1		
2		
3		
4		
5		
6		
7		
8		
9	HW 5, NE 548, Spring 2017	
10	1110 0, 111 040, 5pmg 2017	
11		
12		
13	Nasser M. Abbasi	
14		
15	December 30, 2019	
16		
17		
18	Contents	
19		
20		2
21		3
22		5
23	0.4 Part (d)	6
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53	1	
54		
55		

NE548 Problem: Similarity solution for the 1D homogeneous heat equation

Due Thursday April 13, 2017

1. (a) Non-dimensionalize the 1D homogeneous heat equation:

$$\frac{\partial u(x,t)}{\partial t} = \nu \frac{\partial^2 u(x,t)}{\partial x^2} \tag{1}$$

with $-\infty < x < \infty$, and u(x, t) bounded as $x \to \pm \infty$.

(b) Show that the non-dimensional equations motivate a similarity variable $\xi = x/t^{1/2}$.

(c) Find a similarity solution $u(x,t) = H(\xi)$ by solving the appropriate ODE for $H(\xi)$.

(d) Show that the similarity solution is related to the solution we found in class on 4/6/17 for initial condition

$$u(x,0) = 0, \quad x < 0 \qquad u(x,0) = C, \quad x > 0.$$

solution

0.1 Part a

Let \bar{x} be the non-dimensional space coordinate and \bar{t} the non-dimensional time coordinate. Therefore we need

$$\bar{x} = \frac{x}{l_0}$$
$$\bar{t} = \frac{t}{t_0}$$
$$\bar{u} = \frac{u}{u_0}$$

Where l_0 is the physical characteristic length scale (even if this infinitely long domain, l_0 is given) whose dimensions is [L] and t_0 of dimensions [T] is the characteristic time scale and $\bar{u}(\bar{x}, \bar{t})$ is the new dependent variable, and u_0 characteristic value of u to scale against (typically this is the initial conditions) but this will cancel out. We now rewrite the PDE $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ in terms of the new dimensionless variables.

$\partial u \partial u \ \partial \overline{u} \ \partial \overline{t}$	
$\overline{\partial t} = \overline{\partial \overline{u}} \overline{\partial \overline{t}} \overline{\partial \overline{t}}$	
$\partial \bar{u} 1$	(1)
$= u_0 \frac{1}{\partial \bar{t}} \frac{1}{t_0}$	(1)

And

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \bar{u}} \frac{\partial \bar{u}}{\partial \bar{x}} \frac{\partial \bar{x}}{\partial x}$ $= u_0 \frac{\partial \bar{u}}{\partial \bar{x}} \frac{1}{l_0}$

And

$$\frac{\partial^2 u}{\partial x^2} = u_0 \frac{\partial^2 \bar{u}}{\partial \bar{x}^2} \frac{1}{l_0^2}$$
(2)

Substituting (1) and (2) into $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ gives

$$u_0 \frac{\partial \bar{u}}{\partial \bar{t}} \frac{1}{t_0} = v u_0 \frac{\partial^2 \bar{u}}{\partial \bar{x}^2} \frac{1}{l_0^2}$$
$$\frac{\partial \bar{u}}{\partial \bar{t}} = \left(v \frac{t_0}{l_0^2} \right) \frac{\partial^2 \bar{u}}{\partial \bar{x}^2}$$

The above is now non-dimensional. Since v has units $\left[\frac{L^2}{T}\right]$ and $\frac{t_0}{t_0^2}$ also has units $\left[\frac{T}{L^2}\right]$, therefore the product $v\frac{t_0}{t_0^2}$ is non-dimensional quantity.

If we choose t_0 to have same magnitude (not units) as l_0^2 , i.e. $t_0 = l_0^2$, then $\frac{t_0}{l_0^2} = 1$ (with units $\left\lfloor \frac{T}{L^2} \right\rfloor$) and now we obtain the same PDE as the original, but it is non-dimensional. Where now $\bar{u} \equiv \bar{u}(\bar{t}, \bar{x})$.

0.2 Part (b)

I Will use the Buckingham π theorem for finding expression for the solution in the form $u(x,t) = f(\xi)$ where ξ is the similarity variable. Starting with $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$, in this PDE, the diffusion substance is heat with units of Joule *J*. Hence the concentration of heat, which is what *u* represents, will have units of $[u] = \frac{J}{L^3}$. (heat per unit volume). From physics, we expect the solution u(x,t) to depend on x, t, v and initial conditions u_0 as these are the only relevant quantities involved that can affect the diffusion. Therefore, by Buckingham theorem we say

$$u \equiv f(x, t, v, u_0) \tag{1}$$

We have one dependent quantity u and 4 independent quantities. The units of each of the above quantities is

$$[u] = \frac{J}{L^3}$$
$$[x] = L$$
$$[t] = T$$
$$[v] = \frac{L^2}{T}$$
$$[u_0] = \frac{J}{L^3}$$

Hence using Buckingham theorem, we write

$$[u] = \left[x^a t^b v^c u_0^d \right] \tag{2}$$

We now determine *a*, *b*, *c*, *d*, by dimensional analysis. The above is

$$\frac{J}{L^3} = L^a T^b \left(\frac{L^2}{T}\right)^c \left(\frac{J}{L^3}\right)^a$$
$$(J) \left(L^{-3}\right) = \left(L^{a+2c-3d}\right) \left(T^{b-c}\right) \left(J^d\right)$$

(2)

Comparing powers of same units on both sides, we see that

$$d = 1$$
$$b - c = 0$$
$$a + 2c - 3d = -3$$

From second equation above, b = c, hence third equation becomes

$$a + 2c - 3d = -3$$
$$a + 2c = 0$$

Since d = 1. Hence

$$c = -\frac{a}{2}$$
$$b = -\frac{a}{2}$$

Therefore, now that we found all the powers, (we have one free power a which we can set to any value), then from equation (1)

$$[u] = \left[x^a t^b v^c u_0^d\right]$$
$$\frac{u}{u_0} = \bar{u} = x^a t^b v^c$$

Therefore \bar{u} is function of all the variables in the RHS. Let this function be f (This is the same as H in problem statement). Hence the above becomes

$$\bar{u} = f\left(x^a t^{-\frac{a}{2}} v^{-\frac{a}{2}}\right)$$
$$= f\left(\frac{x^a}{v^{\frac{a}{2}t^{\frac{a}{2}}}}\right)$$

a = 1

Since *a* is free variable, we can choose

And obtain

$$\bar{u} \equiv f\left(\frac{x}{\sqrt{vt}}\right) \tag{3}$$

In the above $\frac{x}{\sqrt{yt}}$ is now non-dimensional quantity, which we call, the similarity variable

$$\xi = \frac{x}{\sqrt{vt}} \tag{4}$$

Notice that another choice of *a* in (2), for example a = 2 would lead to $\xi = \frac{x^2}{vt}$ instead of $\xi = \frac{x}{\sqrt{vt}}$ but we will use the latter for the rest of the problem.

0.3 Part (c)

Using $u \equiv f(\xi)$ where $\xi = \frac{x}{\sqrt{vt}}$ then

$$\frac{\partial u}{\partial t} = \frac{df}{d\xi} \frac{\partial \xi}{\partial t}$$
$$= \frac{df}{d\xi} \frac{\partial}{\partial t} \left(\frac{x}{\sqrt{vt}}\right)$$
$$= -\frac{1}{2} \frac{df}{d\xi} \left(\frac{x}{\sqrt{vt^{\frac{3}{2}}}}\right)$$

And

$$\frac{\partial u}{\partial x} = \frac{df}{d\xi} \frac{\partial \xi}{\partial x}$$
$$= \frac{df}{d\xi} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{vt}} \right)$$
$$= \frac{df}{d\xi} \frac{1}{\sqrt{vt}}$$

And

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{df}{d\xi} \frac{1}{\sqrt{vt}} \right)$$
$$= \frac{1}{\sqrt{vt}} \frac{\partial}{\partial x} \left(\frac{df}{d\xi} \right)$$
$$= \frac{1}{\sqrt{vt}} \left(\frac{d^2 f}{d\xi^2} \frac{\partial \xi}{\partial x} \right)$$
$$= \frac{1}{\sqrt{vt}} \left(\frac{d^2 f}{d\xi^2} \frac{1}{\sqrt{vt}} \right)$$
$$= \frac{1}{vt} \frac{d^2 f}{d\xi^2}$$

Hence the PDE $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ becomes

$$-\frac{1}{2}\frac{df}{d\xi}\left(\frac{x}{\sqrt{vt^{\frac{3}{2}}}}\right) = v\frac{1}{vt}\frac{d^2f}{d\xi^2}$$
$$\frac{1}{t}\frac{d^2f}{d\xi^2} + \frac{1}{2}\frac{x}{\sqrt{vt^{\frac{3}{2}}}}\frac{df}{d\xi} = 0$$
$$\frac{d^2f}{d\xi^2} + \frac{1}{2}\frac{x}{\sqrt{vt}}\frac{df}{d\xi} = 0$$

But $\frac{x}{\sqrt{vt}} = \xi$, hence we obtain the required ODE as

$$\frac{d^2 f(\xi)}{d\xi^2} + \frac{1}{2}\xi \frac{df(\xi)}{d\xi} = 0$$
$$f'' + \frac{\xi}{2}f' = 0$$

We now solve the above ODE for $f(\xi)$. Let f' = z, then the ODE becomes

 $z' + \frac{\xi}{2}z = 0$

Integrating factor is $\mu = e^{\int \frac{\xi}{2} d\xi} = e^{\frac{\xi^2}{4}}$, hence

$$\frac{d}{d\xi} (z\mu) = 0$$
$$z\mu = c_1$$
$$z = c_1 e^{\frac{-\xi^2}{4}}$$

Therefore, since f' = z, then

$$f' = c_1 e^{\frac{-\xi^2}{4}}$$

Integrating gives

$$f(\xi) = c_2 + c_1 \int_0^{\xi} e^{\frac{-s^2}{4}} ds$$

0.4 Part (d)

For initial conditions of step function

$$u(x,0) = \begin{cases} 0 & x < 0 \\ C & x > 0 \end{cases}$$

The solution found in class was

$$u(x,t) = \frac{C}{2} + \frac{C}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4\nu t}}\right)$$
(1)

Where $\operatorname{erf}\left(\frac{x}{\sqrt{4vt}}\right) = \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{x}{\sqrt{4vt}}} e^{-z^2} dz$. The solution found in part (c) earlier is

$$f(\xi) = c_1 \int_0^{\xi} e^{\frac{-s^2}{4}} ds + c_2$$

Let $s = \sqrt{4}z$, then $\frac{ds}{dz} = \sqrt{4}$, when s = 0, z = 0 and when $s = \xi, z = \frac{\xi}{\sqrt{4}}$, therefore the integral becomes

$$f(\xi) = c_1 \sqrt{4} \int_0^{\frac{\xi}{\sqrt{4}}} e^{-z^2} dz + c_2$$

But
$$\frac{2}{\sqrt{\pi}} \int_0^{\frac{\xi}{\sqrt{4}}} e^{-z^2} dz = \operatorname{erf}\left(\frac{\xi}{\sqrt{4}}\right)$$
, hence $\int_0^{\frac{\xi}{\sqrt{4}}} e^{-z^2} dz = \frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{\xi}{\sqrt{4}}\right)$ and the above becomes
 $f(\xi) = c_1 \sqrt{\pi} \operatorname{erf}\left(\frac{\xi}{\sqrt{4}}\right) + c_2$
 $= c_3 \operatorname{erf}\left(\frac{\xi}{\sqrt{4}}\right) + c_2$

Since $\xi = \frac{x}{\sqrt{vt}}$, then above becomes, when converting back to u(x, t)

$$u(x,t) = c_3 \operatorname{erf}\left(\frac{x}{\sqrt{4\nu t}}\right) + c_2 \tag{2}$$