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0.1 problem 3

2. Consider the 1D heat equation in a semi-infinite domain:

∂u

∂t
= ν

∂2u

∂x2
, x ≥ 0

with boundary conditions: u(0, t) = exp(−iωt) and u(x, t) bounded as x → ∞. In order
to construct a real forcing, we need both positive and negative real values of ω. Consider
that this forcing has been and will be applied for all time. This “pure boundary value
problem” could be an idealization of heating the surface of the earth by the sun (periodic
forcing). One could then ask, how far beneath the surface of the earth do the periodic
fluctuations of the heat propagate?

(a) Consider solutions of the form u(x, t;ω) = exp(ikx) exp(−iωt). Find a single expression
for k as a function of (given) ω real, sgn(ω) and ν real.

Write u(x, t;ω) as a function of (given) ω real, sgn(ω) and ν real. To obtain the most
general solution by superposition, one would next integrate over all values of ω, −∞ <
ω <∞ (do not do this).

(b) The basic solution can be written as u(x, t;ω) = exp(−iωt) exp(−σx) exp(iσ sgn(ω) x).
Find σ in terms of |ω| and ν.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

3. Here we study the competing effects of nonlinearity and diffusion in the context of
Burger’s equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(3a)

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solved
exactly using the Cole-Hopf transformation

u = −2ν
φx
φ

(3b)

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = ψx (where the subscript denotes partial differentiation) and integrate once
with respect to x.

(b) Let ψ = −2ν ln(φ) to get the diffusion equation for φ.

(c) Solve for φ with φ(x, 0) = Φ(x), −∞ < x < ∞. In your integral expression for φ, use
dummy variable η to facilitate the remaining parts below.

(d) Show that

Φ(x) = exp

[

−1

2ν

∫ x

xo

F (α)dα

]

where u(x, 0) = F (x), with xo arbitrary which we will take to be positive for convenience
below (xo > 0).
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(e) Write your expression for φ(x, t) in terms of

f(η, x, t) =

∫ η

xo

F (α)dα+
(x− η)2

2t
.

(f) Find φx(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

∂u

∂t
= ν

∂2u

∂x2
+Q(x, t), 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x),
∂u

∂x
(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimally
small slits separated by a distance 2a.

Solve the diffraction equation

∂u

∂t
=
iλ

4π

∂2u

∂x2
(1)

with initial source u(x, 0) = f(x) = δ(x− a) + δ(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-
behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consists
of a series of alternating bright and dark fringes with period λt/(2a).
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0.1.1 Part (a)

𝜕𝑢
𝜕𝑡

+ 𝑢
𝜕𝑢
𝜕𝑥

= 𝜈
𝜕2𝑢
𝜕𝑥2

(1)

Let

𝑢 = −2𝜈
𝜙𝑥
𝑥

=
𝜕
𝜕𝑥

�−2𝜈 ln𝜙� (1A)

0.1.2 Part(b)

Let

𝜓 = −2𝜈 ln𝜙 (2)

Hence (1A) becomes

𝑢 =
𝜕
𝜕𝑥
𝜓

We now substitute the above back into (1) noting first that

𝜕𝑢
𝜕𝑡

=
𝜕
𝜕𝑡
𝜕𝜓
𝜕𝑥
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Interchanging the order gives

𝜕𝑢
𝜕𝑡

=
𝜕
𝜕𝑥

𝜕𝜓
𝜕𝑡

=
𝜕
𝜕𝑥
𝜓𝑡

And
𝜕𝑢
𝜕𝑥

=
𝜕
𝜕𝑥

𝜕𝜓
𝜕𝑥

= 𝜓𝑥𝑥

And
𝜕2𝑢
𝜕𝑥2

= 𝜓𝑥𝑥𝑥

Hence the original PDE (1) now can be written in term of 𝜓 as the new dependent variable as

𝜕
𝜕𝑥
𝜓𝑡 + 𝜓𝑥 �𝜓𝑥𝑥� = 𝜈𝜓𝑥𝑥𝑥 (3)

But

𝜓𝑥 �𝜓𝑥𝑥� =
1
2
𝜕
𝜕𝑥

�𝜓2
𝑥�

Using the above in (3), then (3) becomes

𝜕
𝜕𝑥
𝜓𝑡 +

1
2
𝜕
𝜕𝑥

�𝜓2
𝑥� = 𝜈𝜓𝑥𝑥𝑥

𝜕
𝜕𝑥
𝜓𝑡 +

1
2
𝜕
𝜕𝑥

�𝜓2
𝑥� − 𝜈

𝜕
𝜕𝑥

�𝜓𝑥𝑥� = 0

𝜕
𝜕𝑥 �

𝜓𝑡 +
1
2
𝜓2
𝑥 − 𝜈𝜓𝑥𝑥� = 0

Therefore

𝜓𝑡 +
1
2
𝜓2
𝑥 − 𝜈𝜓𝑥𝑥 = 0 (4)

But from (2) 𝜓 = −2𝜈 ln𝜙, then using this in (4), we now rewrite (4) in terms of 𝜙

𝜕
𝜕𝑡
�−2𝜈 ln𝜙� + 1

2 �
𝜕
𝜕𝑥

�−2𝜈 ln𝜙��
2

− 𝜈
𝜕2

𝜕𝑥2
�−2𝜈 ln𝜙� = 0

�−2𝜈
𝜙𝑡
𝜙 �

+
1
2 �
−2𝜈

𝜙𝑥
𝜙 �

2

− 𝜈
𝜕
𝜕𝑥 �

−2𝜈
𝜙𝑥
𝜙 �

= 0

−2𝜈
𝜙𝑡
𝜙
+ 2𝜈2 �

𝜙𝑥
𝜙 �

2

+ 2𝜈2
𝜕
𝜕𝑥 �

𝜙𝑥
𝜙 �

= 0

But 𝜕
𝜕𝑥
�𝜙𝑥
𝜙
� = 𝜙𝑥𝑥

𝜙 − 𝜙2𝑥
𝜙2 , hence the above becomes

−2𝜈
𝜙𝑡
𝜙
+ 2𝜈2 �

𝜙𝑥
𝜙 �

2

+ 2𝜈2 �
𝜙𝑥𝑥
𝜙

−
𝜙2
𝑥
𝜙2 � = 0

−2𝜈
𝜙𝑡
𝜙
+ 2𝜈2 �

𝜙𝑥
𝜙 �

2

+ 2𝜈2
𝜙𝑥𝑥
𝜙

− 2𝜈2
𝜙2
𝑥
𝜙2 = 0

−2𝜈
𝜙𝑡
𝜙
+ 2𝜈2

𝜙𝑥𝑥
𝜙

= 0

−
𝜙𝑡
𝜙
+ 𝜈

𝜙𝑥𝑥
𝜙

= 0

Since 𝜙 ≠ 0 identically, then the above simplifies to the heat PDE

𝜙𝑡 = 𝜈𝜙𝑥𝑥 (5)

𝜙 (𝑥, 0) = Φ (𝑥)
−∞ < 𝑥 < ∞

0.1.3 Part (c)

Now we solve (5) for 𝜙 (𝑥, 𝑡) and then convert the solution back to 𝑢 (𝑥, 𝑡) using the Cole-Hopf
transformation. This infinite domain heat PDE has known solution (as 𝜙 (±∞, 𝑡) is bounded which
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is

𝜙 (𝑥, 𝑡) = �
∞

−∞
Φ�𝜂�

1

√4𝜋𝜐𝑡
exp

⎛
⎜⎜⎜⎜⎜⎜⎝
− �𝑥 − 𝜂�

2

4𝜐𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜂 (6)

0.1.4 Part(d)

Now

Φ (𝑥) = 𝜙 (𝑥, 0) (7)

But since 𝑢 (𝑥, 𝑡) = 𝜕
𝜕𝑥
�−2𝜈 ln𝜙�, then integrating

�
𝑥

𝑥0
𝑢 (𝛼, 𝑡) 𝑑𝛼 = −2𝜈 ln𝜙

ln𝜙 = −1
2𝜈 �

𝑥

𝑥0
𝑢 (𝛼, 𝑡) 𝑑𝛼

𝜙 (𝑥, 𝑡) = exp �
−1
2𝜈 �

𝑥

𝑥0
𝑢 (𝛼, 𝑡) 𝑑𝛼�

Hence at 𝑡 = 0 the above becomes

𝜙 (𝑥, 0) = exp �
−1
2𝜈 �

𝑥

𝑥0
𝑢 (𝛼, 0) 𝑑𝛼�

= exp �
−1
2𝜈 �

𝑥

𝑥0
𝐹 (𝛼) 𝑑𝛼�

Where 𝐹 (𝑥) = 𝑢 (𝑥, 0). Hence from the above, comparing it to (6) we see that

Φ (𝑥) = exp �
−1
2𝜈 �

𝑥

𝑥0
𝐹 (𝛼) 𝑑𝛼� (8)

0.1.5 Part(e)

From (6), we found 𝜙 (𝑥, 𝑡) = ∫
∞

−∞
Φ�𝜂� 1

√4𝜋𝜐𝑡
exp

⎛
⎜⎜⎜⎝
−�𝑥−𝜂�

2

4𝜐𝑡

⎞
⎟⎟⎟⎠ 𝑑𝜂. Plugging (8) into this expression gives

𝜙 (𝑥, 𝑡) =
1

√4𝜋𝜐𝑡
�

∞

−∞
exp �

−1
2𝜈 �

𝜂

𝑥0
𝐹 (𝛼) 𝑑𝛼� exp

⎛
⎜⎜⎜⎜⎜⎜⎝
− �𝑥 − 𝜂�

2

4𝜐𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜂

=
1

√4𝜋𝜐𝑡
�

∞

−∞
exp

⎛
⎜⎜⎜⎜⎜⎜⎝
−1
2𝜈 �

𝜂

𝑥0
𝐹 (𝛼) 𝑑𝛼 −

�𝑥 − 𝜂�
2

4𝜐𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜂

=
1

√4𝜋𝜐𝑡
�

∞

−∞
exp

⎛
⎜⎜⎜⎜⎜⎜⎝
−1
2𝜈

⎡
⎢⎢⎢⎢⎢⎢⎣�

𝜂

𝑥0
𝐹 (𝛼) 𝑑𝛼 +

�𝑥 − 𝜂�
2

2𝑡

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜂 (9)

Let

�
𝜂

𝑥0
𝐹 (𝛼) 𝑑𝛼 +

�𝑥 − 𝜂�
2

2𝑡
= 𝑓 �𝜂, 𝑥, 𝑡�

Hence (9) becomes

𝜙 (𝑥, 𝑡) = �
∞

−∞

1

√4𝜋𝜐𝑡
𝑒
−𝑓�𝜂,𝑥,𝑡�

2𝜈 𝑑𝜂 (10)

0.1.6 Part(f)

From (10)

𝜕𝜙
𝜕𝑥

= �
∞

−∞

1

√4𝜋𝜐𝑡
𝜕
𝜕𝑥

⎛
⎜⎜⎜⎝𝑒

−𝑓�𝜂,𝑥,𝑡�
2𝜈

⎞
⎟⎟⎟⎠ 𝑑𝜂

= �
∞

−∞

1

√4𝜋𝜐𝑡

⎛
⎜⎜⎜⎝
𝜕
𝜕𝑥
𝑓 �𝜂, 𝑥, 𝑡� 𝑒

−𝑓�𝜂,𝑥,𝑡�
2𝜈

⎞
⎟⎟⎟⎠ 𝑑𝜂

= �
∞

−∞

1

√4𝜋𝜐𝑡

⎛
⎜⎜⎜⎜⎜⎜⎝
𝜕
𝜕𝑥

⎡
⎢⎢⎢⎢⎢⎢⎣�

𝜂

𝑥0
𝐹 (𝛼) 𝑑𝛼 +

�𝑥 − 𝜂�
2

2𝑡

⎤
⎥⎥⎥⎥⎥⎥⎦ 𝑒

−𝑓�𝜂,𝑥,𝑡�
2𝜈

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜂
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Using Leibniz integral rule the above simplifies to

𝜕𝜙
𝜕𝑥

= �
∞

−∞

1

√4𝜋𝜐𝑡

⎛
⎜⎜⎜⎜⎝
�𝑥 − 𝜂�
𝑡

𝑒
−𝑓�𝜂,𝑥,𝑡�

2𝜈

⎞
⎟⎟⎟⎟⎠ 𝑑𝜂 (11)

But

𝑢 = −2𝜈
𝜙𝑥
𝜙

Hence, using (10) and (11) in the above gives

𝑢 = −2𝜈
∫∞

−∞
1

√4𝜋𝜐𝑡

⎛
⎜⎜⎜⎝
�𝑥−𝜂�

𝑡 𝑒
−𝑓�𝜂,𝑥,𝑡�

2𝜈

⎞
⎟⎟⎟⎠ 𝑑𝜂

∫∞

−∞
1

√4𝜋𝜐𝑡
𝑒
−𝑓�𝜂,𝑥,𝑡�

2𝜈 𝑑𝜂

Hence the solution is

𝑢 (𝑥, 𝑡) = −2𝜈
∫∞

−∞

�𝑥−𝜂�

𝑡 𝑒
−𝑓�𝜂,𝑥,𝑡�

2𝜈 𝑑𝜂

∫∞

−∞
𝑒
−𝑓�𝜂,𝑥,𝑡�

2𝜈 𝑑𝜂

Where

𝑓 �𝜂, 𝑥, 𝑡� = �
𝜂

𝑥0
𝐹 (𝛼) 𝑑𝛼 +

�𝑥 − 𝜂�
2

2𝑡
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0.2 problem 4

(e) Write your expression for φ(x, t) in terms of

f(η, x, t) =

∫ η

xo

F (α)dα+
(x− η)2

2t
.

(f) Find φx(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

∂u

∂t
= ν

∂2u

∂x2
+Q(x, t), 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x),
∂u

∂x
(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimally
small slits separated by a distance 2a.

Solve the diffraction equation

∂u

∂t
=
iλ

4π

∂2u

∂x2
(1)

with initial source u(x, 0) = f(x) = δ(x− a) + δ(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-
behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consists
of a series of alternating bright and dark fringes with period λt/(2a).

3

0.2.1 Part(a)

𝜕𝑢
𝜕𝑡

= 𝜐
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) (1)

0 ≤ 𝑥 ≤ 𝐿
𝑡 ≥ 0

Initial conditions are

𝑢 (𝑥, 0) = 𝑓 (𝑥)

Boundary conditions are

𝜕𝑢 (0, 𝑡)
𝜕𝑥

= 0

𝑢 (𝐿, 𝑡) = 𝐴

Multiplying both sides of (1) by 𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) and integrating over the domain gives (where in the
following 𝐺 is used instead of 𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) for simplicity).

�
𝐿

𝑥=0
�

∞

𝑡=0
𝐺𝑢𝑡 𝑑𝑡𝑑𝑥 = �

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝑥𝑥𝐺 𝑑𝑡𝑑𝑥 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝑄𝐺 𝑑𝑡𝑑𝑥 (1)

For the integral on the LHS, we apply integration by parts once to move the time derivative from
𝑢 to 𝐺

�
𝐿

𝑥=0
�

∞

𝑡=0
𝐺𝑢𝑡 𝑑𝑡𝑑𝑥 = �

𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 −�

𝐿

𝑥=0
�

∞

𝑡=0
𝐺𝑡𝑢 𝑑𝑡𝑑𝑥 (1A)

And the first integral in the RHS of (1) gives, after doing integration by parts two times on it

�
𝐿

𝑥=0
�

∞

𝑡=0
𝑘𝑢𝑥𝑥𝐺 𝑑𝑡𝑑𝑥 = �

∞

𝑡=0
[𝑢𝑥𝐺]

𝐿
𝑥=0 𝑑𝑡 −�

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝑥𝐺𝑥 𝑑𝑡𝑑𝑥

= �
𝐿

𝑡=0
[𝑢𝑥𝐺]

𝐿
𝑥=0 𝑑𝑡 − ��

∞

𝑡=0
[𝑢𝐺𝑥]

𝐿
𝑥=0 𝑑𝑡 −�

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝐺𝑥𝑥 𝑑𝑡𝑑𝑥�

= �
∞

𝑡=0
�[𝑢𝑥𝐺]

𝐿
𝑥=0 − [𝑢𝐺𝑥]

𝐿
𝑥=0� 𝑑𝑡 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝐺𝑥𝑥 𝑑𝑡𝑑𝑥

= �
∞

𝑡=0
[𝑢𝑥𝐺 − 𝑢𝐺𝑥]

𝐿
𝑥=0 𝑑𝑡 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝐺𝑥𝑥 𝑑𝑡𝑑𝑥

= −�
∞

𝑡=0
[𝑢𝐺𝑥 − 𝑢𝑥𝐺]

𝐿
𝑥=0 𝑑𝑡 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝐺𝑥𝑥 𝑑𝑡𝑑𝑥 (1B)

Substituting (1A) and (1B) back into (1) results in

�
𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 −�

𝐿

𝑥=0
�

∞

𝑡=0
𝐺𝑡𝑢 𝑑𝑡𝑑𝑥 = �

∞

𝑡=0
[𝑢𝑥𝐺 − 𝑢𝐺𝑥]

𝐿
𝑥=0 𝑑𝑡 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝜐𝑢𝐺𝑥𝑥 𝑑𝑡𝑑𝑥 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝐺𝑄 𝑑𝑡𝑑𝑥

Or

�
𝐿

𝑥=0
�

∞

𝑡=0
−𝐺𝑡𝑢 − 𝜐𝑢𝐺𝑥𝑥 𝑑𝑡𝑑𝑥 = −�

𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 −�

∞

𝑡=0
[𝑢𝐺𝑥 − 𝑢𝑥𝐺]

𝐿
𝑥=0 𝑑𝑡 +�

𝐿

𝑥=0
�

∞

𝑡=0
𝐺𝑄 𝑑𝑡𝑑𝑥 (2)

We now want to choose 𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) such that

−𝐺𝑡𝑢 − 𝜐𝑢𝐺𝑥𝑥 = 𝛿 (𝑥 − 𝑥0) 𝛿 (𝑡 − 𝑡0)
−𝐺𝑡𝑢 = 𝜐𝑢𝐺𝑥𝑥 + 𝛿 (𝑥 − 𝑥0) 𝛿 (𝑡 − 𝑡0) (3)

This way, the LHS of (2) becomes just 𝑢 (𝑥0, 𝑡0). Hence (2) now (after the above choice of 𝐺) reduces
to
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𝑢 (𝑥0, 𝑡0) = −�
𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 −�

𝑡0

𝑡=0
[𝑢𝐺𝑥 − 𝑢𝑥𝐺]

𝐿
𝑥=0 𝑑𝑡 +�

𝐿

𝑥=0
�

𝑡0

𝑡=0
𝐺𝑄 𝑑𝑡𝑑𝑥 (4)

We now need to find the Green function which satisfies (3). But (3) is equivalent to solution of
problem

−𝐺𝑡𝑢 = 𝜐𝑢𝐺𝑥𝑥

𝐺 (𝑥, 0) = 𝛿 (𝑥 − 𝑥0) 𝛿 (𝑡 − 𝑡0)
−∞ < 𝑥 < ∞

𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) = 0 𝑡 > 𝑡0
𝐺 (±∞, 𝑡; 𝑥0, 𝑡0) = 0
𝐺 (𝑥, 𝑡0; 𝑥0, 𝑡0) = 𝛿 (𝑥 − 𝑥0)

The above problem has a known fundamental solution which we found before, but for the forward
heat PDE instead of the reverse heat PDE as it is now. The fundamental solution to the forward
heat PDE is

𝐺 (𝑥, 𝑡) =
1

√4𝜋𝜐 (𝑡 − 𝑡0)
exp

⎛
⎜⎜⎜⎝
− (𝑥 − 𝑥0)

2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠ 0 ≤ 𝑡0 ≤ 𝑡

Therefore, for the reverse heat PDE the above becomes

𝐺 (𝑥, 𝑡) =
1

√4𝜋𝜐 (𝑡0 − 𝑡)
exp

⎛
⎜⎜⎜⎝
− (𝑥 − 𝑥0)

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ 0 ≤ 𝑡 ≤ 𝑡0 (5)

We now go back to (4) and try to evaluate all terms in the RHS. Starting with the first term
∫𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥. Since 𝐺 (𝑥,∞; 𝑥0, 𝑡0) = 0 then the upper limit is zero. But at lower limit 𝑡 = 0 we are

given that 𝑢 (𝑥, 0) = 𝑓 (𝑥), hence this term becomes

�
𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 = �

𝐿

𝑥=0
−𝑢 (𝑥, 0) 𝐺 (𝑥, 0) 𝑑𝑥

= �
𝐿

𝑥=0
−𝑓 (𝑥)𝐺 (𝑥, 0) 𝑑𝑥

Now looking at the second term in RHS of (4), we expand it and find

[𝑢𝐺𝑥 − 𝑢𝑥𝐺]
𝐿
𝑥=0 = (𝑢 (𝐿, 𝑡) 𝐺𝑥 (𝐿, 𝑡) − 𝑢𝑥 (𝐿, 𝑡) 𝐺 (𝐿, 𝑡)) − (𝑢 (0, 𝑡) 𝐺𝑥 (0, 𝑡) − 𝑢𝑥 (0, 𝑡) 𝐺 (0, 𝑡))

We are told that 𝑢𝑥 (0, 𝑡) = 0 and 𝑢 (𝐿, 𝑡) = 𝐴, then the above becomes

[𝑢𝐺𝑥 − 𝑢𝑥𝐺]
𝐿
𝑥=0 = 𝐴𝐺𝑥 (𝐿, 𝑡) − 𝑢𝑥 (𝐿, 𝑡) 𝐺 (𝐿, 𝑡) − 𝑢 (0, 𝑡) 𝐺𝑥 (0, 𝑡) (5A)

There are still two terms above we do not know. We do not know 𝑢𝑥 (𝐿, 𝑡) and we also do not know
𝑢 (0, 𝑡). If we can configure, using method of images, such that 𝐺 (𝐿, 𝑡) = 0 and 𝐺𝑥 (0, 𝑡) = 0 then
we can get rid of these two terms and end up only with [𝑢𝐺𝑥 − 𝑢𝑥𝐺]

∞
𝑥=0 = 𝐴𝐺𝑥 (𝐿, 𝑡) which we can

evaluate once we know what 𝐺 (𝑥, 𝑡) is.

This means we need to put images on both sides of the boundaries such that to force 𝐺 (𝐿, 𝑡) = 0
and also 𝐺𝑥 (0, 𝑡) = 0.

We see that this result agrees what we always did, which is, If the prescribed boundary conditions

on 𝑢 are such that 𝑢 = 𝐴, then we want 𝐺 = 0 there. And if it is 𝜕𝑢
𝜕𝑥 = 𝐴, then we want 𝜕𝐺

𝜕𝑥 = 0 there.
And this is what we conclude here also from the above. In other words, the boundary conditions
on Green functions are always the homogeneous version of the boundary conditions given on 𝑢.

∂u
∂x = 0
∂G
∂x = 0

x = 0 x = L

u(L, t) = A

G(L, t) = 0

To force 𝐺𝑥 (0, 𝑡) = 0, we need to put same sign images on both sides of 𝑥 = 0. So we end up with
this
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x0x = 0 x = L

∂G
∂x = 0

G = 0
−x0

The above makes 𝐺𝑥 (0, 𝑡) = 0 at 𝑥 = 0. Now we want to make 𝐺 = 0 at 𝑥 = 𝐿. Then we update the
above and put a negative image at 𝑥 = 2𝐿 − 𝑥0 to the right of 𝑥 = 𝐿 as follows

x0x = 0 x = L

∂G
∂x = 0

G = 0
−x0

2L− x0

But now we see that the image at 𝑥 = −𝑥0 has a�ected condition of 𝐺 = 0 at 𝑥 = 𝐿 and will make it
not zero as we wanted. So to counter e�ect this, we have to add another negative image at distance
𝑥 = 2𝐿 + 𝑥0 to cancel the e�ect of the image at 𝑥 = −𝑥0. We end up with this setup

x0x = 0 x = L

∂G
∂x = 0

G = 0
−x0

2L− x0 2L+ x0

But now we see that the two negative images we added to the right will no longer make 𝐺𝑥 (0, 𝑡) = 0,
so we need to counter e�ect this by adding two negative images to the left side to keep 𝐺𝑥 (0, 𝑡) = 0.
So we end up with

x0x = 0 x = L

∂G
∂x = 0

G = 0
−x0

2L− x0 2L+ x0−2L− x0 −2L+ x0

But now we see that by putting these two images on the left, we no longer have 𝐺 = 0 at 𝑥 = 𝐿. So
to counter e�ect this, we have to put copies of these 2 images on the right again but with positive
sign, as follows

x0x = 0 x = L

∂G
∂x = 0

G = 0
−x0

2L− x0 2L+ x0−2L− x0 −2L+ x0

4L− x0 4L+ x0

But now these two images on the right, no longer keep 𝐺𝑥 (0, 𝑡) = 0, so we have to put same sign
images to the left, as follows
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x0x = 0 x = L

∂G
∂x = 0

G = 0

−x0

2L− x0

2L+ x0−2L− x0

−2L+ x0

4L− x0

4L+ x0

−4L+ x0

−4L− x0

And so on. This continues for infinite number of images. Therefore we see from the above, for the
positive images, we have the following sum

�4𝜋𝜐 (𝑡0 − 𝑡)𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) = exp
⎛
⎜⎜⎜⎝
− (𝑥 − 𝑥0)

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 + 𝑥0)

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (4𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎝
− (𝑥 − (−4𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (4𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎝
− (𝑥 − (−4𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ +⋯

Or

𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) =
1

√4𝜋𝜐 (𝑡0 − 𝑡)

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥 − (4𝑛𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−4𝑛𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (6)

The above takes care of the positive images. For negative images, we have this sum of images

�4𝜋𝜐 (𝑡0 − 𝑡)𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) = exp
⎛
⎜⎜⎜⎝
− (𝑥 − (2𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−2𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎝
− (𝑥 − (2𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−2𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎝
− (𝑥 − (6𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−6𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎝
− (𝑥 − (6𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−6𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠⋯

Or

�4𝜋𝜐 (𝑡0 − 𝑡)𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) = −
⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

(7)

Hence the Green function to use is (6)+(7) which gives

𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) =
1

√4𝜋𝜐 (𝑡0 − 𝑡)

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥 − (4𝑛𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−4𝑛𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡0 − 𝑡)

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

(7A)

Using the above Green function, we go back to 5A and finally are able to simplify it

[𝑢𝐺𝑥 − 𝑢𝑥𝐺]
𝐿
𝑥=0 = 𝐴𝐺𝑥 (𝐿, 𝑡) − 𝑢𝑥 (𝐿, 𝑡) 𝐺 (𝐿, 𝑡) − 𝑢 (0, 𝑡) 𝐺𝑥 (0, 𝑡)

The above becomes now (with the images in place as above)

[𝑢𝐺𝑥 − 𝑢𝑥𝐺]
𝐿
𝑥=0 = 𝐴

𝜕𝐺 (𝐿, 𝑡; 𝑥0, 𝑡0)
𝜕𝑥

(8)

Since now we know what 𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0), from (7), we can evaluate its derivative w.r.t. 𝑥. (broken up,
so it fits on one page)
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𝜕𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0)
𝜕𝑥

=
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝑥 − (4𝑛𝐿 − 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝑥 − (4𝑛𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝑥 − (−4𝑛𝐿 + 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝑥 − (−4𝑛𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝑥 − ((4𝑛 − 2) 𝐿 + 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝑥 − ((4𝑛 − 2) 𝐿 − 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

At 𝑥 = 𝐿, the above derivative becomes

𝜕𝐺 (𝐿, 𝑡; 𝑥0, 𝑡0)
𝜕𝑥

=
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝐿 − (4𝑛𝐿 − 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − (4𝑛𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

+
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝐿 − (−4𝑛𝐿 + 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − (−4𝑛𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝐿 − ((4𝑛 − 2) 𝐿 + 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − ((4𝑛 − 2) 𝐿 + 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡0 − 𝑡)

∞
�
𝑛=−∞

− (𝐿 − ((4𝑛 − 2) 𝐿 − 𝑥0))
2𝜐 (𝑡0 − 𝑡)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − ((4𝑛 − 2) 𝐿 − 𝑥0))

2

4𝜐 (𝑡0 − 𝑡)

⎞
⎟⎟⎟⎠ (9)

From (4), we now collect all terms into the solution

𝑢 (𝑥0, 𝑡0) = −�
𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 −�

𝑡0

𝑡=0
[𝑢𝐺𝑥 − 𝑢𝑥𝐺]

𝐿
𝑥=0 𝑑𝑡 +�

𝐿

𝑥=0
�

𝑡0

𝑡=0
𝐺𝑄 𝑑𝑡𝑑𝑥 (4)

We found ∫𝐿

𝑥=0
[𝑢𝐺]∞𝑡=0 𝑑𝑥 = ∫𝐿

𝑥=0
−𝑓 (𝑥)𝐺 (𝑥, 0) 𝑑𝑥 and now we know what 𝐺 is. Hence we can find

𝐺 (𝑥, 0; 𝑥0, 𝑡0). It is, from (7A)

𝐺 (𝑥, 0; 𝑥0, 𝑡0) =
1

√4𝜋𝜐𝑡0

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥 − (4𝑛𝐿 − 𝑥0))

2

4𝜐𝑡0

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − (−4𝑛𝐿 + 𝑥0))

2

4𝜐𝑡0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐𝑡0

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 + 𝑥0))

2

4𝜐𝑡0

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥 − ((4𝑛 − 2) 𝐿 − 𝑥0))

2

4𝜐𝑡0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (10)

And we now know what [𝑢𝐺𝑥 − 𝑢𝑥𝐺]
𝐿
𝑥=0 is. It is 𝐴

𝜕𝐺(𝐿,𝑡;𝑥0,𝑡0)
𝜕𝑥 . Hence (4) becomes

𝑢 (𝑥0, 𝑡0) = �
𝐿

𝑥=0
𝑓 (𝑥)𝐺 (𝑥, 0; 𝑥0, 𝑡0) 𝑑𝑥 −�

𝑡0

𝑡=0
𝐴
𝜕𝐺 (𝐿, 𝑡; 𝑥0, 𝑡0)

𝜕𝑥
𝑑𝑡 +�

𝐿

𝑥=0
�

𝑡0

𝑡=0
𝐺 (𝑥, 𝑡; 𝑥0, 𝑡0) 𝑄 (𝑥, 𝑡) 𝑑𝑡𝑑𝑥

Changing the roles of 𝑥0, 𝑡0

𝑢 (𝑥, 𝑡) = �
𝐿

𝑥0=0
𝑓 (𝑥0) 𝐺 (𝑥0, 𝑡0; 𝑥, 0) 𝑑𝑥0 −�

𝑡

𝑡=0
𝐴
𝜕𝐺 (𝑥0, 𝑡0; 𝐿, 𝑡)

𝜕𝑥0
𝑑𝑡0 +�

𝐿

𝑥0=0
�

𝑡

𝑡0=0
𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) 𝑄 (𝑥0, 𝑡0) 𝑑𝑡0𝑑𝑥0

(11)

This completes the solution.

Summary

The solution is

𝑢 (𝑥, 𝑡) = �
𝐿

𝑥0=0
𝑓 (𝑥0) 𝐺 (𝑥0, 𝑡0; 𝑥, 0) 𝑑𝑥0−�

𝑡

𝑡=0
𝐴
𝜕𝐺 (𝑥0, 𝑡0; 𝐿, 𝑡)

𝜕𝑥0
𝑑𝑡0+�

𝐿

𝑥0=0
�

𝑡

𝑡0=0
𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) 𝑄 (𝑥0, 𝑡0) 𝑑𝑡0𝑑𝑥0

Where 𝐺 (𝑥0, 𝑡0; 𝑥, 0) is given in (10) (after changing roles of parameters):

𝐺 (𝑥0, 𝑡0; 𝑥, 0) =
1

√4𝜋𝜐𝑡

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥0 − (4𝑛𝐿 − 𝑥))

2

4𝜐𝑡

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥0 − (−4𝑛𝐿 + 𝑥))

2

4𝜐𝑡

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐𝑡

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥0 − ((4𝑛 − 2) 𝐿 + 𝑥))

2

4𝜐𝑡

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥0 − ((4𝑛 − 2) 𝐿 − 𝑥))

2

4𝜐𝑡

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (10A)
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and 𝜕𝐺(𝑥0,𝑡0;𝐿,𝑡)
𝜕𝑥0

is given in (9) (after also changing roles of parameters):

𝜕𝐺 (𝑥0, 𝑡0; 𝐿, 𝑡)
𝜕𝑥0

=
1

√4𝜋𝜐 (𝑡 − 𝑡0)

∞
�
𝑛=−∞

− (𝐿 − (4𝑛𝐿 − 𝑥))
2𝜐 (𝑡 − 𝑡0)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − (4𝑛𝐿 − 𝑥))2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠

+
1

√4𝜋𝜐 (𝑡 − 𝑡0)

∞
�
𝑛=−∞

− (𝐿 − (−4𝑛𝐿 + 𝑥))
2𝜐 (𝑡 − 𝑡0)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − (−4𝑛𝐿 + 𝑥))2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡 − 𝑡0)

∞
�
𝑛=−∞

− (𝐿 − ((4𝑛 − 2) 𝐿 + 𝑥))
2𝜐 (𝑡 − 𝑡0)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − ((4𝑛 − 2) 𝐿 + 𝑥))2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠

−
1

√4𝜋𝜐 (𝑡 − 𝑡0)

∞
�
𝑛=−∞

− (𝐿 − ((4𝑛 − 2) 𝐿 − 𝑥))
2𝜐 (𝑡 − 𝑡0)

exp
⎛
⎜⎜⎜⎝
− (𝐿 − ((4𝑛 − 2) 𝐿 − 𝑥))2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠ (9A)

and 𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) is given in (7A), but with roles changed as well to become

𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) =
1

√4𝜋𝜐 (𝑡 − 𝑡0)

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥0 − (4𝑛𝐿 − 𝑥))

2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥0 − (−4𝑛𝐿 + 𝑥))

2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (7AA)

−
1

√4𝜋𝜐 (𝑡 − 𝑡0)

⎛
⎜⎜⎜⎝

∞
�
𝑛=−∞

exp
⎛
⎜⎜⎜⎝
− (𝑥0 − ((4𝑛 − 2) 𝐿 + 𝑥))

2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝
− (𝑥0 − ((4𝑛 − 2) 𝐿 − 𝑥))

2

4𝜐 (𝑡 − 𝑡0)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

0.2.2 Part(b)

When 𝐴 = 0, the solution in part (a) becomes

𝑢 (𝑥, 𝑡) = �
𝐿

𝑥0=0
𝑓 (𝑥0) 𝐺 (𝑥0, 𝑡0; 𝑥, 0) 𝑑𝑥0 +�

𝐿

𝑥0=0
�

𝑡

𝑡0=0
𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) 𝑄 𝑑𝑡0𝑑𝑥0

Where 𝐺 (𝑥0, 𝑡0; 𝑥, 0) is given in (10A) in part (a), and 𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) is given in (7AA) in part (a).
Now we find the eigenfunction solution for this problem order to compare it with the above green
function images solution. Since 𝐴 = 0 then the PDE now becomes

𝜕𝑢
𝜕𝑡

= 𝜐
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) (1)

0 ≤ 𝑥 ≤ 𝐿
𝑡 ≥ 0

Initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥)

Boundary conditions

𝜕𝑢 (0, 𝑡)
𝜕𝑥

= 0

𝑢 (𝐿, 𝑡) = 0

Since boundary conditions has now become homogenous (thanks for 𝐴 = 0), we can use separation
of variables to find the eigenfunctions, and then use eigenfunction expansion. Let the solution be

𝑢𝑛 (𝑥, 𝑡) = 𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥)

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) (1A)

Where 𝜙𝑛 (𝑡) are eigenfunctions for the associated homogeneous PDE 𝜕𝑢
𝜕𝑡 = 𝜐

𝜕2𝑢
𝜕𝑥2 which can be found

from separation of variables. To find 𝜙𝑛 (𝑥), we start by separation of variables. Let 𝑢 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡)
and we plug this solution back to the PDE to obtain

𝑋𝑇′ = 𝜐𝑋′′𝑇
1
𝑣
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Hence the spatial ODE is 𝑋′′

𝑋 = −𝜆 or 𝑋′′ + 𝜆𝑋 = 0 with boundary conditions

𝑋′ (0) = 0
𝑋 (𝐿) = 0

case 𝜆 = 0 The solution is 𝑋 = 𝑐1 + 𝑐2𝑥. Hence 𝑋′ = 𝑐2. Therefore 𝑐2 = 0. Hence 𝑋 = 𝑐1 = 0. Trivial
solution. So 𝜆 = 0 is not possible.

case 𝜆 > 0 The solution is 𝑋 = 𝑐1 cos �√𝜆𝑥�+ 𝑐2 sin �√𝜆𝑥�. and 𝑋′ = −√𝜆𝑐1 sin𝜆𝑥+ 𝑐2√𝜆 cos𝜆𝑥. From
first B.C. at 𝑥 = 0 we find 0 = 𝑐2√𝜆, hence 𝑐2 = 0 and the solution becomes 𝑋 = 𝑐1 cos �√𝜆𝑥�. At
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𝑥 = 𝐿, we have 0 = 𝑐1 cos �√𝜆𝐿� which leads to √𝜆𝐿 = 𝑛
𝜋
2 for 𝑛 = 1, 3, 5,⋯ or

�𝜆𝑛 = �
2𝑛 − 1
2 �

𝜋
𝐿

𝑛 = 1, 2, 3,⋯

𝜆𝑛 = �
2𝑛 − 1
2

𝜋
𝐿 �

2

𝑛 = 1, 1, 2, 3,⋯

Hence the 𝑋𝑛 (𝑥) solution is

𝑋𝑛 (𝑥) = 𝑐𝑛 cos ��𝜆𝑛𝑥� 𝑛 = 1, 2, 3,⋯

The time ODE is now solved using the above eigenvalues. (we really do not need to do this part,
since 𝐴𝑛 (𝑡) will be solved for later, and 𝐴𝑛 (𝑡) will contain all the time dependent parts, including
those that come from 𝑄 (𝑥, 𝑡), but for completion, this is done)

1
𝑣
𝑇′

𝑇
= −𝜆𝑛

𝑇′ + 𝑣𝜆𝑛𝑇 = 0
𝑑𝑇
𝑇
= −𝑣𝜆𝑛𝑑𝑡

ln |𝑇| = −𝑣𝜆𝑛𝑡 + 𝐶
𝑇 = 𝐶𝑛𝑒𝑣𝜆𝑛𝑡

Hence the solution to the homogenous PDE is

𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛𝑇𝑛
= 𝑐𝑛 cos ��𝜆𝑛𝑥� 𝑒𝑣𝜆𝑛𝑡

Where constants of integration are merged into one. Therefore

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑋𝑛𝑇𝑛

=
∞
�
𝑛=1

𝑐𝑛 cos ��𝜆𝑛𝑥� 𝑒𝑣𝜆𝑛𝑡 (2)

From the above we see that

𝜙𝑛 (𝑥) = cos �√𝜆𝑛𝑥�

Using this, we now write the solution to 𝜕𝑢
𝜕𝑡 = 𝜐

𝜕2𝑢
𝜕𝑥2 + 𝑄 (𝑥, 𝑡) using eigenfunction expansion

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥) (3)

Where now 𝐴𝑛 (𝑡) will have all the time dependent terms from 𝑄 (𝑥, 𝑡) as well from the time solution

from the homogenous PDE 𝑒
𝑣� 2𝑛−12

𝜋
𝐿 �

2
𝑡
part. We will solve for 𝐴𝑛 (𝑡) now.

In this below, we will expand 𝑄 (𝑥, 𝑡) using these eigenfunctions (we can do this, since the eigen-
functions are basis for the whole solution space which the forcing function is in as well). We plug-in
(3) back into the PDE, and since boundary conditions are now homogenous, then term by term

di�erentiation is justified. The PDE 𝜕𝑢
𝜕𝑡 = 𝜐

𝜕2𝑢
𝜕𝑥2 + 𝑄 (𝑥, 𝑡) now becomes

𝜕
𝜕𝑡

∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝜐
𝜕2

𝜕𝑥2
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥) +
∞
�
𝑛=1

𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥) (4)

Where∑∞
𝑛=1 𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥) is the eigenfunction expansion of 𝑄 (𝑥, 𝑡). To find 𝑞𝑛 (𝑡) we apply orthogonality

as follows

𝑄 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥)

�
𝐿

0
𝜙𝑚 (𝑥)𝑄 (𝑥, 𝑡) 𝑑𝑥 = �

𝐿

0
�
∞
�
𝑛=1

𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥)� 𝜙𝑚 (𝑥) 𝑑𝑥

�
𝐿

0
𝜙𝑚 (𝑥)𝑄 (𝑥, 𝑡) 𝑑𝑥 =

∞
�
𝑛=1

�
𝐿

0
𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝑑𝑥

= �
𝐿

0
𝑞𝑚 (𝑡) 𝜙2

𝑚 (𝑥) 𝑑𝑥

= 𝑞𝑚 (𝑡)�
𝐿

0
cos2 ��𝜆𝑛𝑥� 𝑑𝑥
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But

�
𝐿

0
cos2 ��𝜆𝑛𝑥� 𝑑𝑥 =

𝐿
2

Hence

𝑞𝑛 (𝑡) =
2
𝐿 �

𝐿

0
𝜙𝑛 (𝑥)𝑄 (𝑥, 𝑡) 𝑑𝑥 (5)

Now that we found 𝑞𝑛 (𝑡), we go back to (4) and simplifies it more
∞
�
𝑛=1

𝐴′
𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝜐

∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙′′
𝑛 (𝑥) +

∞
�
𝑛=1

𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥)

𝐴′
𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝜐𝐴𝑛 (𝑡) 𝜙′′

𝑛 (𝑥) + 𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥)

But since 𝜙𝑛 (𝑥) = cos �√𝜆𝑛𝑥� then

𝜙′
𝑛 (𝑥) = − ��𝜆𝑛� sin ��𝜆𝑛𝑥�

And

𝜙′′
𝑛 (𝑥) = −𝜆𝑛 cos ��𝜆𝑛𝑥�

= −𝜆𝑛𝜙𝑛 (𝑥)

Hence the above ODE becomes

𝐴′
𝑛𝜙𝑛 = −𝜐𝐴𝑛𝜆𝑛𝜙𝑛 + 𝑞𝑛𝜙𝑛

Canceling the eigenfunction 𝜙𝑛 (𝑥) (since not zero) gives

𝐴′
𝑛 (𝑡) + 𝜐𝐴𝑛 (𝑡) 𝜆𝑛 = 𝑞𝑛 (𝑡) (6)

We now solve this for 𝐴𝑛 (𝑡). Integrating factor is

𝜇 = exp ��𝜐𝜆𝑛𝑑𝑡�

= 𝑒𝜆𝑛𝜐𝑡

Hence (6) becomes
𝑑
𝑑𝑡
�𝜇𝐴𝑛 (𝑡)� = 𝜇𝑞𝑛 (𝑡)

𝑒𝜆𝑛𝜐𝑡𝐴𝑛 (𝑡) = �
𝑡

0
𝑒𝜆𝑛𝜐𝑠𝑞𝑛 (𝑠) 𝑑𝑠 + 𝐶

𝐴𝑛 (𝑡) = 𝑒−𝜆𝑛𝜐𝑡�
𝑡

0
𝑒𝜆𝑛𝜐𝑠𝑞𝑛 (𝑠) 𝑑𝑠 + 𝐶𝑒−𝜆𝑛𝜐𝑡 (7)

Now that we found 𝐴𝑛 (𝑡), then the solution (3) becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎝𝑒

−� 2𝑛−12
𝜋
𝐿 �

2
𝜐𝑡
�

𝑡

0
𝑒
� 2𝑛−12

𝜋
𝐿 �

2
𝜐𝑠
𝑞𝑛 (𝑠) 𝑑𝑠 + 𝐶𝑒

−� 2𝑛−12
𝜋
𝐿 �

2
𝜐𝑡
⎞
⎟⎟⎟⎟⎠ 𝜙𝑛 (𝑥) (8)

At 𝑡 = 0 , we are given that 𝑢 (𝑥, 0) = 𝑓 (𝑥), hence the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝐶𝜙𝑛 (𝑥)

To find 𝐶, we apply orthogonality again, which gives

�
𝐿

0
𝑓 (𝑥) 𝜙𝑚 (𝑥) 𝑑𝑥 =

∞
�
𝑛=1

�
𝐿

0
𝐶𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝑑𝑥

= 𝐶�
𝐿

0
𝜙2
𝑚 (𝑥) 𝑑𝑥

�
𝐿

0
𝑓 (𝑥) 𝜙𝑚 (𝑥) 𝑑𝑥 =

𝐿
2
𝐶

𝐶 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

Now that we found 𝐶, then the solution in (8) is complete. It is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥)

=
∞
�
𝑛=1

�𝑒−𝜆𝑛𝜐𝑡�
𝑡

0
𝑒𝜆𝑛𝜐𝑠𝑞𝑛 (𝑠) 𝑑𝑠 +

2
𝐿
𝑒−𝜆𝑛𝜐𝑡�

𝐿

0
𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥�𝜙𝑛 (𝑥)
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Or

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�𝜙𝑛 (𝑥) 𝑒−𝜆𝑛𝜐𝑡�
𝑡

0
𝑒𝜆𝑛𝜐𝑠𝑞𝑛 (𝑠) 𝑑𝑠�

+
2
𝐿

∞
�
𝑛=1

�𝜙𝑛 (𝑥) 𝑒−𝜆𝑛𝜐𝑡�
𝐿

0
𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥�

Summary

The eigenfunction solution is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

�𝜙𝑛 (𝑥) 𝑒−𝜆𝑛𝜐𝑡�
𝑡

0
𝑒𝜆𝑛𝜐𝑠𝑞𝑛 (𝑠) 𝑑𝑠�

+
2
𝐿

∞
�
𝑛=1

�𝜙𝑛 (𝑥) 𝑒−𝜆𝑛𝜐𝑡�
𝐿

0
𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥�

Where

𝜙𝑛 (𝑥) = cos ��𝜆𝑛𝑥� 𝑛 = 1, 2, 3,⋯

𝜆𝑛 = �
2𝑛 − 1
2

𝜋
𝐿 �

2

𝑛 = 1, 1, 2, 3,⋯

And

𝑞𝑛 (𝑡) =
2
𝐿 �

𝐿

0
𝜙𝑛 (𝑥)𝑄 (𝑥, 𝑡) 𝑑𝑥

To compare the eigenfunction expansion solution and the Green function solution, we see the
following mapping of the two solutions

2
𝐿
∑∞
𝑛=1�𝜙𝑛(𝑥)𝑒

−𝜆𝑛𝜐𝑡∫𝐿
0

𝑓(𝑥)𝜙𝑛(𝑥)𝑑𝑥�

�������������������������������������
�

𝐿

0
𝑓 (𝑥0) 𝐺 (𝑥0, 𝑡0; 𝑥, 0) 𝑑𝑥0 +

∑∞
𝑛=1�𝜙𝑛(𝑥)𝑒

−𝜆𝑛𝜐𝑡∫𝑡
0
𝑒𝜆𝑛𝜐𝑠𝑞𝑛(𝑠)𝑑𝑠�

���������������������������������������������������
�

𝐿

0
�

𝑡

0
𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) 𝑄 (𝑥0, 𝑡0) 𝑑𝑡0𝑑𝑥0

Where the top expression is the eigenfunction expansion and the bottom expression is the Green
function solution using method of images. Where 𝐺 (𝑥0, 𝑡0; 𝑥, 𝑡) in above contains the infinite sums
of the images. So the Green function solution contains integrals and inside these integrals are the
infinite sums. While the eigenfunction expansions contains two infinite sums, but inside the sums we
see the integrals. So summing over the images seems to be equivalent to the operation of summing
over eigenfunctions. These two solutions in the limit should of course give the same result (unless
I made a mistake somewhere). In this example, I found method of eigenfunction expansion easier,
since getting the images in correct locations and sign was tricky to get right.
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0.3 problem 5

(e) Write your expression for φ(x, t) in terms of

f(η, x, t) =

∫ η

xo

F (α)dα+
(x− η)2

2t
.

(f) Find φx(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

∂u

∂t
= ν

∂2u

∂x2
+Q(x, t), 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x),
∂u

∂x
(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimally
small slits separated by a distance 2a.

Solve the diffraction equation

∂u

∂t
=
iλ

4π

∂2u

∂x2
(1)

with initial source u(x, 0) = f(x) = δ(x− a) + δ(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-
behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consists
of a series of alternating bright and dark fringes with period λt/(2a).

3

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

=
𝑖𝜆
4𝜋

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

(1)

𝑢 (𝑥, 0) = 𝑓 (𝑥) = 𝛿 (𝑥 − 𝑎) + 𝛿 (𝑥 + 𝑎)

I will Use Fourier transform to solve this, since this is for −∞ < 𝑥 < ∞ and the solution 𝑢 (𝑥, 𝑡) is
assumed bounded at ±∞ (or goes to zero there), hence 𝑢 (𝑥, 𝑡) is square integrable and therefore we
can assume it has a Fourier transform.

Let 𝑈 (𝜉, 𝑡) be the spatial part only Fourier transform of 𝑢 (𝑥, 𝑡). Using the Fourier transform pairs
defined as

𝑈 (𝜉, 𝑡) = ℱ (𝑢 (𝑥, 𝑡)) = �
∞

−∞
𝑢 (𝑥, 𝑡) 𝑒−𝑖2𝜋𝑥𝜉𝑑𝑥

𝑢 (𝑥, 𝑡) = ℱ −1 (𝑈 (𝜉, 𝑡)) = �
∞

−∞
𝑈 (𝜉, 𝑡) 𝑒𝑖2𝜋𝑥𝜉𝑑𝜉

Therefore, by Fourier transform properties of derivatives

ℱ�
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥 � = (2𝜋𝑖𝜉)𝑈 (𝜉, 𝑡)

ℱ �
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2 � = (2𝜋𝑖𝜉)2𝑈 (𝜉, 𝑡) (2)

And

ℱ�
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡 � =

𝜕𝑈 (𝜉, 𝑡)
𝜕𝑡

(3)

Where in (3), we just need to take time derivative of 𝑈 (𝜉, 𝑡) since the transform is applied only to
the space part. Now we take the Fourier transform of the given PDE and using (2,3) relations we
obtain the PDE but now in Fourier space.

𝜕𝑈 (𝜉, 𝑡)
𝜕𝑡

= �
𝑖𝜆
4𝜋�

(2𝜋𝑖𝜉)2𝑈 (𝜉, 𝑡)

= − �
𝑖𝜆
4𝜋�

4𝜋2𝜉2𝑈 (𝜉, 𝑡)

= �−𝑖𝜆𝜋𝜉2�𝑈 (𝜉, 𝑡) (4)

Equation (4) can now be easily solved for 𝑈 (𝜉, 𝑡) since it is separable.
𝜕𝑈 (𝜉, 𝑡)
𝑈 (𝜉, 𝑡)

= �−𝑖𝜆𝜋𝜉2� 𝜕𝑡

Integrating

ln |𝑈 (𝜉, 𝑡)| = �−𝑖𝜆𝜋𝜉2� 𝑡 + 𝐶

𝑈 (𝜉, 𝑡) = 𝑈 (𝜉, 0) 𝑒�−𝑖𝜆𝜋𝜉
2�𝑡

Where 𝑈 (𝜉, 0) is the Fourier transform of 𝑢 (𝑥, 0), the initial conditions, which is 𝑓 (𝑥) and is given in
the problem. To go back to spatial domain, we now need to do the inverse Fourier transform. By
applying the convolution theorem, we know that multiplication in Fourier domain is convolution
in spatial domain, therefore

ℱ −1 (𝑈 (𝜉, 𝑡)) = ℱ −1 (𝑈 (𝜉, 0)) ⊛ ℱ −1 �𝑒−𝑖𝜆𝜋𝜉2𝑡� (5)
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But

ℱ −1 (𝑈 (𝜉, 𝑡)) = 𝑢 (𝑥, 𝑡)
ℱ −1 (𝑈 (𝜉, 0)) = 𝑓 (𝑥)

And

ℱ −1 �𝑒−𝑖𝜆𝜋𝜉2𝑡� = �
∞

−∞
𝑒−𝑖𝜆𝜋𝜉2𝑡𝑒2𝑖𝜋𝑥𝜉𝑑𝜉 (5A)

Hence (5) becomes

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) ⊛ ℱ −1 �𝑒−𝑖𝜆𝜋𝜉2𝑡�

Here, I used Mathematica to help me with the above integral (5A) as I could not find it in tables
so far1. Here is the result

Find inverse Fourier transform, for problem 5, NE 548

In[13]:= InverseFourierTransform[ Exp[-I lam Pi z^2 t], z, x, FourierParameters -> {1, -2 * Pi}]

Out[13]=
ⅇ

ⅈ π x2

lam t

2 π ⅈ lam t

Therefore, from Mathematica, we see that

ℱ −1 �𝑒−𝑖𝜆𝜋𝜉2𝑡� =
𝑒
𝑖𝜋𝑥2
𝜆𝑡

√2𝜋√𝑖√𝜆𝑡
(6)

But2

√𝑖 =
1

√2
+ 𝑖

1

√2

= cos �𝜋
4
� + 𝑖 sin �𝜋

4
�

= 𝑒𝑖
𝜋
4

Hence (6) becomes

ℱ −1 �𝑒−𝑖𝜆𝜋𝜉2𝑡� =
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

𝑒𝑖
𝜋𝑥2
𝜆𝑡 (7)

Now we are ready to do the convolution in (5A) since we know everything in the RHS, hence

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) ⊛
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

𝑒𝑖
𝜋𝑥2
𝜆𝑡

= (𝛿 (𝑥 − 𝑎) + 𝛿 (𝑥 + 𝑎)) ⊛
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

𝑒𝑖
𝜋𝑥2
𝜆𝑡 (8)

Applying convolution integral on (8), which says that

𝑓 (𝑥) = 𝑔1 (𝑥) ⊛ 𝑔2 (𝑥)

= �
∞

−∞
𝑔1 (𝑧) 𝑔2 (𝑥 − 𝑧) 𝑑𝑧

Therefore (8) becomes

𝑢 (𝑥, 𝑡) = �
∞

−∞
(𝛿 (𝑧 − 𝑎) + 𝛿 (𝑧 + 𝑎))

1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

𝑒𝑖
𝜋(𝑥−𝑧)2

𝜆𝑡 𝑑𝑧

=
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

�
∞

−∞
(𝛿 (𝑧 − 𝑎) + 𝛿 (𝑧 + 𝑎)) 𝑒𝑖

𝜋(𝑥−𝑧)2

𝜆𝑡 𝑑𝑧

=
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

⎛
⎜⎜⎜⎝�

∞

−∞
𝛿 (𝑧 − 𝑎) 𝑒𝑖

𝜋(𝑥−𝑧)2

𝜆𝑡 𝑑𝑧 +�
∞

−∞
𝛿 (𝑧 + 𝑎) 𝑒𝑖

𝜋(𝑥−𝑧)2

𝜆𝑡 𝑑𝑧
⎞
⎟⎟⎟⎠

But an integral with delta function inside it, is just the integrand evaluated where the delta argument
become zero which is at 𝑧 = 𝑎 and 𝑧 = −𝑎 in the above. (This is called the sifting property). Hence
the above integrals are now easily found and we obtain the solution

𝑢 (𝑥, 𝑡) =
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

⎛
⎜⎜⎜⎝exp

⎛
⎜⎜⎜⎝𝑖
𝜋 (𝑥 − 𝑎)2

𝜆𝑡

⎞
⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎝𝑖
𝜋 (𝑥 + 𝑎)2

𝜆𝑡

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

1Trying to do this integral by hand also, but so far having some di�culty..
2Taking the positive root only.



17

The above is the solution we need. But we can simplify it more by using Euler relation.

𝑢 (𝑥, 𝑡) =
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

⎛
⎜⎜⎜⎜⎝exp

⎛
⎜⎜⎜⎜⎝𝑖
𝜋 �𝑥2 + 𝑎2 − 2𝑥𝑎�

𝜆𝑡

⎞
⎟⎟⎟⎟⎠ + exp

⎛
⎜⎜⎜⎜⎝𝑖
𝜋 �𝑥2 + 𝑎2 + 2𝑎𝑥�

𝜆𝑡

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

=
1

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

⎛
⎜⎜⎜⎜⎝exp

⎛
⎜⎜⎜⎜⎝
𝑖𝜋 �𝑥2 + 𝑎2�

𝜆𝑡

⎞
⎟⎟⎟⎟⎠ exp �

−𝑖2𝜋𝑥𝑎
𝜆𝑡 � + exp

⎛
⎜⎜⎜⎜⎝
𝑖𝜋 �𝑥2 + 𝑎2�

𝜆𝑡

⎞
⎟⎟⎟⎟⎠ exp �

𝑖2𝜋𝑎𝑥
𝜆𝑡 �

⎞
⎟⎟⎟⎟⎠

Taking exp �
𝑖𝜋�𝑥2+𝑎2�

𝜆𝑡 � as common factor outside results in

𝑢 (𝑥, 𝑡) =
exp �

𝑖𝜋�𝑥2+𝑎2�

𝜆𝑡 �

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

�exp �𝑖
2𝜋𝑎𝑥
𝜆𝑡 � + exp �−𝑖

2𝜋𝑥𝑎
𝜆𝑡 ��

=
2 exp �

𝑖𝜋�𝑥2+𝑎2�

𝜆𝑡 �

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp �𝑖 2𝜋𝑎𝑥𝜆𝑡
� + exp �−𝑖 2𝜋𝑥𝑎𝜆𝑡

�

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2 exp �

𝑖𝜋�𝑥2+𝑎2�

𝜆𝑡 �

𝑒𝑖
𝜋
4√2𝜋𝜆𝑡

cos �
2𝜋𝑎𝑥
𝜆𝑡 �

=
√2 exp �

𝑖𝜋�𝑥2+𝑎2�

𝜆𝑡 − 𝑖𝜋4 �

√𝜋𝜆𝑡
cos �

2𝜋𝑎𝑥
𝜆𝑡 �

=
√2 exp �𝑖 �

𝜋�𝑥2+𝑎2�

𝜆𝑡 − 𝜋
4 ��

√𝜋𝜆𝑡
cos �

2𝜋𝑎𝑥
𝜆𝑡 �

Hence the final solution is

𝑢 (𝑥, 𝑡) = �
2

𝜋𝜆𝑡 exp �𝑖
𝜋�𝑥2+𝑎2�

𝜆𝑡 − 𝜋
4 � cos � 2𝜋𝑎𝜆

𝑥
𝑡
� (9)

Hence the real part of the solution is

ℜ (𝑢 (𝑥, 𝑡)) =
�

2
𝜋𝜆𝑡

cos
⎛
⎜⎜⎜⎜⎝
𝜋 �𝑥2 + 𝑎2�

𝜆𝑡
−
𝜋
4

⎞
⎟⎟⎟⎟⎠ cos �

2𝜋𝑎
𝜆

𝑥
𝑡 �

And the imaginary part of the solution is

ℑ (𝑢 (𝑥, 𝑡)) =
�

2
𝜋𝜆𝑡

sin
⎛
⎜⎜⎜⎜⎝
𝜋 �𝑥2 + 𝑎2�

𝜆𝑡
−
𝜋
4

⎞
⎟⎟⎟⎟⎠ cos �

2𝜋𝑎
𝜆

𝑥
𝑡 �

The 𝜋
4 is just a phase shift. Here is a plot of the Real and Imaginary parts of the solution, using

for 𝜆 = 600 × 10−9𝑚𝑒𝑡𝑒𝑟, 𝑎 = 1000 × 10−9𝑚𝑒𝑡𝑒𝑟 at 𝑡 = 1 second

In[15]:= a = 1000 * 10^(-9);

λ = 600 * 10^(-9);

u[x_, t_] :=
2

π λ t

ExpI
π x

2
+ a2

λ t

-
π

4
 Cos

2 π a

λ

x

t



In[59]:= Clear[t];

Plot[Re@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel → {{"u(x,t)", None}, {"x", "Real part of solution at t= 1 second"}}, BaseStyle → 12,

PlotStyle → Red, PlotTheme → "Classic"]

Out[60]=

-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-400

-200

0

200

400

x

u(
x,
t)

Real part of solution at t= 1 second
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In[61]:= Plot[Im@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel → {{"u(x,t)", None}, {"x", "Imaginary part of solution at t= 1 second"}}, BaseStyle → 12,

PlotStyle → Red, PlotTheme → "Classic"]

Out[61]=

-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-400

-200

0

200

400

x

u(
x,
t)

Imaginary part of solution at t= 1 second

We see the rapid oscillations as distance goes away from the origin. This is due to the 𝑥2 term making
the radial frequency value increase quickly with 𝑥. We now plot the |𝑢 (𝑥, 𝑡)|2. Looking at solution in

(9), and since complex exponential is ±1, then the amplitude is governed by �
2

𝜋𝜆𝑡 cos � 2𝜋𝑎𝜆
𝑥
𝑡
� part

of the solution. Hence

|𝑢 (𝑥, 𝑡)|2 = 2
𝜋𝜆𝑡 cos2 � 2𝜋𝑎𝜆

𝑥
𝑡
�

These plots show the intensity at di�erent time values. We see from these plots, that the intensity
is well behaved in that it does not have the same rapid oscillations seen in the 𝑢 (𝑥, 𝑡) solution plots.

In[154]:= a = 1000 * 10^(-9);

λ = 600 * 10^(-9);

intensity[x_, t_] :=
2

π λ t

Cos
2 π a

λ

x

t



2

p =

Plotintensity[x, #], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel → {"u(x,t)", None}, "x", Row" intensity |u 2 of solution at t =", #, " second",

BaseStyle → 12, PlotStyle → Red, PlotTheme → "Classic", ImageSize → 300 & /@ Range[0.002, 0.012, 0.002];
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Out[153]=

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

1× 108

2× 108

3× 108

4× 108

5× 108

x

u(
x,
t)

intensity |u 2 of solution at t =0.002 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

5.0× 107

1.0× 108

1.5× 108

2.0× 108

2.5× 108

x

u(
x,
t)

intensity |u 2 of solution at t =0.004 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

5.0× 107

1.0× 108

1.5× 108

x

u(
x,
t)

intensity |u 2 of solution at t =0.006 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2.0× 107
4.0× 107
6.0× 107
8.0× 107
1.0× 108
1.2× 108
1.4× 108

x
u(
x,
t)

intensity |u 2 of solution at t =0.008 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2× 107

4× 107

6× 107

8× 107

1× 108

x

u(
x,
t)

intensity |u 2 of solution at t =0.01 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2× 107

4× 107

6× 107

8× 107

x

u(
x,
t)

intensity |u 2 of solution at t =0.012 second

Now Comparing argument to cosine in above to standard form in order to find the period:

2𝜋𝑎
𝜆

𝑥
𝑡
= 2𝜋𝑓𝑡

Where 𝑓 is now in hertz, then when 𝑥 = 𝑡, we get by comparing terms that

2𝜋𝑎
𝜆

1
𝑡
= 2𝜋𝑓

𝑎
𝜆
1
𝑡
= 𝑓

But 𝑓 = 1
𝑇 where 𝑇 is the period in seconds. Hence 𝑎

𝜆
1
𝑡 =

1
𝑇 or

𝑇 = 𝜆𝑡
𝑎

So period on intensity is 𝜆𝑡
𝑎 at 𝑥 = 𝑡 (why problem statement is saying period is 𝜆𝑡

2𝑎?).
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0.4 problem 2 (optional)

2. Consider the 1D heat equation in a semi-infinite domain:

∂u

∂t
= ν

∂2u

∂x2
, x ≥ 0

with boundary conditions: u(0, t) = exp(−iωt) and u(x, t) bounded as x → ∞. In order
to construct a real forcing, we need both positive and negative real values of ω. Consider
that this forcing has been and will be applied for all time. This “pure boundary value
problem” could be an idealization of heating the surface of the earth by the sun (periodic
forcing). One could then ask, how far beneath the surface of the earth do the periodic
fluctuations of the heat propagate?

(a) Consider solutions of the form u(x, t;ω) = exp(ikx) exp(−iωt). Find a single expression
for k as a function of (given) ω real, sgn(ω) and ν real.

Write u(x, t;ω) as a function of (given) ω real, sgn(ω) and ν real. To obtain the most
general solution by superposition, one would next integrate over all values of ω, −∞ <
ω <∞ (do not do this).

(b) The basic solution can be written as u(x, t;ω) = exp(−iωt) exp(−σx) exp(iσ sgn(ω) x).
Find σ in terms of |ω| and ν.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

3. Here we study the competing effects of nonlinearity and diffusion in the context of
Burger’s equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(3a)

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solved
exactly using the Cole-Hopf transformation

u = −2ν
φx
φ

(3b)

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = ψx (where the subscript denotes partial differentiation) and integrate once
with respect to x.

(b) Let ψ = −2ν ln(φ) to get the diffusion equation for φ.

(c) Solve for φ with φ(x, 0) = Φ(x), −∞ < x < ∞. In your integral expression for φ, use
dummy variable η to facilitate the remaining parts below.

(d) Show that

Φ(x) = exp

[

−1

2ν

∫ x

xo

F (α)dα

]

where u(x, 0) = F (x), with xo arbitrary which we will take to be positive for convenience
below (xo > 0).

2

0.4.1 Part (a)

𝜕𝑢
𝜕𝑡

= 𝜈
𝜕2𝑢
𝜕𝑥2

(1)

𝑢 (0, 𝑡) = 𝑒−𝑖𝜔𝑡

And 𝑥 ≥ 0, 𝑢 (∞, 𝑡) bounded. Let

𝑢 (𝑥, 𝑡) = 𝑒𝑖𝑘𝑥𝑒−𝑖𝜔𝑡

Hence
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑖𝜔𝑒𝑖𝑘𝑥𝑒−𝑖𝜔𝑡

= −𝑖𝜔𝑢 (𝑥, 𝑡) (2)

And
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥

= 𝑖𝑘𝑒𝑖𝑘𝑥𝑒−𝑖𝜔𝑡

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

= −𝑘2𝑒𝑖𝑘𝑥𝑒−𝑖𝜔𝑡

= −𝑘2𝑢 (𝑥, 𝑡) (3)

Substituting (2,3) into (1) gives

−𝑖𝜔𝑢 (𝑥, 𝑡) = −𝜈𝑘2𝑢 (𝑥, 𝑡)

Since 𝑢𝜔 (𝑥, 𝑡) can not be identically zero (trivial solution), then the above simplifies to

−𝑖𝜔 = −𝜈𝑘2

Or

𝑘2 = 𝑖𝜔
𝜈 (4)

Writing

𝜔 = sgn (𝜔) |𝜔|
Where

sgn (𝜔) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1 𝜔 > 0
0 𝜔 = 0
−1 𝜔 < 0
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Then (4) becomes

𝑘2 =
𝑖 sgn (𝜔) |𝜔|

𝜈

𝑘 = ±√
𝑖 √sgn (𝜔)√|𝜔|

√𝜈
Since

√𝑖 = 𝑖
1
2 = �𝑒𝑖

𝜋
2 �

1
2
= 𝑒𝑖

𝜋
4

Hence 𝑘 can be written as

𝑘 = ±
𝑒𝑖

𝜋
4 √sgn (𝜔)√|𝜔|

√𝜈
case A. Let start with the positive root hence

𝑘 =
𝑒𝑖

𝜋
4 √sgn (𝜔)√|𝜔|

√𝜈
Case (A1) 𝜔 < 0 then the above becomes

𝑘 =
𝑖𝑒𝑖

𝜋
4 √|𝜔|

√𝜈
=
𝑒𝑖

𝜋
2 𝑒𝑖

𝜋
4 √|𝜔|

√𝜈
=
𝑒𝑖

3𝜋
4 √|𝜔|

√𝜈

= �cos 3
4
𝜋 + 𝑖 sin 3

4
𝜋�

√|𝜔|

√𝜈

= �−
1

√2
+ 𝑖

1

√2
�
√|𝜔|

√𝜈

=
⎛
⎜⎜⎜⎝−

1

√2
√|𝜔|

√𝜈
+ 𝑖

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠

And the solution becomes

𝑢 (𝑥, 𝑡) = exp (𝑖𝑘𝑥) exp (−𝑖𝜔𝑡)

= exp
⎛
⎜⎜⎜⎝𝑖
⎛
⎜⎜⎜⎝−

1

√2
√|𝜔|

√𝜈
+ 𝑖

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠ 𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡)

= exp
⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝−

1

√2
√|𝜔|

√𝜈
𝑖 −

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠ 𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡)

= exp
⎛
⎜⎜⎜⎝−

1

√2
√|𝜔|

√𝜈
𝑥
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝−

1

√2
√|𝜔|

√𝜈
𝑖𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡)

We are told that 𝑢 (∞, 𝑡) is bounded. So for large 𝑥 we want the above to be bounded. The complex
exponential present in the above expression cause no issue for large 𝑥 since they are oscillatory

trig functions. We then just need to worry about exp �− 1

√2
√|𝜔|

√𝜈
𝑥� for large 𝑥. This term will decay

for large 𝑥 since − 1

√2
√|𝜔|

√𝜈
is negative (assuming 𝜈 > 0 always). Hence positive root hence worked

OK when 𝜔 < 0. Now we check if it works OK also when 𝜔 > 0

case A2 When 𝜔 > 0 then 𝑘 now becomes

𝑘 =
𝑒𝑖

𝜋
4 √sgn (𝜔)√|𝜔|

√𝜈

=
𝑒𝑖

𝜋
4 √𝜔

√𝜈

= �cos 𝜋
4
+ 𝑖 sin 𝜋

4
� √𝜔

√𝜈

= �
1

√2
+ 𝑖

1

√2
� √𝜔

√𝜈

=
1

√2
√𝜔

√𝜈
+ 𝑖

1

√2
√𝜔

√𝜈
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And the solution becomes

𝑢 (𝑥, 𝑡) = exp (𝑖𝑘𝑥) exp (−𝑖𝜔𝑡)

= exp �𝑖 �
1

√2
√𝜔

√𝜈
+ 𝑖

1

√2
√𝜔

√𝜈
� 𝑥� exp (−𝑖𝜔𝑡)

= exp ��𝑖
1

√2
√𝜔

√𝜈
−

1

√2
√𝜔

√𝜈
� 𝑥� exp (−𝑖𝜔𝑡)

= exp �−
1

√2
√𝜔

√𝜈
𝑥� exp �𝑖

1

√2
√𝜔

√𝜈
𝑥� exp (−𝑖𝜔𝑡)

We are told that 𝑢 (∞, 𝑡) is bounded. So for large 𝑥 we want the above to be bounded. The complex
exponential present in the above expression cause no issue for large 𝑥 since they are oscillatory

trig functions. We then just need to worry about exp �− 1

√2
√𝜔

√𝜈
𝑥� for large 𝑥. This term will decay

for large 𝑥 since − 1

√2
√𝜔

√𝜈
is negative (assuming 𝜈 > 0 always). Hence positive root hence worked

OK when 𝜔 > 0 as well.

Let check what happens if we use the negative root.

case B. negative root hence

𝑘 = −
𝑒𝑖

𝜋
4 √sgn (𝜔)√|𝜔|

√𝜈
Case (A1) 𝜔 < 0 then the above becomes

𝑘 = −
𝑖𝑒𝑖

𝜋
4 √|𝜔|

√𝜈
= −

𝑒𝑖
𝜋
2 𝑒𝑖

𝜋
4 √|𝜔|

√𝜈
= −

𝑒𝑖
3𝜋
4 √|𝜔|

√𝜈

= − �cos 3
4
𝜋 + 𝑖 sin 3

4
𝜋�

√|𝜔|

√𝜈

= − �−
1

√2
+ 𝑖

1

√2
�
√|𝜔|

√𝜈

= −
⎛
⎜⎜⎜⎝−

1

√2
√|𝜔|

√𝜈
+ 𝑖

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎝
1

√2
√|𝜔|

√𝜈
− 𝑖

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠

And the solution becomes

𝑢 (𝑥, 𝑡) = exp (𝑖𝑘𝑥) exp (−𝑖𝜔𝑡)

= exp
⎛
⎜⎜⎜⎝𝑖
⎛
⎜⎜⎜⎝
1

√2
√|𝜔|

√𝜈
− 𝑖

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠ 𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡)

= exp
⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝𝑖
1

√2
√|𝜔|

√𝜈
+

1

√2
√|𝜔|

√𝜈

⎞
⎟⎟⎟⎠ 𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡)

= exp
⎛
⎜⎜⎜⎝+

1

√2
√|𝜔|

√𝜈
𝑥
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝
1

√2
√|𝜔|

√𝜈
𝑖𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡)

We are told that 𝑢 (∞, 𝑡) is bounded. So for large 𝑥 we want the above to be bounded. The complex
exponential present in the above expression cause no issue for large 𝑥 since they are oscillatory

trig functions. We then just need to worry about exp �+ 1

√2
√|𝜔|

√𝜈
𝑥� for large 𝑥. This term will blow up

for large 𝑥 since + 1

√2
√|𝜔|

√𝜈
is positive (assuming 𝜈 > 0 always). Hence we reject the case of negative

sign on 𝑘. And pick

𝑘 =
𝑒𝑖

𝜋
4 √sgn (𝜔)√|𝜔|

√𝜈

= �
1

√2
+ 𝑖

1

√2
�
√sgn (𝜔)√|𝜔|

√𝜈
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Therefore the solution is

𝑢 (𝑥, 𝑡; 𝜔) = exp (𝑖𝑘𝑥) exp (−𝑖𝜔𝑡)

= exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 1

√2
+ 𝑖 1

√2
� √sgn (𝜔)√|𝜔|

√𝜈

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp (−𝑖𝜔𝑡)

= exp �𝑖 �
1

√2𝜈
�sgn (𝜔)√|𝜔| + 𝑖

1

√2𝜈
�sgn (𝜔)√|𝜔| � 𝑥� exp (−𝑖𝜔𝑡)

= exp �𝑖
1

√2𝜈
�sgn (𝜔)√|𝜔|𝑥 −

1

√2𝜈
�sgn (𝜔)√|𝜔| 𝑥� exp (−𝑖𝜔𝑡)

Hence

𝑢 (𝑥, 𝑡; 𝜔) = exp �−√sgn(𝜔)√|𝜔|
√2𝜈

𝑥� exp �𝑖√sgn(𝜔)√|𝜔|
√2𝜈

𝑥� exp (−𝑖𝜔𝑡)

The general solution 𝑢 (𝑥, 𝑡) is therefore the integral over all 𝜔, hence

𝑢 (𝑥, 𝑡) = �
∞

𝜔=−∞
𝑢 (𝑥, 𝑡; 𝜔) 𝑑𝜔

= �
∞

−∞
exp

⎛
⎜⎜⎜⎝−
√sgn (𝜔)√|𝜔|

√2𝜈
𝑥
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝
𝑖√sgn (𝜔)√|𝜔|

√2𝜈
𝑥
⎞
⎟⎟⎟⎠ exp (−𝑖𝜔𝑡) 𝑑𝜔

= �
∞

−∞
exp

⎛
⎜⎜⎜⎝−
√sgn (𝜔)√|𝜔|

√2𝜈
𝑥
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝𝑖
⎡
⎢⎢⎢⎣
√sgn (𝜔)√|𝜔|

√2𝜈
𝑥 − 𝜔𝑡

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ 𝑑𝜔

= �
∞

−∞
exp

⎛
⎜⎜⎜⎝−
√sgn (𝜔)√|𝜔|

√2𝜈
𝑥
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝𝑖𝑥

⎡
⎢⎢⎢⎣
√sgn (𝜔)√|𝜔|

√2𝜈
− 𝜔

𝑡
𝑥

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ 𝑑𝜔

0.4.2 Part (b)

From part (a), we found that

𝑢 (𝑥, 𝑡; 𝜔) = exp �−√sgn(𝜔)√|𝜔|
√2𝜈

𝑥� exp �𝑖√sgn(𝜔)√|𝜔|
√2𝜈

𝑥� exp (−𝑖𝜔𝑡) (1)

comparing the above to expression given in problem which is

𝑢 (𝑥, 𝑡) = exp (−𝜎𝑥) exp (𝑖𝜎 sgn (𝜔) 𝑥) exp (−𝑖𝜔𝑡) (2)

Therefore, by comparing exp (−𝜎𝑥) to exp �−√sgn(𝜔)√|𝜔|
√2𝜈

𝑥� we see that

𝜎 = √sgn(𝜔)√|𝜔|
√2𝜈

(3)

0.4.3 part (c)

Using the solution found in part (a)

𝑢 (𝑥, 𝑡; 𝜔) = exp (−𝜎𝑥) exp (𝑖𝜎 sgn (𝜔) 𝑥) exp (−𝑖𝜔𝑡)

To find numerical estimate, assuming 𝜔 > 0 for now

𝑢 (𝑥, 𝑡; 𝜔) = exp (−𝜎𝑥) exp (𝑖𝜎𝑥) exp (−𝑖𝜔𝑡)
= 𝑒−𝜎𝑥 (cos 𝜎𝑥 + 𝑖 sin 𝜎𝑥) (cos𝜔𝑡 − 𝑖 sin𝜔𝑡)
= 𝑒−𝜎𝑥 (cos 𝜎𝑥 cos𝜔𝑡 − 𝑖 sin𝜔𝑡 cos 𝜎𝑥 + 𝑖 cos𝜔𝑡 sin 𝜎𝑥 + sin 𝜎𝑥 sin𝜔𝑡)
= 𝑒−𝜎𝑥 (cos (𝜎𝑥) cos (𝜔𝑡) + sin (𝜎𝑥) sin (𝜔𝑡) + 𝑖 (cos (𝜔𝑡) sin (𝜎𝑥) − sin (𝜔𝑡) cos (𝜎𝑥)))
= 𝑒−𝜎𝑥 (cos (𝑡𝜔 − 𝑥𝜎) − 𝑖 sin (𝑡𝜔 − 𝑥𝜎))

Hence will evaluate

Re (𝑢 (𝑥, 𝑡; 𝜔)) = 𝑒−𝜎𝑥 Re (cos (𝑡𝜔 − 𝑥𝜎) − 𝑖 sin (𝑡𝜔 − 𝑥𝜎))
= 𝑒−𝜎𝑥 cos (𝑡𝜔 − 𝑥𝜎)

I assume here it is asking for numerical estimate. We only need to determine numerical estimate
for 𝜎. For 𝜔, using the period 𝑇 = 24 hrs or 𝑇 = 86 400 seconds, then 𝜔 = 2𝜋

𝑇 is now found. Then
we need to determine 𝜈, which is thermal di�usivity for earth crust. There does not seem to be an
agreed on value for this and this value also changed with depth inside the earth crust. The value I
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found that seem mentioned more is 1.2 × 10−6 meter2 per second. Hence

𝜎 = �
2𝜋

86 400

�2 �1.2 × 10
−6�

= 5.505 per meter

Therefore

Re (𝑢 (𝑥, 𝑡; 𝜔)) = 𝑒−5.505𝑥 cos (𝑡𝜔 − 5.505𝑥)

Using 𝜔 = 2𝜋
86 400 = 7.29× 10

−5 rad/sec. Now we can use the above to estimate fluctuation of heat over
24 hrs period. But we need to fix 𝑥 for each case. Here 𝑥 = 0 means on the earth surface and 𝑥 say
10, means at depth 10 meters and so on as I understand that 𝑥 is starts at 0 at surface or earth and
increases as we go lower into the earth crust. Plotting at the above for 𝑥 = 0, 0.5, 1, 1.5, 2 I see that
when 𝑥 > 2 then maximum value of 𝑒−5.505𝑥 cos (𝑡𝜔 − 5.505𝑥) is almost zero. This seems to indicate a
range of heat reach is about little more than 2 meters below the surface of earth.

This is a plot of the fluctuation in temperature at di�erent 𝑥 each in separate plot, then later a plot
is given that combines them all.
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This plot better show the di�erence per depth, as it combines all the plots into one.
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