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0.1 Section 1.5 problem 18 (page 56)

Problem Find general solution for xy’ = 2y + x> cos x

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

y = f(xy)
_ 2y +x3cosx
B x
We see that f (x, y) is continuous for all x # 0 and for all y. And

8f(x,y) 2

dy  x
This is continuous for all x # 0. Therefore solution exist and unique in some interval which
do not include x = 0. Now we will solve the ODE.
xy’ =2y + x°cosx
Dividing by x # 0 and rearranging gives

2

r =52
y-oy=x

COSs X

2
We see that the integrating factor u = o) 7R = g2l % Hence the above ODE can now
be written as exact differential by multiplying both side with u

d
T (yy) =u (x2 cos x)
d (1 1.,
T (;y) = 2 (x cosx)
d (1
E ;y = COS X
Integrating both sides gives

1 .
—y=sinx+c
xzy

y =x2(sinx +c); x#0



0.2 Section 1.5 problem 22

Problem Find solution for y’ = 2xy + 3x2¢" ;¥(0)=5

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

v =f(xy)
= 2xy + 3x2e%

We see that f (x, y) is continuous for all x and for all y. And

df (x, y)
— =2
Iy

This is continuous for all x. Therefore solution exist and unique in some interval. Now we
will solve the ODE.
Y — 2xy = 3x%e"
We see that the integrating factor y = e/ 2 — o~ Hence the above ODE can now be
written as exact differential by multiplying both side with u

d
o () = (3%

d% (e"‘zy) =™ (3xzex2)

;ix (e‘xzy) = 3x?
Integrating both sides

ey =xd+c
Hence

y=e" (x3 + c)
Now initial conditions y (0) = 5 are applied to find c. This gives

5=c¢

Hence the complete solution (or the particular solution for this initial conditions) is

y=e" (x3 + 5)



0.3 Section 1.5 problem 25

-3
Problem Find solution for (xz + 1) y +3x% = 6xe7x2;y 0) =1

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

vy = f(xy)
32
_bxez" —3x%
B x2+1

We see that f (x, y) is continuous for all x except when x? = -1 or x = +i. But this is not on
real line hence it will not affect us. It is also continuous for all y.

af (x, y) 3x3

dy  x2+1

Again, this is continuous for all x except when x> = -1 or x = +i. But this is not on real
line hence it will not affect us.

Therefore solution exists and unique for all x and y. Now we will solve the ODE.

-3
'y 33 _ 6xez™
Y X2 + 1y X2 +1

f3x3d

21" To evaluate the integral:
3x3 x®
dr=3 [ 5 —d
f 21 21
=3 f x T iy
Bl x2+1

3 X
=—2—3f d
2* 21

Since %hﬂ (xz +1) = % then by comparing this to the second integral, we see that
f * =l (xz +1), hence

x2+1 2

Integration factor is y = e

3x3 3 3
_22 2
fx2+1dx—§x —Eln(x +1)

Therefore
3
‘u = ef x32+1dx
3 3
= exp Exz ) In (xz + 1))
3 3
_ 2 2
= exp Ex )exp (—5 In (x + 1))
3 3
_ 2 2 2
= exp Ex )exp (ln (x +1) )
er”
- 3
(x2 + 1)2
Multiplying both sides of the ODE with this integration factor gives
3.2
d _bxe?2”
dx (yy ) " e+t
d egx2 6xe_73x2 egx2
dx Rl :
(x2+1)2 (x2+1)2
3.2
d| e?" . 6x
ax L 5
(xz+1)2 (x2+1)2



Integrating both sides
6
L3y - f — 2 _dx+e 1)
(x2 +1)E (x2 +1)i

To evaluate f 6—x5dx, let u = x?> + 1 hence du = 2xdx, therefore the integral becomes
(x2+1)2

3
6 6x d 1 _5 2 _3
f—x5dx=f—§—u:3f—5du:3fu 2du:3[u—3J:—2u 2
2 2x 2
uz uz2

(xz +1)E

2

Hence

Hence (1) becomes

y= 2e2% 4 e (xz + 1) ez
Applying y (0) =1 gives

1=-2+c¢

c=3
Hence the particular solution is

3
2 -3
3 2

y= 2077 43 (x2 + 1)

e
-3 2 é
=e2” (3 (xz +1)2 —2)



0.4 Section 1.5 problem 27

Problem Solve the differential equation by regarding y as the independent variable rather
than x

(x(s) +3e1) 715 =1

dx (y)
Solution
dy _ 1
dx (y) x (y) + yeY
d
Z(yy) =x(y) +ye!
d
0 .
For x (y) # ye¥. Hence
d
9;}(;,) =x(y) +ye!
d
T
Integrating factor is yu = oS W= e, Multiplying both sides with u gives
d
gy (1) = e
d
@ (e¥x) =y
Integrating both sides
eVx (y) = y; +c

Therefore



0.5 Section 1.5 problem 31

Problem (a) show that y, (x) = Ce™J PO 5 5 general solution of Z—Z +P(x)y = 0. (b) Show
that y, (x) = ¢~ J P f(Q (%) efp(x)dx) dx is a particular solution of j—z + Py = Q). (c)
Suppose that y. (x) is any general solution of % +P(x)y = 0 and that y, (x) is any particular
solution of Z—z + P(x)y = Q(x). Show that y(x) = y.(x) + y,(x) is a general solution of
L+P@y=Q®

Solution

0.5.1 Part (a)

Given
d_y +P(x)y=0
dx
Then
d_y =-P(x)dx
y

Integrating both sides
nly| = - [Pdx+C
y(x) = Ce [ P(x)dx

QED. We can also solve this by substituting y (x) = Ce™ /PO jnto Z—Z + P (x)y = 0 which
gives

d
A = % (Ce—fP(x)dx) + P(x) Ce—fP(x)dx (1)
But ;—xeg(x) = g/ (x) eg(x)’ hence

%(Ce—fP(x)dx) :C% (—fP(x)dx) o~ [ P

= _CPp (x) e—fP(x)dx
Therefore (1) becomes

A = —CP (x) e J PO 4 p (x) Ce™ [ P
=0

Hence the solution y (x) = CeJP0Mx gatisfies the ODE. Therefore it is solution.

0.5.2 Part(b)

Given Z—Z + P(x)y = Q(x), the integrating factor is u = ol PO, Multiplying this by both
sides of the ODE gives

efP(x)de_z " efp(x)dxp (X)y = efp(x)de(x)

d

= (efP(x)dxy (x)) _ efp(x)de(x)

Integrating both sides
efp(x)dxy(x) _ fefp(")de(x)dx+C
y(X) — e—fP(X)dx (f efP(X)de (X) dX) + Ce—fP(x)dx

For particular C = 0, we obtain

v, () = o~ [ P (fefp(")de(x) dx)

Which is what we asked to show.



0.5.3 Part(c)
Let
y(x) =y (x) +y, (x)
— Co JP@ix - [P ( f ol POX() () dx)

. .. d s . . . d
We need now to substitute this in ﬁ + P (x)y = Q(x) and see if it satisfies it. First we find Y

ax
dy _ il:ce_fp(x)dx]_i_di[e—fP(x)dx (fefp(")de(x)dx)]

ax  dx x
_ e I P@i p ) % o [ P ( f o[ PO (1) dx) + o P d% f o/ PO (1) 4y
P (ayer e o7 p o [P 1)) 4 P (o P )
P (ayer P p (o) e [[of e o ) 4 ST (of ke )
= —CP e [P p ) en [P ( [P0 ) ) + Q )
=P [P0 [ el PO dx+ |+ Q@
Substituting the above into the left hand side of the given % + P (x)y = Q (%)

=Py [P0 | el P00 () dx+ €|+ Q) + Py Cen S PO e [P0 ([ ol P30 (1) )|

+P(x)y

e L [ f el PO () g + c] +Q () + P (x)e PO [c ; ( f o PO () dx)]
We see that the first term in the RHS above and the third term cancel each others. Hence
LHS = Q(x)

Which is the right side of the ODE. Hence the solution y (x) = y. (x) + y, (x) satisfies the
ODE.

QED.



0.6 Section 1.5 problem 37

Problem A 400 gal tank initially contains 100 gal of brine containing 50 Ib of salt. Brine
containing 1 Ib of salt per gallon enters the tank at rate 5 gal/s and the well mixed brine
in the tank flows out at rate of 3 gal/s. How much salt will the tank contain when it is full
of brine?

Solution

To reduce confusion, let x be the substance which causes the concentration in the Brine.
Let Q(t) be the mass (normally called the amount, but saying mass is more clear than
saying amount) of x at time ¢ . Hence Q(0) = 50 Ib. The goal is to find an ODE that
describes how Q(f) changes in time. That is, how the mass of x in the tank changes in time.
Using

dQ

dt
Where R;, rate of mass of salt entering the tank per second. And R, is rate of mass of
salt leaving the tank per second. But

R;, =5 Ib/sec

= Rjp — Ryt

And

_owml o fel] 3

Rour = V(t) [gal] [second] ~ V(¢)

Where V (t) is current volume of brine in tank at time f. Hence the ODE is

iQ _ 3
T V(t)Q(t)
iQ 3 ~
E+_V(t)Q(t)_5 1)

But we can find V (¢). Since initially V (0) = 100 gal, and in one second 5 gal enters, and 3
gal exists, then

V() =100 + 2t

Hence (1) becomes

dQ 3

o T 100+2tQ (t)=5

Integrating factor is

"= ol et _ esfﬁdt _ egln(100+2t) 100+ 2t)§
Hence (1) becomes
d
T (1Q) =5
Integrating both sides
uQ=>5 f udt + ¢

3 3
(100 +26)2 Q = 5](100 Lot dt+c

(100 + 2t)§ Q = (100 + 2t)§ +c

Hence
Q(t) = (100 + 2t) + ¢ (100 + 2t)%3
But at t =0, Q (0) = 50, hence
50 =100 + ¢ (100)_73
c =-50000

Hence the solution is

Q (#) = (100 + 2t) -~ 50000 (100 + 2t)%3 (2)

This gives us the mass of salt at time . What we need now to find out is the time it will



10

take to fill the tank say t,,;, and use that time to find Q (t,,;) from above. Since initially the
tank had 300 gallons remains to be filled, and the flow in is at rate of 5 gal/sec and flow out
is at 3 gal/sec, then in one second, the tank will fill up with 2 gallons. Hence it will take

t:?)zﬂ:1505ec

To fill the tank. Using this value of ¢ in (2) gives

Q(150) = (100 + 2 (150)) — 50 000 (100 + 2 (150)) 2
_ 157

4
=393.75 1b
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0.7 Section 1.5 problem 44

Problem: Figure 1.5.8 shows a slope field and typical solution curves for ' = x +y. (a)
show that every curve approaches the straight line y = -x -1 as x — —oco. (b) for each of
the five values 1, = -10,-5,0, 5,10, determined the initial value y, (accurate to 4 decimal
points) such that y(5) = y; for the solution satisfying the initial condition y (-5) = y,

Solution:
0.7.1 Part(a)

y=x+y
y-y=x
Integrating factor is u = e/ =, Multiplying the above with u results in

d
— (uy) = px

d
o (e‘xy) =e'x

Integrating both sides
ey = f xe ¥dx +c

But [ xe*dx = ¢ (-1 - x) using integration by parts. Hence the above becomes

ey=e*(-1-x)+c

y=(-1-x)+ce* 1)
But
lim e =0
X——00

Hence solution becomes (at large negative x)
y=-1-x

Therefore, solution curves approach line -1 - x.

0.7.2 Part(b)
The solution is y = (<1 — x) + ce* from part (a). Using y (-5) = yg, then
Yo =(-1+5) +ce™
Yo=4+ce
c= (yo - 4) e
Hence solution is
y=(-1-x)+ (yo —4) eoer
= (1-2)+(yo - 4) e )
Now we need to find y, such as y (5) = -10. From (2)
=10 = (-1 -5) + (yo — 4) €1
Yo =(-10+6)e™ 10 + 4
= 3.99982
For y (5) = -5, from (2)
-5 = (-1-5) + (yp - 4) €
Yo=(-5+6)e10+4
= 4.00005



For y (5) = 0 from (2)

For y (5) =5 from (2)

For y(5) =10 from (2)

0=(-1-5)+ (yO —4)310
Yo =6e710+4
= 4.00027

5=(-1-5)+(yo—4)e'®
Yo = 5 +6)€_10 +4
= 4.00050

10 = (-1-5) + (y — 4) €
Yo = (10 + 6) 6_10 +4
= 4.00073

12
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0.8 Section 2.1 problem 3

Problem: Solve % =1-x%x(0) = 3 and sketch solution

Solution:
dx
T =1 =52
dt X
dx
T =dt 1)

For 1—-x2 # 0 or for x # +1. But

1- x2 f(1+x)(1 x)

Where

1 A 1 i
i @ ' x) But 4 = ((1 x)) o ; and B = ((1+x))x:1 = 5» hence

1 dx 1 dx
f(1+x)(1—x)‘§ Q+x 2J -9

1 1
= Elnl(l +x)|—§1nl(1—x)|

Therefore (1) becomes

%1n|(l+x)l—lln|(l—x)| :fdt

(1 + x)

u T f 2dt

(1 + x)

(1 ) =2t+c

o =

(1+x)=(1-x)ce*
1+ x = ce? — xce®

x + xce? = ce?t -1
et -1
© 14 ce?
Now we use initial conditions x(0) = 3 to find ¢
c—-1
1+c
c=-2
Hence solution is
2% 1
1-2e2t
1420
2e2 -1
Here is a plot of the above solution and two other solutions starting from different initial
conditions

X =

2.5F
2.0F

150 9

/S S S s —— - — —
/ S S s

Figure 1: Problem 2.1, 3
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0.9 Section 2.1 problem 13

Problem: Consider a breed of rabbits whose birth and death rates §, 6 are each proportional

to the rabbit population P = P () with § > 6. (a) Show that P (f) = 1_§§?()O)t,
1

Note that P(t) —» oo as t — )" This is the doomsday. (b) Suppose that P(0) = 6 and
that there are nine rabbits after ten months. When does doomsday occur?

where k constant.

0.9.1 Part(a)

For doomsday, per book page 86, we use the model that birth rate occur at rate o P2 (¢)
per unit time per population, but in this problem, since death rate is not constant, but also
proportional to the rabbit population, then we also make 6 « P? (t) where 8 > 6. Hence we
write

dP(t)
— = kP? (t)

Where k is the combined constant of proportionality. This is separable.

dP (1)
P2 (1)

dP(t)
6 - fkdt

= kdt

1
——=kt+c
P
1

Pt = c—kt

Using initial conditions, t = 0, P (0) we find ¢

1

Hence (1) becomes

“1-P(0)kt

0.9.2 Part (b)

Applying initial conditions to (2) in part (a)

P(0)
1-kP(0)t
3 6
T 1-k(6)(10)

1
=10

P(t) =

9

Hence solution becomes
6
6

1_ﬁt

P(t) =

When t = 1%0 = 30 months, then P (t) — co. Hence 30 months is doomsday.
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0.10 Section 2.1 problem 15

Problem Consider population P () satisfying logistic equation ‘Z—I: = aP — bP?> where B = aP
is the time rate at which birth occur and D = bP? is the rate at which death occur. If the

initial population is P (0) and B(0),D (0) are the rates per month at ¢ = 0, show that the
o L B(0)P(0)

limiting population is M = ~50)
Solution

For the limiting model, per book page 82 (limiting population and carrying capacity), we
can use

dP
— =qaP - bP?
a "
:a(l—?P)P
a
1 P P
=a _—
M

note: In class lecture, the above is written as Z—I: = r(l - %) p, where r = a and k = M)

But book uses different notations. M is the limiting capacity (or also called equilibrium
population). Hence from the above, we see that

a
M:E (1)

But a, which is the growth rate per time per population is
And D (0) = bP?(0), hence

Therefore (1) becomes

QED.
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0.11 Section 2.1 problem 17

Problem Consider rabbit population P (t) satisfying the logistic equation as in problem 15.
If the initial population is 240 rabbits and there are 9 births per month and 12 death per
month occurring at time f = 0, how many months does it take for P (¢) to reach 105% of
the limiting population M?

Solution The logistic equation, from problem 15 is
dP

i aP — bP?
From problem 15: Where
B =aP
Is the time rate at which birth occur and
D = bP?

Is the rate at which death occur and P (f) is current size of population. Per problem 15, we
know that the limiting population is

_BO)P(©) _ B(0)P(0)

~ D@0 — D()
But we are given here, that P (0) = 240, B (0) = 9 per month and D (0) = 12 per month. This
means

9 (240)
12
The above is the limiting population size. We now need to solve (1) in order to answer the

question

M= =180

dp
& P —pp?
ar

This is separable
P
aP - bpP2

f Py,
aP —bP2 ¢
f Py,
Pa-bp) 7€

fl b dP =t +
aP a(bP-a) ¢

1 1
—In|P|--In|bP—a|=t+c
a a

dt

11 bP .
an bP-al|l ¢
1 bP )
—In =t+c
a bP —a
| bp f+
n =
P2 at + ac
bP




17

Where the sign is determined by constant ¢;. Hence the above becomes
bP = c1e" (bP - a)
= c1"bP — cyae™
bP — c1e™bP = —cqae™

p (b - cle“tb) = —cyae™

—crae®
P(t)= ———
® b —cie™b
_ cqae”
b —b
a
P(t)= —
b——e

c1
We now need to find c¢; from initial conditions. At t = 0, P (0) = 240, hence since B = aP
then

_BO) 9
10 =50 ~ 220
3
80
And since D = bP? then
DO 12
b(0)=—5 = —
p(Of 2402
3 1
4800
Therefore, at t = 0, the above solution becomes
c1a(0) e
P(0) =
© c16*b (0) — b (0)
3
240 = c1a(0) C130

Tab©-b0 " L -1
1 3
24%———@1—D):cr—

4800 80
1 13
201720 " 30
1 3 1

201130 T 20
1 3\ 1
‘1120 "80) " 20

1 1
cl=|==
80/ 20

C1:4

Hence solution is




We now solve for ¢ when P () = 105% of M

3\ 3
%) 50! (4800)

4
105 (
— (180) =
100( ) (i)t
4e\807 —1

3 3
189 (4e(80)t - 1) — 720e"

(i)t it

7560\% ) _ 189 = 720¢%
3 3

7563(8°)t — 720e%" =189

3,189

80 = ——
¢ 36

3 189

—t=1In—
80 36

80 . 189

t=—In—

3 36

= 44.219 months

18
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0.12 Section 2.1 problem 30

Problem A tumor may be regarded as population of multiplying cells. The birth rate of
cells in a tumor decreases exponentially with time so that B(t) = fye® where a, f, are

positive constants. Hence Z—IZ = Boe~™P with P(0) = Py. Solve the initial value problem

'3_0 _p—ot ‘6_0
for P(t) = Poe( 21 )) Observe that P (t) approaches finite limiting population Poe( “) as
PP g pop
t — o0,
Solution
P
I —atP
it Poe
This is separable.
dapP
? = ﬁoe_"‘tdt
Integrating
In|P| = B f e~dt
e—at
=pp— +C
Po . +
Hence
e—at
P(t)=CePoa 1)

Applying initial condition on the above gives
1
P(0) = Py = Ce Ma

1
C= Poeﬁoa

Therefore the solution (1) becomes
—at

1 e
P(t) = Poeﬁoae_ﬁOT

B -
= Poego (1—6’ at)

As t — oo then ¢™* — 0 since a > 0, hence the above becomes
fo
P (OO) =M= Poe a

The above is the limiting population.
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0.13 Section 2.1 problem 31

Problem For tumor in problem 30, suppose that at t = 0, there are Py = 10° cells and that
P (t) is then increasing at rate 3x10° cells per month. After 6 months the tumor has doubled
(in size and number of cells). Solve numerially for @ and then find the limiting population
of tumor.

Solution From problem (30) we found
B —a
P(t) = Pyer (")

= 1063%(1%%)

Then, at t = 0, we are told (%) =3 x10° (cells per month). Hence, since Z—l: = Boe P
t=0

then at t =0

3 X 105 = ﬁOPO

= Bp10°
Therefore
_3x10° 03
7 100

We also told that after 6 months, the number of cells has doubled. This means, using t = 6
(with units of month) that

P(6) = 2P,
B -6a
106w (") = 2 x 108
But By = 0.3, hence the above becomes
e%(l_eiéa) =2
3
-6a) —

@ (1 —-e a) =1n2

10aIn2 = 3 — 3¢~
10aIn2 +3e % =3

Using a computer, the solutions are a = 0 or a = 0.3915

Bo —v
Now the limiting population is found. From P (t) = POeF(l_e t), for large t and since @ > 0
this becomes

fo
thmP(t) = Poea
0.3
= 106¢03915
=2.1518 x 10°

The above is limit of number of cells for large t.
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0.14 Section 2.2 problem 7

Problem Solve for f (x) = 0 to find critical points. Then analyze the sign of f (x) to determine
if each critical point is stable or not and construct the phase diagram for the differential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability
of each critital point.

dx
—=f@=@-2
Solution The critial points are x values (dependent variable values) where f (x) = 0. Hence
(x-2°%=0
x=2
Since f(x) is always positive, this means if x started at something just below x = 2, say
x = 1.5, then eventually x will reach x = 2 and stay there. But if x is started at something
just about x = 2, say x = 2.5, then x will keep increasing away from x = 2. This means

x = 2 is semi stable critial since if we start below it, we reach it, but not if we start about
it. Hence the phase diagram is

x/>0 33/>O

x <2 x> 2
| >
r =2

x = 2 is semi-stable point

Figure 2: Phase diagram, 2.2 problem 7

Now the ODE is solved Z—}: =(x- 2)2. This is non-linear seperable

dx
( 2)2 =dt x#+2
x_

f(x {ixz)z - fdt

Letx—2=u— 2 _ 1, therefore f
dx

dx du 1 1
7= f— = —- = —— and the above becomes

(x u? u x-2

Let x(0) = x(, therefore

And the solution becomes

r=2- 1
t+a

27X
t(2-xp) +1

_2(t@2-x9) +1) -2+ xp

B t2—-x) +1

_ 2t(2—xp) + xp

T t(2-xp) +1

At - 2txy + X

2t —xpt+1
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Hence

_ (@t=1)xg-4t
x(t) = txg—2t-1

Here is slope field plot

e

2.0f

/
i Ty T T T T T T T T
7'7'/'//"///'/'///'/'/////

b T A T

— t
05 10 15 20 25 30

From the above plot, we see the solution lines are moving away from x = 2 when they start
from x > 2 but move towards x = 2 when starting from x < 2.
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0.15 Section 2.2 problem 10

Problem Solve for f (x) = 0 to find critical points. Then analyze the sign of f (x) to determine
if each critical point is stable or not and construct the phase diagram for the differential

equation. Next solve the ODE. Finally plot the slope field and verify visually the stability
of each critital point.

d
d_JtC = f(x) =7x-x*>-10
Solution

The critial points are x values (dependent variable values) where f (x) = 0. Hence

7Tx—x2-10=0
X1 =2
XZZS
The phase diagram is
!
' <0 ;";20 2 >0 2 <0
<2 r<b r>5
— 4 —p» .t
z=2 x=5

r = 2 unstable v — 5 stable

Figure 3: Phase diagram, 2.2 problem 7

Now the ODE is solved dd—f = 7x — x2 —10. This is non-linear seperable

dx

7x —x2 -10
—dx 3
7x +10

_f —7x +10 fdt

1 A 1 1 1 1
But e "2 G 5)’ hence A = ((x—S))x:2 - (—_3) and B = ( ) = 3 and the above

(x=2) =5 3
becomes
1 1
_f( 3(x-2)  3(x- 5))‘fdt

f3(x 2) f3(x 5) fdt
1

3 (x—2) 3 (x 5) fdt
1
51n|x—2|—§1n|x—5|:falt

= dt X#+2,x#5

1n|x—2|—ln|x—5|:f3dt

| x_2| 3t+

n = c
x-5
x_zzce3t
x—-5

x —2 = xcedt — 5cet
x — xcedt =2 — 5¢edt
2 — 5ce?t

T 1o
Here is slope field plot
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.\:?‘\‘ \\\“‘....t
\ES\W\W 0 Y 25 3

From the above plot, we see the solution lines are moving away from x = 2 indicating it is
unstable and move towards x = 5 indicating it is stable.
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0.16 Section 2.2 problem 23

Problem Suppose that logistic equation % = kx (M — x) models a population x (t) of fish
in lake that after + months during which no fishing occurs. Now suppose that because of
fishing, fish are removed from lake at rate of hx fish per month, with / > 0. Thus fish are
harvested at a rate propertional to existing fish population, rather than at constant rate of
example 4. (a) if 0 < h < kM, show that population is still logistic. What is the new limiting
population. (b) if # > kM., show that x () — 0 at t — oo so that lake is eventually fished
out.

Solution
Part (a)
Since fish is removed at rate of hx fish per month, then
dx
— =k -x)—h
7 x (M - x) — hx
h
=k —x)— =
x| (M - x) k)
h
=kx|M - A x)
h
=kx (M - %) - x)

But M - % > 0 since 0 < h < kM, therefore, if we let (M - %) = A, then i—f = kx (A —x) is still
dx

. 3 o, o .
— = kx (M - x) since A > 0. A = M - 7 is the new limiting population.

logistic just as

Part (b)

In this case

=kx(A-x)
Now A < 0. Solving this ode
dx
x(A-x)
1 1 1
Ax AA-x)

Integrating

1 1
~Injxi = 3 In[(A =) _fkdt

X
1 | |:f/\kdt
nA—x

x
1 | | = Akt +
n Ty c
=C Akt
A—x ¢
x + xCeMt = ACeMt
ACeAkt
x(H) = 1+ Celkt

Now, since A < 0, then as t — oo then x () — g = (0. Hence the population of fish will die
out. (no need to find C first, as the whole term goes to zero). This is what we are asked to
show.
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