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0.1 problem 3.26 (page 139)

Problem Perform local analysis solution to (x-1)y” —xy’ +y = 0 at x = 1. Use the result
of this analysis to prove that a Taylor series expansion of any solution about x = 0 has an
infinite radius of convergence. Find the exact solution by summing the series.

solution
Writing the ODE in standard form
y' () +a(@y () +bH)yx) =0 (1)

77 X

1
o +(x_1)y=0 (2)

Where a(x) = D 1) b(x) = oD 1)
and b (x). The next step is to classify the type of the singular point. Is it regular singular
point or irregular singular point?

The above shows that x =1 is singular point for both a (x)

hm(x 1)a(x)—hm(x 1)m

=-1
And

hm(x 1) b(x)—hm(x 1) (1—1)

=0

Because the limit exist, then x =1 is a regular singular point. Therefore solution is assumed

to be a Frobenius power series given by

yo) =D a,(x-1)""
n=0

Substituting this in the original ODE (x -1)y” — xy’ +y = 0 gives
y )=+ e, (=1

n=0
y'(x) =Y (n+r)(n+r-1)a,(x- )2
n=0
In order to move the (x —1) inside the summation, the original ODE (x -1)y"” —xy' +y =0
is first rewritten as

x-Dy"-x-1)y -y +y=0 (3)



Substituting the Frobenius series into the above gives

(x_l)i(”+7’)(n+7’—1)an(x_1)”+7—2
n=0

—(x-1) i (n+7)a,(x-1)"""1
n=0

- i (n+ra,(x-1)""""

n=0

+ )4, (x-1)"" =0
n=0

i m+r)(n+r-1)a,(x-1)"""

n=0

- i n+r)a,(x-1)"

n=0

- i (n+7)a,(x-1)""""

n=0
+ Ean x-1)"=0
n=0

Adjusting all powers of (x —1) to be the same by rewriting exponents and summation indices
gives
Z m+r)(m+r-1)a,(x-1)"""

n=0

- i m+r-1)a,  (x-1)"""

n=1

- f] (n+7)a,(x-1)""""

n=0
+ )y (x - =0
n=1
Collecting terms with same powers in (x —1) simplifies the above to

i (n+r)(m+r-1)—-m+r)a,x-1)"""- i m+r-2)a, (x-1)"""1=0 (4)
n=0 n=1
Setting n = 0 gives the indicial equation
(n+r)(n+r-1)-(m+r)ag=0
((r)(r=1)=r)ag =0
Since ay # 0 then the indicial equation is
Nr-1)-r=0
r2-2r=0
r(r-2)=0



The roots of the indicial equation are therefore
r = 2
Yy = 0

Each one of these roots generates a solution to the ODE. The next step is to find the solution
1 (x) associated with » = 2. (The largest root is used first). Using r = 2 in equation (4) gives

i (n+2)(n+1) = (n+2))a, (x-1)"" - i na,_, (x—1)" =0

n=0 n=1
SNnm+2)a,x-1)"" =Y na,, (x-1)"" =0 (5)
n=0 n=1

At n >1, the recursive relation is found and used to generate the coefficients of the Frobenius
power series

n(n+2)a,—-na, =0
_n
I i)
Few terms are now generated to see the pattern of the series and to determine the closed
form. For n =1

1
alzgao
Forn=2
2 21 1
Y I e R DR
Forn=3
3 31 1
BE3E+2)m T 1512707 50"
Forn=4
4 11 1
M @+ T 660 360

And so on. From the above, the first solution becomes

yr () = Y a, (x-1)""?

n=0
:ao(x—1)2+a1(x—1)3+a2(x—1)4+a3(x—1)4+a4(x—1)5+---

:(x—l)z(ao+a1(x—1)+a2(x—1)2+a3(x—1)3+a4(x—1)4+---)

= (x-1) (ao + 1ao (x-1)+ lao(x—l)2 + lao(x—l)3 + Lao (x-1*+ )

:ao(x—1)2(1+%(x—1)+11—2(x—1)2+61—0(x—1)3+31ﬁ(x_1)4+...) (6)

To find closed form solution to y; (x), Taylor series expansion of e* around x =1 is found



first

;(x 1)+ (x 1 +—(x 1 +—(x 10 +-

ze+e(x—1)+§(x—1)2+—(x—1) +—(x—1) +—(x—1) +

xe+e(x—-1)+

ze(1+(x—1)+ (x-1)*+ - (x 1)° + 51 (x 1)* +@(x 1)° +)

Multiplying the above by 2 gives
1 1 1
2e* ze(2+2(x—1)+(x—1)2+ 5(x—1)3 + E(x—1)4+ @(x—1)5+ )
Factoring (x - 1)2 from the RHS results in
1 1 1
v B a2 o Lo e, v s
2e ~e(2+2(x D+(x-1) (1+3(x 1)+12(x 1) +60(x 1) + )) (6A)

Comparing the above result with the solution y; (x) in (6), shows that the (6A) can be written
in terms of y; (x) as

Zex:6(2+2(x_1)+(x_1)z(m_m))

ag (x - 1)2
Therefore
26 = (2 +2(x—1)+ & (x))
ag
261 =242 (x—1) + 1Y
g
26 —2 -2 (x-1) = 1O
ag
Solving for y; (x)
y1 (x) = ag (26"‘1 -2-2(x- 1))
= a (21 -2 -2x +2)
= a (28"‘1 -~ 2x)
2
= ?e — 2apx
2610

Let — = C; and -24y = C,, then the above solution can be written as

1 (X) = Clex + sz

Now that y; (x) is found, which is the solution associated with r = 2, the next step is to find
the second solution y, (x) associated with r = 0. Since r, —r; = 2 is an integer, the solution
can be either case II(b) (i) or case II (b) (i) as given in the text book at page 72.

From equation (3.3.9) at page 72 of the text, using N = 2 since N = r,—r; and where p (x) = -
and g (x) =1 in this problem by comparing our ODE with the standard ODE in (3.3.2) at



page 70 given by

AR 1€))
(x = xp) (x - x0)2
Expanding p (x), g (x) in Taylor series
pE) = 2pnx-1)"

n=0
g@) = Y4, (x-1)"
n=0

Since p (x) = —x in our ODE, then p, = -1 and p; = -1 and all other terms are zero. For g (x),
which is just 1 in our ODE, then gy =1 and all other terms are zero. Hence

yll +

po=-1
p1=-1
q0=1
N=2
r=0

The above values are now used to evaluate RHS of 3.3.9 in order to find which case it is.
(book uses a for r)
N-1

Oay = - Z [(r + k) pn_i + qN_k]ak (3.3.9)
k=0

Since N = 2 the above becomes
1
0ay = = 3, [(r + k) pok + Gok ] e
k=0

Using r = 0, since this is the second root, gives
1

Oay = - Y, (kpz_k + (k) A
k=0

=- ((OPZ—O + 42—0) ap + (P2-1 + 42—1) 111)
== ((OPZ + Clz) ag + (p1 + Ih) ﬂ1)
= _(0‘”12)110—(}91 +‘11)511
Since g, = 0,p; = -1,4; =1, therefore
0ay=-(0+0)ag—(-1+1) a4
=0
The above shows that this is case II(b) (i), because the right side of 3.3.9 is zero. This means

the second solution y; (x) is also a Fronbenius series. If the above was not zero, the method
of reduction of order would be used to find second solution.



Assuming v, (x) = ¥ b, (x —1)""", and since r = 0, therefore

yo (¥) = Y by (x—1)"
n=0

Following the same method used to find the first solution, this series is now used in the ODE
to determine b,,.

[o¢]

V) = Ynb, (=1 = Fnb, (=1 = 3 (14 1) by (x-1)"
n=0 n=1 n=0

Yy (x) = f]n(n +1) byyy (x=1)"" = in(n +1) byyy (x=1)"" = f} (n+1) (1 +2) byyp (x—1)"
n=0 n=1 n=0

The ODE (x-1)y” - (x-1)y’ -y’ + y = 0 now becomes
(x=1) D (n+1)(n+2) by (x = 1)"
n=0
—(r=1) X (1 + 1) by (= 1)"
n=0
=2+ Dby (-1
n=0

+§:bn(x—1)":0

n=0
Or
D (1 +1) (1 4+2) by (x =)™
n=0
~ Y+ )by (k-
n=0
— Y (1 + )by (x-1)"
n=0
+ )b, (x=1)"=0
n=0
Hence
D 1) (1 4+ D) by (x=1)" = Dby, (x=1)" = 3 (1 + D) by (x =" + Y by (x=1)" =0
n=1 n=1 n=0 n=0
n =0 gives

_(n+1)bn+1+bn:0
—b1+b0:0
blzbo



n >1 generates the recursive relation to find all remaining b, coeflicients
(1) (1 + 1) byyq = by ~ (1 + 1) bysy + b, = 0
(1) (1 + 1) byyy = (n +1) byyy = 1y, = by
by (1) (n+1) = (n +1)) = b, (n = 1)
I (n—-1)
) (1) - (n+1)

Therefore the recursive relation is
b,
T n+1

Few terms are generated to see the pattern and to find the closed form solution for y, (x).
Forn=1

n+1

1 1
bz:blizibo

Forn=2
b, 11 1
b= 2 ==—hy==b
3737329760
Forn=3
by 11 1
b= 3377 167007 g%
Forn=4
b 11 1
bs = —— = =—by = —by,

T4+1 524 °° 120
And so on. Therefore, the second solution is

Yo () = Y by (x=1)"
n=0
=by+by (x=1)+by (x —1)% + -

3 1 2 1 3 1 s 1 5
—bo'f‘bo(X 1)+2b0(x 1) +6b0(x 1) +24b0(x 1) +120b0(x 1) +

3 1 2 1 3 1 s 1 5
= by (1 +(x-1)+ > (x-1)"+ g (x-1) + 7 (x-1)"+ 120 (x-1)" + (7A)
The Taylor series for ¢* around x =1 is

exze+e(x—1)+g(x—1)2+g(x—1)3+i(x—1)4+é(x—1)5+m

1 1 1 1
ze(1+(x—1)+E(x—1)2+g(x—1)3+ﬂ(x—1)4+m(x—l)5+---) (7B)

Comparing (7A) with (7B) shows that the second solution closed form is
ex
Yo (x) = bog

b .
Let ?0 be some constant, say Cs, the second solution above becomes

Y (x) = Ce*



Both solutions y; (x),y, (x) have now been found. The final solution is

y (@) =y () +y2 ()
1) Q@
= C16¥ + Cyx + Cge*
= Cye® + Cox
Hence, the exact solution is
y(x) = Ae* + Bx (7)
Where A, B are constants to be found from initial conditions if given. Above solution is now
verified by substituting it back to original ODE
y =Ae*+B
Yy’ = Ae*
Substituting these into (x —1)y” — xy’ +y = 0 gives
(x—1) Ae* —x(Ae* + B) + Ae* + Bx =0
xAe* — Ae* —xAe* —xB+ Ae* + Bx =0
-Ae*—xB+ Ae*+Bx =0
0=0
To answer the final part of the question, the above solution (7) is analytic around x = 0 with

infinite radius of convergence since exp (-) is analytic everywhere. Writing the solution as
(oY xﬂ
y(x) = (Anz:;)m) + Bx
The function x have infinite radius of convergence, since it is its own series. And the ex-
ponential function has infinite radius of convergence as known, verified by using standard
ratio test

An1 X

ay

A lim = A lim

n—00

] | |=0
nl—>nolo n+1

n+ly ) xn!
im
n—oo

(n+1)x" (n+1)!

For any x. Since the ratio is less than 1, then the solution y (x) expanded around x = 0 has
an infinite radius of convergence.
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0.2 problem 9.8 (page 480)

Problem Use boundary layer to find uniform approximation with error of order O (82) for
the problem ¢y” +y" +y = 0 with y (0) = ¢, (1) = 1. Compare your solution to exact solution.
Plot the solution for some values of ¢.

solution

ey +y ' +y=0 1)

Since a(x) =1 > 0, then a boundary layer is expected at the left side, near x = 0. Matching
will fail if this was not the case. Starting with the outer solution near x = 1. Let

Y () = ) €y, (%)
n=0
Substituting this into (1) gives
e(ve +evy + ey + )+ (Yo +eyi + €25+ ) + (Vo + ey + 22 + ) = 0 2)

Collecting powers of O (50) results in the ODE

Yo ~ Yo
d
o gy
Yo
In |y0| ~-x+Cy
Y8 (1) ~ Cre™ + O (e) (3)
C; is found from boundary conditions y (1) = 1. Equation (3) gives
1= Cle_l
Cl =e

Hence solution (3) becomes
ygut (x) ~ el—x
y§" (x) is now found. Using (2) and collecting terms of O (51) gives the ODE
Vi+ty1r~ Yo (4)
But
Y () = el
vy (@) = e
Using the above in the RHS of (4) gives

vi+y ~—e"
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The integrating factor is e*, hence the above becomes

;_x (ylex) ~ —p¥pl™x

d
2 e~ e

Integrating both sides gives

1165 ~ —ex + Cy

Y3 (x) ~ —xe!™ + Cpe™ (5)
Applying boundary conditions y (1) = 0 to the above gives
0=-1+Cye!
Cy=e

Hence the solution in (5) becomes
Y3 (x) ~ —xel + 1
~(1-x)el™
Therefore the outer solution is
Y (@) = yo + ey
=el™ +e(l-x)el™ (6)

Now the boundary layer (inner) solution ¥ (x) near x = 0 is found. Let & = Cip be the inner

variable. The original ODE is expressed using this new variable, and p is found. Since

d dy d& d dy _ . . . od pd
F 3= 4= %6 P. The differential operator is — = ¢77— therefore
el

dx ~ d& dx dx
@2 _dd
dx2  dxdx
d d
= P — P
(5 dé) (8 dé)
2
— g—Zpd_
d&z?

-2p dzy
g2

42
Hence —z =¢
X

y and ¢y” +y +y = 0 becomes

d’y dy
—Zp_ P = =
e(e d§2)+€ d(§+y 0

ey + &Py +y =0 (7A)

The largest terms are {51‘ZV,E‘P }, balance gives 1 —2p = —p or

p=1

The ODE (7A) becomes
ety +ely +y=0 (7)
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Assuming that solution is

Yin () = D €™y = Yo + €Yy + €2y + -+

Substituting the above into (7) givens 0
e (yé’ +eyy + ) +e! (yé + eyp + ) + (yo + ey + ) =0 (8)
Collecting terms with O (6_1) gives the first order ODE to solve
Yo ~ Yo
Let z =y, the above becomes
'~z
dz —d&
Injz| ~ =& +Cy
z ~ Cye¢
Hence
Yo~ Cye™
Integrating
W@~y [etds+Cs
~ —Cye¢ +Cs 9)
Applying boundary conditions y (0) = e gives
e=-C4+Cs
Cs=e+Cy

Equation (9) becomes
Y (&) ~ —Cye ¢ +e+Cy
~ Cy (1 -~ 3‘5) +e (10)

The next leading order ¥ (&) is found from (8) by collecting terms in O (EO), which results
in the ODE

Y+~ Yo
Since ' (&) ~ Cy4 (1 - 6‘5) + e, therefore yj ~ C4e7¢ and the above becomes
Yi + i~ =Cye
The homogenous solution is found first, then method of undetermined coefficients is used
to find particular solution. The homogenous ODE is

Yin ~ Yij
This was solved above for /', and the solution is

yl,h ~ —C56’_(S + C6
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To find the particular solution, let y;, ~ A&e™¢, where & was added since e™* shows up in

the homogenous solution. Hence
Yip ~ Aec — Aée™¢
Y1, ~ —Ae™ ~ (Ae‘5 - Aée‘é)
~ —2Ae™¢ + Ale¢
Substituting these in the ODE y{, +y}, ~ —C4e™¢ results in
—2Ae~¢ + Aée¢ + Ae® — Aée ¢ ~ —Cye ¢
-A=-Cy
A=Cy
Therefore the particular solution is
y1p ~ Cale™®
And therefore the complete solution is
Y (&) ~ Y + Vi
~ —Cse™¢ + Cg + Cy&e™¢
Applying boundary conditions y (0) = 0 to the above gives
0=-C5+Cs
Ce =Cs
Hence the solution becomes
Y (&) ~ —Cse™® + Cs + Cy&e™®
~ Cs (1 — e“f) + Cyéet
The complete inner solution now becomes

Y () ~ g+ eyt

~Cy(l-et)+e+e(Cs(1-e)+ Cule)

(11)

(12)

There are two constants that need to be determined in the above from matching with the

outer solution.

lim 3 (£) ~ lim y** (x)

iS00
Cy+e+eCs~e+ce
The above shows that
Cs=e
Cyi+e=e
Cy=0

lim Cy (1-e%)+e+e(Cs(1-e7) + Cyle ) ~ lim el e (1—x)el™
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This gives the boundary layer solution " () as
Y (&) ~ e+ ce (1 - 6‘5)
~ e(l +£(1 —e‘é))

. X .
In terms of x, since & = = the above can be written as

Yy (x) ~e (1 +e (1 - e_g))
The uniform solution is therefore

Yuniform (x) ~ yi” (X) + }/O”t (x) = Ymatch

Y yout
~ e(l + e(l —e_E)) +el =+ e(1-x)el* - (e + ce)

X

~e+ee (1 -~ e_Z) +el™ 4 (e —ex)el™ — (e + ce)
1-2 - - _
~e+ec—ce ¢ +el™ +eel ™ —exel™ —e—ce
1-= _ _ _
~—ge ¢ +el™ 4 gel™ — exel™
_1
~el‘x(—€e e +1+e—€x)
Or
_1
Yuniform (x) ~ el (1 +¢ (1 -x-e é))
With error O(ez).

The above solution is now compared to the exact solution of ¢y’ +y" +y = 0 with y(0) =
e,y (1) = 1. Since this is a homogenous second order ODE with constant coefficient, it is
easily solved using characteristic equation.

eA2+A14+1=0

The roots are

-b  Vb?-4ac

A=—=
2a 2a
_—1+\/1—4e
C2e T 2¢

Therefore the solution is

y(x) = AeM* + Bet2®

—_1 V1-4e —_1 1-4¢

2£+ 2¢ x 2¢ 2 x
= Ae + Be

-x V1-4e -x —Vl-4¢

=

= AeZe 2 Y 4+ Beze 2
—x ( Vi-4¢ —\/1—4£x)
2¢e

=e2 |Ae 2 " +Be
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Applying first boundary conditions y (0) = e to the above gives

e=A+B
B=e-A
Hence the solution becomes
= Vit e,
y(x)=e2 [Ae 22 "+ (e—A)e 2 )
-x 1-4¢ Vi-de V14
=e2 | Ae 2¢ x+el_ 2 Y — Ae 2 x)
-x Vi-de -Vi-ge 1-4e
=2 A(e_Zs Y e 2 ") teoi T ") (13)

Applying second boundary conditions y (1) =1 gives

-1 V1-4e —V1-4e 1- V1-4e
]_ = Q2 A e 2 —e 2 +e 2¢e
l 1-4¢ —V1-4e 1- V1-4e
e2 = A e 2 —e 2 +e 2¢
1 1- 1-4.
e2& —e 2¢e
Y P — (14)
1-4¢ —V1-4e
e 28 —p 2

—x \/1—4ex —\/1—4ex 1- 1—4ex
yexact (x)=e2 [Ale 22 " —¢ 2 +e 2

Where A is given in (14). hence

1 1 1-4¢
. —x e2e —e 2 1-4¢ —«/1—45x 1 Vite
exac — p2¢ - 2¢ — 2e + 2¢
y (x) € 1-4¢ —V1-4¢e € € €
e 28 —p 2
In summary
exact solution asymptotic solution
1 1-4¢

X r R 1-4¢ -V1-4e 1-4¢ 1

= e2—¢ 2 x x 1- x - - -=
% || ———= (e 2 T—e 2 |+e 2 el el |1-x—-e ¢ +O(€2)

Vi-4e -v1-4¢
e 2¢e —e 2¢e

The following plot compares the exact solution with the asymptotic solution for ¢ = 0.1
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Exact solution vs. two terms asymptotic € = 0.1

3.0r 1
» Exact solution
——— Asymptotic
2.5r .
X 20f ]
>‘ .
1.5F .
1.0 1
0.0 0.2 0.4 0.6 0.8 1.0

The following plot compares the exact solution with the asymptotic solution for ¢ = 0.01.
The difference was too small to notice in this case, the plot below is zoomed to be near x = 0

Exact solution vs. two terms asymptotic € = 0.01

2.7¢ Exact solution
Asymptotic
2.6 |
X 2.5¢ 1
>
2.4¢ 1
2.3 |
0.00 0.05 0.10 0.15 0.20

X

At £ = 0.001, the difference between the exact and the asymptotic solution was not noticeable.
Therefore, to better compare the solutions, the following plot shows the relative percentage
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error given by

exact uniform
y Yy

100 Yo

yexact

For different «¢.

Percentage relative error between exact solution and asymptotic solution

10+ 1
€=0.1

8r €=0.05 ,

€=0.01 |

S 6l 1
(0]
(0]
=
©

2 4 ]
>

2, 4

BN ]

0.0 0.2 0.4 0.6 0.8 1.0

Some observations: The above plot shows more clearly how the difference between the
exact solution and the asymptotic solution became smaller as ¢ became smaller. The plot
also shows that the boundary layer near x = 0 is becoming more narrow are ¢ becomes
smaller as expected. It also shows that the relative error is smaller in the outer region than
in the boundary layer region. For example, for ¢ = 0.05, the largest percentage error in
the outer region was less than 1%, while in the boundary layer, very near x = 0, the error
grows to about 5%. Another observation is that at the matching location, the relative error
goes down to zero. One also notices that the matching location drifts towards x = 0 as ¢
becomes smaller because the boundary layer is becoming more narrow. The following table
summarizes these observations.

€ % error near x = 0 | apparent width of boundary layer
01 |10 0.2

0.05|5 0.12

0.01 |1 0.02
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0.3 problem 3

Problem (a) Find physical optics approximation to the eigenvalue and eigenfunctions of the
Sturm-Liouville problem are A — oo

—y” = A(sin (x) + 1)°y
y(©0)=0
y(m) =0
(b) What is the integral relation necessary to make the eigenfunctions orthonormal? For

some reasonable choice of scaling coefficient (give the value), plot the eigenfunctions for
n=5n=20.

(c) Estimate how large A should be for the relative error of less than 0.1%

solution

0.31 Parta

Writing the ODE as
Yy’ + A(sin (x) + 1)2]/ =0
Led]

A:—z

&

Then the given ODE becomes
€2y (x) + (sin (x) + 1)*y (x) = 0 (1)

Physical optics approximation is obtained when A — co which implies ¢ — 0*. Since the
ODKE is linear and the highest derivative is now multiplied by a very small parameter e,
WKB can therefore be used to solve it. WKB starts by assuming that the solution has the
form

Y (x) ~ exp ((1; i o"s, (x)) 6—0
n=0

Therefore, taking derivatives and substituting back in the ODE results in

1 & 1 &
v @)~ exp(g 2, 0"S (x)) (5 2, 0", (x))

n=0 n=0
(o) (o) 2 (o) (o]
¥’ (x) ~ exp (1 ), 018, (x)) (1 ), o"s;, (x)) +exp (1 ), "8, (x)) (1 ), o"Sy (x))
o n=0 o n=0 0 n=0 o n=0

11 = % could also be used. But the book uses &2.




Substituting these into (1) and canceling the exponential terms gives
2
1 & 1 &
62[(— LA (x)) +35 28" (x)) ~ = (sin (x) + 1)
o n=0 o n=0

(Sh+ 08y + ) (Sp+ 087 + ) + %2 (S +08S7 + ) ~ = (sin (x) +1)*
Z—i((sg))z +06(2818p) + ) + 2—2 (Sy +6S +--) ~ = (sin (v) +1)°

&2

62

2, 2 26 2
(% (Sé) + %5156 + ) + (%56' + €25 + ) ~ —(sin (x) + 1)?

19

(2)

22
The largest term in the left side is - (Sf]) . By dominant balance, this term has the same

order of magnitude as the right side —(sin (x) + 1)2. This implies that 6 is proportional to

¢2. For simplicity (following the book) 6 can be taken as equal to ¢
O0=c¢
Using the above in equation (2) results in
’ 2 ’rQr’ 77 2¢r : 2
((50) 2685 + ) + (€85 + €287 + ) ~ = (sin (1) + 1)
Balance of O (1) gives
’ 2 . 2
(S4) ~ - (sin(x) +1)
Balance of O (¢) gives
25155 ~ =Sy
Equation (3) is solved first in order to find S (x).
S ~ +i(sin (x) +1)
Hence

S (x) ~ iij: (sin (£) + 1) dt + C*

~ +i(t = cos (), + C*
~ +i(1+x—-cos(x))+C*

S1 (x) is now found from (4) and using Sj = +icos (x) gives

1 =+icos(x)
T T2 Eiin () + 1)
1 cos(x)
) (sin(x) +1)
Hence the solution is

S1(x) ~ —% In (1 + sin (x))

(3)

(4)

()

(6)
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Having found Sj (x) and S; (x), the leading behavior is now obtained from

1 [o¢]
y (@) ~oxp 5 10", (x))
n=0

1
~ exp - (Sp (x) + 51 (x)) + )

~ exp %SO (x) +S1(x) + )

The leading behavior is only the first two terms (called physical optics approximation in
WKB), therefore

1
y(x) ~ exp (550 (x) + 5 (x))

~ exp (ié (1+x-cos(x))+C*- %ln (1 + sin (x)))

1 .
~ ——exp (ié (1+x-cos(x))+ Ci)

V1 +sinx

Which can be written as

i (1+x—-cos (x))) - ;l (1+x—-cos (x)))

C C
(x) ~ —eXp( —exp(
Y V1 +sinx € V1 +sinx €

In terms of sin and cos the above becomes (using the standard Euler relation simplifications)

% (1 +x - cos (x))) + % (1 +x-cos (x)))

A B
(x) ~ —cos( —sin(
4 V1 +sinx V1 +sinx

Where A, B are the new constants. But A = glz, and the above becomes

y(x) ~ \/% cos (\/Z(l +x — cos (x))) + \/% sin (\/X(l +x — cos (x))) (7)

Boundary conditions are now applied to determine A, B.
y(0)=0
y(m) =0
First B.C. applied to (7) gives (where now ~ is replaced by = for notation simplicity)
0= Acos (\/X(l — Cos (0))) + Bsin (\/X(l — cos (0)))

0 = Acos(0) + Bsin (0)
0=A

Hence solution (7) becomes

y(x) ~ %sinx_ sin (\/X(l + x — cos (x)))
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Applying the second B.C. y(nr) = 0 to the above results in

0= \/K(1+n—cos(71)))

B
—m sin (
0= Bsin(\/ia +7'(+1))
= Bsin ((2 + 1) \/X)
Hence, non-trivial solution implies that
(2+7'()\//\_n:nn n=1,2,3,--
VI = nm

247

The eigenvalues are

nm?

- 2+ 71)2

Hence A, ~ n? for large n. The eigenfunctions are

n=1,2,3,--

Yy (x) ~ \/jmsm (\/_(1 +x—cos(x))) n=1,23,--

The solution is therefore a linear combination of the eigenfunctions

y(x) ~ Eyn (x)

~ 2 —_— sin (\//\—n (1+x-cos (x))) (7A)

This solution becomes more accurate for large A or large n.

0.3.2 Partb

For normalization, the requirement is that

weight
—N—

f ’ Y2 (x) (sin (x) +1)%dx = 1
0

Substituting the eigenfunction y, (x) solution obtained in first part in the above results in

n B, ) 2 .
j(; (m — sin (\/A_n(l +x — cos (x)))) (sin (x) + 1)2 dx ~ 1

The above is now solved for constant B,,. The constant B, will the same for each n for
normalization. Therefore any 7 can be used for the purpose of finding the scaling constant.



22

Selecting n =1 in the above gives

2
z — (1 +x - cos (x)))) (sin () + 12 dx ~ 1

T B ‘
sin
j(; (\/1+sinx (2"'

T 1
sz(; T sinz(zfn (1 +x—cos(x))) (sin (x) + 1> dx ~ 1

7T
Bzf sin? (L (1 + x - cos (x))) (sin(x) + 1) dx ~ 1 (8)
0 2+ 7
Letting u = ﬁ (1 + x — cos(x)), then
du T .
E = m (]. + Sin (X))

When x =0, then u = ﬁ(l+0—cos(0)):Oandwhenx:nthenu: ﬁ(l+n—cos(n)):

ﬁ (2 + 1) = @, hence (8) becomes
m 2 d
B? f sin? (1) =1
0 T dx

Bzf sin? (u)du =1
0

But sin® (1) = % — - cos2u, therefore the above becomes

24m_, (71 1
B f — ——cos2uldu=1
TC 0 2 2

1247 2( SinZu)7Z
u_
0

NI~

2 7 2
2+ 7 sin 27 sin0
B? - -10- =1
([ - (0- )
2+ 7'(B2 1
T =
27
2
B2= —
2+ 7
Therefore
3 2
" Nr+2
= 0.62369

Using the above for each B, in the solution obtained for the eigenfunctions in (7A), and
pulling this scaling constant out of the sum results in

2 & 1

7'(+2nz::1\/1+sinx

ynormahzed ~

sin (\//\—n (1+x--cos (x))) 9)

Where

nm
VA, = =1,2,3,--
" 24+m "

The following are plots for the normalized y, (x) for n values it asks to show.
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The following shows the y(x) as more eigenfunctions are added up to 55.
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y(x)
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sum of first 5 eigenfunction

sum of first 15 eigenfunction
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0.3.3 Partc
Since approximate solution is
1 o
Y (x) ~ exp (5 Z;)(S”Sn (x)) 0—0
1
~ exp (550 (x) + S1(x) + 05, (x) + ) (1)

And the physical optics approximation includes the first two terms in the series above, then
the relative error between physical optics and exact solution is given by 6S; (x). But 6 = e.
Hence (1) becomes

1
Y (x) ~ exp (ESO (x) + 51 (x) + €55 (x) + )

Hence the relative error must be such that

€S, ()], < 0.001 (1A)
Now S, (x) is found. From (2) in part(a)
2 2
%(56 + 08y + 028y + ) (Sh + 6S] + 628 + -+-) + % (Sg + 0S8y + 628y + ) ~ — (sin (x) +1)*
82 ’ 2 G’ 2 ’Qr ’ 2 62 7" 7" 2¢r : 2
. ((SO) +5(28185) +6 (25052 (1) ) n ) b (S5 087 + 875 + )~ = (sin () +1)
2 2
((56) +&(287Sp) + €2 (25655 +(s1) ) + ) +(eSy + €2y + €38y + ) ~ = (sin (x) + 1)°
A balance on O (62) gives the ODE to solve to find S,
INel4 ’ 2 144
258y ~ - (85) - S (2)

But

So ~ i (1 + sin(x))

( ,)2N (_1 cos (x) )2

! 2 (sin (x) + 1)
cos? (x)

(1 + sin (x))2

1d cos (x)
2dx ((1 + sin (x)))

1
4
Sy ~

1 1
~2 (1 + sin(x))
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Hence (2) becomes
e ’ 2 ’”
25052 ~ = (Sl) - Sl

((51)2 + 5'1')

25;

(1 cos?(x) +l( 1 ))
4 (1+sin(x))® 2 \1+sin(x)

+2i (1 + sin (x))

()
+ 4 (sin(x)+1)2 2 \1+sin(v)

2(sin (x) +1)
.1 { cos?(x)+2(1+sin(x))
4 ( (sin(x)+1)2 )
2 (sin (x) +1)
N +1’c082 (x) +2 (1 + sin (x))

8 A + sin (x))°

Sy~ —

Therefore

i (¥ cos?(t)+2(1+sin (b))
S ~ d
200 ~ fo Crsmay

8
Y cos? (t) X 1 )
il — 3
fo (1 + sin ()’ t+2fo (1 +sin (1))’ t )

i
~ +—
8(

2
Todo [ L(f)dif, I'used a lookup integration rule from tables which says f cos? (t) (a + sint)" dt =

(1+sin(t)®

Do cosP*1(t) (a + sint)", therefore using this rule the integral becomes, where now m =

-3,p=2,a=1,
f" cos? i = 1 ( cos® )x
o Q+sint)’ -3\ +sint)’/
1 ( cos® x 1)
-3\(1+ sinx)3
1 ( cos® x )
= {1- —
3 (1 + sinx)

And for f ﬁdx, half angle substitution can be used. I do not know what other substi-
+s1n(x

tution to use. Using CAS for little help on this, I get

X 1 cost 1 cost
0o (1+sint) 3(1 +sint)” 31+sint .

B COS X 1 cosx 1 1
_(_3(1+Sinx)2_§1+sinx)_(_§_§)
2 Ccos X 1 cosx
_5_3(1+Sjnx)2_§1+sinx




Hence from (3)

cos® (x) COS X
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1 cosx

Sz (X) ~ ii (1 (1

2
a +sin(x))3) ’ (5 31 +sinx? 31 +sinx))

i1 1 cosd(x) 4 2 cosx 2 cosx
_§(§_§(1+sin(x))3 5_3(1+Sinx)2_§1+sinx)
Nii (1_ cos® (x) __2cosx  2cosx )
24 (1 + sin (x))° (1 +sin x)z 1+sinx

Therefore, from (1A)

€S, ()], < 0.001

i cos? (x) 2cosx 2cosx
éﬂ _m _(1+sinx)2_1+Siﬂx
1 cos® (x) 2cosx 2cosx

24|\ 1+sin()y  (1+siny)?® 1+sinx
cos? (x) 2cosx 2cosx
T arsn@)’  @+smx? 1+sinx

2cosx 2cosx

cos3(x)
(1+sin x)2 I+sinx

(1+sin(x))

The maximum value of (1 -

found and used to find ¢. A plot of the above shows the maximum is maximum at the end,

<0.001

max

< 0.001

max

<0.024

max

(2)

) between x = 0 and x = 7t is now

at x = 7 (Taking the derivative and setting it to zero to determine where the maximum is

can also be used).

Cos[x]3

(1+Sin[x])3

2 Cos[x] 2 Cos[x]
myResult = |1 - +4- - ;

(1+Sin[x])2 1+Sin[x]

Plot [myResult, {x, @, Pi}, PlotRange » All, Frame - True, GridLines -» Automatic, GridLinesStyle - LightGray,

FrameLabel » {{"s, (x)", None}, {"x", "Finding where maximum S, (x)
FrameTicks -» {Automatic, {{@, Pi/4, Pi/2, 3/4Pi, Pi}, None}}, ImageSize - 400]

Finding where maximum S;(x) is, part(c)

S2(x)

x NIy
=

Therefore, at x = 7
cos®x
(1 -

. 2cosx cos® (1)
(1 + sin x)3

2 cos x )
(1 +sinx)? 1+sinx N

(1 + sin n)3

is, part(c)"}}, PlotStyle - Red, BaseStyle -» 14,

2CosSTt 2cosT

(1 +sinn)®> 1+sinn

|
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Hence (2) becomes
10e < 0.024
€ £0.0024

VA

Vis_ L

0.0024
VA > 416.67
Hence

A >17351.1

2.2
To find which mode this corresponds to, since A, = (Z—n)z, then need to solve for n
+7T

nm?

2+ 7z)2
n2n2 = (17351.1) (2 + )

o \/ (17351.1) (2 + )

2

17351.1 =

= 215.58

Hence the next largest integer is used

n =216

To have relative error less than 0.1% compared to exact solution. Therefore using the result
obtained in (9) in part (b) the normalized solution needed is

2 1 (nrc
sin (1 +x—cos(x)))
7T+2n§::1\/1+sinx 2+m

The following is a plot of the above solution adding all the first 216 modes for illustration.

ynormahzed ~



In[42]:=

29

ClearAll[x, n, lam]

2 1 . nPi
mySol[x_, max_] := Sqrt[ ] Sum[ 51n[ (1+x-Cos[x]) ] , i, 1, max}];
Pis+2 sqrt[1+Sin[x]] 2+Pi

p[n_] :=Plot[mySol[x, n], {x, @, Pi}, PlotRange -» All, Frame - True,
FrameLabel -» {{"y (x)", None}, {"x", Row[{"y,(x) for n =", n}]}}, BaseStyle -» 14, GridLines - Automatic,
GridLinesStyle -» LightGray, ImageSize » 600, PlotStyle - Red,
FrameTicks » { {Automatic, None}, {{@, Pi/4, Pi/2, 3/4Pi, Pi}, None}}, PlotRange - All]

p[216]
Yn(x) for n =216

1001

60

y(x)

40¢
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