0 HW 6, NE 548, Spring 2017

Nasser M. Abbasi

December 30, 2019
16

17

18 Contents

19
20

[0.I.1 Part (@)] . . ... . o e
[0.1.2 Part (b)| . . . . . . . e e e

0.2 Problem 2 . . . . . . . .
[0.21 Part (a)] . ... ...
0.2.2  Part(b)|. . . . .« . 11

% 0.2.3 DPart(O)]. « « o o o oo e 12
97

[\
w
-
E
© 0O NN

46

G v O O G O (v
G s LN = O

Py
(@)}



16

19
20

45
46

49

0.1 Problem1

1. Use the Method of Images to solve

ou 0%u
5 = Vo +Q(z,t), x>0

u(0,t) =0, u(x,0) = 0.

u(0,t) =1, u(x,0) = 0.
(c)
u(0,t) = A(?), u(x,0) = f(z).

Note, I will use k in place of v since easier to type.

0.1.1 Part (a)

2

?—? :kg—;zl+Q(x,t)
x>0
u(0,t)=0
u(x,00=0

Multiplying both sides by G (x, t; xy, fy) and integrating over the domain gives (where in the following
G is used instead of G (x,t; xy, fo) for simplicity).
f Gu, dtdx = f ki, G dtdx + f QG dtdx 1)
x=0 v t=0 x=0 v t=0 x=0 v t=0
For the integral on the LHS, we apply integration by parts once to move the time derivative from u

to G
f f Gu, dtdx = f [uG]Z, dx — f f Gu dtdx
x=0t=0 x=0 x=0"t=0
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And the first integral in the RHS of (1) gives, after doing integration by parts two times

f f ki, G dtdx = f [1,GI  dt - f f ki, G, didx
x=0Y+=0 t=0 = x=0 Y t=0

- [uxc]j;odt—( f WG, I dt - f f kuG,, dtdx)
t=0 t=0 x=0vt=0

- f (GI™, ~ WG, I™, ) dt + f f kuG,, dtdx
t=0 x=0vt=0

- f [14,G ~ uG, I dt + f kuG,, dtdx
t=0 = x=0 Y t=0

. f 4G, - u,GI™  dt + f f kuG,, dtdx
t=0 = x=0 Y t=0
Hence (1) becomes

f [uGI, dx - f f Gy dtdx = f [14,G — uG, 1% dt + f f kuG,, dtdx + f f GQ dtdx
x=0 - x=0 Y t=0 £=0 = x=0 Y t=0 x=0 Y t=0
Or

f f Gyt - kuG,, dtdx = — f UG, dx - f UG, - 1, GI™ it + f f GO dtdx  (2)

x=0 v t=0 x=0 t=0 x=0 v t=0
We now want to choose G (x, t; xy, fp) such that
—Giu —kuGy, = 6 (x —xp) O (t — tg)
=Gt = kuGy + 0 (x — x9) O (t — tp) (3)

This way, the LHS of (2) becomes u (xy, fy). Hence (2) now becomes

00 £

) to 0
U (xg, to) = — f [uGI, dx - f [UGy — Gt + f GQ dtdx (4)
=0 = =0 = x=0 Y t=0

We now need to find the Green function which satisfies (3). But (3) is equivalent to solution of
problem of

-G = kuG,,
G(x,0)=0(x—xg)0(t—1tg)
—00 < X < 00

G(x,t;xo,to) =0 t> to
G (iOO, t, X0, to) =0
G (x, to; xo, to) = 6 (x — xq)
But the above problem has a known fundamental solution which we found, but for the forward heat
PDE instead of the reverse heat PDE. The fundamental solution to the forward heat PDE is
1 —(x- xo)2

Hence for the reverse heat PDE the above becomes

G(X,t): ) OStoﬁt

~(x - xp)

1
Ak o= D eXp( 4k (ty— 1)

The above is the infinite space Green function and what we will use in (4). Now we go back to (4) and
simplify the boundary conditions term. Starting with the term f . [uG]}_, dx. Since G (x, 0;xo, t) = 0
o =

Gx,t) = ) 0<t<t (5)
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then upper limit is zero. At t = 0 we are given that u (x,0) = 0, hence this whole term is zero. So now
(4) simplifies to
1 (X, ) = — f MG, — u,GI™ it + f f GQ dtdx (6)
t=0 x=0vt=0
We are told that u (0,{) = 0. Hence
[uGy — u,G] ) = (1 (00, 1) Gy (00, ) = 1y (00, £) G (00, 1)) = (4 (0, 1) G, (0, 1) — 1 (0,£) G (0, 1))
= (1 (00,1) Gy (00, t) — 1y (00,£) G (o0, 1)) + u, (0,£) G (0, 1)
We also know that G (0, t; x, tg) = 0, Hence G (e0) = 0 and also G, (c0) = 0, hence the above simplifies
UG, ~ ,GI™ ) = 1, (0,) G (0, )

To make G(0,t) = 0 we place an image impulse at —x, with negative value to the impulse at xy. This
will make G at x = 0 zero.

Therefore the Green function to use is, from (5) becomes

B 1 (x = xp)° —(x + xp)
Gx,t) = —\/m (exp( (=1 ) eXp(—ALk(tO - ]) 0<t<t

Therefore the solution, from (4) becomes

weoto= [ [ ( (("‘xo)z]_ex (M
v tox/471k(t0—_ k-0 Pl ak-n

Switching the order of x, t; with x, ¢ gives

)) Q(x,b) didx (7)

(x, 1) f’o ft 1 ( (_(XO_x)z) ( (0 + 1)’
u(x, t) = ———|exp| ———|-ex

x=0 ¥ to=0 V4rik (t — to) 4k (t - to) 4k (t — to)
Notice, for the terms (x; — x)z,(xo + x)z, since they are squared, the order does not matter, so we
might as well write the above as

]) Q (xo, tp) dtodxg (8)

f ( ( (x—xo)z)_ex (—(x+x0)2
£=0 \/47Ik G- to) 4k (t - to) Pl (=1

u(x,t) = ]] Q (xo, tp) dtodxg (8)

0.1.2 Part (b)

2
% =k%+Q(x,t)
x>0
u(,0) =1
u(x,0)=0
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Everything follows the same as in part (a) up to the point where boundary condition terms need to
be evaluated.

) to 00 to
U (xg, to) = — f [uG], dx - f [UGy — G dt + f f GQ dtdx (4)
x=0 t=0 x=0 v t=0
Where

~(x - xp)

1
ik (oD eXp( 4k (tg— 1)

Starting with the term foc; [uG]:iO dx. Since G (x, o0; xg, fg) = 0 then upper limit is zero. At t = 0 we are
- =

Gx,t) = ) 0<t<ty (5)

given that u (x,0) = 0, hence this whole term is zero. So now (4) simplifies to
1 (X, ) = — f MG, — u,GI™ it + f GQ dtdx (6)
t=0 x=0vt=0
Now

[uGy — u,G]_ ) = (1 (00, 1) Gy (00, ) = 1y (00, £) G (00, 1)) = (1 (0,1) G, (0, 1) — 1 (0,£) G (0, 1))
We are told that u(0,f) = 1, we also know that G (o, xy,t5) = 0, Hence G(co,t) = 0 and also
Gy (o0, t) = 0, hence the above simplifies
[uG, - u, Gl = G, (0,) + u, (0,5) G (0, 1)
To make G (0) = 0 we place an image impulse at —x; with negative value to the impulse at x,. This is
the same as part(a)

e
|
|
|
|

H‘
|
(en)
g Y

2 2
G(x/t): M)—GXP(M]] OStStQ

1
ik (G =D (eXp( 4kt - 1) 1kt - 1)
Now the boundary terms reduces to just
[uG, - uxG];":O =-G,(0,1)
We need now to evaluate G, (0,t), the only remaining term. Since we know what G (x,t) from the
above, then

iG(x f) = 1 (—(x—xo)ex (—(x—xo)2]+2(x+xo) ox (—(x+x0)2]]
dx Vark (t — ) \ 2k (f — 1) P 4k (ty—t) ) 4k(ty—1) p ak (ty - D)

And at x = 0 the above simplifies to

G,(0,1) = 1 Xo g X0 —_X%
O0= v@%ﬁza;:is(zk<m-—t>exp(4k<n)—t>)*'2k<m-—t>exp(4k<%-”))

- T e )
T Vak =D \k(—t)  P\#k(to-D
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Hence the complete solution becomes from (4)

) to 00 to
1 (X, tg) = — f [uG]>, dx - f MG, — 1, GI™ it + f f GQ dtdx
x=0 B t=0 =0 x=0 v =0

to

- " =, 0, t)dt+f f GQ dtdx

t=0
Substituting G and G, in the above gives

B to 1 Xp _x(z) ))
o fo) = Lo Vik (oD (k(to —p P (4k G-0))"

A R e
wodio Vark b | P\ %k to-b ) Pl akty -1

Switching the order of xg, t, with x,t

)] Q(x,t) dtdx

u(xt)—ft ! ( ad ex( v ))dt
7 o VER 1) \K(E—t) TP\ 3kt —19) )
—(xo - x)z] (— (xo +x)°
—-exp|——7>—+

o t 1
+ LOZO J;O:o N (eXP(—4k t— ) 2 (t— k) )]Q(XO, to) dtodxg (7)

But

t ! ( X e ( = ))dt —erfc(i)
oo VAR 1) \k(E—t0) * P\ak(t—10) /)0 = "\t

Hence (7) becomes

t . (xo—x)2 —(950"'35)2
u(x, )—erC( ) fxOO m 4k(t—t0) - 4k (t — o)

The only difference between this solution and part(a) solution is the extra term erfc(

)) Q (xo, ty) dtodxg

2‘ﬁ) due to

having non-zero boundary conditions in this case.

0.1.3 part(c)

u 2%u
T kw +Q(x,t)
x>0
du(0,t) _A®
ox

u(x,0) = f(x)
Everything follows the same as in part (a) up to the point where boundary condition terms need to
be evaluated.

00 t 00 t
U (X, ) = — f G - ft _00 MG, - u,GI™ dt + f ) ft _00 GO dtdx 4)

Starting with the term f Cx; [uG];’fO dx. Since G (x, o0; xg, fg) = 0 then upper limit is zero. At t = 0 we are
- =
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given that u (x,0) = f (x), hence
[ werz,ar= [ -ut0)Gx 0

x=0 x=0
- f ~f ()G (x,0)dx
x=0
Looking at the second term in RHS of (4)
(G, = u, GI7_ ) = (1 (00, 1) Gy (00, ) = 1y (00, ) G (00, 1)) = (1 (0, 1) G, (0, 1) — u, (0,£) G (0, 1))

We are told that u, (0,f) = A(f), we also know that G (xoo,t;x,tg) = 0, Hence G (oo,f) = 0 and also
G, (00,t) = 0. The above simplifies

[uG, —u,GI"_, = = (0,£) G, (0,1) = A() G (0, 1)) )

We see now from the above, that to get rid of the 1(0,t) G, (0,t) term (since we do not know what
1 (0,t) is), then we now need

G,(0,t)=0

This means we need an image at —x, which is of same sign as at +x; as shown in this diagram

—T—
Zo
Which means the Green function we need to use is the sum of the Green function solutions for the

infinite domain problem
1 —(x—xo)z] [—(x+x0)2)]

- — |+ _— 0<t<t 6

s wa ) e e : ©

The above makes G, (0,t) = 0 and now equation (5) reduces to

G, ~ 1,GT2, = ABG(O,0
_ 1 ~ (-x) ~ (%)’
=AW (\/4nk @W-D (eXp (4k (fo - t)) Texp (4k (to—-D ]]J

_ AW -5 X
T ViRt - (eXp (4k (Fo - t)) T exp (4k (Fo— t)))
B At) ( —x% )

+

O J

G(x,t) =

= e
Vikto-b  Plak(ty-1)
We now know all the terms needed to evaluate the solution. From (4)
] £ 00 £
1 (o, to) = —f —f(x)G(x,O)dx—fo A(t)c(o,t)dt+f fo GO dtdx 7)
x=0 t=0 x=0 v t=0



Using the Green function we found in (6), then (7) becomes

8 ™ 1 ~(x—x)° — (x + xp)°
o u (xg, tg) = L y f(x) rnkto (exp( 2ty ] + exp (—4 Ko )) dx

10 o A(l) ( X5 )
- exp dt
11 t=0 Vk (to — 4k (tg — t)

(x - xp)° —(x + %)
1\3 ‘f;c 0‘]: 0 Vénk (to ( ( 4k (to - 1) ) i exp( 4k (ty— 1) ]) Q didx

Changing the roles of x,t and x, fy the above becomes
10 (0 = %) ~ (v +)”
17 u(x,t) = m f £ (xg) (exp( i ]+ exp(T dxg

1 Alty) 2

13 f \/nk (t— tO (4k (t - to) ) dty

921 (xo = X)Z] N (— (0 + %)
22 fy‘co of \/4nk(t—t0 [ (4k(t—t0_) + exp ak (t — to)

23 Summary

D Q (xo, tg) dtodxg

26 u(x,t) = \/—Al EAVE AV

Where
29 (xo — (xo +x)
30 A= f f (xO) (exp ( 4kt ) ( )] de

31 f Al(ty) ( —x? ) "
32 \/m dk(t—ty)) °

(xo - %)° (xo + x)°
34 A3‘fxoof m( [4k(t—t0))+eXp(4k(t to)
Where A; comes from the initial conditions and A, comes from the boundary conditions and Aj

comes from for forcing function. It is also important to note that A, is valid for only ¢t > 0 and not
for t =0.

)] Q (xo, tp) dtodxg

40 0.2 Problem 2
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2. (a) Solve by the Method of Characteristics:
0u 0% S
2ok
ot? dz?’ -

u(e,0) = fa), PO _ gy 2Dy

(b) For the special case h(t) = 0, explain how you could use a symmetry argument to help
construct the solution.

(c) Sketch the solution if g(x) = 0, h(t) = 0 and f(x) =1 for 4 < 2z <5 and f(zx) =0
otherwise.

0.2.1 Part (a)

The general solution we will use as starting point is
u(x,t)=F(x—ct) + G(x +ct)

Where F (x — ct) is the right moving wave and G (x + ct) is the left moving wave. Applying u (x,0) = f (x)
gives

f()=Fx)+G(x) 1)
And

du(x,t)  dF 3(x—ct)+ dG  Jd(x+ct)
ot d(x—ct) It d(x+ct) It
= —cF’ + cG’

Hence from second initial conditions we obtain
g(x) = —cF' +cG (2)

Equation (1) and (2) are for valid only for positive argument, which means for x > ct. G (x + cf) has
positive argument always since x > 0 and t > 0, but F (x - ct) can have negative argument when x < ct.
For x < ct, we will use the boundary conditions to define F (x — ct). Therefore for x > ct we solve (1,2)
for G, F and find

F(x—ct):%f(x—ct)—%f:_dg(s)ds (2A)

G(x+ct):%f(x+ct)+%j:mg(s)ds (2B)

This results in

fx+ct)+ f(x—ct) N l X+t

2 2 x—ct
The solution (3) is only valid for arguments that are positive. This is not a problem for G (x + ct) since
its argument is always positive. But for F (x — cf) its argument can become negative when 0 < x < ct.

u(x,t) = g(s)ds x>ct (3)
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10

So we need to obtain a new solution for F (x — cf) for the case when x < ct. First we find ulr)

ax
du(x,t)  dF  Jd(x—ct) N dG  Jd(x+ct)
ox d(x—-ct) Jx d(x+ct) Jx
_ dF (x — ct) N dG (x + ct)
d(x —ct) d(x +ct)

Hence at x =0

dF (=ct)  dG (ch)
d(=ch (D
dF (~ct) 4G (ct)

d(=ct) ht) - d(ct)

Let z = —ct, therefore (4) becomes, where t = _TZ also

dF (z) :h( z)_ dG (-z)

dz ) d(-z)
dF (z) z\ dG(-2)
iz h (__) * dz

c
To find F (z), we integrate the above which gives

foz dl;is)ds: fozh(-;)dH

F(2)-F(0) = fzh(—;)ds+G(—z)—G(0)

0
Ignoring the constants of integration F (0), G (0) gives
F() = f h (—E) ds + G (—2) (4A)
0

Replacing z = x — ct in the above gives

Flx—ct) = j:_Cth(—S)ds+G(ct—x)

ht) =

(4)

<0

fz G d(—s) s

0 S

Let r = —> then when s = 0, r = 0 and when s = x — ct then r = —X_Td =% And Z—: = —%. Using these

c
the integral in the above becomes

Fx—ct) = fTh(r)(—cdr)+G(ct—x)
0

e

:_cfo "W dr + G (ct - ) (5)

The above is F (-) when its argument are negative. But in the above G (cf - x) is the same as we found
above in (2b), which just replace it argument in 2B which was x + cf with ct — x and obtain

1 1 ct—x
G(ct—x)zif(ct—x)+2—cj(; g(s)ds x <ct

Therefore (5) becomes

tfg 1 1 ct—x
F(x—ct):—cfo h(r)dr+§f(ct—x)+z—cj(; g()ds  x<ct 7)
Hence for x < ct
u(x,t)=F(x—ct)+G(x+ct) 8)
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11

But in the above G (x + ct) do not change, and we use the same solution for G for x > ct which is in
(2B), given again below

G(x+ct):%f(x+ct)+2lcj:+dg(s)ds )

Hence, plugging (7,9) into (8) gives

ct=x
X+t

u(x,t)=—cfoc h(s)ds + f(ct—x)+—f g(s)ds + f(x+cif)+l . g(s)ds x <ct

ct—x

:—cj;ch(s)ds+f(d_x)+f(x+d) +§(f0 h g(s)ds+f0mg(s)ds)

2
The above for x < ct. Therefore the full solution is
fsetistee) | 1 fx““ (5)ds x>t
ux ) = _Cf—% h(s)ds + w zl( “g(s)ds +£ g(s)ds) x <ct "
0.2.2 Part(b)
From (10) above, for i (t) = 0 the solution becomes
et | L[t o x2ct
u(ot) = w+l(£6t_xg(s);s+£ g(S)dS) x <ct v
2 2c

The idea of symmetry is to obtain the same solution (1) above but by starting from d’Almbert
solution (which is valid only for positive arguments)

f(x+ct);r fle—et) % f’i“g(s)ds >t (1A)

But by using f,., Q. in the above instead of f,g, where the d’Almbert solution becomes valid for

u(x,t) =

x < ct when using f ., Sext
wie by = fe ) ;‘fext (x - b f* out (5)dis x <ct (2)
x—ct

Then using (1A) and (2) we show it is the same as (1). We really need to show that (2) leads to the
second part of (1), since (1A) is the same as first part of (1).

The main issue is how to determine f,, g, and determine if they should be even or odd extension
of f,g. From boundary conditions, in part (a) equation (4A) we found that

F(z):ﬁzh(—(s—:)ds+G(—z)

F(z) = G(-z) (3)

Now, looking at the first part of the solution in (1). we see that for positive argument the solution
has f (x —ct) for x > ct and it has f(ct —x) when x < ct. So this leads us to pick f,, being even as
follows. Let

But now /i (t) = 0, hence

z=x—-ct



N =

y O o W

16

19
20
21
22
23
24
25
26
27

45
46

49

12

Then we see that

flx—ct)= f(=(x~=ct))
f@)=f(=2)

Therefore we need f,,; to be an even function.

f(2) z>0

fext(z):{f(_z) 2 <0

But since F (z) = G(-z) from (3), then g, is also even function, which means

] g@ z>0
Sext (Z) - { g(—Z) 2 <0

Now that we found f,, g+ extensions, we go back to (2). For negative argument

+ct) + —ct) 1 pxtet
u(x,t):fm(x )+ fou C)+—f Lot (89)ds  x<ct
2 2c x—ct
Since f,y, gext are even, then using g,,; (z) = g (—z) since now z < 0 and using f,,; (z) = f (—z) since now

z < 0 the above becomes

f=@+cet)+ f(=(x—ct) 1 +ct
2 * E x—ct

But f (= (x+ct)) = f (x + ct) since even and f (- (x —ct)) = f (ct — x), hence the above becomes

1 (6, f) == f(x+ct)J2rf(ct—x) . % (J:;tg(_s)d“fomtg(s)ds) <ot

u(x,t) = Qext (5)ds x <ct

Let r = —s, then ? =-1. When s = x —ct, r = ¢t —x and when s = 0,7 = 0. Then the first integral on

the RHS above b(—icomes
t t— 1 0 +ct
u(x’t):f(x+c)+f(c x)+z_c(f g(r)(—dr)+j: g(s)ds)

2

ct—x
t f— 1 ct—x x+ct
= f(x+c);f(c x) +£(j; g(r)dr+£ g(S)ds)
Relabel  back to s, then
0B = fx+ct) ;Lf(ct—x) . % (foctxg(s) - j:+dg(s) ds) e (5)

Looking at (5) we see that this is the same solution in (1) for the case of x < ct. Hence (1A) and (5)
put together give

flxc+ct)+f(x—ct) 1 X+ct
ui )= 2,k 8O e )
7 — CL—X X+Ci
W+%(£ g(s)ds+£ g(s)ds) x<ct
Which is same solution obtain in part(a).
0.2.3 Part(c)
For g(x) =0,h(t) =0 and f (x) as given, the solution in equation (10) in part(a) becomes
flx+ct)+f(x—ct) x> ct
w@ ) =3 fettfasen f et (10)
2
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6 A small program we written to make few sketches important time instantces. The left moving wave
7 G (x + ct) hits the boundary at x = 0 but do not reflect now as the case with Dirichlet boundary
8 conditions, but instead it remains upright and turns around as shown.

10 time = 0.00 time = 0.25 time = 0.40

11 10 1.0 1.0
192 08 08 08

06 06 06

0.4 0.4 0.4
1 4- 0.2 0.2 0.2

15 00 2 4 6 8 10 12 00 2 4 6 8 10 12 00 2 4 6 8 10 12

. time = 0.55 time = 0.59 time = 0.80
16
1.0 1.0 10

17 08 08 08
18 06 06 06

1() 0.4 0.4 0.4
. ) 0.2 0.2 0.2
20 0.0 0.0 . 0.0 .

21 Time - 1.20 Time - 2.50 Time - 3.90
22 1.0 1.0 1.0
23 0.8 0.8 0.8

0.6 0.6 0.6

24 0.4 0.4 0.4
25 0.2 0.2 0.2
0.0 L 0.0 0.0

26 : 2 4 6 8 10 12| 2 4 6 8 10 12 2 4 6 8 10 12

time = 4.20 time = 5.40 time = 7.00
o
27 1.0 1.0 1.0

28 08 08 08

2() 0.6 0.6 0.6

) 0.4 0.4 0.4
0.2 0.2 0.2
31 0.0 0.0 0.0

32
33
34
35
36
37
38

40
41
42
43
44
45
46
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