h HW 3, Math 320, Spring 2017

Nasser M. Abbasi (Discussion section 383, 8:50 AM - 9:40 AM Monday)

16 December 30, 2019
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0.1 Section 2.4 problem 8 (page 122)

Problem Apply Euler method twice to approximate solution on interval [O, %] first with
step size h = 0.25 then with step size h = 0.1. Compare to three decimal places values of
the two approximation at x = % with the value y (%) of the exact solution. y’ =e7¥;y(0) = 0.

Exact solution is y (x) = In (x + 1)
Solution
Using forward Euler method, we write
Yus1 = Yo+ 1f (%,
Here f (x, y) =e.

h=0.25
y(0)=0
y(h) =y(0.25) = y(0) + he¥©® = 0 + 0.25¢" = 0.25
vy (2h) = y(0.5) = y(0.25) + he¥(0:2) = 0.25 + 0.25¢79% = 0.445
h=01

y(0)=0

y(h) =y(01)=y(0) +he¥® =0+0.1e0 =01
y(2h) =y (0.2) = y(0.1) + he VO = 0.1 + 0.1e%1 = 0.190
y(3h) =y (0.3) = y(0.2) + he¥®? = 0.190 + 0.1¢7%1%° = 0.273
y(4h) = y(0.4) = y(0.3) + he ¥®3 = 0.273 + 0170273 = 0.349
y (5h) = y(0.5) = y(0.4) + he V04 = 0.349 + 0.1e793% = 0.420

Exact solution is y (0.5) = In (0.5 + 1) = 0.405

h size | y (%)

0.25 0.445
01 0.420
exact | 0.405
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0.2 Section 2.4 problem 13 (page 122)

Problem Find the exact solution, then apply Euler method twice to approximate to 4
decimal places values the solution on the given interval. First with step # = 0.01 then with
step i = 0.005. Make table showing the approximate values and the actual values, together
with percentage error in the more accurate approximation for x an integral multiple of 0.2.
yy' =2x%5y(1)=3;1<x<2.

Solution

2x3
y=—=flxy
2 (o)
Looking at f (x) we see that solution is not defined at y = 0. Otherwise, f (x, y) is continuous
3
everywhere. Hence solution exist for y # 0. Also % = —zyiz, hence we see solution is unique,
on some interval that does not include y = 0. Now we will solve the ODE
d
y% = 2x3
ydy = 2x3dx
Integrating
1 1
Eyz = §x4 +c
Applying initial conditions
1 1
-9 ==+
) =5%¢
9 1
——==C
2 2
c=4
Hence exact solution is
1 1
—y> = —xt+4
2/ T2t
yP=xt+8

y==xVx*+8

Since 1 < x < 3 and y (1) = 3, then y can not become negative (else it will have to cross
y = 0). Therefore solution is just the positive branch

yexact = Vx4 +8

Using Euler, we write
Yn1 =Yn t hf (xn/ yn)

3
But f (xn,yn) = Zy—” and x, =1 + nh where h is the step size. The above becomes

n

Yne1 =Yn + hf (xn/yn)
Using initial conditions, where n = 0, the given values y, = 3 at x; = 1. A small function
was written to implement Euler method and print table. Source code is given below. Here
is the final table generated

X 1. 1.2 1.4 1.6 1.8 2.
h=0.01 | 3 3.1718 3.4368 3.8084 4.2924 4.889
h=0.005 | 3 3.1729 3.439 3.8117 4.2967 4.894

exact |3.] 3.1739 3.4412 3.8149 4.3009 4.899
% error |0. [0.032303 (0.062773 [0.085478 [0.098183 (0.10218

Source code listing:
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19

20

21

22 o)~ SetOptions[$FrontEndSession, PrintPrecision - 5]

23 (*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 13x)

24 flx ,y 1:=2x"3/y;

?5 makeTable[h , from , to , y@ ] :=Module[ {nSteps = (to - from) / h, data, y, x, skip},
(2() Array[y, Rationalize@nSteps, 0];

;273 Array[x, Rationalize@enSteps, 0];

929 y[@] =ye; x[@] = from;

30

31 Do[ (xEuler loopx*)

32 y[n+1] =y[n] + hf[x[n], y[n]];
33 x[n+1] =x[n] + h,

34 {n, @, nSteps}

35 15

36

37

38

39

40 ]
41
42

skip = Round[0.2 / h];
Table[{x[n], y[n]}, {n, @, nSteps, skip}]

nj76)= datal = makeTable[0.01, 1, 2, 3];

43 data2 = makeTable[0.005, 1, 2, 3];

m exact =Sqrt[#"4 + 8] & /@data2[[All, 1]];

45 p=Grid[{

46 {"x", Sequence @@ datal[ [All, 1]},

47 {"h=0.01", Sequence @@ datal[ [All, 2]]},

48 {"h=0.005", Sequence @@ data2[ [All, 2]]},

49 {"exact", Sequence @ee exact},

50 {"% error", Sequence @@ (Abs[data2[[All, 2]] - exact] / Abs[exact] % 100) }
51 }, Frame » All]
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0.3 Section 2.4 problem 25

Problem Apply Euler method for % =32-1.6v with v(0) = 0. For 0 <t < 2, using step size
h =0.01,h = 0.005, round v to one decimal point. What percentage of limiting velocity 20
ft/sec has been attained after 1 second? After 2 seconds?

Solution

The exact solution is

u= oJ 16t _ el hence

Integrating

Hence

Applying initial conditions

Therefore, exact solution is

The Euler method is

Where here

output

dov
— +1.60=32

dt

dt

i (31,6tv) — 3Dpl6t

L6y — 30 f o161 g
32

_ 2216t

32
U(t)— 1__6+

Ce—1.6t

0=—+c

1.6

C:—R

32
=2
v =15

32
1.6

—1.6t

=20(1-¢1%)

Yn+1 = Yn + hf (xn/yn)

f (xn,yn) =32 -1.6y,
Small function was written to find v () at f = 1,2 seconds using Euler, with the different
step sizes. It prints the value of v when iteration reaches 1 and 2 seconds. Here is the screen

datal = makeTable[0.01, 0, 2, 0];
At one second, using h=0.01 speed is 16.078 at step n = 100
At 2 seconds, using h=0.01 speed is 19.206 at step n = 200
data2 = makeTable[0.005,
At one second, using h=0.005 speed is 16.02 at step n
At 2 seconds, using h=0.005 speed is 19.195 at step n

0, 2, 0];

200
400

I

Therefore (where percentage below, is percentage of limiting speed of 20 ft/sec)

h

speed at 1 second

speed at 2 seconds

0.01

16.078

19.206

0.005

16.02 (80.1%)

19.195 (95.98%)

The source code written for this problem is given below
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inig0;= SetOptions [$FrontEndSession, PrintPrecision - 5]
(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 25%)
flt ,y 1:=32-1.6y;
makeTable[h_, from_, to_, y©_] := Module[{nSteps = Rationalize[ (to - from) / h], data, t, skip, y},
28 Array[y, nSteps, 0];
29 Array[t, nSteps, 0];
30 y[e] =yo; t[e] = from;
31
32 Do[ (xEuler loopx)
33 y[n+1] =y[n] + hf[t[n], y[nl];
34 If[t[n] =1, Print["At one second, using h=", h,
35 t[n+1] =t[n] + h,
36 {n, @, nSteps}
37 15
38 Print ["At 2 seconds, using h=", h,
(»skip=Round[0.2/h] ;)
skip = 1;
Table[{t[n], y[n]}, {n, @, nSteps, skip}]
1

speed is ", y[n+ 1], at stepn=",n]];

speed is ", y[nSteps], " at step n = ", nSteps];

40

41

42

43 ing3)= datal = makeTable[@.01, 0, 2, 0] ;

44 At one second, using h=0.01 speed is 16.078 at step n = 100
45 At 2 seconds, using h=0.01 speed is 19.206 at step n = 200
46

47
48 At one second, using h=0.005 speed is 16.02 at step n = 200

injs4)= data2 = makeTable[@.005, @, 2, 0] ;

49 At 2 seconds, using h=0.005 speed is 19.195 at step n = 400

51
52

66
67
68
69
70
71
72
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2 0.4 Section 2.4 problem 30
8 Problem Apply Euler method with successively smaller step sizes on the interval [0, 2] to
9 verify empirically that the solution of ¥’ = x2 + %1 (0) = 0 has vertical asymptote near
10 x = 2.003147. Contrast this with example 2, in which y (0) = 1.
B Solution
13 Small function was written to implement Forward Euler for this problem.
14
15 SetOptions[$FrontEndSession, PrintPrecision - 5]
16 (*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 30x)
17 flx_,y 1:=x"2+y"2;
18 makeTable[h_, from , to_, y@ ] :=Module[ {nSteps = Rationalize[ (to - from) / h], data, x, y, skip},
19 Array|[y, nSteps, 0];
20 Array[x, nSteps, 0];
21 (*Print ["number of steps is ",nSteps];=)
22 y[@] =y@; x[e] = from;
23
94 Do[ (xEuler loop#)
25 y[n+1] =y[n] + hf[x[n], y[n]];
26 x[n+1] =x[n] + h,
97 {n, 9, nSteps}
28 15
99 skip = 1;
30 Table[{x[n], y[n]}, {n, @, nSteps, skip}]
31 ]
32
33 The above function was called for # = 0.1,0.01,0.001 which showed that better and better
34 approximation, the numerical solution approached asymptote near x = 2.003147. For h = 0.1,
35 here is the output
36
37 nse= h=0.1;
38 datal = makeTable[h, 0, 2, 0];
39 pl = ListLinePlot[datal,
40 Frame - True,
41 FrameLabel -
42 {{"y ()", None},
43 {"x", Row[ {"Euler solution using h= ", h, " with asymptote line in red"}]1}},
44 BaseStyle - 14, GridlLines -» Automatic, GridLinesStyle - LightGray,
45 Epilog » {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize - 400]
46
47
48 . . . L
49 Euler solution using h= 0.1 with asymptote line in red
50 41 ]
51
52 3l i
53
54 .
59 Out[90] \X; 2 ]
56
57
58 1 ]
59
60
61 0= | | | P
0.0 0.5 1.0 1.5 2.0
62
63 )
64
65 For h = 0.01, here is the output
66
67
68
69
70
71



N =

3

4

5

6 naer- h=0.01;

7 datal = makeTable[h, 0, 2, 0];
8 pl = ListLinePlot[datal,

9 Frame - True,
FrameLabel -
10 {{"y(x)", None},
11 {"x", Row[{"Euler solution using h= ", h, " with asymptote line in red"}1}},
12 BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray,
13 Epilog -» {Red, Line[{{2.003147, 0}, {2.003147, 7}}]1}, ImageSize -» 400]

14 Euler solution using h= 0.01 with asymptote line in red

16 5|
17
18 4
C x
1J Out[50]= ; 3 [
20
21
22 1r
23 7
24 0.0 05 1.0 15 2.0
25 X
26
97 ,
98 For h = 0.001, here is the output
29
30 In[51]:= h=0.001;
. datal = makeTable[h, 0, 2, 0];
31 pl = ListLinePlot[datal,
32 Frame - True,
33 FrameLabel -
34 {{"y(x)", None},
{"x", Row[{"Euler solution using h= ", h, " with asymptote line in red"}1}},

35 BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray,
36 Epilog -» {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize - 400]

37 Euler solution using h= 0.001 with asymptote line in red
38 r . . .
39

41 al
49

43 Out[53]=
44 2t
45
46

47 0t ‘ ‘ ‘ :
0.0 0.5 1.0 1.5 2.0
48

y(x)
w

50
51
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X 9
4
5
2 0.5 Section 2.5 problem 8
8 . . . . 1 . .
9 Apply improved Euler method to approximate solution on interval [O, E] with step size
10 h = 0.1 Construct table showing 4 decimal places values of approximation solution and
11 exact solution at points 0.1,0.2,0.3,0.4,0.5.
ﬁ Yy =e¥y(0)=0
14 Exact solution is y (x) = In (x + 1)
15 Solution
16
17 Improved Euler method uses
18 kv = f (%)
19
920 Upt1 = Yn + hi
21 ky = f (Xp41, Unr1)
22 ki + ky
93 Ynt1 =Yn + h
24 A small function was written to implement the above improved Euler method. The following
25 is source code
26
27 (*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.5 8, improved Eulerx)
28
0 Flx_,y_ 1:=Exp[-y];
30 makeTableImproved[h , from , to , y0 ] :=
31 Module [ {nSteps = Rationalize[ (to - from) / h], data, x, y, skip, k1, k2, predictor},
39 Array[y, nSteps, 0];
33 Array[x, nSteps, 0];
34 y[O] = yo; x[@] = from;
35
36
37) Do[ (#Euler loop=)
38 ki=f[x[n], y[nl];
39 predictor=y[n] + hkl;
40 x[n+1] =x[n] + h;
41 k2 = f[x[n+1], predictor];
jé yIn+1] =y[n] +h (1 /2% (k1 +k2)),
44 {n, @, nSteps}
45 15
46 skip =Round[0.1/ h];
47 Table[{x[n], y[n]}, {n, O, nSteps, skip}]
48 ]
49
50
51 This function was called to generate the table and format it. Here is the result
52
53 h=0.1;
54 datal = makeTable[h, @, .5, 0];
Fr exact = Log[#+ 1] & /@edatal[[All, 1]];
DI .
] p=Grid[{
56 {"x", Sequence @@ datal[ [All, 1]]},
57 {"h=0.01", Sequence @e datal[ [All, 2]]},
58 {"exact", Sequence @@ exact},
59 {"% error",
Sequence @@ ( (exact - datal[[All, 2]]) / (If[exact ==0, 1, exact, 1]) »100) }
60 }, Frame -» Al1]
61 x o] e.1 0.2 0.3 0.4 0.5
62 h-0.01 |0 |0.09524187 | 0.1822067 | 0.2622174 | 6.3363033 | 0.405281
63 exact | |0.09531018 | 0.1823216 | 0.2623643 | 0.3364722 | 0.4054651
64 % error |0 ]0.00683089 |0.01148799 |0.01469120 | 0.01689781 | 0.01840683
65
66 Then Euler method was compared to Improved Euler for the same step size h = 0.1, by
67 plotting them on the same figure. Here is the result. The red line is the Euler method, and
68
69
70
71
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10

the blue line is the improved Euler method. We see the difference between them increases
as more steps are taken.

n2161= h=0.1;

dataEuler = makeTableEuler[h, 0, .5, 0];

dataEulerImproved = makeTableImproved[h, 0, .5, 0];

pl = ListLinePlot [ {dataEuler, dataEulerImproved},
Frame - True, PlotStyle » {Red, Blue},
FramelLabel »

{{"y(x)", None}, {"x", Row[{"Compare Euler with Improved Euler (Red is Euler, Blue is improved)"}1}},

BaseStyle - 12, GridLines -» Automatic, GridLinesStyle - LightGray, ImageSize - 400]

Compare Euler with Improved Euler (Red is Euler, Blue is improved)
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0.6 Section 2.5 problem 13

Problem Find the exact solution, then apply improved Euler method twice to approximate
to 5 decimal places values the solution on the given interval. First with step & = 0.01
then with step & = 0.005. Make table showing the approximate values and the actual
values, together with percentage error in the more accurate approximation for x an integral
multiple of 0.2. yy’ = 2x%y (1) =3;1 <x < 2.

Solution

The analytical solution is the same as in problem 13, section 2.5 and hence will not be
repeated again. The improved Euler function, which was written for problem 8 above, was
now used for 1 = 0.01 and & = 0.005. Source code is given above in problem 8. Here is the
final table generated

h = 0.01;
datal = makeTableImproved[h, 1, 2, 3];
h=0.005;

data2 = makeTableImproved[h, 1, 2, 3];
exact =Sqrt[#7~4 + 8] & /@data2[ [All, 1]];
p=Grid[{
{"x", Sequence @@ datal[ [All, 1]},
{"h=0.01", Sequence @@ datal[ [All, 2]]},
{"h=0.005", Sequence @@ data2[ [All, 2]]},
{"exact", Sequence @@ exact},
{"% error", Sequence @@ ( (exact - data2[[All, 2]]) / exact » 100) }
}, Frame - All]

X 1 1.2 1.4 1.6 1.8 2.
h=0.01 |3 3.1739 3.44118 3.81494 4.30091 4.89901
h=0.005 |3 3.1739 3.44117 3.81492 4.30089 4.89899

exact |3 3.17389 3.44116 3.81492 4.30088 4.89898
% error |0 |-0.0000547372 | -0.000101625 | -0.000134386 |-0.000151819 (-0.000156696

To better compare the improved Euler method, with the Euler method, a new table was
generated. This gives result only for = 0.01. Here is the result. This used the Euler function
which was written for section 2.4 and listed above. The table also includes the difference at
each x between the two methods. We see from this table, that as more steps are made (at

x = 2) that the difference between the improved Euler and Euler method has increased.

h=0.01;
dataEuler = makeTableEuler[h, 1, 2, 3];
dataImproved = makeTableImproved[h, 1, 2, 3];
p=Grid[{
{"x", Sequence @@ dataEuler[[All, 1]]},
{"h=0.01, Euler", Sequence @@ dataEuler[[All, 2]1]},
{"h=0.01, Improved Euler", Sequence @e dataImproved[ [All, 2]]},
{"Absolute Difference", Sequence @@ (dataEuler[[All, 2]] - dataImproved[ [All, 2]])}
}, Frame » All, Alignment - Left]

X 1(1.2 1.4 1.6 1.8 2.

h=0.01, Euler 3(3.171843 3.436841 3.808392 4.292431 4.88896
h=0.01, Improved Euler (3 3.1739 3.441177 3.814939 4.30091 4.89901
Absolute Difference 0 |-0.002057166 | -0.004335663 | -0.006546691 |-0.008478646 |-0.01005077
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0.7 Section 2.5 problem 25

Problem Apply improved Euler method for % =32-1.6v with v(0) = 0. For 0 <t < 2, using
step size h = 0.01,/ = 0.005, round v to one decimal point. What percentage of limiting
velocity 20 ft/sec has been attained after 1 second? After 2 seconds?

Solution The exact solution we derived in section 2.4 above. The improved Euler method,
implemented in the function shown above, was used in this problem to generate similar
table to section 2.4, problem 25. But now using the improved Euler. Here is the resulting
table.

datal = makeTableImproved[0.01, 0, 2, 0];
At one second, using h=0.01 speed is 15.96179 at step n = 100
At 2 seconds, using h=0.01 speed is 19.18464 at step n = 200
data2 = makeTableImproved[0.005, 0, 2, 0];
At one second, using h=0.005 speed is 15.962 at step n = 200
At 2 seconds, using h=0.005 speed is 19.18473 at step n = 400

Therefore, improved Euler method result is

h speed at 1 second | speed at 2 seconds
0.01 | 15.96179 19.18464
0.005 | 15.962 (79.81%) 19.18473 (95.923%)

This can be compared with Euler method in problem 2.4.25. We see small difference in
speeds at 1 and 2 seconds. The improved Euler result should be taken as the more accurate.
Here is the Euler method result, copied from 2.4.25 to make it easier to compare with

h speed at 1 second | speed at 2 seconds
0.01 | 16.078 19.206
0.005 | 16.02 (80.1%) 19.195 (95.98%)
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0.8 Section 2.5 problem 26

Problem Deer population P (t) in small forest initially numbered 25 and satisfies logistic

equation Z—I: = 0.0225P () — 0.0003P2. With t in months. Use improved Euler method to
approximate solution for 10 years. First with step # = 1 and then with 7 = 0.5 rounding
off P to 3 decimal points. What percentage of the limiting population of 75 deer has been
attained after 5,10 years?

Solution The improved Euler method

kl = f(xn/yn)
Ups1 = Yn + hkl

ky = f (Xpi1, Uns1)
kl + kz

2

With initial conditions y, = 25 was used to solve this ODE with f (x, y) = 0.0225y — 0.0003y>.
The same improved Euler method function listed earlier was used. The following table
summarizes the results

Yne1 =VYn +h

h (moths) | p(t) at 5 years p(t) at 10 years
1 49.3909 (65.85%) | 66.1129 (88.15%)
0.5 49.39135 (65.85%) | 66.11343 (88.15%)

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.5 26, improved Eulersx)
flt ,y ]1:=0.0225y -0.0003 y~2;
makeTableImproved[h , from , to , y@ ] :=
Module [ {nSteps = Rationalize[ (to - from) / h], data, t, vy, skip, ki1, k2, predictor},
Array[y, nSteps, 0];
Array[t, nSteps, 0];
y[e] =ye; t[e] = from;

Do[ (xEuler loopx)

ki=f[t[n], y[n]ll;

predictor =y[n] + hkl;

t[n+1] =t[n] + h;

k2 = f[t[n+ 1], predictor];

y[n+1] =y[n] +h (1 /2% (k1+k2)),

{n, 0, nSteps}

15

skip =1; (*Round[©.2/h] ;)
Table[{t[n], y[n]}, {n, O, nSteps, skip}]



	Section 2.4 problem 8 (page 122)
	Section 2.4 problem 13 (page 122)
	Section 2.4 problem 25
	Section 2.4 problem 30
	Section 2.5 problem 8
	Section 2.5 problem 13
	Section 2.5 problem 25
	Section 2.5 problem 26

