
HW 2, Math 320, Spring 2017

Nasser M. Abbasi (Discussion section 33864 (341-DIS), 8:50 AM - 9:40 AM Monday)

December 30, 2019

Contents

0.1 Section 1.5 problem 18 (page 56) . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Section 1.5 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Section 1.5 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4 Section 1.5 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.5 Section 1.5 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.5.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.5.2 Part(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.5.3 Part(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.6 Section 1.5 problem 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.7 Section 1.5 problem 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.7.1 Part(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
0.7.2 Part(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.8 Section 2.1 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.9 Section 2.1 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.9.1 Part(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
0.9.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.10 Section 2.1 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
0.11 Section 2.1 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
0.12 Section 2.1 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
0.13 Section 2.1 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.14 Section 2.2 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
0.15 Section 2.2 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
0.16 Section 2.2 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



2

0.1 Section 1.5 problem 18 (page 56)

Problem Find general solution for 𝑥𝑦′ = 2𝑦 + 𝑥3 cos 𝑥

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

𝑦′ = 𝑓 �𝑥, 𝑦�

=
2𝑦 + 𝑥3 cos 𝑥

𝑥
We see that 𝑓 �𝑥, 𝑦� is continuous for all 𝑥 ≠ 0 and for all 𝑦. And

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
2
𝑥

This is continuous for all 𝑥 ≠ 0. Therefore solution exist and unique in some interval which
do not include 𝑥 = 0. Now we will solve the ODE.

𝑥𝑦′ = 2𝑦 + 𝑥3 cos 𝑥
Dividing by 𝑥 ≠ 0 and rearranging gives

𝑦′ −
2
𝑥
𝑦 = 𝑥2 cos 𝑥

We see that the integrating factor 𝜇 = 𝑒∫− 2
𝑥𝑑𝑥 = 𝑒−2 ln 𝑥 = 1

𝑥2 . Hence the above ODE can now
be written as exact di�erential by multiplying both side with 𝜇

𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇 �𝑥2 cos 𝑥�

𝑑
𝑑𝑥 �

1
𝑥2
𝑦� =

1
𝑥2
�𝑥2 cos 𝑥�

𝑑
𝑑𝑥 �

1
𝑥2
𝑦� = cos 𝑥

Integrating both sides gives
1
𝑥2
𝑦 = sin 𝑥 + 𝑐

𝑦 = 𝑥2 (sin 𝑥 + 𝑐) ; 𝑥 ≠ 0
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0.2 Section 1.5 problem 22

Problem Find solution for 𝑦′ = 2𝑥𝑦 + 3𝑥2𝑒𝑥2; 𝑦 (0) = 5

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

𝑦′ = 𝑓 �𝑥, 𝑦�

= 2𝑥𝑦 + 3𝑥2𝑒𝑥2

We see that 𝑓 �𝑥, 𝑦� is continuous for all 𝑥 and for all 𝑦. And

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 2𝑥

This is continuous for all 𝑥. Therefore solution exist and unique in some interval. Now we
will solve the ODE.

𝑦′ − 2𝑥𝑦 = 3𝑥2𝑒𝑥2

We see that the integrating factor 𝜇 = 𝑒∫−2𝑥𝑑𝑥 = 𝑒−𝑥2. Hence the above ODE can now be
written as exact di�erential by multiplying both side with 𝜇

𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇 �3𝑥2𝑒𝑥2�

𝑑
𝑑𝑥
�𝑒−𝑥2𝑦� = 𝑒−𝑥2 �3𝑥2𝑒𝑥2�

𝑑
𝑑𝑥
�𝑒−𝑥2𝑦� = 3𝑥2

Integrating both sides

𝑒−𝑥2𝑦 = 𝑥3 + 𝑐

Hence

𝑦 = 𝑒𝑥2 �𝑥3 + 𝑐�

Now initial conditions 𝑦 (0) = 5 are applied to find 𝑐. This gives

5 = 𝑐

Hence the complete solution (or the particular solution for this initial conditions) is

𝑦 = 𝑒𝑥2 �𝑥3 + 5�
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0.3 Section 1.5 problem 25

Problem Find solution for �𝑥2 + 1� 𝑦′ + 3𝑥3𝑦 = 6𝑥𝑒
−3
2 𝑥2; 𝑦 (0) = 1

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

𝑦′ = 𝑓 �𝑥, 𝑦�

=
6𝑥𝑒

−3
2 𝑥2 − 3𝑥3𝑦
𝑥2 + 1

We see that 𝑓 �𝑥, 𝑦� is continuous for all 𝑥 except when 𝑥2 = −1 or 𝑥 = ±𝑖. But this is not on
real line hence it will not a�ect us. It is also continuous for all 𝑦.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
3𝑥3

𝑥2 + 1
Again, this is continuous for all 𝑥 except when 𝑥2 = −1 or 𝑥 = ±𝑖. But this is not on real
line hence it will not a�ect us.

Therefore solution exists and unique for all 𝑥 and 𝑦. Now we will solve the ODE.

𝑦′ +
3𝑥3

𝑥2 + 1
𝑦 =

6𝑥𝑒
−3
2 𝑥2

𝑥2 + 1

Integration factor is 𝜇 = 𝑒
∫ 3𝑥3

𝑥2+1
𝑑𝑥
. To evaluate the integral:

�
3𝑥3

𝑥2 + 1
𝑑𝑥 = 3�

𝑥3

𝑥2 + 1
𝑑𝑥

= 3�𝑥 −
𝑥

𝑥2 + 1
𝑑𝑥

=
3
2
𝑥2 − 3�

𝑥
𝑥2 + 1

𝑑𝑥

Since 𝑑
𝑑𝑥 ln �𝑥2 + 1� = 2𝑥

𝑥2+1 then by comparing this to the second integral, we see that

∫ 𝑥
𝑥2+1 =

1
2 ln �𝑥2 + 1�, hence

�
3𝑥3

𝑥2 + 1
𝑑𝑥 =

3
2
𝑥2 −

3
2

ln �𝑥2 + 1�

Therefore

𝜇 = 𝑒
∫ 3𝑥3

𝑥2+1
𝑑𝑥

= exp �
3
2
𝑥2 −

3
2

ln �𝑥2 + 1��

= exp �
3
2
𝑥2� exp �−

3
2

ln �𝑥2 + 1��

= exp �
3
2
𝑥2� exp �ln �𝑥2 + 1�

−3
2 �

=
𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

Multiplying both sides of the ODE with this integration factor gives

𝑑
𝑑𝑥
�𝜇𝑦� =

6𝑥𝑒
−3
2 𝑥2

𝑥2 + 1
𝜇

𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
6𝑥𝑒

−3
2 𝑥2

𝑥2 + 1
𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

6𝑥

�𝑥2 + 1�
5
2



5

Integrating both sides

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦 = �
6𝑥

�𝑥2 + 1�
5
2

𝑑𝑥 + 𝑐 (1)

To evaluate ∫ 6𝑥

�𝑥2+1�
5
2
𝑑𝑥, let 𝑢 = 𝑥2 + 1 hence 𝑑𝑢 = 2𝑥𝑑𝑥, therefore the integral becomes

�
6𝑥

�𝑥2 + 1�
5
2

𝑑𝑥 = �
6𝑥

𝑢
5
2

𝑑𝑢
2𝑥

= 3�
1

𝑢
5
2

𝑑𝑢 = 3�𝑢−
5
2𝑑𝑢 = 3

⎛
⎜⎜⎜⎜⎜⎝
𝑢−

3
2

−3
2

⎞
⎟⎟⎟⎟⎟⎠ = −2𝑢

− 3
2

Hence

�
6𝑥

�𝑥2 + 1�
5
2

𝑑𝑥 = −2 �𝑥2 + 1�
− 3
2 =

−2

�𝑥2 + 1�
3
2

Hence (1) becomes

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦 =
−2

�𝑥2 + 1�
3
2

+ 𝑐

𝑦 =
−2

�𝑥2 + 1�
3
2

�𝑥2 + 1�
3
2

𝑒
3
2𝑥

2
+ 𝑐

�𝑥2 + 1�
3
2

𝑒
3
2𝑥

2

𝑦 = −2𝑒
−3
2 𝑥2 + 𝑐 �𝑥2 + 1�

3
2 𝑒

−3
2 𝑥2

Applying 𝑦 (0) = 1 gives

1 = −2 + 𝑐
𝑐 = 3

Hence the particular solution is

𝑦 = −2𝑒
−3
2 𝑥2 + 3 �𝑥2 + 1�

3
2 𝑒

−3
2 𝑥2

= 𝑒
−3
2 𝑥2 �3 �𝑥2 + 1�

3
2 − 2�
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0.4 Section 1.5 problem 27

Problem Solve the di�erential equation by regarding 𝑦 as the independent variable rather
than 𝑥

�𝑥 �𝑦� + 𝑦𝑒𝑦�
𝑑𝑦

𝑑𝑥 �𝑦�
= 1

Solution

𝑑𝑦
𝑑𝑥 �𝑦�

=
1

𝑥 �𝑦� + 𝑦𝑒𝑦

𝑑𝑥 �𝑦�
𝑑𝑦

= 𝑥 �𝑦� + 𝑦𝑒𝑦

𝑑𝑥 �𝑦�
𝑑𝑥

− 𝑥 �𝑦� = 𝑦𝑒𝑦

For 𝑥 �𝑦� ≠ 𝑦𝑒𝑦. Hence

𝑑𝑥 �𝑦�
𝑑𝑦

= 𝑥 �𝑦� + 𝑦𝑒𝑦

𝑑𝑥 �𝑦�
𝑑𝑥

− 𝑥 �𝑦� = 𝑦𝑒𝑦

Integrating factor is 𝜇 = 𝑒−∫𝑑𝑦 = 𝑒−𝑦. Multiplying both sides with 𝜇 gives

𝑑
𝑑𝑦
�𝜇𝑥� = 𝜇𝑦𝑒𝑦

𝑑
𝑑𝑦
(𝑒−𝑦𝑥) = 𝑦

Integrating both sides

𝑒−𝑦𝑥 �𝑦� =
𝑦2

2
+ 𝑐

Therefore

𝑥 �𝑦� = �
𝑦2

2
+ 𝑐� 𝑒𝑦
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0.5 Section 1.5 problem 31

Problem (a) show that 𝑦𝑐 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 is a general solution of 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 0. (b) Show

that 𝑦𝑝 (𝑥) = 𝑒−∫𝑃(𝑥)𝑑𝑥∫�𝑄 (𝑥) 𝑒∫𝑃(𝑥)𝑑𝑥� 𝑑𝑥 is a particular solution of 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥). (c)

Suppose that 𝑦𝑐 (𝑥) is any general solution of 𝑑𝑦
𝑑𝑥 +𝑃 (𝑥) 𝑦 = 0 and that 𝑦𝑝 (𝑥) is any particular

solution of 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥). Show that 𝑦 (𝑥) = 𝑦𝑐 (𝑥) + 𝑦𝑝 (𝑥) is a general solution of

𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥)

Solution

0.5.1 Part (a)

Given
𝑑𝑦
𝑑𝑥
+ 𝑃 (𝑥) 𝑦 = 0

Then
𝑑𝑦
𝑦
= −𝑃 (𝑥) 𝑑𝑥

Integrating both sides

ln �𝑦� = −�𝑃 (𝑥) 𝑑𝑥 + 𝐶

𝑦 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥

QED. We can also solve this by substituting 𝑦 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 into 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 0 which

gives

Δ =
𝑑
𝑑𝑥
�𝐶𝑒−∫𝑃(𝑥)𝑑𝑥� + 𝑃 (𝑥) 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 (1)

But 𝑑
𝑑𝑥𝑒

𝑔(𝑥) = 𝑔′ (𝑥) 𝑒𝑔(𝑥), hence

𝑑
𝑑𝑥
�𝐶𝑒−∫𝑃(𝑥)𝑑𝑥� = 𝐶

𝑑
𝑑𝑥
�−�𝑃 (𝑥) 𝑑𝑥� 𝑒−∫𝑃(𝑥)𝑑𝑥

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥

Therefore (1) becomes

Δ = −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑃 (𝑥) 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥

= 0

Hence the solution 𝑦 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 satisfies the ODE. Therefore it is solution.

0.5.2 Part(b)

Given 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥), the integrating factor is 𝜇 = 𝑒∫𝑃(𝑥)𝑑𝑥. Multiplying this by both

sides of the ODE gives

𝑒∫𝑃(𝑥)𝑑𝑥𝑑𝑦
𝑑𝑥
+ 𝑒∫𝑃(𝑥)𝑑𝑥𝑃 (𝑥) 𝑦 = 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)

𝑑
𝑑𝑥
�𝑒∫𝑃(𝑥)𝑑𝑥𝑦 (𝑥)� = 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)

Integrating both sides

𝑒∫𝑃(𝑥)𝑑𝑥𝑦 (𝑥) = �𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶

𝑦 (𝑥) = 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥

For particular 𝐶 = 0, we obtain

𝑦𝑝 (𝑥) = 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥�

Which is what we asked to show.
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0.5.3 Part(c)

Let

𝑦 (𝑥) = 𝑦𝑐 (𝑥) + 𝑦𝑝 (𝑥)

= 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥�

We need now to substitute this in 𝑑𝑦
𝑑𝑥 +𝑃 (𝑥) 𝑦 = 𝑄 (𝑥) and see if it satisfies it. First we find 𝑑𝑦

𝑑𝑥

𝑑𝑦
𝑑𝑥

=
𝑑
𝑑𝑥 �

𝐶𝑒−∫𝑃(𝑥)𝑑𝑥� +
𝑑
𝑑𝑥 �

𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥��

= 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 (−𝑃 (𝑥)) +
𝑑
𝑑𝑥
𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑒−∫𝑃(𝑥)𝑑𝑥 𝑑

𝑑𝑥 �
𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 (−𝑃 (𝑥)) �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑒−∫𝑃(𝑥)𝑑𝑥 �𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)�

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 − 𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑒−∫𝑃(𝑥)𝑑𝑥 �𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)�

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 − 𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑄 (𝑥)

= −𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶� + 𝑄 (𝑥)

Substituting the above into the left hand side of the given 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥)

𝐿𝐻𝑆 =
𝑑𝑦
𝑑𝑥
+ 𝑃 (𝑥) 𝑦

= −𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶� + 𝑄 (𝑥) + 𝑃 (𝑥) �𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥��

=
���������������������������������������������������������
− 𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶�+𝑄 (𝑥) +

���������������������������������������������������������
𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �𝐶 + ��𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥��

We see that the first term in the RHS above and the third term cancel each others. Hence

𝐿𝐻𝑆 = 𝑄 (𝑥)

Which is the right side of the ODE. Hence the solution 𝑦 (𝑥) = 𝑦𝑐 (𝑥) + 𝑦𝑝 (𝑥) satisfies the
ODE.

QED.
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0.6 Section 1.5 problem 37

Problem A 400 gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine
containing 1 lb of salt per gallon enters the tank at rate 5 gal/s and the well mixed brine
in the tank flows out at rate of 3 gal/s. How much salt will the tank contain when it is full
of brine?

Solution

To reduce confusion, let 𝑥 be the substance which causes the concentration in the Brine.
Let 𝑄(𝑡) be the mass (normally called the amount, but saying mass is more clear than
saying amount) of 𝑥 at time 𝑡 . Hence 𝑄(0) = 50 lb. The goal is to find an ODE that
describes how 𝑄(𝑡) changes in time. That is, how the mass of 𝑥 in the tank changes in time.
Using

𝑑𝑄
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡

Where 𝑅𝑖𝑛 rate of mass of salt entering the tank per second. And 𝑅𝑜𝑢𝑡 is rate of mass of
salt leaving the tank per second. But

𝑅𝑖𝑛 = 5 lb/sec

And

𝑅𝑜𝑢𝑡 =
𝑄 (𝑡)
𝑉 (𝑡)

[lb]
�gal�

× 3
�gal�

[second]
=

3
𝑉 (𝑡)

𝑄 (𝑡)

Where 𝑉 (𝑡) is current volume of brine in tank at time 𝑡. Hence the ODE is
𝑑𝑄
𝑑𝑡

= 5 −
3

𝑉 (𝑡)
𝑄 (𝑡)

𝑑𝑄
𝑑𝑡

+
3

𝑉 (𝑡)
𝑄 (𝑡) = 5 (1)

But we can find 𝑉 (𝑡). Since initially 𝑉 (0) = 100 gal, and in one second 5 gal enters, and 3
gal exists, then

𝑉 (𝑡) = 100 + 2𝑡

Hence (1) becomes

𝑑𝑄
𝑑𝑡 +

3
100+2𝑡𝑄 (𝑡) = 5

Integrating factor is

𝜇 = 𝑒∫
3

100+2𝑡𝑑𝑡 = 𝑒3∫
1

100+2𝑡𝑑𝑡 = 𝑒
3
2 ln(100+2𝑡) = (100 + 2𝑡)

3
2

Hence (1) becomes
𝑑
𝑑𝑡
�𝜇𝑄� = 5𝜇

Integrating both sides

𝜇𝑄 = 5�𝜇𝑑𝑡 + 𝑐

(100 + 2𝑡)
3
2 𝑄 = 5�(100 + 2𝑡)

3
2 𝑑𝑡 + 𝑐

(100 + 2𝑡)
3
2 𝑄 = (100 + 2𝑡)

5
2 + 𝑐

Hence

𝑄 (𝑡) = (100 + 2𝑡) + 𝑐 (100 + 2𝑡)
−3
2

But at 𝑡 = 0, 𝑄 (0) = 50, hence

50 = 100 + 𝑐 (100)
−3
2

𝑐 = −50 000

Hence the solution is

𝑄 (𝑡) = (100 + 2𝑡) − 50 000 (100 + 2𝑡)
−3
2 (2)

This gives us the mass of salt at time 𝑡. What we need now to find out is the time it will
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take to fill the tank say 𝑡𝑒𝑛𝑑, and use that time to find 𝑄 (𝑡𝑒𝑛𝑑) from above. Since initially the
tank had 300 gallons remains to be filled, and the flow in is at rate of 5 gal/sec and flow out
is at 3 gal/sec, then in one second, the tank will fill up with 2 gallons. Hence it will take

𝑡 =
300
2

= 150 sec

To fill the tank. Using this value of 𝑡 in (2) gives

𝑄 (150) = (100 + 2 (150)) − 50 000 (100 + 2 (150))
−3
2

=
1575
4

= 393.75 lb



11

0.7 Section 1.5 problem 44

Problem: Figure 1.5.8 shows a slope field and typical solution curves for 𝑦′ = 𝑥 + 𝑦. (a)
show that every curve approaches the straight line 𝑦 = −𝑥 − 1 as 𝑥 → −∞. (b) for each of
the five values 𝑦1 = −10, −5, 0, 5, 10, determined the initial value 𝑦0 (accurate to 4 decimal
points) such that 𝑦 (5) = 𝑦1 for the solution satisfying the initial condition 𝑦 (−5) = 𝑦0

Solution:

0.7.1 Part(a)

𝑦′ = 𝑥 + 𝑦
𝑦′ − 𝑦 = 𝑥

Integrating factor is 𝜇 = 𝑒−∫𝑑𝑥 = 𝑒−𝑥. Multiplying the above with 𝜇 results in

𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇𝑥

𝑑
𝑑𝑥
�𝑒−𝑥𝑦� = 𝑒−𝑥𝑥

Integrating both sides

𝑒−𝑥𝑦 = �𝑥𝑒−𝑥𝑑𝑥 + 𝑐

But ∫𝑥𝑒−𝑥𝑑𝑥 = 𝑒−𝑥 (−1 − 𝑥) using integration by parts. Hence the above becomes

𝑒−𝑥𝑦 = 𝑒−𝑥 (−1 − 𝑥) + 𝑐
𝑦 = (−1 − 𝑥) + 𝑐𝑒𝑥 (1)

But

lim
𝑥→−∞

𝑒𝑥 = 0

Hence solution becomes (at large negative 𝑥)

𝑦 = −1 − 𝑥

Therefore, solution curves approach line −1 − 𝑥.

0.7.2 Part(b)

The solution is 𝑦 = (−1 − 𝑥) + 𝑐𝑒𝑥 from part (a). Using 𝑦 (−5) = 𝑦0, then

𝑦0 = (−1 + 5) + 𝑐𝑒−5

𝑦0 = 4 + 𝑐𝑒−5

𝑐 = �𝑦0 − 4� 𝑒5

Hence solution is

𝑦 = (−1 − 𝑥) + �𝑦0 − 4� 𝑒5𝑒𝑥

= (−1 − 𝑥) + �𝑦0 − 4� 𝑒𝑥+5 (2)

Now we need to find 𝑦0 such as 𝑦 (5) = −10 . From (2)

−10 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (−10 + 6) 𝑒−10 + 4
= 3.99982

For 𝑦 (5) = −5, from (2)

−5 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (−5 + 6) 𝑒−10 + 4
= 4.00005
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For 𝑦 (5) = 0 from (2)

0 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = 6𝑒−10 + 4
= 4.00027

For 𝑦 (5) = 5 from (2)

5 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (5 + 6) 𝑒−10 + 4
= 4.00050

For 𝑦 (5) = 10 from (2)

10 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (10 + 6) 𝑒−10 + 4
= 4.00073
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0.8 Section 2.1 problem 3

Problem: Solve 𝑑𝑥
𝑑𝑡 = 1 − 𝑥

2; 𝑥 (0) = 3 and sketch solution

Solution:
𝑑𝑥
𝑑𝑡
= 1 − 𝑥2

𝑑𝑥
1 − 𝑥2

= 𝑑𝑡 (1)

For 1 − 𝑥2 ≠ 0 or for 𝑥 ≠ ±1. But

�
𝑑𝑥

1 − 𝑥2
= �

𝑑𝑥
(1 + 𝑥) (1 − 𝑥)

Where 1
(1+𝑥)(1−𝑥) =

𝐴
(1+𝑥) +

𝐵
(1−𝑥) . But 𝐴 = � 1

(1−𝑥)
�
𝑥=−1

= 1
2 and 𝐵 = � 1

(1+𝑥)
�
𝑥=1

= 1
2 , hence

�
𝑑𝑥

(1 + 𝑥) (1 − 𝑥)
=
1
2 �

𝑑𝑥
(1 + 𝑥)

+
1
2 �

𝑑𝑥
(1 − 𝑥)

=
1
2

ln |(1 + 𝑥)| − 1
2

ln |(1 − 𝑥)|

Therefore (1) becomes
1
2

ln |(1 + 𝑥)| − 1
2

ln |(1 − 𝑥)| = �𝑑𝑡

ln �
(1 + 𝑥)
(1 − 𝑥)

� = �2𝑑𝑡

ln �
(1 + 𝑥)
(1 − 𝑥)

� = 2𝑡 + 𝑐

(1 + 𝑥)
(1 − 𝑥)

= 𝑐𝑒2𝑡

(1 + 𝑥) = (1 − 𝑥) 𝑐𝑒2𝑡

1 + 𝑥 = 𝑐𝑒2𝑡 − 𝑥𝑐𝑒2𝑡

𝑥 + 𝑥𝑐𝑒2𝑡 = 𝑐𝑒2𝑡 − 1

𝑥 =
𝑐𝑒2𝑡 − 1
1 + 𝑐𝑒2𝑡

Now we use initial conditions 𝑥 (0) = 3 to find 𝑐

3 =
𝑐 − 1
1 + 𝑐

𝑐 = −2

Hence solution is

𝑥 =
−2𝑒2𝑡 − 1
1 − 2𝑒2𝑡

=
1 + 2𝑒2𝑡

2𝑒2𝑡 − 1
Here is a plot of the above solution and two other solutions starting from di�erent initial
conditions

0.5 1.0 1.5 2.0 2.5 3.0
t

1.5

2.0

2.5

3.0

x(t)

Figure 1: Problem 2.1, 3
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0.9 Section 2.1 problem 13

Problem: Consider a breed of rabbits whose birth and death rates 𝛽, 𝛿 are each proportional
to the rabbit population 𝑃 = 𝑃 (𝑡) with 𝛽 > 𝛿. (a) Show that 𝑃 (𝑡) = 𝑃(0)

1−𝑘𝑃(0)𝑡 , where 𝑘 constant.

Note that 𝑃 (𝑡) → ∞ as 𝑡 → 1
(𝑘𝑃(0)) . This is the doomsday. (b) Suppose that 𝑃 (0) = 6 and

that there are nine rabbits after ten months. When does doomsday occur?

0.9.1 Part(a)

For doomsday, per book page 86, we use the model that birth rate occur at rate 𝛽 ∝ 𝑃2 (𝑡)
per unit time per population, but in this problem, since death rate is not constant, but also
proportional to the rabbit population, then we also make 𝛿 ∝ 𝑃2 (𝑡) where 𝛽 > 𝛿. Hence we
write

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝑘𝑃2 (𝑡)

Where 𝑘 is the combined constant of proportionality. This is separable.

𝑑𝑃 (𝑡)
𝑃2 (𝑡)

= 𝑘𝑑𝑡

�
𝑑𝑃 (𝑡)
𝑃2 (𝑡)

= �𝑘𝑑𝑡

−
1
𝑃
= 𝑘𝑡 + 𝑐

𝑃 (𝑡) =
1

𝑐 − 𝑘𝑡
(1)

Using initial conditions, 𝑡 = 0, 𝑃 (0) we find 𝑐

𝑃 (0) =
1
𝑐

𝑐 =
1

𝑃 (0)
Hence (1) becomes

𝑃 (𝑡) =
1

1
𝑃(0) − 𝑘𝑡

=
𝑃 (0)

1 − 𝑃 (0) 𝑘𝑡
(2)

0.9.2 Part (b)

Applying initial conditions to (2) in part (a)

𝑃 (𝑡) =
𝑃 (0)

1 − 𝑘𝑃 (0) 𝑡

9 =
6

1 − 𝑘 (6) (10)

𝑘 =
1
180

Hence solution becomes

𝑃 (𝑡) =
6

1 − 6
180 𝑡

When 𝑡 = 180
6 = 30 months, then 𝑃 (𝑡) → ∞. Hence 30 months is doomsday.
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0.10 Section 2.1 problem 15

Problem Consider population 𝑃 (𝑡) satisfying logistic equation 𝑑𝑃
𝑑𝑡 = 𝑎𝑃 − 𝑏𝑃

2 where 𝐵 = 𝑎𝑃
is the time rate at which birth occur and 𝐷 = 𝑏𝑃2 is the rate at which death occur. If the
initial population is 𝑃 (0) and 𝐵 (0) , 𝐷 (0) are the rates per month at 𝑡 = 0, show that the
limiting population is 𝑀 = 𝐵(0)𝑃(0)

𝐷(0)

Solution

For the limiting model, per book page 82 (limiting population and carrying capacity), we
can use

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

= 𝑎 �1 −
𝑏
𝑎
𝑃� 𝑃

= 𝑎 �1 −
𝑃
𝑀�𝑃

note: In class lecture, the above is written as 𝑑𝑃
𝑑𝑡 = 𝑟 �1 − 𝑃

𝑘
� 𝑝, where 𝑟 = 𝑎 and 𝑘 = 𝑀)

But book uses di�erent notations. 𝑀 is the limiting capacity (or also called equilibrium
population). Hence from the above, we see that

𝑀 =
𝑎
𝑏

(1)

But 𝑎, which is the growth rate per time per population is

𝑎 =
𝐵0
𝑃0

And 𝐷 (0) = 𝑏𝑃2 (0), hence

𝑏 =
𝐷0

𝑃20
Therefore (1) becomes

𝑀 =
𝐵0
𝑃0
𝐷0
𝑃20

=
𝐵0
𝐷0
𝑃0

QED.
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0.11 Section 2.1 problem 17

Problem Consider rabbit population 𝑃 (𝑡) satisfying the logistic equation as in problem 15.
If the initial population is 240 rabbits and there are 9 births per month and 12 death per
month occurring at time 𝑡 = 0, how many months does it take for 𝑃 (𝑡) to reach 105% of
the limiting population 𝑀?

Solution The logistic equation, from problem 15 is

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

From problem 15: Where

𝐵 = 𝑎𝑃

Is the time rate at which birth occur and

𝐷 = 𝑏𝑃2

Is the rate at which death occur and 𝑃 (𝑡) is current size of population. Per problem 15, we
know that the limiting population is

𝑀 =
𝐵 (0) 𝑃 (0)
𝐷 (0)

=
𝐵 (0) 𝑃 (0)
𝐷 (0)

But we are given here, that 𝑃 (0) = 240, 𝐵 (0) = 9 per month and 𝐷 (0) = 12 per month. This
means

𝑀 =
9 (240)
12

= 180

The above is the limiting population size. We now need to solve (1) in order to answer the
question

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

This is separable
𝑑𝑃

𝑎𝑃 − 𝑏𝑃2
= 𝑑𝑡

�
𝑑𝑃

𝑎𝑃 − 𝑏𝑃2
= 𝑡 + 𝑐

�
𝑑𝑃

𝑃 (𝑎 − 𝑏𝑃)
= 𝑡 + 𝑐

�
1
𝑎𝑃

−
𝑏

𝑎 (𝑏𝑃 − 𝑎)
𝑑𝑃 = 𝑡 + 𝑐

1
𝑎

ln |𝑃| − 1
𝑎

ln |𝑏𝑃 − 𝑎| = 𝑡 + 𝑐

1
𝑎

ln ��
𝑏𝑃

𝑏𝑃 − 𝑎�
� = 𝑡 + 𝑐

1
𝑎

ln ��
𝑏𝑃

𝑏𝑃 − 𝑎�
� = 𝑡 + 𝑐

ln ��
𝑏𝑃

𝑏𝑃 − 𝑎�
� = 𝑎𝑡 + 𝑎𝑐

𝑏𝑃
𝑏𝑃 − 𝑎

= 𝑐1𝑒𝑎𝑡
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Where the sign is determined by constant 𝑐1. Hence the above becomes

𝑏𝑃 = 𝑐1𝑒𝑎𝑡 (𝑏𝑃 − 𝑎)
= 𝑐1𝑒𝑎𝑡𝑏𝑃 − 𝑐1𝑎𝑒𝑎𝑡

𝑏𝑃 − 𝑐1𝑒𝑎𝑡𝑏𝑃 = −𝑐1𝑎𝑒𝑎𝑡

𝑃 �𝑏 − 𝑐1𝑒𝑎𝑡𝑏� = −𝑐1𝑎𝑒𝑎𝑡

𝑃 (𝑡) =
−𝑐1𝑎𝑒𝑎𝑡

𝑏 − 𝑐1𝑒𝑎𝑡𝑏

=
𝑐1𝑎𝑒𝑎𝑡

𝑐1𝑒𝑎𝑡𝑏 − 𝑏

𝑃 (𝑡) =
𝑎

𝑏 − 𝑏
𝑐1
𝑒−𝑎𝑡

We now need to find 𝑐1 from initial conditions. At 𝑡 = 0, 𝑃 (0) = 240, hence since 𝐵 = 𝑎𝑃
then

𝑎 (0) =
𝐵 (0)
𝑃 (0)

=
9
240

=
3
80

And since 𝐷 = 𝑏𝑃2 then

𝑏 (0) =
𝐷 (0)
𝑝 (0)2

=
12
2402

=
1

4800
Therefore, at 𝑡 = 0, the above solution becomes

𝑃 (0) =
𝑐1𝑎 (0) 𝑒𝑎𝑡

𝑐1𝑒𝑎𝑡𝑏 (0) − 𝑏 (0)

240 =
𝑐1𝑎 (0)

𝑐1𝑏 (0) − 𝑏 (0)
=

𝑐1
3
80

1
4800

(𝑐1 − 1)

240 �
1

4800
(𝑐1 − 1)� = 𝑐1

3
80

1
20
𝑐1 −

1
20

= 𝑐1
3
80

1
20
𝑐1 − 𝑐1

3
80

=
1
20

𝑐1 �
1
20
−
3
80�

=
1
20

𝑐1 �
1
80�

=
1
20

𝑐1 = 4

Hence solution is

𝑃 (𝑡) =
4𝑎𝑒𝑎𝑡

4𝑒𝑎𝑡𝑏 − 𝑏

=
4 � 3

80
� 𝑒

3
80 𝑡

4𝑒
� 3
80 �𝑡 � 1

4800
� − 1

4800
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We now solve for 𝑡 when 𝑃 (𝑡) = 105% of 𝑀

105
100

(180) =
4 � 3

80
� 𝑒

3
80 𝑡 (4800)

4𝑒
� 3
80 �𝑡 − 1

189 �4𝑒
� 3
80 �𝑡 − 1� = 720𝑒

3
80 𝑡

756𝑒
� 3
80 �𝑡 − 189 = 720𝑒

3
80 𝑡

756𝑒
� 3
80 �𝑡 − 720𝑒

3
80 𝑡 = 189

𝑒
3
80 𝑡 =

189
36

3
80
𝑡 = ln 189

36

𝑡 =
80
3

ln 189
36

= 44.219 months
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0.12 Section 2.1 problem 30

Problem A tumor may be regarded as population of multiplying cells. The birth rate of
cells in a tumor decreases exponentially with time so that 𝛽 (𝑡) = 𝛽0𝑒−𝛼𝑡 where 𝛼, 𝛽0 are
positive constants. Hence 𝑑𝑃

𝑑𝑡 = 𝛽0𝑒−𝛼𝑡𝑃 with 𝑃 (0) = 𝑃0. Solve the initial value problem

for 𝑃 (𝑡) = 𝑃0𝑒
� 𝛽0𝛼 �1−𝑒−𝛼𝑡��

. Observe that 𝑃 (𝑡) approaches finite limiting population 𝑃0𝑒
� 𝛽0𝛼 �

as
𝑡 → ∞.

Solution

𝑑𝑃
𝑑𝑡

= 𝛽0𝑒−𝛼𝑡𝑃

This is separable.
𝑑𝑃
𝑃
= 𝛽0𝑒−𝛼𝑡𝑑𝑡

Integrating

ln |𝑃| = 𝛽0�𝑒−𝛼𝑡𝑑𝑡

= 𝛽0
𝑒−𝛼𝑡

−𝛼
+ 𝐶

Hence

𝑃 (𝑡) = 𝐶𝑒−𝛽0
𝑒−𝛼𝑡
𝛼 (1)

Applying initial condition on the above gives

𝑃 (0) = 𝑃0 = 𝐶𝑒
−𝛽0

1
𝛼

𝐶 = 𝑃0𝑒
𝛽0

1
𝛼

Therefore the solution (1) becomes

𝑃 (𝑡) = 𝑃0𝑒
𝛽0

1
𝛼 𝑒−𝛽0

𝑒−𝛼𝑡
𝛼

= 𝑃0𝑒
−𝛽0

𝑒−𝛼𝑡
𝛼 +

𝛽0
𝛼

= 𝑃0𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�

As 𝑡 → ∞ then 𝑒−𝛼𝑡 → 0 since 𝛼 > 0, hence the above becomes

𝑃 (∞) = 𝑀 = 𝑃0𝑒
𝛽0
𝛼

The above is the limiting population.
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0.13 Section 2.1 problem 31

Problem For tumor in problem 30, suppose that at 𝑡 = 0, there are 𝑃0 = 106 cells and that
𝑃 (𝑡) is then increasing at rate 3×105 cells per month. After 6 months the tumor has doubled
(in size and number of cells). Solve numerially for 𝛼 and then find the limiting population
of tumor.

Solution From problem (30) we found

𝑃 (𝑡) = 𝑃0𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�

= 106𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�

Then, at 𝑡 = 0, we are told �𝑑𝑃(𝑡)𝑑𝑡
�
𝑡=0

= 3 × 105 (cells per month). Hence, since 𝑑𝑃
𝑑𝑡 = 𝛽0𝑒

−𝛼𝑡𝑃

then at 𝑡 = 0

3 × 105 = 𝛽0𝑃0
= 𝛽0106

Therefore

𝛽0 =
3 × 105

106
= 0.3

We also told that after 6 months, the number of cells has doubled. This means, using 𝑡 = 6
(with units of month) that

𝑃 (6) = 2𝑃0

106𝑒
𝛽0
𝛼 �1−𝑒−6𝛼� = 2 × 106

But 𝛽0 = 0.3, hence the above becomes

𝑒
3

10𝛼 �1−𝑒
−6𝛼� = 2

3
10𝛼

�1 − 𝑒−6𝛼� = ln 2

10𝛼 ln 2 = 3 − 3𝑒−6𝛼

10𝛼 ln 2 + 3𝑒−6𝛼 = 3
Using a computer, the solutions are 𝛼 = 0 or 𝛼 = 0.3915

Now the limiting population is found. From 𝑃 (𝑡) = 𝑃0𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�, for large 𝑡 and since 𝛼 > 0

this becomes

lim
𝑡→∞

𝑃 (𝑡) = 𝑃0𝑒
𝛽0
𝛼

= 106𝑒
0.3

0.3915

= 2.1518 × 106

The above is limit of number of cells for large 𝑡.
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0.14 Section 2.2 problem 7

Problem Solve for 𝑓 (𝑥) = 0 to find critical points. Then analyze the sign of 𝑓 (𝑥) to determine
if each critical point is stable or not and construct the phase diagram for the di�erential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability
of each critital point.

𝑑𝑥
𝑑𝑡
= 𝑓 (𝑥) = (𝑥 − 2)2

Solution The critial points are 𝑥 values (dependent variable values) where 𝑓 (𝑥) = 0. Hence

(𝑥 − 2)2 = 0
𝑥 = 2

Since 𝑓 (𝑥) is always positive, this means if 𝑥 started at something just below 𝑥 = 2, say
𝑥 = 1.5, then eventually 𝑥 will reach 𝑥 = 2 and stay there. But if 𝑥 is started at something
just about 𝑥 = 2, say 𝑥 = 2.5, then 𝑥 will keep increasing away from 𝑥 = 2. This means
𝑥 = 2 is semi stable critial since if we start below it, we reach it, but not if we start about
it. Hence the phase diagram is

x = 2

x′ > 0
x > 2

x′ > 0
x < 2

x = 2 is semi-stable point

Figure 2: Phase diagram, 2.2 problem 7

Now the ODE is solved 𝑑𝑥
𝑑𝑡 = (𝑥 − 2)

2. This is non-linear seperable

𝑑𝑥
(𝑥 − 2)2

= 𝑑𝑡 𝑥 ≠ 2

�
𝑑𝑥

(𝑥 − 2)2
= �𝑑𝑡

Let 𝑥 − 2 = 𝑢 → 𝑑𝑢
𝑑𝑥 = 1, therefore ∫

𝑑𝑥
(𝑥−2)2

= ∫ 𝑑𝑢
𝑢2 = −

1
𝑢 = −

1
𝑥−2 and the above becomes

−
1

𝑥 − 2
= 𝑡 + 𝑐

𝑥 = 2 −
1

𝑡 + 𝑐
Let 𝑥 (0) = 𝑥0, therefore

𝑥0 = 2 −
1
𝑐

𝑐 =
1

2 − 𝑥0
And the solution becomes

𝑥 = 2 −
1

𝑡 + 1
2−𝑥0

= 2 −
2 − 𝑥0

𝑡 (2 − 𝑥0) + 1

=
2 (𝑡 (2 − 𝑥0) + 1) − 2 + 𝑥0

𝑡 (2 − 𝑥0) + 1

=
2𝑡 (2 − 𝑥0) + 𝑥0
𝑡 (2 − 𝑥0) + 1

=
4𝑡 − 2𝑡𝑥0 + 𝑥0
2𝑡 − 𝑥0𝑡 + 1
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Hence

𝑥 (𝑡) = (2𝑡−1)𝑥0−4𝑡
𝑡𝑥0−2𝑡−1

Here is slope field plot

0.5 1.0 1.5 2.0 2.5 3.0
t

1.5

2.0

2.5

3.0

x(t)

From the above plot, we see the solution lines are moving away from 𝑥 = 2 when they start
from 𝑥 > 2 but move towards 𝑥 = 2 when starting from 𝑥 < 2.
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0.15 Section 2.2 problem 10

Problem Solve for 𝑓 (𝑥) = 0 to find critical points. Then analyze the sign of 𝑓 (𝑥) to determine
if each critical point is stable or not and construct the phase diagram for the di�erential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability
of each critital point.

𝑑𝑥
𝑑𝑡
= 𝑓 (𝑥) = 7𝑥 − 𝑥2 − 10

Solution

The critial points are 𝑥 values (dependent variable values) where 𝑓 (𝑥) = 0. Hence

7𝑥 − 𝑥2 − 10 = 0
𝑥1 = 2
𝑥2 = 5

The phase diagram is

x = 2

x′ > 0
x > 2

x′ < 0
x < 2

x = 2 unstable
x = 5

x = 5 stable

x′ < 0
x > 5

x′ > 0
x < 5

Figure 3: Phase diagram, 2.2 problem 7

Now the ODE is solved 𝑑𝑥
𝑑𝑡 = 7𝑥 − 𝑥

2 − 10. This is non-linear seperable

𝑑𝑥
7𝑥 − 𝑥2 − 10

= 𝑑𝑡 𝑥 ≠ 2, 𝑥 ≠ 5

−𝑑𝑥
𝑥2 − 7𝑥 + 10

= 𝑑𝑡

−�
𝑑𝑥

𝑥2 − 7𝑥 + 10
= �𝑑𝑡

But 1
(𝑥−2)(𝑥−5) =

𝐴
(𝑥−2) +

𝐵
(𝑥−5) , hence 𝐴 = � 1

(𝑥−5)
�
𝑥=2

= � 1
−3
� and 𝐵 = � 1

(𝑥−2)
�
𝑥=5

= 1
3 and the above

becomes

−��
1

−3 (𝑥 − 2)
+

1
3 (𝑥 − 5)�

= �𝑑𝑡

�
1

3 (𝑥 − 2)
−�

1
3 (𝑥 − 5)

= �𝑑𝑡

1
3 �

𝑑𝑥
(𝑥 − 2)

−
1
3 �

𝑑𝑥
(𝑥 − 5)

= �𝑑𝑡

1
3

ln |𝑥 − 2| − 1
3

ln |𝑥 − 5| = �𝑑𝑡

ln |𝑥 − 2| − ln |𝑥 − 5| = �3𝑑𝑡

ln �𝑥 − 2
𝑥 − 5

� = 3𝑡 + 𝑐

𝑥 − 2
𝑥 − 5

= 𝑐𝑒3𝑡

𝑥 − 2 = 𝑥𝑐𝑒3𝑡 − 5𝑐𝑒3𝑡

𝑥 − 𝑥𝑐𝑒3𝑡 = 2 − 5𝑐𝑒3𝑡

𝑥 =
2 − 5𝑐𝑒3𝑡

1 − 𝑐𝑒3𝑡
Here is slope field plot
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0.5 1.0 1.5 2.0 2.5 3.0
t

2

4

6

x(t)

From the above plot, we see the solution lines are moving away from 𝑥 = 2 indicating it is
unstable and move towards 𝑥 = 5 indicating it is stable.
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0.16 Section 2.2 problem 23

Problem Suppose that logistic equation 𝑑𝑥
𝑑𝑡 = 𝑘𝑥 (𝑀 − 𝑥) models a population 𝑥 (𝑡) of fish

in lake that after 𝑡 months during which no fishing occurs. Now suppose that because of
fishing, fish are removed from lake at rate of ℎ𝑥 fish per month, with ℎ > 0. Thus fish are
harvested at a rate propertional to existing fish population, rather than at constant rate of
example 4. (a) if 0 < ℎ < 𝑘𝑀, show that population is still logistic. What is the new limiting
population. (b) if ℎ ≥ 𝑘𝑀., show that 𝑥 (𝑡) → 0 at 𝑡 → ∞ so that lake is eventually fished
out.

Solution

Part (a)

Since fish is removed at rate of ℎ𝑥 fish per month, then
𝑑𝑥
𝑑𝑡
= 𝑘𝑥 (𝑀 − 𝑥) − ℎ𝑥

= 𝑘𝑥 �(𝑀 − 𝑥) −
ℎ
𝑘�

= 𝑘𝑥 �𝑀 −
ℎ
𝑘
− 𝑥�

= 𝑘𝑥 ��𝑀 −
ℎ
𝑘�
− 𝑥�

But 𝑀− ℎ
𝑘 > 0 since 0 < ℎ < 𝑘𝑀, therefore, if we let �𝑀 − ℎ

𝑘
� = 𝜆, then 𝑑𝑥

𝑑𝑡 = 𝑘𝑥 (𝜆 − 𝑥) is still

logistic just as 𝑑𝑥
𝑑𝑡 = 𝑘𝑥 (𝑀 − 𝑥) since 𝜆 > 0. 𝜆 = 𝑀 − ℎ

𝑘 is the new limiting population.

Part (b)

In this case

𝑑𝑥
𝑑𝑡
= 𝑘𝑥 ��𝑀 −

ℎ
𝑘�
− 𝑥�

= 𝑘𝑥 (𝜆 − 𝑥)

Now 𝜆 < 0. Solving this ode
𝑑𝑥

𝑥 (𝜆 − 𝑥)
= 𝑘

1
𝜆𝑥

−
1
𝜆

1
(𝜆 − 𝑥)

= 𝑘

Integrating
1
𝜆

ln |𝑥| − 1
𝜆

ln |(𝜆 − 𝑥)| = �𝑘𝑑𝑡

ln � 𝑥
𝜆 − 𝑥

� = �𝜆𝑘𝑑𝑡

ln � 𝑥
𝜆 − 𝑥

� = 𝜆𝑘𝑡 + 𝑐
𝑥

𝜆 − 𝑥
= 𝐶𝑒𝜆𝑘𝑡

𝑥 + 𝑥𝐶𝑒𝜆𝑘𝑡 = 𝜆𝐶𝑒𝜆𝑘𝑡

𝑥 (𝑡) =
𝜆𝐶𝑒𝜆𝑘𝑡

1 + 𝐶𝑒𝜆𝑘𝑡

Now, since 𝜆 < 0, then as 𝑡 → ∞ then 𝑥 (𝑡) → 0
1 = 0. Hence the population of fish will die

out. (no need to find 𝐶 first, as the whole term goes to zero). This is what we are asked to
show.
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