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0.1 problem 9.3 (page 479)

problem (a) show that if 2 (x) < 0 for 0 < x <1 then the solution to 9.1.7 has boundary layer at x = 1.

(b) Find a uniform approximation with error O (¢) to the solution 9.1.7 when a(x) <0 for 0 <x <1

(c) Show that if a(x) > 0 it is impossible to match to a boundary layer at x =1

solution

0.1.1 Parta

Equation 9.1.7 at page 422 is
ey +a@)y +b(x)y(x)=0 (9.1.7)
y(0) =
y)=

For 0 < x <1. Now we solve for y;, (x), but first we introduce inner variable £. We assume boundary layer is at x = 0,

then show that this leads to inconsistency. Let & = i be the inner variable. We express the original

ODE using this new variable. We also need to determlne p. Since Zy d{ % then 2 = ¢, Hence
J P b d& dx dx dé
@ dd
dx?  dxdx
= g_pi g_Pi
as ag
2
dé?

2
Therefore ZTZ =% dEZ and (9.1.7) becomes

d?y dy
-2p - -
€€ d52+a(x)€ V£+y—0
2@y S
El Zpdgz +6l(x)€ P£ +y:0
The largest terms are {51‘2’7, P }, therefore balance gives 1-2p = —p or p = 1. The ODE now becomes
L4y L4y
€ d§2+a(x)elg+y=0 (1)

Assuming that

Yin () = D, €™y = Yo + €Yy + E2yp + -

n=0
And substituting the above into (1) gives
-1 (y()’ +ey] + ) +a(x)e! (y(’) +ey) + ) + (yo +eyp + ) =0 (1A)

Collecting powers of O (6_1) terms, gives the ODE to solve for i’ as
0 ~ 1)y

In the rapidly changing region, because the boundary layer is very thin, we can approximate a (x)
by a(0). The above becomes

Yo ~ =) yo

But we are told that a(x) < 0, so a(0) < 0, hence —a (0) is positive. Let —a (0) = n, to make it more

clear this is positive, then the ODE to solve is

Yo ~ 1’y
The solution to this ODE is

Ci e
Yo(E) ~ ¢+ Cy

Using y(0) = A, then the above gives A = % +CrorCy=A- % and the ODE becomes
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We see from the above solution for the inner layer, that as & increases (meaning we are moving
away from x = 0), then the solution y, (£) and its derivative is increasing and not decreasing since
yh (&) = C1e"™¢ and yff (£) = Cyne™™.

But this contradicts what we assumed that the boundary layer is at x = 0 since we expect the
solution to change less rapidly as we move away from x = 0. Hence we conclude that if 2 (x) < 0,
then the boundary layer can not be at x = 0.

Let us now see what happens by taking the boundary layer to be at x =1. We repeat the same

process as above, but now the inner variable as defined as

_1-x
c=—
We express the original ODE using this new variable and determine p. Since Z—Z = Z—ZZ—i then
G
dy _d _ d o d
d—z = % (=¢P). Hence — = (=¢7") x
2 dd
dx2  dxdx
d d
= —&7P) — —e7P) —
((6)%)«E)d9
2
= g_zpd—
dé?
Therefore Py _ e‘zl’dz—y and equation (9.1.7) becomes
a2 de2 q Hid
a2y dy
=2 _ rZ =
ee qz2 a(x)e ac +y=0
&y dy
172]7— - = =
I3 Jiz a(x)e d£+y 0
The largest terms are {51’2”, er }, therefore matching them gives 1 —2p = —p or
p=1
The ODE now becomes
%y dy
-1=-J _ -1-J — 9
e Jiz a(x)e d§+y 0 (2)
Assuming that
Yin (¥) = X €'Y = Yo + €Y1 + €2y + -
n=0
And substituting the above into (2) gives
el (y(’)’ +ey] + ) —a(x)e! (y6 +ey) + ) + (yo +eyp + ) =0 (2A)

Collecting O (5‘1) terms, gives the ODE to solve for y2' as
Yo ~ 2@y

In the rapidly changing region, a = a (1), because the boundary layer is very thin, we approximated
a(x) by a(1). The above becomes

Yo ~ ayo
But we are told that a2 (x) < 0, so @ < 0, and the above becomes
Yo ~ ayp
The solution to this ODE is
C
Yo () ~ =t + Gy 3)
Using

yx=1)=y(&=0)
=B
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4
Then (3) gives B = % +CyorCy,=B- % and (3) becomes
C1 e C
~ 1 B- L
Yo (&) L +( "
C
~ = (e*-1)+B (4)

a
From the above, v} (&) = —C1e*¢ and yf (&) = Cyae®*. We now see that as that as & increases (meaning
we are moving away from x =1 towards the left), then the solution yq (£) is actually changing less
rapidly. This is because @ < 0. The solution is changing less rapidly as we move away from the
boundary layer as what we expect. Therefore, we conclude that if a (x) < 0 then the boundary layer
can not be at x = 0 and has to be at x = 1.

0.1.2 Partb

To find uniform approximation, we need now to find y°* (x) and then do the matching. Since from
part(a) we concluded that v;, is near x = 1, then we assume now that y* (x) is near x = 0. Let

Your (¥) = ioé'”yn =Yo+ ey + ety + o
Substituting this into (9.1.7) gives '
€ (y(’)’ + ey + 2y + ) +a(x) (y(’) +eyy + e2yh + ) +b(x) (yo +eyp + &2y, + ) =0
Collecting terms of O (1) gives the ODE
a(x)y,+bx)yy=0
The solution to this ODE is

RRLOPS
Yo (x) = Cae b
Applying y (0) = A gives

! @ds

A= C23_£ a(s)
= CzE

1 b(s)
. c 1 o . - -5 .
Where E is constant, which is the value of the definite integral E = e b °. Hence the solution

y°" (x) can now be written as

* b(s)
- | —=ds
v (x) = ¢ b

We are now ready to do the matching.
lim 4" (&) ~ lim y*“ (x)
E—o0 x—0
LOPA

1 9 al _ 3 __»gxn(s)
fimg (¢ =)+ B ~ iy e

But since a = a(1) < 0 then the above simplifies to

Cy +B_A
a(l) " E

A
=-a()|=-B
C1 = -a( )(E )
Hence inner solution becomes
—a(l) (g - B)
a(l)
A
~ _ D¢ _
(B E)(M “-1)+B

v © ~ (2 -1) + B

~ B ("™ -1) - % ("M -1)+ B

~ (B - %) (e"Mé-1)+B

The uniform solution is

Yuniform (x) ~ yin (&) + yout (x) - ymatch
yin

out

y

A . A A
~ (B—E) (e“(1)9—1)+B+Ee ’g a(s) —E
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Or in terms of x only

A 1-x A" A
. ~|B-Z| [V _1) Bl bt _4
Yuniform (x) ( E) (e + b+ Ee E

0.1.3 Part c

We now assume the boundary layer is at x = 1 but a(x) > 0. From part (a), we found that the
solution for y' (£) where boundary layer at x =1 is

yo(5>~%(e“5—1)+3

But now a = a(1) > 0 and not negative as before. We also found that yJ* (x) solution was

A - K @ds
out - a(s)
yo" () E°€
Lets now try to do the matching and see what happens
lim y™ (&) ~ lim y** (x)
E— o0 x—0
. C1 . A - K @ds
lim — (e%¢ -1 ~lim — a(s)
él—r)l;loa (e )+B+O(s) xl_r)r(l)Ee + O (e)
e 1) A
lim C;(—-—-|~—=-B
él—{g ! ( a a) E
Since now a > 0, then the term on the left blows up, while the term on the right is finite. Not
possible to match, unless C; = 0. But this means the boundary layer solution is just a constant B

and that g = B. So the matching does not work in general for arbitrary conditions. This means if
a(x) > 0, it is not possible to match boundary layer at x = 1.

0.2 problem 9.4(b)

Problem Find the leading order uniform asymptotic approximation to the solution of

ey’ + (1 + xz) Y -3y (x)=0 (1)
y(0)=1
y1) =1

For 0 < x <1 in the limit as ¢ — 0.
solution

Since a (x) = (1 + xz) is positive, we expect the boundary layer to be near x = 0. First we find y** (x),
which is near x = 1. Assuming

Your (¥) = D3 €™y = Yo + €1 + €%y + -
n=0
And substituting this into (1) gives
€ (y(’)’ +eyl + 2y + ) + (1 +x2) (y(’) +eyy + e2yh + ) -3 (yo +eyp + ey, + ) =0
Collecting terms in O (1) gives the ODE
(1422) 1~

3

3 Ty dx 3
The ODE becomes y; ~ (li—z)yo with integrating factor u = ef (%) To evaluate f (H—xz)dx, let
X X

di .
u = x%, hence ﬁ = 2x and the integral becomes

f —x3 p ux du 1 w
— dx=- - = __ u
(1 + x2) (1 +u)2x 2J 1 +uw

f(1zu)d”=f1_(1iu)d”

=u-In(1+u)

But

But u = x2, hence
3

f(l__'_—xxz)dx = _?1 (x2 —In (1 + xz))
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Therefore the integrating factor is y = exp (%xz + %ln (1 + xz)). The ODE becomes

d
ix (uyo) =0
Hyo ~ ¢
Your (X) ~ cexp 1x2 - 1ln (1 +x2)
out 2 2
-1
-~ Ce%xzeln(lﬂcz) 2
2
e2
~C

V1 +x2

To find c, using boundary conditions y (1) =1 gives
1

1=c2
=Cc—
\2
c=V2¢ 2

Hence

out e
(x) ~ V2
70 V1 + x?

Now we find 3" (x) near x = 0. Let & = ;p be the inner variable. We express the original ODE using
dy _ dydé dy _ dy d d

this new variable and determine p. Since = = oc o then oo = Ee‘p. Hence — = ¢ IR
@ dd
dx?  dxdx
d d
= Sy TP —
(é dé) ( dé)
2
= g_zpd_
dé?
& _opd 7" ’
Therefore ﬁ =¢ zf’é and ey’ + (1 + xz)y - 2%y (x) = 0 becomes
d?y d
o2 2\ oY Py =
ce Pd—§2+(1+(gar’) )e PE—(&P) y=0

Y Ly
el 2"@ +(1+&2%)e P£ -&ery =0

The largest terms are {51—2;:, e‘p}, therefore matching them gives 1 -2p = —p or p = 1. The ODE now

becomes
Ly _dy
& 1@+(1+52€2>€ 1£—§3€3y:0 (2)

Assuming that
Vin () = D5 € = Yo + €Y1 + 2y + -
n=0
And substituting the above into (2) gives
el (y{)’ +ey] + ) + (1 + 5252) el (yf) + ey + ) - &3¢ (yo +eyr + ) =0 (2A)
Collecting terms in O (5‘1) gives the ODE

Yo (&) ~ =y (&)
The solution to this ODE is

Yo (&) ~ o+ et 3)
Applying yi (0) = 1 gives
l=c;+0c
c1=1-c

Hence (3) becomes
Yo' (&) ~ (1= cp) + cpe™
~1+c, ((3"S —l) (4)
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Now that we found y,,; and y;,, we apply matching to find ¢, in the y;, solution.

N Oy o W

hm y (&) ~ hm ygut (x)
21

= © o

lim 1 1
im 1+ ey (¢ 1) ~ Jim VB

2
2 ez
1—cy~4f-

e x—>0+ *\/1 + x2

—
—

—
s W N

15 \/7 ) e 2

16 "Nl e
17

18 =
19

20

21 1 [?
22 e
23 Therefore the yiI' () becomes

24 ‘ >
25 Y (E) ~1+ (1 - \/g] (e -1)

27

Hence

—_
+
—_

Py
—_
SN—
|

1N
—_
NI
Py
|
—_
SN—

36 ~ 0.858 + 0.142¢7¢
37 Therefore, the uniform solution is
Yuniform ~ Yin (x) + Yout (x) - Ymateh + O (e) (4)

40 Where V0101 1S ¥i, (x) at the boundary layer matching location. (or y,,, at same matching location).
41 Hence

42 Ymatcn ~ 1-c

43 5
44 ~1=|1-4/2

e
4_ <

46 o2
e
48 Hence (4) becomes

49 Yout
’_H ./ ‘match

50
51 uniform ~ € ¢ \/7 \/7 \/_ \/7
- Junif [ ] Vi+22

52

e
IC

§ x 2
54 ~ecl1 \/7 +v2-L +0(e)
55 V1 + x2
29

56 This is the leading order uniform asymptotic approximation solution. To verify the result, the

57 numerical solution was plotted against the above solution for ¢ = {0.1,0.05,0.01}. We see from these
58 plots that as ¢ becomes smaller, the asymptotic solution becomes more accurate when compared to
59 the numerical solution. This is because the error, which is O (¢), becomes smaller. The code used
60 to generate these plots is

61
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In[180}= eps =0.1;

sol =NDSolve[{1/100y''[x] + (L+x"2) y'[x] -x~3y[x] =0, y[0] =1, y[1] =1}, y, {X, @, 1}];
pl = Plot [Evaluate[y[x] /. sol], {x, @, 1}, Frame - True,

FrameLabel » {{"y (x)", None}, {"x", Row[{"numberical vs. asymptotic for eps

GridLines -» Automatic, GridLinesStyle -» LightGray] ;

mysol[x , eps_] := Exp[e_ﬁ] (1 - Sqrt[

2

]}

) ]] . sqrt[2] Exp["z'l

Exp[1] Sqrt[l+ x"2]

p2 = Plot [mysol[x, eps], {x, ©, 1}, PlotRange -» All, PlotStyle -» Red] ;
Show[Legended[pl, Style["Numerical"”, Red]], Legended[p2, Style["Asymtotic", Blue]]]

The following are the three plots for each value of ¢

To see the effect on changing ¢ on only the asymptotic approximation, the following plot gives
the approximation solution only as ¢ changes. We see how the approximation converges to the

numberical vs. asymptotic for eps =0.1

1.00r
0.98F
0.96
— 0.94
=
outsl= > g gol
0.90F
0.88

0.861

0.0

1.00F

0.98F

0.96

~ 094

ourizie > g gof
0.90F

0.88f

0.86

1.001

0.98¢

0.961

= 0.941

ouliz= > g got
0.901

0.881

0.861

numberical vs. asymptotic for eps =0.05

numberical vs. asymptotic for eps =0.01

T T T

0.0

0.2 0.4 0.6 0.8 1.0

numerical solution as ¢ becomes smaller.

Numerical

7 Asymptotic

Numerical
Asymptotic

Numerical

7 Asymptotic

"5 eps}l}},
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Plot[{mysol[x, .1], mysol[x, .05], mysol[x, .01]}, {x, @, 1},
PlotLegends » {"€=0.1", "€=0.05", "€=0.01"}, Frame - True,

FrameLabel -» {{"y (x)", None}, {"x", "Asymptotic solution as eps changes"}},
BaseStyle - 14]

Asymptotic solution as eps changes
1.00f| | | | | ]
0.98¢ ]
0.96 ]

o 0.94+ 1 — e=0.1

> 0.92¢ R e=0.05
0.90} ] €=0.01
088l 7
0.86F ]

0.3 problem 9.6

Problem Consider initial value problem
"= {1+ ) e 2y +1
vy = 100/Y ~
With y (1) =1 on the interval 0 < x < 1. (a) Formulate this problem as perturbation problem by
introducing a small parameter ¢. (b) Find outer approximation correct to order ¢ with errors of
order ¢2. Where does this approximation break down? (c) Introduce inner variable and find the
inner solution valid to order 1 (with errors of order ¢). By matching to the outer solution find a
uniform valid solution to y (x) on interval 0 < x < 1. Estimate the accuracy of this approximation.

(d) Find inner solution correct to order ¢ (with errors of order ¢2) and show that it matches to the
outer solution correct to order ¢.

solution

0.3.1 Parta

Since % is relatively small compared to all other coefficients, we replace it with ¢ and the ODE

becomes

€
y’—(l+;)y2+2y=1 1)

0.3.2 Partb

Assuming boundary layer is on the left side at x = 0. We now solve for y,, (x), which is the solution
near x = 1.

Your () = D3 €™ = Yo + €1 + %Yo + -
n=0
Substituting this into (1) gives
& 2
(vo +evh + e2yp+ ) - (1 + ;) (vo+ ey + etyp+ ) +2(yo+eys + Pyp + ) =1

Expanding the above to see more clearly the terms gives

(vo + et + e2yp + ) - (1 + %) (8 + & (2voyn) + €2 (2voy2 + ) + ) + 2 (vo + e + €2yp + ) =1

The leading order are those terms of coefficient O (1). This gives

Yo=Y+ 20 ~ 1
With boundary conditions y (1) = 1.

dy,
d—;~y8—2y0+1
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This is separable

For y, # 1. Integrating

dyo

—— =~ |d
f(yo—l)z fx

Yo -1
(yo—l)(x+C)~—1

~x+C

+1 (3)

yONx+C

To find C, from y (1) =1, we find

“1+C
This is only possible if C = co. Therefore from (2), we conclude that

Yo (x) ~1

The above is leading order for the outer solution. Now we repeat everything to find y§* (x). From

(2) above, we now keep all terms with O (¢) which gives

, 1
Y1—2Yoyr +2y1 ~ x_zy%
But we found y, (x) ~ 1 from above, so the above ODE becomes
, 1
N2+~
N3
Integrating gives
1
~—-—+C
y1 (%) 2t

The boundary condition now becomes y; (1) = 0 (since we used y (1) =1 earlier with y,). This gives

0= ! +C
1
C=1
Therefore the solution becomes
1
yi(0)~1--

Therefore, the outer solution is

Yout (x) ~ Yo+ €Yy
Or

y(x)~1+g(1-§)+o(52)

Since the ODE is y" - (1 + xiz)yz + 2y = 1, the approximation breaks down when x < /e or x < %.
&

Because when x < +/¢, the ;—2 will start to become large. The term — should remain small for the

approximation to be accurate. The following are plots of the y, and o+ €y; solutions (using ¢ = ﬁ)
showing that with two terms the approximation has improved for the outer layer, compared to the
full solution of the original ODE obtained using CAS. But the outer solution breaks down near
x = 0.1 and smaller as can be seen in these plots. Here is the solution of the original ODE obtained

using CAS
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eps = —;
PS = Too’

eps)

ode =y'[x] == (1+7 y[x]*2-2y[x] +1;

sol = y[x] /. First@eDSolve[{ode, y[1] == 1}, y[Xx], X]

10 x [71275v— L1258 s P

246 246 246
-6 -120x-50+/6 x+/6 x“5 -120x* "5 +50/6 x* 5

Plot[sol, {x, @, 1}, PlotRange - All, Frame - True, GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel -» {{"y(x)", None}, {"x", "Exact solution to use to compare with"}}, BaseStyle - 14,
PlotStyle -» Red, ImageSize - 400]

Exact solution to use to compare with

1.0r ]

0.8r ]

0.6 ]

y(X)

0.4r 1

0.2 1

0.0 1

L 1 1 1 1 L

0.0 0.2 0.4 0.6 0.8 1.0

In the following plot, the y, and the y, + €y, solutions are superimposed on same figure, to show
how the outer solution has improved when adding another term. But we also notice that the outer
solution y, + €y; only gives good approximation to the exact solution for about x > 0.1 and it breaks
down quickly as x becomes smaller.

- outerl=1;
outer2=1+eps* (1-1/Xx);
p2 = Plot [Callout [outerl, "y,", Scaled[©.1]], {x, @, 1}, PlotRange » All, Frame - True,
GridLines -» Automatic, GridLinesStyle - LightGray,
FrameLabel -» {{"y(x)", None}, {"x", "comparing outer solution vy, with yg+ €y;"}},
BaseStyle -» 14, PlotStyle -» Red, ImageSize - 400] ;
p3 = Plot [Callout [outer2, "yo+ €y;", {Scaled[0.5], Below}], {x, ©.01, 1}, AxesOrigin- {0, 0}];

Show[p2, p3, PlotRange-» {{0.01, .5}, {0, 1.2}}]

comparing outer solution yy with yg+ €yq

1.2} Yo [ [ [

|
1.0

0.81 R

Yo+ €Y1

x L
. %06
0.4

0.2}

0.0t l l l ‘ ‘
0.0 0.1 0.2 0.3 0.4 0.5

0.3.3 Partc

Now we will obtain solution inside the boundary layer y;, (&) = yf)” (&) + O(¢). The first step is to
always introduce new inner variable. Since the boundary layer is on the right side, then
x
&= p
And then to express the original ODE using this new variable. We also need to determine p in the

above expression. Since the original ODE is y’ - (1 + ex‘z) y? + 2y = 1, then % = %Z—i = %(e"’),
3 3
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then the ODE now becomes

d
—ye"’—(l+i)y2+2y:1

ds ZeP?
d 1-2p
%e"’—(1+ e )y2+2y=1

Where in the above y = y(&). We see that we have {s‘p, 5(172’7)} as the two biggest terms to match.
This means -p=1-2p or
p=1

Hence the above ODE becomes

dy e\, -

Ee (1+§)y +2y=1
We are now ready to replace y (£) with ¥°" ' ¢"y, which gives

-1
(y{) +ey) + e2yh + ) et - (1 + 2—2) (yo + ey + Yy + )2 + 2(]/0 +eyy + ey, + ) =1
-1

(y6 + ey + ey + “-)8_1 - (1 + 2—2) (y% +8(2y0y1) + ) +2(y0 +eyy + ey, + ) =1 (3)

Collecting terms with O (8_1) gives

1
%~§%

This is separable

out

Now we use matching with y,,, to find C. We have found before that 13" (x) ~ 1 therefore
ymy@@w4ua:h%wWQg+0@)
—00 x—
lim % =1+0 (8)

E—o0 1~

lim (<€) + O (&) +O(e) =1+0(o)
~C=1

Therefore

in &
BO~ o (@

Therefore,
Yuniform = %" + yg”t = Ymatch
Yin
= Yout
= i +1 -1
1+¢&

Since Y, = 1 (this is what lim, .,y is). Writing everything in x, using & = g the above becomes

™R

Yuniform = X

1+ =
&
X

E+X
1

Too to compare with the exact solution.,

The following is a plot of the above, using ¢ =



N =

13

X

in[189]:= Y[X_, eps_1] :=
X + eps

XX J O G W

pl = Plot [ {exactSol, y[x, 1/100]}, {x, .02, 1}, PlotRange -» All,
Frame -» True, GridLines - Automatic, GridLinesStyle - LightGray,

= m
= ©
o

FramelLabel »
{{"y(x)", None},
{"x", "Exact solution vs. uniform solution found. 9.6 part(c)"}},
BaseStyle -» 14, PlotStyle -» {Red, Blue}, ImageSize - 400,
PlotLegends » {"exact", "uniform approximation"}]

e
s W N

16 Plot[y[x, 1/1@0], {x, @, 1}, PlotRange -» {{.05, 1}, Automatic}]

17 Exact solution vs. uniform solution found. 9.6 part(c)

1 : ; ; ; ; :
8 1.00¢ 1
19

20 0.95¢1

2 0.90F
22
23
Out[190 >
24 0.80¢ 1 —— uniform approximation
25
26
27 0.70¢

x 0.85} — exact

0.75¢

28 065" ‘ ‘ ‘ ‘ ‘
99 0.0 0.2 0.4 0.6 0.8 1.0
30 X

31
32
33
34 Now we will obtain ¥ solution inside the boundary layer. Using (3) we found in part (c), reproduced
35 here

36 ’ /! 24,7 1 e’ 2 S S 2 —

37 (y0+ay1+.s y2+~-)a —(1+?)(y0+e(2y0y1)+---)+2(yo+ey1+e y2+~--)_1 (3)
38

0.3.4 Part (d)

But now collecting all terms of order of O (1), this results in
, , o, 2
40 V1= Yo~ g+ 2y ~ 1
41
42

. Y I U TR - B B
44 Noeliv e 1+¢)  \1+¢
45 ) 2 1

46 yl_(é(1+é))yl ~ (5+1)2

[ 5

£+¢2"" using partial fractions gives 4 = exp (-2In & +21In (1 + &))

Using y§' found in part (c) into the above gives

e
~

B
oo}

This can be solved using integrating factor u = e

S
)

or u= ;—2(1 + 5)2. Hence we obtain

e
(=}

i( ) ~ 1
o ) ~ i

d (1 1
Ir (g(l +é)2y1) ~ e

v O O G O v
= W0 N

[Sa]

Integrating

Py
(@)}

1
&
1 -1

§<1+5>2y1~g+c2

1
g(l +5)2y1 ~ ag

G 1 G On
© o J

o ¢
o

‘ 1+ y ~ —&+E2C,
()‘1 -&+&%C,
62 Y1~ ———
64
65
66
67
68
69
70
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Therefore, the inner solution becomes
Y™ (&) =yo +en
& &2Cy - &
= +¢€ 5
1+8CG 1+9)

To find Cy, C, we do matching with with y°* that we found in part (a) which is y,,; (x) ~1+e¢ (1 - %)
2Cy - 1
lim J +€§ 2 25 ~liml+e|l--
oo \1 4+ EC 1+&) x—0 b

3 1 1 1 &2Cy-& 2C,+1
=——-—+—=+--and =Cy-
146G, G & e awe? | F e

li ! 1 + L + +|eC 26, +1 + lim1+e(1 !
1m —_— _— &€ - & ~ ]1m & _ —
> \\Cp ECE 0 &2C3 2 & 20 X

1+C 1'1+11
Clglei}é € X

—---, hence the above becomes

Doing long division

Using x = e on the RHS, the above simplifies to

1 1
C—+8C2~ 1im1+€(1——)

1 &m0 &e
~ lim1+ (e - l)
E—oo00 5
~1+¢

Therefore, C; =1 and C, = 1. Hence the inner solution is
Y (&) =yo+ ey

_ &, ek
1+& (1+&)7°

Therefore

Yuniform = Yin + Yout — Ymatch
Yin Yout

< &2-& 1
_1+c§+€(1+5)2+1+€(1_;)_(1+€)

Writing everything in x, using & = f the above becomes

X X X
e 2 ¢
yuniform:1 x t¢& x2+1+€(1__)_(1+€)
+3 (1+—)
&
X X2 — xe
= + s+l+e---1-
X
e+x £(1+_
&
X X% —xe e

The following is a plot of the above, using ¢ = 11% to compare with the exact solution.
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X X% - x eps eps
+ - —_

X+eps  ops (1+i)2 X

ylx_,eps_] :=

pl = Plot [ {exactSol, y[x, 1/100]}, {x, 0.02, 1}, PlotRange -» All, Frame - True,
GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel -» { {"y (x)", None}, {"x", "Exact solution vs. uniform solution found. 9.6 part(d)"}},
BaseStyle -» 14, PlotStyle » {Red, Blue}, ImageSize - 400,
PlotLegends » {"exact", "uniform approximation"}]

Plot[y[x, 1/100], {x, @, 1}, PlotRange -» {{.05, 1}, Automatic}]

Exact solution vs. uniform solution found. 9.6 part(d)

1.0}
0.8
X 0.6f 1 — exact
>
— uniform approximation
0.4r
0.2
0.0 0.2 0.4 0.6 0.8 1.0

Let us check if yypiform (x) satisfies y (1) =1 or not.
1 1-¢
yuniform(l): e+ 1 + ) 3 —€+O(€2)
& (1 + ;)
1-e3-3e2+¢
(e + 1)2
Taking the limit ¢ — 0 gives 1. Therefore yypiform (¥) satisfies y (1) =1.

0.4 problem 9.9

problem Use boundary layer methods to find an approximate solution to initial value problem

ey +aX)y +b(x)y=0 1)
y(0) =1
y(0)=1

And a > 0. Show that leading order uniform approximation satisfies y (0) = 1 but not y’ (0) =1 for
arbitrary b. Compare leading order uniform approximation with the exact solution to the problem
when a (x), b (x) are constants.

Solution

Since a (x) > 0 then we expect the boundary layer to be at x = 0. We start by finding v, (x).

Your () = D)€"y = Yo + €y1 + €2y + -

n=0

Substituting this into (1) gives
eyl +eyy +e2yy + ) +a(yh+ ey + h+ ) +b(yo+ ey +e2yp + ) =0

Collecting terms with O (1) results in

ayo ~ ~byo
dyo b
P
This is separable
f@ — f b .
Yo a(x)
b(x)
ln|y0| ~ — de-f-c
* @ds
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Now we find y;,. First we introduce interval variable
X
=
And transform the ODE. Since Z—Z = %% n Z—Z = ;i—zg"’. Hence d% = e"”%
@ dd
dx2  dxdx
= g‘pi g_pi
aé aé
2
= g_zpd_
dé?
dy _ oy
Therefore — = ¢7%¥— and the ODE becomes
dx dé
d? d
ee‘zf’é +a(&) %e"’ +b(©y=0
ey +ae Py +by =0
Balancing 1 - 2p with —p shows that
p=1
Hence
ety +aely +by =0
Substituting y;, = X "y, = yo + €y1 + €2y, + -+ in the above gives
el (y(’)’ +ey] + e%yy + ) +ae! (yf) +ey) + ey + ) + b(yo +eyy + ey, + ) =0
Collecting terms with order O (e‘l) gives
Yo ~ ~aYo
Assuming z = y|, then the above becomes z’ ~ —az or j—z ~ —az. This is separable. The solution is

dz
gy —adé& or

3
ln|z|~—f a(s)ds+ Cy
0

2~ Cle_ K( a(s)ds

Hence
d _
Yo Cre

dé
dyo ~ (Cle_£ “(S)ds)dé

gg a(s)ds

Integrating again

; < — [Ma(s)ds
anNj(; (C1€£ ()d)dn+C2

Applying initial conditions at y (0) since this is where the y;,, exist. Using y;, (0) = 1 then the above
becomes

1=C2

Hence the solution becomes
) 3 _M
vo' ~ f (Cle b a(s)ds) dn+1
0

To apply the second initial condition, which is ’ (0) = 1, we first take derivative of the above w.r.t.
&
v~ Coe” b %
Applying y; (0) =1 gives
1=C
Hence

. S M
v ~1+f e ga(s)dsdn
0
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Now to find constant of integration for y°* from earlier, we need to do matching.
lim yi' ~ lim yg**
E—o0 x—0

X b(s)

S _
lim 1 +f e £ a(s)dsdq ~ lim Ce { ao®
0

E—o0 x—0

i
On the LHS the integral f e b a(s)dsdr] since a > 0 and negative power on the exponential. So as

& — oo the integral value is zero. So we have now
x bl

1 ~limce 4 0%

x—0

X b(s) 0 b(s)
. ~- = . o -} ==
Let lim, e 1 “©“ — E, where E is the value of the definite integral Ce b °. Another constant,

which if we know a (x), b (x) we can evaluate. Hence the above gives the value of C as

1
€=t

The uniform solution can now be written as

Yuniform = Yin + Yout — Ymatch
* b(s)

&M 1 _
:1+f bt 2okt g
0 E
& il x@
_ f e—£ u(S)dsdT’ + %e—_g 00 )
0

Finally, we need to show that y,iform (0) =1 but not y; .. (0) = 1. From (2), at x = 0 which also
means & = 0, since boundary layer at left side, equation (2) becomes

1 _
Yuniform (0) =0+ =lime g a(s) ds
E x—0

* b

. . - d
But we said that lim,_,ge Fae® _ E, therefore

Yuniform (0) =1

Now we take derivative of (2) w.r.t. x and obtain

d g —g] a(s)ds 1d —gx @ds
- = — _— a(s)
Yuniform (X) dx (j; e d’]) + E dx (6’

0 1;3 a(s)ds _ l b (x) o Jl'x %ds
Ea(x)

And at x = 0 the above becomes
, 1b(0)
Yuniform 0=1- E 2(0)

The above is zero only if b(0) = 0 (since we know a(0) > 0). Therefore, we see that y .. (0) #1
for any arbitrary b (x). Which is what we are asked to show.

Will now solve the whole problem again, when 4,b are constants.

ey’ +ay +by=0 (1A)
y(0)=1
y(0)=1

And a > 0. And compare leading order uniform approximation with the exact solution to the
problem when a(x),b(x) are constants. Since a2 > 0 then boundary layer will occur at x = 0. We
start by finding v, (x).

Your (@) = D"y = Yo + €Y1 + 2yp + -

n=0
Substituting this into (1) gives

e(y{)’ +eyy + &%y + ) +a(y6 +ey) + ey + ) +b(y0 + ey + 2yp + ) =0

Collecting terms with O (1) results in

ayo ~ —byo
dyo b
i "
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This is separable

d
fﬂ ~ —édx
Yo a

b
In |y0| ~ =X +C
b
B~ Gt

Now we find y;,. First we introduce internal variable & = éip and transform the ODE as we did above.
This results in

e (v +eyy + Pyy + ) HaeT (v + ey + ey ) +b(yo+ ey + Yy 4 =0

Collecting terms with order O (e‘l) gives

/7 4
Yo ~ —Yo
. d P . .
Assuming z = y; then the above becomes z’ ~ —az or é ~ —az. This is separable. The solution is

d
;Z ~ —ad& or

In|z| ~ —a& + E;
z ~ Eje7%

Hence

Integrating again
) -1 .
ybn ~ El (7) e 4 EZ

Applying initial conditions at y (0) since this is where the y;, exist. Using y;, (0) = 1 then the above
becomes

1=E ! +E
1 a 2
a (Ez - 1) = E1
Hence the solution becomes

Yy~ (1-Ey)e™ ™ +E, (1B)

To apply the second initial condition, which is ' (0) = 1, we first take derivative of the above w.r.t.

<

Yo~ —a(l-Ey)e™

Hence y’ (0) =1 gives

1=-a(l-E)
1=-a+akE,
1+a
E,= ——
a
And the solution y;, in (1B) becomes
) 1+a . 1+a
in 1= —aé 4
Yo ( P )e P
~ __1 e_aé + ]ﬁ
a a

(1+a)-e*
a
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Now to find constant of integration for y°* (x) from earlier, we need to do matching.
lim yg' ~ lim yg"
-0 x—0
. A+a) - b
lim L ~ lim Cye”«"
E—o0 a x—0
1+a
— C
Hence now the uniform solution can be written as
Yuniform (x) ~ Yin T Yout — Ymatch
Yin
—_——— Yout
Ly
I+a)-¢ 1+a _t, 1+a
~ + e e -
a a a
X
(1+a) e 1+4a _t, 1+a
~ — —+ a7 - —
a a a a
X
e’ 1+a _b,
~ — + —ee a
a a
1 by E
~ (0 +ayei*—e ) (2A)
a

Now we compare the above, which is the leading order uniform approximation, to the exact solution.
Since now 4,b are constants, then the exact solution is

Yexact (X) = AeMi* + Bel2¥ 3)
Where A, are roots of characteristic equation of ¢y’ +ay’ + by = 0. These are A = ;—g + 2—15\/512 —4eb.
Hence
-a 1
A= Ta + EVaZ —4¢b
-a 1 ——
/\2= 7‘1—5 a% —4eb
Applying initial conditions to (3). y (0) =1 gives
1=A+B
B=1-A

And solution becomes V., (x) = Ae* + (1 — A) e’2*, Taking derivatives gives
Yexact () = A1 + (1 = A) Ape’2*
Using v’ (0) =1 gives
1=AM+1-A)A,
1=AA1-A)+ A,
1-4,

A=
A=Ay

1-1,
A=Az

Therefore, B=1 - and the exact solution becomes

1-A, 1-A,
Yexact (x) = /\—1 ~A, M+ (1 - A= /\Z)EAZX

_ 1-/\2 e/\lx'i' (Al_AZ)_(l_AZ) e/\zx
A=Ay A=Ay

L-dy o (Am1)
_ 4
-4 )¢ )

b X
While the uniform solution above was found to be % ((1 +a)e " - e_”?). Here is a plot of the exact

solution above, for ¢ = {1/10,1/50,1/100}, and for some values for 4,b such as a =1,b = 10 in order to
compare with the uniform solution. Note that the uniform solution is O (¢). As ¢ becomes smaller, the
leading order uniform solution will better approximate the exact solution. At ¢ = 0.01 the uniform
approximation gives very good approximation. This is using only leading term approximation.
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Out[137]=

N
i

Out[125]

N
i

out[128]=

out[129]=

out[132]

Out[133]

ClearAll[x, y]
eps=1/10; a=1; b = 10;

mySol =1/a ((1+a) xExp[-b/ax] - Exp[-ax/eps]);
sol = y[x] /. FirsteDSolve[{epsy''[x] +ay'[x] +by[Xx] ==0, y[@O] =1, y'[@] =1}, y[x], X]

% e (5Cos[5V3 x] +2V/3 sin[5V3 x])

Plot[{sol, mySol}, {x, @, 1}, PlotRange -» All, PlotStyle » {Blue, Red}, PlotLegends -» {"Exact", "approximation"},

Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[ {"Exact vs. approximation for € =", eps}]1}},
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray]

Exact vs. approximation for € =%

1.0F

0.6

0.2F

0.0 N

-0.2k L L L

ClearAll([x, y]
eps=1/50; a=1; b=10;

— Exact
— approximation

sol = y[x] /. First@eDSolve[{epsy''[x] +ay'[x] +by[x] =0, y[@] ==1, y'[0O] =1}, y[x], X]

Plot[{sol, mySol}, {x, @, 1}, PlotRange -» All, PlotStyle » {Blue, Red}, PlotLegends -» {"Exact", "approximation"},
Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for € =", eps}]1}},

BaseStyle - 14, GridLines -» Automatic, GridLinesStyle - LightGray]

50

Exact vs. approximation for €

1

T

y(x)

T

0.0

1.0 ' '
0.8
0.6
0.4}
0.2}
0 0.2 0.4

0. 0.6

ClearAll[x, y]
eps=1/100; a=1; b = 10;

0.8

1 (ZSe(’ZS’Sﬁ) X 96+/5 el-25-5V5 ) x| 256 (-25:5V5 ) x | 96 /5 o[-25+5V5 ) x

— Exact
— approximation

sol = y[x] /. FirsteDSolve[{epsy''[x] +ay'[Xx] +by[Xx] ==0, y[@O] =1, y'[@] =1}, y[x], X]

Plot[{sol, mySol}, {x, @, 1}, PlotRange -» All, PlotStyle -» {Blue, Red}, PlotLegends -» {"Exact", "approximation"},
Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for e =", eps}]}},

BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray]

1
100

Exact vs. approximation for € =L

100

T

0.0f

1.0f ' ' '
0.8}
06}
x
=
0.4}
0.2}
0 02 04 06

0.
X

0.8

50 e -56-10V15 ) x _ 17+/15 e(-50-10V15 ) x | gg o (-50:10V15 ) x 17+/15 e (-50+10V15 ) x)

— Exact
—— approximation

20

0.5 problem 9.15(b)

Problem Find first order uniform approximation valid as ¢ — 0" for 0 <x <1

ey’ + (x2 +1)y’ -y =0

y(0) =1
y@)=1

1)
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Solution

Since a(x) = (xz + 1) is positive for 0 < x <1, therefore we expect the boundary layer to be on the
left side at x = 0. Assuming this is the case for now (if it is not, then we expect not to be able to
do the matching). We start by finding y,,; (x).

Your (X) = i)fnyn =Yo+ ey + ey + o
Substituting this into (1) gives -
€ (yf)’ +eyy + %y + ) + (x2 +1) (y(’) +ey) + ey + ) -x3 (yo + ey + Yy + ) =0 (2)
Collecting terms with O (1) results in
(x2 + 1) yh ~ 3y

dyo X3
A~ —yo
dx (x2 + 1)
This is separable.

dyo f x
Yo (x2+1)dx
X

1n|y0|~fx—1+x2dx

~%2—%1n(1+x2)+c

Hence

Applying y3“ (1) =1 to the above (since this is where the outer solution is), we solve for C

1
Ce2
~ —

Therefore

V1 + x2

2
\/5 e?2
€ V1 + x2
out

Now we need to find y{"*. From (2), but now collecting terms in O (¢) gives

yg + (2 +1)yi - 3)
In the above y{ is known.
2

TRENE c:
=N G x V1 + 22

2

2

\/E x3e2
- - 3
e 2

(1+x2)
And
224, 2
y”(x):\/gx ez (x +x +3)
0 - 5
(1+xz)2



N =

22

Hence (3) becomes

XX J O G W

(2 +1)yy Py -y

2
4, .2
(x +1)y - Py \/Ex ez (x +x5+3)

(1 + xz)2

= m
= ©
o

[S -
o O =
N

(-

> W
<
<

—_—~~

RN

+ |

—_

N—

S

|

e
=
N
o
NR
I~
=
~
+
=
~N N
+
[68]
N—

—
[Sa T

16 -f 2 21 (1+2)
17 Integrating factor is y =e

18 2
, ) L2
19 i((1+x2);e;Zyl)w—\/g(1+x2)iezzxez(x +x7+3)

j(l) ax (1 + xz)E

99 \/Exz(x4+x2+3)
23 TN ey

24
95 Integrating gives (with help from CAS)

22_1/1(X)w—\/7f x* + x? +3)dx

1+x2

929 [fl i 4 2 .

- - x
, 2 2
30 (1 + x2) 1+x

1
= (1 + x2)2 e 2 , hence the above becomes

N\»—\

97 (1 + xz)

1+x2

32 B % B 3x 7x _ garctan (x)
- [x 4(1+x2)2+8(1+x2) 9 3 J+C1

Hence
X 4 2

36 2 2z 3 7 t T
. Y (x) _\/j e - X 4 x __garctan (%) ‘G e :
) € 2\2 4(1+x2) 8(1+x2) 8 2\2

38 (1 +x ) (1 +x )

39 Now we find C; from boundary conditions y; (1) = 0. (notice the BC now is y; (1) = 0 and not

N

40 y1 (1) =1, since we used y; (1) =1 already).
41 ;

1
42 2 e2 3 7 arctan (1) ez
43 \/; 1(1_4:1 12+8(1+1)_9 8 =G T
: 1+1)2 1+1) 1+1)2

1 1
, 2e2 3 7 9 e2
4! S -2+ - Zarctan() | =C;—
" \/;\/5( 6 + T an ( )) Cl\/ﬁ
47 Simplifying

1
3 7 9 65
49 1-—+———arctan(1) = C;—
50 16 16 8 %

51 2(5 9

59 Cy = \/;(Z “3 arctan (1))
o c - \/E 5 9

54 1= 4 32

- =(.31431
56 e

57 Hence
58 2
2

59 Yt~ =4[ = X - 3 + L 2arctan () |+ \/E(E 2 ) e
) a(ew) 8(1+x?) 8 i %27 [iie)

60 ¢ (1 + x2

61 x2
. 2 B 5 9 3 7 9
(?z _° (———n)— X — X 5+ il > — — arctan (x)
63 e (1+x2) 4 32 4(1+x2) 8(1+x) 8

64

5 9 3x 7x 9
~aAe— |- g —x+ - +§arctan(x)

66 e Jir)|4 2 4(1+x2)2 8(1+22)
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17
18
19
20
21
22
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24
25

27

46

49
50
51
52
53
54
55

56

57
59
60
61
62
63
64

23
Hence
yout (x) yout + gyl{ui‘
3x 7x 9
- + —arctan (x) |+ O (&2
e\/1+x2 \/7 /1+x2 [ 4(1+x2)2 8(1+x2) 8 ] ( )

+0(?) (3A)

14 5 9 N 3x 7x +9 tan (x)
84 3271 X arctan (x

37
z\/1+—3C2 4(1+x2)2 8(1+x2) 8

Now that we found y** (x), we need to find yi" (x) and then do the matching and the find uniform

approximation. Since the boundary layer at x = 0, we introduce inner variable & = slP and then

express the original ODE using this new variable. We also need to determine p in the above
dy _ dyde dy _ dy d _ -
expression. Since -~ = i then -~ = = € 7. Hence - = ¢ P%
2 dd
dx2  dxdx
e pi & Pi
ag ag
2
= g_zpd_
d&?

Therefore Z—y = e‘ZV— and the ODE ey” + (x + 1)y - x%y = 0 now becomes

EE—Zpd—yz + ((éel’)z + 1) s”’% - (58’7)33/ =0

de
d? d
sl‘zl’é + (5267’ + e‘P) % - &Py =0
The largest terms are {51‘27”, P }, therefore matching them gives p = 1. The ODE now becomes
d? d
1+ (Eer ) ey =0 (4)

Assuming that
Yin (¥) = D3 €Y = Yo + €Y1 + €2 + -+
n=0

And substituting the above into (4) gives
el (y(’)’ +eyy + ) + (525 + 5‘1) (y6 +ey) + ) — &3¢8 (yo + ey + ) =0 (4A)
Collecting terms in O (8_1) gives

Letting z = y;, the above becomes

Hence

Yo -~ Cl fe_‘gdé + C2
- —Cle_5 + C2 (5)
Applying boundary conditions y4' (0) = 1 gives

1=-C;+(C
C=1+C
And (5) becomes
v (&) » =Cie e+ (1+Cy)
~1+C (1-€7) (6)
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46

49

24

We now find 4i". Going back to (4) and collecting terms in O (1) gives the ODE
W -
This is the same ODE we solved above. But it will have different B.C. Hence
Y~ —Cae™ + Cy
Applying boundary conditions y{" (0) = 0 gives

0=-C3+C4
C3=C4
Therefore
Y = ~Cse™* + Cs

~ Cy (1 - e“s)

Now we have the leading order "
Yy (&) =y + ey
=1+C (1 - e‘g) +eCy (1 - 6‘5) +0 (52) (7)

Now we are ready to do the matching between (7) and (3A)

511_}1231 +C; (1 - e"g) +eCy (1 - efé) ~

2

I 2 ez 1+ 5 9 N 3x 7x N 9 tan (x)

im el-—-=m-x - —arctan (x

=0\ e\l 122 4 32 a1+ xz)z 8(1+x2) 8
Or

xz 2
2 2 ez 5 9 3x 7x 9
1+Cy+eCy ~ \/711111 —¢elim - ——Tm-X+ - + — arctan (x)
1 3 e x—0 \/1 + x2 e x—0 \/1 + x2 4 32 4(1 + x2)2 8 (1 + xz) 8 ]

2

7x

2
But lim,_,q \/61_+7 -1, lim,_,q 3—x2 — 0 lim,_, — 0 therefore the above becomes

4(1+x2) m

1+C1+€C3 \/7 \/7 (Z_in)

Hence

This means that

Y& ~1+Cp (1-e€) +eCs (1-e7¢)

2 2 (5 9
~ _— —e ¢ _—— _ ¢
l+{\/; 1](1 e )+e\/7(4 3277)(1 e )
Yuniform(x) ™~ yin &+ ]/Dut (x) - Ymatch

~1+(\/g—1](1—e5)+€\/g(2—3%77)(1—e5)

Therefore

x2
N 2 ez 1+ 5 9 . 3x 7x +9 tan (2)
- el--=mn- - — arctan
V1 +x2 4 32 4(1+x2)2 8(1+x2) 8
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Or (replacing & by f and simplifying)

2 2(5 9
Yuniform(x) ™~ 1+ (\/; - 1] (1 - e‘é) —e%¢ E (Z — 3_27-[)

XZ
e [ fsie o ax %9
e Elg 3t X - Z arctan (x
e\l + 22 i 32 4(1+x2)2 S+ 8
2
e
Or
2 2(5 9
Yuniform(x) ™~ _\/;e—é +e7¢ - e_‘gg\/;(Z - 57-()
YZ
e [ f5ie s %9
e/ Elg X - Z arctan (x
€ V1 +x2 4 32 4 (1 + x2)2 8 (1 + xz) 8

To check validity of the above solution, the approximate solution is plotted against the numeri-
cal solution for different values of ¢ = {0.1,0.05,0.01}. This shows very good agreement with the
numerical solution. At ¢ = 0.01 the solutions are almost the same.

ClearAll[x, y, €];
€ =0.01;

2
r=.——m;
\ Exp[1]

ode=ey''[x]+ (x> +1)y'[x] -xX]y[x] =0;
sol = First@eNDSolve[{ode, y[@] == 1, y[1] =1}, Yy, {X, 0, 1}];
pl = Plot [Evaluate[y[x] /. sol], {x, @, 1}];

—_— - — - —
4 32 4(1+x%)% 8 (1+x?)

2
-x -x 5 9 EXP[X?] 5 9 3x 7x 9
mysol[x_, € ] :=-rExp[:]+Exp[:]-sr(4 327r)+r— 1+ +§ArcTan[x] H
142

p2 = Plot [ {Evaluate[y[x] /. sol], mysol[x, €]}, {x, @, 1}, Frame -» True, PlotStyle » {Red, Blue},
FrameLabel » {{"y (x)", None}, {"x", Row[ {"Comparing numerical and apprxoimation, using € = ", Nee}]}}, GridLines - Automatic,
GridLinesStyle - LightGray, PlotLegends - {"Approximation", "Numerical"}, BaseStyle -» 14, ImageSize - 400]

Comparing numerical and apprxoimation, using € = 0.1

1.00H ‘ -

0.98F 1

0.96F ]

— 0.94} .

Outi145 \E [ 1 — Approximation
- 0.92F 1 — Numerical

0.90F 1

0.88F 5

0.86F 1

0.0 0.2 04 0.6 0.8 1.0

Comparing numerical and apprxoimation, using € = 0.05

T T T T T T T

1.00F ‘ ‘ ]

0.98f

0.96

5 094 ]

oultsy= > 0 9ot :
0.90¢

0.88f

0.86]

— Approximation
— Numerical
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Comparing numerical and apprxoimation, using € = 0.01

T T T T T T T T T T T T T T T T

1.00F 1
0.98; ]
0.96; 1

. 0.94; 1

Z [

> 0.92f ]
0.90; 1
0.88; 1
0.86; ]

— Approximation
— Numerical

0.6 problem 9.19

Problem Find lowest order uniform approximation to boundary value problem
ey” + (sinx)y’ + ysin(2x) =0
y(©0)=mn
y(m =0
Solution

We expect a boundary layer at left end at x = 0. Therefore, we need to find yi” &),y (x), where &

is an inner variable defined by & = Sﬁp

left right
boundary boundary
layer layer
!
' |
| e—|
C | [ T]
' |
| outer region |
' |
| !
0 T T

matching at these locations

Finding y™ (&)
At x = 0, we introduce inner variable & = gp and then express the original ODE using this new
. . . . Ly dyde dy _dy _
variable. We also need to determine p in the above expression. Since —- = i i then —- = 2e€ P,
Hence £ = ¢ 7L
dx d&
@2 dd
dx?  dxdx
= g‘pi g‘Pi
as ag
2
= g—ZPd_
dé?



N =

27

2. 2
Therefore ZTZ = S‘ZV;% and the ODE ¢ey” + (sinx)y’ + ysin (2x) = 0 now becomes

XX J O G W

dy dy
-2 ] - 1 =
I3 pdéz + (sin (&eP)) € pdé +sin(2&eP)y =0

= m
= ©
o

dzy . dy .
1-2p p -p L P =
e 12 + (sin (&eP)) € i +sin (2&eP)y =0

[S -
o O =

3
. . . . . . X .
Expanding the sin terms in the above, in Taylor series around zero, sin (x) = x — 7 + --- gives

2 Py’ d 28eb)’
gl—ZPé+(§gp_%+...]g_p£+(zc§€p—( 53&;) +)y

16 3

dzy &3¢e2p dy (2&eP)

- 1-2 _

1; € PE+(5— 3 +---)£+ 2P — 3 +-ly=0

19 Then the largest terms are {51‘27",1}, therefore 1 -2p =0 or

20
1

22

93 The ODE now becomes

3
24 3 28
25 y”+(é—£+-~)y’+[25\/_‘—( Vo) +-~]y=0 1)

97 Assuming that

=

0

—
(Sa

VeI @) = D ey = yo + ey + Eyp +

n=0

30 Then (1) becomes

74 17 538 / / (25\/E)3
B e B L e R O

3!

Collecting terms in O (1) gives the balance
36 yo (&) ~ =&y (&)
37 Yo 0)=m
Assuming z =y, then
40
41 dz
42 z
43 Iniz| ~-=+C;
44 2
45 z~Cie2
46 ,
-
47 Therefore yj ~ C1e'2 . Hence
48 £ L2
49 Yo (&) ~ Cy f e2ds+Cy
0

50

With boundary conditions y (0) = . Hence

o
—

7T=C2

C
W N

And the solution becomes

=~

& 2

Y (&) ~ C fo e T ds+ )

1

Py
(@)}

Now we need to find y* (x). Assuming that

O O v O O O ¢
~ b C

o¢)

YU () = D €My = Yo + ey + E2yp + o
n=0

Then ey” + (sinx) y’ + ysin (2x) = 0 becomes

<Al
©

S <

61
62
63
64
65
66
67
68
69

5(}/6/ +€y/1/ + ) + sin (x) (yE) + gyi + ) + sin (2x) (yo +ey; + ) =0

RN
N = O



N =

28

Collecting terms in O (1) gives the balance

XX J O G W

sin (x) yg (x) ~ —sin (2x) yo (x)
dﬂ N _51'11 (2x) i
Yo sin (x)

in (2
ln|y0|~—fsm( x)dx

sin (x)

2sinxcosx
~ = f ——dx
sin (x)

o

—
= o

[
v W N

~ —chos xdx
16

17
18 Hence
19 ygut (x) ~ Aeg2sinx
20
91 Yo(m) =0
99 Therefore A = 0 and y§* (x) = 0.Now that we found all solutions, we can do the matching. The
93 matching on the left side gives
24 lim yin (&) = lim yout )
25 £—o0 x—0
26 : ¢ ﬁ — 1 —2sinx
limC; | e2ds+m=1limCse
0 x—0

27 E— o0

~ =2sinx + Cy

£ 2
lim C, f eTds+m=0 3)
99 g 1y

30 But

31 & 2 [m 3
e2ds= —erf(—)
32 j(; 2 \/z

34 And lim;_,, erf(‘/ii) =1, hence (3) becomes

[n
36 C E+7Z:0
37

40 =-\2n (4)

41 Therefore from (2)
42 :

3 WO~V [ eTdsam (5)
0
45 Near x = 7, using 1 = Z—? Expansion y" (r]) ~ 1y (77) + &1 (77) +0 (ez) gives p = % Hence O (1) terms
46 gives
v (1) ~ v (n)
y§(0)=0
2

yi (17) ~ Df ezds
0

49

N = O

And matching on the right side gives

w

. '’ _ . t

%gg yi (77) — ,ICLH}I o (x)
2

limD | e2ds=0

T]—)DO 0

1

Py
(@)}

D=0 (6)

NoliNe N |

.DWQ“\C:\DWC‘\&&\QWC‘\LT\DW

>
S <

61
62
63
64



© 0 N O s w0 N

I
SO ICIN G SFa o)

16
17
18
19
20
21
22
23
24
25
26
27

40
41
42
43
44
45
46
47

(o) e) e o) B, NG, BNE; BG: BE, BEG, TS, T S B T -
W N H O O X0 J O G W N B O © @

64
65
66
67
68
69
70
71
72

Therefore the solution is

y(x) ~ yin &) + yin (77) + 17 (x) — ymutch
2

'3
N—VZT(f e2ds+m+0
0

N—\/E gerf(%)+n

= Eerf(i)m
2 \/Z

- nerf(i)
V2e

29

(7)

The following plot compares exact solution with (7) for ¢ = 0.1,0.05. We see from these results,
that as ¢ decreased, the approximation solution improved.

In[37]:=

Out[42] > 2

X, f
Out[54]= > 1.5j

ClearAll[x, €, y]

mySol[x_, £ ] :=Pi-Pi Erf[ X ];
2¢

€ =0.1;

ode=ey'"'[x] +Sin[x] y'[x] +Yy[x] Sin[2Xx] == @;

sol = NDSolve[ {ode, y[@] == 7, y'[x] =0}, ¥, {X, 0, 7}];
Plot[{mySol[x, €], Evaluate[y[x] /. sol]}, {x, @, Pi}, Frame - True,

FrameLabel » {{"y(x)", None}, {"x", Row[{"Numerical vs. approximation for e=", €}]}}, GridLines - Automatic,
GridLinesStyle - LightGray, BaseStyle » 16, ImageSize - 500, PlotLegends - {"Approximation", "Numerical},

PlotStyle » {Red, Blue}, PlotRange -» All]

Numerical vs. approximation for €=0.1
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