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1 HW 1

1.1 Section 1.3 problem 12

Determine whether existence of at least one solution of given initial value problem is
guaranteed and is so, whether solution is unique.

𝑑𝑦
𝑑𝑥

= 𝑥 ln 𝑦; 𝑦 (1) = 1

Solution

𝑓 �𝑥, 𝑦� = 𝑥 ln 𝑦

Sine 𝑓 �𝑥, 𝑦� is continuous in 𝑥 for all 𝑥 and continuous in 𝑦 for 𝑦 > 0 and since initial
condition is at point (1, 1), then a solution exist in some interval that contains (1, 1).

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
𝑥
𝑦

Since
𝜕𝑓�𝑥,𝑦�

𝜕𝑦 is continuous in 𝑥 for all 𝑥 and continuous in 𝑦 for 𝑦 ≠ 0 and since initial
condition is at point (1, 1), then the solution is unique in some interval that contains (1, 1).
The following the the slope field for 𝑓 �𝑥, 𝑦� = 𝑥 ln 𝑦 showing small interval that contains
(1, 1)

(1,1)
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Direction fields are continuous in some interval (red box)
around initial conditions point at (1,1). Therefore

Solution exist an is unique

Figure 1: Problem 1.3, 11

1.2 Section 1.3 problem 17

Determine whether existence of at least one solution of given initial value problem is
guaranteed and is so, whether solution is unique.

𝑑𝑦
𝑑𝑥

= 𝑥 − 1; 𝑦 (0) = 1

Solution

𝑓 �𝑥, 𝑦� = 𝑥 − 1

𝑓 �𝑥, 𝑦� is continuous for all 𝑥 (there is no 𝑦 dependency to check), then a solution exist in
some interval that contains (0, 1).

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 0
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No dependency on 𝑥 or 𝑦 to check. Hence solution is unique in some interval that contains

(0, 1). The following the the slope field for 𝑓 �𝑥, 𝑦� = 𝑥−1 showing small interval that contains
(0, 1)

(0,1)
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Direction fields are continuous in some interval (red box)
around initial conditions point at (0,1). Therefore

Solution exist an is unique

Figure 2: Problem 1.3, 17

1.3 Section 1.3 problem 18

Determine whether existence of at least one solution of given initial value problem is
guaranteed and is so, whether solution is unique.

𝑦
𝑑𝑦
𝑑𝑥

= 𝑥 − 1; 𝑦 (1) = 0

Solution

𝑓 �𝑥, 𝑦� =
𝑥 − 1
𝑦

𝑓 �𝑥, 𝑦� is continuous for all 𝑥, and continuous for all 𝑦 except at 𝑦 = 0. But since the

initial point itself is at �𝑥 = 1, 𝑦 = 0�, therefore, the theory can not decide on existence or
uniqueness of solution in an intervals containing (1, 0).

1.4 Section 1.3 problem 22

Use the method of example 2 (page 20) to construct slope field then sketch solution curve
corresponding to the given initial condition. Finally use this solution curve to estimate the
desired value of the solution 𝑦(𝑥).

𝑑𝑦
𝑑𝑥

= 𝑦 − 𝑥

𝑦 (4) = 1
𝑦 (−4) = ?

Solution

𝑓 �𝑥, 𝑦� = 𝑦 − 𝑥
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By making slope field for 𝑓 �𝑥, 𝑦� = 𝑦 − 𝑥, then locating initial point (4, 1) and tracing the
slope back to 𝑥 = −4, we can then read the 𝑦 value to be −3. Here is a plot showing trace
of the slope field to the point 𝑥 = −4, where 𝑦 = −3. Hence 𝑦 (−4) ≈ −3.

(4,1)

(-4,-3)

-4 -2 0 2 4
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-2

-1

0
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2

x

y(
x)

Tracing Direction slope from (4,1) to x=-4
shows that y(-4)=-3

Figure 3: Problem 1.3, 22

1.5 Section 1.3 problem 26

Suppose the deer population 𝑃 (𝑡) in small forest satisfies logistic equation 𝑑𝑝
𝑑𝑡 = 0.0225𝑝 −

0.0003𝑝2. Construct a slope field and appropriate solution curve to answer the following
questions: If there are 25 deer at time 𝑡 = 0 and 𝑡 is measured in months, how long will it
take for the number of deer to double? What will be the limiting deer population?

Solution

The slope field was first drawn. Then the point (0, 25) was located. Then the slope field
was traced until 𝑦 = 50, which is double the number of deer from the initial starting time.
Now the 𝑡 component was read from the slope field to answer the first part of the question.

𝑓 �𝑡, 𝑝� = 0.0225𝑝 − 0.0003𝑝2

Here is a plot showing trace of the slope field. This shows at about 𝑡 = 60 months, the deer
population will be 50.
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Tracing Direction slope from (0,25) to p=50
then finding time at this point. t=60 months

Figure 4: Problem 1.3, 26



5

1.6 Section 1.3 problem 28

Verify that if 𝑘 is constant, then the function 𝑦 (𝑥) = 𝑘𝑥 satisfies the di�erential equation
𝑥𝑦′ = 𝑦 for all 𝑥. Construct a slope field and several of the these straight line solution
curves. Then determine (in terms of 𝑎 and 𝑏) how many di�erent solutions the initial value
problem 𝑥𝑦′ = 𝑦; 𝑦 (𝑎) = 𝑏 has. One, none or infinitely many.

Solution

To verify that 𝑦 (𝑥) = 𝑘𝑥 satisfies the di�erential equation, we plug-in this solution into
the ODE and check that we get the same RHS as given. We see that 𝑦′ (𝑥) = 𝑘. Therefore
𝑥𝑦′ = 𝑦 becomes 𝑥 (𝑘) = 𝑦 = 𝑘𝑥. Hence satisfied.

𝑓 �𝑥, 𝑦� =
𝑦
𝑥

This is continuous for all 𝑥 except at 𝑥 = 0 and continuous for all 𝑦. Therefore solution

exist in interval which do not contain 𝑥 = 0. In addition
𝜕𝑓�𝑥,𝑦�

𝜕𝑦 = 1
𝑥 which is continuous for

all 𝑥 except at 𝑥 = 0. Hence there is a solution and the solution is unique in an interval
that do not contain 𝑥 = 0. Here is a plot of the slope field in region around the origin.
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Figure 5: Problem 1.3, 28

We see from the above, that if we start from 𝑥 = 0, 𝑦 = 0, then there are ∞ number of
solutions, since there are ∞ number of slope lines starting or ending at (0, 0). For any point
(𝑎, 𝑏) where 𝑎 ≠ 0, there is unique solution, since we can find interval around (𝑎, 𝑏) in this
case with unique slope line. Finally, if 𝑎 = 0 but 𝑏 ≠ 0, which means the initial condition is
at the 𝑦 axis, then there is no solution, since the slop is ∞ in this case. Hence

1. Infinite number of solution if 𝑎 = 0 and 𝑏 = 0

2. No solution if 𝑎 = 0, 𝑏 ≠ 0

3. Unique solution if 𝑎 ≠ 0 and 𝑏 ≠ 0.

1.7 Section 1.3 problem 30

Verify that if 𝑐 is constant, then the function defined piecewise by

𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 𝑥 ≤ 𝑐
cos (𝑥 − 𝑐) 𝑐 < 𝑥 < 𝑐 + 𝜋

−1 𝑥 ≥ 𝑐 + 𝜋

Satisfies 𝑦′ = −�1 − 𝑦2 for all 𝑥. (Perhaps an preliminary sketch with 𝑐 = 0 will be helpful).
Sketch a variety of such solution curves. Then determine (in terms of 𝑎 and 𝑏 how many
di�erent solutions the initial value problem 𝑦′ = −�1 − 𝑦2; 𝑦 (𝑎) = 𝑏 has.

Solution

The solution 𝑦 (𝑥) is plotted for 𝑐 = 0, −1, +1. The following show the result. The e�ect of 𝑐
is that it causes a shift to the left or right depending on value of 𝑐.
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Figure 6: Problem 1.3, 30

Since

𝑓 �𝑥, 𝑦� = −�1 − 𝑦
2

Then the above is real, when �𝑦� < 1 otherwise the value under the root will be become
negative. To show that 𝑦 (𝑥) satisfies the ODE, we plug-in each branch of the piecewise,
one at a time, into the ODE and see if it satisfies it. When 𝑥 ≤ 𝑐, then 𝑦 (𝑥) = 1. Plugging
this into the ODE gives 0 = 0. Verified. When 𝑐 < 𝑥 < 𝑐+𝜋, then 𝑦 (𝑥) = cos (𝑥 − 𝑐). Plugging
this into the ODE gives

− sin (𝑥 − 𝑐) = −�1 − (cos (𝑥 − 𝑐))2

= −�sin (𝑥 − 𝑐)2

= − sin (𝑥 − 𝑐)
Hence satisfied. When 𝑥 ≥ 𝑐 + 𝜋 then 𝑦 (𝑥) = −1 and plugging this into the ODE gives

0 = −�1 − (−1)
2

= −√1 − 1
= 0

Hence solution 𝑦 (𝑥) satisfies the ODE. The slope field is now plotted
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Slope field plot for |y|<1

Figure 7: Problem 1.3, 30

We see from the slope plot, that starting at any point in a region, as long as �𝑦� < 0 , then
the solution is unique. When 𝑦 = 1 or 𝑦 = −1, then 𝑦′ = 0, and this gives infinite number of
solutions since 𝑦 = 𝑐 for any constant is a solution. For real solution, 𝑦 can not be larger
than 1. Hence in summary

1. Infinite number of solutions if 𝑏 = ±1

2. Unique solution for any (𝑎, 𝑏) where |𝑏| < 1

3. No real solution for |𝑏| > 1
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1.8 Section 1.4 problem 6

Final general solution of 𝑑𝑦
𝑑𝑥 = 3√𝑥𝑦

Solution

This is separable.
𝑑𝑦

√𝑦
= 3√𝑥𝑑𝑥

𝑦
−1
2 𝑑𝑦 = 3𝑥

1
2𝑑𝑥

Integrating

𝑦
1
2

1
2

= 3
𝑥
3
2

3
2

+ 𝑐

2𝑦
1
2 = 2𝑥

3
2 + 𝑐

𝑦
1
2 = 𝑥

3
2 + 𝑐1

𝑦 = �𝑥
3
2 + 𝑐1�

2

1.9 Section 1.4 problem 10

Final general solution of (1 + 𝑥)2 𝑑𝑦
𝑑𝑥 = �1 + 𝑦�

2

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

𝑓 �𝑥, 𝑦� =
�1 + 𝑦�

2

(1 + 𝑥)2

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 but not continuous for 𝑥 = −1. Therefore solution exist as
long as solution interval or initial conditions do not include 𝑥 = −1.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
2 �1 + 𝑦�

(1 + 𝑥)2

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 but not continuous for 𝑥 = −1. Therefore solution exist and
is unique as long as solution interval or initial conditions do not include 𝑥 = −1. The slope
field is given below

-2 -1 1 2
x

-2

-1

1

2

y(x)
Slope field

Figure 8: Problem 1.4, 10

Now the ODE is solved. This is separable.
𝑑𝑦

�1 + 𝑦�
2 =

𝑑𝑥
(1 + 𝑥)2
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Integrating

�
𝑑𝑦

�1 + 𝑦�
2 = �

𝑑𝑥
(1 + 𝑥)2

Let 𝑢 = 1 + 𝑦 then 𝑑𝑢
𝑑𝑦 = 1. Hence ∫ 𝑑𝑦

�1+𝑦�
2 → ∫ 𝑑𝑢

𝑢2 = − 1
𝑢 → −1

1+𝑦 . Similarly, ∫ 𝑑𝑥
(1+𝑥)2

= −1
1+𝑥 .

Therefore the above becomes
−1
1 + 𝑦

=
−1
1 + 𝑥

+ 𝑐

1
1 + 𝑦

=
1

1 + 𝑥
+ 𝑐1

1
1 + 𝑦

=
1 + 𝑐1 (1 + 𝑥)

1 + 𝑥

1 + 𝑦 =
1 + 𝑥

1 + 𝑐1 (1 + 𝑥)
Hence

𝑦 = 1+𝑥
1+𝑐1(1+𝑥)

− 1

For 𝑥 ≠ −1.

1.10 Section 1.4 problem 22

Find explicit particular solution of 𝑑𝑦
𝑑𝑥 = 4𝑥

3𝑦 − 𝑦; 𝑦 (1) = −3

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

𝑓 �𝑥, 𝑦� = 4𝑥3𝑦 − 𝑦

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 and continuous for all 𝑥.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 4𝑥3 − 1

𝜕𝑓�𝑥,𝑦�

𝜕𝑦 is continuous for all 𝑥. It does not depend on 𝑦. Hence solution is exist and is unique
in some interval that contain initial point (1, −3). Now the ODE is solved.

𝑑𝑦
𝑑𝑥

= 𝑦 �4𝑥3 − 1�

This is now separable
𝑑𝑦
𝑦
= �4𝑥3 − 1� 𝑑𝑥

Integrating

ln �𝑦� = 4𝑥
4

4
− 𝑥 + 𝑐

ln �𝑦� = 𝑥4 − 𝑥 + 𝑐
𝑦 = 𝑒𝑥4−𝑥+𝑐

Let 𝑒𝑐 = 𝑐1, then the above can be written as

𝑦 = 𝑐1𝑒𝑥
4−𝑥

Now the constant of integration is found from initial conditions. 𝑦 (1) = −3, therefore

−3 = 𝑐1𝑒1−1 = 𝑐1
Hence the solution becomes

𝑦 (𝑥) = −3𝑒𝑥4−𝑥

Here is a plot of the solution in small interval around 𝑥 = 1
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Figure 9: Problem 1.4, 22

1.11 Section 1.4 problem 26

Find explicit particular solution of 𝑑𝑦
𝑑𝑥 = 2𝑥𝑦

2 + 3𝑥2𝑦2; 𝑦 (1) = −1

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

𝑓 �𝑥, 𝑦� = 2𝑥𝑦2 + 3𝑥2𝑦2

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 and continuous for all 𝑥.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 4𝑥𝑦 + 6𝑥2𝑦

𝜕𝑓�𝑥,𝑦�

𝜕𝑦 is continuous for all 𝑥 and for all 𝑦. Hence a solution is exist and is unique in some
interval that contain initial point (1, −1). Now the ODE is solved.

𝑑𝑦
𝑑𝑥

= 𝑦2 �2𝑥 + 3𝑥2�

This is separable.
𝑑𝑦
𝑦2

= 2𝑥 + 3𝑥2𝑑𝑥

Integrating

−
1
𝑦
= 𝑥2 + 𝑥3 + 𝑐

1
𝑦
= − �𝑥2 + 𝑥3 + 𝑐�

𝑦 =
−1

𝑥2 + 𝑥3 + 𝑐
Applying initial conditions to find 𝑐 gives

−1 =
−1

1 + 1 + 𝑐
−2 − 𝑐 = −1

𝑐 = −1

Hence solution is

𝑦 =
−1

𝑥2 + 𝑥3 − 1

=
1

1 − 𝑥2 − 𝑥3
Here is a plot of the solution in small interval around 𝑥 = 1
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Plot of solution problem 1.4 (26) near initial conditions

Figure 10: Problem 1.4, 26

We notice that at the real root of 1 − 𝑥2 − 𝑥3, the solution 𝑦 (𝑥) goes to ±∞. This happens at
𝑥 ≈ 0.75487.

1.12 Section 1.4 problem 30

Solve �𝑑𝑦𝑑𝑥�
2
= 4𝑦 to verify the general solution curves and singular solution curve that are

illustrated in fig 1.4.5. Then determine the points (𝑎, 𝑏) in the plane for which the initial

value problem �𝑦′�
2
= 4𝑦; 𝑦 (𝑎) = 𝑏 has (a) No solution, (b) infinitely many solutions that are

defined for all 𝑥, (c) on some neighborhood of the point 𝑥 = 𝑎, only finitely many solutions.

Solution

Figure 1.4.5 is below

𝑓 �𝑥, 𝑦� = ±2√𝑦

Hence 𝑓 �𝑥, 𝑦� is continuous in 𝑦 for 𝑦 > 0. Hence solutions exist for 𝑦 > 0.
𝜕𝑓�𝑥,𝑦�

𝜕𝑦 = ±2 1

√𝑦
and

this is also continuous in 𝑦 for 𝑦 > 0. Therefore, unique solution exist for 𝑦 > 0. (Interval
can be found around initial conditions (𝑎, 𝑏) as long as 𝑏 > 0). Here is slope field plot
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Slope field

Figure 11: Problem 1.4, 30

𝑑𝑦
𝑑𝑥

= ±2√𝑦

For the negative case, we obtain

𝑦
−1
2 𝑑𝑦 = −2𝑑𝑥

2𝑦
1
2 = −2𝑥 + 𝑐

𝑦
1
2 = −𝑥 + 𝑐1
𝑦 = (𝑐1 − 𝑥)

2

For the positive case

𝑦
−1
2 𝑑𝑦 = 2𝑑𝑥

2𝑦
1
2 = 2𝑥 + 𝑐

𝑦
1
2 = 𝑥 + 𝑐1
𝑦 = (𝑐1 + 𝑥)

2

Hence the solutions are

𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(𝑐1 − 𝑥)
2

(𝑐1 + 𝑥)
2

0 singular solution

The solution 𝑦 (𝑥) = 0 is singular, since it can not be obtained from the general solution
(𝑐1 − 𝑥)

2 for arbitrary 𝑐. Summary:

1. No solution for 𝑦 < 0

2. singular solution for 𝑦 = 0

3. Two general solutions (𝑐1 − 𝑥)
2 and (𝑐1 + 𝑥)

2 for all 𝑥 and 𝑦 > 0.

The following is plot of 𝑦 (𝑥) = (𝑐1 − 𝑥)
2 for few values of 𝑐1 to show the shape of the solution

curves. This agrees with the figure given in the book.
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Figure 12: Problem 1.4, 30

1.13 Section 1.4 problem 42

A certain moon rock was found to contain equal number of potassium and argon atoms.
Assume that all the argon is the result of radioactive decay of potassium (its half like is
about 1.28 × 109 years) and that one of every nine potassium atom disintegrations yields
an argon atom. What is the age of the rock, measured from the time it contained only
potassium?

Solution

Half life is the time for a quantity to reduce to half its original number. Let 𝑇 = 1.28 × 109
years in this example. Let 𝑃 (0) be the number of potassium atoms at time 𝑡 = 0. Hence
the formula for half life decay is

𝑃 (𝑡) = 𝑃 (0) �
1
2�

𝑡
𝑇

Where in the above 𝑃 (𝑡) is number of potassium atoms that remain after time 𝑡. Let 𝑔 (𝑡)
be the number of argon atoms at time 𝑡. Since 1

9 of the decayed potassium atoms changed
to argon, then

𝑔 (𝑡) =
1
9
(𝑃 (0) − 𝑃 (𝑡))

=
1
9

⎛
⎜⎜⎜⎜⎜⎜⎝𝑃 (0) − 𝑃 (0) �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
9
𝑃 (0)

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠
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Since we want to find 𝑡 when 𝑔 (𝑡) = 𝑃 (𝑡), then we solve from

𝑔 (𝑡) = 𝑃 (𝑡)

1
9
𝑃 (0)

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠ = 𝑃 (0) �

1
2�

𝑡
𝑇

1
9

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠ = �

1
2�

𝑡
𝑇

1 − �
1
2�

𝑡
𝑇
= 9 �

1
2�

𝑡
𝑇

1 = 9 �
1
2�

𝑡
𝑇
+ �

1
2�

𝑡
𝑇

1 = 10 �
1
2�

𝑡
𝑇

1
10
= �

1
2�

𝑡
𝑇

Taking log

log �
1
10�

=
𝑡
𝑇

log �
1
2�

𝑡 = 𝑇
log � 1

10
�

log �12�

= 1.28 × 109 �
−2.3
−0.693�

= 4.248 2 × 109

Hence it will take 4.2482 billion years.

1.14 Section 1.4 problem 46

The barometric pressure 𝑝 (in inches of mercury) at an altitude 𝑥 miles above sea level
satisfies the initial value problem 𝑑𝑝

𝑑𝑥 = (−0.2) 𝑝; 𝑝 (0) = 29.92. (a) Calculate the barometric
pressure at 10, 000 ft. and again at 30, 000 ft. (b) Without prior conditioning, few people
can survive when the pressure drops to less than 15 in. Of mercury. How high is that?

Solution

1.14.1 Part (a)

𝑑𝑝
𝑑𝑥

= (−0.2) 𝑝

This is separable.
𝑑𝑝
𝑝
= −0.2𝑑𝑥

ln �𝑝� = −0.2𝑥 + 𝑐
𝑝 = 𝑐𝑒−0.2𝑥

To find 𝑐, we apply initial conditions. At 𝑥 = 0, 𝑝 = 29.92 in, hence

29.92 = 𝑐

Therefore the general solution is

𝑝 = 29.92𝑒−0.2𝑥
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Now, when 𝑥 = 10000 ft or 10000/5280 = 1.894 miles, then

𝑝 = 29.92𝑒−0.2(1.894)

= 20.486 in

when 𝑥 = 30000 ft or 30000/5280 = 5.6818 miles, then

𝑝 = 29.92𝑒−0.2(5.6818)

= 9.6039 in

1.14.2 Part (b)

We solve for 𝑥 from

15 = 29.92𝑒−0.2𝑥

15
29.92

= 𝑒−0.2𝑥

Taking natural log

ln 15
29.92

= −0.2𝑥

−0.69047 = −0.2𝑥

Hence

𝑥 =
0.69047
0.2

= 3.4524 miles

= (3.4524) (5280) = 18229 ft
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