
Problem 9.9 asks us to use boundary layer theory to find the leading order solution to the initial
value problem εy′′(x) + ay′(x) + by(x) = 0 with y(0) = y′(0) = 1 and a > 0. Then we are to compare
to the exact solution. The problem is ambiguous as to whether a and b are functions or constants.
For clarity’s sake, we assume a and b are constants, but all the following work can be generalized for
nonconstant a and b as well.

Since a > 0, the boundary layer occurs at x = 0, where the initial conditions are specified. We set
x = εξ,1 and then in the inner region,

1

ε
y′′in(ξ) +

a

ε
y′in(ξ) + byin(ξ) = 0. (1)

Thus, to leading order, y′′in(ξ) ∼ −ay′in(ξ), which has solution yin(ξ) = C0 + C1e
−aξ. Solving for C0 and

C1, we see that y(0) = 1 =⇒ C0 + C1 = 1, and

y′(x)

∣∣∣∣
x=0

= 1 =⇒ y′(ξ)

∣∣∣∣
ξ=0

= ε =⇒ −aC1 = ε =⇒ C1 = −ε/a = O(ε).

This means that C1e
−aξ = O(ε) shouldn’t appear at this order in the expansion, and C1 = 0. We

should throw this information out because we have already thrown out information at O(ε) in solving
the equation, and we have no guarantee that the O(ε) value for C1 is actually correct to O(ε).

So there is no boundary layer at leading order! The inner solution yin(x) = C0 = 1 does not change
rapidly, and it will cancel when we match, just leaving the outer solution. This is okay and happens
occasionally when you get lucky.

In the outer region, we have yout ∼ − b
a
yout, so yout(x) = Ce−bx/a + O(ε). Matching to the inner

solution, C = 1, so yuniform(x) = e−bx/a +O(ε). We note that y′uniform(0) = − b
a
6= 1 in general.

Although the problem does not ask for it, we can also go to the next order in our asymptotic
expansion. And even though no boundary layer appeared at leading order, one will appear at O(ε).

Going back to the inner region, let yin(ξ) = Y0(ξ) + εY1(ξ) + O(ε2). We already computed that
Y0(ξ) = 1. Now looking at (1) at O(1), Y ′′1 (ξ) +aY ′1(ξ) + bY0(ξ) = 0 =⇒ Y ′′1 (ξ) +aY ′1(ξ) = −b. Solving,
Y1(ξ) = C2 + C3e

−aξ − b
a
ξ. We have initial conditions Y1(0) = 0, but since y′(0) = 1 was not satisfied,

we note that Y ′1(0) = 1. Thus, C2 + C3 = 0 and −aC3 − b
a

= 1, so

C3 = −1

a
− b

a2
and C2 = −C3 =

1

a
+

b

a2
.

Therefore,

yin(ξ) = 1 + ε

((
1

a
+

b

a2

)(
1− e−aξ

)
− b

a
ξ

)
+O(ε2),

so

yin(x) = 1 + ε

((
1

a
+

b

a2

)(
1− e−ax/ε

)
− b

a

x

ε

)
+O(ε2).

Turning to the outer solution, let yout(x) = y0(x) + εy1(x) + O(ε2). We already found that y0(x) =
e−bx/a. At order ε, the outer equation reads:

y′′0(x) + ay′1(x) + by1(x) = 0 =⇒ y′1(x) +
b

a
y1(x) = −1

a
e−bx/a.

1We know that we can use ε instead of εp for some unknown constant p because a is positive near zero, and p 6= 1 only
occurs when a(x)→ 0 at the boundary layer.
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Therefore,

y1(x) = C4e
−bx/a − x

a
e−bx/a,

and
yout(x) = e−bx/a + ε

((
C4 −

x

a

)
e−bx/a

)
+O(ε2).

Now we match. As x→ 0+, the outer solution goes to

yout(x) ∼ 1 + C4ε+O(ε2),

while as ξ →∞, the inner solution approaches

yin(x) ∼ 1 +

(
1

a
+

b

a2

)
ε+O(ε2),

where I have cheated slightly.2 Matching,

C4 =
1

a
+

b

a2
,

and thus,

yuniform(x) = e−bx/a + ε

(((
1

a
+

b

a2

)
− x

a

)
e−bx/a −

(
1

a
+

b

a2

)
e−ax/ε

)
+O(ε2).

Let us now graphically compare the asymptotic solutions accurate to O(1) and O(ε) with the exact
solution:

yexact(x) =
1

2
√
a2 − 4bε

(
−ae−(a/ε+

√
a2−4bε/ε)x/2 − 2εe−(a/ε+

√
a2−4bε/ε)x/2 +

√
a2 − 4bεe−(a/ε+

√
a2−4bε/ε)x/2

+ae−(a/ε−
√
a2−4bε/ε)x/2 + 2εe−(a/ε−

√
a2−4bε/ε)x/2 +

√
a2 − 4bεe−(a/ε−

√
a2−4bε/ε)x/2

)
.

For simplicity, take a = b = 1.

2I ignored the term which was linear in ξ, which blows up as ξ →∞. This term came from ignoring the outer expansion,
which changes on the same order, and is called a secular term. This occurs because we ignored the outer expansion, as is
conventional when working with the boundary layer, but the outer solution, when Taylor expanded about zero, matches
this term exactly at order x, and so we do not have any problems. The outer solution changes at a slow rate compared to
ξ, and so the appearance of two time scales in the boundary layer causes problems with the match (which I swept under
the rug by cheating). This problem is therefore far better suited for multiscale methods, which form the subject matter
of Chapter 11.
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For the first graph, ε = 0.1:

The blue curve represents the exact solution, the orange curve the uniform solution to leading order, and
the green curve the uniform solution accurate to O(ε). We see that the differences between the curves
remains small always, and that the higher order approximation is much closer to the exact solution. The
leading order solution never differs by more than about 0.1 ≈ ε, while the next order solution differs
from the exact solution by a much smaller amount (approximately O(ε2)).

Now let ε = 0.05:

The color scheme is the same as before. We notice that the same qualitative observations from before
hold for this graph as well. The difference between the orange and blue curves is even half as much, in
good agreement with our O(ε) error estimation. This also validates our conclusion that the boundary
layer only appears at O(ε). It is somewhat more difficult to verify pictorially that the error for the green
curve is O(ε2), but it is also clear that the error in this plot is less than in the first plot, and by a greater
factor than two.
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