practice Ax=b, Math 320, Spring 2017

Nasser M. Abbasi (Discussion section 383, 8:50 AM - 9:40 AM Monday)

December 30, 2019

Contents

0.1	Problem 1	2
0.2	Problem 2	3
0.3	Problem 3	5
	0.3.1 Part a	5
	0.3.2 Part b	6
	0.3.3 Part c	7

0.1 Problem 1

1. Write the following system as $\mathbf{A}\mathbf{x} = \mathbf{b}$ and determine for what values of k the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions. In the case of (i) or (iii), find the solution(s).

$$2x_1 + 2x_2 - x_3 = 1$$

$$3x_2 + 3x_3 = 3$$

$$4x_1 + x_2 + kx_3 = -1$$
(1)

solution

$$\begin{pmatrix} 2 & 2 & -1 \\ 0 & 3 & 3 \\ 4 & 1 & k \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$$

The augmented matrix is

$$\begin{pmatrix}
2 & 2 & -1 & 1 \\
0 & 3 & 3 & 3 \\
4 & 1 & k & -1
\end{pmatrix}$$

We start by converting the above to Echelon form

$$\begin{pmatrix} 2 & 2 & -1 & 1 \\ 0 & 3 & 3 & 3 \\ 4 & 1 & k & -1 \end{pmatrix} \xrightarrow{R_3 = R_3 - 2R_1} \begin{pmatrix} 2 & 2 & -1 & 1 \\ 0 & 3 & 3 & 3 \\ 0 & -3 & k + 2 & -3 \end{pmatrix} \xrightarrow{R_3 = R_3 + R_2} \begin{pmatrix} 2 & 2 & -1 & 1 \\ 0 & 3 & 3 & 3 \\ 0 & 0 & k + 5 & 0 \end{pmatrix}$$

We see that the last equation now has the form

$$(k+5) x_3 = 0$$

If $k + 5 = n \neq 0$ then the equation becomes $nx_3 = 0$, which means $x_3 = 0$ is only choice, since $n \neq 0$. This means, from the second equation, $3x_2 + 3x_3 = 3$ or $x_2 = 1$ and from the first equation, $2x_1 + 2x_2 - x_3 = 1$ or $2x_1 + 2 = 1$ or $x_1 = \frac{-1}{2}$. Hence a unique solution. But if k + 5 = 0 then last equation gives $0x_3 = 0$, which means any x_3 will do the job. Hence infinite number of solutions.

Therefore, (i) $k \neq -5$ gives unique solution. (ii) Not possible. (iii) k = -5 gives infinite solutions.

0.2 Problem 2

2. For what values of k does $\mathbf{A}\mathbf{x} = \mathbf{b}$ have (i) no solution, (ii) a unique solution, or (iii) an infinite number of solutions? In the case of (ii) or (iii), find the solution(s).

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & -2 \\ -1 & 1 & k \\ 3 & 1 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 8 \\ 4 \\ 20 \end{bmatrix}$$
 (2)

solution

$$\begin{pmatrix} 2 & 0 & -2 \\ -1 & 1 & k \\ 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 20 \end{pmatrix}$$

The augmented matrix is

$$\begin{pmatrix}
2 & 0 & -2 & 8 \\
-1 & 1 & k & 4 \\
3 & 1 & 4 & 20
\end{pmatrix}$$

We start by converting the above to Echelon form. Swap the second and third row

$$\begin{pmatrix} 2 & 0 & -2 & 8 \\ 3 & 1 & 4 & 20 \\ -1 & 1 & k & 4 \end{pmatrix}$$

Now

$$\begin{pmatrix} 2 & 0 & -2 & 8 \\ 3 & 1 & 4 & 20 \\ -1 & 1 & k & 4 \end{pmatrix} \xrightarrow{R_2 = R_2 - \frac{3}{2}R_1} \begin{pmatrix} 2 & 0 & -2 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 1 & k - 1 & 8 \end{pmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{pmatrix} 2 & 0 & -2 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & k - 8 & 0 \end{pmatrix}$$

From last equation, we obtain $(k-8)x_3 = 0$.

- (i) No solution case is not possible.
- (ii) When $k \neq 8$, then unique solution. Hence $x_3 = 0$. Which means from second equation that $x_2 = 8$ and from first equation, $2x_1 = 8$ or $x_1 = 4$.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 0 \end{pmatrix}$$

(iii) infinite number of solutions when k = 8. This gives $0(x_3) = 0$, hence any x_3 will do the job. Let $x_3 = t$, the second equation gives $x_2 + 7t = 8$ or $x_2 = 8 - 7t$. and the first equation

gives $2x_1 - 2t = 8$ or $x_1 = 4 - t$. Hence solution is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 - t \\ 8 - 7t \\ t \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ 8 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ -7 \\ 1 \end{pmatrix}$$

0.3 Problem 3

3. In the following exercises, we write the augmented coefficient matrix for $\mathbf{A}\mathbf{x} = \mathbf{b}$. Determine for what values of the parameter p the system has (i) an unique solution, (ii) no solution, (iii) an infinite number of solutions. In case (i), find the unique solution. In case (iii), determine if there is a one-parameter family of solutions, or a two-parameter family of solutions, and find an expression for the solutions \mathbf{x} in terms of the parameter(s).

$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 0 & p & 0 & 1 \\ -1 & -2 & 4 & 3 \end{bmatrix}$$
 (3a)

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 2 & p & 4 & 2 \\ 3 & p+1 & 6 & p+1 \end{bmatrix}$$
 (3b)

$$\begin{bmatrix} -2 & 3 & p & 1\\ 4 & 3/2 & 2 & 2\\ 3 & 3 & 5/2 & 5/2 \end{bmatrix}$$
 (3c)

solution

0.3.1 Part a

$$\begin{pmatrix} 2 & 1 & 3 \\ 0 & p & 0 \\ -1 & -2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

The augmented matrix is

$$\begin{pmatrix} 2 & 1 & 3 & 1 \\ 0 & p & 0 & 1 \\ -1 & -2 & 4 + \frac{3}{2} & 3 \end{pmatrix} \xrightarrow{R_3 = R_3 + \frac{1}{2}R_1} \begin{pmatrix} 2 & 1 & 3 & 1 \\ 0 & p & 0 & 1 \\ 0 & -\frac{3}{2} & \frac{11}{2} & \frac{7}{2} \end{pmatrix} \xrightarrow{R_3 = R_3 + \frac{3}{2p}R_2} \begin{pmatrix} 2 & 1 & 3 & 1 \\ 0 & p & 0 & 1 \\ 0 & 0 & \frac{11}{2} & \frac{1}{2p} \left(7p + 3\right) \end{pmatrix}$$

We now convert the above to reduced Echelon form. First we make each leading entry 1

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{p} \\ 0 & 0 & 1 & \frac{1}{p} \frac{(7p+3)}{11} \end{pmatrix}$$

Now we zero out all entries in column above leading entries

$$\begin{pmatrix}
1 & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{p} \\
0 & 0 & 1 & \frac{1}{p} & \frac{(7p+3)}{11}
\end{pmatrix}
\xrightarrow{R_1 = R_1 - \frac{1}{2}R_2}
\begin{pmatrix}
1 & 0 & \frac{3}{2} & \frac{1}{2p} (p-1) \\
0 & 1 & 0 & \frac{1}{p} \\
0 & 0 & 1 & \frac{1}{p} & \frac{(7p+3)}{11}
\end{pmatrix}
\xrightarrow{R_1 = R_1 - \frac{3}{2}R_3}
\begin{pmatrix}
1 & 0 & 0 & -\frac{5}{11p} (p+2) \\
0 & 1 & 0 & \frac{1}{p} \\
0 & 0 & 1 & \frac{1}{p} & \frac{(7p+3)}{11}
\end{pmatrix}$$

Hence, the last equation says

$$x_3 = \frac{1}{p} \frac{\left(7p + 3\right)}{11}$$

Therefore, if $7p + 3 \neq 0$ then x_3 is parameterized by p and we have infinite number of solutions. In this case the solution vector is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{5}{11p} \left(p + 2 \right) \\ \frac{1}{p} \\ \frac{1}{p} \frac{(7p+3)}{11} \end{pmatrix}$$

But if 7p + 3 = 0 then $x_3 = 0$, and this means $p = -\frac{3}{7}$. Then from second equation we obtain $x_2 = \frac{-7}{3}$ and from first equation $x_1 = -\frac{5}{11\left(-\frac{3}{7}\right)}\left(-\frac{3}{7} + 2\right) = \frac{5}{3}$. Hence in this case the solution is unique

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ \frac{-7}{3} \\ 0 \end{pmatrix}$$

In both cases, we assumed $p \neq 0$. It is no possible to obtain the case (ii) which is no solution.

0.3.2 Part b

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & p & 4 \\ 3 & p+1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ p+1 \end{pmatrix}$$

The augmented matrix is

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & p & 4 & 2 \\ 3 & p+1 & 6 & p+1 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & p-2 & 0 & 0 \\ 0 & p-2 & 0 & p-2 \end{pmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & p-2 & 0 & 0 \\ 0 & 0 & 0 & p-2 \end{pmatrix}$$

We see from last equation that $0(x_3) = p - 2$. This means that if $p - 2 \neq 0$ then there is no solution. This means if $p \neq 2$ then no solution. On the other hand, if p = 2 then last equation becomes $0(x_3) = 0$, which means any x_3 will do. Let $x_3 = t$. From second equation,

we have

$$(p-2)x_2 = 0$$
$$0(x_2) = 0$$

So any x_2 will do. Let $x_2 = s$. Then the first equation becomes $x_1 + s + 2t = 1$ or $x_1 = 1 - s - 2t$. Hence solution vector

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 - s - 2t \\ s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

Case (ii) do not apply. This is two family solution.

0.3.3 Part c

$$\begin{pmatrix} -2 & 3 & p \\ 4 & \frac{3}{2} & 2 \\ 3 & 3 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ \frac{5}{2} \end{pmatrix}$$

The augmented matrix is

$$\begin{pmatrix} -2 & 3 & p & 1 \\ 4 & \frac{3}{2} & 2 & 2 \\ 3 & 3 & \frac{5}{2} & \frac{5}{2} \end{pmatrix} \xrightarrow{R_2 = R_2 + 2R_1} \begin{pmatrix} -2 & 3 & p & 1 \\ 0 & \frac{15}{2} & 2 + 2p & 4 \\ 0 & \frac{15}{2} & \frac{5}{2} + \frac{3}{2}p & 4 \end{pmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{pmatrix} -2 & 3 & p & 1 \\ 0 & \frac{15}{2} & 2 + 2p & 4 \\ 0 & 0 & \frac{1}{2} - \frac{1}{2}p & 0 \end{pmatrix}$$

Last equation gives $\left(\frac{1}{2} - \frac{1}{2}p\right)x_3 = 0$. If $\frac{1}{2} - \frac{1}{2}p = 0$ or p = 1, then there are infinite number of solutions. Let $x_3 = t$. From second equation, $\frac{15}{2}x_2 + \left(2 + 2p\right)x_3 = 4$ or $\frac{15}{2}x_2 + 4t = 4$, which gives $x_2 = \frac{8}{15} - \frac{8}{15}t$ and from first equation $-2x_1 + 3x_2 + x_3 = 1$ or $-2x_1 + 3\left(\frac{8}{15} - \frac{8}{15}t\right) + t = 1$, hence $x_1 = \frac{3}{10} - \frac{3}{10}t$. The solution vector is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{3}{10} - \frac{3}{10}t \\ \frac{8}{15} - \frac{8}{15}t \\ t \end{pmatrix}$$

If $\frac{1}{2} - \frac{1}{2}p \neq 0$, then last equation gives $nx_3 = 0$ which is only possible if $x_3 = 0$. This means if $p \neq 1$, then $x_3 = 0$. Second equation gives $\frac{15}{2}x_2 = 4$ or $x_2 = \frac{8}{15}$ and first equation gives $-2x_1 + 3x_2 + x_3 = 1$ or $-2x_1 + 3\left(\frac{8}{15}\right) = 1$, or $x_1 = \frac{3}{10}$, hence solution vector is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{3}{10} \\ \frac{8}{15} \\ 0 \end{pmatrix}$$

case (ii) is not possible.