16
17
18
19
20

27

HW 3, NE 548, Spring 2017

Nasser M. Abbasi

December 30, 2019

Contents

(0.1 problem 9.3 (page 479)] . . . . . . ... 2
011 Partal .. ... .. .. . 2
DIZParthl . . . oot 4
01.3 Partd ... ... ... . 6

0.2 problem 9.4(b)| . ... ........... . ... 6
[0.3 problem 9.6 . . . ... ... 11
031 Partal ... ... ... .. 12
032 Parfhl . .. ..o 12
D33 7Partd . . o oot 15
[0.3.4 Part (d)] . . . ... .. 18

0.4 problem 9.9 . . ... ... 20
.5 problem 9.15(b)|. . . . .. e 27
0.6 problem 919 . . . . . . . .. 35




N =

3 9
4
5
6
7 0.1 problem 9.3 (page 479)
8
9 problem (a) show that if 2 (x) < 0 for 0 < x <1 then the solution to 9.1.7 has boundary layer at x = 1.
1\0 (b) Find a uniform approximation with error O (¢) to the solution 9.1.7 when a(x) <0 for 0 <x <1
11 (c) Show that if a (x) > 0 it is impossible to match to a boundary layer at x =1
12 solution
13
14 011 Parta
1: Equation 9.1.7 at page 422 is

)
17 ey +a@)y +b(x)yx)=0 (9.1.7)
18 y(0) =
19 y() =
j(l) For 0 < x <1. Now we solve for y;, (x), but first we introduce inner variable £&. We assume boundary layer is at x = 0,
99 then show that this leads to inconsistency. Let & = i be the inner variable. We express the original
23 ODE using this new variable. We also need to determlne p. Since B — BL then ¥ = Y ep Hence

dx — d& dx dx d&
24 di =¢P di
25 * ¢ )
2 4 _4d
97 dx?  dxdx
28 = (g_pi) (S_Pi)
29 déz ag
30 gL
31 de?
¢ 2
ji Therefore ZTZ =% dEZ and (9.1.7) becomes
N P dy
34 2p %Y - —
e +ax)e?P=+y=0
35 gez T eIy
2
36 1-2p Y LW
€ +ax)eP—=+y=0

N a2 TGty
38 The largest terms are {61‘2’7, e‘V}, therefore balance gives 1 -2p = —p or p = 1. The ODE now becomes
39 2y dy
40 E_ld_éz +a(x) E_lg +y=0 1)
19 Assuming that
o Yin () = D3 €™ = Yo+ vy + Yy + -
44 n=0
45 And substituting the above into (1) gives
”1“7’ ‘1(y6’+ey’1’+---)+a(x)e‘1(y(’)+ey’1+-~)+(y0+ey1+~-)=O (1A)
48 Collecting powers of O (6_1) terms, gives the ODE to solve for i’ as
Y y§ ~—a(®)yp
50
51
52
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In the rapidly changing region, because the boundary layer is very thin, we can approximate a (x) by
a(0). The above becomes

vo ~-a0)yp

But we are told that a(x) < 0, so a(0) < 0, hence —a (0) is positive. Let —a (0) = n2, to make it more

clear this is positive, then the ODE to solve is
vg ~
The solution to this ODE is
C
Yo(&) ~ ¢ +Cy

Using y (0) = A, then the above gives A = % +CrorCy=A- % and the ODE becomes

C C
Yo (&) ~ n—;e”29 + (A - —1)

1’12
~ % (™ -1)+A

We see from the above solution for the inner layer, that as £ increases (meaning we are moving
away from x = 0), then the solution y, (£) and its derivative is increasing and not decreasing since
Yo (&) = Cre™ and yf (£) = CynPe™.

But this contradicts what we assumed that the boundary layer is at x = 0 since we expect the solution
to change less rapidly as we move away from x = 0. Hence we conclude that if a(x) < 0, then the
boundary layer can not be at x = 0.

Let us now see what happens by taking the boundary layer to be at x = 1. We repeat the same process

as above, but now the inner variable as defined as

_1-x
c=—
. . . . . . . dy dy d&
VdVe e;(press the orlglr;al ODE u:lng this new variable and determine p. Since polia th
Y — _y — —_ = (=" —_
E_dg( e7P). Hence dx_( ep)dé
2 dd
dx2  dxdx
d d
= —&7P) — —e7P) —
(( € )dg)(( € )dg)
2
= g‘zpd_
dé?
Therefore 2% = ¢27¥ and equation (9.1.7) b
erefore -5 = ¢™- and equation (9.1.7) becomes
d? d
ee‘zl’é —a(x) e‘Pé +y=0
&y dy
1—2P_ —_ = =
€ Ji2 a(x)e d£+y 0
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4
The largest terms are {31‘2P, e }, therefore matching them gives 1 -2p = —p or
p=1
The ODE now becomes
dy dy
%Y -
e iz a(x)e d£+y 0 (2)
Assuming that
Yin (X) = D3 €"Yn = Yo + €1 + EXYp + -
n=0
And substituting the above into (2) gives
et (y(’)’ +eyl + ) —a(x)e! (y6 +ey) + ) + (yo + ey + ) =0 (2A)

Collecting O (5’1) terms, gives the ODE to solve for y2' as
Yo ~ 2@y

In the rapidly changing region, @ = a (1), because the boundary layer is very thin, we approximated
a(x) by a(1). The above becomes

Yo ~ @Yo
But we are told that a2 (x) < 0, so @ < 0, and the above becomes

Yo ~ Yo

The solution to this ODE is
C
Yo(€) ~ =t + Gy 3)
Using

yx=1)=y(&=0)
=B

Then (3) gives B = % +CrorCy,=B- % and (3) becomes

Eaé _9
Yo (&) ae +(B oc)

~%(ea5-1)+3 (4)

From the above, yj (&) = —C1¢% and y{ (&) = Cyae**. We now see that as that as & increases (meaning
we are moving away from x = 1 towards the left), then the solution y, () is actually changing less
rapidly. This is because o < 0. The solution is changing less rapidly as we move away from the
boundary layer as what we expect. Therefore, we conclude that if a (x) < 0 then the boundary layer
can not be at x = 0 and has to be at x = 1.

0.1.2 Partb

To find uniform approximation, we need now to find y“ (x) and then do the matching. Since from
part(a) we concluded that v;, is near x =1, then we assume now that y*/ (x) is near x = 0. Let

Your () = D)€"y = Yo + €Yy + €2y + -

n=0
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Substituting this into (9.1.7) gives

(]/0 +eyl + ey +

2//

) +a(x) (y(’) +ey) + ety +

Collecting terms of O (1) gives the ODE

The solution to this ODE is

Applying y (0) = A gives

Where E is constant, which is the value of the definite integral E = ¢ £ 0"

y°" (x) can now be written as

a(x)yo+bx)y =0

Yo

* b6 4o

(W) = Cpe b r*

1 b(s)

A=Cpe b 0"

= CzE

¥ b(s)
— | —=ds
yo () = ik b

We are now ready to do the matching.

C
lim —
E—oo (¥

lim 4 (£) ~ lim " (x)

(‘)“S 1)+B hn%%e as)

X b(s) LOFR

But since a = a(1) < 0 then the above simplifies to

Hence inner solution becomes

G, A
o) T E
-a(1) (g —B)
} —a()(2-B
O ~ —a((f) ) (0 -1) + 8

The uniform solution is

Or in terms of x only

~ (B - %) ('@t -1)+B

~ B(e"M: -1) - % ("2 -1)+B

~ (B - %) ("Mt -1)+B

Yuniform (X) ~ yin (5) + yout (X) - ymutch

in out

~ (B - é) (eﬂ(l)‘S —1) +B+ ée
E E

Yuniform (x) ~ (B

Y Y

A
E

X

—) (e”(l)L 1) +B + 5 £

b(s)
a(s) %

X b(s)
a(s) %

1 b(s)

A

E

---)+b(x)(y0+ey1 + ey, + ) =0

. Hence the solution
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0.1.3 Partc

We now assume the boundary layer is at x =1 but 2 (x) > 0. From part (a), we found that the solution
for yi (£) where boundary layer at x =1 is

Yo (&) ~ —( “-1)+B
But now a = a(1) > 0 and not negative as before. We also found that y3* (x) solution was
O
Y (x) = —e b a®
Lets now try to do the matching and see what happens
lim 4 (&) ~ lim y** (x)
&0 x—0
Cy [ ¢ A _[rH
lim = (e% 1) + B+ O (e) ~ lim —e b % 1o
E—oo0 (¥ x—0 E
e 1 A
hm Ci|—-—-|~=-B
E—oo a o« E

Since now a > 0, then the term on the left blows up, while the term on the right is finite. Not possible

to match, unless C; = 0. But this means the boundary layer solution is just a constant B and that

% = B. So the matching does not work in general for arbitrary conditions. This means if 2 (x) > 0, it

is not possible to match boundary layer at x = 1.

0.2 problem 9.4(b)

Problem Find the leading order uniform asymptotic approximation to the solution of

ey’ + (1 + xz) y -y (x) =0 1)
y(0) =1
y1) =1

For 0 < x <1 in the limit as ¢ — 0.
solution

Since a (x) = (1 + xz) is positive, we expect the boundary layer to be near x = 0. First we find y*“ (x),
which is near x = 1. Assuming

Your () = D €™y = Yo + €Y1 + €2y + -
n=0

And substituting this into (1) gives

(yo +eyy + 2y + ) + (1 + x2) (y(’) +ey) + ey + ) -x° (yo + ey + Yy + ) =0
Collecting terms in O (1) gives the ODE

(1 + xz) vy ~ X3y

3

—x
3

——dx
Yo with integrating factor p = ef (+%)  To evaluate f dx let

The ODE becomes yj ~ )
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u = x2, hence Z—z = 2x and the integral becomes
—x3 ux du 1 u
f(1+x2)dx— J A+u2x __Ef(1+u)du
But
u 1
= |l1-—
f T+ f Tr™

=u-In(1+u)

But u = x2, hence
3

fﬁdx = _71 (x2 —In (1 + xz))

Therefore the integrating factor is u = exp (;xz + %ln (1 + xz)). The ODE becomes

d
ix (o) =0
Hyo ~ ¢
Your (X) ~ cexp 1xz - 1ln (1 +x2)
out 2 2
;1
~ Ce%xzeln(lﬂcz) 2
2
e2
~cC

V1 + x2

To find c, using boundary conditions y (1) =1 gives

Hence
21
2

out e
(x) ~ V2
Yo V1 + 22

Now we find 3™ (x) near x = 0. Let & = éip be the inner variable. We express the original ODE using

this new variable and determine p. Since Z—Z = Z—Zi—i th Z—Z = Z—Z&"’. Hence d% = e"’di‘g
2 dd
dx?  dxdx
d d
= P — - —
()]
2
= g_zpd_
dé?
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@y —opdy 2 3
Therefore - = &™¥ -5 and ey” + (1 +x )y’ - x°y (x) = 0 becomes

2

d
gg-zr’%+(1+(ggp)2) erd y — ey =0

%y dy
1-2 2,2 3.3
TR (1+&2% P)epdé—g Py =0
The largest terms are {el‘ZF’, er }, therefore matching them gives 1 —2p = —p or p = 1. The ODE now

becomes
2

el% + (1 + 5252) 81% -8y =0 2)
Assuming that
Yin (X) = ie”yn = Yo+ eyt eyt
And substituting the above into (2) giv:s
-1 (y{)’ +ey] + ) + (1 + 5262) g1 (yf] +ey) + ) —&3¢3 (yo +eyr + ) =0 (2A)
Collecting terms in O (5‘1) gives the ODE

Yo (&) ~ Y5 (&)
The solution to this ODE is

Yo (&) ~ o + et 3)
Applying yi (0) = 1 gives
l=c;+0c
c1=1-c

Hence (3) becomes
Yo' (&) ~ (1=cp) +cpe™
~1+c (et -1) (4)
Now that we found y,,;, and y;,, we apply matching to find c, in the y;, solution.
hm y (&) ~ lir(r]1+ v (x)
-1

hm1+c2( ) xlgg]l*\/—\/l-k—xz

Hence
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9
Therefore the yiI' (&) becomes
yE) ~1+ 1—\ﬁ (1)
e
1t (e -1) =y (e 1)
e
2
~es—Z(e € =1
i)
. 2 2
~ 6_9 _ Jje_é + —_
e e
~e s |l—qf=|+A/-
e e
~ 0.858 + 0.142¢7¢
Therefore, the uniform solution is
Yuniform ~ Yin () + Yout (X) = Ymaten + O (€) (4)

Where v, is ¥, (x) at the boundary layer matching location. (or y,,; at same matching location).
Hence

Ymaten ~ 1- C2

{4l

2
e
Hence (4) becomes
. Yout
Yin ’_/T Ymatch
2 i
2 2 ez 2
yuniform"“e_é[l_\/g]"' E+\/§ 1+x2_ E
-1
2

_x 2 e
~e e[l—\/;]+\/§ _1+x2+0(e)

This is the leading order uniform asymptotic approximation solution. To verify the result, the nu-

merical solution was plotted against the above solution for ¢ = {0.1,0.05,0.01}. We see from these
plots that as ¢ becomes smaller, the asymptotic solution becomes more accurate when compared to
the numerical solution. This is because the error, which is O (¢), becomes smaller. The code used to
generate these plots is
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In[180]:=

eps =0.1;

10

sol = NDSolve[{1/100y"''[x] + (1 +x"2) y'[x] -x*3y[x] =0, y[0] =1, y[1] =1}, Yy, {x, 0, 1}];
pl = Plot [Evaluate[y[x] /. sol], {x, @, 1}, Frame -» True,

FrameLabel » {{"y(x) ", None}, {"x", Row[{"numberical vs. asymptotic for eps

GridLines - Automatic, GridLinesStyle - LightGray];

-X
mysol[x , eps ] := Exp[;] [1 - Sqrt[

2

sqrt[2] Exp[xzz‘l] .

Exp[1]

)-

Sqrt[1+ x"2]

p2 = Plot [mysol[x, eps], {x, @, 1}, PlotRange » All, PlotStyle -» Red] ;

Show[Legended[pl, Style["Numerical™, Red]], Legended[p2, Style["Asymtotic", Blue]]]

The following are the three plots for each value of ¢

numberical vs. asymptotic for eps =0.1

1.001
0.98
0.961
~ 0.941
X
oulsl= > 5 9ol
0.90F
0.88}

0.86F

Numerical
7 Asymptotic

o
oL
[N

0.

numberical vs. asymptotic for eps =0.05

T T

1.001
0.981
0.961
~ 0.941
it
oulizl= > gof
0.90r
0.88[

0.86F

T

T

T

Numerical
7 Asymptotic
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4

5

6 numberical vs. asymptotic for eps =0.01

7 1.00f; ‘ ‘ ‘ ‘

8 0.98}

9 0.96]

10 - 0.94F _

11 > o092 | heymptoric

12 0.90F

13 0.88k

14 086 ‘ : ‘ ‘ ]

15 0.0 0.2 0.4 0.6 0.8 1.0

16 ‘

17

18 To see the effect on changing ¢ on only the asymptotic approximation, the following plot gives the

19 approximation solution only as ¢ changes. We see how the approximation converges to the numerical

20 solution as ¢ becomes smaller.

21

929 Plot[{mysol[x, .1], mysol[x, .05], mysol[x, .Q1]}, {x, @, 1},

93 PlotLegends -» {"€=0.1", "€=0.05", "€=0.01"}, Frame - True,

94 FrameLabel » {{"y(x)", None}, {"x", "Asymptotic solution as eps changes"}},

95 BaseStyle » 14]

26 Asymptotic solution as eps changes

27 100, T o

8 0.98} :

29 0.96 ]

30

31 S 0.94¢ 1 — e=0.1

32 > 0.92¢ 1 €=0.05

33 0.90¢ 1 — e=0.01

34 0.88} .

35 0.86F :

3;7’ 00 02 04 06 08 10

38 *

39

40 bl

" 0.3 problem 9.6

42 Problem Consider initial value problem

43 ) X2 )

44 y:(l+m)y -2y +1

j:f) With y(1) = 1 on the interval 0 < x < 1. (a) Formulate this problem as perturbation problem by

o introducing a small parameter ¢. (b) Find outer approximation correct to order ¢ with errors of order
2. Where does this approximation break down? (c) Introduce inner variable and find the inner

jg solution valid to order 1 (with errors of order ¢). By matching to the outer solution find a uniform

valid solution to y (x) on interval 0 < x < 1. Estimate the accuracy of this approximation. (d) Find
inner solution correct to order ¢ (with errors of order ¢2) and show that it matches to the outer
solution correct to order .

W N = O
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solution

0.3.1 Parta

Since 13)—0 is relatively small compared to all other coefficients, we replace it with ¢ and the ODE
becomes

€
y’—(1+;)y2+2y:1 )

0.3.2 Partb

Assuming boundary layer is on the left side at x = 0. We now solve for y,,, (x), which is the solution
near x = 1.

Your () = D €™y = Yo + €y + €2y + -+
n=0

Substituting this into (1) gives
€ 2
(y(’) +eyy + e2yh + ) - (1 + ;) (yo +eyp + &2y, + ) +2(y0 +ey + &%y, + ) =1
Expanding the above to see more clearly the terms gives
€
(.‘/6 +ey) + ey, + ) - (1 + x_2) (yé +e (2yo}/1) +e2 (2yoy2 +]/%) + ) + 2(]/0 + ey + %Yy + ) =1 (2)

The leading order are those terms of coefficient O (1). This gives

Yo - Yo+ 20 ~1
With boundary conditions y (1) = 1.

dy,
d—xo’“y%—zyﬂ'l

This is separable
d
s mere L
Yo~ 2yo +1
d
% ~ dx
(vo-1)

dyo - M
f(y0—1)2 fd

Yyo—1
(Yo-1)(x+C) ~ -1
-1
x+C

For y, # 1. Integrating

~x+C

Yo~ (3)
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13

To find C, from y (1) =1, we find

'~ 1ic
This is only possible if C = co. Therefore from (2), we conclude that

Yo (x) ~1

The above is leading order for the outer solution. Now we repeat everything to find y§* (x). From (2)
above, we now keep all terms with O (¢) which gives

, 1
Vi~ 2yoy1 +2y1 ~ x_zy%
But we found y; (x) ~ 1 from above, so the above ODE becomes

1
Vim 2Pt 2~

y“vl
1 xz

Integrating gives
1
~-——=+C
y1 (%) P

The boundary condition now becomes y, (1) = 0 (since we used y (1) =1 earlier with y;). This gives

0= ! +C
1
Cc=1
Therefore the solution becomes
1
yi(0)~1--

Therefore, the outer solution is

Yout (X) ~ Yo + €yq
Or

y(x)~1+e(1—§)+0(52)

Since the ODE is y’ - (1 + %)yz + 2y = 1, the approximation breaks down when x < /¢ or x < %.
&

Because when x < /¢, the )% will start to become large. The term = should remain small for the

approximation to be accurate. The following are plots of the y, and y, + €y, solutions (using ¢ = ﬁ)
showing that with two terms the approximation has improved for the outer layer, compared to the full
solution of the original ODE obtained using CAS. But the outer solution breaks down near x = 0.1
and smaller as can be seen in these plots. Here is the solution of the original ODE obtained using
CAS
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10 2P = oo
\ eps
ode =y'[x] == (1+ —2) y[x]*2-2y[x] +1;
X

sol = y[x] /. First@eDSolve[{ode, y[1] == 1}, y[X], X]
10x [-12-56 - 12x° % 1546 K

26 26 26
-6 -120x-50/6 x+6 x5 -120x* "5 +50+/6 x** 5

153= Plot[sol, {x, @, 1}, PlotRange » All, Frame - True, GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel -» {{"y(x)", None}, {"x", "Exact solution to use to compare with"}}, BaseStyle - 14,
PlotStyle - Red, ImageSize - 400]

Exact solution to use to compare with

1.0 :

0.8f ]

0.0 0.2 04 06 08 1.0

In the following plot, the y, and the y, + ¢y, solutions are superimposed on same figure, to show
how the outer solution has improved when adding another term. But we also notice that the outer
solution yy + €y; only gives good approximation to the exact solution for about x > 0.1 and it breaks
down quickly as x becomes smaller.
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outerl=1;

outer2=1+eps* (1-1/x);

p2 = Plot [Callout [outerl, "y,", Scaled[0.1]], {x, @, 1}, PlotRange » All, Frame - True,
GridLines -» Automatic, GridLinesStyle - LightGray,
FrameLabel » {{"y (x)", None}, {"x", "comparing outer solution yg with yg+ €y;:"}},
BaseStyle -» 14, PlotStyle » Red, ImageSize - 400] ;

p3 = Plot [Callout [outer2, "yp+ €y;", {Scaled[0.5], Below}], {x, ©0.01, 1}, AxesOrigin- {0, 0}];

Show[p2, p3, PlotRange » {{0.01, .5}, {0, 1.2}}]

comparing outer solution yg with yp+ €y4
1.2} Yo ' ' '

|
1.0

0.8 \

Yot €Y1

0.4

0.0 l l l l ‘
0.0 0.1 0.2 0.3 0.4 0.5

0.3.3 Partc

Now we will obtain solution inside the boundary layer y;, (&) = y (£) + O(e). The first step is to
always introduce new inner variable. Since the boundary layer is on the right side, then
x
&= o>

And then to express the original ODE using this new variable. We also need to determine p in the

dy d& _

above expression. Since the original ODE is y’ - (1 + ex‘z) y? +2y =1, then % = = z—z (e77), then

- EE dx
the ODE now becomes

) €
(e g e
1-2p
Z—Ze"’—(l+€£2 )y2+2y:1

Where in the above y = y(£). We see that we have {e‘p,s(l_ZP )} as the two biggest terms to match.
This means —-p =1-2p or

Hence the above ODE becomes
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We are now ready to replace y (&) with Z::’:O &"y, which gives

-1

(y6 +eyy + e2yh + ---)e‘l - (1 + gg—) (yo +eyp + ey, + -~)2+2(y0 +eyp + 2y, + ) =1

-1

(y(’) + ey + ey + ---)5‘1 - (1 + 2—2) (y% +5(2y0y1) + ) +2(yo +eyp + &2y, + ) =1 (3)

Collecting terms with O (6_1) gives

1

Yo ~ gy%
This is separable
dyo 1
200 =4
f v 2

gt ~ =+ C

1.1

Yo &

1 1-C¢

Yo &

yO ~ 1 _ éc

out

Now we use matching with y,,; to find C. We have found before that 13" (x) ~ 1 therefore
élim Y& +0(e) = lin% v (x) + O (¢)
511_1)1010 1_% =1+0 (é)
élim (-O)+0(£1) +0(e) =1+ 0(e)

—C=1

Therefore

i (£) 0
BO~ (1

Therefore,

_ q,in out
yuniform =Yoo tYo — Ymatch
Yin

g o

=——+1 -1
1+&

Since Y,uun =1 (this is what lim,_,., yi' is). Writing everything in x, using & = i—( the above becomes

™R

Yuniform = X

1+-
&
X

E+X

The following is a plot of the above, using ¢ = 11ﬁ to compare with the exact solution.,
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Inf1s9)= Y[x_, eps_] =
X + eps
pl = Plot [ {exactSol, y[x, 1/100]}, {x, 0.02, 1}, PlotRange -» All,
Frame - True, GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel -
{{"y(x)", None},
{"x", "Exact solution vs. uniform solution found. 9.6 part(c)"}},
BaseStyle - 14, PlotStyle » {Red, Blue}, ImageSize - 400,
PlotLegends » {"exact", "uniform approximation"}]
Plot[y[x, 1/100], {x, 0, 1}, PlotRange » {{.05, 1}, Automatic}]
Exact solution vs. uniform solution found. 9.6 part(c)
100 r ; ; ; ; ;
0.95¢
0.90¢1
x 085 — exact
Out[190]= . . .
0.80¢ 41— uniform approximation
0.75¢1
0.70
065 [ N N N ! N N N ! N N N ! N N " ! N " " 1
0.0 0.2 0.4 0.6 0.8 1.0
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0.3.4 Part (d)

Now we will obtain y" solution inside the boundary layer. Using (3) we found in part (c), reproduced
here

-1
(y6+ ey + 2y + ---)5‘1 - (1 + 2—2) (y% +£(2y0y1) + ) +2(yo +eyp + 2y, + ) =1 (3)

But now collecting all terms of order of O (1), this results in
’ 2 2
V1m0~ oy * 2yp~1

Using y&' found in part (c) into the above gives

, 21 Lo 8 &V
N Ve L C s A s

,_( 2 ) 1
N\ca+o) " w11y
[ e

This can be solved using integrating factor y = e ¢+¢

using partial fractions gives y = exp(-2In& +21In (1 + £))
or = é(l + 5)2. Hence we obtain

i( ) ~ _ 1
dx HY1 H(é+1)2

d (1 1
o (gﬂ +£)2y1) ~ =z

Integrating

1 1
Z 0+ &2y ~ 24
1 -1
§<1+5>2y1 ~T+6
(1 +&)%y ~ —& +E2C,
-£+ &G,
1+&)7

1N

Therefore, the inner solution becomes
Y™ (&) =yo + e
& &2Cy - &
= + ¢ 5
1+ (1+¢)

To find C;,C, we do matching with with 3 that we found in part (a) which is y,,; (x) ~ 1+ ¢ (1 - i)

i (1 e £9=)
oo \1+8C (14&)

x—0

. 1
~hm1+e(1——)
x
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£ 1 1 1 2C,- 2C+1
= — -+ ——=+-a ds Zf:CZ— 2
1+6C;  C1 &ct o eacd (1+&) <

li ! 1 + 1 + +|eC 26,41 + lim1+e(1 !
1m —_— _— &€ - & ~ ]1m & —_—
o\\Cp &3 &2c3 2 3 50 x

Doing long division —---, hence the above becomes

! +eCy ~liml+¢(1 !
C1 -2 xl_l;% ¢ X
Using x = € on the RHS, the above simplifies to

1 1
—+eCry~liml+ell-—
& pmivei- )

lim1+(e—l)
g

ESc0
~1+¢
Therefore, C; =1 and C, = 1. Hence the inner solution is
Yy (&) = Yo+ ey
_ < te &2-¢&
1+& @a+¢)y

Therefore

Yuniform = Yin + Yout — Ymatch
Yin Yout

_ £, ek
1+& @+¢)

+1+5(1—1)—(l+5)
X

Writing everything in x, using & = f the above becomes

X r_r 1
Yuniform = —x + &€= 52+1+€(1__)_(1+€)
e (1+3) .

X X2 — xe
= + +l1+e—---1-
etx £(1+§) x
X x% - xe &

+ 5= =
X

e+x €(1+_) x
&

1

Tog to compare with the exact solution.

The following is a plot of the above, using ¢ =
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X x% - x eps eps
+ el

X+eps  gps (1+L)2 X
eps

ylx_, eps_] :=

pl = Plot [ {exactSol, y[x, 1/100]}, {x, 0.02, 1}, PlotRange » All, Frame - True,
GridLines -» Automatic, GridLinesStyle - LightGray,
FrameLabel -» {{"y(x)", None}, {"x", "Exact solution vs. uniform solution found. 9.6 part(d)"}},
BaseStyle - 14, PlotStyle -» {Red, Blue}, ImageSize - 400,
PlotLegends -» {"exact", "uniform approximation"}]

Plot[y[x, 1/100], {x, @, 1}, PlotRange » {{.05, 1}, Automatic}]

Exact solution vs. uniform solution found. 9.6 part(d)

1.0}
0.8r
X067 1 — exact
>
— uniform approximation
0.4r
0.2
0.0 0.2 0.4 0.6 0.8 1.0

Let us check if yypiform (¥) satisfies y (1) =1 or not.
1 1-¢
+
c+1 1 2
e (1 + —)
.
1-e3-3e2+¢
(e + 1)2
Taking the limit ¢ — 0 gives 1. Therefore yypiform (¥) satisfies y (1) =1.

Yuniform (1= -e+0 (62)

0.4 problem 9.9

problem Use boundary layer methods to find an approximate solution to initial value problem

ey +aX)y +b(x)y=0 1)
y(0)=1
y(0)=1

And a > 0. Show that leading order uniform approximation satisfies y(0) = 1 but not ¥’ (0) = 1 for
arbitrary b. Compare leading order uniform approximation with the exact solution to the problem
when a (x), b (x) are constants.

Solution



3
4
5
6 Since a(x) > 0 then we expect the boundary layer to be at x = 0. We start by finding y,,; (x).
7 oo
8 Your (X) = 23 €™ = Yo + €Y1 + 2y + -+
9 n=0
10 Substituting this into (1) gives
11 € (y{)’ +eyl + 2y + ) + u(y{) +eyy + e2yh + ) + b(yo +eyp + ey, + ) =0
12 Collecting terms with O (1) results in
13
14 ayy ~ —byo
15 dyo b .
16 dx a
17 This is separable
d b
18 fﬂfv—f—(x)dx
19 Yo a(x)
20 b ()
Injyg|~—- | —=dx+C
21 |y0| a(x)
22 - [ 2
~ C a(s)
23 Yo e
94 Now we find y;,. First we introduce interval variable
25 *
&=—
26 ep
9 . dy _ dydg dy _dy _ d _ _,d
27 And transform the ODE. Since — = i then — = € P. Hence — =¢ ”%
28 o
29 4 _d4d
N dx?  dxdx
30 d d
‘ =ler=||cr=
tﬂ (s dé) (e dé)
32
o L, d?
«%3 =& zp—z
34 i i a
35 Therefore ZTZ = E*ZP% and the ODE becomes
36
&’y dy
37 —2p_+ —_— _p+b =0
%8 e g +a@) L 1Oy
39 ey +ae Py +by =0
40 Balancing 1 - 2p with —p shows that
41 .
42 P=
43 Hence
fﬁ ey +aely +by =0
45
46 Substituting y;, = E:;o €™y, = Yo + €yy + €%y, + --- in the above gives
47 et (y(’)’ +eyy + &%y + ) +ae! (y{) +ey) + ey + ) +b (yo +eyy + ey + ) =0
48
49 Collecting terms with order O (e‘l) gives
50 yél ~ —Hyf)
51
52

53
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. dz .. . .
Assuming z = 1, then the above becomes z’ ~ —az or — ~ —az. This is separable. The solution is
g Yo T P
(=
dz

-~ —adé or
3

In|z| ~ —f a(s)ds+ Cy
0

z~Cie

Hence

Integrating again

. 3 M
ygl ~ f (C1€ “6 a(S)dS) dT] + C2
0

Applying initial conditions at y (0) since this is where the y;, exist. Using y;, (0) = 1 then the above
becomes

1:C2

Hence the solution becomes
. & M
Y~ f (Cle b ”(S)"S)dnﬂ
0

To apply the second initial condition, which is ¥’ (0) = 1, we first take derivative of the above w.r.t. &

]/6 -~ Cle_ f a(s)ds

Applying y;(0) =1 gives
1=C
Hence

) S
ve! ~1+f e ga(s)dsdn
0

Now to find constant of integration for y** from earlier, we need to do matching.

élim Yo ~ lim 3"t
—00 x—0
3 ul X b(s)
. — d; . - | —=d
lim 1 +f e L a(s) Sdr] ~ lim Ce £ ae®
E—oo0 0 x—0

c
On the LHS the integral L" b u(s)dsdn since a > 0 and negative power on the exponential. So as

& — oo the integral value is zero. So we have now
R
1~ limCe b "
x—0
—f( o) s —{O @ds
Let lim, ,ye ** @~ — E, where E is the value of the definite integral Ce % *"". Another constant,
which if we know a (x),b(x) we can evaluate. Hence the above gives the value of C as

—_

C=-=>
E



19
20
21
22
23
24
25

27

45
46

49

23

The uniform solution can now be written as

Yuniform = Yin + Yout — Ymatch
X b(s)
=1 +f £ u(Sdsd + _g ok
X b(b)
f £ a(s) dsd + £ as) (2)

Finally, we need to show that yy,iform (0) = 1 but not y ... (0) = 1. From (2), at x = 0 which also
means & = 0, since boundary layer at left side, equation (2) becomes

1 K ) 4
Yuniform (0) =0+ = lime )™
E x—0

X b(s)
. . —=ds
But we said that lim,_,ge Fao® - = E, therefore

Yuniform (0) =1

Now we take derivative of (2) w.r.t. x and obtain

X b(s)
’ e — | a(s) ds G —=ds
yuniform (f L )+——(€ £ © )

_, £ a(s)d s 1 b(X) —£X h(s)d
- " Ea (x)
And at x = 0 the above becomes

15(0)

- =1-—=-——=
Yuniform (0) Ea (0)

The above is zero only if b(0) = 0 (since we know a(0) > 0). Therefore, we see that v ... (0) #1 for
any arbitrary b (x). Which is what we are asked to show.

Will now solve the whole problem again, when a,b are constants.

ey’ +ay +by=0 (1A)
y(0) =
y(0) =1

And a > 0. And compare leading order uniform approximation with the exact solution to the problem
when a (x), b (x) are constants. Since a > 0 then boundary layer will occur at x = 0. We start by finding

Yout (x)

Your () = D €My = Yo + €y + €2y + -
n=0

Substituting this into (1) gives

& (yé’ + gy’l’ + 82}/&’ + ) + ﬂ(yé + Sya + gzyé + ) + b(yo + gyl + €2y2 + ) =0
Collecting terms with O (1) results in

ayg ~ —byo

dyo b

dx ~ " a’®
X a
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This is separable

d
fﬂ ~ —édx
Yo a

b
In |y0| ~ =X +C
b
B~ G

Now we find y;,,. First we introduce internal variable & = éip and transform the ODE as we did above.
This results in

et (y(’)’ + eyt + 2y + ) +ae™! (% +eyy + e2yh + ) + b(yo +eyp + &2y, + ) =0
Collecting terms with order O (e‘l) gives
Yo ~ ~aYo
Assuming z = y; then the above becomes z’ ~ —az or Z—z ~ —az. This is separable. The solution is
dz

-~ —ad& or

In|z| ~ —a& + E;
z ~ Eje7

Hence

Integrating again

‘ A
Yo ~ Ei (7)3_“" +E,

Applying initial conditions at y (0) since this is where the y;, exist. Using y;, (0) = 1 then the above
becomes

1=E ! +E
1 a 2
a(EZ 1)_E1

Hence the solution becomes

Yy~ (1-Ey)e™ +E, (1B)

To apply the second initial condition, which is y” (0) = 1, we first take derivative of the above w.r.t. &

vy~ -a(l—Ey) e

Hence y’ (0) =1 gives
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And the solution y;, in (1B) becomes

y6”~(1—1+a)e”‘5+1+a

a a

~ __1 e_ﬂ5+]ﬂ
a a

(1+a)-e
a
Now to find constant of integration for y°* (x) from earlier, we need to do matching.
lim y2 ~ lim yg*
£{— 0 x—0
1+a)—e® _b

i LEOZCT i e
E— 0 a x—0

—_— ~ Cl
a
Hence now the uniform solution can be written as

Yuniform (x) ~ Yin t Yout — Ymatch
—/—ym Yout
X

PR ,‘—/\“
1+a)—e '« 1+a b, 1+a
~ + e 4 - —
a a a

l+a) e’ 1+4a _ b, 1+a
+ X

R —

~ %((1 ra)e —e*ﬂf) (24)

Now we compare the above, which is the leading order uniform approximation, to the exact solution.
Since now a,b are constants, then the exact solution is

Yexact (x) = AeM¥ 4 Betax )

Where A, , are roots of characteristic equation of ey”” + ay’ + by = 0. These are A = ;—: + 21—8\1112 — 4eb.
Hence

- 1
/\1=—a+§\/a2—4£b

2
-a 1 ——
/\2: 7—5 a2 —4eb
Applying initial conditions to (3). y (0) =1 gives
1=A+B
B=1-A
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And solution becomes V., (x) = Ae™* + (1 — A) e*2*. Taking derivatives gives
Yexact (¥) = AAeM¥ + (1 = A) Apete
Using y’ (0) =1 gives
1=AM+(1-A)A,
1=AN -A)+ Ay
1-4,

A=
A=Ay

1=,
A7y

Therefore, B=1 - and the exact solution becomes

1-A 1-A
Yexact (x) = A—l — /\22 eMr (1 - —A1 — /\22)6/\2’5
1=y (=2 =(=2) 0
A=Ay A=Ay

1-4, Apx Ar—1 Ayx
_ 4
ot o) @

b x
While the uniform solution above was found to be % ((1 +a)e " - e_ﬂg). Here is a plot of the exact

solution above, for ¢ = {1/10,1/50,1/100}, and for some values for a,b such as 2 =1,b = 10 in order to
compare with the uniform solution. Note that the uniform solution is O (¢). As ¢ becomes smaller, the
leading order uniform solution will better approximate the exact solution. At ¢ = 0.01 the uniform
approximation gives very good approximation. This is using only leading term approximation.

ClearAll[x, y]

eps=1/10; a=1; b =10;

mySol =1/a ((1+a) xExp[-b/ax] -Exp[-ax/eps]);

sol = y[x] /. First@eDSolve[{epsy''[x] +ay'[x] +by[Xx] =0, y[0] ==1, y'[0] =1}, y[x], X]

% e %% (5Cos[5V3 x] +2V/3 sin[5V3 x])

Plot[{sol, mySol}, {x, @, 1}, PlotRange - All, PlotStyle » {Blue, Red}, PlotLegends -» {"Exact", "approximation"},
Frame -» True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for e =", eps}]}},
BaseStyle » 14, GridLines - Automatic, GridLinesStyle - LightGray]

Exact vs. approximation for € :j—o

1.0F ‘ ‘ ‘ ‘ ]

0.8 1

0.6 1
— Exact
— approximation

0.0 \/

0.2k | | A
0.0 0.2 0.4 0.6 0.8 1.0
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ClearAll[x, y]
eps=1/50; a=1;b=10;
sol = y[x] /. First@eDSolve[{epsy''[x] +ay'[x] +by[x] =0, y[@] =1, y'[O] == 1}, y[x], X]
Plot[{sol, mySol}, {x, @, 1}, PlotRange - All, PlotStyle » {Blue, Red}, PlotLegends -» {"Exact", "approximation"},
Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for e =", eps}1}},
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray]
28] 5_1a 25 e (-25-5V5 ) x _ 265 e(-25-5V5 ) x | 55 o (-25+5V5 ) x | 265 el-25+5Vs) x)
Exact vs. approximation for € :51_0
10R T T T T i
0.8 ]
0.6 1
= — Exact
29)= X L
0.4 - —— approximation
0.2 ]
0'07\ L L L L \—
0.0 0.2 0.4 0.6 0.8 1.0
X
ClearAll[x, y]
eps=1/100; a=1; b = 10;
sol = y[x] /. First@eDSolve[{epsy''[x] +ay'[x] +by[x] =0, y[@] =1, y'[0O] == 1}, y[x], X]
Plot [ {sol, mySol}, {x, @, 1}, PlotRange - All, PlotStyle -» {Blue, Red}, PlotLegends - {"Exact", "approximation"},
Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for € =", eps}1}},
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray]
1) %00 50 e (~50-10VI5 ) x _ 17 /75 o(-50-10V15 ) x | 59 o (-50+10V15 ) x | 17./]5 o(-50-10V15 ) x
Exact vs. approximation for € :11%
1 0F , , , ! a
0.8 ]
0.6 1
= — Exact
1H133)= X N
0.4f 4 —— approximation
0.2 ]
0'07\ L L L L \—
0.0 0.2 0.4 0.6 0.8 1.0
X
0.5 problem 9.15(b)
Problem Find first order uniform approximation valid as ¢ — 0" for 0 <x <1
’” 2 1)y 3, — 1
ey’ +(x*+1)y' -xy=0 (1)
y(0)=1
y@) =1

Since a (x) = (xz + 1) is positive for 0 < x <1, therefore we expect the boundary layer to be on the

left side

at x = 0. Assuming this is the case for now (if it is not, then we expect not to be able to do
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the matching). We start by finding y,,; (x).
Your (¥) = 25 €Y = Yo + ey + 2y + -
n=0
Substituting this into (1) gives

s(yf)’ + ey +€2y§’ + ) + (x2 +1) (y6 +eyp + szyé + ) -3 (yo + eyq +£2y2 + ) =0

Collecting terms with O (1) results in

This is separable.

Hence

Applying y3“ (1) =1 to the above (since this is where the outer solution is), we solve for C

1
Ce2

~ —

Therefore
-1 xz

out \/567 ez

y ~N ——

V1 + x2

2
\/5 e?
€ V1 +x?

Now we need to find ¥§"*. From (2), but now collecting terms in O (¢) gives

v + (2 +1)y; - Py

28

2)

()
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In the above y{ is known.

And

7 X eY22 (x4+x2+3)
yo () = \/; 5

(1 + x2)2
Hence (3) becomes

(x2 + 1)3/ -~ %y~ yg

,
(x2+1)yi mx3y1—\/gx ez (x +x5+3)
(1 + xz)z
) x3 \/Exzexz2 (x4 +x% + 3)
-7 N\
! (x2+1) ! e (1+x2)g
2 dx x2 > 1 2
Integrating factoris u =e¢ ()7 2 gy (e ) = (1 + xz)2 e 2 , hence the above becomes

. -
%((1 +x2);e;2y1) w—\/g(l_,_xz)iezzx e? (x +x7+3)

(1 + xz)z
\/Exz(x4+x2+3)
€ (1 + x2)3
Integrating gives (with help from CAS)
(1+x2)% 22}/1(3C)‘”—\/7f A +3)dx
1 + x2
\/7‘[1 - 5+ 4 5 = 2 Sdx
1 + x2 (1 + xz) T+x
B g B 3x 7x _ garctan (x)
\/;x 4(1+x2)2+8(1+x2) Tt
Hence
x2 2
2 e2 3x 7x arctan (x) ez
Ut (x) —\/j - + -9 +C
o e(1+x2)% x 4(1+x2)2 8(1+) ° 1(1+x2);

Now we find C; from boundary conditions y; (1) = 0. (notice the BC now is y; (1) = 0 and not y; (1) =1,
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30
since we used y; (1) =1 already).
1 1
2 2 3 7 tan (1 2
N N O T -
€1 +1)2 401 +1) 1+1) 1 +1)2
1
2 e2 3 7 9 e2
1-— + = - Zarctan(1)| = C;—
(( 16 " 16 saman()) “%
Simplifying
1
3 7 9 e2
1-—+——--arctan(1) =C;—
TRET: 8arcam() 1\/5
2(5 9
Cl—\/;(z—garctan(l))
2(5 9
Cl—\[(rs—z)
= 0.31431
Hence
2 2
2 e2 3x 7x 9 2(5 9 ez
Y~ — = 5+ — —arctan (x) +\/7(——— )—
e /(1+x2 1+x2) 8(1+x2) 8 4 32 (1+2)
2
2 ez (5 9) 3x . 7x 9 tam ()
~Afm———||- - =7 - |x- 5 — — arctan (x
“J(1+22) 4 % 4(1+22) 8(1+x2) 8
2
\/53259+3x 7x+9t()
~yfm—Y—|--—=m—x 5= —arctan (x
¢ Ja+2)(* 32 a(i+2) 8(1+x?) 8
Hence
yout (x) yout + éyout‘
or 3x 7x 9
—x+ - + —arctan (x) | + O (&?
eV1+x2 \/7/ [4 32" 4<1+x2)2 8(1+x2) 8 ()
2 ez 5 9 3x 79
- l+e|l=-=—=m—-x+ - + Zarctan (x) ||+ O (&? (3A)
e\/1+x2[ [4 32 4(1+x2)2 8(1+x2) 8 (<)

Now that we found 3 (x), we need to find 3 (x) and then do the matching and the find uniform
approximation. Since the boundary layer at x = 0, we introduce inner variable & = éip and then express
the original ODE using this new variable. We also need to determine p in the above expression. Since
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dy dy d& dy dy d _
ol then —= = = € 7. Hence —- = ¢ F’E
2 dd
dx?  dxdx
e pi —Pi
dé dé
2
= g_zpd_
dé?
Therefore Z—y = e’ZP? and the ODE ¢y” + (x + 1)y - x3y = 0 now becomes
@y - y
e 2;7@ + (("Sfp) +1) ;7 (éfp) y=0
d?y d
el=2p — S 2.p -p) 2L _ £3.3p
qe2 (5 el + ¢ ) dc &efy=0
The largest terms are { 1729 e~ } therefore matching them gives p = 1. The ODE now becomes
dy dy
-1 2, 4 1 3.3, —
£ @+(§é+é )£—Eey—0 (4)
Assuming that
Yin (1) = 23" = Yo+ ey1 + Yy + -+
n=0
And substituting the above into (4) gives
g1 (y{)’ + eyl + ) + (525 + 5‘1) (y{) +ey) + ) - &3¢8 (yo + ey + ) =0 (4A)
Collecting terms in O (5‘1) gives
Yo - Yo
Letting z = y;, the above becomes
dz
="
d
e
In |Z| - =&+ C1
z - Ciet
Hence
dyO —-&
d(g Cle
Yo -~ Cl fe_9d§+C2
- —Cle_g + Cz (5)

Applying boundary conditions i (0) = 1 gives

1:—C1+C2
C2:1+C1
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And (5) becomes
Yo' (&) ~ =Cre™* + (1 + Cy)
~1+C (1-€7) (6)
We now find . Going back to (4) and collecting terms in O (1) gives the ODE
W
This is the same ODE we solved above. But it will have different B.C. Hence
Y~ —Cae™ +Cy
Applying boundary conditions y{" (0) = 0 gives

0=-C3+Cy
C3=0C4
Therefore
Yt~ =Cae™ + Cs

-~ Cy (1 - e“f)

Now we have the leading order y"
YME) =Yg+ ey
=1+C(1-e)+eC3(1-e) +O(e2) 7)

Now we are ready to do the matching between (7) and (3A)

lim1+Cy (1-e)+eCs(1 —e-é) ~

lim E - in -x+ 5 7 + 2 arctan (x)
0 Ve \/1+—x2 32 4(1 +x2)2 8(1+x2) 8

Or
2
1+Cy+eC 2 li ez |22 x+ S 7 +9 tan (x)
£ —elim ——|- - —=n- - —arctan

! 3 6x—>0 1/1 +x2 e x—0+14+2(4 32 4(1+x2)2 8(1 +x2) 8

. . 3x . 7x
But lim,_, \/77 -1, lim,_, m — 0 lim,_, m — 0 therefore the above becomes

1+C1+eCsy~ - - =
1Tk \/7 \/7 (4 32”)

Hence

2
1+C1=\/;
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This means that

Y1 E) ~1+C (1) +eCs(1-e)

~1+[\/g_1](1_e—«s)+g\f(§_;zn)(l_e—a)

Yuniform(x) ™~ }/i" (5) + yout (X) = Ymatch

~1+[\/g—1](1—e‘5)+5\/g(2—3%71)(1—6“5)

Therefore

2
2 e2 14 5 9 N 3x 7x +9 tan (2)
- El—-———<TT—X - — arctan (x
evive | (4 32 T 4nie) s(ew) 8

il

Or (replacing & by i—c and simplifying)

2 L5l . e L9
e Elg 3t X - Z arctan (x
e\i+a2 Y 4(1+x2)2 Si+x) 8
2
e
Or
2 2(5 9
yuniform(x)N_\/;€5+€£—e 55\/7(1_5)
Y2
2,/—7 5 2 s 72 arctan (x
Tyt X - Z arctan (x
CVL+a? 32 4(l+x2)2 8(1+x2) 8

To check validity of the above solution, the approximate solution is plotted against the numerical
solution for different values of ¢ = {0.1,0.05,0.01}. This shows very good agreement with the numerical
solution. At ¢ = 0.01 the solutions are almost the same.

ClearAll[x, y, €];
€=0.01;

2 .
Exp[1] ~

ode=ey' [x] + (X +1) y'[x] - X y[x] = 0;
sol = FirsteNDSolve[{ode, y[0] == 1, y[1] =1}, y, {X, 0, 1}1;
pl = Plot [Evaluate[y[x] /. sol], {x, @0, 1}];

-x -x 5 9 EXP[ ] 9 3x 7x 9
mysol[x_, € ] :=—rExp[—]+Exp[—]—5r(z—§ ) Z_En_)“ e 3 +§ArcTan[x] H
€ € ( o 4(1+x%)% 8 (1+x%)
p2 = Plot [ {Evaluate[y[x] /. sol], mysol[x, €]}, {x, @, 1}, Frame » True, PlotStyle » {Red, Blue},
FrameLabel -» {{"y(x)", None}, {"x", Row[ {"Comparing numerical and apprxoimation, using € = ", N@e}]}}, GridLines - Automatic,

GridLinesStyle - LightGray, PlotLegends - {"Approximation", "Numerical"}, BaseStyle - 14, ImageSize - 400]
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Comparing numerical and apprxoimation, using € = 0.1
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Comparing numerical and apprxoimation, using € = 0.05
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Comparing numerical and apprxoimation, using € = 0.01
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0.6 problem 9.19

Problem Find lowest order uniform approximation to boundary value problem
ey’ + (sinx)y’ +ysin(2x) =0
y(0) ==
y(m =0
Solution

We expect a boundary layer at left end at x = 0. Therefore, we need to find y™" (&), (x), where &
is an inner variable defined by & = sir’
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left right
boundary boundary
layer layer
|
! |
| —|
C I [ ,r]
! |
. outer region !
' |
| 1
0 T T

matching at these locations

Finding v (&)
At x = 0, we introduce inner variable & = sil” and then express the original ODE using this new
variable. We also need to determine p in the above expression. Since Z—Z = Z—Z% then Z—Z =
H 4 _pd 4
ence - = ¢ ¢
@ dd
dx2  dxdx
d d
= P _— Sy
(i) (é dé)
2
= g_zpd_
dé?
2 2
Therefore ZTZ = s‘zﬁz?z and the ODE ¢y” + (sinx)y’ + ysin (2x) = 0 now becomes
d2 d
ee” a2 + (sin (&eP)) € V—Z +sin(2&eP)y =0
dz dy
1-2 P)) e P = P
£ dcfz + (sin (&eP)) €™ ac +sin(2&eP)y =0
3
Expanding the sin terms in the above, in Taylor series around zero, sin (x) = x - % + --- gives
dy (&)’ dy (2zer)’
el < P2 4. |eP2 - vy =
2 [5 3 + e d£+ 28e 3 +-ly=0
d2 63 2p d]/ (Zéfp)e’
1-2 -
¢ pd52 (‘5_ 3! +')d5 M G TR U

36
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Then the largest terms are {51‘2”,1}, therefore 1 -2p =0 or

1
P=3

The ODE now becomes

3!

y"_,_(g_&.F...)y'_k[zg\/__@.k...]yzo

Assuming that

YEFt (@) = D €My = yo + ey + €2y +

n=0

Then (1) becomes

(2E)

3
(y61+€yi’+.,,)+((g_%+...)(y6+€yi+...)+[2£\/__ 3 +...](y0+6y1+...):0

Collecting terms in O (1) gives the balance
¥o (&) ~ =&y (&)
Yo(0)=m

Assuming z = y;, then

2

<!
-

Therefore yj) ~ Cie 2 . Hence

'
Yo (&) ~ le e2ds+Cy
0

With boundary conditions y (0) = 7. Hence

T = CZ
And the solution becomes
) T
Y (&) ~ clf e T ds+ 1
0

Now we need to find y“ (x). Assuming that

Y0 = DMy = Yo + Eyy + 2y + o

n=0

Then ey” + (sinx) y’ + ysin (2x) = 0 becomes

e(yf)’ + eyl + ) + sin (x) (y6 +eyp + ) + sin (2x) (yo + ey + ) =0

37

1)

2)
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Collecting terms in O (1) gives the balance

sin (x) yg (x) ~ —sin (2x) yo (x)
dyo _sin(2%) ix

Yo sin (x)
sin (2x)
In |y0| ~ _f sin (x) ax
2sinxcosx
o [,
sin (x)
~ — f 2 cos xdx

~ —=2sinx + Cs
Hence
Y3 (x) ~ Ae 25
Yo () =0

Therefore A = 0 and y§“ (x) = 0.Now that we found all solutions, we can do the matching. The
matching on the left side gives

!im yin (5) — lir% yout (x)

£ 2 .
lim C f e ds + 1 = lim Cge 25in
0 x—0

£ 2
lim C, f eTds+m=0 3)
E— o0 0
But
& b4 &
e2ds= \/jerf(—)
Jyerae=yz el
And lim;_,, erf(‘/ii) =1, hence (3) becomes
Cl\/g +mt=0
2
C1 = =Tl —
T
=-\2n (4)
Therefore from (2)
. & 2
W@ ~ V2 [ ez ds (5)
0

Near x = 7, using 1 = ng—;x Expansion ™" (r]) ~ 1o (r]) + €1y (77) +0 (82) gives p = % Hence O(1) terms
gives

v (1) ~ v (n)
yg' (0)=0
2

yi (17) ~ Df ezds
0
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And matching on the right side gives
%I_I)Iolo yin (77) — il_r}% yout )
U
limD | e2ds=0
n—00 0
D=0 (6)

Therefore the solution is

y(x) ~ yin (&) + yin (77) + yout (x) - ymutch
2

~—V2nf‘67ds+n+0
0

~ —\/Z_H\/gerf(%) +7
~ \2n Ef(f)

Nn—nerf(\/—z_g) (7)

The following plot compares exact solution with (7) for ¢ = 0.1,0.05. We see from these results, that
as ¢ decreased, the approximation solution improved.

ClearAll[x, €, y]

mySol[x , € ] :=Pi-PiErf X H
ySol[x_, e ] [ Ners |E

€ =0.1;

ode=€ey'"[x] +Sin[x] y'[x] +Yy[x] Sin[2Xx] =0;

sol = NDSolve[ {ode, y[@] == 7, y'[n] =0}, y, {X, @, 7}];

Plot [ {mySol[x, €], Evaluate[y[x] /. sol]}, {x, @, Pi}, Frame - True,
FrameLabel » {{"y(x)", None}, {"x", Row[ {"Numerical vs. approximation for e=", €}]}}, GridLines - Automatic,
GridLinesStyle - LightGray, BaseStyle » 16, ImageSize -» 500, PlotLegends -» {"Approximation", "Numerical™},

PlotStyle - {Red, Blue}, PlotRange -» All]
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