HW 5, NE 548, Spring 2017

Nasser M. Abbasi

December 30, 2019

Contents

1

NE548 Problem: Similarity solution for the 1D homogeneous heat equation

Due Thursday April 13, 2017

1. (a) Non-dimensionalize the 1D homogeneous heat equation:

$$
\frac{\partial u(x,t)}{\partial t} = \nu \frac{\partial^2 u(x,t)}{\partial x^2}
$$
 (1)

with $-\infty < x < \infty$, and $u(x, t)$ bounded as $x \to \pm \infty$.

(b) Show that the non-dimensional equations motivate a similarity variable $\xi = x/t^{1/2}$.

(c) Find a similarity solution $u(x, t) = H(\xi)$ by solving the appropriate ODE for $H(\xi)$.

(d) Show that the similarity solution is related to the solution we found in class on 4/6/17 for initial condition

$$
u(x, 0) = 0, \quad x < 0 \qquad u(x, 0) = C, \quad x > 0.
$$

solution

0.1 Part a

Let \bar{x} be the non-dimensional space coordinate and \bar{t} the non-dimensional time coordinate. Therefore we need

$$
\bar{x} = \frac{x}{l_0}
$$

$$
\bar{t} = \frac{t}{t_0}
$$

$$
\bar{u} = \frac{u}{u_0}
$$

Where l_0 is the physical characteristic length scale (even if this infinitely long domain, l_0 is given) whose dimensions is [L] and t_0 of dimensions [T] is the characteristic time scale and $\bar{u}(\bar{x},\bar{t})$ is the new dependent variable, and u_0 characteristic value of u to scale against (typically this is the initial conditions) but this will cancel out. We now rewrite the PDE $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ $\frac{\partial u}{\partial x^2}$ in terms of the new dimensionless variables.

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \bar{u}}$

 $\partial \bar{u}$

 $= u_0 \frac{\partial \bar{u}}{\partial \bar{x}}$ $\partial \bar x$ 1 l_0

 $\partial \bar{u}$ $\partial \bar x$

 $\partial \bar x$ ∂x

 ∂ $\overline{\lambda}$

$$
\frac{u}{t} = \frac{\partial u}{\partial \bar{u}} \frac{\partial \bar{u}}{\partial \bar{t}} \frac{\partial \bar{t}}{\partial t}
$$

= $u_0 \frac{\partial \bar{u}}{\partial \bar{t}} \frac{1}{t_0}$ (1)

And

And

$$
\frac{\partial^2 u}{\partial x^2} = u_0 \frac{\partial^2 \bar{u}}{\partial \bar{x}^2} \frac{1}{l_0^2}
$$
 (2)

Substituting (1) and (2) into $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ $\frac{\partial u}{\partial x^2}$ gives

$$
u_0 \frac{\partial \bar{u}}{\partial \bar{t}} \frac{1}{t_0} = v u_0 \frac{\partial^2 \bar{u}}{\partial \bar{x}^2} \frac{1}{l_0^2}
$$

$$
\frac{\partial \bar{u}}{\partial \bar{t}} = \left(v \frac{t_0}{l_0^2} \right) \frac{\partial^2 \bar{u}}{\partial \bar{x}^2}
$$

The above is now non-dimensional. Since v has units $\left[\frac{L^2}{T}\right]$ $\left[\frac{L^2}{T}\right]$ and $\frac{t_0}{l_0^2}$ also has units $\left[\frac{T}{L^2}\right]$ $\frac{1}{L^2}$, therefore the product $v\frac{t_0}{2}$ $\frac{a_0}{b_0^2}$ is non-dimensional quantity.

If we choose t_0 to have same magnitude (not units) as l_0^2 , i.e. $t_0 = l_0^2$, then $\frac{l_0}{l_0^2} = 1$ (with units $\left\lfloor \frac{T^2}{L^2} \right\rfloor$ $\frac{1}{L^2}$ and now we obtain the same PDE as the original, but it is non-dimensional. Where now $\bar{u} \equiv \bar{u} (\bar{t}, \bar{x})$.

0.2 Part (b)

I Will use the Buckingham π theorem for finding expression for the solution in the form $u(x, t) = f(\xi)$ where ξ is the similarity variable. Starting with $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ $\frac{\partial u}{\partial x^2}$, in this PDE, the diffusion substance is heat with units of Joule J. Hence $\,$ the concentration of heat, which is what u represents, will have units of $[u] = \frac{1}{L^3}$. (heat per unit volume). From physics, we expect the solution $u(x, t)$ to depend on x, t, v and initial conditions u_0 as these are the only relevant quantities involved that can affect the diffusion. Therefore, by Buckingham theorem we say

$$
u \equiv f(x, t, v, u_0) \tag{1}
$$

We have one dependent quantity u and 4 independent quantities. The units of each of the above quantities is

> $[u] = \frac{J}{I}$ L^3 $[x] = L$ $[t] = T$ $[v] = \frac{L^2}{T}$ \boldsymbol{T} $[u_0] = \frac{J}{L^3}$

Hence using Buckingham theorem, we write

$$
[u] = \left[x^a t^b v^c u_0^d \right] \tag{2}
$$

We now determine a, b, c, d , by dimensional analysis. The above is

$$
\frac{J}{L^3} = L^a T^b \left(\frac{L^2}{T}\right)^c \left(\frac{J}{L^3}\right)^d
$$

$$
(J) (L^{-3}) = (L^{a+2c-3d}) (T^{b-c}) (J^d)
$$

Comparing powers of same units on both sides, we see that

$$
d = 1
$$

$$
b - c = 0
$$

$$
a + 2c - 3d = -3
$$

From second equation above, $b = c$, hence third equation becomes

Since $d = 1$. Hence

$$
c = -\frac{a}{2}
$$

$$
b = -\frac{a}{2}
$$

Therefore, now that we found all the powers, (we have one free power a which we can set to any value), then from equation (1)

$$
[u] = \left[x^{a}t^{b}v^{c}u_{0}^{d}\right]
$$

$$
\frac{u}{u_{0}} = \bar{u} = x^{a}t^{b}v^{c}
$$

Therefore \bar{u} is function of all the variables in the RHS. Let this function be f (This is the same as H in problem statement). Hence the above becomes

$$
\bar{u} = f\left(x^a t^{-\frac{a}{2}} v^{-\frac{a}{2}}\right)
$$

$$
= f\left(\frac{x^a}{v^{\frac{a}{2}} t^{\frac{a}{2}}}\right)
$$

Since a is free variable, we can choose

$$
a = 1 \tag{2}
$$

And obtain

$$
\bar{u} \equiv f\left(\frac{x}{\sqrt{vt}}\right) \tag{3}
$$

ence third equation become
\n
$$
a + 2c - 3d = -3
$$
\n
$$
a + 2c = 0
$$

70 71 72

In the above $\frac{x}{\sqrt{vt}}$ is now non-dimensional quantity, which we call, the similarity variable

$$
\xi = \frac{x}{\sqrt{vt}}\tag{4}
$$

Notice that another choice of a in (2), for example $a = 2$ would lead to $\xi = \frac{x^2}{n}$ $rac{x^2}{vt}$ instead of $\xi = \frac{x}{\sqrt{vt}}$ but we will use the latter for the rest of the problem.

0.3 Part (c)

Using $u \equiv f(\xi)$ where $\xi = \frac{x}{\sqrt{vt}}$ then

$$
\frac{\partial u}{\partial t} = \frac{df}{d\xi} \frac{\partial \xi}{\partial t}
$$

$$
= \frac{df}{d\xi} \frac{\partial}{\partial t} \left(\frac{x}{\sqrt{vt}} \right)
$$

$$
= -\frac{1}{2} \frac{df}{d\xi} \left(\frac{x}{\sqrt{vt}^3} \right)
$$

And

$$
\frac{\partial u}{\partial x} = \frac{df}{d\xi} \frac{\partial \xi}{\partial x}
$$

$$
= \frac{df}{d\xi} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{vt}} \right)
$$

$$
= \frac{df}{d\xi} \frac{1}{\sqrt{vt}}
$$

And

$$
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{df}{d\xi} \frac{1}{\sqrt{vt}} \right)
$$

$$
= \frac{1}{\sqrt{vt}} \frac{\partial}{\partial x} \left(\frac{df}{d\xi} \right)
$$

$$
= \frac{1}{\sqrt{vt}} \left(\frac{d^2 f}{d\xi^2} \frac{\partial \xi}{\partial x} \right)
$$

$$
= \frac{1}{\sqrt{vt}} \left(\frac{d^2 f}{d\xi^2} \frac{1}{\sqrt{vt}} \right)
$$

$$
= \frac{1}{vt} \frac{d^2 f}{d\xi^2}
$$

Hence the PDE $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ becomes

$$
-\frac{1}{2}\frac{df}{d\xi}\left(\frac{x}{\sqrt{vt^{\frac{3}{2}}}}\right) = v\frac{1}{vt}\frac{d^2f}{d\xi^2}
$$

$$
\frac{1}{t}\frac{d^2f}{d\xi^2} + \frac{1}{2}\frac{x}{\sqrt{vt^{\frac{3}{2}}}}\frac{df}{d\xi} = 0
$$

$$
\frac{d^2f}{d\xi^2} + \frac{1}{2}\frac{x}{\sqrt{vt}}\frac{df}{d\xi} = 0
$$

But $\frac{x}{\sqrt{vt}} = \xi$, hence we obtain the required ODE as

$$
\frac{d^2f(\xi)}{d\xi^2} + \frac{1}{2}\xi \frac{df(\xi)}{d\xi} = 0
$$

$$
f'' + \frac{\xi}{2}f' = 0
$$

We now solve the above ODE for $f(\xi)$. Let $f' = z$, then the ODE becomes

$$
z' + \frac{\xi}{2}z = 0
$$

72

1

5

Integrating factor is $\mu = e^{\int \frac{\xi}{2}}$ $\frac{\xi}{2}d\xi = e^{\frac{\xi^2}{4}}$ $\overline{^4}$, hence

> $\frac{d}{d\xi}(z\mu) = 0$ $z\mu = c_1$ $z = c_1 e$ −2

4

Therefore, since $f' = z$, then

$$
f'=c_1e^{\frac{-\xi^2}{4}}
$$

Integrating gives

$$
f(\xi) = c_2 + c_1 \int_0^{\xi} e^{\frac{-s^2}{4}} ds
$$

0.4 Part (d)

For initial conditions of step function

$$
u(x,0) = \begin{cases} 0 & x < 0 \\ C & x > 0 \end{cases}
$$

The solution found in class was

$$
u\left(x,t\right) = \frac{C}{2} + \frac{C}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4\nu t}}\right) \tag{1}
$$

Where $\mathrm{erf}\left(\frac{x}{\sqrt{4vt}}\right) = \frac{2}{\sqrt{x}}$ $\frac{2}{\sqrt{\pi}}\int_0^{\frac{\pi}{2}}$ x $\int_0^{\sqrt{4vt}} e^{-z^2} dz$. The solution found in part (c) earlier is

$$
f(\xi) = c_1 \int_0^{\xi} e^{\frac{-s^2}{4}} ds + c_2
$$

Let $s = \sqrt{4}z$, then $\frac{ds}{dz} = \sqrt{4}$, when $s = 0$, $z = 0$ and when $s = \xi$, $z = \frac{\xi}{\sqrt{4}}$, therefore the integral becomes

$$
f(\xi) = c_1 \sqrt{4} \int_0^{\frac{\xi}{\sqrt{4}}} e^{-z^2} dz + c_2
$$

But $\frac{2}{\sqrt{\pi}} \int_0^{\pi}$ ξ $\int_0^{\frac{z}{\sqrt{4}}} e^{-z^2} dz = \text{erf}\left(\frac{\xi}{\sqrt{2}}\right)$ $\frac{5}{\sqrt{4}}$, hence $\int_0^{\frac{5}{\sqrt{4}}}$ $\int_0^{\overline{\sqrt{4}}} e^{-z^2} dz = \frac{\sqrt{\pi}}{2} \operatorname{erf} \left(\frac{\xi}{\sqrt{2}} \right)$ $\frac{2}{\sqrt{4}}$ and the above becomes $f(\xi) = c_1 \sqrt{\pi} \operatorname{erf}\left(-\frac{\xi}{\xi}\right)$ $\sqrt{4}$ $+ c_2$ $= c_3 \operatorname{erf}\left(\frac{\xi}{\tau}\right)$ $\sqrt{4}$ $+ c_2$

Since $\xi = \frac{x}{\sqrt{vt}}$, then above becomes, when converting back to $u(x, t)$

$$
u(x,t) = c_3 \operatorname{erf}\left(\frac{x}{\sqrt{4vt}}\right) + c_2 \tag{2}
$$

Comparing (1) and (2), we see they are the same. Constants of integration are arbitrary and can be found from initial conditions.