HW5 ME 739 Introduction to robotics

SPRING 2015
DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF WISCONSIN, MADISON

INSTRUCTOR: PROFESSOR MICHAEL ZINN

By

NASSER M. ABBASI

MAY 3, 2022

Contents

0.1 Problem description A
0.2 Joint space control L [@
0.2.1 Part (a) Coriolis, centrifugal, and gravity terms are compensated 101
0.2.2 Part (b) No velocity compensation. Only gravity compensation 14
0.2.3 Part (c) Decentralized joint-space controller, full compensation using average
Dmatrix e 17
0.2.4 Part (d) discussion of result, compare control methods 211
0.2.5 source code listing for joint-space control 24]
0.3 Operational space control 38]
0.3.1 Part (a) zp=[-L,—L,0/T (41
032 Part (b)zy=[-L,—&,07 A
0.3.3 Part (c) z5 = [-L,—L,0]T with velocity limiting heuristic [48]
0.3.4 Part (d) discussion of result, compare control methods 1]
0.3.5 Source code listing for operational space control B3

List of Tables

0.1

Problem description

Problem 1. [100 points]

You are to design a series of position controllers for the three degree of freedom manipulator shown in the
figure below. The equations of motion and corresponding Matlab simulation code are given in the lecture
notes (4-9 — Dynamics — EOM Simulation: slides 4-136 to 4-147). The simulation code has been posted
on the course Learn@UW page (Simulation Example #2: Three DOF RRR Manipulator). For
completeness, the equations of motion are given on the next page.

X Le, (cz3 + cz)
=| Ls, (023 +c,)
Lsy,+L(s, +1)

Link mass properties:

y X
Parameters: 5 ¥ X
L m 10.0 [kg] m, [
r Yl [m]
la | Yaml® [kg-m’] I, 0 0 I, 00
I mr’_[kg-m’] I={0 1, 0|=01,0
: g 9.81 [m/s] 0 0 7| |0 01

Equations of motion: D+ B[¢G]+C[¢*]+G =1 where the terms are given as:

Mass matrix:
—1 2,2, 1 2 2
D, =imLc,” +ymL (sz+2cz) Foee

2 2 2 2
],,4—]L,(c2 +¢,,)+Ib(s2 +8,,)

D, 0 0
D=| 0 D, D, | where DPn2= Sml +mlc, +2I,
0 D, D, Dy, =imL* +imLc,+1,
Dy, =d,,
Dy, =+ml*+1,
Coriolis matrix:
B, =(1,~1,~4mL*)sin(2q, +2q;)+
8.8, 0 Tid, (1, -1, -3mL)sin(2q,)—mL’ sin(2q, +q;)
B(¢)[dgl=| 0 0 B, | d¢g,| where B, :—g(sin(q2 +q3)(<4lu —41, +mL2)~~~
0 0 0 Jla:4; cos(q, +4q;)+2mL’ cos(qz)))
B,; =—mL’sin(q,)
Centrifugal matrix:
Gy =4(1, 1, ++mL)sin(2q, + 24,)+
(1, 1, +3mL)sin(2q,)+ mL’ sin (24, +q;)
0 0 014’ C,, =—Lml*sin(q;)
C@§*1=]C, 0 G, z{zz where C, = LmiZsin(a,)
C, Cy, 0|4
C, =%(sin(q2 +q,)((42, - 41, +Emr?)--
cos(q, +4,)+2mL’ cos (g,)))
Gravity vector:
g & =0

G=|g,| where g,=+mgL(3c,+cy)
g g, =1mglc,,

» Joint-space Control

In parts (a) — (c) design and implement a joint-space inverse dynamics controller. Use a simple
proportional-derivative (PD) controller to control the decoupled system. Set the controller gains such that
the closed-loop position controller has an undamped natural frequency, @,, equal to 2 Hz and a damping
ratio, ¢, equal to 1.0. Simulate the response of the system to a step input position command. The initial
joint positions of the manipulator are given as qo = [0 m/4 —m/2]". The final (or desired) joint
positions of the manipulator are given as gy =[x © 7/ 2]". Note, when simulating your system, you
may need to adjust the integration step size of the Runge-Kutta algorithm to ensure that the system does
not become ill-conditioned.

For parts (a) — (c) below, plot/animate the following:

= Plot the joint space displacements and velocities as a function of time

= Plot the operational-point (task frame origin) displacements and velocities as a function of time
= Plot the operational-point displacements in three-dimensions [i.e. plot3(x, y, z)]

= Animate the motion of the manipulator

(a) Design and implement a joint-space inverse dynamics controller, where the nonlinear
Coriolis, centrifugal, and gravity terms are compensated and the equations are completely
decoupled using the joint-space mass matrix.

(b) Design and implement a modified joint-space inverse dynamics controller. In this case,
compensate for the gravitational terms but do not compensate for the nonlinear Coriolis or
centrifugal terms.

(c) Design and implement a decentralized joint-space controller. In this case, compensate for
the nonlinear Coriolis, centrifugal, and gravity terms but decouple the system using an
average mass matrix. Derive an average mass matrix using the true mass matrix. Explain
and justify your choice of an average (constant) mass matrix.

(d) Compare the response of the three controllers from parts (a) — (c) and comment on the
differences, advantages, and disadvantages.

» Operational-space Control

In parts (a) — (c), design and implement an operational-space inverse dynamics controller. Use a simple
proportional-derivative (PD) controller to control the decoupled system. Set the controller gains such that
the closed-loop position controller has an undamped natural frequency, @,, equal to 2 Hz and a damping
ratio, ¢, equal to 1.0.

For parts (a) — (c) below, plot/animate the following:

= Plot the joint space displacements and velocities as a function of time

= Plot the operational-point (task frame origin) displacements and velocities as a function of time
= Plot the operational-point displacements in three-dimensions [i.e. plot3(x, y, z)]

= Animate the motion of the manipulator

(a) Design and implement an operational-space inverse dynamics controller, where the
nonlinear Coriolis, centrifugal, and gravity terms are compensated and the equations are
completely decoupled using the operational-space mass matrix'. Simulate the response of
the system to a step input position command. The initial joint positions of the manipulator
are given as qo =[0 m/4 -—m/2]7. The final operational-space position of the
manipulator is given as xy = [-L -L o]

(b) Using the controller designed in part (a), simulate the response of the system to a step input
position command where the final operational-space position of the manipulator is given as
xp=[—L —L/10 O] (the initial joint positions of the manipulator are still given as
qgp=1[0 n/4 -m/2]".

(c) Using the controller designed in part (a), implement the operational-space linear velocity
limiting heuristic described in the lecture notes. Set the maximum linear velocity equal to 5
m/s. Simulate the response of the system to a step input position command where the
initial joint positions are given as g, = [0 m/4 —m/2]7 and the final operational-space
positions is givenas xp = [-L —L 0]

(d) Compare the response of the controllers from parts (a) and (b) comment on the differences,
advantages, and disadvantages.

0.2 Joint space control

The main goal is to decouple the nonlinear equation of motion of the robotic arm which is given
by the equation below, where [] indicates a matrix and { } indicates a column vector. Notice
that [D(q)] means that that matrix [D] is a function of ¢. It does not mean the matrix [D] is
multiplied by gq.

[D(@)l{d} + [B(9)]ldd] + [C(9)l{¢*} + [G(9)] = {7}

The sizes of each of above quantities in terms of n which is the number of generalized coordinates,
or the degrees of freedom, or the number of joints, which is 3 in this example, are given by

(n—=1)n (n—1)n
nxn nxl MX"T% T3

AN M AN —_— =
[D(@)]{d}+ [B(@)] [4d] +I[C@)I{¢*}+[G(g)] = {r}

The velocity terms and the gravity terms and the mass terms are indicated below

x1 nxn nX1 nx1 nx1
~ =

Mass or inertia term velocity nonlinear terms gravity nonlinear term forces and torques
— -~ . & o — ~=
[D(g){d} +[B(9)]l4d] + [C(a)lg"} [G(g)] = {r}

The above equation of motion can be written in simpler form for analysis by letting V' = [B(q)][¢4]+
[C(q)]{d?}. Therefore the above becomes

[D{¢}+V+G=r
[D{g}=7-V -G (1)

Setting 7 = D7’ +V + G where D, V, G are estimates of the the actual D, V, G. The estimates are
computed in real time. 7’ is the actuating signal generated by the propertional derivative (P.D.)
controller which is given by
T, = kd((jdesired - (jactual) + kp(Qdesired - Qactual)
Using the above equation (1) becomes
D[j]=D7"+V+G-V -G
=Dr'+(V-V)+(G-G) (2)

Assuming the estimates are perfect with no noise and no delay, then V.=V, @ =G and D = D
and (2) reduces to

[11{q} = D~'Dr’
={r'} (3)
Where [I] is the identity matrix. Therefore the equations have been decoupled.

T was determined based on the control being implemented as follows

part(a) | T=D7 +G+V full compensation

part(b) | 7= D7 + @ no velocity terms compensation, only gravity is compensated
for. This means the V term is not estimated at run time hence
the equations of motion will not be fully decoupled and some
cross joints motion effects will result.

part (¢) | 7 = Daverage™ + G + V | decentralized control with full compensation. Mass matrix is
constant which represents the average mass matrix.

For part (c), the average mass matrix Dayerage Was found by setting the joint angles to zero ¢; = 0
for the three joints in the original [D] mass matrix. Therefore all the cos(q) terms were replaced
by one and all sin(q) terms were replaced by zero.

Damping was not used as the problem did not specify one but this can be easily added in the
Matlab code. In addition, the gear ratio N was not used as the problem did not specify a value
for N.

The end-effector position in task space was found to be

0
0
0
1

L cos(q1(t)) cos(ga2(t)) + L cos(qi(t)) cos(ga(t)) cos(gs(t)) — L cos(qi(t)) sin(ga(t)) sin(gs(t))
= | Lcos(gz2(t))sin(q1(t)) + L cos(qz(t)) cos(gs(t)) sin(q1(t)) — Lsin(gi(t)) sin(gz(t)) sin(gs(?))
L (sin(g2(t)) + 1) + L cos(q2(t)) sin(gs(t)) + L cos(gs(t)) sin(gz(t))
The above was evaluated at each time instance and used to plot the path of the end-effector in
3D.

The following diagram shows the controller layout taken from the class handout, page 6-120 which
shows the controller with full compensation.

Xend = T??

Nonlinear Dynamic Decoupling

Inverse Dynamics Control:

Nonlinear Decoupling

G |
O K, O b
% +m i Kp i

Linear Controller

= decoupling torques based
= Requires real-time compu

on measured manipulator states
tation of nonlinear decoupling terms

= Nonlinear terms affected by sensor noise and delay

6-120

Figure 1: Diagram of controller, inverse dynamics control, full compensation.

From class lecture notes

10

In the Matlab simulation, it was assumed that the measured manipulator states are exact and no
noise was present as mentioned above. In practice this will not be the case and there will be an
error in the estimates.

The following diagrams gives a high level overview of the Matlab software design for the imple-
mentation of the joint space control and the M files used.

Software design of controller for part (a), HW5 showing
Matlab functions used

ThreeDOFcontrols.m

zDot3dofControls.m

ask for control type [D, Daverage] = Dmatrix_ThreeDOFcontrols(...)
Initialization and B = Bmatrix_ThreeDOFcontrols(...)
allocation of arrays C = Cmatrix_ThreeDOFcontrols(...)
%RK-4 integrate equation of motion G, - Gm.atrlx_Th.reeDOFcontrols(...)
LOOP over all time steps 7' = Kg(Qdesired — Qactual) + kp(Qdesired — Qactual)
Ki=zDot3dofControls(..) 1 | |F full compensation THEN
K2=... .
alsi+1)=z(.) t=Dr+G+V _
qd(:,i+1)=z(..) ELSEIF no velocity compensation THEN
END LOOP =D’ +G

ELSEIF decentalized with full compensation THEN
LOOP over all points

_ /
Animate Robot arm using = DaverageT +G+V
rendering software END

END LOOP q — Dfl(T—V—G)

Generate all plots

M 63015 Dmatrix_ThreeDOFcontrol.m Gmatrix_ThreeDOFcontrol.m

Nasser M. Abbasi

Bmatrix_ThreeDOFcontrol.m

Cmatrix_ThreeDOFcontrol.m
Figure 2: Matlab program design for joint space controller

The output for each part is now given followed by discussion of the results.

0.2.1 Part (a) Coriolis, centrifugal, and gravity terms are compensated

In this part, full compensation was made for the nonlinear Coriolis, centrifugal and gravity terms.
This gave complete decoupling between the joints. Becuase of this one expects no oscillation in
the plots of the joints displacements over the time of the simulation. This was verified from the
plots generated by the simulation.

In addition to the required plots, an additional plot was made showing the end-effector speed

over time. This was found by finding the end-effector linear speed using X = J¢ where J is the end-

effector Jacobian. The Jacobian was found using symbolic matlab in the file ThreeDOFcontrols_symbolic.m
and the output was used in the the file ThreeDOFcontrol.m in order to calculate |X| over each

time step.

inverse dynamics with full decoupling
time 1.00 (sec), distance to final destination = 0.000 (m)

11

Figure 3: Final position of robot arm, Joint space

control, part(a)

inverse dynamics with full decoupling
Joint Position Vs Time

Position [rad]
=

0 1
-1r =——Joint 1| -
= Joint 2
= Joint 3
2 | | | |
0 0.2 0.4 0.6 0.8

Time [sec]

Figure 4: Joint position vs. time, Joint space
trol, part(a)

con-

inverse dynamics with full decoupling
Joint velocity Vs Time

15
Joint 1
Joint 2
Joint 3
o 10 1
o]
2
=]
8
2
©
s]
o
> 5 4
0 . .
0 0.2 0.4 0.6 0.8 1

Time [sec]

Figure 5: Joint velocity vs. time, Joint space con-

trol, part(a)

inverse dynamics with full decoupling

30

End effector X,Y,Z speed

velocity [meter/sec]

d(ve)dt
d(ze)/dt

d(xeydt | |

40 I I I I

0 0.2 0.4 0.6 0.8
Time [sec]

: . dX. dY. dZ. .
Figure 6: End effector “3=, 7, “2¢ Joint

control, part(a)

space

12

13

inverse dynamics with full decoupling

3 End effector X,Y,Z coordinates

=
3

[N

o
13

o

coordinates [meter]

o
o

Xe
Ye |
Ze

N

-1.5
0 0.2 0.4 0.6 0.8 1

Time [sec]

Figure 7: End effector X¢, Ye, Ze vs. time, Joint
space control, part(a)

inverse dynamics with full decoupling
End effector speed

speed [meter/sec]
= = n N [w N
o (52 o (5] o (5] o
T T T T T
| | | | | |

o
I

0 | |
0 0.2 0.4 0.6 0.8 1

Time [sec]

Figure 8: End effector linear speed vs. time, Joint
space control, part(a)

14

inverse dynamics with full decoupling
End effector 3D displacement

Figure 9: End effector plot3 displacement, Joint
space control, part(a)

0.2.2 Part (b) No velocity compensation. Only gravity compensation

In this part, only the gravity terms were compensated for. Since there is coupling that remains
between the joints, one expects to see some oscillation in the joints speeds as they are no longer
independent from each other as with part (a).

This was verified by the plots generated from the simulation.

inverse dynamics, with gravity compensation
time 1.20 (sec), distance to final destination = 0.001 (m)

Figure 10: Final position of robot arm, Joint
space control, part(b)

inverse dynamics, with gravity compensation

5 Joint Position Vs Time

Position [rad]

— Joint 1
1 — Joint 2
—— Joint 3
2 |
0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

Figure 11: Joint position vs. time, Joint space
control, part(b)

inverse dynamics, with gravity compensation
Joint velocity Vs Time

50 T T
= Joint 1
—— Joint 2
— Joint 3 |
= 4
@
@
=]
s
= 4
S
[}
o
> 4
10 I I I I I
0 0.2 0.4 0.6 0.8 1 12

Time [sec]

Figure 12: Joint velocity vs. time, Joint space
control, part(b)

15

inverse dynamics, with gravity compensation

0 End effector X,Y,Z speed

velocity [meter/sec]

d(Xe)/dt
d(ve)dt | |
d(ze)/dt

0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 13: End effector %, d;;e, % Joint space
control, part(b)

inverse dynamics, with gravity compensation

3 End effector X,Y,Z coordinates

coordinates [meter]

|
0 0.2 0.4 0.6 0.8
Time [sec]

[N

1.2

Figure 14: End effector X, Ye, Z, vs. time, Joint
space control, part(b)

16

17

inverse dynamics, with gravity compensation
End effector speed

speed [meter/sec]
= = N N w w B P
o o o o o o o (%))
.

o
I

0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 15: End effector linear speed vs. time,
Joint space control, part(b)

inverse dynamics, with gravity compensation
End effector 3D displacement

initial
&
position

& ! Y
position

Figure 16: End effector plot3 displacement, Joint
space control, part(b)

0.2.3 Part (c) Decentralized joint-space controller, full compensation using average
D matrix

In this part, full compensation were made for the nonlinear Coriolis, centrifugal, and gravity terms,
however the mass matrix D used was a constant matrix which represented the average of the
original mass matrix.

The approximate mass matrix is given by
D = Daverage + JgIme

Where I,,, is the actuator moment of inertia and J,, is the actuator Jacobian. In this problem
these were not used as they were not specified, and only the average mass matrix needed to be
determined.

18

The average mass matrix Dayerage Was obtained from D by setting each joint position given by
q to zero and by also setting the off diagonal elements to zero. Setting the off diagonal elements
to zero was needed as the average mass matrix needs to be diagonal to produce the decoupling
effect.

Therefore all the cosine terms were set to one and all the sine terms were set to zero. The original
D matrix is

}lmLQcé + Lllme2 (c23 + 2¢2)% + Ip + Io(c3 + c33) + I (s3 + s35) 0 0
[D] = 0 gmL2 +mL%c3 + 21, imLZ + %mLZC;:, +1,
0 L2 + 1mL2c3 +1, Ly +1,
i 4 2 4

Hence the average D matrix becomes

[AmL? + ImL2(1+2)2 + I+ (1 + 1) + (0 +0) 0 0
[Daverage] = 0 SmL? +mL? + 21, 0

i 0 0 imL? + 1,

[imL? + 9mL? + I + 21, 0 0

= 0 SmL%+mL? + 2, 0
i 0 0 imL? +1,

Using the above [Djyerage] the following plots shows the output obtained.

decentralized joint space controller, full compensation
time 1.20 (sec), distance to final destination = 0.001 (m)

Figure 17: Final position of robot arm, Joint
space control, part(c)

19

decentralized joint space controller, full compensation
Joint Position Vs Time
T T :

Position [rad]
-

0]
-1 =—Joint1| 1
= Joint 2
—Joint 3
2
0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 18: Joint position vs.

control, part(c)

time, Joint space

decentralized joint space controller, full compensation
Joint velocity Vs Time
T T :

18

Joint1]| |
Joint 2
Joint 3
)
@
3]
e}
8
~]
‘©
i=} 4
QO
>
2
0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 19: Joint velocity vs. time, Joint space

control, part(c)

decentralized joint space controller, full compensation
End effector X,Y,Z speed

30

velocity [meter/sec]

d(xe)/dt
d(Ye)/dt
d(ze)/dt

40 I I I I I
0 0.2 0.4 0.6 0.8 1 12

Time [sec]

Figure 20: End effector dg%, d;f, ddZte Joint space
control, part(c)

decentralized joint space controller, full compensation
End effector X,Y,Z coordinates
: T .

coordinates [meter]

Xe
Ye| +
Ze

[,

I
0 0.2 0.4 0.6 0.8 1.2

Time [sec]

Figure 21: End effector X, Ye, Z. vs. time, Joint
space control, part(c)

21

decentralized joint space controller, full compensation
End effector speed
T T T

= IN) N w w
o =] a =] a
T T T

| | | |

speed [meter/sec]

-
o
L

0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 22: End effector linear speed vs. time,
Joint space control, part(c)

decentralized joint space controller, full compensation
End effector 3D displacement

Figure 23: End effector plot3 displacement, Joint
space control, part(c)

0.2.4 Part (d) discussion of result, compare control methods

There are two main methods for nonlinear dynamics decoupling. These are the computed torque
method and the inverse dynamics control. In this problem the inverse dynamics control method
was used. In this method, decoupling is based on measured or estimated manipulator states as
described above.

The advantages and disadvantages of each controller are given below followed by a discussion on
the output.

Full compensation

advantages Becuase all the non-linear terms were compensated for, this produced a smooth

22

motion with no overshoot. In addition, the time step for the integration during simula-
tion was not required to be too small.

disadvantages In practice, this requires measurements in real time of all the states in order
to compute and estimate the current Mass, Coriolis, centrifugal and gravity matrices at
each sample time. This can be expensive and require a fast CPU. Also compensating
for noise and delay in measurements makes this more complicated and there will always
be some error in the estimates made.

No velocity terms compensation, only gravity compensation

advantages The main advantage is that in practice this controller will be less complicated
as the Coriolis and centrifugal terms do not need to be measured and computed at each
time step. This will reduce the cost and make it faster to operate.

disadvantages By not compensating for velocity terms, coupling between the joints motion
remains. This can be seen by the overshoot in joints motion from the desired value and
the oscillation in motion, even with the use of critical damping which should produce
no overshoot. This can be severe disadvantage for an end-effector which is required not
to overshoot and possibly hit the target as it approaches it.

Decentralized controller with full compensation

advantages Since the mass matrix is constant, this reduces the computation in real time,
as the mass matrix do not have to evaluated at each time sample as with the other
controllers. This makes the controller simpler to implement.

disadvantages Since the mass matrix is the average, it is an approximation of the real
mass matrix. This can produce errors. In the simulation it was found that a smaller
time step was needed for the numerical integration to reduce the overshoot. Even with
a much smaller time step, one joint had very small amount of overshoot. In practice
this might require a small sampling time and faster CPU to implement.

The following discussion gives a review of the output of each controller.

In part(a), full decoupling was made, which means each joint motion was independent of the other
joints. Comparing the joint position vs. time plot generated in part (a) shows that the joints
motion was smooth and had no oscillation since it was not affected by other joints motions. There
was no overshoot in the joint positions since the damping ratio is set to be critical.

While in part(b), where no velocity compensation was made (these are the centrifugal and Coriolis
terms) but only gravity was compensated for, the joint motion that resulted had oscillation in it
which showed as well in the speed profile which was not as smooth compared to speed profile of
the full decoupling case in part (a).

In addition, there was an overshoot in the joint position which was most apparent in joint 1 motion.
This can cause problems in applications where the end-effector must approach the target without
hitting it.

Part(c) initially showed some small oscillation in the motion of the joints when compared to
part(a). However, this turned out to be due to using a large time step for the Runge Kutta
integration. By reducing the time step to smaller value than that used in part (a) and part (b),
the result improved and showed no oscillation in the joint positions nor in the joint velocities.

23

The time step used for part(c) was 0.002 seconds, while for part(a) it was 0.005 seconds. The
simulation time to converge to the final destination did not changed compared to part (a). The
only change needed was to reduce the time step.

However in part (c), there was a very small overshoot in the motion of joint 3 around 0.35 second
as can be seen in the plot.

The mass matrix for part (c), which is the average mass matrix Dayerage, is a constant matrix as
described above, found by eliminating all the variable terms in the entries of the original mass
matrix D by setting g to zero and updating the corresponding cosine and sine terms accordingly
and by also setting the off-diagonal elements to zero to insure decoupling of the equations.

Of the above three controllers, the first one (part(a)) produced the best result (fast convergence to
target and no oscillation in joints motion). Part(c) was similar to part(a), except for need to use
much smaller integration time step. However, part (c) is the simplest controller and can make the
implementation faster since the mass matrix used is not as complicated as the other two methods
as it is a constant and hence no need to estimate it at run time. Therefore it is simpler method to
execute and can be faster in practice.

The following diagram shows the joint position vs. time for the three controllers next to each
others to make it easier to compare and contrast. Part (a) is similar to part(c), except for the
small overshoot in joint 3 using part (c). Part(b) clearly did not produce good joint motion with
large overshoot and large oscillations.

inverse dynamics with full decoupling decentralized joint space controller, full compensation
Joint Position Vs Time inverse dynamics, with gravity compensation Joint Position Vs Time
4 Joint Position Vs Time 4

Position [rad]

Time [sec]

Figure 24: Joints positions vs. time, part(a),(b),(c) side by side

The following diagram shows the joint velocity vs. time for the three controller next to each others
to make it easier to compare. Part(b) had the most oscillations. In Part(a), joint 1 had the same
joint velocity as joint 2, and that is why the blue line in the plot did not show as it is below the
black line. For part(c) this was not the case.

Even though each joint had smooth velocity profile, joint 1 and joint 2 did not have the same
velocity profile as with the full decoupling case of part(a).

24

inverse dynamics with full decoupling decentralized joint space controller, full compensation
Joint velocity Vs Time Joint velocity Vs Time

inverse dynamics, with gravity compensation

Joint 1 Joint velocity Vs Time
Joint 2 50
Joint 3

—— Joint 1

Velocity [rad/sec]
Velocity [radisec]

o 02 04 0.6 0.8 1 12
Time [sec]

Time [sec] 0 02 04 06 08 1 12
Time [sec]

Figure 25: Joints velocity vs. time, part(a),(b),(c) side by side

The following diagram shows the end effector speed for the three control methods side by side.
As discussed above, this was generated using X = J§ where J is the basic Jacobian for the end
effector. This shows the end-effector speed profile in part (c) was similar to part (a), while Part(b)
end-effector speed profile showed the effect of the coupling that remained between the joints where
there was a number of places where an accelerations and deceleration showed up over the full time
of the simulation. The motion was not as smooth as the other two methods.

inverse dynamics with full decoupling inverse dynamics, with gravity compensation decentralized Julr\lEszacf\: cL:MmHerJuM compensation
End effector speed . End effector speed - nd effector spee

N
8

speed [meter/sec]
5 8
speed [meter/sec]

speed [meterisec]

o 0
o 02 04 06 08 B o 02 04 06 08 1 12 0 02 04 06 08 1 12
Time [sec]

Time [sec] Time [sec]

Figure 26: end effector speed, part(a),(b),(c) side by side

0.2.5 source code listing for joint-space control

The following is the Matlab source code listing which implements the joint based control part of
the HW.

To run the script for this part, the command is

ThreeDOFcontrols

25

ThreeDOFcontrols.m

%file ThreeDOFcontrols.m

%This the main script used to implement HW5, part a.

%Modified original code from ME739 UW learn@UW, Madison by Professor Zinn
)

%Nasser M. Abbasi 5/10/2015

= - - -
% NUMERICAL INTEGRATION OF DYNAMIC EQUATIONS
= -

%clear all;
close all; clc;

% set the model parameters per the HW problem.
modelParameters = InitializeThreeDOFmodel();

% Ask use for which part to run. There are 3 types of controllers
disp(’Specify control method:’)

disp(® 1 = option(a), inverse dynamics with full decoupling’)
disp(’ 2 = option(b), inverse dynamics - with gravity compensation’)
disp(® 3 = option(c), decentralized joint space controller’)

modelParameters.controlMethod = input(’ ’);

%depending on the control type, set different values. The decentralized
%was found to require a smaller step size for RK-4 to behave well.
if modelParameters.controlMethod ==

tend =1; %simulation run time

dT = .005; %integration step size

title_add_on = ’inverse dynamics with full decoupling’;
elseif modelParameters.controlMethod ==

tend =1.3;

dT = .005;

title_add_on = ’inverse dynamics, with gravity compensation’;
else

tend = 1.25;

dT = .002;

title_add_on = ’decentralized joint space controller, full compensation’;
end;

numPts = floor(tend/dT);

Y- _ - -
% RENDERING INITIALIZATION

%__ = = = = = = =

L = modelParameters.L;
L1 = L;
L2 =L;
L3 =L;
f_handle =1;

axis_limits = L*[-2.5 2.1 -2.1 3 -.1 3];
render_view = [1 -1 1]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);

26

camproj perspective
%-——-initialize rendering

% link 1 rendering initialization

rl = L1/5;

sidesl = 10;

axisl = 2;

norm_L1 =1.0;

linkColorl = [0 0.75 0];

plotFramel = 0;

d1i = CreatelLinkRendering(Ll,r1,sidesl,axisl,norm_L1,linkColorl,...

plotFramel,f_handle);

% link 2 rendering initialization

r2 = L2/6;

sides2 = 4;

axis2 =1;

norm_L2 =1.0;

linkColor2 = [0.75 0 0];

plotFrame2 = 0;

d2 = CreatelLinkRendering(L2,r2,sides2,axis2,norm_L2,1linkColor2,...

plotFrame2,f_handle);

% link 3 rendering initialization

r3 = L2/8;

sides3 = 4;

axis3 =1;

norm_L3 =1.0;

linkColor3 = [0 0 0.75];

plotFrame3 = 0;

d3 = CreatelLinkRendering(L3,r3,sides3,axis3,norm_L3,1linkColor3,...

plotFrame3,f_handle);

q = zeros(3,numPts);
dq = zeros(3,numPts) ;
t = zeros(1,numPts);

q(:,1) = [0; pi/4; -pi/2]; Yinitial position
%q(:,1) = [0; 0.01; 0]; %initial position

qd(:,1) = [0; 0; 0]; %initial velocity

z = [q(:,1); qd(:,1)]; Yinitialize the state variables

qDes = [pi;pi;pi/2]; %desired final joint space position
%qDes = [pi/3;pi/2;pi/4]; %desired final joint space position
qdDes = [0; 0; O]; %desired final joint velocity

zDes = [qDes; qdDes];

Xend = zeros(3,numPts) ; %end effector coordinates

Xvend = zeros(3,numPts); %end effector linear velocity

% integrate equations of motion, % Runge-Kutta 4th order

for i = 1:numPts-1
k1 = zDot3dofControls(z,zDes,modelParameters) ;
k2 = zDot3dofControls(z + 0.5%k1*dT,zDes,modelParameters) ;
k3 = zDot3dofControls(z + 0.5%k2*dT,zDes,modelParameters) ;
k4 = zDot3dofControls(z + k3*dT,zDes,modelParameters) ;

z =z + (1/6)*(kl + 2xk2 + 2xk3 + k4)=*dT;

% store joint position and velocity for post processing
q(:,i+1) = z(1:3);

qd(:,i+1) z(4:6);

t(1,i+1) t(1,i) + dT;

end

%__ _ _ _ _ - e - - = s

% DISPLAY INTERATION RESULTS

%__ = = = = = = ——

for i = 1:numPts

ql = q(1,1);
q2 = q(2,i);
93 = q(3,1i);
% Update frame {1}
¢ = cos(ql);
s = sin(ql);
L = L1;
Ti0 = [c O s O
s 0 -¢c O
0 1 0O L
0O 0 o0 1];

% Update frame {2}

¢ = cos(q2);

s = sin(q2);

L = L2;

T21 = [c -s 0 Lxc
s c 0 L=*s
0 0 1 0
0 0 0 1];

% Update frame {3}

c = cos(q3);
s = sin(qg3);
L =13;
T32 = [c -s 0 Lx*c
s ¢ 0 Lx*s
0O 0 1 0
0O 0 O 11;
T20 = T10%T21;
T30 = T20%*T32;

% end-effector position
Xend(:,i) = T30(1:3,4);

%to find end effector velocity, we use X’ = J* q’ where the Jacobian
%for the end effector is found in the Three_DOF_symbolic.m script
%as part of this HW, in the same folder as this file.

J=zeros(3,3);
J(1,1)=L*sin(ql) *sin(q2)*sin(q3) - L*cos(q2)*cos(q3)*sin(ql) - L*cos(g2)*sin(ql);

28

J(1,2)=-cos(q1)*(L*(sin(q2) + 1) - L + L*cos(g2)*sin(q3) + L*cos(qg3)*sin(q2));
J(1,3)=-cos(ql) *(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(2,1)=L*cos(ql)*cos(q2) + Lxcos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(q3);
J(2,2)=-sin(ql) *(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));
J(2,3)=-sin(ql) *(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(3,1)=0;

J(3,2)=cos(ql) *(L*cos(ql) *cos(q2) + L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin
J(3,3)=cos(ql) *(L*cos(ql) *cos(q2) *cos(q3) - L*cos(ql)*sin(q2)*sin(q3)) + sin(ql)*(L*c

Xvend(:,i) = Jxqd(:,i);

% update rendering

figure(f_handle);

UpdateLink(d1,T10);

UpdateLink(d2,T20) ;

UpdateLink(d3,T30) ;

title(sprintf(’s\ntime %3.2f (sec), distance to final destination = %4.3f (m)’,...
title_add_on,i*dT,norm(Xend(:,i)-[1;0;0])));

hold on;

plot3(Xend(1,1:i),Xend(2,1:i),Xend(3,1:1i),’r’, ’LineWidth’,2);

if i == 1; Jpause at start of simulation rendering
pause;
end
drawnow;
end

%__ _____ = = = N = = = = =

% PLOT JOINT POSITIONS

figure(2);

plot(t(2:end),q(1,2:end),’b’, ’LineWidth’,2); hold on
plot(t(2:end),q(2,2:end),’r’,’LineWidth’,2); hold on
plot(t(2:end),q(3,2:end),’k’,’LineWidth’,2); hold off
title(sprintf (’Js\n/s’,title_add_on,’Joint Position Vs Time’));
xlabel(’Time [sec]’); ylabel(’Position [rad]’);

grid on

legend(’Joint 1’,’Joint 2’,’Joint 3’,’Location’,’southeast’);

% PLOT JOINT Velocities

%__ = = = = = = = = = = = =

figure(3);

plot(t(2:end),qd(1,2:end),’b’, ’LineWidth’,2); hold on
plot(t(2:end),qd(2,2:end),’r’, ’LineWidth’,2); hold on
plot(t(2:end),qd(3,2:end), ’k’,’LineWidth’,2); hold off
title(sprintf(’Js\n)s’,title_add_on,’Joint velocity Vs Time’));
xlabel(’Time [sec]’); ylabel(’Velocity [rad/sec]’);

grid on

legend(’Joint 1’,’Joint 2’,’Joint 3’,’Location’,’northeast’);

%__ = = = = = = = = = = = =

(g3)) + sin(q
0s(q2) *cos (g3

% PLOT end effector X,Y,Z velocites

%__ = = = = = = =

figure(4);

plot(t,Xvend(1,:),’b’,’LineWidth’,2); hold on
plot(t,Xvend(2,:),’r’, ’LineWidth’,2); hold on
plot(t,Xvend(3,:),’k’,’LineWidth’,2); hold off

title(sprintf (’s\n/s’,title_add_on,’End effector X,Y,Z speed’));
xlabel(’Time [sec]’); ylabel(’velocity [meter/sec]’);

grid on
legend(’d(Xe)/dt’,’d(Ye)/dt’,’d(Ze)/dt’,’Location’, ’southeast’);

%__ = = = = = = = = = = = =

% PLOT end effector X,Y,Z positions

%_ = = = =

figure(5);

plot(t,Xend(1,:),’b’, ’LineWidth’,2); hold on

plot(t,Xend(2,:),’r’, ’LineWidth’,2); hold on

plot(t,Xend(3,:),’k’, ’LineWidth’,2); hold off
title(sprintf(’Js\n/s’,title_add_on,’End effector X,Y,Z coordinates’));
xlabel(’Time [sec]’); ylabel(’coordinates [meter]’);

grid on

legend(’Xe’,’Ye’,’Ze’,’Location’, ’southeast’);

%_ = = =

% PLOT end effector speed (magnitude)

%__ = = = = = = =

figure(6);

plot(t, sqrt(sum(Xvend."2,1)),’LineWidth’,2);
title(sprintf(’Js\n)s’,title_add_on, ’End effector speed’));
xlabel(’Time [sec]’); ylabel(’speed [meter/sec]’);

grid on

%_ = = = = = =

% PLOT end effector displacement in 3D

%_ = = = =

figure(7);

plot3(Xend(1,:),Xend(2,:),Xend(3,:), ’LineWidth’,2); hold on;
plot3(Xend(1,1),Xend(2,1) ,Xend(3,1),’ro’);
text(Xend(1,1),Xend(2,1) ,Xend(3,1) ,{’initial’, ’position’});
plot3(Xend(1,end) ,Xend(2,end) ,Xend(3,end),’ro’);

text (Xend(1,end) ,Xend(2,end) ,Xend(3,end) ,{’final’, ’position’});
title(sprintf (’Y%s\n%s’,title_add_on,’End effector 3D displacement’));
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

grid on

29

InitializeThreeDOFmodel.m

30

function modelParameters = InitializeThreeDOFmodel
% set model parameters

% gravitational constant [m/s~2]
g = 9.81;

% link mass [kg]
m = 10;

% link length [m]
L=1;

% link COM location [m]
Lc = L/2;

% link radius [m]
r = 0.1%L;

% link inertia (_|_ to 1link’s CL) [kg/m"~2]
Ia = (1/12)*m*L"~2;
Ib = m*r~2;

% assign values of model parameter structure

modelParameters.g = 9.81; % gravitational constant [m/s”2]
modelParameters.m = m; % link mass [kg]

modelParameters.L = L; % link length [m]

modelParameters.Lc = Lc; 7 link COM location [m]
modelParameters.Ia = Ia; J, inertia (_|_ to 1link’s CL) [kg/m~2]

modelParameters.Ib = Ib; % inertia (colinear to link’s CL) [kg/m~2]

modelParameters.controlMethod = 1;
end

zDot3dofControls.m

function [zDot] = zDot3dofControls(z,zDes,modelParameters)

% assign joint displacements / velocities from state variables

q = z(1:3);
qd = z(4:end);
gDes = zDes(1:3);

qdDes = zDes(4:end);

% mass and "average" mass matrix calculation
[D,Davg] = Dmatrix_ThreeDOFcontrols(q,modelParameters) ;

calculate D, B, D, and G matrices

= Bmatrix_ThreeDOFcontrols(q,modelParameters) ;
Cmatrix_ThreeDOFcontrols(q,modelParameters) ;
Bx[qd (1) *qd (2) ;qd (1) *qd (3) ;qd(2)*qd(3)]...

< Q W=

31

+Cx[qd(1)72; qd(2)72; qd(3)"2];

% gravity vector
G = Gvector_ThreeDOFcontrols(q,modelParameters) ;

% decoupled system PD-controller torques

wn = 2%2%pi; Jusing 2Hz per HW problem specs
zeta = 1; Jcritical damping, per HW problem specs
Kp = wn"2;

Kd = 2%zeta*wn;

tauPrime = Kd*(qdDes - qd) + Kpx(qDes - q); JPD controller

% calculate total control torques (PD control + nonlinear decoupling)
% make up perfect estimate for simulation only
G_estimate = G;
V_estimate = V;
D_estimate = D;
if modelParameters.controlMethod ==
% inverse dynamics with full decoupling
tau = D_estimate*tauPrime + G_estimate + V_estimate;
elseif modelParameters.controlMethod ==
%hinverse dynamics - with gravity compensation
tau = D_estimate*tauPrime + G_estimate;
elseif modelParameters.controlMethod ==
%decentralized joint space controller, full compensation but
%use average D matrix, a constant matrix
tau = Davg*tauPrime + G_estimate + V_estimate;
end

%form joint acceleration vector
qdd = D\(tau -V - G);

% assign state variable derivatives
zDot = [qd; qdd];

end

Three_ DOF__symbolic.m

%file Three_DOF_symbolic.m

%used for solving HW5, ME 739.

%finds the Jacobian also finds the derivative of the Jacobian,
%needed for part(b) of the HW5 problem

%

#Modifield slightly from original code from class web site.

%I changed the notation to T_O_1 instead of T_1_0, since this makes
%it more clear to me.

%Nasser M. Abbasi

clear all; clc;

MAKE_FUNCTION = 1;

syms ql g2 93 L1 L2 L3 Lcl Lc2 Lec3 m1 m2 m3 g dgl dg2 dq3
syms cl c2 c3 sl s2 s3

syms Ixxl Ixx2 Ixx3 Iyyl Iyy2 Iyy3 Izzl Izz2 Izz3

syms Ia Ib L m

% simplifying assumptions
Ixxl = Ia; Iyyl = Ib; Izzl = Ia;
Ixx2 Ib; Iyy2 = Ia; Izz2 Ia;
Ixx3 Ib; Iyy3 = Ia; 1Izz3 Ia;
Li1=L; L2=1L; L3 =0L;
Lcl = L/2; Lc2 = L/2; Le3 = L/2;
mli =m; m2 =m; m3 = m;

gVector = [0; 0; -gl;
Icl = [Ixx1 0 0

0 Iyyi1 O

0 0 Izzi]l;
Ic2 = [Ixx2 O 0

0 Iyy2 O

0 0 Izz2];
Ic3 = [Ixx3 O 0

0 Iyy3 O

0 0 1Izz3];

disp(’Evaluating kinematics’)

% calculate homogeneous transformation matrices to the link center of mass
% => Link 1

c = cos(ql); s = sin(ql);

TO1=1[c 0 s O

s 0-c O
0 1 0 L1
0 0 0 1];
TOcl=1[c 0 s O
s 0 -c 0
0 1 0 Lect
0 0 O 11;

% => Link 2

c = cos(q2); s = sin(q2);

T 12=[c -s 0 L2*c

s c 0 L2xs

0 1 0

0 (V0] 11;

[c Lc2*c

Lc2x*s
0
11;

o

T 1 c2 =

o n
o o0
O OO

0
% => Link 3
c = cos(q3); s = sin(q3);
T 23=1[c -s 0 L3%c
s ¢ 0 L3x*s
0O o0 1 O

32

T 2_c3 =1[c -s 0 Lc3*c

s c 0 Lc3*s

o o0 1 0

0O 0 O 11;
T_0_2 = T_O_1xT_1_2; T_0_2 = simplify(T_0_2);
T_0_c2 = T_0_1*T_1_c2; T_0_c2 = simplify(T_0_c2);
T_0_c3 = T_0_2%T_2_c3; T_0_c3 = simplify(T_0_c3);
T_0_3 = T_0_2*T_2_3;

% calculate the linear and angular velocity Jacobian of each link (COM)
z0 = [001]°; =z1 =T_0_1(1:3,3); =z2 = T_0_2(1:3,3);

o0 = [000]°; ol =T_0.1(1:3,4); 02 =T_0_2(1:3,4);

03 = T_0_3(1:3,4);

ocl = T_0_c1(1:3,4); oc2 = T_0_c2(1:3,4); oc3 = T_0_c3(1:3,4);

%find the Jacobian for end effector first. This is needed to find
%x’> = J x q’ for solving part (a)

Jv3 [cross(z0,03) cross(zl,(o3 - ol1l)) cross(z2,(03 - 02))];
Ju3 = [z0 z1 z2];
Jacobian = [Jv3;Jw3];

J%now we need to find time derivative of the above Jacobian

tmp = subs(Jacobian,{ql1,q2,93},{’q1(t)’,’q2(%)’,’q3(£)’});

syms t;

der_Jacobian = diff (tmp,t);

der_Jacobian = subs(der_Jacobian,{’diff(ql(t),t)’,’diff(q2(t),t)’,’diff(q3(t),t)’},...
{’qd(1)’,7qd(2)’,’qd(3)’});

der_Jacobian = subs(der_Jacobian,{’ql(t)’,’q2(t)’,’q3(t)’},...
{q1,92,931);

der_Jacobian = subs(der_Jacobian,{’sin(ql)’,’sin(qg2)’,...
’sin(q3)’,’cos(ql)’,’cos(q2)’,’cos(q3)’},...
{s1,s2,s3,c1,c2,c3});

%find the end effector position vector using forward kinematics

Xend = T_0_3 * [0;0;0;1];

Xend = subs(Xend,{’cos(ql)’,’cos(g2)’,’cos(q3)’,’sin(ql)’,...
’sin(q2)’,’sin(q3) ’},{c1,c2,c3,s1,s2,s3});
% => Jvcil

Jvcl = [cross(z0,(ocl - 00)) [0; 0; 0] [0; 0; 011;
Jvc2 = [cross(z0,0c2) cross(zl,(oc2 - ol1)) [0; 0; 011;
Jvec3 = [cross(z0,0c3) cross(zl,(oc3 - 01)) cross(z2,(oc3 - 02))];

Jwl = [z0 [0; 0; 0] [0; 0; 0]];
Ju2 = [z0 z1 [0; 0; 0]1];
Jw3 = [z0 z1 z2];

% extract rotation matrices
R10 = T_0_c1(1:3,1:3);

33

R20 = T_0_c2(1:3,1:3);
R30 = T_0_c3(1:3,1:3);

% calculate mass matrix
disp(’Evaluating mass matrix’);

Dvl = milxtranspose(Jvcl)*Jvcl;
Dvl = simplify(Dv1);

Dv2 = m2*transpose(Jvc2)*Jvc2;
Dv2 = simplify(Dv2);

Dv3 = m3*transpose(Jvc3)*Jvc3;
Dv3 = simplify(Dv3);

Dwl = transpose(Jwl)*R10*Icl*transpose(R10)*Jwl;
Dwl = simplify(Dwl);

Dw2 = transpose (Jw2)*R20*Ic2*transpose (R20)*Jw2;
Dw2 = simplify(Dw2);

Dw3 = transpose(Jw3)*R30*Ic3*transpose(R30)*Jw3;
Dw3 = simplify(Dw3);

D = Dvl + Dv2 + Dv3 + Dwl + Dw2 + Dw3;
D = simplify(D);

% after examining solution - try to get further simplification
D = subs(D,{cos(q2)"2 - 1},{-sin(q2)"2});
D = subs(D,{cos(q2 + g3)"2 - 1},{-sin(q2 + g3)"2});

% calculate B and C maatrices
disp(’Evaluating Coriolis and centrifual terms’)

% form partial derivatives

for i = 1:3
for j = 1:3
for k = 1:3
if k ==
d(i,j,k) = diff(D(i,j),ql);
elseif k ==
d(i,j,k) = diff(D(i,j),q2);
elseif k ==
d@i,j,k) = diff(D(i,j),q3);
end
end
end
end

d = simplify(d);

% form Christofel symbols
for i = 1:3
for j = 1:3

for k = 1:3
b(i,j,k) = 0.5%(d(i,j,k) + d(i,k,j) - d(j,k,1));
end
end
end
b = simplify(b);

% assemble C and B matrices

B = [2*b(1,1,2) 2*b(1,1,3) 2%b(1,2,3)
2xb(2,1,2) 2%b(2,1,3) 2%b(2,2,3)
2%b(3,1,2) 2*b(3,1,3) 2*b(3,2,3)];

Cc = [b(1,1,1) ©b(1,2,2) b(1,3,3)
b(2,1,1) b(2,2,2) b(2,3,3)
b(3,1,1) b(3,2,2) b(3,3,3)];

% form G vector

disp(’Evaluating gravity vector’)
Gl = -(transpose(Jvcl)#*ml*gVector) ;
G2 = -(transpose(Jvc2)#*m3*gVector) ;
G3 = -(transpose(Jvc3)*m3*gVector) ;
G =Gl + G2 + G3;

G = simplify(G);

% Auto-generate Matlab functions to evaluate D, B, D, and G matrices
if MAKE_FUNCTION ==
disp(’Auto-generating Matlab functions’);

disp(’ => generating D matrix function’);
matlabFunction(D,’file’, ’EvaluateDmatrix’);
disp(’ => generating B matrix function’);
matlabFunction(B,’file’, ’EvaluateBmatrix’);
disp(’ => generating C matrix function’);
matlabFunction(C,’file’, ’EvaluateCmatrix’);
disp(’ => generating G vector function’);
matlabFunction(G,’file’,’EvaluateGvector’);
disp(’ => generating derivative of analytical Jacobian function’);

matlabFunction(der_Jacobian,’file’,’EvaluateJd’);

end

35

Bmatrix__ ThreeDOFcontrols.m

function B = Bmatrix_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables
g = modelParameters.g;

m = modelParameters.m;

Ia = modelParameters.Ia;

L = modelParameters.L;

Ib = modelParameters.Ib;

ql = q(1); q2 = q(2); g3 = q(3);

B(1,1)

B(1,2)

B(1,3)
B(2,1)
B(2,2)
B(2,3)
B(3,1)
B(3,2)
B(3,3)

end

36

(Ib-Ia-(1/4)*m*L"2)*sin(2%q2+2*q3)+. ..

(Ib-Ia- (5/4)*m*L"2)*sin(2*q2)-m*L~2*sin(2*q2+q3) ;
-(1/2)*(sin(q2+q3) * ((4*Ia-4*Ib+m*L"2) *cos (q2+q3)+. ..
2xm*xL~2*cos(q2))) ;

0;
0;
0;
-m*L"2*sin(q3) ;
0;
0;
0;

Cmatrix_ ThreeDOFcontrols.m

function C = Cmatrix_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables

g
m

modelParameters.g;
modelParameters.m;

Ia = modelParameters.Ia;
L = modelParameters.L;
Lc = modelParameters.Lc;

Ib

ql
c(1,1)
c(1,2)
c(1,3)
c(2,1)

€(2,2)

€(3,2)
C(@3,3)

end

modelParameters.Ib;

q(1); 92 =q(2); q3 = q(3);

0;
0;
0;
(1/2)*(Ta-Ib+(1/4) *m*L"2) *sin (2*%q2+2%q3) +. . .
(1/2) *(Ia-Ib+(5/4) *m*L"2) *sin(2*q2) +(1/2) *m*L"2*sin(2*q2+q3) ;
0;
-(1/2)*m*L"2*sin(q3) ;
(1/4)*(3in(q2+q3) * ((4*Ia-4*Ib+(1/4) *m*L"2) *. ..
cos (q2+q3) +2*m*L~2*cos(q2))) ;
(1/2) *m*L"2*sin(q3) ;
0; %verify with my derivation, I got something not zero

Dmatrix_ ThreeDOFcontrols.m

37

function [D,Davg] = Dmatrix_ThreeDOFcontrols(q,modelParameters)

end

% assign model parameters to local variables
% model parameters

m = modelParameters.m;

L = modelParameters.L;

Ia = modelParameters.Ia;

Ib = modelParameters.Ib;

s2 =
c2 =
c3
s23 =
c23 =

D =
Davg

sin(q(2));
cos(q(2));

= cos(q(3));

sin(q(2) + q(3));
cos(q(2) + q(3));

zeros(3,3);
D;

%see ThreeDOFcontrols_symbolic.m for derivation of these
D(1,1)= 1/4*m*L"2%c272+1/4*m*L"2% (c23+2%c2) ~2+. ..
Ib+Ia*(c272+c2372)+Ib*(s272+s2372);

D(1,2)
D(1,3)

D(2,1)
D(2,2)
D(2,3)

D(3,1)
D(3,2)
D(3,3)

=O;
=0;

=0;
= 2%Ia + (3/2)*m*L"2 + L~2*m*c3;
1/4*m*L"2 + 1/2*m*L~2*c3 + Ia;

=0;
D(2,3);
1/4*m*L"2 + Ia;

% "average" mass matrix calculation,
% trigometric identities - assume q equals zero and set off diagonal
% to zero

c2 = 1.

0; c3 =1.0; c23=1; s2=0;s23=0;

Davg(1l,1)= 1/4*m*L~2%c272+1/4*m*L~2%(c23+2%c2) "2+. ..
Ib+Ia*(c272+c2372)+Ib*(s272+82372);

Davg(1,2) = 0;

Davg(1,3) = 0;

Davg(2,1) = 0;

Davg(2,2) = 2+Ia + (3/2)*m*xL~2 + L"2*m*c3;

Davg(2,3) = 0; % 1/4*mxL"2 + 1/2*m*L~2xc3 + Ia; Notice, set to zero

Davg(3,1) = 0;

Davg(3,2)
Davg(3,3)

0; Jnotice, set to zero
1/4*mxL."2 + Ia;

38

Gvector__ThreeDOFcontrols.m

function G = Gvector_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables
modelParameters.g;
modelParameters.m;
modelParameters.L;

= B 0
]

ql = q(1); q2 = q(2); q3 = q(3);

G(1,1) = 0;
G(2,1) (1/2) *m*gxL* (3%cos (q2) +cos (q2+q3)) ;
G(3,1) (1/2) *m*gxL*cos (q2+q3) ;

end

0.3 Operational space control

The difficult part of this implementation was finding the analytical Jacobian and its derivative with
respect to time. Matlab symbolic was used for this and the file Three_DOF_symbolic.m contains
the implementation of this.

The operational space controller using proportional derivative was implemented in the files
ThreeDOFcontrols_0OP.m and zDot3dofControls_OP.m. The following shows the plots generated
for parts (a,b,c) followed by discussion comparing the results.

The following diagram shows the operational space controller layout taken from the class handout,
page 6-163 which shows the controller with full compensation.

39

Operational Space Dynamic Decoupling

Operational (or Task) Space Inverse Dynamics Control:

Kin(q)

)

-0 :Kp """ R

T

Nonlinear Decoupling

= decoupling forces based on measured manipulator states
= Requires real-time computation of nonlinear decoupling terms
= Requires real-time computation of A and g, both of which
require inverse matrix computations
= Nonlinear terms affected by sensor noise and delay es

Figure 27: Diagram of controller, task space inverse dynamics control, full
compensation. From class lecture notes

The following diagrams gives a high level overview of the Matlab software design for the imple-
mentation of the task space control. The Jacobian use in this controller is much more critical than
with joint space controller due to the mapping between joint space and task space needed in the

implementation.

Software design of controller for part (b), task based control.
HWS5 showing Matlab functions used

ThreeDOFcontrols_OP.m

ask for part type

Initialization and

allocation of arrays .
%RK-4 integrate equation of motion

LOOP until end-effector is within small
distance from target
K1=zDot3dofControls_OP(xdesired...)

zDot3dofControls_OP.m

K2=...
q(:,i+1)=z(..)
qd(:,i+1)=z(..)
Xend=... calculate end effector position
Break loop if reached target
END LOOP
LOOP over generated points
Animate Robot arm using
rendering software
END LOOP

Generate all plots

Flow_task vsdx
May 6,2015
Nasser M. Abbasi

Dmatrix_ThreeDOFcontrol.m

a = evaluate Jacobian
dit;la = evaluate Jacobian derivative

D = Dmatrix_ThreeDOFcontrols(...)

B = Bmatrix_ThreeDOFcontrols(...)

C = Cmatrix_ThreeDOFcontrols(...)

G = Gmatrix_ThreeDOFcontrols(...)

V = B[qq] + C[¢?] find velocity terms
[u,s,v] = svd(Ja) Find inverse of Ja

J1 =vs T

A = JTDJ! find task space mass maitrix
p = J7TG find task space gravity term

u =37V - AL Jaq find task space V terms

kd = ZCCOn
kp = (D%

Now generate control force

F' = kd (Xdesired - Xactual) + kp (Xdesired - Xactual)

F = A7’ +p + u end effector (task space) force
7 = JTF convert to joint space torques

§ = D™(zr -V - G) form joint acceleration

Gmatrix_ThreeDOFcontrol.m

Bmatrix_ThreeDOFcontrol.m

\j

Cmatrix_ThreeDOFcontrol.m

Figure 28: Matlab program design for task space controller

40

0.3.1 Part (a) zy=[-L,—L,0]T

Part(a) Xf=[-L -L 0]
time 0.83 (sec), distance to final destination = 0.001 (m)

Figure 29: Final position of robot arm, Operational space
control, part(a)

Part(a) Xf=[-L -L 0]
Joint Position Vs Time

Position [rad]

Joint1| |
Joint 2
Joint 3

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 30: Joint position vs. time, Operational space con-
trol, part(a)

41

42

Part(a) Xf=[-L -L O]
Joint velocity Vs Time

10

Joint 1
Joint 2
Joint 3|

Velocity [rad/sec]
& o

KN
o

-15

.20 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]
Figure 31: Joint velocity vs. time, Operational space control,

part(a)

Part(a) Xf=[-L -L 0]
End effector X,Y,Z speed

-2

-8

velocity [meter/sec]
&

-10 d(Xe)/dt | -
d(Ye)/dt
d(ze)/dt

-12

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 32: End effector dg%, d;f, ddZte Operational space con-
trol, part(a)

Part(a) Xf=[-L -L O]

15 End effector X,Y,Z coordinates

o
o

coordinates [meter]
o

-1 -
0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 33: End effector X,,Ye, Z. vs. time, Operational
space control, part(a)

Part(a) Xf=[-L -L 0]
End effector speed

14

12

=
[ee] o

speed [meter/sec]
(2]

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 34: End effector linear speed vs. time, Operational
space control, part(a)

44

Part(a) Xf=[-L -L O]
End effector 3D digglacement

0

iti -0.5
position
Y -1 _i X

Figure 35: End effector plot3 displacement, Operational
space control, part(a)

0.3.2 Part (b) zy=[-L,—%,0]T

Part(b) Xf=[-L -L/10 0]
time 0.82 (sec), distance to final destination = 0.001 (m)

Figure 36: Final position of robot arm, Operational space
control, part(b)

Part(b) Xf=[-L -L/10 0]
Joint Position Vs Time

Position [rad]

Joint 1
Joint2 | -
Joint 3

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 37: Joint position vs. time, Operational space con-
trol, part(b)

Part(b) Xf=[-L -L/10 0]
Joint velocity Vs Time

Joint 1
Joint 2 | -
Joint 3

Velocity [rad/sec]
&
o

-100 b

-120 1

-140 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 38: Joint velocity vs. time, Operational space control,
part(b)

45

Part(b) Xf=[-L -L/10 0]

End effector X,Y,Z speed

e ——

-4

-6

velocity [meter/sec]

_8 -
-10 d(Xe)/dt |
d(Ye)idt
d(ze)/dt
-12 : : : : :
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 39: End effector djge, df; ’ ddZte
trol, part(b)

Operational space con-

Part(b) Xf=[-L -L/10 0]

End effector X,Y,Z coordinates

1.5
1 4
)
7] L 4
£ 0.5
0
o
©
=
S Of——— 1
o
o
o
-0.5 1
Xe
Ye
Ze
1 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 40: End effector X, Y, Z,
space control, part(b)

vs. time, Operational

46

Part(b) Xf=[-L -L/10 0]

End effector speed
14 T T T

12

=
[oe] o

speed [meter/sec]
[}

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 41: End effector linear speed vs. time, Operational
space control, part(b)

Part(b) Xf=[-L -L/10 Q]
End effector 3D digplacement

Figure 42: End effector plot3 displacement, Operational
space control, part(b)

47

0.3.3 Part (c) z5 = [-L,—L,0]7 with velocity limiting heuristic

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
time 1.01 (sec), distance to final destination = 0.003 (m)

Figure 43: Final position of robot arm, Operational space
control, part(c)

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
Joint Position Vs Time

Position [rad]

Joint 1
Joint 2
Joint 3

0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 44: Joint position vs. time, Operational space con-
trol, part(c)

48

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
Joint velocity Vs Time

5

Joint 1
Joint 2
Joint 3

< 0 1

Q

0

ke]

o

2

‘©

o

(V]

> 5 |

10 | | | | |
0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 45: Joint velocity vs. time, Operational space control,
part(c)

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector X,Y,Z speed

velocity [meter/sec]
) iN
5) 5}

%)

w
&

d(Xe)/dt
d(ve)dt | 4
d(ze)/dt

A

45 I I I I I
0 0.2 0.4 0.6 0.8 1 12

Time [sec]

Figure 46: End effector dg%, d;;e , die Operational space con-
trol, part(c)

49

Part(c) Xf=[-L -L O] with velocity limiting heuristic
End effector X,Y,Z coordinates

15

coordinates [meter]

Xe
Ye
Ze
Il
0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 47: End effector X, Y, Z. vs. time, Operational
space control, part(c)

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector speed

speed [meter/sec]
e N w ~
[l [6;] N o w [, N o
: ; : : : T .

o
wn

0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 48: End effector linear speed vs. time, Operational
space control, part(c)

51

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector 3D digglacement

-1 pogition

Figure 49: End effector plot3 displacement, Operational
space control, part(c)

0.3.4 Part (d) discussion of result, compare control methods

In this part of the problem, the same controller was used for all parts, which is a P.D. controller
with compensation for velocity terms (Coriolis and centrifugal terms) and the gravity terms.

Operational space based control is more intuitive since the target coordinates are given in opera-
tional space rather than in joint space and therefore it is easier to describe in terms of where the
end-effector target should be.

One issue with Operational space is that the Jacobian can become ill-conditioned near singularities.
Since the Jacobain and its derivatives are used in this control to map between joint space and
operational space, this can cause a problem. This means the operational space control has to
either avoid getting close to singularity region or be modified near singularities. In this simulation,
no singularity was encountered.

In the three cases, the path traveled by the end effector showed a straight line from the initial
position to the final position as desired. This was different from the joint space control, where the
path traveled by the end effector was curved and had number of twists and turns.

The time used to reach the target for part (c) (with linear velocity limiting) was the longest, a
little over one second. This is about 30% longer than the time taken by part(a) which did not
have the velocity limiting heuristic and also had the same target coordinates in task space.

This is as expected, since the maximum speed the end effector can reach in part(c) was kept below
5 meter/sec. The end-effector speed profile for part(a) shows it reached maximum speed of 12
meter/sec.

The advantage of speed limiting heuristic is that it eliminated large acceleration and deceleration
of the end effector which can be important in some applications where joints speed have to be
kept below some value.

52

In all cases, there was no overshoot in the operational space motion. But looking at joint space,
case (b) showed sudden change in the joint one speed around 0.15 second.

Since control is based on operational space and not joint space, the joints positions and speeds
that result can become much larger and exhibit large oscillation compared with joint based control.
This is seen in part(b) where joint 1 had sudden change in speed. This can be a problem depending
on the application where the joints actuators can not provide the required joint speed and will
saturate.

The following plot shows side by side the joints space displacements that resulted for each part.

Part(b) Xf=[-L -L/10 0] ~
Part(c) Xf=[-L -L 0] with velocity limiting heuristic

Part(a) Xf=[-L -L 0] Joint Position Vs Time (XL L O with velooty Imiting

Joint Position Vs Time 1

Position [rad]
Position [rad]
Position [rad]

0 01 02 03 04 05 06 o 01 02 03 0.4 05 0.6 0 0.2 04 06 0.8 1 12
Time [sec] Time [sec] Time [sec]

Figure 50: Joints positions vs. time. Operational space. part(a),(b),(c) side by
side

In the above, joint 1 had sudden change in motion for part(b), this is due to the end target location.
In the velocity profile below, one can see the corresponding sudden change in speed for this joint
as well.

The following diagram shows the joint velocity vs. time for each case.

Part(a) Xf=[-L -L 0] Part(c) Xf=[-L -L 0] with velocity limiting heuristic

Part(b) Xf=[-L -L/10 0] Joint velocity Vs Time
o Joint velocity Vs Time Joint velocity Vs Time 5

Velocity [rad/sec]
&
Velocity [radisec]
Velocity [radisec]

-20 -140 0 02 0.4 06 08 1 12
0 01 02 03 04 05 06 0 0.1 02 03 04 05 06 Time [sec]

Time [sec] Time [sec]

Figure 51: Joints velocity vs. time, operational space, part(a),(b),(c) side by
side

The following diagram shows the end effector speed for the three cases side by side.

53

Part(a) Xf=[-L -L 0]

End effector speed
14 Part(b) Xf=[-L -L/10 0]
End effector speed

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector speed

speed [meter/sec]
speed [meter/sec]
speed [meterisec]
~
&

0 o 0 0.2 04 06 08 1 12
o 01 02 03 04 05 06
0 01 02 03 0.4 05 06 Time [sec]

Time [sec] Time [sec]

Figure 52: end effector speed. Operational space. part(a),(b),(c) side by side

0.3.5 Source code listing for operational space control

The following gives the Matlab source code listing that implements the operational space control
part of the HW. Three new files were needed in addition of the files listed in part (a) above.

To run the script for this part, the command is

ThreeDOFcontrols_0OP

ThreeDOFcontrols_ OP.m

%file ThreeDOFcontrols_0OP.m

%This the main script used to implement HW5, part b.

%Modified original code from ME739 UW learn@UW, Madison by Professor Zinn
h

%Nasser M. Abbasi 5/10/2015

%__ _ _ _ _ — — - - - - = —

% NUMERICAL INTEGRATION OF DYNAMIC EQUATIONS

%__ _ _ _ _ - - - - - - = ——

Y%clear all;
close all;
clc;

% set the model parameters per the HW problem.
modelParameters = InitializeThreeDOFmodel_OP();
L = modelParameters.L;

% Ask use for which part to run. There are 3 sections for this problem
disp(’Specify part of problem to solve:’)

disp(®’ 1 = option(a) Xf =[-L -L 0]°)

disp(’ 2 = option(b) Xf =[-L -L/10 0]’)

disp(® 3 = option(c), Xf =[-L -L 0] with velocity limiting heuristic’)
modelParameters.controlMethod = input(’> ’);

%depending on the section, set labels as needed
xdDes = [0; 0; 0]; %desired final task space velocity
tend =1; %max simulation run time, Actual time is determined below

54

daT = .005; Yintegration step size

switch modelParameters.controlMethod

case 1
title_add_on = ’Part(a) Xf=[-L -L 0]’;
xDes = [-L;-L;0; xdDes]; %desired final task space states
case 2
title_add_on = ’Part(b) Xf=[-L -L/10 0]’;
xDes = [-L;-L/10;0; xdDes]; %desired final task space states
case 3
title_add_on = ’Part(c) Xf=[-L -L 0] with velocity limiting heuristic’;
xDes = [-L;-L;0; xdDes]; %desired final task space states
end;
A —— _ _ _ _ e _ _ _ _ __
% RENDERING INITIALIZATION
R —— - — S — — S
L = modelParameters.L;
L1 = L;
L2 = L;
L3 = L;
f_handle =1;

axis_limits = L*[-2.5 2.1 -2.1 3 -.1 3];

render_view = [1 -1 1]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective

%-—-—initialize rendering

% link 1 rendering initialization

r1l = L1/5;

sidesi = 10;

axisl = 2;

norm_L1 =1.0;

linkColorl = [0 0.75 0];

plotFramel = 0;

di = CreatelLinkRendering(L1l,r1,sidesl,axisl,norm_L1,linkColorl,...

plotFramel,f_handle);

% link 2 rendering initialization

r2 = L2/6;

sides2 = 4;

axis2 =1;

norm_L2 =1.0;

linkColor2 = [0.75 0 0];

plotFrame2 = 0;

d2 = CreatelLinkRendering(L2,r2,sides2,axis2,norm_L2,1linkColor2,...

plotFrame2,f_handle);

% link 3 rendering initialization

r3 = L2/8;
sides3 = 4;
axis3 =1;
norm_L3 =1.0;

55

1linkColor3 = [0 0 0.75];
plotFrame3 = 0;
d3 = CreateLinkRendering(L3,r3,sides3,axis3,norm_L3,1linkColor3,...

plotFrame3,f_handle) ;

numPts = floor(tend/dT);
q = zeros(3,numPts) ;
dq = zeros(3,numPts);
t = zeros(1,numPts);
q(:,1) = [0; pi/4; -pi/2]; ‘initial position

qd(:,1) = [0; 0; 0]; hinitial velocity
z = [q(:,1); qd(:,1)]; Y%initialize the state variables
% integrate equations of motion, % Runge-Kutta 4th order

keep_running = true;
k0=1; Jcounter. Loop updates this and terminates when arm reaches target

while keep_running

end

k1 = zDot3dofControls_OP(z,xDes,modelParameters) ;

k2 = zDot3dofControls_0P(z + 0.5%k1*dT,xDes,modelParameters) ;
k3 = zDot3dofControls_0OP(z + 0.5*k2*dT,xDes,modelParameters) ;
k4 = zDot3dofControls_0P(z + k3*dT,xDes,modelParameters) ;

z =2z + (1/6)*(k1 + 2xk2 + 2xk3 + k4)*dT;

% store joint position and velocity for post processing
q(:,k0+1) = z(1:3);

qd(:,k0+1) z(4:6);

t(1,k0+1) t(1,k0) + dT;

% check if goal position has been reached
ql = z(1); 92 = z(2); q3=z(3);

sl=sin(ql); c23=cos(q2+q3); s23= sin(q2+q3);
c2=cos(q2); cl=cos(ql);

s§2=sin(q2); c3=cos(q3); s3=sin(q3);

%This is end effector position vector found from forward kinematics
%using the Three_DOF_symbolic.m symbolic computation script

X = [L*xcl*c2 + L*xcl*c2*c3 - Lkcl*s2%s3;
L*c2*%s1l - Lxs1*s2%s3 + Lxc2*c3%*sl;
L*(s2 + 1) + L*c2*s3 + Lxc3*s2];
xError = norm(X - xDes(1:3));
if (xError < 1e-3 || kO > numPts)
keep_running = false;
else
k0=k0+1;
end

d = zeros(3,k0); %end effector coordinates

Xvend = zeros(3,k0); %end effector linear velocity
for i = 1:k0
ql = q(1,i);
q2 = q(2,1);
q3 = q(3,1);
% Update frame {1}
c = cos(ql);
s = sin(ql);
L = L1;
TI0O=[c 0 s O
s 0 -¢c O
0 1 0O L
0O 0 0 1]1;

% Update frame {2}

c = cos(q2);

s = sin(q2);

L = L2;

T21 = [c -s 0 Lx*c
s ¢ 0 Lxs
0O o0 1 ©O
0 0 o0 1];

% Update frame {3}

c = cos(q3);
s = sin(q3);
L =13;
T32 = [c -s 0 Lxc
s c 0 L=*s
0 0 1 0
0 0 0 1];
T20 = T10%xT21;
T30 = T20%T32;

% end-effector position
Xend(:,i) = T30(1:3,4);

%to find end effector velocity, we use X’ = Jx q’ where the Jacobian
%for the end effector is found in the Three_DOF_symbolic.m script
%as part of this HW, in the same folder as this file.

J=zeros(3,3);

J(1,1)=L*sin(ql)*sin(q2) *sin(q3) - L*cos(qg2)*cos(q3)*sin(ql) - L*cos(q2)*sin(ql);

J(1,2)=-cos(ql)*(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + Lxcos(q3)*sin(q2));

J(1,3)=-cos(ql)*(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(2,1)=L*cos(ql)*cos(q2) + L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(q3);

J(2,2)=-sin(ql)*(L*(sin(q2) + 1) - L + L*cos(gq2)*sin(q3) + L*cos(q3)*sin(q2));

J(2,3)=-sin(ql) *(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(3,1)=0;

J(3,2)=cos(ql)*(L*cos(ql)*cos(q2) + Lxcos(ql)*cos(q2)*cos(q3) - ...
Lxcos(ql)*sin(q2)*sin(q3)) + sin(ql)*(L*cos(q2)*sin(ql) + ...
Lxcos(q2)*cos(g3)*sin(ql) - L*sin(ql)*sin(q2)*sin(q3));

56

J(3,3)=cos(ql)*(L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*...
sin(q3)) + sin(ql)*(L*cos(q2)*cos(q3)*sin(ql) - ...
L*sin(ql)*sin(q2) *sin(q3));

Xvend(:,i) = Jxqd(:,i);

% update rendering

figure(f_handle) ;

UpdateLink(d1,T10);

UpdateLink(d2,T20) ;

UpdateLink(d3,T30) ;

title(sprintf(’s\ntime %3.2f (sec), distance to final destination
title_add_on,i*dT,norm(Xend(:,i)-xDes(1:3))));

hold on;

plot3(Xend(1,1:1i),Xend(2,1:i),Xend(3,1:1i),’r’, ’LineWidth’,2);

if i == 1; Ypause at start of simulation rendering
pause;
end
drawnow;
end

%__ = = = = = = = = = = = =

% PLOT JOINT POSITIONS

%__ - - - - - - - - -

figure(2);

plot(t(1:k0),q(1,1:k0),’b’, ’LineWidth’,2); hold on
plot(t(1:k0),q(2,1:k0),’r’, ’LineWidth’,2); hold on
plot(t(1:k0),q(3,1:k0),’k’,’LineWidth’,2); hold off
title(sprintf (’Js\n%s’,title_add_on,’Joint Position Vs Time’));
xlabel(’Time [sec]’); ylabel(’Position [rad]’);

grid on

legend(’Joint 1’,’Joint 2’,’Joint 3’,’Location’,’southeast’);

%__ = = = = = = =

% PLOT JOINT Velocities

%__ = = = = = =

figure(3);

plot(t(1:k0),qd(1,1:k0),’b’, ’LineWidth’,2); hold on
plot(t(1:k0),qd(2,1:k0),’r’, ’LineWidth’,2); hold on
plot(t(1:k0),qd(3,1:k0),’k’, ’LineWidth’,2); hold off
title(sprintf(’Js\n)s’,title_add_on,’Joint velocity Vs Time’));
xlabel(’Time [sec]’); ylabel(’Velocity [rad/sec]’);

grid on

legend(’Joint 1’,’Joint 2’,’Joint 3’,’Location’,’northeast’);

%__ = = = = = =

% PLOT end effector X,Y,Z velocites

%__ = = = = = = = = = = =

figure(4);
plot(t(1:k0),Xvend(1,:),’b’, ’LineWidth’,2); hold on

57

= %4.3f (m)’,...

plot(t(1:k0),Xvend(2,:),’r’, ’LineWidth’,2); hold on
plot(t(1:k0),Xvend(3,:),’k’, ’LineWidth’,2); hold off
title(sprintf (’Ys\n)s’,title_add_on,’End effector X,Y,Z speed’));
xlabel(’Time [sec]’); ylabel(’velocity [meter/sec]’);

grid on
legend(’d(Xe)/dt’,’d(Ye)/dt’,’d(Ze)/dt’,’Location’, ’southeast’);

%__ = = = = = = = = = = = =

% PLOT end effector X,Y,Z positions

%_ = = = = = =

figure(5);

plot(t(1:k0),Xend(1,:),’b’,’LineWidth’,2); hold on
plot(t(1:k0),Xend(2,:),’r’,’LineWidth’,2); hold on
plot(t(1:k0),Xend(3,:),’k’,’LineWidth’,2); hold off
title(sprintf(’Js\n)s’,title_add_on,’End effector X,Y,Z coordinates’));
xlabel(’Time [sec]’); ylabel(’coordinates [meter]’);

grid on

legend(’Xe’,’Ye’,’Ze’,’Location’, ’southeast’);

%_ = = = = = =

% PLOT end effector speed (magnitude)

%__ = = = = = = =

figure(6);

plot(t(1:k0), sqrt(sum(Xvend."2,1)),’LineWidth’,2);
title(sprintf (’Js\n)s’,title_add_on,’End effector speed’));
xlabel(’Time [sec]’); ylabel(’speed [meter/sec]’);

grid on

%__ = = = = = = =

% PLOT end effector displacement in 3D

%__ = = = = = = =

figure(7);

plot3(Xend(1,:),Xend(2,:),Xend(3,:), ’LineWidth’,2); hold on;
plot3(Xend(1,1),Xend(2,1) ,Xend(3,1),’ro’);
text(Xend(1,1),Xend(2,1) ,Xend(3,1) ,{’initial’, ’position’});
plot3(Xend(1,end) ,Xend(2,end) ,Xend(3,end),’ro’);

text (Xend(1,end) ,Xend(2,end) ,Xend(3,end) ,{’final’, ’position’});
title(sprintf (’%s\n%s’,title_add_on,’End effector 3D displacement’));
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

grid on

58

InitializeThreeDOFmodel__OP.m

59

function modelParameters = InitializeThreeDOFmodel_OP
% set model parameters

% gravitational constant [m/s~2]
g = 9.81;

% link mass [kg]
m = 10;

% link length [m]
L=1;

% link COM location [m]
Lc = L/2;

% link radius [m]
r = 0.1%L;

% link inertia (_|_ to 1link’s CL) [kg/m"~2]
Ia = (1/12)*m*L"2;
Ib = m*r~2;

% assign values of model parameter structure
modelParameters.g = 9.81; % gravitational constant [m/s”2]
modelParameters.m = m; 7 link mass [kg]
modelParameters.L = L; % link length [m]
modelParameters.Lc = Lc; 7 link COM location [m]
modelParameters.Ia = Ia; J, inertia (_|_ to 1link’s CL) [kg/m~2]
modelParameters.Ib = Ib; % inertia (colinear to link’s CL) [kg/m~2]
modelParameters.controlMethod = 1;
modelParameters.vMax=5; ’meter/sec

end

zDot3dofControls_ OP.m

function [zDot] = zDot3dofControls_0P(z,xDesired,modelParameters)

% assign joint displacements / velocities from state variables

q = z(1:3);
qd = z(4:end);
xDes = xDesired(1:3);

xdDes xDesired(4:end);

L = modelParameters.L;

% precalculate sin and cos terms

s1=sin(q(1)); c23=cos(q(2)+q(3)); s23= sin(q(2)+q(3));
c2=cos(q(2)); cl=cos(q(1));

82=sin(q(2)); c3=cos(q(3)); s3=sin(q(3));

ql=q(1) ;92=q(2) ;93=q(3);

J=zeros(3,3);

60

J(1,1)=L*sin(ql)*sin(q2)*sin(q3) - L*cos(q2)*cos(q3)*sin(ql) - L*cos(g2)*sin(ql);
J(1,2)=-cos(ql)*(L*(sin(q2) + 1) - L + L*cos(g2)*sin(q3) + L*cos(q3)*sin(q2));
J(1,3)=-cos(ql)*(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(2,1)=L*cos(ql)*cos(q2) + L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(q3);
J(2,2)=-sin(ql)*(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));
J(2,3)=-sin(ql) *(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(3,1)=0;

J(3,2)=cos(ql) *(L*cos(ql) *cos(q2) + L*cos(ql)*cos(q2)*cos(q3) - Lxcos(ql)*sin(q2)*sin
J(3,3)=cos(ql)*(L*cos(ql) *cos(q2) *cos(q3) - L*cos(ql)*sin(q2)*sin(q3)) + sin(ql)*(L*c

%the derivative of the Jacobian was derived in the Three_DOF_symbolic.m

Wfile

Jd = zeros(3,3);

Jd(1,1)=L*s1*s2*%qd(2) - L*clxc2*qd(1l) - L*clxc2*c3*qd(1) + ...
Lxcl*s2*s3%qd(1) + L*c2*s1*s3*qd(2) + L*kc3*slxs2*qd(2) + ...
L*xc2*s1*s3%qd(3) + L*c3*sl*s2xqd(3);

Jd(1,2)=s1*qd(1)*(L*(s2 + 1) - L + L*c2*s3 + L*c3*s2) - ...
c1x(L*xc2*qd(2) - L*s2xs3*%qd(2) - L*s2xs3*qd(3) + ...
L*c2*c3%qd(2) + L*c2*c3%qd(3));

Jd(1,3)=cl*(L*s2*s3*qd(2) + L*s2xs3*qd(3) - L*c2xc3*qd(2) - ...
L*xc2*c3%qd(3)) + s1xqd(1)*(L*c2*s3 + L*c3*s2);

Jd(2,1)=L*s1*s2%s3%qd (1) - L*cl*s2xqd(2) - L*c2*c3*slxqd(1l) -...
Lxcl*c2*s3*qd(2) - Lkclxc3*s2%qd(2) - L*cl#c2*s3%qd(3) -...
L*xc1xc3*s2%qd(3) - Lxc2*sl1*qd(1);

Jd(2,2)=- s1x(L*c2%qd(2) - L*s2*s3%qd(2) - L*s2*s3%qd(3) + ...
Lkc2%c3*qd(2) + L*c2%c3*qd(3)) - cl*qd(1)*(L*(s2 + 1) -...

L + L*c2%s3 + L*c3%*s2);

Jd(2,3)=s1*(L*s2*s3*qd(2) + L*s2*s3*qd(3) - L*c2xc3*qd(2) - ...
L*xc2xc3%qd(3)) - c1xqd(1)*(L*c2*s3 + Lxc3*s2);

Jd(3,1)=0;

Jd(3,2)=c1*qd (1) *(L*c2*s1 - L*ksl*s2*s3 + Lxc2xc3*sl) - ...
s1x(L*s1*s2+%qd(2) - Lxcl*kc2#%qd(1) - Lxcl*kc2#c3xqd(1) +...
Lxcl*s2%s3%qd(1) + L*c2*sl*s3*qd(2) + L*c3*sl*s2*xqd(2) +...
L*xc2xs1*s3%qd(3) + L*c3*s1*s2xqd(3)) - sikqd(1)*(L*xcl*c2 +...
Lxclxc2*c3 — Lkcl*s2xs3) - clx(Lkc2*slxqd(1l) + Lxcl*s2xqd(2) +...
Lxc2xc3*s1*¥qd (1) + Lxcl*c2+s3*qd(2) + Lkcl*xc3*s2*qd(2) +...
Lxcl*c2*s3%qd(3) + L*cl*c3*s2*xqd(3) - L*sl*s2*s3*qd(1));

Jd(3,3)=- clx(L*c2xc3*s1xqd(1) + L¥cl*c2+s3*qd(2) + Lkclxc3*s2xqd(2)...
+ Lxcl*c2%s3*qd(3) + L¥xclxc3*s2%qd(3) - L*ksl*s2xs3*qd(1)) - ...
s1*(Lxcl*s2+s3*xqd (1) - Lkcl*c2xc3*qd(1) + L*c2xsl*ks3%qd(2) +...
L*xc3*s1*s2%qd(2) + L*c2*s1*s3*qd(3) + L*kc3*slxs2*qd(3)) -...
s1xqd (1) *(L*cl*c2*c3 — Lkcl*s2*s3) - clxqd(1)*(L*s1*s2*s3 -...
L*xc2*c3%sl) ;

% mass matrix calculation
D = Dmatrix_ThreeDOFcontrols_O0P(q,modelParameters) ;

calculate D, B, D, and G matrices

= Bmatrix_ThreeDOFcontrols(q,modelParameters);
= Cmatrix_ThreeDOFcontrols(q,modelParameters) ;
Bx[qd (1) *qd (2) ;qd (1) *qd (3) ;qd(2)*qd(3)] ...
+C*[qd(1)72; qd(2)72; qd(3)72];

< QW=

(g3)) + sin(q
os(q2) *cos(q3

end

% gravity vector
G = Gvector_ThreeDOFcontrols(q,modelParameters) ;

% evaluate inverese of the Jacobian
[u,s,v] = svd(J);
sInv = eye(size(J));
for i = 1: size(J,1)
if s(i,i) < .01
sInv(i,i) = 0;
else
sInv(i,i) = 1/s(i,1);
end
end
Jinv = wvksInv*u’;

% evaluate operational space terms

L0 = Jinv’*D*Jinv;
p = Jinv’*G;
mu = Jinv’*V - LO*Jd*qd;

% op space position and velocity. THis was found in Three_DOF_symbolic.m
x = [L*cl*c2 + Lkcl*c2%c3 - L*cl*s2%s3;

Lkc2*s1 - L*sl*s2*s3 + L*c2*xc3*sl;

L*(s2 + 1) + L*c2*s3 + L*c3*s2];
xd = J*qd;

% decoupled system PD-controller torques

wn = 2%2%pi; Jusing 2Hz per HW problem specs
zeta = 1; Jcritical damping, per HW problem specs
Kp = wn"2;

Kd = 2%zeta*wn;

% task-space velocity limiting heuristic
if modelParameters.controlMethod ==3
vMax = modelParameters.vMax;
xError = norm(xDes - x);
%xErrorMag = sqrt(xError(1)~2 + xError(2)~2);

KpMax = Kd*vMax/xError; YxErrorMag;
if Kp > KpMax
Kp = KpMax;
end
end

Fprime = -Kd*(xd - xdDes) - Kp*(x - xDes); ’PD controller
F = LO*Fprime + p + mu;
tau = J’%F;

%form joint acceleration vector
qdd = D\(tau -V - G);

% assign state variable derivatives
zDot = [qd; qdd];

61

62

	Problem description
	Joint space control
	Part (a) Coriolis, centrifugal, and gravity terms are compensated
	Part (b) No velocity compensation. Only gravity compensation
	Part (c) Decentralized joint-space controller, full compensation using average D matrix
	Part (d) discussion of result, compare control methods
	source code listing for joint-space control

	Operational space control
	Part (a) x_f=[-L, -L, 0]^T
	Part (b) x_f=[-L, -L 10, 0]^T
	Part (c) x_f=[-L, -L, 0]^T with velocity limiting heuristic
	Part (d) discussion of result, compare control methods
	Source code listing for operational space control

