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0.1 Problem 1
problem description

Barmish

ECE 719 – Homework Hyperplane

Given a continuously differentiable convex function J and any pair of
points u1, u2 in Rn, prove that the inequality

J(u2) ≥ J(u1) + [∇J(u1)]T (u2 − u1)

must hold.

solution

Since 𝐽 (𝒖) is a convex function 𝐽 ∶ ℜ𝑛 → ℜ, then by definition of convex functions we write

𝐽 �(1 − 𝜆) 𝒖1 + 𝜆𝒖2� ≤ (1 − 𝜆) 𝐽 �𝒖1� + 𝜆𝐽 �𝒖2�

Where 𝜆 ∈ (0, 1). Rewriting the above as follows

𝐽 �𝒖1 − 𝜆𝒖1 + 𝜆𝒖2� ≤ 𝐽 �𝒖1� − 𝜆𝐽 �𝒖1� + 𝜆𝐽 �𝒖2�

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1� ≤ 𝜆 �𝐽 �𝒖2� − 𝐽 �𝒖1��

Dividing both sides by 𝜆 ≠ 0 gives

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

≤ 𝐽 �𝒖2� − 𝐽 �𝒖1�

Taking the limit 𝜆 → 0 results in

lim
𝜆→0

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

≤ lim
𝜆→0

𝐽 �𝒖2� − 𝐽 �𝒖1�

But lim𝜆→0
𝐽�𝒖1+𝜆�𝒖2−𝒖1��−𝐽�𝒖1�

𝜆 = 𝜕𝐽(𝒖)
𝜕�𝒖2−𝒖1�

�
𝒖1
= �∇𝐽 �𝒖1��

𝑇
�𝒖2 − 𝒖1� (appendix below shows how

this came about). Therefore the above becomes

�∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1� ≤ 𝐽 �𝒖2� − 𝐽 �𝒖1�

𝐽 �𝒖2� ≥ 𝐽 �𝒖1� + �∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1�

QED.

0.1.1 Appendix

More details are given here on why

lim
𝜆→0

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

= �∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1�

Let 𝒖2 − 𝒖1 = 𝒅. This is a directional vector, its tail starts at 𝒖1 going to tip of 𝒖2 point.

Evaluating lim𝜆→0
𝐽�𝒖1+𝜆𝒅�−𝐽�𝒖1�

𝜆 is the same as saying

𝜕𝐽 (𝒖)
𝜕𝒅

�
𝒖1
= lim

𝜆→0

𝐽 �𝒖1 + 𝜆𝒅� − 𝐽 �𝒖1�
𝜆

=
𝑑
𝑑𝜆
𝐽 �𝒖1 + 𝜆𝒅��

𝜆=0

Using the chain rule gives
𝑑
𝑑𝜆
𝐽 �𝒖1 + 𝜆𝒅��

𝜆=0
= �∇𝐽 �𝒖1 + 𝜆𝒅��

𝑇 𝑑
𝑑𝜆

�𝒖1 + 𝜆𝒅��
𝜆=0

= �∇𝐽 �𝒖1 + 𝜆𝒅��
𝑇
𝒅�

𝜆=0

= �∇𝐽 �𝒖1��
𝑇
𝒅
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Replacing 𝒖2 − 𝒖1 = 𝒅, the above becomes

lim
𝜆→0

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

=
𝜕𝐽 (𝒖)

𝜕 �𝒖2 − 𝒖1�
�
𝒖1

= �∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1�

Where ∇𝐽 �𝒖1� is the gradient vector of 𝐽 (𝒖) evaluated at 𝒖 = 𝒖1.

0.2 Problem 2

problem description

Barmish

ECE 717 – Homework Eigenvalue

Let M(q) be an n×n symmetric matrix with entries Mi,j(q) which depend
convexly on a vector q ∈ Rn. Show that the largest eigenvalue of M(q),
call it λmax(q), also depends convexly on q.

solution

Since each 𝑚𝑖𝑗 �𝑞� is convex function in 𝑞, then

𝑚𝑖𝑗 �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� ≤ (1 − 𝛼)𝑚𝑖𝑗 �𝑞1� + 𝛼𝑚𝑖𝑗 �𝑞2� (1)

For 𝛼 ∈ [0, 1] . We also know by Rayleigh quotient theorem which applies for symmetric
matrices that largest eigenvalue of a symmetric matrix is given by

𝜆max = max
𝑥∈ℜ𝑛,‖𝑥‖=1

𝑥𝑇𝑀𝑥

Therefore, evaluated at point 𝑞𝛼 = (1 − 𝛼) 𝑞1 + 𝛼𝑞2, the above become

𝜆max �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� = max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� 𝑥𝑖𝑥𝑗 (2)

Applying (1) in RHS (2) changes = to ≤ giving

𝜆max �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� ≤ max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
�(1 − 𝛼)𝑚𝑖𝑗 �𝑞1� + 𝛼𝑚𝑖𝑗 �𝑞2�� 𝑥𝑖𝑥𝑗

= max
‖𝑥‖=1

⎛
⎜⎜⎜⎜⎝

𝑛
�
𝑖,𝑗
(1 − 𝛼)𝑚𝑖𝑗 �𝑞1� 𝑥𝑖𝑥𝑗 +

𝑛
�
𝑖,𝑗
𝛼𝑚𝑖𝑗 �𝑞2� 𝑥𝑖𝑥𝑗

⎞
⎟⎟⎟⎟⎠

= (1 − 𝛼)
⎛
⎜⎜⎜⎜⎝max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞1� 𝑥𝑖𝑥𝑗

⎞
⎟⎟⎟⎟⎠ + 𝛼

⎛
⎜⎜⎜⎜⎝max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞2� 𝑥𝑖𝑥𝑗

⎞
⎟⎟⎟⎟⎠ (3)

Since

max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞1� 𝑥𝑖𝑥𝑗 = 𝜆max �𝑞1�

And

max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞2� 𝑥𝑖𝑥𝑗 = 𝜆max �𝑞2�

Then (3) becomes

𝜆max �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� ≤ (1 − 𝛼) 𝜆max �𝑞1� + 𝛼𝜆max �𝑞2�

This is the definition of convex function, therefore 𝜆max is a convex function in 𝑞.

Note: I tried also to reduce this to a problem where I could argue that the pointwise
maximum of convex functions is also a convex function to solve it. I could not get a clear
way to do this, so I solved it as above. I hope I did not violate the cardinal rule by using
𝜆max = max𝑥∈ℜ𝑛,‖𝑥‖=1 𝑥𝑇𝑀𝑥.



5

0.3 Problem 3

problem description

Barmish

ECE 717 – Homework Polytope

Let U be a polytope in Rn with generators u1, u2, ..., um. We often de-
scribe U by writing

U = conv{u1, u2, ..., um}
and say the U is the convex hull of the ui. Show that U is compact.

solution

set G that contains
the generator
elements
{u1, u2, . . . , um}

ui

convex Hull(G)

This is the convex hull of G, which is
the set U = conv(G) that contains all
points generated by convex
combinations of the generator points

We need to show U is compact

To show 𝑈 is bounded, a proof by induction is used. From the definition of constructing 𝑈

𝑈 = �𝑥 ∈ ℜ𝑛 ∶ 𝑥 =
𝑚
�
𝑖=1
𝜆𝑖𝑢𝑖�

Where ∑𝑚
𝑖=1 𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0.

For 𝑚 = 1, 𝑥 = 𝜆𝑢1. So 𝑈 contains just one element 𝑢1. Since 𝜆 = 1 and 𝑢1 is given and
bounded, then this is closed and bounded set with one element. Hence compact. Now we
assume 𝑈 is compact for 𝑚 = 𝑘 − 1 and we need to show it is compact for 𝑚 = 𝑘. In other
words, we assume that each 𝑥∗ ∈ 𝑈 generated using

𝑥∗ =
𝑘−1
�
𝑖=1
𝜆𝑖𝑢𝑖

Is such that ‖𝑥∗‖ < ∞ and 𝑥∗ ∈ 𝑈. Now we need to show that 𝑈 is bounded when generator
contains 𝑘 elements. Now

𝑥 =
𝑘
�
𝑖=1
𝜆𝑖𝑢𝑖

= 𝜆1𝑢1 + 𝜆2𝑢2 +⋯+ 𝜆𝑘−1𝑢𝑘−1 + 𝜆𝑘𝑢𝑘

Multiply and divide by (1 − 𝜆𝑘)

𝑥 = (1 − 𝜆𝑘) �
𝜆1𝑢1

(1 − 𝜆𝑘)
+

𝜆2
(1 − 𝜆𝑘)

𝑢2 +⋯+
𝜆𝑘−1𝑢𝑘−1

(1 − 𝜆𝑘)
+

𝜆𝑘
(1 − 𝜆𝑘)

𝑢𝑘�

= (1 − 𝜆𝑘) �
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖 +
𝜆𝑘

(1 − 𝜆𝑘)
𝑢𝑘�

= (1 − 𝜆𝑘) �
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖� + 𝜆𝑘𝑢𝑘

But ∑𝑘−1
𝑖=1

𝜆𝑖
(1−𝜆𝑘)

𝑢𝑖 = 𝑥∗ which we assumed in 𝑈. Hence the above becomes

𝑥 = (1 − 𝜆𝑘) 𝑥∗ + 𝜆𝑘𝑢𝑘

Since 𝑢𝑘 is element in the generator set 𝐺 and it is in 𝑈 by definition, then the above is
convex combination of two elements in 𝑈. Hence 𝑥 in also in 𝑈 (it is on a line between
𝑥∗ and 𝑢𝑘, both in 𝑈). Therefore 𝑈 is closed and bounded for any 𝑚 in the generator set.
Hence 𝑈 is compact.
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0.4 Problem 4

problem description

Barmish

ECE 717 – Homework Maximum

Let P be a polytope in Rn with generators v1, v2, ..., vN and assume J(u)
is convex. Prove that the maximum of J subject to u ∈ P is attained at
one of the generators.

Note: this type of result does not hold for the minimum as evidenced
by the simple example J(u) = u2 on [−1, 1].

solution

set G that contains
the generator
elements
{v1, v2, . . . , vN}

ui

polytope(G)

This is the polytope set P = {u1, . . . , uM} which
is the set that contains all points generated by
convex combinations of the extreme points subset
of the generator points in set G. The extreme
points are subset of the generators v1, . . . , vk for
k ≤ N . The rest of the generator points are not
used and are redundant

extreme point ∈ P .
This point must be
one of the
generators vi ∈ G

J(u) convex function

we need to show
J∗ = maxuJ(u) is at one of
the generators. In
otherwords, u∗ = vi for
some i ∈ 1 . . . N .

These points are
from G but not
used to generate
P . These are not
extreme points.

The extreme points of 𝑃 are subset of 𝐺. They are the points used to generate 𝑃. The set 𝑃
is compact (by problem 3) and convex set (by construction, since it is convex combinations
of its extreme points). If we can show that 𝐽∗ is at an extreme point of 𝑃, then we are done,
since an extreme point of 𝑃 is in 𝐺.

Let 𝑢∗ ∈ 𝑃 be the point where 𝐽 (𝑢) is maximum. 𝑢∗ is a convex combinations of all extreme
points of 𝑃, (these are also subset from 𝐺 but they can be the whole set 𝐺 also if there
were no redundant generators), Therefore

𝑢∗ =
𝑘
�
𝑖=1
𝜆𝑖𝑣𝑖

where 𝑘 ≤ 𝑁 and 𝑣𝑖 ∈ 𝐺. If it happens that all points in 𝐺 are extreme points of 𝑃, then
𝑘 = 𝑁. Therefore

𝐽∗ = 𝐽 (𝑢∗) = 𝐽 �
𝑘
�
𝑖=1
𝜆𝑖𝑣𝑖�

Where ∑𝑘
𝑖=1 𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0. But 𝐽 is convex function (given). Hence by definition of

convex function

𝐽∗ = 𝐽 �
𝑘
�
𝑖=1
𝜆𝑖𝑣𝑖� ≤

𝑘
�
𝑖=1
𝜆𝑖𝐽 �𝑣𝑖� (1)

The above is generalization of 𝐽 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2� ≤ (1 − 𝜆) 𝐽 �𝑢1� + 𝜆𝐽 �𝑢2� applied to convex

mixtures. Now we look at 𝐽 �𝑣𝑖� term in the above. We pick the maximum of 𝐽 over all 𝑣𝑖.
There must be a point in 𝐺 where 𝐽 (𝑣) is largest. We call this value 𝐽∗𝐺. This is the value of
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𝐽 where it attains its maximum over generator elements 𝑣𝑖 ∶ 𝑖 = 1⋯𝑘. Eq (1) becomes

𝐽∗ ≤
𝑘
�
𝑖=1
𝜆𝑖𝐽∗𝐺

Where we replaced 𝐽 �𝑣𝑖� by one value, the maximum 𝐽∗𝐺. But 𝐽∗𝐺 does not depend on 𝑖 now,
and can take it outside the sum

𝐽∗ ≤ 𝐽∗𝐺 �
𝑘
�
𝑖=1
𝜆𝑖�

But
𝑘
�
𝑖=1
𝜆𝑖 = 1 by definition. Therefore the above becomes

𝐽∗ ≤ 𝐽∗𝐺
We now see that the maximum of 𝐽 (𝑢) over 𝑃 is smaller (or equal) than the maximum of
𝐽 (𝑢) over the generator set 𝐺. Hence a maximum occurs at one of the extreme points 𝑣𝑖,
since these are by definition taken from 𝐺. which is what we are asked to show.

0.5 Problem 5

problem description

Barmish

ECE 717 – Homework Optimal Gain

In this homework problem, we consider a modification of the optimal gain
scenario defined in class. Now, the performance index includes weighting
not only on the state x(t) but also on the on the control u(t). That is, we
consider

J =
∫ ∞
0

xT (t)x(t) + λuT (t)u(t)dt

where λ > 0 is a given weighting factor.

(a) Generalizing upon the approach taken in class, find an expression for
the performance J(K) and the associated Lyapunov function which must
be satisfied.

(b) Now, using the result from Part (a), we revisit the double integra-
tor problem from class with weighting λ = 1, initial condition given
by x1(0) = 1, x2(0) = 0 and feedback K = [k1 k2] to be found by optimiza-
tion. Assuming the two feedback gains are equal (that is, k1 = k2 = k),
find the optimum k = k∗, the associated cost J∗ and verify that your con-
troller stabilizes the system.

(c) Consider the scenario in Part (b) with the following change: Instead
of taking initial condition x(0) as given, assume that each of its compo-
nents x1(0) and x2(0) are independent random variables which are uni-
formly distributed over [−1, 1]. Now find the optimal gain k = k∗ mini-
mizing J(K) and the associated optimal cost J∗.

solution

0.5.1 Part (a)

∑
x

K

+
v u
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Let us look at the closed loop. Let 𝑣 = 0 and we have, since 𝑢 (𝑡) = 𝑘𝑥 (𝑡)

𝑥̇ = 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥
= 𝐴𝑐𝑥

Where 𝐴𝑐 is the closed loop system matrix. Since 𝐽 (𝑘) = ∫
∞

0
𝑥𝑇 (𝑡) 𝑥 (𝑡) +𝜆𝑢𝑇 (𝑡) 𝑢 (𝑡) 𝑑𝑡, where

𝑢 (𝑡) = 𝑘𝑥 (𝑡), then

𝐽 (𝑘) = �
∞

0
𝑥𝑇𝑥 + 𝜆 (𝑘𝑥)𝑇 (𝑘𝑥) 𝑑𝑡

= �
∞

0
𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥𝑑𝑡

Let us find a matrix 𝑃, if possible such that

𝑑 �𝑥𝑇𝑃𝑥� = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

Can we find 𝑃? Since

𝑑 �𝑥𝑇𝑃𝑥� = 𝑥𝑇𝑃𝑥̇ + 𝑥̇𝑇𝑃𝑥

Then we need to solve

𝑥𝑇𝑃𝑥̇ + 𝑥̇𝑇𝑃𝑥 = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

𝑥𝑇𝑃 (𝐴𝑐𝑥) + (𝐴𝑐𝑥)
𝑇 𝑃𝑥 = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

𝑥𝑇𝑃 (𝐴𝑐𝑥) + �𝑥𝑇𝐴𝑇
𝑐 � 𝑃𝑥 = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

Bring all the 𝑥 to LHS then

𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥 + 𝑥𝑇𝑃 (𝐴𝑐𝑥) + �𝑥𝑇𝐴𝑇
𝑐 � 𝑃𝑥 = 0

𝜆 �𝑘𝑇𝑘� + 𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝐼

Hence the Lyapunov equation to solve for 𝑃 is

𝜆 �𝑘𝑇𝑘� + 𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝐼

Where 𝐼 is the identity matrix. This is the equation to determine matrix 𝑃. Without loss of
generality, we insist on 𝑃 being symmetric matrix. Using this 𝑃, now we write

𝐽 (𝑘) = �
∞

0
𝑥𝑇𝑥 + 𝜆 (𝑘𝑥)𝑇 (𝑘𝑥) 𝑑𝑡

= −�
∞

0
𝑑 �𝑥𝑇𝑃𝑥�

= 𝑥𝑇𝑃𝑥�0
∞

= 𝑥𝑇 (0) 𝑃𝑥 (0) − 𝑥𝑇 (∞) 𝑃𝑥 (∞)

For stable system, 𝑥 (∞) → 0 (since we set 𝑣 = 0, there is no external input, hence if the
system is stable, it must end up in zero state eventually). In part (b) we check for 𝑘 range
so that the roots are in the left hand side. Therefore

𝐽 (𝑘) = 𝑥𝑇 (0) 𝑃 (𝑘) 𝑥 (0)

With 𝑃 (𝑘) satisfying solution of Lyapunov equation found above.

0.5.2 Part(b)

For 𝑘 = �𝑘1 𝑘2� , 𝑥 (0) =
⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦ and system 𝑦′′ = 𝑢. Hence 𝑥′1 = 𝑥2, 𝑥′2 = 𝑢. Since

𝑢 = �𝑘1 𝑘2�
⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦
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The system 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 becomes

𝑥′ = 𝐴𝑥 + 𝐵𝑢
= 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥

⎡
⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴

�������⎡
⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎦ +

𝐵
⏞⎡⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎦

𝑘

����������𝑘1 𝑘2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

=
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0 0
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

=

𝐴𝑐

���������⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

For stable system, we need 𝑘1, 𝑘2 < 0 from looking at the roots of the characteristic equation.
Now we solve the Lyapunov equation.

𝜆 �𝑘𝑇𝑘� + 𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝐼

𝜆 �𝑘1 𝑘2�
𝑇
�𝑘1 𝑘2� +

⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

𝜆
⎡
⎢⎢⎢⎢⎣
𝑘1
𝑘2

⎤
⎥⎥⎥⎥⎦ �𝑘1 𝑘2� +

⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0 𝑘1
1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

𝜆
⎡
⎢⎢⎢⎢⎣
𝑘21 𝑘1𝑘2
𝑘1𝑘2 𝑘22

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
𝑘1𝑝12 𝑝11 + 𝑘2𝑝12
𝑘1𝑝22 𝑝21 + 𝑘2𝑝22

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

𝑘1𝑝21 𝑘1𝑝22
𝑝11 + 𝑘2𝑝21 𝑝12 + 𝑘2𝑝22

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

𝑘1 �𝑝12 + 𝑝21 + 𝜆𝑘1� 𝑝11 + 𝑘1𝑝22 + 𝑘2𝑝12 + 𝜆𝑘1𝑘2
𝑝11 + 𝑘1𝑝22 + 𝑘2𝑝21 + 𝜆𝑘1𝑘2 𝜆𝑘22 + 2𝑝22𝑘2 + 𝑝12 + 𝑝21

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

Hence we have 4 equations to solve for 𝑝11,𝑝12, 𝑝21,𝑝22. (but we know also that 𝑝12 = 𝑝21).
Now let 𝜆 = 1 per the problem, and we obtain the four equations from above as

𝑘21 + 𝑘1𝑝12 + 𝑘1𝑝21 = −1
𝑝11 + 𝑘1𝑘2 + 𝑘1𝑝22 + 𝑘2𝑝12 = 0
𝑝11 + 𝑘1𝑘2 + 𝑘1𝑝22 + 𝑘2𝑝21 = 0
𝑘22 + 2𝑝22𝑘2 + 𝑝12 + 𝑝21 = −1

Solution is (Using Matlab syms).� �
1 clear;
2 syms k1 k2 p11 p12 p21 p22;
3 k = [k1,k2];
4 A = [0,1;0,0];
5 B = [0;1];
6 Ac = A+B*k;
7 P = [p11 p12;p21 p22];
8 lam = 1;
9 eq = lam*(k.')*k + (Ac.')*P + P*Ac == -eye(2);
10 sol = solve(eq,{p11,p12,p21,p22});
11 P = simplify(subs(P,sol))
12 x0 = [1;0];
13 J1 = simplify(x0'*P*x0)� �

˙

Gives
P =
[ -(k1^3 - k1^2 + k1 - k2^2)/(2*k1*k2), -(k1^2 + 1)/(2*k1)]
[ -(k1^2 + 1)/(2*k1), -(- k1^2 + k1*k2^2 + k1 - 1)/(2*k1*k2)]
J1 =
-(k1^3 - k1^2 + k1 - k2^2)/(2*k1*k2)
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𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑘1−𝑘21+𝑘
3
1−𝑘

2
2

2𝑘1𝑘2
− 𝑘21+1

2𝑘1

− 𝑘21+1
2𝑘1

− 𝑘1+𝑘1𝑘22−𝑘
2
1−1

2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Hence

𝐽 (𝑘) = 𝑥𝑇 (0) 𝑃 (𝑘) 𝑥 (0)

= �1 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑘1−𝑘21+𝑘
3
1−𝑘

2
2

2𝑘1𝑘2
− 𝑘21+1

2𝑘1

− 𝑘21+1
2𝑘1

− 𝑘1+𝑘1𝑘22−𝑘
2
1−1

2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

Therefore

𝐽 (𝑘) = − 1
2𝑘1𝑘2

�𝑘31 − 𝑘21 + 𝑘1 − 𝑘22�

For 𝑘1 = 𝑘2 = 𝑘, the above becomes

𝐽 (𝑘) = −
�𝑘3 − 2𝑘2 + 𝑘�

2𝑘2

= −
�𝑘2 − 2𝑘 + 1�

2𝑘
Or

𝐽 (𝑘) = − 1
2𝑘
(𝑘 − 1)2

Now we find the optimal 𝐽∗. Since

𝑑𝐽 (𝑘)
𝑑𝑘

=
(𝑘 − 1)2

2𝑘2
−
(2𝑘 − 2)
2𝑘

Then 𝑑𝐽(𝑘)
𝑑𝑘 = 0 gives

𝑘 = 1, −1

Since 𝑘 must be negative for stable system, we pick

𝑘∗ = −1

And

𝑑2𝐽 (𝑘)
𝑑𝑘2

=
(𝑘 − 1)2

𝑘3
−
2 (1 − 𝑘)
𝑘2

−
1
𝑘

At 𝑘∗ = −1
𝑑2𝐽 (𝑘)
𝑑𝑘2

= 1 > 0

Hence this is a minimum. Therefore

𝐽∗ = −
1
2𝑘
(𝑘 − 1)2�

𝑘=−1

Hence

𝐽∗ = 2

𝐽∗ do not get to zero. (same as in the class problem we did without 𝜆𝑢𝑇𝑢 term. I thought
we will get 𝐽∗ = 0 now since this I thought it was the reason for using 𝜆𝑢𝑇𝑢. I hope I did
not make mistake, but do not see where if I did. Below is a plot of 𝐽 (𝑘).� �

1 clear k;
2 close all;
3 reset(0);
4 set(groot,'defaulttextinterpreter','Latex');
5 set(groot, 'defaultAxesTickLabelInterpreter','Latex');
6 set(groot, 'defaultLegendInterpreter','Latex');
7 f=@(k) (-1./(2*k).*(k-1).^2)
8 k=-4:.1:4;
9 plot(k,f(k));
10 text(-1,f(-1),'o','color','red')
11 title('$J(k)$ cost function and location of optimal $k$');
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12 xlabel('$k$'); ylabel('$J(k)$');
13 grid;� �

˙

k

-4 -2 0 2 4

J
(k

)

-6

-4

-2

0

2

4

6

8

o

J(k) cost function and location of optimal k

At 𝑘 = 1 then 𝐽 (1) = 0, but we can not use 𝑘 = 1 since this will make the system not stable.
The system now using 𝑘∗ = −1 becomes

⎡
⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
0 1
−1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

To verify it is stable. Since

|(𝜆𝐼 − 𝐴𝑐)| = 𝜆2 + 𝜆 + 1

The roots are

−
1
2
±
1
2
𝑖√3

Hence the system is stable since real part of roots are negative. If we had used 𝑘 = 1, the
roots will be −0.618, 1.618, and the system would have been unstable.

0.5.3 Part(c)

From last part, we obtained 𝑃

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑘1−𝑘21+𝑘
3
1−𝑘

2
2

2𝑘1𝑘2
− 𝑘21+1

2𝑘1

− 𝑘21+1
2𝑘1

− 𝑘1+𝑘1𝑘22−𝑘
2
1−1

2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

When 𝑘1 = 𝑘2 = 𝑘 the above becomes

𝑃 =

⎡
⎢⎢⎢⎢⎢⎣

−𝑘+2𝑘2−𝑘3

2𝑘2 − 𝑘2+1
2𝑘

− 𝑘2+1
2𝑘

1−𝑘−𝑘3+𝑘2

2𝑘2

⎤
⎥⎥⎥⎥⎥⎦

Now since 𝑥 (0) is random variable, then

𝐽 (𝑘) = 𝐸 �𝑥𝑇 (0) 𝑃𝑥 (0)�

= 𝐸

⎛
⎜⎜⎜⎜⎜⎝�𝑥1 (0) 𝑥2 (0)�

⎡
⎢⎢⎢⎢⎢⎣

−𝑘+2𝑘2−𝑘3

2𝑘2 − 𝑘2+1
2𝑘

− 𝑘2+1
2𝑘

1−𝑘−𝑘3+𝑘2

2𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1 (0)
𝑥2 (0)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= 𝐸 �−
1
2𝑘2

�𝑘3𝑥21 (0) + 2𝑘3𝑥1 (0) 𝑥2 (0) + 𝑘3𝑥22 (0) − 2𝑘2𝑥21 (0) − 𝑘2𝑥22 (0) + 𝑘𝑥21 (0) + 2𝑘𝑥1 (0) 𝑥2 (0) + 𝑘𝑥22 (0) − 𝑥22 (0)��

(1)

Let 𝐸 (𝑥1 (0)) = 𝑥̄1 and 𝐸 (𝑥2 (0)) = 𝑥̄2 Then

𝐽 (𝑘) = −
1
2𝑘2

�𝑘3𝑥̄21 + 2𝑘3𝑥̄1𝑥̄2 + 𝑘3𝑥̄22 − 2𝑘2𝑥̄21 − 𝑘2𝑥̄22 + 𝑘𝑥̄21 + 2𝑘𝑥̄1𝑥̄2 + 𝑘𝑥̄22 − 𝑥̄22�
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But 𝐸 (𝑥1 (0)) = 0, hence 𝑥̄1 = 0 and similarly 𝑥̄2 = 0, but 𝑥̄21 =
1
3 since

�
1

−1
𝑥2𝑝 (𝑥) 𝑑𝑥 =

1
2 �

1

−1
𝑥2𝑑𝑥 =

1
2 �
𝑥3

3 �
1

−1
=
1
3

Similarly 𝑥̄22 =
1
3 and 𝑥̄1𝑥̄2 = 0 (since i.i.d, then 𝐸 (𝑥1 (0) 𝑥2 (0)) = 𝐸 (𝑥1 (0)) 𝐸 (𝑥2 (0)) = 0. Using

these values of expectations, Eq (1) becomes

𝐽 (𝑘) = −
1
2𝑘2 �

𝑘3
1
3
+ 𝑘3

1
3
− 2𝑘2

1
3
− 𝑘2

1
3
+ 𝑘

1
3
+ 𝑘

1
3
−
1
3�

Or

𝐽 (𝑘) = −2𝑘3+3𝑘2−2𝑘+1
6𝑘2 (2)

To find the optimal:

𝑑𝐽 (𝑘)
𝑑𝑘

= −
1
3
−

1
3𝑘3

+
1
3𝑘2

𝑑𝐽(𝑘)
𝑑𝑘 = 0 gives 3 roots. The only one which is real and negative (the other two are complex)
is

𝑘∗ = −1.325

At this 𝑘∗, we check 𝑑2𝐽(𝑘)
𝑑𝑘2 and find it is 0.611 > 0, hence 𝐽 is minimum at 𝑘∗. The value 𝐽∗ at

𝑘∗ is found to be from substituting 𝑘∗ in (2)

𝐽∗ = 1.28817

Out[262]=

-4 -2 0 2 4

-1

0

1

2

3

4

5

K

J(
k)

J(k) plot for part (c). J*=1.28817 at k=-1.325

We now check if the system is stable. (it should be, since 𝑘∗ < 1). The system now is
⎡
⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣

0 1
−1.325 −1.325

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

Hence

|(𝜆𝐼 − 𝐴𝑐)| = 𝜆2 + 1.325𝜆 + 1.325

The roots are

−0.6625 ± 𝑖0.941

The system is stable since real part of roots are negative. The following is the step response
for system in part(b) and part(c) to compare.� �

1 %show step responses
2 close all;
3 figure();
4 close all
5 A = [0 1;-1 -1];
6 B = [1;0]
7 sys = ss(A,B,[1 0],[0])
8 step(sys)
9 hold on;
10
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11 A = [0 1;-1.325 -1.325];
12 B = [1;0]
13 sys = ss(A,B,[1 0],[0])
14 step(sys)
15 legend('part(b) step response','part(c) step response')
16 xlabel('time');
17 ylabel('y(t)');
18 grid� �

˙
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