integrating both sides

25

29 Hence the exact solution is

34 Since initial conditions is at x = 0 and since we found above that solution region can not

36 include point x =1, then the solution region is | —co < x <1
o0
37 Here is a plot of the solution showing the singularity at x = 1. For our case, the solution
38 curve is the one to the left of x =1 in this diagram

39

40
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1241= S =y[x] /. First@DSolve [{y ' [X] +Y[X] / (x-1) =Exp[-x]/ (x-1), y[@] =2}, Y[X], X];
Plot[s, {x, -5, 5}, Frame - True, FrameLabel -» {{"y(x)", None}, {"x", "Problem 3 solution, part (a)"}},
BaseStyle -» 14, GridLines -» Automatic, GridLinesStyle - LightGray, ImageSize - 400,
ExclusionsStyle - Red]

Problem 3 solution, part (a)

20¢
150
10

y(X)

Part (b)
In Forward Euler, we have
Yni1 =Yn T hf (xn/yn)

In this problem f (x, y) =— (JZ ot g, hence

_ Y e
Yn+1 _yn+h( (xn—l) +xn_1)

For n = 0, we have

_ Y e
yl‘y”h( (x0—1)+x0—1)

But yy = 2 at x5 = 0, hence the above becomes

=yo+h 2+ L
Y1=Yo Tt 0o

Therefore, after one step
y(h) =y ) +h

0.0.4 Problem 4
dy 5,4,
_ = —— . = —1
dx 2x vy ©)
Part (a)

i _ 5

f (x, y) = —§x4y3. We see that this is continuous for all x and all y. Erie 23x4y2. This is also
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continuous for all x and all y. Therefore a solution exist and is unique in some region inside
—00 < x < 00.

~J

9 Now we solve the ODE. This is separable. Hence
10 dy 5
11 3
12
13
14 1 _ 15
15 29 2
16 Applying initial conditions

17 -1

18 5 =€
19
20
21 = -
22
23 -1

Integrating

Hence exact solution is

. -
25 Hence 7= —x°-1or

=+
32 4 x5 +1
33 ) ) ) ) ) 1
34 But since y(0) = -1, then at this point, using the above solution, we see that -1 = i\/;.
35 Hence only the negative sign can be used, to satisfy the initial conditions. Therefore, the
36 solution becomes
37 B 1
38 A
39
40

Since the solution must be real, then x° = -1 is not allowed (or x = -1 is not allowed). And
since we started at x = 0, then the solution is valid for

42 -l<x<o0

Here is a plot of the solution curve



na40- ClearAll[y, x]

7 ode=y'[x] ==-5/2x"4y[x]"3;

8 s=y[x] /. FirsteDSolve[{ode, y[O] = -1}, y[Xx], X]

9 Plot[s, {x, -2, 5}, Frame - True, FrameLabel » {{"y (x)", None}, {"x", "Problem 4 solution, part (a)"}},
BaseStyle -» 14, GridLines - Automatic, GridLinesStyle - LightGray, ImageSize - 400, ExclusionsStyle - Red]

11 Problem 4 solution, part (a)
12 0.0¢

-0.51

15 =T
X

16 Outds2l= >

17

18 P

19

20 -2.5L, [ | i ; ; .

0 2 -1 o0 1 2 3 4 5

22

23

94 Part (b)

25 o

26

27 ki = f(xnryn)

28

jg ky = f (Xp41, Ups1)

31

32

33 In this problem f (x, y) = —§x4y3, hence

34

36

37 For n = 0, we have

38 543
ki = —=x

39 1 >%0Y0

40 But yy = -1 at xy = 0, hence the above becomes

41 k1 =0

42
43 Hence

-1.51

In rk2, we have

Ups1 = Y + hky

1
Ynv1 =VYn + hz (kl + k2)

44 uy = yo + hky
45 _
=Yo
46 _
47 -

49
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And
ky = f(x1,u1)

Il
|
|
=
-
=
iy

Hence

1
Y1=Yo +h§ (ky +kp)

1 5
=-1+h=(0+=h*
+ 2( 3 )

0.0.5 Problem 5

Here

This does not depend on t. If y <1, then (y - 1)2 will be complex valued. Hence for real
1

solution, we want y > 1. g—jyr = g(y - 1)5. This does not depend on t. Therefore a solution
exist and is unique in some region —co < t < co. As long as y > 1. Hence TRUE

2-6t+13

Note: When solving this, the solution came out to be y () = e which means the solution

below up at t = 3. i.e the solution is singular at t = 3. Therefore, the subrange is —co <t < -3.
(we were not asked to find the subrange?) Just to answer that there exist some subrange.
Here is a plot of the solution
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In[504]:=

Out[506]=

out[507]=

ClearAllly, x]
ode=y'[t] = (y[t] -1)"(3/2);

s=y[t] /. First@eDSolve[{ode, y[1] =2}, y[t], t]
Plot[s, {t, -10, 10}, Frame -» True, FrameLabel -» {{"y(t)", None}, {"t", "Problem 5 solution"}},

11

BaseStyle -» 14, GridLines -» Automatic, GridLinesStyle -» LightGray, ImageSize - 400, ExclusionsStyle - Red,

ExclusionsStyle -» Red, Epilog —» {Dashed, Red, Line[{{3, 0}, {3, 5}}11}]

13-6t+t2
(-3+1)2

Problem 5 solution

4.0F
3.5F

3.0F

)

> 2.5¢
2.0f

1.5F

1.0—,——4-,”/

-10 -5 0

10
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