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7 0.1 Section 5.1 problem 10 (page 299)
problem

10 Verify that yy,y, are solutions of the differential equation. Then find a particular solution of the form
11 y = c1yp + ooy, that satisfies the initial conditions. y” — 10y’ + 25y = 0 with y; = ¢*,y, = xe>* and
12 y(0)=3,4(0)=13

solution

15 To verify that y; or y, is solution to the ODE, we plug it into the ODE and see if it gives zero, which
16 is what the RHS is. Since y; = 5¢°*,y] = 25¢™, then substituting this into the ODE gives

19 yi' —10y; + 251 = 0
20 2565 ~10 (5¢%) + 25 (%) = 0

21 25¢%* — 50e°* + 25> = 0

22 0=0

23

24 Hence verified. Now we do the same for y,. Since y5 = € + 5xe>%,yy = 5¢°* + 5¢> + 25x¢%, then
25 substituting this into the ODE gives

27
28 vy =105 + 25y, = 0
29 (5 + 5¢%% + 25xe%) = 10 (€% + 5xe™) + 25 (xe%) = 0
5¢>% + 5> + 25xe>* — 10e> — 50xe> + 25xe> = 0

25xe™* — 50xe™ + 25xe°* = 0
0=0

Hence verified. Therefore the general solution is

y(x) = ey (%) + ¢y (%)

39 Where the constants are found from initial conditions. Using the first initial condition gives

49 y 0)=3
43 c1y1 (0) + ¢y, (0) =3

f; 1 (e5x)x:0 +cy (xe5x)x:0 =3

46 C1 = 3

49
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Hence the solution becomes
y (x) = 3y; (x) + c2y2 (%)
Y =3y +
=3 (5e5" ) +cp (65" + 5xe )

Applying the second boundary conditions gives

Yy (0)=13
5 5 5 -
3 (56 x)x=0 + ¢y (e X + bxe x)x:O =13
3(5)+c, =13
Cy = 13-15
=-2

Therefore the particular solution is

y(x) = ey (%) + ¢y (%)
=3y (v) -2y (x)
= 3¢5 — 2y
= e (3-2x)

0.2 Section 5.1 problem 19

2
problem Show that y; = 1,1, = v/x are solutions to yy”’ + (y’) = 0 but that their sum y = y; +y; is not
a solution

solution To show that y; and y, are solution to the ODE, we plug them into the ODE and see if the
result is the same as the RHS. Since y; =1 then y] = 0,y{ = 0. Then ODE becomes

2
vy +(vi) =0
10)+0=0
0=0

’7

. 1 11
Hence verified. For y,, we have y; = —,y;' = - —. Hence the ODE becomes
2x2 x2
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Hence verified. Now we plugin the sum into the ODE.

’” N2
(yl + 3/2) (3/1 +yz> + ((% + yz) ) =0
(1 +v2) (v +v3) + (1 + y§)2 =0
(1 +yag) + (v + o) + () + (va)” + 20405 = 0

2 2
iy vy + vayt + oy + (1) + (vh) + 24 =0

’

2 2
But we found that v,y + (]/1) =0 and yy5 + (yé) = 0 from earlier. Using these into the LHS of the
above simplifies it to

v1ys Y2yt + 25 =0

But y3 = Il%,yﬁ’ =0,y] =0,y; =1, then the above becomes
xf

We see that the LHS is not zero. Hence y; + v, is not a solution to the ODE.

0.3 Section 5.1 problem 24

problem Determine whether the pairs of functions are linearly independent or not on the real line.
fx) = sin? x,8(x) =1-cos2x

solution The two functions are L.I. if c;f (x) + c;¢(x) = 0 for each x, only when ¢; = ¢, = 0. Or stated
differently, two functions are L.D. if there exist ¢;,c; not all zero, such that ¢ f (x) + ¢;¢ (x) = 0 for
each x. To show this, we set up the Wronskian W and see if it is zero or not. If W = 0 then this mean
that the functions are L.D.
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_|f® s@]_
f () &)
sin? x 1 - cos2x

2sinxcosx  2sin2x
= 2sin® xsin 2x — (1 - cos2x) (2sinxcosx)

= 2sin® x sin 2x — 28in x oS x + 2 cos 2x Sin x cos x

The RHS of the above simplifies to 0.

W=20

Therefore, the functions are linearly dependent.

0.4 Section 5.1 problem 26

problem Determine whether the pairs of functions are linearly independent or not on the real line.

f(x) =2cosx+3sinx,g(x) =3cosx —2sinx

solution To show this, we set up the Wronskian W and see if it is zero or not. If W = 0 then this
mean that the functions are L.D.

fx gk
f () g

2cosx +3sinx 3cosx-—2sinx

—-2sinx+3cosx -3sinx-—2cosx

(2cosx +3sinx) (-3sinx —2cosx) — (3cosx —2sinx) (-2sinx + 3 cos x)

13 cos? x — 13sin’ x

-13 (C082 x + sin? x)
=-13

Since W # 0 then the functions are Linearly independent.

0.5 Section 5.1 problem 27

problem Ley y, be a particular solution of the nonhomogeneous equation y” + py’ + qy = f (x) and
let y, be the homogenous solution. Show that y =y, + y, is a solution of the given ODE.

solution since y; satisfies the homogenous ODE then we can write

v tpy,+ay, =0 1)
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6
And since y, satisfies the nonhomogeneous ODE then we can write
Yo +pYp+ayp = f () (2)

Adding (1)+(2) gives

(v +y)+p(wp+vp)+ay,+wn) = f ()

But due to linearity of differentiation, then the above can be written as

(v + yh)” +p(yp+ yp)’ +4(vp + 1) = f )

Let Y =y, + y;, then

Y +pY +qY = f(x)

Therefore we showed that Y =y, + yj, satisfies the original ODE, hence it is a solution. QED

0.6 Section 5.1 problem 31

2 are L.I. functions, but their Wronskian vanishes are

problem Show that y; = sinx? and y = cosx
x = 0. Why does this implies that there is no differential equation of the form vy’ +p(x)y’ +q(x)y =0

with both p, g continuous everywhere, having both y;,1, are solutions?

solution

1 Yo

Y2 Y2

sin x2 cos x2
(2x) cosx?>  —(2x)sin x?
= —2xsin x2 sin x% — 2x cos? cos x2

. 2\? 2\?

= -2x ((smx ) + (cosx )
= -2x

The Wronskian is zero at x = 0 but not zero at other points. It is only when W = 0 everywhere, we say
that y;,y, are L.D. We can have L.I. functions, but also have W (xy) = 0 at some x, as in this problem.
What this mean, is that x = 0 can not be in the domain of the solution for y;, 1, to be solutions to the
ODE. Hence, since the domain of the solution is everywhere, this means x = 0 is part of the domain,
then we conclude that y;,, can not be both solutions, since they are L.I. at x = 0.
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0.7 Section 5.1 problem 32

problem Let y4, y, be two solutions of A (x)y” +B (x)y’'+C (x)y = 0 on open interval ] where A, B, C are

continuous and A (x) is never zero. (a) Let W = W(yl,yz). Show that A (x) %v =1 (Ayé’) -1 (Ay’l’)
then substitute for Ayy and Ay; from the original ODE to show that A (x) %\/ = -B(x) W(x) (b)
Solve this first order ODE equation to deduce Abel’s formula W (x) = kexp (— f %dx) where k is

constant. (c) Why does Abel’s formula imply that the Wronskian W(yl,yz) is either zero everywhere
or non-zero everywhere (as stated in theorem 3)?

solution

0.7.1 Part (a)

By definition

W (x) = y1y3 — You1

Hence
dW i 1’ ! ) 1’
Tx 2tz — VoY Yl
= Y2 — vyt
Therefore
AW
A(x) T A(x) (]/l]/é, - ]/2]/5/)
=y (AW YE) - v (A@ YY) (1)
But from original ODE, A (x)y{ + B(x)y; + C (x)y; = 0, therefore
AWy! =By -C@y (2)
And also from original ODE, A (x)yy + B(x)y; + C (x) y, = 0, therefore
Ay =-B@y, -Cx)y2 (3)

Substituting (2,3) into (1) gives

AT =1 (B~ C ) 12 (B@ i ~CWn)
=-B@)y1y5 - C()y1y2 + B() y2y1 + C () Y211
=-B(0)y1y2 + B(¥) yo1
= -B () (v1y4 - y2v1)
=-B(x) W(x) (4)
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QED.

0.7.2 Part (b)
Solving (4).

A(x)%v+B(x)W(x)=0

dW  B(x)
T Aw

Wi(x)=0

B(x)
. . —odx
Integrating factor is y = ¢’ 4® ™, hence the above becomes

d
- (uW (@) =0
Integrating gives
uW(x) =k

B(x)

W (x) = ke ) A0™

0.7.3 Part (c)

Since an exponential function is never zero (for bounded %), then W (x) = ke®) can only be zero if
k = 0. This makes W = 0 everywhere when k = 0. But if k # 0, then W # 0 everywhere. So W can only
be zero everywhere, or not zero everywhere.

0.8 Section 5.1 problem 34

problem Apply theorem 5 and 6 to find general solutions of the differential equation y”’ +2y’-15y = 0

solution The characteristic equation is 7 + 2r —15 = 0, and the roots are
r = 3
Yy = -5

Therefore the solution is

Y (X) = c1e"* + cpe2*

= 16 + e

0.9 Section 5.1 problem 42
problem Apply theorem 5 and 6 to find general solutions of the differential equation 35y” -y’ -12y =0



6 solution The characteristic equation is 357> —r —12 = 0, and the roots are
o 3
=z
'75

4
Ty = —=
10 27y

11 Therefore the solution is

12

13

14 Y (X) = c1e"* + cpe'?*
i)) = clegx + cze_%x
17

18 0.10 Section 5.1 problem 48

19
20
21 with constant coefficients. Find such an equation y (x) = e* (cle"\/i + cze*x\/i)

ji solution We compare the above solution to the general form of the solution given by

problem Problem gives a general solution y (x) of a homogeneous second order ODE ay” +by’+cy =0

Y = 1" 4 cpe2*

o 100) o VD)

97 + e

99 We see that

30 n=1+vV2

0 n=1-v2

32

33 This implies that the characteristic equation is

34

35

36 (r=r)(r-r)=0
. (= (V2 (- (1-+2)) =0
39 ”2-2r-1=0
40 Therefore the ODE is

41

42

43 y' -2y -y=0

44
45
46
47
48
49
50

Where a =1,b = -2,c = -1.
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