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0.1 Problem 1

0 I

10 1. Write the following system as Ax = b and determine for what values of k the system
11 has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions. In the case
19 of (i) or (iii), find the solution(s).

13

14 201 +2x9 —x3 =1

15 3xe +3x3 =3

16

17

18

19 solution
20

21

41’1 —+ 29 + k’l’g =-1 (1)

23 4
24
25
26 22 -1 1
27 03 3 3
41 k -1
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The augmented matrix is

30 We start by converting the above to Echelon form

3 2 2 -1 1 2 2 -1
Qc R3=R3-2R R3=R3+R:
i 033 3| =703 3 3| ="

34 41 k - 0 -3 k+2 -3
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35 We see that the last equation now has the form
36
’ (k + 5) x3=0

38 If k + 5 = n # 0 then the equation becomes nx; = 0, which means x3 = 0 is only choice, since
39 n # 0. This means, from the second equation, 3x; + 3x3 = 3 or x, = 1 and from the first

40 equation, 2x; +2x, —x3 =1lor2x;+2=1o0r x; = _71 Hence a unique solution. Butif k+5 =10
41 then last equation gives Ox; = 0, which means any x3 will do the job. Hence infinite number
42 of solutions.

43

m Therefore, (i) k # -5 gives unique solution. (ii) Not possible. (iii) k = -5 gives infinite

45 solutions.
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: 0.2 Problem 2

9
10 2. For what values of k£ does Ax = b have (i) no solution, (ii) a unique solution, or (iii)
11 an infinite number of solutions? In the case of (ii) or (iii), find the solution(s).
12
13 2 0 -2 8
) A=|-11 k|, b=|4 (2)
15 3 1 4 20
16
17 solution
18
19 2 0 -2 Xq 8
20 -1 1 k|lx|=]|4
21 3 1 4)x) (20
- Th ted matrix i
93 e augmented matrix is
924 2 0 -2 8
25 11 k 4
26
. 31 4 20
27
28 We start by converting the above to Echelon form. Swap the second and third row
29 2 0 -2 8
30
31 31 4 2
32 -11 k 4
33 Now
34
or 2 0 -2 8 s (2 0 -2 8 2 0 -2 8
35 RZZRZ_ER‘I R3=R3-Ry
36 314 20 = Jo1 7 8 >Flo1 7 8
37 11k 4)8EN{0 1 k-1 8 00 k-8 0
ii From last equation, we obtain (k - 8)x3 = 0.
40 (i) No solution case is not possible.
H (i) When k # 8, then unique solution. Hence x3 = 0. Which means from second equation
42 :
" that x, = 8 and from first equation, 2x; = 8 or x; = 4.
44 x| (4
45 X | = 8
46

' X 0
47 3
48 (iii) infinite number of solutions when k = 8. This gives 0(x3) = 0, hence any x; will do the
49 job. Let x3 = t, the second equation gives x, + 7t = 8 or x, = 8 — 7t. and the first equation
50
51
52
53
54
55
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gives 2x; — 2t = 8 or x; = 4 — t. Hence solution is

X1
X2

X3

4-t

=|8-7t

t

8|+t
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0.3 Problem 3

3. In the following exercises, we write the augmented coefficient matrix for Ax = b.
Determine for what values of the parameter p the system has (i) an unique solution, (ii) no
solution, (iii) an infinite number of solutions. In case (i), find the unique solution. In case
(iii), determine if there is a one-parameter family of solutions, or a two-parameter family
of solutions, and find an expression for the solutions x in terms of the parameter(s).

2 1 31
0 p 01 (3a)
-1 -2 4 3
1 1 2 1
2 p 4 2 (30)
3 p+1 6 p+1

4 3/2 2 2 (3¢)

solution
0.31 Parta
2 1 3\(x) (1
0 p Ollx|=|1
-1 -2 4)\x; 3
The augmented matrix is
21 1
2 1 3 1 R3:R3+%R1 2 1 31 R3=R3+2%R2 3
o p 0 1| — 0o p 0 1| — |0p O 1
3 3 11 7 11
-1 -2 4+ 3 0 - > 2 00 5 5(7p+3)

We now convert the above to reduced Echelon form. First we make each leading entry 1

1 3 1
L2z
01 0 -

(7+2)
1({/pP
001;11
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Now we zero out all entries in column above leading entries

1 3 1 301 5
1 2 2 N 10 Z(p—1) o 100 —fp(P”)
010 o [T lo1 0 ! %0 1 0 !
P p
1(r+3) 1 (7p+3) 1 (7p+3)
00 T 001;—711 001 T
Hence, the last equation says
_1(7p+3)
3 p 11

Therefore, if 7p + 3 # 0 then x;3 is parameterized by p and we have infinite number of solutions.

In this case the solution vector is

5
x —m (1]9 + 2)
Xy | = ;,
X3 1(7p+3)
p 11
But if 7p +3 =0 then x3 = 0, and this means p = —;. Then from second equation we

obtain x, = %7 and from first equation x; = - (—; + 2) = g Hence in this case the

solution is unique

X 5
1 2
X _37
2 3
X3 0

In both cases, we assumed p # 0. It is no possible to obtain the case (ii) which is no solution.

0.3.2 Partb

The augmented matrix is

1 1 2 1 1 1 2 1 1 1 2 1
Ry=Ry—2R; R3=R3-R;

2 p 4 2 — 0 p-2 0 0 — 0 p-2 0 0
R3=R3-3R;

3 p+1 6 p+1 0 p-2 0 p-2 0 0 0 p-2

We see from last equation that 0(x3) = p — 2. This means that if p —2 # 0 then there is
no solution. This means if p # 2 then no solution. On the other hand, if p = 2 then last

equation becomes 0 (x3) = 0, which means any x; will do. Let x; = t. From second equation,
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we have
(P - 2) Xy = 0
0 (XZ) =0

So any x, will do. Let x, = s. Then the first equation becomes x; +s+2t =1 or x; =1-s5-2t.
Hence solution vector

X1 1-s-2t 1 -1 -2
Xy | = s =|0|+s|1|+t]0
X3 t 0 0 1
Case (ii) do not apply. This is two family solution.
0.3.3 Partc
-2 3 Pllx 1
g 2 Xy | = 2
5 5
3 3 5 X3 5
The augmented matrix is
2 3 p 1 2 3 p 1 2 3 p 1
Rp=Ry+2R R3=R3-R
22 2 BT Doty 4737 > 2+2p 4
3 2 5 | Re=Rs+ 3Ry 0 é 543 o 1_-1, 0
2 2 2 279F PR
Last equation gives (% - %p) x3 =0.1f %—%p = 0 orp =1, then there are infinite number of solutions.
. 15 15 Cy 8 8
Let x3 = t. From second equation, ?x2+(2 + Zp) X3 =4or Sxp+4t =4, which gives x, = T
and from first equation —2x; + 3x, + x3 =1 or —2x; + 3 (% - %t) +t =1, hence x; = 13—0 - %t.
The solution vector is
X > _ 2y
; 22
BE ) 1801-
25T
X3 t

If % - %p # 0, then last equation gives nx; = 0 which is only possible if x; = 0. This means

. . .15 8 . .
if p # 1, then x3 = 0. Second equation gives —x, = 4 or x, = = and first equation gives

8 3 . .
—2x1 +3xp+x3=1o0r -2x; +3 (E) =1,0rx; = 0 hence solution vector is
. 3
1 10
wl=13
2 15
X3 0

case (ii) is not possible.
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