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0.1 problem 3.3 (page 138)

0.11 Partc

problem Classify all the singular points (finite and infinite) of the following

x1-x)y"+(c-(a+b+1)x)y —aby =0
Answer
Writing the DE in standard form
Yy +p)y +q@)y=0

. c—(u+b+1)x,_ ab —0
x(1-x) 4 x(1—x)y_
p(x) q(x)
—N—
- c _(a+b+1) , ab —0
Y \xa-n d-» -7~

x = 0,1 are singular points for p (x) as well as for g (x). Now we classify what type of singularity
each point is. For p (x)

g )=

c (a+b+1)
(x(l—x)_ 1-x) )
c x(a+b+1)
((1—x)_ 1-x) )

Hence xp (x) is analytic at x = 0. Therefore x = 0 is regular singularity point. Now we check

for g (x)

. 2 T 2 —ﬂb

AT = I
3 —xab
_xl—r% (1—X)

=0

Hence x?g (x) is also analytic at x = 0. Therefore x = 0 is regular singularity point. Now we
look at x =1 and classify it. For p (x)

c (a+b+1)
x(1-x) (1-x) )

T —C (@a+b+1)
‘iﬂ?(x_l)(x(x—lﬁ x-1) )

:lim(_—c+(a+b+1))
x—>1\ X

=—c+(a+b+1)

;{gyx—l)p(x):;gq(x—l)(




Hence (x —1)p(x) is analytic at x = 1. Therefore x =1 is regular singularity point. Now we
check for g (x)

s~ -1 <I”bx>)

= hm (x-=1) (

(x -
—hm(x 1)( )

Hence (x—l)zq(x) is analytic also at x = 1. Therefore x = 1 is regular singularity point.
Therefore x = 0,1 are regular singular points for the ODE. Now we check for x at co. To
check the type of singularity, if any, at x = oo, the DE is first transformed using

r=1 M



This transformation will always results in [|new ODE in t of this form

2y (PO+2) 40

ar 2 py=0
But
3 _[c—(@+b+1)x
r0=rol = (S
1
c—(a+b+1)?
I
t t
e —t(a+b+1)
IR
And

b
q(t) = q(x)|x:1 = (_x(f— x)) 1
ab

1Let x = %, then

And

The original ODE becomes
e +t4d—2 +p @) LA )] =0
dt dtz y P X=% dt y q X=%y
(2t3y' + t4y”) -py +qBy=0
thy” + (—tzp (H+ 2t3) Y +qBy=0

—p(t) +2t)

" , . 9@
y+( 7V gy=0

(2)

(3)

(4)



Substituting equations (3,4) into (2) gives

c—t(a+b+1) abt?
(_( - )+2t)+(_<t—1>)

y'+ 2 a Y =0
o (te-D-Petr@rb+1)t) ab )
yor 2(t-1) Y "ee-1n’"

Expanding
p(t) q(t)
, (2t—1—tc+a+b), ab
v+

F(E—1) T A
We see that t = 0 (this means x = oo) is singular point for both p(x),q(x). Now we check
what type it is. For p ()

. T 2 c (a+b+1)
Pi%tp(t)_%li%t(t O t(t—l))

L tc (a+b+1)
‘H%(Z‘(t—l)* (t-1) )
=1-a-b

tp (t) is therefore analytic at t = 0. Hence t = 0 is regular singular point. Now we check
for q ()

9 o ab
b £ (8) = lim £ ( t2(t—1))

1 —ab
B tl—%((t—l))

t2q (t) is therefore analytic at t = 0. Hence t = 0 is regular singular point for ¢ (). Therefore
t = 0 is regular singular point which mean that x — oo is a regular singular point for the
ODE.

Summary

Singular points are x = 0,1. Both are regular singular points. Also x = co is regular singular
point.

0.1.2 Part (d)

Problem Classify all the singular points (finite and infinite) of the following
xy'+b-x)y —ay=0
solution

Writing the ODE in standard for

a

" (b—X) ’
yor X Y X



We see that x = 0 is singularity point for both p (x) and g (x). Now we check its type. For p (x)
(b —x)

gy )=
=b

Hence xp (x) is analytic at x = 0. Therefore x = 0 is regular singularity point for p (x). For g (x)

v =ty
xl_I)I(I]x q (X) xl—r>I(1)x X
= lim (-
g (-2
=0
Hence x?g (x) is analytic at x = 0. Therefore x = 0 is regular singularity point for g (x).

Now we check for x at co. To check the type of singularity, if any, at x = co, the DE is first
transformed using

1

xX=-

t

1)
This results in (as was done in above part)

2y (PO+2) g0

T r g ¥ =0
Where
b-x
p(t) = 0=
x=l
[e-3)
-1
=(bt-1)
And g (t) = _Z = —at Hence the new ODE is
d?y  (-(bt-1)+2t) at
wt— 7y
dy -bt+1+42t a
wt— e Y=o
Therefore t = 0 (or x = o0) is singular point. Now we will find the singularity type
. . bt +1+2t
iy = (=5
) (—bt +1+ Zt)
=lim|———
t—0 t
=

Hence tp(t) is not analytic, since the limit do not exist, which means ¢ = 0 is an irregular



singular point for p (t) . We can stop here, but will also check for g ()
20 () = Tim 2 (=2 )
iy 00 = iy
= lim (—E)
t—0 t
=
Therefore, t = 0 is irregular singular point, which means x = co is an irregular singular point.
Summary

x = 0 is regular singular point. x = oo is an irregular singular point.

0.2 problem 3.4

0.21 partd
problem Classify x = 0 and x = co of the following

1
x2y// — ye;
Answer

In standard form
1
1/ e; —
Yy -ay= 0
1

Hence p(x) = 0,9 (x) = —i—z. The singularity is x = 0. We need to check on g (x) only.
1
20 () = i 2 | =
IRCETE

1
= lim (—ei)
x—0
1 1 1
The above is not analytic, since lim,_,y+ (—eX) = co while lim,_,(- (—eX) = 0. This means e~ is
1
not differentiable at x = 0. Here is plot ex near x =0



Plot of exp(1/x)
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Therefore x = 0 is an irregular singular point. We now convert the ODE using x = 7 in order

to check what happens at x = co. This results in (as was done in above part)

“y 10

T ay=0

But
70 = ()| _

— _tzef
Hence the ODE becomes
—t2et
y'-—ay=0
ot
y'+zy=0

We now check g (t).
) e
a0 = iy
= lim ¢!
t—=0
=1

This is analytic. Hence t = 0 is regular singular point, which means x = oo is regular singular
point.

Summary x = 0 is irregular singular point, x = co is regular singular point.



0.2.2 Parte
problem

Classify x = 0 and x = oo of the following

(tanx)y’ =y
Answer
’ _ =0
Y tan xy
The function tan x looks like
tan(x)
6 L
4 L
2 L
=
= 0
©
_2 L
s
-6l
I T

Therefore, tan (x) is not analytic at x = (n - %) 7t for n € Z. Hence the function

analytic at x = nm as seen in this plot

TS

1
tan

(x)

is not
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Hence singular points are x = {---,-2m,-m,0, 7,27, ---}. Looking at x =0

x—0

1
tan (x) )

dx
1 dx
- }Cli% [ dtan(x) ]
dx
1
= 111m >
x—0 secs x
= lim cos? x

x—0

=1

lim xp (x) = lim (x
x—0

Therefore the point x = 0 is regular singular point. To classify x = co, we use x = % substitu-
d d dt d

. a4 _ £ @ _ 2_
tion. el t ™ and the ODE becomes
(—tzi)y - y=0
dt tan (%)
1
—12y — ~y =0
tan (—)
t
, 1
v Y
2 tan (?)
Hence

P 2 tan(%)

This function has singularity at t =0 and at t = % for n € Z. We just need to consider t =0
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since this maps to x = co. Hence

iy )= i

1 1
. 2
- lim _fl
=0 tan (1) Lhopitals t—0 SeCZ(?)

12

= lim

1
t—0 SeCZ (?)

1
= lim [ cos? (—)

t—0

The following is a plot of cos? (1) as t goes to zero.

i
1
cosz(—)
t

Y
NI E

This is the same as asking for lim,_,, cos? (x) which does not exist, since cos (x) keeps
oscillating, hence it has no limit. Therefore, we conclude that tp(t) is not analytic at t = 0,
hence t is irregular singular point, which means x = oo is an irregular singular point.

Summary

x = 0 is regular singular point and x = co is an irregular singular point
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0.3 Problem 3.6

0.3.1 partb
Problem Find the Taylor series expansion about x = 0 of the solution to the initial value
problem
y'=2xy’'+8y =0
y(©0)=0
y'0) =4
solution

Since x = 0 is ordinary point, then we can use power series solution

y(x) =Y a,x"
n=0
Hence

(] (0] [o0)
Y (x) = D na, " = Y na,x = Y (n+ 1) 41"
n=0 n=1 n=0

[o0]

Y () = D +1)a,x = Y n (1), = Y (4 1) (1 + 2) 41"

n=0 n=1 n=0
Therefore the ODE becomes
Z (n+1)(n+2)a,,x" —2x 2 m+1)a, 1x"+8 Z a,x" =0
n=0 n=0 n=0
D +1) (1 +2) ay0x" = D 2(n+1) a3+ ), 82,2 =0
n=0 n=0 n=0
E m+1)(n+2)a,,x" - E 2na,x" + Z 8a,x" =0
n=0 n=1 n=0

Hence, for n = 0 we obtain
(m+1)(n+2)a,ox" +8a,x" =0
25[2 + 8ﬂ0 =0
apy = —4510
Forn>1
m+1)(n+2)a,,, —2na, +8a, =0
2na, — 8a,
Qg = —————
2T (n+1) (n+2)
_ a,(2n-18)
C(n+1)(n+2)
Hence forn =1
aq (2 - 8)

BT nay "
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Forn=2
,(22)-8) 1 1 4
a4=m=—§a2=—§(—4ﬂo)=§ao
Forn=3
W m@®® 111
T @B+1)B+2)  10° 100 Y 10!
Forn=14
BEACICE N
4+1)(4+2)
Forn=>5
_as@®-8 1 _1(1 \_ 1
B+ DGry AT 2 (10”1) - 210™
Forn==6
a6 (2(6)-8) 1
8= 6rD6r 14760
Forn=7

M-8 1 11 )\ 1
( )_2520”1

BT Ti )T+ 1277 12\ 210™

Writing now few terms

y(x) = )] a,x"
n=0

= agx? + agxt + ayx? + azx® + agxt + asx° + agx® + a;x” + agx® + agx® + -+

4 1 1
= ay + a1x + (—4ap) X2 + (—a;) X + zapx* + —a;X° + 0+ —a3x” + 0 + axd + -

3 10 210 2520
4 5

. 1 7 1 9
+ —apx* + —axX° + — X+ ——=ax’ + -
3 10

210 2520
4 1
= a0(1—4x2+ §x4) +aq (x—x3+ —x° +

= ay + a;x — dagx® — a;x°

1

1
— x4 ——x9 4 ... 1
10" T 20" T 250" T ) @)

. . 4 .
We notice that a; terms terminates at 3x4 but the 4, terms do not terminate. Now we need
to find ag, a; from initial conditions. At x = 0,y (0) = 0. Hence from (1)

OZHO

Hence the solution becomes

1 1 1
_ 43 5 7 9, ... 9
y(x) = (x x° + 10x + 210x + 2520x + ) (2)
Taking derivative of (2), term by term
5 7 9
/() — _ 242 4 6 8.1 ...
v (x)=m (1 3x° + 0" + o~ + 7530~ + )

Using v’ (0) = 4 the above becomes

4:ﬂ1
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Hence the solution is
y(x)=4[x-x3+ lx5 + L9c7+ Lx9 4o
10 210 2520

2 2 1
x)=4x -4 + %+ —=x" + —x7 + -
y @) 5 105 630

The above is the Taylor series of the solution expanded around x = 0.

0.4 Problem 3.7

Problem: Estimate the number of terms in the Taylor series (3.2.1) and (3.2.2) at page 68 of
the text, that are necessary to compute

Ai(x) and Bi(x) correct to three decimal places at x = +1,+100, £10000

Answer:
-2 00 x3n -4 0 x3n+1
Ai(x)=33 2—2—33 2—4 (3.2.1)
n=0 9"y!T’ (n + 5) n=0 9"u!T’ (n + 5)
1 3n _5 00 3n+1
Bi()=3% Y ————— 3% Y — (3.2.2)

720 9T (n + g) 720 9T (n + ‘-;)

The radius of convergence of these series extends from x = 0 to +co so we know this will
converge to the correct value of Ai(x),Bi(x) for all x, even though we might need large
number of terms to achieve this, as will be shown below. The following is a plot of Ai (x)

and Bi (x)

AiryAi(x) AiryBi(x)

201
0.4
0.35503

il K
J v \/ \/ | 0,0\/\\//\\/\\//\\/ |

-10 -5 0 5 10 -10

0

X X



0.4.1 AiryAlI series

. ) (N+1)"
For Ai(x) looking at the i term
2 K3N+D) -4 (3N+2
33 —-33
9N+1(N+1)!r(N+1+§) 9N+1(N+1)!r(N+1+§)
A= 3‘_2 XN 311 (3N+1
3 - 3 -
9NN!F(N+§) 9NN!r(N+‘-;)

This can be simplified using I' (N + 1) = NI' (N) giving
I‘((N+g)+1) = (N+ g)1"(N+ %)
3 3 3
P((N+é)+1) = (N+ L—L)I‘(N+ L—L)
3 3 3

-2 —4
373 3(N+1) 373 3N+2

Hence A becomes

9N+1(N+1)!(N+§)F(N+§) - 9N+1(N+1)!(N+§)F(N+§)

A=

-2 -4
373 x3N 373 x3N+1

9NN!r(N+§) 9NN!r(N+§)
Or

-2 -4
373 3N+1) 373 43N+2

B 9(N+1)(N+§)F(N+§) - 9(N+1)(N+§)F(N+§)

-2 -4
373 3N 373 x3N+1

r(N+§) - r(N+§)

2 4 4 2 2 2
3?x3<N+1>(N+5)r(N+5)—3?x3N+2(N+5)r(N+§)

9(N+1)(N+§)1‘(N+g)(N+§)r(N+§)

2 4 2 2
37x3Nr(N+§)—3?x3N+lr(N+5)

r(m%)r(m%)

2 4 4 2 2 2
3Tx3<N+1)(N+§)r(N+5)—3Tx3N+2(N+§)r(N+§)

A 9(N+1)(N+§)(N+§)

2 4 4 2
373 x3NT(N+ 5) -3 x3N+1F(N+ 5)

15
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For large N, we can approximate (N + g) , (N + i;) ,(N +1) to just N+1 and the above becomes

22 4 4 2
3?x3<N+1>r(N+5)-3?x3N+2r(N+§)

A= 9(N+1)?
= — L
33 x3NT (N -+ %) — 373 x3NHIT (N " g)
Or
2 4 -4 2
375 B3N (N + 5) 37 3Ny 2T (N N g)
A= — -~
9(N +1)° (3?x3NF (N + g) — 33 x3NxT (N + g))
Or
0.488x3N 2 (xr (N + ‘-;) — 0.488T (N + ;))
A=

(0.488)9 (N +1)? 13N (r (v+ g) _0.4884T (N ' j))
4 2
B ¥2 xI’ (N + 5) —0.488T" (N + 5)
- 2
9(N +1) F(N+ ‘33) ~ 0.488xT (N+ g)

2 xr(N+§)—o.488r(N+§)
We want to solve for N s.t. 5 - >+ |1 < 0.001.
I(N+1) F(N+§)—O.488xl"(N+§)
Forx=1
, I‘(N+ g)—o.488r (N+ f;)
- d > | < 0.001
9(N +1) r(N+ 5) —O.488F(N+ 5)
— <0001
9N +1)
9(N +1)* > 1000
1000
(N+1)% > —
1000
N+1>/—
9
N > 9.541
N =10
For x =100

4 2
ooz [ 100r (N + 5) — 0.488T (N + 5)

. : 2|l <0001
9I(N +1) P(N + g) —0.488 (100)r(N + 5)

I could not simplify away the Gamma terms above any more. Is there a way? So wrote small
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function (in Mathematica, which can compute this) which increments N and evaluate the
above, until the value became smaller than 0.001. At N = 11,500 this was achieved.

For x = 10000

4 2
1 2 100T° (N + —) —0.488T (N + —)
0000 3 3 < 0.001

2
IIN+D)|T (N + g) — 0.488 (10000) T (N + g)

Using the same program, found that N = 11,500,000 was needed to obtain the result below
0.001.

For = -1 also N = 10. For x = =100, N = 10,030, which is little less than x = +100. For
x = —=10000, N = 10,030,000

Summary table for AiryAl(x)

X N

1 10

-1 10

100 11,500
-100 10,030
10000 | 11,500,000
-10000 | 10,030,000

The Mathematica function which did the estimate is the following

estimateliryAi[x_, n_] := (x72/(9*(n + 1)72))*((x+xGamma[n + 4/3] -
0.488*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.488*x*Gamma[n + 2/3]))
estimateAiryAi[-10000, 10030000] // N

-0.0009995904

estimateAiryAi[100, 11500] // N

0.000928983646707407

estimateAiryAi[10000, 11500000] // N

0.000929156800155198



18

0.4.2 AiryBI series

For Bi(x) the difference is the coefficients. Hence using the result from above, and just
replace the coefficients

-1 4 -5 2
3% 3N3T (N + 5) _ 35 3N2T (N + 5)
A= 1 5

9(N +1)? (3?x3Nr (N + ;3) — 3% 3Ny (N + ;))

2 (xr (N + g) — 0.604 39T (N + g))

9(N +1)> (r (N + ‘-;) —0.604 39xT (N + g))
Hence for x =1, using the above reduces to

———— < 0.001

9(N+1)
Which is the same as AiryAl, therefore N = 10. For x = 100, using the same small function
in Mathematica to calculate the above, here are the result.

Summary table for AiryBI(x)

X N

1 10

-1 10

100 11,290
-100 9,900
10000 | 10,900,000
-10000 | 9,950,000

The result between AiryAi and AiryBi are similar. AiryBi needs a slightly less number of
terms in the series to obtain same accuracy.

The Mathematica function which did the estimate for the larger N value for the above table
is the following

estimateAiryBI[x_, n_] := Abs[(x"2/(9*(n + 1)72))*((x*Gamma[n + 4/3] -
0.60439*Gamma [n + 2/3])/(Gamma[n + 4/3] - 0.6439*x*Gamma[n + 2/3]))]

0.5 Problem 3.8

Problem How many terms in the Taylor series solution to y””’ = x>y with y(0) = 1,3’ (0) =

Y (0) = 0 are needed to evaluate f y (x) dx correct to three decimal places?

Answer
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y/// _ x3y =0

Since x is an ordinary point, we use
(o]
y= Z a,x"
n=0

(o) (o) (o)
Y = Y nat = Y na,tt = (n+ 1) a,40x"
n=0 n=1 n=0
o

Y’ = Z nn+1)a, X" 1= E nn+1)a, X"t = E (n+1)(n+2)a,,x"

n=0 n=1 n=0
y/// — E nn+1)(n+2) an+2xn—1 = 2 nn+1)(n+2) ﬂn+2x”—l
n=0 n=1
=) (n+1)(n+2) (n+3)a,,3x"
n=0

Hence the ODE becomes
E(n+1)(n +2)(n+3) a,,5x" — x° Zanx” =0

n=0 n=0
D +1) (1 +2) (1 +3) a5x" = Y, a, X3 =0
n=0 n=0
E m+1)(n+2)(n+3)a, 3x" — Z a,3x"=0
n=0 =3
Forn=0
1)2)3)az =0
az = 0
Forn=1
(2)(3)4)ay =0
ag = 0
Forn=2
as = 0

For n > 3, recursive equation is used

m+1)(n+2)(n+3)a,;3—a,3=0

_ an-3
M3 G ) (i +2)(n+3)
Or, forn=3
Az = o
T @G)6)
Forn=4

_ a1 _ a1
T @+1D)(@+24@+3) (B5)(6)(©?)

az



Forn=5

_ ap _ ap
BT Br1(5+26+3)  6)7)O8)
Forn=6
a9 = i3 =0
6+1)(6+2)(6+3)
Forn=7
alp = o =0
m+1)(n+2)(n+3)
Forn=28
a| = 5 =0
B8+1)(8+2)(8+3)
Forn=9
orn . . . . . "
27 911 9+2)(9+3)  (10)11)(12) _ () (5)(6)10) (1) (12)
Forn =10
_ az _ az _ a1
M3 10+1)(10+2)10+3) _ ADA2)(3) _ (5)(6)(7)11)(12) (13)
Forn =11

_ ag _ as _ ap
M)A +2)A1+3)  12)13)(14) _ (6)(7)(8)(12) (13) (14)
And so on. Hence the series is

(o)
y =Y a,x"
n=0

— ay a ar
= ag + a;x + ayx® + 0x3 + 0x* + 0x° + @6) (6)X6 + 56) (7)x7 + 0 ® x8
+0+0+0+ % x12 4 ! x13
Do OO T HO a2 )
ap
rOoe@a” 00Tt
Or
_ ap a a
N N GGG GIZIC R
4o 12 n 13 2 4,4 ...

@) 600012 GO @)A1 6 7)) 012 a3) )"

x6

le
¥ = (1 T®HB 6 ®G) e a0ana) )

x7 x13
th (x "BHOO B EOan)as) )

A8

x14
© @) ©®) ' (6)7)©8)12)13)14) )

+a, (xz +
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1 1
— a1+ ——x6 4 12, ..
y (@) = o ( 120" " 158400 )

fay x4 eyl
! 210 360360

1
+ay [+ =28+ ——x1t+ -
336 733824

We now apply initial conditions y(0) =1,y" (0) =y” (0) =0. When y(0) =1
1= ap

Hence solution becomes

1 1
=114+ —x° 12 4 ...
y® ( 120" T 158400" )

1 LT
+agx+ —=x"+ ————xB+ -
210 360360

1 1
+ 2 84~ A4
a2 (x 336" | 733824 )

Taking derivative

6
’ — =45 11
Y@ (120x " 158400 )

+aq |1+ 7 s + 31 +
a — X+ ————X
1 210 360360

+ay|2x + ix7 + 1—2x13 + .-
336 733824

Applying y’ (0) = 0 gives
0= aq

And similarly, Applying y” (0) = 0 gives a, = 0. Hence the solution is

X6 X12
y<x):”0(1+(4)(5)(6)+(4)(5)(6)(10)(11)(12)+m)
=1+ * x + * L
T TOe6 @O 601 @66 10)(11) 12)16) (17) (1)
A6 12 x18

=1+ —+ + + -
120 158400 775526400

We are now ready to answer the question. We will do the integration by increasing the
number of terms by one each time. When the absolute difference between each increment
becomes less than 0.001 we stop. When using one term For

foly(x)dx:foldx
=1



22

When using two terms

=1.001190476

Difference between one term and two terms is 0.001190476. When using three terms
1

1 X6 12 7 13
f 1+ —+ dx =X+ —+ ———
0 120 158400 840 2059200/,

1
=14+ —+_—
840 2059200
_ 14431567
14414 400

=1.001190962

Comparing the above result, with the result using two terms, we see that only two terms are

needed since the change in accuracy did not affect the first three decimal points. Hence we
need only this solution with two terms only

1
y(x) =1+ —x°

120

0.6 Problem 3.24

0.6.1 parte

Problem Find series expansion of all the solutions to the following differential equation
about x = 0. Try to sum in closed form any infinite series that appear.

2xy” -y +x%y =0

Solution

The only singularity is in p (x) is x = 0. We will now check if it is removable. (i.e. regular)
. .11
gy ) = ez =
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Therefore x = 0 is regular singular point. Hence we try Frobenius series
(o)
y(x) = E a,x""
n=0
Y (@)= Y 1+ ) g
n=0

Y’ (x) = Y (n+71)(n+r=1)a,x""2
n=0

Substituting the above in 2x%y”’ — xy’ + x>y = 0 results in

(o) 00 o
222 Y (n+1r)(n+7r=-1)a, "2 = x Y (n+ 1) ax™ "+ x5 4, =0

n=0 n=0 n=0
o o o
2 2(n+1)(n+r—-1)a,x"" - E (n+71)a,x"*" + E a, X3 =0
n=0 n=0 n=0
o0 [o¢] o
2 2n+ry(n+r-1)a,x™" - Z (n+7)a,x"" + Z a,_3x™" =0 (1)
n=0 n=0 n=3

The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from setting #n = 0 in (1) with the assumption
that ay # 0. Setting n = 0 in (1) gives
2m+ry(n+r-1)a,-(n+r)a,=0
2(r)(r—-1)ag—rag =0
Since ay # 0 then we obtain the indicial equation (quadratic in )
2(n(r-1)-r=0
rr-1-1)=0

r(2r-3)=0
Hence roots are
r=0
3
ry = 5

Since r; — 1, is not an integer, then we know we can now construct two linearly independent

solutions
y1 (x) = 21 ) a,x"
n=0

Y2 () = x'2 Y b, x"
n=0

n (x) = Zanxn
n=0

3
Yo (x) = Y b2
n=0
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Notice that the coefficients are not the same. Since we now know r;, 7,, we will use the above
series solution to obtain v, (x) and v, (x).

For y; (x) where r; =0
yi (0 = Pa”
n=0
Y (x) = Y naxt = Y na,att = (n+1) a,0x"
n=0 n=1 n=0

Y’ () = Dn(n+1) a0 x™ = D (n+1) @ x™t = D (0 +1) (1 +2) a,40x"

n=0 n=1 n=0

Substituting the above in 2x%y” — xy’ + x>y = 0 results in
222 (1 +1) (1 +2) @40x" = x Y (1 +1) A1 x" + 23 D 3,x" = 0

n=0 n=0 n=0
D2 +1) (1 +2) a,40x"2 = Y, (1 +1) Ay x™ + Y2, a3 =0
n=0 n=0 n=0

22 n-1)(n)a,x" - Enanx” + Ean_3x” =0
n=2 n=1 n=3

For n =1 (index starts at n =1).

—na,x" =0
—a1 = 0
a) = 0

Forn=2
2(n-1)(n)a,x" —na,x" =0
22-1)(2ay, —2a, =0
2a, =0
a, =0
For n > 3 we have recursive formula

2(n-1)(n)a, —na, +a, 3=0

LW
" n@n-23)
Hence, for n =3
M0 _
T 36-3) 9
Forn=4
= — = O
M=y (2n-23)
Forn=5
= = O
% n(2n - 3)
Forn=6
—das —a3 —das ap 1

= on-3) (6)(12-3) 54 (549(9) 486"°
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And for n = 7,8 we also obtain a; = 0,ag = 0, but for ag
—dg —616 —Aay 1 4
9(2(9)-3) 135 (135) (486) 65610 °

And so on. Hence from Zanx” we obtain
n=0

g =

EIO 1 6 1
=gn — —x3 4+ — —
Y1 (x) = ag = =70 + et — oo

1 ! + 1 X0 1 9+
=a ——x J— - —X
0 9 186"~ 65610

agx’ + -+

Now that we found y; (x).

For vy, (x) with r, = g
3
y(x) = anxn-'—i
n=0
dOEDY n+§ bx""
y 5 | Vn

n=0

1 3 L
v (x ; n+ S|\t 5| bax

Substituting this into 2x%y” — xy’ + x>y = 0 gives

ZxZnZ:O(n+—)( )bx 2—x2(n+ )bx 2+x32b
;::()2(”+%)( )bx”“+2—§](n+ )bx”+2+1+n§%b TP =
22(n+—)(n+§)bnx"+g—2( 3)bx 2+r§)bx 320

NIUJ

=0

n=0
3 3 3 2
22(n+ )( )bxn+2—2( )bx 2+2bn3x 278 -0
2 n=0 n=3
3 3 3 43
22(n+—)(n+—)bnxn+2—2(n+ )bx 2+Ebn 3"z =0
n=0 2 2 n=0 n=3

Now that all the x terms have the same exponents, we can continue.

Forn=0

1 3 3 3 3
2(n+§)(n+§)box2— n+§ bpx2 =0
3

boxE =0

3
b0x5 - (— b0x5 =0

Obozo



Hence b, is arbitrary.

Forn=1
1 3 3 3 3
2(n+ 5) (n+ E)bnxn+2 —(n+ 5) b,x""2 =0
1 3 3
2(1+§)(1+§)b1—(1+§)b1=0
5b1:0
b1:0
Forn=2

N
—_
N
+

N |

~————

—_
N
+

N |

3 3
)bz—(2+§)b220

14b2:0
b2=O

For n > 3 we use the recursive formula

1 3 3
2(n+§)(n+§)bn—(n+E)bn+bn_3—0

b = _bn—3
" n@n+3)
Hence for n =3
—by _ —bo
3:%25
For n=4,n =5 we will get by =0 and b5 = 0 since b; =0 and b, = 0.
Forn==6
bbb b b
®T 6(12+3) 90  27(90) 2430
For n =7,n =8 we will get b; =0 and bg = 0 since by =0 and b5 =0

Forn=9
—bs —bg —bs —by —by

89 L @n+3) 9(18+3) 189 2430(189) 459270

3
And so on. Hence, from y, (x) = anx"+5 the series is

n=0
3 p 3 b 3 b 3
= box2 — 2y3t3 4 0 65 0 9+
Y2 () = box2 = 22x 230" T 459270"

. 3 x> x® x?
— 2 - _ + s
0 (1 27 2430 ~ 459270 )

26
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The final solution is

y(x) =y1 (x) +y2 (%)
Or

y(x)=a 1——x PRIV S IR ) (O R 2)
0 486 65610 0 27 ' 2430 459270

Now comes the hard part. Finding closed form solution.

3
The Taylor series of cos (%xE \/5) is (using CAS)

13 1, 1 1
Sx3V2| 1 a6 - ——2 e 3
COS(3x ) 0" T 186" 65610 )

3
And the Taylor series for sin (%xE V2 ) is (Using CAS)

1 3 1 3 15
sin|-x2V2| = = 2——x2 2— .-
(3 ) 37V T E 7290"
1
= x2 2__ 3 N .
=7 (3\/_ \/_+7290’”/_ )
1 1
= V2 [1- P b 4
‘/_x ( 7" * 2130" ) )

Comparing (3,4) with (2) we see that (2) can now be written as
1 3
¥ (x) = ag cos (—xz \/—) sin (—x2 2)
(

b
Or letting ¢ = —

3 3
y (x) = ag cos (%xE \/5) + cgsin (%xE \/E)

This is the closed form solution. The constants a,,c, can be found from initial conditions.

0.6.2 partf

Problem Find series expansion of all the solutions to the following differential equation
about x = 0. Try to sum in closed form any infinite series that appear.

(sinx)y” —2(cosx)y’ — (sinx)y =0
Solution

In standard form

’ COs X ,
y —2( . )y -y=0

S X
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Hence the singularities are in p (x) only and they occur when sinx =0 or x =0, 7, +2m, -
but we just need to consider x = 0. Let us check if the singularity is removable.

4

X X

) ] COS X ] 1__+_'_... 1__+_'_...
lim xp (x) = 2 lim x— =2limx 23 45 =2lim 22 4;1 =2
x—0 x—0 Smmx x—0 x—x—+x——--- x—>01 g x

31 5! 3l 5

Hence the singularity is regular. So we can use Frobenius series

]/(x) — E a,x"*"
n=0
v (@) = 31+ 1) g,

n=0
Y (x) =Y, (n+71)(n+r=1)a,x""2
n=0
Substituting the above in sin (x) y’* — 2 cos (x) ¥’ — sin (x) y = 0 results in

sin (x) Z (n+r)(n+r-1)a,x"*"2 -2 cos (x) Z (n +7) a,x"*" 1 —sin (x) 2 a,x"" =0
n=0 n=0 =0
Now using Taylor series for sinx, cosx expanded around 0, the above becomes

2m+1 00

E( 1)" (2 _i_l)'Z“(rz+1’)(n+r—1)anx”+r_2
m=0
- n+r1
=0 (2 )1
2m+l 00
—mEO< D Gy 2 M)

We need now to evaluate products of power series. Using what is called Cauchy product rule,

where
f@g) = (2 bmxm) (Eanxn) =3 S 2
m=0 n=0 m=0n=0
Applying (2) to first term in (1) gives

2 +1 00
" -D)"m+r)(n+r-1) 3
_ n+r=2 _ 2m+n+r—1
mzlo( 1)" om +1)'E(n+r)(n+r 1)a,x mz:onz;) Gm+ 1) ”
(3)
Applying (2) to second term in (1) gives
(1)" (n + r) _
n+r-1 _ 2m+n+r 1
P (2 i & E(n+r)a X mzonz;) T (4)
Applying (2) to the last term in (1) gives
2( ) a2 ia X = i i (= 1) n x2mn+r+1 (5)
o (2m + D! = == 2m+ 1)'
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Substituting (3,4,5) back into (1) gives

EE( D'"m+r)(n+r-1) T ——

= 2m +1)! #n
-1)" (n+7)
) 2m+n+r—1
ZE @mr
_ Z Z ( 1) Ay 2m+n+r+l =0
== 2m +1)'

We now need to make all x exponents the same. This gives

(D" (m+r)(n+r-1) ey
E E Qm+1)! 2
R +T)

-2, E G

m=0n=0

— i i ( 1) In-2 2m+n+r 1 _ =0 (6)

== (2m+1)!

m=0n=0

2m+n+r-1

The first step is to obtain the indicial equation. As the nature of the roots will tell us how to

proceed. The indicial equation is obtained from setting n = m = 0 in (6) with the assumption
that ay # 0. This results in

)'"m+nm+r-1) _ 2(—1)m (n+r1)
2m +1)! " 2m)! "
(r)(r-=1)ag—2rag=0
ao(rz—r—Zr) =0
Since ay # 0 then we obtain the indicial equation (quadratic in r)
?-3r=0
r(r-3) =

2m+n+r-1 _ 0

Hence roots are
r = 3
Yy = 0

(it is always easier to make r; > r;). Since r; —r, = 3 is now an integer, then this is case II

part (b) in textbook, page 72. In this case, the two linearly independent solutions are
y1(x) = x32unx” = Zanx”+3

v, (x) = ky1 (x) In (x) + xfzzb X = kyy (0) In (x) + Y b, x"
n=0



Where k is some constant. Now we will find y;. From (6), where now we set r = 3

i i ( 1) (n T 3) (1’1 + 2)a 2m+n++2
o (ot 1) "
) i (_1)m (n +3) anxz’”*”*Z
m=0n=0 (Zm)'
i i 1) dn—2 2m+n+2 =0
o 2m+ 1)'

Form=0,n=1

(-1)" (n+3) (n+2)a _2((—1)m (n+3)a ) 0

2m+1)! (2m)!
(4)(3)a; —2(4a1) =0
a = 0
For m = 0,n > 2 we obtain recursive equation
m+3)(n+2)a,-2mn+3)a,—a, , =0
) )

T 13 (n+2)—2(n+3) n(n+3)
Hence, form=0,n=2

=30
Form=0,n=3
a
3 n(n+3)
Form=0,n=4
ap ap
adL = —— =
Y7 4(7) " 280
Form=0,n=5
ﬂ5:0
Form=0,n==6
—ay _ —dy _ —dy

%:6m+m_6m+wawfdmm
Form=0,n=7,a;,=0and form=0,n=8
.~ 1
8= 8®+3) 1330560

30
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And so on. Since y; (x) = Zanx”+3, then the first solution is now found. It is
n=0

Y1 (%) = apx® + ayx* + a,x° + azx® + ag X’ + asx® + agx® + azx'0 + agx!t + -+

a a a 1
= g3 +0 - 25+ 0+ —=x7 +0 - ——x° 1
¥ 10" 280" 15120 1330560 0"
X2 X x® X8
=ap® |1 - =+ — - + — 7
o ( 10 280 15120 1330560 ) )

The second solution can now be found from
Y2 = kyr (1) In () + b2
n=0
I could not find a way to convert the complete solution to closed form solution, or even find
closed form for y; (x). The computer claims that the closed form final solution is

y (@) =y (x) +y2 (%)
= ag cos (x) + by (—'VC082 x—1+cosxIn (COS (%) + Vcos? x — 1))

Which appears to imply that (7) is cos (x) series. But it is not. Converting series solution to
closed form solution is hard. Is this something we are supposed to know how to do? Other
by inspection, is there a formal process to do it?
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