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0.1 Problem 1

PROBLEM DESCRIPTION

Barmish
ECE 719 — Homework Epigraph

Give a function J : R" — R, we recall that its epigraph is the a set in R"*!
given by
epi J = {(u,a) € R"™ :a > J(u)}.

Now prove that .J is a convex function if and only if epz J is a convex set.

SOLUTION The following diagram illustrates epi ] for n = 1. In words, it is the set of all
points above the curve of the function J (1)

J(u) '/The set epiJ

This is an iff proof, hence we need to show the following
1. Given | is convex function, then show that epi ] is a convex set.
2. Given that epi | is a convex set, then show that ] is a convex function.

Proof of first direction We pick any two arbitrary points in epi J, such as py = (1%, ") and
p1 = (ul,y!). To show epi | is a convex set, we need now to show that any point on the
line between p, p; is also in epi J. The point between them is given by p, = (uA,yA) where
A €]0,1]. The following diagram helps illustrates this for n =1.

We need to

show that py \
J(u) is also in epi J _epi = (ul, gt}

The point p, is given by
(u,y") = A= Dpo + Aps
=(1-A) (uo,yo) +A (ul,yl)
= (@=)u® + Aul, (1 - 1)y + Ay?)

Therefore y* = (1 - 1)y° + Ay!. Since py,p; are in epi ], then by the definition of epi ], we
know that 10 > J (uo) and y! > | (ul). Therefore we conclude that

y' > (1- /\)](uo) +A] (ul) 1)
But since we assumed | is a convex function, then we also know that (1 - A1) ] (uo) +A] (ul) >
](uA) where u* = (1 - A)u® + Au'. Therefore (1) becomes

This implies the arbitrary point p, is in epi J.



We now need to proof the other direction. Given that epi ] is a convex set, then show that
J is a convex function. Since epi | is a convex set, we pick two arbitrary points in epi J,
such as py, p;. We can choose py = (uo,](uo)) and p; = (ul,](ul)). These are still in epi J,

but on the lower bound, on the edge with J (1) curve.

() p1 = {u',y'}

p* = {u*, y*}

po = {u®,y°}

u = (1 — )x)'u,o + Aul

Since pg,p; are two points in a convex set, then any point p* on a line between them is
also in epi | (by definition of a convex set). And since p* = (1 — A) py + Ap; this implies
ph = (u/\’y)\)
=(@-V)po +Ap1)
(0= (,168) #. a1 )
A

Y
1= A)u® + Aut, 1= A)] () + ] (u?) 1)

Since p* is in epi J then by definition of epi |

yt =] () (2)
But from (1) we see that y* = (1 - A)](uo) +](u1), therefore (2) is the same as writing
@=A)] (u) +J (ut) > T (u) (3)

But u* = (1 - A)u® + Aul, hence the above becomes
A=) (u) +J () 2 (@ - D) u® + Aut)

But the above is the definition of a convex function. Therefore [ (1) is a convex function.
QED.



0.2 Problem 2

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Unique Minimum

Suppose J : R" — R is strictly convex. Then prove the following: If a
minimizing element v* € R" exists, it must be unique.

SOLUTION Let uj and u] be any two different minimizing elements in R” such that
] (“5) < ](u{). We will show that this leads to contradiction. Since u; is a minimizer, then
there exists some R > 0, such that all points u that satisfy ||[u* — ul| < R also satisfy

J(45) <J ()

all points u
here satisfy
J(ug) < J(u)

_ e,
_ uy

We will consider all points along the line joining u, 1], and pick one point u" that satisfies

*

u - u}l” < R, where A € [0,1] is selected to make the convex mixture u* = (1 — A) uf + Auj

satisfied. Therefore any A < X will put u” inside the sphere of radius R.

(Tt
6 *uy
Ek =(1—Nuj + uj
Hence now we can say that
J () <7 () (1)
But given that ] () is a strict convex function, then
Jh) < @ =1)] (up) + AT (17) 2)

Since we assumed that ](”6) < ](u]), then if we replace ](u]) by ](”6) in the RHS of (2),
it will change from < to < resulting in

Jh) < (= A)] (up) + AT ()

Jhy < T (up) (3)

We see that equations (3) and (1) are a contradiction. Therefore our assumption is wrong
and there can not be more than one minimizing element and uj must be the same as u].



0.3 Problem 3

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Global Minimum

Preamble: Suppose J : R" — R. A point v* € R" is said to be a
local minimum of J if there exists some suitably small § > 0 leading to
satisfaction of the following condition:

J(u?) < J(u)
for all u such that ||u — w*|] < . Said another way, u* is a mini-
mizing element over a suitably small open neighborhood. For the case
when J(u*) < J(u) for all u, we call u* a global minimum of J.

The Homework Problem: Suppose J : R” — R is convex. Prove
that every local minimum of J is a global minimum.

SOLUTION We are given that [ (1) < ] (u) for all u such that ||u* — u|| < 6. Let us pick any
arbitrary point u!, outside ball of radius 6. Then any point on the line between u* and u?
is given by

W =1-AN)u + Aul

In picture, so far we have this setup

J(w*) < J(u)
inside this ball of
radius §

We now need to show that J(u*) < ](ul) even though u! is outside the ball. Since ] is a
convex function, then

J(wt) < @=A)] @)+ AJ (u) 1)

We can now select A to push u* to be inside the ball. We are free to change A as we want
while keeping u! fixed, outside the ball. If we do this we then we have

J) <] (ut)

J(w*) < J(ut)
inside this ball of
radius ¢

Hence (1) becomes
Jar) < @=A)] @) + AT (u?) 2)
Where we replaced ](uA) by J(u*) in (1) and since J(u*) < ](u/‘) the < relation remained



valid. Simplifying (2) gives
J) <J) = AJ )+ AJ (ut)
AJ () < AJ (ul)

For non-zero A this means [ (1*) <] (ul). This completes the proof, since u
point anywhere. Hence " is global minimum. QED

! was arbitrary



0.4 Problem 4

PROBLEM DESCRIPTION

Barmish
ECE 719 — Homework Multiple Combinations

For a convex function J : R" — R, prove the following condition is satis-
fied: Given any points u', v, ..., u" € R" and any scalars A;, Ao, ..., Ay > 0

such that

it follows that

SOLUTION

N
We need to show that ](E/\iu ) ZAJ( ) where 2/\ = 1. Proof by induction. For N =1
=1 1
and since A; =1, then wéz have "
() =7 ()

The case for N = 2 comes for free, from the definition of | being a convex function
J(@=A)ut +Au2) <@ =) (ul) + AJ (u?) (A)
By making (1 - A) = A4, A = A, the above can be written as

J (At + Au?) < A (ut) + 4] (u2)
We now assume it is true for N = k — 1. In other words, the inductive hypothesis below is
given as true

k=1 k-1 ‘
J(Zaiul) < M (u) (*)
i=1 i=1
Now we have to show it will also be true for N = k, which is
ZM( ) = 0] (1) A (1) -+ A ()
— /\1 Ak_l _ Ak
= 0 2 ) 2 ) o T () 2y )
A A A1 -
(1 Ak) ((1 Ak) ( 1) + (1 _/\k)](ul) 4o 4 m] (le 1)) + Ak](uk>

k-1

= (1- A (2 a _AiAk)](ui)) + A () (1)

i=1

Now we take advantage of the inductive hypothesis Eq. (*) on k —1, which says that

k-1 k=1
A i A i . .. . .
<y, >
](._ AL ) < ;(1_Ak)] (u ) Using this in (1) changes it to > relation

k-1

k
Z;AJ(uf)za—Am(Za AA) )+A,J( J) (2)

We now take advantage of the case of N =2 in (A) by viewing RHS of (2) as (1 - )Lk)](ul) +

k-1
AJ (uz), where we let u! = Eiui, u? = u*. Hence we conclude that
= (1)

k-1 A; i
(1—Ak)1(§(1_Ak)u)+Ak1(u)>J((1 M)Z(l A)”"'/\kuk) 3)

Using (3) in (2) gives (the > relation remains valid, even more now, since we replaced



something in RHS of (2), by something smaller)
k-1 Ai
i=1 (1 - /\k)

= ]((ki)\iuf) + Akuk)

i=1

k
YA () = 1((1 - )
i=1

Hence

g)\i] () > ](zk]A,-ui)

i=1

QED.

ul + Akuk)
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0.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Hessian

For u € R", define
J(u) = —(ugugug - - - u )1/”

Prove that J(u) is convex on the positive orthant; i.e., the set defined
by u; > 0 fori=1,2,.

SOLUTION

Assuming ] (u) is twice continuously differentiable (C?) in uy,u,, -+, u,, then if we can show
that the Hessian V2] (u) is positive semi-definite on u; > 0, then this implies ] (1) is convex.
The first step is to determined V2] (u).

J 1 1 n 1 n 1 n

k=1kzi n (it mu”)kzl,k;tz Hukk 1k
1w
n u;
And
1)
7 _1li) 1w
o n n u?
1w 170
T T
1] (u) (1 )
——--1
nous \n
And the cross derivatives are
R 9 (1]w)
du;du; B duj \n u;
1]
_ 1 n M]'
B n u;
_ 1@
n? uju
Therefore
1 J(w) 1 J(u) 1 J(u)
a2 B Sl s
1w R W ()
VZI () = 12 gy n2 u3 12 upity,
1w L ) ' 1 ](u)
Ps w2 07

Now we need to show that V2] (u) is positive semi-definite. For n =1, the above reduces to

v2rw =1 1) -

1
Hence non-negative. This is the same as saying the second derivative is zero. For n = 2

J07 M;J() 23/ oo
VZ](u) 12 12

—-]() 4]()u% —-]() u—%;]()

uguy 4 upuy 4

The first leading minor is 4_7] (1), which is positive, since [ (1) <0 and u; > 0 (given). The
1
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second leading minor is

-11 1 1
_ Eﬂ(u) i a) W
e KON SO

upug 4

2

Hence all the leasing minors are non-negative. Which means V2] (1) is semi-definite. We
will look at n =3

I O (O Rres (O

uqup 9 uqusz 9
VY )= | oo ) S50 5 W)
5 %gm 25/

The first leading minor is 9_72%] (1), which is positive again, since (1) < 0 for u; > 0 (given).
2
And the second leading minor is 21—7]2 .

2.2
uyuy

which is positive, since all terms are positive. The third leading minor is

=25/ =) ——](u)
ug 142 143
M=l ) 75l @) gl =0
1 1 1 1 -21
@51 (u) E;] (u) u—§§] (u)

Hence non-of the leading minors are negative. Therefore V2] (u) is semi-definite. The same
pattern repeats for higher values of 7. All leading minors are positive, except the last
leading minor will be zero.

0.5.1 Appendix

Another way to show that V2] (u) is positive semi-definite is to show that xT (V2] (u)) x>0
for any vector x. (since V2] (u) is symmetric).

Wiy 1w 16
nu \n n? Uy, n2 uqu, X1
ERINE Ve Ry i ||
XT (VZI (Ll))x = (xl Xy e xn) n? 1.12“1 nouz \n n? szun :2
1 Jw S ORI | ¥
n2 u,uy 12 u,uy n u2 (n 1) "

Now the idea is to set n =1,2,3,--- and show that the resulting values > 0 always. For
n =1, we obtain 0 as before. For n = 2, let

]. Expanding gives
2

l/l2 Usuq n uy n

1w (1 _ ) 1 Jw)
_ nu? \n n2 ujuy X1
A= (X1 xz) 1 J(u) 1 J(u) (1 _ 1) [xZ

(0 (Yo 11 (1) [
A_(xlzbl_%(; 1)+x2n2u2u1 M2 g 2 u (” 1))[ ]

X2
1](u) (1 1 J(u) 1 J(u) 1](u (1
:x%E?(E‘l)”leﬁﬁ e |y ]
1 241 142 u; n

1 1 1 1 1 1
= x%—](—z) (— - 1) + xlxz—M + Xpx1— J () + x%—](z) (— - 1)
2 up \2 4 upuq 4 uquy 2 u; \2

The RHS above becomes, and by replacing | (1) = —/uju, for n =2

1 u 1](u 1 u 1 ,+uu 1 uqu 1 +Juju
——X%](—Z) + xle—M - —X%](—z) = —X% 12 2 —X1Xo2 = 172 + —X% 12 2
4 " ug 2upuy 4 ° uj 4 uj 2 uu; 4 uy

2

x—_
Vi ou N u

Where we completed the square in the last step above. Hence xT (VZ] (u)) x > 0. The same
process can be continued for n higher. Hence V?] () is positive semi-definite.

_ (L(uluzﬁ 1 (u1u2>3x2]



	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Appendix


