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0.1 Problem 1

PROBLEM DESCRIPTION

Barmish
ECE 719 — Homework Epigraph

Give a function J : R" — R, we recall that its epigraph is the a set in R"*!
given by
epi J = {(u,a) € R"™ 1 a > J(u)}.

Now prove that J is a convex function if and only if ep: J is a convex set.

SOLUTION The following diagram illustrates epi | for n = 1. In words, it is the set of all
points above the curve of the function J (1)

J(u) '/The set epiJ

This is an iff proof, hence we need to show the following
1. Given | is convex function, then show that epi ] is a convex set.
2. Given that epi | is a convex set, then show that | is a convex function.

Proof of first direction We pick any two arbitrary points in epi J, such as py = (1°,1°) and
p1 = (ul,y'). To show epi | is a convex set, we need now to show that any point on the
line between py, p; is also in epi J. The point between them is given by p, = (uA,yA) where
A €[0,1]. The following diagram helps illustrates this for n =1.

‘We need to

show that p) \
J(u) is also in epi J _epi = {ul,y'}

PXx




The point p, is given by
(uA,yA) =1 -A)py+Ap

=(1-21) (uo,yo) +A (ul,yl)

= ((1 - A)ul + Aul,(1-21)y° + /\yl)
Therefore y* = (1 - A)y° + Ay'. Since py, p; are in epi J, then by the definition of epi ], we
know that 10 > J (uo) and y' > | (ul). Therefore we conclude that

yh > 1= (u°) + AJ (u!) 1)
But since we assumed | is a convex function, then we also know that (1 - /\)](uo) + AJ (ul) >
](u/‘) where ut = (1 = A)u® + Aul. Therefore (1) becomes
This implies the arbitrary point p, is in epi J.
We now need to proof the other direction. Given that epi | is a convex set, then show that |
is a convex function. Since epi | is a convex set, we pick two arbitrary points in epi ], such

as po, p1.- We can choose py = (uo,](uo)) and p; = (ul,](ul)). These are still in epi J, but on
the lower bound, on the edge with ] (1) curve.

J(u) o
P1 = u,y
A { }
p* = {ut, v} )
J
po = {UO,yO} (u')
J(u9)
® »
u® uw ul

u = (1 — )\)uo + Al

Since py, p; are two points in a convex set, then any point p! on a line between them is also
in epi | (by definition of a convex set). And since p* = (1 — 1) py + Ap; this implies
ph = (u/\’y)\)
= (A=) po +Ap1)
= (=M (0 (7)) + A (] (1))
A

Yy
=|@=2)u®+ Aut, @A) ] () + ] (u?) 1)

Since p* is in epi J then by definition of epi |
vtz () @)



But from (1) we see that y* = (1 - A)](uo) +](ul), therefore (2) is the same as writing

@=A)] (u) +J (ut) = ] (u) (3)
But u! = (1 - A)u® + Au!, hence the above becomes
@=A)] (u) +J () 2 (@ - D) u® + Aut)

But the above is the definition of a convex function. Therefore | (1) is a convex function.
QED.



0.2 Problem 2

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Unique Minimum

Suppose J : R" — R is strictly convex. Then prove the following: If a
minimizing element u* € R exists, it must be unique.

SOLUTION Let uj and u] be any two different minimizing elements in R” such that | (u(*)) <

J (uj). We will show that this leads to contradiction. Since uj is a minimizer, then there exists
some R > 0, such that all points u that satisfy |[u* — u|| < R also satisfy

J () < ()

all points u
here satisfy
J(ug) < J(u)

_ e,k
— uj

We will consider all points along the line joining u§, 1], and pick one point " that satisfies

*

u— uA” < R, where A € [0,1] is selected to make the convex mixture u* = (1 - A) u + Auj

satisfied. Therefore any A < ﬁ will put u” inside the sphere of radius R.
07 "1

— @, %
— ul

A
A
u

M= (1= Nuf + Iuj

Hence now we can say that

J (up) <7 (u) (1)
But given that ] (u) is a strict convex function, then
Jhy < @=A)] (ug) + AT (117) (2)

Since we assumed that ](“6) < ](u]), then if we replace ](u}) by ](“6) in the RHS of (2), it



will change from < to < resulting in
Jaty < (=N (up) + AT ()
Jhy < T (up) (3)

We see that equations (3) and (1) are a contradiction. Therefore our assumption is wrong
and there can not be more than one minimizing element and uj must be the same as u].



0.3 Problem 3

PROBLEM DESCRIPTION

Barmish
ECE 719 — Homework Global Minimum

Preamble: Suppose J : R" — R. A point «v* € R" is said to be a
local minimum of J if there exists some suitably small § > 0 leading to
satisfaction of the following condition:

J(u") < J(u)
for all w such that ||lu — w*||] < §. Said another way, u* is a mini-
mizing element over a suitably small open neighborhood. For the case
when J(u*) < J(u) for all u, we call u* a global minimum of J.

The Homework Problem: Suppose J : R" — R is convex. Prove
that every local minimum of J is a global minimum.

SOLUTION We are given that J(u*) < J(u) for all u such that [|u* — u|| < 6. Let us pick any
arbitrary point u!, outside ball of radius 6. Then any point on the line between u* and u! is
given by

ut =1 -A)u+ Aul

In picture, so far we have this setup

J(u*) < J(u)
inside this ball of
radius §

We now need to show that [ (u*) <] (ul) even though u! is outside the ball. Since | is a convex
function, then

J(ut) < @=2)] @)+ AJ (u) 1)

We can now select A to push u! to be inside the ball. We are free to change A as we want
while keeping u! fixed, outside the ball. If we do this we then we have

Jar) <J(u)



J(u*) < J(u?)
inside this ball of
radius ¢

Hence (1) becomes
Jar) < @=A)] @) + AT (u?) 2)

Where we replaced | (uA) by J (1*) in (1) and since | (u*) <] (uA) the < relation remained valid.
Simplifying (2) gives

J) <] )= AJ )+ AJ (ut)
AJ () < AJ (ul)

For non-zero A this means [ (u*) < ](ul). This completes the proof, since u
point anywhere. Hence " is global minimum. QED

! was arbitrary
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0.4 Problem 4

PROBLEM DESCRIPTION

Barmish
ECE 719 — Homework Multiple Combinations

For a convex function J : R" — R, prove the following condition is satis-
fied: Given any points u!, v?, ...,u" € R" and any scalars A, Aa, ..., Ay > 0
such that

N
A =1,

~
—_

it follows that

SOLUTION

N N N
We need to show that ](ZAiui) < ZAJ (ui) where ZAi = 1. Proof by induction. For N =1
=1 =1 =1

and since A; =1, then we have l l

J() =7 (u")
The case for N = 2 comes for free, from the definition of | being a convex function
J(@=A)ut +Au?) <@ -A)] (ul) + AJ (u?) (A)
By making (1 - A1) = A4, A = A,, the above can be written as
J (At + A1) < AqJ (ul) + Aof ()

We now assume it is true for N = k — 1. In other words, the inductive hypothesis below is
given as true

k=1 k=l '
I(ZM’) < ZAJ () (*)
i=1 i=1

Now we have to show it will also be true for N = k, which is
k
BT (1) = A () + AqJ (d) + - + Ay ()
i=1

=(1—)\k)( A ](u1)+ A ](u1)+‘ N Ap1 ](uk_1)+L](uk))

(1- ) (1- ) S a-A (1- )
_ /\1 /11 Ak—l -
‘“‘“%a—mﬂ@”+a—mﬂ@”+”+afﬂﬂ@“»+hwﬁ>

k-1 Ai )
=(1-A) (2} iy (uz)) + A () 1)

Now we take advantage of the inductive hypothesis Eq. (*) on k —1, which says that
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k=1 k=1
J ( A ui) < A ](ui). Using this in (1) changes it to > relation

k-1

k
Z;Ail(uf)za—w(Za AA) )+A,J( J) (2)

We now take advantage of the case of N =2 in (A) by viewing RHS of (2) as (1 - /\k)](ul) +

k-1
AyJ (uz), where we let u! = Ziui, u? = u*. Hence we conclude that
= (1-4g)

k-1 A; i
(1_Ak)](§(l_/\k)”)+Ak](u)>]((1 Ak>2(1 A)umku") 3)

Using (3) in (2) gives (the > relation remains valid, even more now, since we replaced
something in RHS of (2), by something smaller)

gw( )>1((1 Ak)za -
= ]((kz_i/\iui) + Akuk)

i=1

) iy Akuk)

Hence

QED.
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0.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Hessian

For u € R", define
J(u) = —(’LL1U2U3 R )1/”

Prove that J(u) is convex on the positive orthant; i.e., the set defined
Z e

is ¢
by u; > 0 for 1,2,.

SOLUTION

Assuming ] (u) is twice continuously differentiable (C?) in uy,uy, -+, u,, then if we can show
that the Hessian V2] (u) is positive semi-definite on u; > 0, then this implies J (1) is convex.
The first step is to determined V2] (u).

0 1 1 n 1 n 1 n
_] = ——(ugip -+~ u,)n ! H U = _—](u) H Uy = ](u) H Uy,

du; n k=1 i n (uyup ---un)k:1,k¢i Hukk Lk
_1]@
n u;
And
1]
8_2] 1 n u; l](u)
o n n u?
17w 1/@
"2 2 u?

_ 1))
Sracy
I’ 1] (w)
du;du; 8u (n u; )

lﬂ_”)
_17[14]'

And the cross derivatives are

n u;
_ 1]

"2 uju
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Therefore
1 J(u) 1 J(u) 1 J(u)
o A s
1 Jw LI ) 1Jw
VZ] (u) — n2 upuq n? u% n2 Uy,
1w 1w 1)
E UpUq F UyUy 1’1_21,[_% (1 - n)

Now we need to show that V2] (u) is positive semi-definite. For n =1, the above reduces to

V2] (u) = ](—Z)(l -1)=0
Uy

Hence non-negative. This is the same as saying the second derivative is zero. For n = 2

Jw = W) (Zgw W
V2 (u) = 41 ] th1uz4 12 [=] 41 ui111214
e A RAC) El 1) ) 2 2 ()

The first leading minor is ﬁ] (1), which is positive, since J (1) < 0 and u; > 0 (given). The
1

second leading minor is

11 11

~ E‘Z](u) E;](”) ~

2= 11 S
E;J(“) u—éﬂ(u)

Hence all the leasing minors are non-negative. Which means V2] (1) is semi-definite. We will
look at n =3

I O (O lres ()

uqup 9 uqusz 9
V()= | oo ) S50 5 w)
5 %gm 25/

The first leading minor is 9_72%] (1), which is positive again, since [ (1) < 0 for u; > 0 (given).

2

i i .1 u
And the second leading minor is —J*——
277 uquy

which is positive, since all terms are positive. The third leading minor is

=25/ =) ——](u)
us 142 143
M=l ) 5@ gl =0
1 1 1 1 -21
M;] (u) E;] (u) u—§§] (u)

Hence non-of the leading minors are negative. Therefore V2] (1) is semi-definite. The same
pattern repeats for higher values of n. All leading minors are positive, except the last leading
minor will be zero.
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0.5.1 Appendix

Another way to show that V2] (u) is positive semi-definite is to show that x” (V 2y (u)) x>0
for any vector x. (since V2] (u) is symmetric).

1)) ( 1) 1 Jw) 1 Jw)
n u% n 2 uluz n? uqu, X1
1 Jw) 1jw) ( _1) 1 J(u) x
TVYW)r=(n % o x)| Fes  nE b 1
1@ U O YRR | #
n2 U,y n2 U,y n u2 \n "

Now the idea is to set n =1,2,3,--- and show that the resulting values > 0 always. For
n =1, we obtain 0 as before. For n = 2, let

(1) Liw
n 2 \n n? uqu X1 . .
A= (xl xz) ull Jw) 1w (1 iz_ . [x ] Expanding gives
n2 upuy nuj \n 2
(M0 (1 ) p 10 1w 1w (1)) (%
A= (xlﬂ 2 (” 1) T2 VR, 20 (” 1)) [xz]
1](u) 1 J(u) 1J@w) = ,1]w (1
——2 —-1]+x 2—— 15— 2__ --1
nouf \n ne uyy nouy \n

1](_u)(__1) 17w xx”(”’ U(u)( 1)
2

B x12 2 *1 21 UsUq 4: Uiy XZZ MZ
The RHS above becomes, and by replacing [ (1) = —+/uqu, for n =
1 ,]w) 1w 1, 1,y 1yuiy 1,y

X1—— —— — =X - —X1X
172 X1X2 27 2 1 2 1425 2 2
4 uj 2u UrUq 4 Us 4 uj 2 UrUq 4: us

1 1
|1 (uluz)zx 1 (uluz)zx
Vi ow L NEoup

Where we completed the square in the last step above. Hence x” (sz(u)) x > 0. The same
process can be continued for n higher. Hence V?] (1) is positive semi-definite.
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