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Note added Feb 10, 2017

Nasser M. Abbasi

December 30, 2019

This note solves
" )+ 1 +x)y (x)+y(x)=0
y(0)=1
y1)=1

Where ¢ is small parameter, using boundary layer theory.

0.0.1 Solution

Since (1 + x) > 0 in the domain, we expect boundary layer to be on the left. Let y,,; (x) be
the solution in the outer region. Starting with y (x) = Z:;O ey, and substituting back into
the ODE gives

e(y(’)’ +eyy + ) +(1+x) (yE) +ey) + ) + (yo +eyp + ) =0
O(@1) terms

Collecting all terms with zero powers of ¢
I+x)yy+yo=0

The above is solved using the right side conditions, since this is where the outer region is
located. Solving the above using v, (1) =1 gives

2

v ) =

Now we need to find y;, (x). To do this, we convert the ODE using transformation & =
do_ dvde _ dy1 1d ’

Hence - = it Hence the operator % = Tu This means the operator — =
1d\(1d 1 a2
(EE) (ZE) = 2z The ODE becomes
1d%y (&) 1dy(&)
E; déz +(1+56)2?+y(5)20

1"+ 1+5 "+1y =0
gy B yty=
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6 Plugging y (£) = X", €"y (£)  into the above gives

~J

8 %(y({ + eyl + ) + (% +£) (y(’) + ey + ) + (yo + ey + ) =0

1(1) %(yé’ + ey + ) + % (o+evi+—)+&EWo+evi+)+(o+ey+-)=0

12 Collecting all terms with smallest power of ¢ , which is ¢! in this case, gives
ﬁ S5+ 295 =0
) e?? " el
b v + 5 =0
16
17 Let z =y, the above becomes

18 Z+z=0
19 (

< =
90 d(e z) 0
21 ecz=c
22 z=ce*

2 Hence v (&) = ce*. Integrating

25 Yo () = —ce + ¢ (1A)
26 Since c is arbitrary constant, the negative sign can be removed, giving

28 Yo (&) =cet+¢ (1A)
29 This is the lowest order solution for the inner 3 (£). We have two boundary conditions, but

30 we can only use the left side one, where y;, (£) lives. Hence using y, (£ = 0) = 1, the above
31 becomes

l=c+
34 c=1-c
35 The solution (1A) becomes
i Yo () = et + (1 - 0)
38 :1+c(e‘5—1)
39 Let ¢ = Ay to match the book notation.

" 1o (&) =1+ Ag (e ~1)
49 To find Ay, we match y' (£) with y3* (x)

lim1+Ag(es-1)= 1l
14 lim 1+ Ao (e ~1) = lim -

1-Ap=2
Ay=-1

48 Hence

yor () =2-e*

‘51 O (¢) terms
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We now repeat the process to find 4" (£) and 1§ (x) . Starting with y°** (x)

e(yé’ + ey + ) +(1+x) (y(’) + ey + ) + (yO +eyp + ) =0
Collecting all terms with ¢! now
eyp +(L+x)ey; +eyr =0
yo+1+x)y;+y; =0

But we know y, = %, from above. Hence y; = & € and the above becomes
+X
IT+x)y]+ !
x = -
Yith (1 4 x)g
’ N 4

+ = -
N1 T Ta

Integrating factor yu = o T — gn1+9) — 1 4 x and the above becomes
d 4
ax (Hl/l) =—u 1+ x)4
4
;_x ((1 i x)yl) B _(1 +x)°
Integrating
1+x)1 :—fﬁdx+c
2
T
Hence
2 c

yl(x): (1+x)3 +1+X

Applying y (1) = 0 (notice the boundary condition now becomes y (1) = 0 and not y(1) =1,
since we have already used y (1) = 1 to find leading order). From now on, all boundary
conditions will be y (1) = 0.

0= 2 N c
1+1)° 1+1
1
€=
Hence
2 1 1

yl(x):(1+x)3_5(1+x)
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Now we need to find v (&). To do this, starting from

1 1
: (]/6/ + eyl + ) + (E +§) (y6 +eyp + ) + (yo +eyp + ) =0

1 74 77 1 / / / 4
z (3/0 tey + ) 2 (yo teyt ) + 5(% ten ) + (yo teyL+ ) =0
But now collecting all terms with O (1) order, (last time, we collected terms with O (6_1) ).
ity +EY+yo=0
Y+ Y1 =&~ Yo 1)
But we found y/' earlier which was
Y8 (&) =1+ Ag (et -1)
Hence y} = —Age ¢ and the ODE (1) becomes
vy + s = EAe = (14 Ag (e -1))

We need to solve this with boundary conditions v, (0) = 0. (again, notice change in B.C. as
was mentioned above). The solution is

1
1 (&) ==&+ A (5 - 5526‘5) + A (1 - 3‘5)

=&+ A (g - %ée—é) — Ay (et -1)

Since A; is arbitrary constant, and to match the book, we can call A, = —A; and then
rename A, back to A; and obtain

1
y1 (&) ==&+ A (5 - 5526_5) + A (e“E - 1)

This is to be able to follow the book. Therefore, this is what we have so far

— 4 out out
Your = Yo + €Y1

2 2 1
TTex S 1 +x)° 21 +x)
And
Y™ (&) = yg' + ey’
=(1+Ag(et-1))+¢ (—5 + A (g - %gze-é) + Ay (e - 1))

A 1
= 1403_é —&e— EAl - AO + 51416_é + EEAO - EEZEA()E_& +1
To find Ay, A1, we match y;, with y,,;, therefore

lim y;, = limy,,;
E—o0 x—0
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Or

-0

c 1
lim (Aoe“? —&fe—eA] - Ay +eAet +EeAy - chzsAOe“E + 1) =

. 2 2 1

lim +¢ 3~

x—01+x 1+x) 2(1+x)
Which simplifies to

2 2 1
—Ee—eA1 - A Ap+1=1li -
ce—ed o+ eedot xl—I>T(l)1+x+g((1+x)3 2(1+x))

It is easier now to convert the LHS to use x instead of £ so we can compare. Since & = ’—g,
then the above becomes

2 1
—x—-eA1—-Ag+xAy+1 =1 + ¢ -
X eh 0+ 4o x1—>1%1+x é((1.|.x)3 2(1+x))

Using Taylor series on the RHS
1-Ag—x+ Agx + Aje = lim2(1—x+x2+ )
x—0
+25(1—x+x2+ ---)(1—x+x2+ ---)(1—x+x2+ ---)—g(l—x+x2+ )

Since we have terms on the the LHS of only O(1),0 (x), O (¢), then we need to keep at least
terms with O (1), O (x), O (¢) on the RHS and drop terms with O (xz) ,O(ex), 0 (52) to be able
to do the matching. So in the above, RHS simplifies to

—x—eAl—A0+xA0+1=2(1—x)+2£—§
—x—eAl—A0+xA0+1:2—2x+2€—§

—eA1-Ag+x(Ag-1)+1=2-2x+ ge
Comparing, we see that
Ag-1=-2
A = -1
We notice this is the same A, we found for the lowest order. This is how it should always come

out. If we get different value, it means we made mistake. We could also match -Ay +1 =2
which gives Ay = -1 as well. Finally

3
—eAs = =
5128

3
A= —=
1=

So we have used matching to find all the constants for y;,. Here is the final solution so far
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Yo Y1

—_——

; S S N
i() Yout 1+x 1+x)° 20+x)

11 Yo
————
12

e sl e L)

14 1 3
15 =1- (6‘5 - 1) y (—5 - (5 - 5526‘5) -3 (e“S - 1))
16

3 3 1
1; =56 et —28e — Ese“E + chzse“S +2
19 In terms of x, since Since & = f the above becomes

20 ( ) x ) 3 x+1x2 x+2
¢ X —8—6 e —2x——¢e ¢ ——€ ¢
21 Yin 5 2

- 3 _x(1x* 3
23 :2—2X+§€+e é‘(i?—ig—l)
24

25
26 Yuniform = Yin + Yout — Ymatch
7 Where

!

Hence

29 Ymatch = §h—>Holo Yin

3
‘ =2-2x+ —¢
31 >
33 Hence

Yuniform =2=2X+ 5 e+e e(

36 .
37 (_ )
2

' 2 x
39 _ ( e
40

S + 2 + 2 ! 2-2 +3
i S I3 - —[2-2x+ =¢
2 ¢ 1+x 1+x)° 2(0+x) 2

( 5 mi)
ix 1+x° 20+7)

1xs _x 2 1 3 _x

R — { + — —f ¢
1+x 2 (1+x) 2(1+x) 2
41 Which is the same as

42 2
‘ I G lx_e—é)Jr( 2 1 _§—§)

A = —e +
45 Yuniforn =\ T T T 0 \a+x® 20+0 2°

2 2 1 3 1, .
o = - 6_5) + E( 3~ ——e ¢+ —526“7)
46 T+x 1+x)0° 20+x) 2

47 2 B 2 1 3\
48 - 1+x—e‘5)+s((l+x) 2(1+x) (62__) é) W

Comparing (1) above, with book result in first line of 9.3.16, page 433, we see the same
result.
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