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0.1 problem 3.26 (page 139)
Problem Perform local analysis solution to (𝑥 − 1) 𝑦′′ − 𝑥𝑦′ + 𝑦 = 0 at 𝑥 = 1. Use the result
of this analysis to prove that a Taylor series expansion of any solution about 𝑥 = 0 has an
infinite radius of convergence. Find the exact solution by summing the series.

solution

Writing the ODE in standard form

𝑦′′ (𝑥) + 𝑎 (𝑥) 𝑦′ (𝑥) + 𝑏 (𝑥) 𝑦 (𝑥) = 0 (1)

𝑦′′ −
𝑥

(𝑥 − 1)
𝑦′ +

1
(𝑥 − 1)

𝑦 = 0 (2)

Where 𝑎 (𝑥) = −𝑥
(𝑥−1) , 𝑏 (𝑥) =

1
(𝑥−1) . The above shows that 𝑥 = 1 is singular point for both 𝑎 (𝑥)

and 𝑏 (𝑥). The next step is to classify the type of the singular point. Is it regular singular
point or irregular singular point?

lim
𝑥→1

(𝑥 − 1) 𝑎 (𝑥) = lim
𝑥→1

(𝑥 − 1)
−𝑥

(𝑥 − 1)
= −1

And

lim
𝑥→1

(𝑥 − 1)2 𝑏 (𝑥) = lim
𝑥→1

(𝑥 − 1)2
1

(𝑥 − 1)
= 0

Because the limit exist, then 𝑥 = 1 is a regular singular point. Therefore solution is assumed
to be a Frobenius power series given by

𝑦 (𝑥) =
∞
�
𝑛=0

𝑎𝑛 (𝑥 − 1)
𝑛+𝑟

Substituting this in the original ODE (𝑥 − 1) 𝑦′′ − 𝑥𝑦′ + 𝑦 = 0 gives

𝑦′ (𝑥) =
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

𝑦′′ (𝑥) =
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−2

In order to move the (𝑥 − 1) inside the summation, the original ODE (𝑥 − 1) 𝑦′′ − 𝑥𝑦′ + 𝑦 = 0
is first rewritten as

(𝑥 − 1) 𝑦′′ − (𝑥 − 1) 𝑦′ − 𝑦′ + 𝑦 = 0 (3)
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Substituting the Frobenius series into the above gives

(𝑥 − 1)
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−2

− (𝑥 − 1)
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

−
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

+
∞
�
𝑛=0

𝑎𝑛 (𝑥 − 1)
𝑛+𝑟 = 0

Or
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

−
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟

−
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

+
∞
�
𝑛=0

𝑎𝑛 (𝑥 − 1)
𝑛+𝑟 = 0

Adjusting all powers of (𝑥 − 1) to be the same by rewriting exponents and summation indices
gives

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

−
∞
�
𝑛=1

(𝑛 + 𝑟 − 1) 𝑎𝑛−1 (𝑥 − 1)
𝑛+𝑟−1

−
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1

+
∞
�
𝑛=1

𝑎𝑛−1 (𝑥 − 1)
𝑛+𝑟−1 = 0

Collecting terms with same powers in (𝑥 − 1) simplifies the above to
∞
�
𝑛=0

((𝑛 + 𝑟) (𝑛 + 𝑟 − 1) − (𝑛 + 𝑟)) 𝑎𝑛 (𝑥 − 1)
𝑛+𝑟−1 −

∞
�
𝑛=1

(𝑛 + 𝑟 − 2) 𝑎𝑛−1 (𝑥 − 1)
𝑛+𝑟−1 = 0 (4)

Setting 𝑛 = 0 gives the indicial equation
((𝑛 + 𝑟) (𝑛 + 𝑟 − 1) − (𝑛 + 𝑟)) 𝑎0 = 0

((𝑟) (𝑟 − 1) − 𝑟) 𝑎0 = 0

Since 𝑎0 ≠ 0 then the indicial equation is

(𝑟) (𝑟 − 1) − 𝑟 = 0
𝑟2 − 2𝑟 = 0
𝑟 (𝑟 − 2) = 0



4

The roots of the indicial equation are therefore

𝑟1 = 2
𝑟2 = 0

Each one of these roots generates a solution to the ODE. The next step is to find the solution
𝑦1 (𝑥) associated with 𝑟 = 2. (The largest root is used first). Using 𝑟 = 2 in equation (4) gives

∞
�
𝑛=0

((𝑛 + 2) (𝑛 + 1) − (𝑛 + 2)) 𝑎𝑛 (𝑥 − 1)
𝑛+1 −

∞
�
𝑛=1

𝑛𝑎𝑛−1 (𝑥 − 1)
𝑛+1 = 0

∞
�
𝑛=0

𝑛 (𝑛 + 2) 𝑎𝑛 (𝑥 − 1)
𝑛+1 −

∞
�
𝑛=1

𝑛𝑎𝑛−1 (𝑥 − 1)
𝑛+1 = 0 (5)

At 𝑛 ≥ 1, the recursive relation is found and used to generate the coe�cients of the Frobenius
power series

𝑛 (𝑛 + 2) 𝑎𝑛 − 𝑛𝑎𝑛−1 = 0

𝑎𝑛 =
𝑛

𝑛 (𝑛 + 2)
𝑎𝑛−1

Few terms are now generated to see the pattern of the series and to determine the closed
form. For 𝑛 = 1

𝑎1 =
1
3
𝑎0

For 𝑛 = 2

𝑎2 =
2

2 (2 + 2)
𝑎1 =

2
8
1
3
𝑎0 =

1
12
𝑎0

For 𝑛 = 3

𝑎3 =
3

3 (3 + 2)
𝑎2 =

3
15

1
12
𝑎0 =

1
60
𝑎0

For 𝑛 = 4

𝑎4 =
4

4 (4 + 2)
𝑎3 =

1
6
1
60
𝑎0 =

1
360

𝑎0

And so on. From the above, the first solution becomes

𝑦1 (𝑥) =
∞
�
𝑛=0

𝑎𝑛 (𝑥 − 1)
𝑛+2

= 𝑎0 (𝑥 − 1)
2 + 𝑎1 (𝑥 − 1)

3 + 𝑎2 (𝑥 − 1)
4 + 𝑎3 (𝑥 − 1)

4 + 𝑎4 (𝑥 − 1)
5 +⋯

= (𝑥 − 1)2 �𝑎0 + 𝑎1 (𝑥 − 1) + 𝑎2 (𝑥 − 1)
2 + 𝑎3 (𝑥 − 1)

3 + 𝑎4 (𝑥 − 1)
4 +⋯�

= (𝑥 − 1)2 �𝑎0 +
1
3
𝑎0 (𝑥 − 1) +

1
12
𝑎0 (𝑥 − 1)

2 +
1
60
𝑎0 (𝑥 − 1)

3 +
1
360

𝑎0 (𝑥 − 1)
4 +⋯�

= 𝑎0 (𝑥 − 1)
2 �1 +

1
3
(𝑥 − 1) +

1
12
(𝑥 − 1)2 +

1
60
(𝑥 − 1)3 +

1
360

(𝑥 − 1)4 +⋯� (6)

To find closed form solution to 𝑦1 (𝑥), Taylor series expansion of 𝑒𝑥 around 𝑥 = 1 is found
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first

𝑒𝑥 ≈ 𝑒 + 𝑒 (𝑥 − 1) +
𝑒
2
(𝑥 − 1)2 +

𝑒
3!
(𝑥 − 1)3 +

𝑒
4!
(𝑥 − 1)4 +

𝑒
5!
(𝑥 − 1)5 +⋯

≈ 𝑒 + 𝑒 (𝑥 − 1) +
𝑒
2
(𝑥 − 1)2 +

𝑒
6
(𝑥 − 1)3 +

𝑒
24
(𝑥 − 1)4 +

𝑒
120

(𝑥 − 1)5 +⋯

≈ 𝑒 �1 + (𝑥 − 1) +
1
2
(𝑥 − 1)2 +

1
6
(𝑥 − 1)3 +

1
24
(𝑥 − 1)4 +

1
120

(𝑥 − 1)5 +⋯�

Multiplying the above by 2 gives

2𝑒𝑥 ≈ 𝑒 �2 + 2 (𝑥 − 1) + (𝑥 − 1)2 +
1
3
(𝑥 − 1)3 +

1
12
(𝑥 − 1)4 +

1
60
(𝑥 − 1)5 +⋯�

Factoring (𝑥 − 1)2 from the RHS results in

2𝑒𝑥 ≈ 𝑒 �2 + 2 (𝑥 − 1) + (𝑥 − 1)2 �1 +
1
3
(𝑥 − 1) +

1
12
(𝑥 − 1)2 +

1
60
(𝑥 − 1)3 +⋯�� (6A)

Comparing the above result with the solution 𝑦1 (𝑥) in (6), shows that the (6A) can be written
in terms of 𝑦1 (𝑥) as

2𝑒𝑥 = 𝑒 �2 + 2 (𝑥 − 1) + (𝑥 − 1)2 �
𝑦1 (𝑥)

𝑎0 (𝑥 − 1)
2 ��

Therefore

2𝑒𝑥 = 𝑒 �2 + 2 (𝑥 − 1) +
𝑦1 (𝑥)
𝑎0

�

2𝑒𝑥−1 = 2 + 2 (𝑥 − 1) +
𝑦1 (𝑥)
𝑎0

2𝑒𝑥−1 − 2 − 2 (𝑥 − 1) =
𝑦1 (𝑥)
𝑎0

Solving for 𝑦1 (𝑥)

𝑦1 (𝑥) = 𝑎0 �2𝑒𝑥−1 − 2 − 2 (𝑥 − 1)�

= 𝑎0 �2𝑒𝑥−1 − 2 − 2𝑥 + 2�

= 𝑎0 �2𝑒𝑥−1 − 2𝑥�

=
2𝑎0
𝑒
𝑒𝑥 − 2𝑎0𝑥

Let 2𝑎0
𝑒 = 𝐶1 and −2𝑎0 = 𝐶2, then the above solution can be written as

𝑦1 (𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑥

Now that 𝑦1 (𝑥) is found, which is the solution associated with 𝑟 = 2, the next step is to find
the second solution 𝑦2 (𝑥) associated with 𝑟 = 0. Since 𝑟2 − 𝑟1 = 2 is an integer, the solution
can be either case 𝐼𝐼(𝑏) (𝑖) or case 𝐼𝐼 (𝑏) (𝑖𝑖) as given in the text book at page 72.

From equation (3.3.9) at page 72 of the text, using 𝑁 = 2 since 𝑁 = 𝑟2−𝑟1 and where 𝑝 (𝑥) = −𝑥
and 𝑞 (𝑥) = 1 in this problem by comparing our ODE with the standard ODE in (3.3.2) at
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page 70 given by

𝑦′′ +
𝑝 (𝑥)
(𝑥 − 𝑥0)

𝑦′ +
𝑞 (𝑥)

(𝑥 − 𝑥0)
2𝑦 = 0

Expanding 𝑝 (𝑥) , 𝑞 (𝑥) in Taylor series

𝑝 (𝑥) =
∞
�
𝑛=0

𝑝𝑛 (𝑥 − 1)
𝑛

𝑞 (𝑥) =
∞
�
𝑛=0

𝑞𝑛 (𝑥 − 1)
𝑛

Since 𝑝 (𝑥) = −𝑥 in our ODE, then 𝑝0 = −1 and 𝑝1 = −1 and all other terms are zero. For 𝑞 (𝑥),
which is just 1 in our ODE, then 𝑞0 = 1 and all other terms are zero. Hence

𝑝0 = −1
𝑝1 = −1
𝑞0 = 1
𝑁 = 2
𝑟 = 0

The above values are now used to evaluate RHS of 3.3.9 in order to find which case it is.
(book uses 𝛼 for 𝑟)

0𝑎𝑁 = −
𝑁−1
�
𝑘=0

�(𝑟 + 𝑘) 𝑝𝑁−𝑘 + 𝑞𝑁−𝑘� 𝑎𝑘 (3.3.9)

Since 𝑁 = 2 the above becomes

0𝑎2 = −
1
�
𝑘=0

�(𝑟 + 𝑘) 𝑝2−𝑘 + 𝑞2−𝑘� 𝑎𝑘

Using 𝑟 = 0, since this is the second root, gives

0𝑎2 = −
1
�
𝑘=0

�𝑘𝑝2−𝑘 + 𝑞2−𝑘� 𝑎𝑘

= − ��0𝑝2−0 + 𝑞2−0� 𝑎0 + �𝑝2−1 + 𝑞2−1� 𝑎1�

= − ��0𝑝2 + 𝑞2� 𝑎0 + �𝑝1 + 𝑞1� 𝑎1�

= − �0 + 𝑞2� 𝑎0 − �𝑝1 + 𝑞1� 𝑎1
Since 𝑞2 = 0, 𝑝1 = −1, 𝑞1 = 1, therefore

0𝑎2 = − (0 + 0) 𝑎0 − (−1 + 1) 𝑎1
= 0

The above shows that this is case 𝐼𝐼 (𝑏) (𝑖𝑖), because the right side of 3.3.9 is zero. This means
the second solution 𝑦2 (𝑥) is also a Fronbenius series. If the above was not zero, the method
of reduction of order would be used to find second solution.
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Assuming 𝑦2 (𝑥) = ∑𝑏𝑛 (𝑥 − 1)
𝑛+𝑟, and since 𝑟 = 0, therefore

𝑦2 (𝑥) =
∞
�
𝑛=0

𝑏𝑛 (𝑥 − 1)
𝑛

Following the same method used to find the first solution, this series is now used in the ODE
to determine 𝑏𝑛.

𝑦′2 (𝑥) =
∞
�
𝑛=0

𝑛𝑏𝑛 (𝑥 − 1)
𝑛−1 =

∞
�
𝑛=1

𝑛𝑏𝑛 (𝑥 − 1)
𝑛−1 =

∞
�
𝑛=0

(𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛

𝑦′′2 (𝑥) =
∞
�
𝑛=0

𝑛 (𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛−1 =

∞
�
𝑛=1

𝑛 (𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛−1 =

∞
�
𝑛=0

(𝑛 + 1) (𝑛 + 2) 𝑏𝑛+2 (𝑥 − 1)
𝑛

The ODE (𝑥 − 1) 𝑦′′ − (𝑥 − 1) 𝑦′ − 𝑦′ + 𝑦 = 0 now becomes

(𝑥 − 1)
∞
�
𝑛=0

(𝑛 + 1) (𝑛 + 2) 𝑏𝑛+2 (𝑥 − 1)
𝑛

− (𝑥 − 1)
∞
�
𝑛=0

(𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛

−
∞
�
𝑛=0

(𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛

+
∞
�
𝑛=0

𝑏𝑛 (𝑥 − 1)
𝑛 = 0

Or
∞
�
𝑛=0

(𝑛 + 1) (𝑛 + 2) 𝑏𝑛+2 (𝑥 − 1)
𝑛+1

−
∞
�
𝑛=0

(𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛+1

−
∞
�
𝑛=0

(𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛

+
∞
�
𝑛=0

𝑏𝑛 (𝑥 − 1)
𝑛 = 0

Hence
∞
�
𝑛=1

(𝑛) (𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛 −

∞
�
𝑛=1

𝑛𝑏𝑛 (𝑥 − 1)
𝑛 −

∞
�
𝑛=0

(𝑛 + 1) 𝑏𝑛+1 (𝑥 − 1)
𝑛 +

∞
�
𝑛=0

𝑏𝑛 (𝑥 − 1)
𝑛 = 0

𝑛 = 0 gives

− (𝑛 + 1) 𝑏𝑛+1 + 𝑏𝑛 = 0
−𝑏1 + 𝑏0 = 0

𝑏1 = 𝑏0
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𝑛 ≥ 1 generates the recursive relation to find all remaining 𝑏𝑛 coe�cients

(𝑛) (𝑛 + 1) 𝑏𝑛+1 − 𝑛𝑏𝑛 − (𝑛 + 1) 𝑏𝑛+1 + 𝑏𝑛 = 0
(𝑛) (𝑛 + 1) 𝑏𝑛+1 − (𝑛 + 1) 𝑏𝑛+1 = 𝑛𝑏𝑛 − 𝑏𝑛
𝑏𝑛+1 ((𝑛) (𝑛 + 1) − (𝑛 + 1)) = 𝑏𝑛 (𝑛 − 1)

𝑏𝑛+1 = 𝑏𝑛
(𝑛 − 1)

(𝑛) (𝑛 + 1) − (𝑛 + 1)
Therefore the recursive relation is

𝑏𝑛+1 =
𝑏𝑛
𝑛 + 1

Few terms are generated to see the pattern and to find the closed form solution for 𝑦2 (𝑥).
For 𝑛 = 1

𝑏2 = 𝑏1
1
2
=
1
2
𝑏0

For 𝑛 = 2

𝑏3 =
𝑏2
3
=
1
3
1
2
𝑏0 =

1
6
𝑏0

For 𝑛 = 3

𝑏4 =
𝑏3
3 + 1

=
1
4
1
6
𝑏0 =

1
24
𝑏0

For 𝑛 = 4

𝑏5 =
𝑏4
4 + 1

=
1
5
1
24
𝑏0 =

1
120

𝑏0

And so on. Therefore, the second solution is

𝑦2 (𝑥) =
∞
�
𝑛=0

𝑏𝑛 (𝑥 − 1)
𝑛

= 𝑏0 + 𝑏1 (𝑥 − 1) + 𝑏2 (𝑥 − 1)
2 +⋯

= 𝑏0 + 𝑏0 (𝑥 − 1) +
1
2
𝑏0 (𝑥 − 1)

2 +
1
6
𝑏0 (𝑥 − 1)

3 +
1
24
𝑏0 (𝑥 − 1)

4 +
1
120

𝑏0 (𝑥 − 1)
5 +⋯

= 𝑏0 �1 + (𝑥 − 1) +
1
2
(𝑥 − 1)2 +

1
6
(𝑥 − 1)3 +

1
24
(𝑥 − 1)4 +

1
120

(𝑥 − 1)5 +⋯� (7A)

The Taylor series for 𝑒𝑥 around 𝑥 = 1 is

𝑒𝑥 ≈ 𝑒 + 𝑒 (𝑥 − 1) +
𝑒
2
(𝑥 − 1)2 +

𝑒
6
(𝑥 − 1)3 +

𝑒
24
(𝑥 − 1)4 +

𝑒
120

(𝑥 − 1)5 +⋯

≈ 𝑒 �1 + (𝑥 − 1) +
1
2
(𝑥 − 1)2 +

1
6
(𝑥 − 1)3 +

1
24
(𝑥 − 1)4 +

1
120

(𝑥 − 1)5 +⋯� (7B)

Comparing (7A) with (7B) shows that the second solution closed form is

𝑦2 (𝑥) = 𝑏0
𝑒𝑥

𝑒
Let 𝑏0

𝑒 be some constant, say 𝐶3, the second solution above becomes

𝑦2 (𝑥) = 𝐶3𝑒𝑥
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Both solutions 𝑦1 (𝑥) , 𝑦2 (𝑥) have now been found. The final solution is

𝑦 (𝑥) = 𝑦1 (𝑥) + 𝑦2 (𝑥)

=
𝑦1(𝑥)

�������������𝐶1𝑒𝑥 + 𝐶2𝑥 +
𝑦2(𝑥)
�𝐶3𝑒𝑥

= 𝐶4𝑒𝑥 + 𝐶2𝑥

Hence, the exact solution is

𝑦 (𝑥) = 𝐴𝑒𝑥 + 𝐵𝑥 (7)

Where 𝐴,𝐵 are constants to be found from initial conditions if given. Above solution is now
verified by substituting it back to original ODE

𝑦′ = 𝐴𝑒𝑥 + 𝐵
𝑦′′ = 𝐴𝑒𝑥

Substituting these into (𝑥 − 1) 𝑦′′ − 𝑥𝑦′ + 𝑦 = 0 gives
(𝑥 − 1)𝐴𝑒𝑥 − 𝑥 (𝐴𝑒𝑥 + 𝐵) + 𝐴𝑒𝑥 + 𝐵𝑥 = 0
𝑥𝐴𝑒𝑥 − 𝐴𝑒𝑥 − 𝑥𝐴𝑒𝑥 − 𝑥𝐵 + 𝐴𝑒𝑥 + 𝐵𝑥 = 0

−𝐴𝑒𝑥 − 𝑥𝐵 + 𝐴𝑒𝑥 + 𝐵𝑥 = 0
0 = 0

To answer the final part of the question, the above solution (7) is analytic around 𝑥 = 0 with
infinite radius of convergence since exp (⋅) is analytic everywhere. Writing the solution as

𝑦 (𝑥) = �𝐴
∞
�
𝑛=0

𝑥𝑛

𝑛! �
+ 𝐵𝑥

The function 𝑥 have infinite radius of convergence, since it is its own series. And the ex-
ponential function has infinite radius of convergence as known, verified by using standard
ratio test

𝐴 lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

� = 𝐴 lim
𝑛→∞

�
𝑥𝑛+1𝑛!

(𝑛 + 1)!𝑥𝑛 �
= 𝐴 lim

𝑛→∞
�
𝑥𝑛!

(𝑛 + 1)!
� = 𝐴 lim

𝑛→∞
�
𝑥

𝑛 + 1
� = 0

For any 𝑥. Since the ratio is less than 1, then the solution 𝑦 (𝑥) expanded around 𝑥 = 0 has
an infinite radius of convergence.
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0.2 problem 9.8 (page 480)

Problem Use boundary layer to find uniform approximation with error of order 𝑂�𝜀2� for
the problem 𝜀𝑦′′ + 𝑦′ + 𝑦 = 0 with 𝑦 (0) = 𝑒, 𝑦 (1) = 1. Compare your solution to exact solution.
Plot the solution for some values of 𝜀.

solution

𝜀𝑦′′ + 𝑦′ + 𝑦 = 0 (1)

Since 𝑎 (𝑥) = 1 > 0, then a boundary layer is expected at the left side, near 𝑥 = 0. Matching
will fail if this was not the case. Starting with the outer solution near 𝑥 = 1. Let

𝑦𝑜𝑢𝑡 (𝑥) =
∞
�
𝑛=0

𝜀𝑛𝑦𝑛 (𝑥)

Substituting this into (1) gives

𝜀 �𝑦′′0 + 𝜀𝑦′′1 + 𝜀2𝑦′′2 +⋯� + �𝑦′0 + 𝜀𝑦′1 + 𝜀2𝑦′2 +⋯� + �𝑦0 + 𝜀𝑦1 + 𝜀2𝑦2 +⋯� = 0 (2)

Collecting powers of 𝑂�𝜀0� results in the ODE

𝑦′0 ∼ −𝑦0
𝑑𝑦0
𝑦0

∼ −𝑑𝑥

ln �𝑦0� ∼ −𝑥 + 𝐶1

𝑦𝑜𝑢𝑡0 (𝑥) ∼ 𝐶1𝑒−𝑥 + 𝑂 (𝜀) (3)

𝐶1 is found from boundary conditions 𝑦 (1) = 1. Equation (3) gives

1 = 𝐶1𝑒−1

𝐶1 = 𝑒

Hence solution (3) becomes

𝑦𝑜𝑢𝑡0 (𝑥) ∼ 𝑒1−𝑥

𝑦𝑜𝑢𝑡1 (𝑥) is now found. Using (2) and collecting terms of 𝑂�𝜀1� gives the ODE

𝑦′1 + 𝑦1 ∼ −𝑦′′0 (4)

But

𝑦′0 (𝑥) = −𝑒1−𝑥

𝑦′′0 (𝑥) = 𝑒1−𝑥

Using the above in the RHS of (4) gives

𝑦′1 + 𝑦1 ∼ −𝑒1−𝑥
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The integrating factor is 𝑒𝑥, hence the above becomes
𝑑
𝑑𝑥
�𝑦1𝑒𝑥� ∼ −𝑒𝑥𝑒1−𝑥

𝑑
𝑑𝑥
�𝑦1𝑒𝑥� ∼ −𝑒

Integrating both sides gives

𝑦1𝑒𝑥 ∼ −𝑒𝑥 + 𝐶2

𝑦𝑜𝑢𝑡1 (𝑥) ∼ −𝑥𝑒1−𝑥 + 𝐶2𝑒−𝑥 (5)

Applying boundary conditions 𝑦 (1) = 0 to the above gives

0 = −1 + 𝐶2𝑒−1

𝐶2 = 𝑒

Hence the solution in (5) becomes

𝑦𝑜𝑢𝑡1 (𝑥) ∼ −𝑥𝑒1−𝑥 + 𝑒1−𝑥

∼ (1 − 𝑥) 𝑒1−𝑥

Therefore the outer solution is

𝑦𝑜𝑢𝑡 (𝑥) = 𝑦0 + 𝜀𝑦1
= 𝑒1−𝑥 + 𝜀 (1 − 𝑥) 𝑒1−𝑥 (6)

Now the boundary layer (inner) solution 𝑦𝑖𝑛 (𝑥) near 𝑥 = 0 is found. Let 𝜉 = 𝑥
𝜀𝑝 be the inner

variable. The original ODE is expressed using this new variable, and 𝑝 is found. Since
𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝜉

𝑑𝜉
𝑑𝑥 then 𝑑𝑦

𝑑𝑥 =
𝑑𝑦
𝑑𝜉𝜀

−𝑝. The di�erential operator is 𝑑
𝑑𝑥 ≡ 𝜀

−𝑝 𝑑
𝑑𝜉 therefore

𝑑2

𝑑𝑥2
=
𝑑
𝑑𝑥

𝑑
𝑑𝑥

= �𝜀−𝑝
𝑑
𝑑𝜉� �

𝜀−𝑝
𝑑
𝑑𝜉�

= 𝜀−2𝑝
𝑑2

𝑑𝜉2

Hence 𝑑2𝑦
𝑑𝑥2 = 𝜀

−2𝑝 𝑑
2𝑦
𝑑𝜉2 and 𝜀𝑦

′′ + 𝑦′ + 𝑦 = 0 becomes

𝜀 �𝜀−2𝑝
𝑑2𝑦
𝑑𝜉2 �

+ 𝜀−𝑝
𝑑𝑦
𝑑𝜉

+ 𝑦 = 0

𝜀1−2𝑝𝑦′′ + 𝜀−𝑝𝑦′ + 𝑦 = 0 (7A)

The largest terms are �𝜀1−2𝑝, 𝜀−𝑝�, balance gives 1 − 2𝑝 = −𝑝 or

𝑝 = 1

The ODE (7A) becomes

𝜀−1𝑦′′ + 𝜀−1𝑦′ + 𝑦 = 0 (7)
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Assuming that solution is

𝑦𝑖𝑛 (𝑥) =
∞
�
𝑛=0

𝜀𝑛𝑦𝑛 = 𝑦0 + 𝜀𝑦1 + 𝜀2𝑦2 +⋯

Substituting the above into (7) gives

𝜀−1 �𝑦′′0 + 𝜀𝑦′′1 +⋯� + 𝜀−1 �𝑦′0 + 𝜀𝑦′1 +⋯� + �𝑦0 + 𝜀𝑦1 +⋯� = 0 (8)

Collecting terms with 𝑂�𝜀−1� gives the first order ODE to solve

𝑦′′0 ∼ −𝑦′0
Let 𝑧 = 𝑦′0, the above becomes

𝑧′ ∼ −𝑧
𝑑𝑧
𝑧

∼ −𝑑𝜉

ln |𝑧| ∼ −𝜉 + 𝐶4

𝑧 ∼ 𝐶4𝑒−𝜉

Hence

𝑦′0 ∼ 𝐶4𝑒−𝜉

Integrating

𝑦𝑖𝑛0 (𝜉) ∼ 𝐶4�𝑒−𝜉𝑑𝜉 + 𝐶5

∼ −𝐶4𝑒−𝜉 + 𝐶5 (9)

Applying boundary conditions 𝑦 (0) = 𝑒 gives

𝑒 = −𝐶4 + 𝐶5

𝐶5 = 𝑒 + 𝐶4

Equation (9) becomes

𝑦𝑖𝑛0 (𝜉) ∼ −𝐶4𝑒−𝜉 + 𝑒 + 𝐶4

∼ 𝐶4 �1 − 𝑒−𝜉� + 𝑒 (10)

The next leading order 𝑦𝑖𝑛1 (𝜉) is found from (8) by collecting terms in 𝑂�𝜀0�, which results
in the ODE

𝑦′′1 + 𝑦′1 ∼ −𝑦0
Since 𝑦𝑖𝑛0 (𝜉) ∼ 𝐶4 �1 − 𝑒−𝜉� + 𝑒, therefore 𝑦′0 ∼ 𝐶4𝑒−𝜉 and the above becomes

𝑦′′1 + 𝑦′1 ∼ −𝐶4𝑒−𝜉

The homogenous solution is found first, then method of undetermined coe�cients is used
to find particular solution. The homogenous ODE is

𝑦′′1,ℎ ∼ 𝑦′1,ℎ
This was solved above for 𝑦𝑖𝑛0 , and the solution is

𝑦1,ℎ ∼ −𝐶5𝑒−𝜉 + 𝐶6
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To find the particular solution, let 𝑦1,𝑝 ∼ 𝐴𝜉𝑒−𝜉, where 𝜉 was added since 𝑒−𝜉 shows up in
the homogenous solution. Hence

𝑦′1,𝑝 ∼ 𝐴𝑒−𝜉 − 𝐴𝜉𝑒−𝜉

𝑦′′1,𝑝 ∼ −𝐴𝑒−𝜉 − �𝐴𝑒−𝜉 − 𝐴𝜉𝑒−𝜉�

∼ −2𝐴𝑒−𝜉 + 𝐴𝜉𝑒−𝜉

Substituting these in the ODE 𝑦′′1,𝑝 + 𝑦′1,𝑝 ∼ −𝐶4𝑒−𝜉 results in

−2𝐴𝑒−𝜉 + 𝐴𝜉𝑒−𝜉 + 𝐴𝑒−𝜉 − 𝐴𝜉𝑒−𝜉 ∼ −𝐶4𝑒−𝜉

−𝐴 = −𝐶4

𝐴 = 𝐶4

Therefore the particular solution is

𝑦1,𝑝 ∼ 𝐶4𝜉𝑒−𝜉

And therefore the complete solution is

𝑦𝑖𝑛1 (𝜉) ∼ 𝑦1,ℎ + 𝑦1,𝑝
∼ −𝐶5𝑒−𝜉 + 𝐶6 + 𝐶4𝜉𝑒−𝜉

Applying boundary conditions 𝑦 (0) = 0 to the above gives

0 = −𝐶5 + 𝐶6

𝐶6 = 𝐶5

Hence the solution becomes

𝑦𝑖𝑛1 (𝜉) ∼ −𝐶5𝑒−𝜉 + 𝐶5 + 𝐶4𝜉𝑒−𝜉

∼ 𝐶5 �1 − 𝑒−𝜉� + 𝐶4𝜉𝑒−𝜉 (11)

The complete inner solution now becomes

𝑦𝑖𝑛 (𝜉) ∼ 𝑦𝑖𝑛0 + 𝜀𝑦𝑖𝑛1
∼ 𝐶4 �1 − 𝑒−𝜉� + 𝑒 + 𝜀 �𝐶5 �1 − 𝑒−𝜉� + 𝐶4𝜉𝑒−𝜉� (12)

There are two constants that need to be determined in the above from matching with the
outer solution.

lim
𝜉→∞

𝑦𝑖𝑛 (𝜉) ∼ lim
𝑥→0

𝑦𝑜𝑢𝑡 (𝑥)

lim
𝜉→∞

𝐶4 �1 − 𝑒−𝜉� + 𝑒 + 𝜀 �𝐶5 �1 − 𝑒−𝜉� + 𝐶4𝜉𝑒−𝜉� ∼ lim
𝑥→0

𝑒1−𝑥 + 𝜀 (1 − 𝑥) 𝑒1−𝑥

𝐶4 + 𝑒 + 𝜀𝐶5 ∼ 𝑒 + 𝜀𝑒

The above shows that

𝐶5 = 𝑒
𝐶4 + 𝑒 = 𝑒

𝐶4 = 0
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This gives the boundary layer solution 𝑦𝑖𝑛 (𝜉) as

𝑦𝑖𝑛 (𝜉) ∼ 𝑒 + 𝜀𝑒 �1 − 𝑒−𝜉�

∼ 𝑒 �1 + 𝜀 �1 − 𝑒−𝜉��

In terms of 𝑥, since 𝜉 = 𝑥
𝜀 , the above can be written as

𝑦𝑖𝑛 (𝑥) ∼ 𝑒 �1 + 𝜀 �1 − 𝑒−
𝑥
𝜀 ��

The uniform solution is therefore

𝑦uniform (𝑥) ∼ 𝑦𝑖𝑛 (𝑥) + 𝑦𝑜𝑢𝑡 (𝑥) − 𝑦𝑚𝑎𝑡𝑐ℎ

∼

𝑦𝑖𝑛

�����������������������
𝑒 �1 + 𝜀 �1 − 𝑒−

𝑥
𝜀 �� +

𝑦𝑜𝑢𝑡

�������������������������𝑒1−𝑥 + 𝜀 (1 − 𝑥) 𝑒1−𝑥 − (𝑒 + 𝜀𝑒)

∼ 𝑒 + 𝑒𝜀 �1 − 𝑒−
𝑥
𝜀 � + 𝑒1−𝑥 + (𝜀 − 𝜀𝑥) 𝑒1−𝑥 − (𝑒 + 𝜀𝑒)

∼ 𝑒 + 𝑒𝜀 − 𝜀𝑒1−
𝑥
𝜀 + 𝑒1−𝑥 + 𝜀𝑒1−𝑥 − 𝜀𝑥𝑒1−𝑥 − 𝑒 − 𝜀𝑒

∼ −𝜀𝑒1−
𝑥
𝜀 + 𝑒1−𝑥 + 𝜀𝑒1−𝑥 − 𝜀𝑥𝑒1−𝑥

∼ 𝑒1−𝑥 �−𝜀𝑒−
1
𝜀 + 1 + 𝜀 − 𝜀𝑥�

Or

𝑦uniform (𝑥) ∼ 𝑒1−𝑥 �1 + 𝜀 �1 − 𝑥 − 𝑒−
1
𝜀 ��

With error 𝑂�𝜀2�.

The above solution is now compared to the exact solution of 𝜀𝑦′′ + 𝑦′ + 𝑦 = 0 with 𝑦 (0) =
𝑒, 𝑦 (1) = 1. Since this is a homogenous second order ODE with constant coe�cient, it is
easily solved using characteristic equation.

𝜀𝜆2 + 𝜆 + 1 = 0

The roots are

𝜆 =
−𝑏
2𝑎

± √
𝑏2 − 4𝑎𝑐
2𝑎

=
−1
2𝜀

± √
1 − 4𝜀
2𝜀

Therefore the solution is

𝑦 (𝑥) = 𝐴𝑒𝜆1𝑥 + 𝐵𝑒𝜆2𝑥

= 𝐴𝑒
�
−1
2𝜀+

√1−4𝜀
2𝜀 �𝑥

+ 𝐵𝑒
�
−1
2𝜀 −

√1−4𝜀
2𝜀 �𝑥

= 𝐴𝑒
−𝑥
2𝜀 𝑒

√1−4𝜀
2𝜀 𝑥 + 𝐵𝑒

−𝑥
2𝜀 𝑒

−√1−4𝜀
2𝜀 𝑥

= 𝑒
−𝑥
2𝜀 �𝐴𝑒

√1−4𝜀
2𝜀 𝑥 + 𝐵𝑒

−√1−4𝜀
2𝜀 𝑥�
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Applying first boundary conditions 𝑦 (0) = 𝑒 to the above gives

𝑒 = 𝐴 + 𝐵
𝐵 = 𝑒 − 𝐴

Hence the solution becomes

𝑦 (𝑥) = 𝑒
−𝑥
2𝜀 �𝐴𝑒

√1−4𝜀
2𝜀 𝑥 + (𝑒 − 𝐴) 𝑒

−√1−4𝜀
2𝜀 𝑥�

= 𝑒
−𝑥
2𝜀 �𝐴𝑒

√1−4𝜀
2𝜀 𝑥 + 𝑒1−

√1−4𝜀
2𝜀 𝑥 − 𝐴𝑒

−√1−4𝜀
2𝜀 𝑥�

= 𝑒
−𝑥
2𝜀 �𝐴 �𝑒

√1−4𝜀
2𝜀 𝑥 − 𝑒

−√1−4𝜀
2𝜀 𝑥� + 𝑒1−

√1−4𝜀
2𝜀 𝑥� (13)

Applying second boundary conditions 𝑦 (1) = 1 gives

1 = 𝑒
−1
2𝜀 �𝐴 �𝑒

√1−4𝜀
2𝜀 − 𝑒

−√1−4𝜀
2𝜀 � + 𝑒1−

√1−4𝜀
2𝜀 �

𝑒
1
2𝜀 = 𝐴�𝑒

√1−4𝜀
2𝜀 − 𝑒

−√1−4𝜀
2𝜀 � + 𝑒1−

√1−4𝜀
2𝜀

𝐴 =
𝑒

1
2𝜀 − 𝑒1−

√1−4𝜀
2𝜀

𝑒
√1−4𝜀
2𝜀 − 𝑒

−√1−4𝜀
2𝜀

(14)

Substituting this into (13) results in

𝑦exact (𝑥) = 𝑒
−𝑥
2𝜀 �𝐴 �𝑒

√1−4𝜀
2𝜀 𝑥 − 𝑒

−√1−4𝜀
2𝜀 𝑥� + 𝑒1−

√1−4𝜀
2𝜀 𝑥�

Where 𝐴 is given in (14). hence

𝑦exact (𝑥) = 𝑒
−𝑥
2𝜀

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝑒

1
2𝜀 − 𝑒1−

√1−4𝜀
2𝜀

𝑒
√1−4𝜀
2𝜀 − 𝑒

−√1−4𝜀
2𝜀

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ �
𝑒
√1−4𝜀
2𝜀 𝑥 − 𝑒

−√1−4𝜀
2𝜀 𝑥� + 𝑒1−

√1−4𝜀
2𝜀 𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In summary

exact solution asymptotic solution

𝑒
−𝑥
2𝜀

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

𝑒
1
2𝜀 −𝑒1−

√1−4𝜀
2𝜀

𝑒
√1−4𝜀
2𝜀 −𝑒

−√1−4𝜀
2𝜀

⎞
⎟⎟⎟⎟⎟⎠ �𝑒

√1−4𝜀
2𝜀 𝑥 − 𝑒

−√1−4𝜀
2𝜀 𝑥� + 𝑒1−

√1−4𝜀
2𝜀 𝑥

⎞
⎟⎟⎟⎟⎟⎠ 𝑒1−𝑥 + 𝜀𝑒1−𝑥 �1 − 𝑥 − 𝑒−

1
𝜀 � + 𝑂 �𝜀2�

The following plot compares the exact solution with the asymptotic solution for 𝜀 = 0.1
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Exact solution

Asymptotic
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Exact solution vs. two terms asymptotic ϵ = 0.1

The following plot compares the exact solution with the asymptotic solution for 𝜀 = 0.01.
The di�erence was too small to notice in this case, the plot below is zoomed to be near 𝑥 = 0

Out[21]=

Exact solution

Asymptotic
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Exact solution vs. two terms asymptotic ϵ = 0.01

At 𝜀 = 0.001, the di�erence between the exact and the asymptotic solution was not noticeable.
Therefore, to better compare the solutions, the following plot shows the relative percentage
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error given by

100 �
𝑦exact − 𝑦uniform

𝑦exact �%

For di�erent 𝜀.

ϵ=0.1

ϵ=0.05

ϵ=0.01

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x

%
re
la
tiv
e
er
ro
r

Percentage relative error between exact solution and asymptotic solution

Some observations: The above plot shows more clearly how the di�erence between the
exact solution and the asymptotic solution became smaller as 𝜀 became smaller. The plot
also shows that the boundary layer near 𝑥 = 0 is becoming more narrow are 𝜀 becomes
smaller as expected. It also shows that the relative error is smaller in the outer region than
in the boundary layer region. For example, for 𝜀 = 0.05, the largest percentage error in
the outer region was less than 1%, while in the boundary layer, very near 𝑥 = 0, the error
grows to about 5%. Another observation is that at the matching location, the relative error
goes down to zero. One also notices that the matching location drifts towards 𝑥 = 0 as 𝜀
becomes smaller because the boundary layer is becoming more narrow. The following table
summarizes these observations.

𝜀 % error near 𝑥 = 0 apparent width of boundary layer

0.1 10 0.2
0.05 5 0.12
0.01 1 0.02
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0.3 problem 3
Problem (a) Find physical optics approximation to the eigenvalue and eigenfunctions of the
Sturm-Liouville problem are 𝜆 → ∞

−𝑦′′ = 𝜆 (sin (𝑥) + 1)2 𝑦
𝑦 (0) = 0
𝑦 (𝜋) = 0

(b) What is the integral relation necessary to make the eigenfunctions orthonormal? For
some reasonable choice of scaling coe�cient (give the value), plot the eigenfunctions for
𝑛 = 5, 𝑛 = 20.

(c) Estimate how large 𝜆 should be for the relative error of less than 0.1%

solution

0.3.1 Part a

Writing the ODE as

𝑦′′ + 𝜆 (sin (𝑥) + 1)2 𝑦 = 0
Let1

𝜆 = 1
𝜀2

Then the given ODE becomes

𝜀2𝑦′′ (𝑥) + (sin (𝑥) + 1)2 𝑦 (𝑥) = 0 (1)

Physical optics approximation is obtained when 𝜆 → ∞ which implies 𝜀 → 0+. Since the
ODE is linear and the highest derivative is now multiplied by a very small parameter 𝜀,
WKB can therefore be used to solve it. WKB starts by assuming that the solution has the
form

𝑦 (𝑥) ∼ exp �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆𝑛 (𝑥)� 𝛿 → 0

Therefore, taking derivatives and substituting back in the ODE results in

𝑦′ (𝑥) ∼ exp �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆𝑛 (𝑥)� �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆′𝑛 (𝑥)�

𝑦′′ (𝑥) ∼ exp �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆𝑛 (𝑥)� �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆′𝑛 (𝑥)�
2

+ exp �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆𝑛 (𝑥)� �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆′′𝑛 (𝑥)�

1𝜆 = 1
𝜀
could also be used. But the book uses 𝜀2.
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Substituting these into (1) and canceling the exponential terms gives

𝜀2
⎛
⎜⎜⎜⎜⎝�
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆′𝑛 (𝑥)�
2

+
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆′′𝑛 (𝑥)
⎞
⎟⎟⎟⎟⎠ ∼ − (sin (𝑥) + 1)2

𝜀2

𝛿2
�𝑆′0 + 𝛿𝑆′1 +⋯� �𝑆′0 + 𝛿𝑆′1 +⋯� +

𝜀2

𝛿
�𝑆′′0 + 𝛿𝑆′′1 +⋯� ∼ − (sin (𝑥) + 1)2

𝜀2

𝛿2
��𝑆′0�

2
+ 𝛿 �2𝑆′1𝑆′0� +⋯� +

𝜀2

𝛿
�𝑆′′0 + 𝛿𝑆′′1 +⋯� ∼ − (sin (𝑥) + 1)2

�
𝜀2

𝛿2
�𝑆′0�

2
+
2𝜀2

𝛿
𝑆′1𝑆′0 +⋯� + �

𝜀2

𝛿
𝑆′′0 + 𝜀2𝑆′′1 +⋯� ∼ − (sin (𝑥) + 1)2 (2)

The largest term in the left side is 𝜀2

𝛿2
�𝑆′0�

2
. By dominant balance, this term has the same

order of magnitude as the right side − (sin (𝑥) + 1)2. This implies that 𝛿2 is proportional to
𝜀2. For simplicity (following the book) 𝛿 can be taken as equal to 𝜀

𝛿 = 𝜀

Using the above in equation (2) results in

��𝑆′0�
2
+ 2𝜀𝑆′1𝑆′0 +⋯� + �𝜀𝑆′′0 + 𝜀2𝑆′′1 +⋯� ∼ − (sin (𝑥) + 1)2

Balance of 𝑂 (1) gives

�𝑆′0�
2
∼ − (sin (𝑥) + 1)2 (3)

Balance of 𝑂 (𝜀) gives

2𝑆′1𝑆′0 ∼ −𝑆′′0 (4)

Equation (3) is solved first in order to find 𝑆0 (𝑥).

𝑆′0 ∼ ±𝑖 (sin (𝑥) + 1)
Hence

𝑆0 (𝑥) ∼ ±𝑖�
𝑥

0
(sin (𝑡) + 1) 𝑑𝑡 + 𝐶±

∼ ±𝑖 (𝑡 − cos (𝑡))𝑥0 + 𝐶
±

∼ ±𝑖 (1 + 𝑥 − cos (𝑥)) + 𝐶± (5)

𝑆1 (𝑥) is now found from (4) and using 𝑆′′0 = ±𝑖 cos (𝑥) gives

𝑆′1 ∼ −
1
2
𝑆′′0
𝑆′0

∼ −
1
2

±𝑖 cos (𝑥)
±𝑖 (sin (𝑥) + 1)

∼ −
1
2

cos (𝑥)
(sin (𝑥) + 1)

Hence the solution is

𝑆1 (𝑥) ∼ −
1
2

ln (1 + sin (𝑥)) (6)
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Having found 𝑆0 (𝑥) and 𝑆1 (𝑥), the leading behavior is now obtained from

𝑦 (𝑥) ∼ exp �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆𝑛 (𝑥)�

∼ exp �
1
𝜀
(𝑆0 (𝑥) + 𝜀𝑆1 (𝑥)) +⋯�

∼ exp �
1
𝜀
𝑆0 (𝑥) + 𝑆1 (𝑥) +⋯�

The leading behavior is only the first two terms (called physical optics approximation in
WKB), therefore

𝑦 (𝑥) ∼ exp �
1
𝜀
𝑆0 (𝑥) + 𝑆1 (𝑥)�

∼ exp �±
𝑖
𝜀
(1 + 𝑥 − cos (𝑥)) + 𝐶± −

1
2

ln (1 + sin (𝑥))�

∼
1

√1 + sin 𝑥
exp �±

𝑖
𝜀
(1 + 𝑥 − cos (𝑥)) + 𝐶±�

Which can be written as

𝑦 (𝑥) ∼
𝐶

√1 + sin 𝑥
exp �

𝑖
𝜀
(1 + 𝑥 − cos (𝑥))� −

𝐶

√1 + sin 𝑥
exp �

−𝑖
𝜀
(1 + 𝑥 − cos (𝑥))�

In terms of sin and cos the above becomes (using the standard Euler relation simplifications)

𝑦 (𝑥) ∼
𝐴

√1 + sin 𝑥
cos �

1
𝜀
(1 + 𝑥 − cos (𝑥))� +

𝐵

√1 + sin 𝑥
sin �

1
𝜀
(1 + 𝑥 − cos (𝑥))�

Where 𝐴,𝐵 are the new constants. But 𝜆 = 1
𝜀2 , and the above becomes

𝑦 (𝑥) ∼
𝐴

√1 + sin 𝑥
cos �√𝜆 (1 + 𝑥 − cos (𝑥))� + 𝐵

√1 + sin 𝑥
sin �√𝜆 (1 + 𝑥 − cos (𝑥))� (7)

Boundary conditions are now applied to determine 𝐴,𝐵.

𝑦 (0) = 0
𝑦 (𝜋) = 0

First B.C. applied to (7) gives (where now ∼ is replaced by = for notation simplicity)

0 = 𝐴 cos �√𝜆 (1 − cos (0))� + 𝐵 sin �√𝜆 (1 − cos (0))�

0 = 𝐴 cos (0) + 𝐵 sin (0)
0 = 𝐴

Hence solution (7) becomes

𝑦 (𝑥) ∼
𝐵

√1 + sin 𝑥
sin �√𝜆 (1 + 𝑥 − cos (𝑥))�
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Applying the second B.C. 𝑦 (𝜋) = 0 to the above results in

0 =
𝐵

√1 + sin𝜋
sin �√𝜆 (1 + 𝜋 − cos (𝜋))�

0 = 𝐵 sin �√𝜆 (1 + 𝜋 + 1)�

= 𝐵 sin �(2 + 𝜋)√𝜆�

Hence, non-trivial solution implies that

(2 + 𝜋)�𝜆𝑛 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

�𝜆𝑛 =
𝑛𝜋
2 + 𝜋

The eigenvalues are

𝜆𝑛 =
𝑛2𝜋2

(2 + 𝜋)2
𝑛 = 1, 2, 3,⋯

Hence 𝜆𝑛 ≈ 𝑛2 for large 𝑛. The eigenfunctions are

𝑦𝑛 (𝑥) ∼
𝐵𝑛

√1 + sin 𝑥
sin ��𝜆𝑛 (1 + 𝑥 − cos (𝑥))� 𝑛 = 1, 2, 3,⋯

The solution is therefore a linear combination of the eigenfunctions

𝑦 (𝑥) ∼
∞
�
𝑛=1

𝑦𝑛 (𝑥)

∼
∞
�
𝑛=1

𝐵𝑛
√1 + sin 𝑥

sin ��𝜆𝑛 (1 + 𝑥 − cos (𝑥))� (7A)

This solution becomes more accurate for large 𝜆 or large 𝑛.

0.3.2 Part b

For normalization, the requirement is that

�
𝜋

0
𝑦2𝑛 (𝑥)

weight

���������������(sin (𝑥) + 1)2𝑑𝑥 = 1

Substituting the eigenfunction 𝑦𝑛 (𝑥) solution obtained in first part in the above results in

�
𝜋

0
�

𝐵𝑛
√1 + sin 𝑥

sin ��𝜆𝑛 (1 + 𝑥 − cos (𝑥))��
2

(sin (𝑥) + 1)2 𝑑𝑥 ∼ 1

The above is now solved for constant 𝐵𝑛. The constant 𝐵𝑛 will the same for each 𝑛 for
normalization. Therefore any 𝑛 can be used for the purpose of finding the scaling constant.
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Selecting 𝑛 = 1 in the above gives

�
𝜋

0
�

𝐵

√1 + sin 𝑥
sin � 𝜋

2 + 𝜋
(1 + 𝑥 − cos (𝑥))��

2

(sin (𝑥) + 1)2 𝑑𝑥 ∼ 1

𝐵2�
𝜋

0

1
1 + sin 𝑥 sin2 �

𝜋
2 + 𝜋

(1 + 𝑥 − cos (𝑥))� (sin (𝑥) + 1)2 𝑑𝑥 ∼ 1

𝐵2�
𝜋

0
sin2 �

𝜋
2 + 𝜋

(1 + 𝑥 − cos (𝑥))� (sin (𝑥) + 1) 𝑑𝑥 ∼ 1 (8)

Letting 𝑢 = 𝜋
2+𝜋

(1 + 𝑥 − cos (𝑥)), then
𝑑𝑢
𝑑𝑥

=
𝜋

2 + 𝜋
(1 + sin (𝑥))

When 𝑥 = 0, then 𝑢 = 𝜋
2+𝜋

(1 + 0 − cos (0)) = 0 and when 𝑥 = 𝜋 then 𝑢 = 𝜋
2+𝜋

(1 + 𝜋 − cos (𝜋)) =
𝜋

2+𝜋
(2 + 𝜋) = 𝜋, hence (8) becomes

𝐵2�
𝜋

0
sin2 (𝑢)

2 + 𝜋
𝜋

𝑑𝑢
𝑑𝑥
𝑑𝑥 = 1

2 + 𝜋
𝜋

𝐵2�
𝜋

0
sin2 (𝑢) 𝑑𝑢 = 1

But sin2 (𝑢) = 1
2 −

1
2 cos 2𝑢, therefore the above becomes

2 + 𝜋
𝜋

𝐵2�
𝜋

0
�
1
2
−
1
2

cos 2𝑢� 𝑑𝑢 = 1

1
2
2 + 𝜋
𝜋

𝐵2 �𝑢 −
sin 2𝑢
2 �

𝜋

0
= 1

2 + 𝜋
2𝜋

𝐵2 ��𝜋 −
sin 2𝜋
2 � − �0 −

sin 0
2 �� = 1

2 + 𝜋
2𝜋

𝐵2𝜋 = 1

𝐵2 =
2

2 + 𝜋
Therefore

𝐵 =
�

2
𝜋 + 2

= 0.62369

Using the above for each 𝐵𝑛 in the solution obtained for the eigenfunctions in (7A), and
pulling this scaling constant out of the sum results in

𝑦normalized ∼
�

2
𝜋 + 2

∞
�
𝑛=1

1

√1 + sin 𝑥
sin ��𝜆𝑛 (1 + 𝑥 − cos (𝑥))� (9)

Where

�𝜆𝑛 =
𝑛𝜋
2 + 𝜋

𝑛 = 1, 2, 3,⋯

The following are plots for the normalized 𝑦𝑛 (𝑥) for 𝑛 values it asks to show.
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The following shows the 𝑦 (𝑥) as more eigenfunctions are added up to 55.
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0.3.3 Part c

Since approximate solution is

𝑦 (𝑥) ∼ exp �
1
𝛿

∞
�
𝑛=0

𝛿𝑛𝑆𝑛 (𝑥)� 𝛿 → 0

∼ exp �
1
𝛿
𝑆0 (𝑥) + 𝑆1 (𝑥) + 𝛿𝑆2 (𝑥) +⋯� (1)

And the physical optics approximation includes the first two terms in the series above, then
the relative error between physical optics and exact solution is given by 𝛿𝑆2 (𝑥). But 𝛿 = 𝜀.
Hence (1) becomes

𝑦 (𝑥) ∼ exp �
1
𝜀
𝑆0 (𝑥) + 𝑆1 (𝑥) + 𝜀𝑆2 (𝑥) +⋯�

Hence the relative error must be such that

|𝜀𝑆2 (𝑥)|max ≤ 0.001 (1A)

Now 𝑆2 (𝑥) is found. From (2) in part(a)

𝜀2

𝛿2
�𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +⋯� �𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +⋯� +

𝜀2

𝛿
�𝑆′′0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +⋯� ∼ − (sin (𝑥) + 1)2

𝜀2

𝛿2
��𝑆′0�

2
+ 𝛿 �2𝑆′1𝑆′0� + 𝛿2 �2𝑆′0𝑆′2 + �𝑆′1�

2
� +⋯� +

𝜀2

𝛿
�𝑆′′0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +⋯� ∼ − (sin (𝑥) + 1)2

��𝑆′0�
2
+ 𝜀 �2𝑆′1𝑆′0� + 𝜀2 �2𝑆′0𝑆′2 + �𝑆′1�

2
� +⋯� + �𝜀𝑆′′0 + 𝜀2𝑆′′1 + 𝜀3𝑆′′2 +⋯� ∼ − (sin (𝑥) + 1)2

A balance on 𝑂�𝜀2� gives the ODE to solve to find 𝑆2

2𝑆′0𝑆′2 ∼ − �𝑆′1�
2
− 𝑆′′1 (2)

But

𝑆′0 ∼ ±𝑖 (1 + sin (𝑥))

�𝑆′1�
2
∼ �−

1
2

cos (𝑥)
(sin (𝑥) + 1)�

2

∼
1
4

cos2 (𝑥)
(1 + sin (𝑥))2

𝑆′′1 ∼ −
1
2
𝑑
𝑑𝑥 �

cos (𝑥)
(1 + sin (𝑥))�

∼
1
2 �

1
1 + sin (𝑥)�
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Hence (2) becomes

2𝑆′0𝑆′2 ∼ − �𝑆′1�
2
− 𝑆′′1

𝑆′2 ∼ −
��𝑆′1�

2
+ 𝑆′′1 �

2𝑆′0

∼ −
�1
4

cos2(𝑥)
(1+sin(𝑥))2

+ 1
2
� 1
1+sin(𝑥)��

±2𝑖 (1 + sin (𝑥))

∼ ±
𝑖 �14

cos2(𝑥)
(sin(𝑥)+1)2

+ 1
2
� 1
1+sin(𝑥)��

2 (sin (𝑥) + 1)

∼ ±
𝑖14 �

cos2(𝑥)+2(1+sin(𝑥))
(sin(𝑥)+1)2

�

2 (sin (𝑥) + 1)

∼ ±
𝑖
8

cos2 (𝑥) + 2 (1 + sin (𝑥))
(1 + sin (𝑥))3

Therefore

𝑆2 (𝑥) ∼ ±
𝑖
8 �

𝑥

0

cos2 (𝑡) + 2 (1 + sin (𝑡))
(1 + sin (𝑡))3

𝑑𝑡

∼ ±
𝑖
8 ��

𝑥

0

cos2 (𝑡)
(1 + sin (𝑡))3

𝑑𝑡 + 2�
𝑥

0

1
(1 + sin (𝑡))2

𝑑𝑡� (3)

To do ∫
𝑥

0
cos2(𝑡)

(1+sin(𝑡))3
𝑑𝑡, I used a lookup integration rule from tables which says ∫ cos𝑝 (𝑡) (𝑎 + sin 𝑡)𝑚 𝑑𝑡 =

1
(𝑎)(𝑚) cos𝑝+1 (𝑡) (𝑎 + sin 𝑡)𝑚, therefore using this rule the integral becomes, where now 𝑚 =
−3, 𝑝 = 2, 𝑎 = 1,

�
𝑥

0

cos2 𝑡
(1 + sin 𝑡)3

𝑑𝑡 =
1
−3 �

cos3 𝑡
(1 + sin 𝑡)3

�
𝑥

0

=
1
−3 �

cos3 𝑥
(1 + sin 𝑥)3

− 1�

=
1
3 �
1 −

cos3 𝑥
(1 + sin 𝑥)3

�

And for ∫ 1
(1+sin(𝑥))2

𝑑𝑥, half angle substitution can be used. I do not know what other substi-

tution to use. Using CAS for little help on this, I get

�
𝑥

0

1
(1 + sin 𝑡)2

𝑑𝑡 = �−
cos 𝑡

3 (1 + sin 𝑡)2
−
1
3

cos 𝑡
1 + sin 𝑡�

𝑥

0

= �−
cos 𝑥

3 (1 + sin 𝑥)2
−
1
3

cos 𝑥
1 + sin 𝑥� − �−

1
3
−
1
3�

=
2
3
−

cos 𝑥
3 (1 + sin 𝑥)2

−
1
3

cos 𝑥
1 + sin 𝑥
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Hence from (3)

𝑆2 (𝑥) ∼ ±
𝑖
8 �

1
3 �
1 −

cos3 (𝑥)
(1 + sin (𝑥))3

� + 2 �
2
3
−

cos 𝑥
3 (1 + sin 𝑥)2

−
1
3

cos 𝑥
1 + sin 𝑥��

∼ ±
𝑖
8 �

1
3
−
1
3

cos3 (𝑥)
(1 + sin (𝑥))3

+
4
3
−

2 cos 𝑥
3 (1 + sin 𝑥)2

−
2
3

cos 𝑥
1 + sin 𝑥�

∼ ±
𝑖
24 �

1 −
cos3 (𝑥)

(1 + sin (𝑥))3
+ 4 −

2 cos 𝑥
(1 + sin 𝑥)2

−
2 cos 𝑥
1 + sin 𝑥�

Therefore, from (1A)

|𝜀𝑆2 (𝑥)|max ≤ 0.001

�𝜀
𝑖
24 �

1 −
cos3 (𝑥)

(1 + sin (𝑥))3
+ 4 −

2 cos 𝑥
(1 + sin 𝑥)2

−
2 cos 𝑥
1 + sin 𝑥��

max
≤ 0.001

1
24 �

𝜀 �1 −
cos3 (𝑥)

(1 + sin (𝑥))3
+ 4 −

2 cos 𝑥
(1 + sin 𝑥)2

−
2 cos 𝑥
1 + sin 𝑥��

max
≤ 0.001

�𝜀 �1 −
cos3 (𝑥)

(1 + sin (𝑥))3
+ 4 −

2 cos 𝑥
(1 + sin 𝑥)2

−
2 cos 𝑥
1 + sin 𝑥��

max
≤ 0.024 (2)

The maximum value of �1 − cos3(𝑥)
(1+sin(𝑥))3

+ 4 − 2 cos 𝑥
(1+sin 𝑥)2

− 2 cos 𝑥
1+sin 𝑥

� between 𝑥 = 0 and 𝑥 = 𝜋 is now

found and used to find 𝜀. A plot of the above shows the maximum is maximum at the end,
at 𝑥 = 𝜋 (Taking the derivative and setting it to zero to determine where the maximum is
can also be used).

In[324]:= myResult = 1 -
Cos[x]3

(1 + Sin[x])3
+ 4 -

2 Cos[x]

(1 + Sin[x])2
-

2 Cos[x]

1 + Sin[x]
;

Plot[myResult, {x, 0, Pi}, PlotRange → All, Frame → True, GridLines → Automatic, GridLinesStyle → LightGray,

FrameLabel → {{"s2(x)", None}, {"x", "Finding where maximum S2(x) is, part(c)"}}, PlotStyle → Red, BaseStyle → 14,

FrameTicks → {Automatic, {{0, Pi / 4, Pi / 2, 3 / 4 Pi, Pi}, None}}, ImageSize → 400]

Out[325]=
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Therefore, at 𝑥 = 𝜋

�1 −
cos3 𝑥

(1 + sin 𝑥)3
+ 4 −

2 cos 𝑥
(1 + sin 𝑥)2

−
2 cos 𝑥
1 + sin 𝑥�

𝑥=𝜋

= �1 −
cos3 (𝜋)

(1 + sin𝜋)3
+ 4 −

2 cos𝜋
(1 + sin𝜋)2

−
2 cos𝜋
1 + sin𝜋�

= 10
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Hence (2) becomes

10𝜀 ≤ 0.024
𝜀 ≤ 0.0024

But since 𝜆 = 1
𝜀2 the above becomes

1

√𝜆
≤ 0.0024

√𝜆 ≥
1

0.0024
√𝜆 ≥ 416.67

Hence

𝜆 ≥ 17351.1

To find which mode this corresponds to, since 𝜆𝑛 =
𝑛2𝜋2

(2+𝜋)2
, then need to solve for 𝑛

17351.1 =
𝑛2𝜋2

(2 + 𝜋)2

𝑛2𝜋2 = (17351.1) (2 + 𝜋)2

𝑛 =
�
(17351.1) (2 + 𝜋)2

𝜋2

= 215.58

Hence the next largest integer is used

𝑛 = 216

To have relative error less than 0.1% compared to exact solution. Therefore using the result
obtained in (9) in part (b) the normalized solution needed is

𝑦normalized ∼
�

2
𝜋 + 2

216
�
𝑛=1

1

√1 + sin 𝑥
sin � 𝑛𝜋

2 + 𝜋
(1 + 𝑥 − cos (𝑥))�

The following is a plot of the above solution adding all the first 216 modes for illustration.
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In[42]:= ClearAll[x, n, lam]

mySol[x_, max_] := Sqrt
2

Pi + 2
 Sum

1

Sqrt[1 + Sin[x]]
Sin

n Pi

2 + Pi
(1 + x - Cos[x]), {n, 1, max};

In[46]:= p[n_] := Plot[mySol[x, n], {x, 0, Pi}, PlotRange → All, Frame → True,

FrameLabel → {{"y(x)", None}, {"x", Row[{"yn(x) for n =", n}]}}, BaseStyle → 14, GridLines → Automatic,

GridLinesStyle → LightGray, ImageSize → 600, PlotStyle → Red,

FrameTicks → { {Automatic, None}, {{0, Pi / 4, Pi / 2, 3 / 4 Pi, Pi}, None}}, PlotRange → All]

In[47]:= p[216]
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