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0.1 Problem 1

Problem 1.

Frame {A} and frame {B} are initially coincident. Frame {B} is rotated through the following sequence
of rotations:
1. +adegree rotation about Z4
- degree rotation about Xz
-a degree rotation about Z,
+ydegree rotation about yg
+/ degree rotation about X4

©wok WD

where o =+45 degrees; [=-30 degrees; y=+90 degrees

Evaluate the rotation transformation (matrix) that describes the orientation of frame {B} relative to frame
{A} following this sequence of rotations.

When the rotation R; is around a fixed frame, it is pre-multiplied by the current sequence of
rotations. If the rotation R; is around the current frame, it is post-multiplied by the current
sequence of rotations.

1. R=R,,

2. Since rotation is around current frame, it is post multiplied giving R = R, o R, s

3. Since rotation is around fixed frame, it is pre-multiplied, giving R = R, _oR. R, 3

4. Since rotation now is about current frame, it is post multiplied giving R = R, _oR. «R; _gR,
5. Since rotation now is about fixed frame, it is pre-multiplied giving R = R; gR, _oR. o Rz —gRy

Now that the rotation sequence is completed, the sequence of rotations are evaluated. Before that,
some simplification is made as follows

I
—
R= Rx,ﬂ Rz,—aRz,a Rxa_ﬁRyi'Y
I
——
= Ry pRa,—p Ry
= Ry,
Therefore
cosy 0 sinvy cos90° 0 sin90° 0 01
R=R,,=| o 1 o |=| o 1 o |=|0 10
—siny 0 cosvy —sin90° 0 cos90° -1.00

Only angle v was needed in finding the final result. The above result shows that the final orientation
is as if one rotation of +90 degree was made around the fixed y axes. The following diagram shows
the result after each rotation, which confirms the above resultl]

1Source code that generated these plot is in the appendix if needed.



+45 around fixed z

30° around current x

-45° around fixed z

after rotation Final rotation matrix

0.707107 -0.707107 O.
0.707107 0.707107 O.
0. 0. 1.

after rotation Final rotation matrix

zZ
z y 0.707107 -0.612372 0.353553
0.707107 0.612372 -0.353553
0. 0.5 0.866025
Yy

after rotation Final rotation matrix

V4
N
N 1. 0. 0.
\ y 0. 0.866025 -0.5
0. 0.5  0.866025

Figure 1: Graphical representation of problem 1 rotations



+90 around current y after rotation Final rotation matrix

V4
21
%
0. 0. 1.
y N 0.5 0.866025 0.
y -0.866025 0.5 0.
Yy X
-30° around fixed x after rotation Final rotation matrix

= O o
oo
OH
-

. S

Figure 2: Graphical representation of problem 1 rotations



0.2 Problem 2

Problem 2.

The D-H parameters (d, a, @, and ) and the homogeneous transformation which results (see below — also
in Kinematics lecture notes) cannot be used to represent a general rigid-body transformation.

Homogeneous transformation matrix using DH convention:

C, —S,, S,5, ac,
Fo|Se Gt ~CoSa as, _ 04
o s, c, d A
0 0 0 1 L
» Explain why this is the case. You can use physical and/or mathematical R
4

arguments. A

» For the rigid-body transformation shown to the right, label the unit vectors
of the two reference frames such that the D-H parameters cannot describe
their relative transformation.

0.2.1 Part a

The homogeneous transformation matrix based on the use of the DH convention contains only 4
parameters d, a, o, 0. Since a general rigid body transformation requires 6 parameters (3 angles for
orientations, and 3 for translation), this implies the DH homogeneous transformation matrix can
not be used to represent any arbitrary rigid body transformation. However, the DH convention
can be used to represent any rigid body transformation that meets two conditions, as specified on
page 78 of the text book. These are

1. The z; axis of the i*! frame is L to the z,_; axis of the 7 — 1 frame.

2. The z; axis of the i*" frame intersects the z,_; axis of the i — 1 frame

0.2.2 Part b

At least one of the above two DH constraints need to be violated in order to come up with a
configuration that cannot be described using the DH transformation matrix. This is done by
making x; axis not perpendicular to zy axis. The following diagram illustrates this

37‘—’ a
A
A

Y1

Xo

=

Figure 3: Problem 2 setup of axis



0.3 Problem 3

frame, state whether the frame definition is
unique and describe the choices you made
in the table below. Use the defined frames
{0} and {4} shown in Figure A.

Problem 3. d L L,
» Sketch the DH frames on the planar view 3
of the manipulator given below. For each
Lo

- Figure A -

link 2 link 3 link 4

; link 1

Vo Xy
| _ |

Figure 4: Problem 3 description

The first step is to assign the z; axis for each link. There are 5 links numbered 0, 1,2, 3,4 and four
joints numbered 1,2, 3, 4. Link 0 is fixed and does not move. Frame ¢ is attached to link 7 but its
z; axis is oriented along the line of motion of joint ¢ 4+ 1. Once all the z axis are established, then
the rest of the frames are configured by insuring that that each x axis is perpendicular to the last
frame z axis.

So the rule to follow is that x; axis must be perpendicular to z;_; axis.

The frames are drawn below. The following choices were made. z intersects z; (case 3 in the



textbook), hence z; is arbitrary. The origin o; is the point of intersection of z; and 2 as shown
in the problem statement.

Next, z1 and 29 also intersect (case 3). The choice of z3 is arbitrary. The origin o0 could be located
also where z; intersect zo. But any point along 2o will also work. Here o, was placed at point ps.

Next, 2y is parallel to z3. This is case (2) in the textbook. There are infinitely many common
normals. Here origin o3 can be anywhere along z3. It is placed at start of the end effector as shown.

The following diagram shows the frames locations.
d=0,a=0,a=290%60=090°+6,

B . /
Frame 2 is attached to this X Z
s .

link but its z axis is aligned / ' “ached © ‘“ed \_\\'\\( A 4
with motion of joint 3 / e ‘z: s S e
/ ok putt

\in! .

g Mot

:“ ot Joint 4

Joint 2

d= d3+L3,a= 0,a= 0,9= 90°

Frame 1 is attached to this
link but its z axis is aligned
with motion of joint 2

——»d=L;+d,a=0,a0=9060=0

Link 1

Joint 1

Frame {3} is attached to link 3
Frame {2} is attached to link 2
Frame {1} is attached to link 1
5 links, numbered 0,1,2,3,4

2 4 joints, numbered 1,2,3,4

Vo Yy
—»
[_— problem_3-.vsdx

Nasser M. Abbasi
3/4/2015

Figure 5: Frames assignments for problem 3



0.4 Problem 4

Evaluate the DH parameters for the manipulator and frame definitions developed in the previous problem

’ ) ‘ 0; d; ‘ a; | o
1 0 Li+d; | 0 |90°
2 1 90° 4 6, 0 0 | 90°
31 90° L3y+ds | 0| O
4 64 Ly 0 | 90°

The homogeneous transformation matrices Tf‘l are now evaluated, and then 7T} is found in order
to verify that the location of the end effector. To verify, when 65 = 0,64 = 0, then the end effector
x, v, z position relative to the base frame should be located at

z=d3+ L3+ Ly
y=0
z=L1+d;

These are The homogeneous transformation matrices TZ-’_1

10 O 0
0 0 -1 0
0 _
=101 o di+ Ly
00 O 1
—sinfy 0 cosfy O
Tl — cosfy 0 sinfy O
5 =
0 1 0 0
0 0 0 1
0 -1 0 0
1 0 O 0
TS =
3 0 0 1 d3+1Ls
0 0 O 1
cosfy 0 sinf, 0
T3 sinfy 0 —cosfy O
0 1 0 Ly
0 0 0 1

Tf = T10T21T32T43 was found and evaluated for 65 = 0. The result is

0 1 0 d3+Lsg+ Ly
-1 00 0

0 01 di+ 14

0 00 1

Which shows the correct position vector of the end effector frame.



0.5 Problem 5

Problem 5

» Write a Matlab function which takes as its input the DH parameters and returns the associated 4x4
homogeneous transformation matrix, 7. A possible function prototype is given below. To learn how
to write a function in Matlab, type help function in the Matlab workspace.

function T = DH2T(d, a, alpha, theta);

» Write a Matlab script to verify that your function is working Link | @ | a ) 6
properly. The script should evaluate the 7" matrix for the set of DH : : &
parameters listed in the adjacent table. When your script is run, | Casel: | 0 10 0 0
the 7 matrices should be printed to the workspace. This script, Case2: | 10 | 0 0 0
along with your function, are to be handed in to the course
dropbox on the Learn@UW course page. As a possible starting | Case3: | 10 | 0 T 0
point, your script might look like: Cased: | 0 0 x x

clear all; close all; clc

Case 1:

= 0; a = 10; alpha = 0; theta = 0;
1 = DH2T (a,alpha,d, theta)

Case 2:

= 10; a = 0; alpha = 0; theta = 0;
2 = DH2T (a,alpha,d, theta)

ase 3:

= 10; a = 0; alpha = pi; theta = 0;
3 = DH2T (a,alpha,d, theta)

se 4:

= 0; a = 0; alpha = pi; theta = pi;
4 = DH2T (a,alpha,d, theta)

H Qe Q00 Qe Qo
Q

Figure 6: Problem 5 description

0.5.1 parta
The following is the Matlab function DH2T

function T = DH2T(a,alpha,d,theta)

%generated the transformation matrix for a DH table row

%ME 739, Univ. Of Wisconsin, Madison. Spring 2015

T=[cos(theta) -sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta);
sin(theta) cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta);

0 sin(alpha) cos(alpha) d;
0 0 0 1
1;

end




p

0.5.2 partb

The following is the script used and below it is the output generated.

11

clear all; close all; clc
Ycase 1

d=0; a=10; alpha=0; theta=0;
T1=DH2T (a,alpha,d,theta)

Yicase 2
d=10; a=10; alpha=0; theta=0;
T2=DH2T(a,alpha,d,theta)

Jcase 3
d=10; a=10; alpha=pi; theta=0;
T3=DH2T (a,alpha,d,theta)

Ycase 4
d=0; a=10; alpha=pi; theta=pi;
T4=DH2T (a,alpha,d,theta)

Tl =
1 0 0 10
0 1 0 0
0 0 1 0
0 0 0 1
T2 =
1 0 0 10
0 1 0 0
0 0 1 10
0 0 0 1
T3 =
1 0 0
0 -1 -1.2246e-16
0 1.2246e-16 -1
0 0 0
T4 =
-1 1.2246e-16  1.4998e-32
1.2246e-16 1 1.2246e-16
0 1.2246e-16 -1
0 0 0

10

10

-10
1.2246e-15
0
1




0.6 Problem 6

0.6.1

Problem 6.

For the manipulator shown, the forward kinematics

arc given as:

X, =cos 6, cosb, (L, +d,) > operational
Y, =sing, cos6, (L, +d;) ﬂ% point

z, =1, +sin6, (L, +d,) L

» Develop the linear velocity Jacobian, J,, using
direct differentiation of the forward kinematics.
Assume that the task and joint variable vectors
are defined as

q :[01 6, da]T

X= [xe v, zE]T

» For the manipulator configuration defined by the joint vector, g = [7[ iz Q]T , evaluate the linear

velocity of the end-effector given the joint velocity vector g = [1 0 1]T.

» For what values of the joint variables is the linear velocity Jacobian, J,, singular? Use physical and/or
mathematical arguments to support your answer.

Figure 7: Problem 6 description

Part a
Oz Oz Oz
001 06y Ods
Oy Oy 9y
001 06y Od3
Oz 9z 0
001 062 Ods

3%1 cos 61 cos 03 (Lg + d3) 3%2 cos 61 cos Oz (Lg + d3) % cos 61 cos 0y (L + d3)
8%1 sin 1 cos 03 (Lo + d3) % sin 01 cos 03 (L2 + d3) % sin 61 cos 03 (L2 + d3)
29 (L1 +sin0y (Lo +d3)) 59 (L1 +sinby (Ly +d3)) 33 (L1 +sinf (L2 + ds))
—siné; cos Oy (Lg + d3) —cosbysinfs (Lo + d3) cosb; cos by

cosficosfy (Lo +d3) —sinfysinfy (Lo +ds) sinb; cosbs
0 cos 03 (L2 + d3) sin 0

12



0.6.2 Part b

v=Jyq
—sinf; cosOy (La + d3) —cosf;sinfy (La +d3) cosbqcosby
= | cosfycosfy(La+d3) —sinbysinby(La+ds) sinb;cosby
0 cos 0y (L2 + d3) sin 09
—sinmcos § (Lz + La) —coswsinF (Ly + Lz) cosmcos ]
= | cosmcos ] (L2 + Lz) —sinmsinf (La+ L) sinmcos
0 cos 5 (L2 + L2) sin §
0 2L, O 1
=10 0 O 0
0 0 1 1
0
=lo
1

0.6.3 Part(c)

13

Mathematically, J, is singular when its determinant is zero, or when J, has a zero eigenvalue. The

determinant of the Jacobian Pl was found to be

|Jv|= (d3 + L3)? cos 0y

The above is zero when cos 2 = 0. This occurs when 62 = £7 (and any odd integer multiple of

this value).

This implies that the singularity occurs when the arm is fully extended vertically in the upward
position, or if physically possible, when the arm is fully extended vertically but in the downwards

position.

2Using syms and simplification



0.7 Problem 7

Problem 7.

Consider the three axis RRR manipulator shown in the figure below

Given: L=1.0

» Derive the forward kinematics, T, of this manipulator as a function of the joint displacements and
the geometric parameters shown in the figure. Sketch your intermediate frame definitions on the
plane view of the manipulator shown below. Keep in mind that your frame definitions should be
consistent with the conventions assumed when constructing the explicit form of the basic Jacobian.

'ZO I
N\ I |
ERO) ma) L

» Evaluate the full basic Jacobian, ]y, for this manipulator. In this case, the basic Jacobian relates the
joint space velocities, ¢, and task space velocities X.

X=J,g where X=[* ¥ 2 wy o, &]" and ¢=1[6, 6, 65]"

14
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» For the manipulator configurations listed below, evaluate the required joint torques to react the
applied end-effector forces and torques: F = [fy, 0 0 0 0 17,]”. Discuss you results.

Configuration o 6 &
1 0 30° 0
2 0 0 30°
3 0 90° 90°

» Evaluate the linear velocity Jacobian, /2, expressed in frame {1}

v

Using J1 find the singularities of the manipulator (with respect to the end-effector’s linear velocity)

» For each type of singularity that you identified explain the physical interpretation of the singularity -
by sketching the arm in a singular configuration and describing the resulting limitation on its
movement.

» For the manipulator above, a new task position representation has been defined as

u=2x+3y
V=x+y-z
w=z

Evaluate the /inear velocity analytical Jacobian, J,, for this new representation when the manipulator

configuration is givenas § = [6; 6, 65]=[0 % g]
p g,
v|=J4]d,
w q,

Figure 8: Problem 7 description

0.7.1 Derive the forward kinematics

The frames are first assigned to each link by insuring that that the z axis of each frame follows
the DH convention, which means z; axis attached to link ¢ is aligned in the direction of motion of
joint ¢ + 1.

For a revolute joint, this will be its axis of spin, and for prismatic joint, this will be its direction
of sliding. Once this is done the forward kinematics matrices are found using either the DH table
method or using homogeneous transformation by direct inspection. In this case, the homogeneous
transformation by direct inspection method was used. The frames are assigned as follows

& Frame {2}is attached
Rl . R A
o2 S‘L"\ 1 tolink 2, but its z axis
KON is aligned with joint 3
2 (A )
RS motion Frame {3} is attached
Frame {0} is attached \ tolink 3, its axisis as
iven
tolink O, but its z axis 8 P
is aligned with joint 1 \
motion

Figure 9: Frames assignments for problem 7
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0.7.2 Determine forward kinematics matrices and evaluate full basic Jacobian Jj

Define the matrices 77, Ty}, T using homogeneous transformation. Since z’ = Joq' then to find Jy
we need to first find forward kinematics. By inspection, we find each transformation matrix to be

cos(f;) 0 sin(f;) Lcos(6)
T — sin(#;) 0 —cos(f1) Lsin(6)
0 1 0 0
0 0 0 1
cos(f2) 0 —sin(f2) Lcos(62)
T = sin(f2) 0 cos(f2) Lsin(62)
0 -1 0 0
0 0 0 1
cos(f3) 0O —sin(f3) Lcos(63)
T2 = sin(f3) 0 cos(f3) Lsin(63)
0 -1 0 0
0 0 0 1
Therefore
cos (61) cos (f2) —sin (A1) —cos(01)sin(f2) Lcos(61)+ Lcos(62)cos(61)
0 = 707} = cos(f2)sin (f1) cos(f;) —sin(61)sin(f2) Lsin(0;)+ Lcos(02)sin (6;)
sin (62) 0 cos (602) Lsin (67)
0 0 0 1
T = T9T2

cos (01) cos (02) cos (63) — sin (61) sin (63)
cos (02) cos (03) sin (01) + cos (01) sin (§3)  sin (61) sin (02)
cos (03) sin (62) — cos (62)
0 0

cos (01)sin (62) —cos(63)sin (01) — cos (A1) cos (62)sin (03) L (cos (01) (cos (62) (cos (63) + 1) + 1) — sin
cos (01) cos (63) — cos (62) sin (01) sin (63) L ((cos (62) (cos (63) + 1) + 1) sin (1) + cos
— sin (62) sin (03) L (cos (63) + 1) sin (62)

0 1

In short notation the above can be written as

CiCy —S1 —CiS: LGy (Ca+1)
T20 _ S, Cp =515, L (Cz + 1) S
So 0 Co LS,
0 0 0 1
C1C2C5 — 5183 C1S2 —C381 — C1C2S3 L(C1(Ca(Cs+1)+1) — 515s)
Tg(,) _ CyC381 + C1S3 515 C1C3 — (035153 L ((02 (03 + 1) + 1) S+ 0153)
C35s —Cy 5,85 L(C3+1) S
0 0 0 1

Now we find the base Jacobian Jy where ' = Jyq'

J’U]_
Jun

J V2
Juw

J’U3
Jus

o

)
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where
Jgi =€z 1 +¢ (Z?—l x (op — 09—1))
JBi = éz?—l
0
z8 isgiven by | 0 | and
1
Joy = 20 X (03 — 09)

)
L (sin (61) (cos (02) (cos (03) + 1) + 1) + sin (03) cos (61))

X
0 ) ( L (cos (01) (cos (02) (cos (03) + 1) + 1) — sin (1) sin (63)) )
0 | x

1 Lsin (63) (cos (63) + 1)

—L (sin (01) (cos (02) (cos (3) + 1) + 1) + sin (A3) cos (61))

= | L(cos(61) (cos(62) (cos(f3) + 1)+ 1) — sin (A1) sin (63)) )
0

Ju, = 2 x (0§ — of)
sin (6;) L (cos (01) (cos (62) (cos (f3) + 1) + 1) — sin (01) sin (A3))
=| —cos(8y) | x L (sin (61) (cos (02) (cos (f3) +1) + 1) +sin(63) cos (#1)) | — | Lsin(6;)
0 Lsin (62) (cos (A3) + 1) 0
—Lsin (02) cos (61) (cos (63) + 1)
= | —Lsin(6;)sin (02) (cos(f3) +1)
Lcos (62) (cos (63) + 1)

Jus = 23 x (05 — 05)

sin (62) (— cos (61)) L (cos (61) (cos (62) (cos (63) + 1) + 1) — sin (61 ) sin (63))
= — sin (0;) sin (62) X L (sin (61) (cos (62) (cos (83) + 1) + 1) + sin (63) cos (1)) | — | Lsin (61) (cos (62) + 1)
cos (92) Lsin (62) (cos (63) + 1)

—L (sin (1) cos (83) + sin (03) cos (61) cos (f2))
= | L(cos(#;)cos(f3) — sin (1) sin (63) cos (f2))

—Lsin (02) sin (63)
0
Ju=10
1

sin (61)
Jw, = | —cos(61)
0
sin (62) (— cos (01))
Jws = — sin (0;) sin (62) )
cos (62)

L cos (61)

Lcos (61) (cos (02) + 1)

Lsin (62)
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Hence the Jacobian becomes

—L ((cos (02) (cos (03) + 1) + 1) sin (A1) + cos (A1) sin (f3)) —Lcos(01) (cos (3) + 1)sin(#2) —L (cos(83)sin (01) + cos (01) cos (62)+
L (cos (61) (cos (62) (cos (03) + 1) + 1) —sin (61) sin (03))  —L (cos(03) + 1)sin (61)sin (2) L (cos(01) cos (63) — cos (62) sin (61) si

Jo = 0 L cos (62) (cos (03) + 1) —Lsin (02) sin (03)
0 sin (61) — cos (01) sin (02)
0 —cos (61) — sin (01) sin (62)
1 0 cos (62)

Or in short notation

—L ((CQ (03 + ].) + 1) S1+ 0153) —LCy (C3 + 1) Sy —L (0351 + 010253)
L (Cl (Cz (C3 + 1) + 1) — 5153) —L (03 + 1) S1Sy L (C103 — 025183)
Jo = 0 LCy (03 + 1) —LS5S3
0 S1 —C152
0 -C1 —5152
1 0 Co

When L =1 the above becomes

— (Cz (03 + 1) + 1) S —C1S3 —C; (03 + 1) Sy —C351 — C1C5S5
0] (02 (03 + 1) + 1) — 5183 - (03 + 1) 515y C1C3 — (35153
Jo = 0 Cy (C3 + 1) —S5953
0 S1 —C15;
0 -1 —5152
1 0 Co

0.7.3 Evaluate required joint torques for the configurations

Using the duality property where

t' = Jogd
r=Jf

We can determine 7 for each Jacobian at each configuration. The following table gives the result
of this computation
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# Jo JTf
0 L 0
1++3)L 0 L fa
0 ( ) 0 (1-|—\/3T)L 0 0 1 1
0 V3L 0 —1
30 0 0 1 -L 0 V3L 0 -1 0
0 2 3 Ve
0 -1 0 0 L -3 0 4 |
Tz
V3
1 o =7
L L
-7 0 )
\/? \/i?L _L ﬁ fz
0 <2+T L 0 3 L (2431 0 0 0 1 .
Ty —
0
0 0 (1+@)L 0 0 0 <1+@>L 0 -1 0 o (
30 0 .
0 0 0 L V3'L 0 0 0 1
0 -1 0 2 2 T2
1 1
-L —-L O fa
0 ’; g OL L L 0 0 o0 1 0 T —
90 PO _1 L 0 0 0 -1 0 g —1
0 0 —-L -1 0 0
90 0 -1 o0 0 ‘
1 0 0 Tz
0.7.4 Discussion of result
Since
fz
0
f= 0
0
0
Tz

then only entries in the J7 matrix which are not zero at location (i,1) and (i,6) where i is the
row number of JT will contribute to the joint torques. So for configuration 1 above, we see that
JT has non zero value in one of these locations in each row. But for configuration 2, the second
row of JT has zero in both the first column and the last column. This means no matter what joint
torque is applied to joint 2, it will have no effect on end effector forces produced.

Similarly, for the third configuration, we see that the last row of JT also has zero entry in the
first and last column. This means no matter what joint torque is applied to joint 3, it will have
no effect on end effector forces produced when in this configuration.
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0.7.5 Evaluate linear velocity Jacobian J} expressed in frame 1

To find J§ we need to transform Jy to frame 1 using J§ = (

R 0
0 R

) Jo where in this case ¢ = 1.

But R} = (R%) ™" = (R?)”. We found T? from above, so we can extract R? part from it

cos(61) 0 sin(61) Lcos(6r)
T — sin(61) 0 —cos(f;) Lsin(61)
0 1 0 0
0 0 0 1
cos(61) 0 sin(61)
R} = sin (1) 0 —cos(61)
0 1 0
Hence
cos(f;) sin(61) O 0 0 0
0 0 1 0 0 0
L0 | sin(61) —cos(61) 0 0 0 0
0 R} 0 0 0 cos(f1) sin(61) O
0 0 0 0 0 1
0 0 0 sin(f;) —cos(f1) O
mutliplying the above with Jy found earlier gives
Ry 0
Jg = )
0 R
—Lsin (603) —L (cos(03) +1)sin (#3) —Lcos (02)sin (63)
0 Lcos(62) (cos(03) +1) —Lsin(#2)sin (03)
| —L(cos(2)(cos(f3)+1)+1) 0 —L cos (03)
0 0 — sin (602)
1 0 cos (62)
0 1 0
Hence J(}U is the top three rows given by
—Lsin (03) —L (cos(03) +1)sin (f2) —L cos(#2)sin (63)
Jg, = 0 Lcos(62) (cos(f3) +1) —Lsin (63)sin (03)
—L (cos (02) (cos (63) +1) + 1) 0 —Lcos (03)
When L =1 the above becomes
— sin (03) —cos (A3) sin (f2) — sin (f2) — cos (A2) sin (03)
Jg, = 0 cos (63) cos (02) + cos (62)  —sin (62) sin (03)

—cos (03) cos (02) — cos (62) — 1

0

—cos (03)
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0.7.6 Find the singularities in J! and sketch the arm

The singularity of J! can be found mathematically by finding the conditions under which the
determinant of J}! is zero, or the conditions under which one of the eigevalues become zero. Or we
can use geometry and consider the cases where the arm is in singular direction. Mathematically,
the determinant of J} is

| T |= —L3sin (83) (cos (f2) + 1) (cos (63) + 1)
When L =1 the above becomes
| T |= —(1 + cos 6)(1 + cos 83) sin 63
To make |J}|, the above implies the corresponding joint angles have to be the following

0y = +7
03 = {xm,0}

The joint angle 0; can be any value since it does not contribute to making the determinant zero
since the determinant does not depend on 6;. The above shows there are a total of 5 configurations
that will result in singularity.

The following diagram illustrates the above singularites found and also sketches the the singular
direction.



61 62 63 Ji configuration showing singular direction
O
0 0 0
any |any | O 0 2L 0 \
-3L 0 -L
0 00
any |any | £71 0 0 O
-L 0 L
0 0 0
any | 7 |any 0 -2L O \
L 0 -L 4
0 0 0
any | -7 |any 0 -2L O
L 0 -L

Figure 10: Singular directions for problem 7
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0.7.7 Find the linear analytic Jacobian J, for new representation

The analytical linear velocity Jacobian J, is given by

Ja = Ep(:L'p)JO

Where E,(z,) is the representation matrix found from

/ /

v = Ep(zp) | v

w’ 2
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Since we are given the expressions for u, v, w, then we differentiate them w.r.t time to determine

E,(xp) and obtain

! 2z’ + 4y’
,UI — wl + yl _ ZI
/ /
z
2.3 0 !
=111 -1 y
00 1 P
Hence
23 0
Eyzp)=| 1 1 -1
0 0 1

Therefore J, = Ep(xp)Jo becomes, at the required angles

L —2L 0
Ja = 0 _L L
0 0 -—-L
Andat L =1
1 -2 0

=10 -1 1
0 0 -1
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0.8 Problem 8

Problem 8

» Evaluate the inverse kinematics to provide a functional relationship between the defined task and
joint space displacements

a
(e |q, |=f(xWe2.))

a;

Figure 11: Problem 8 description

Using geometry as illustrated below

"T--@ end effector(Xe, yE1 Ze)

Xo

Problem_8_d1.vsdx
Nasser M, Abbasi
3/6/15

Hence based on the above diagram ¢; is found to be
q1 = Ze
Taking the projection of the end effector vector on the xy plane gives

Te = g3 cos(q2)
Ye = g3sin(go)

Dividing the second equation above by the first one gives ¥ = tan(go). Hence g2 = atantwo(z., ye).
If z = 0 then there is no solution (singular direction). A second solution is go = atantwo(x., ye) + 7



and finally g3 = {/22 + y2 . Therefore the two solutions are

@ ze @ e
@ atantwo(z, ye) @ atantwo(ze, ye) +

B/ 1y \/ 22+ y? 3/ (o \/x2 +y?2

0.9 Appendix

Source code for problem 1
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axes[x_, y_, z_, f_, a_] :=
Graphics3D[Join[{Arrowheads[al},
Arrow([{{0, O, 0}, #}] & /e {{x, 0, 0}, {0, y, 0}, {0, O, z}},
{Text [Style["x", FontSize -> Scaled[f]], {1.2*x, 0.1*y, 0.1*z}],
Text [Style["y", FontSize -> Scaled[f]], {0.1 x, 1.2%y, 0.1%z}],
Text [Style["z", FontSize -> Scaled[f]], {0.1*x, 0.1xy, 1.2xz}]1}1];

rotZ[a_] := {{Cos[al, -Sin[al, 0}, {Sin[al, Cos[al, 0}, {0, O, 1}};
rotX[a_] := {{1, 0, 0}, {0, Cos[al, -Sin[al}, {0, Sin[al, Cos[all}};
rotY[a_] := {{Cos[al, O, Sin[al}, {0, 1, 0}, {-Sinl[al, 0, Cos[all}};

obj = Cuboid[{1l, -.5, -.1}, {-1, .5, .1}];

show[mat_, arrow_, fixed_] := Show[Graphics3D[
{
GeometricTransformation [{
{Opacity[0.7], obj},
{Red, Arrow[{{0, 0, 0}, {1.2, 0, 0}}]},
{Red, Arrow[{{0, 0, 0}, {0, 1.2, 0}}]1},
{Red, Arrow[{{0, 0, 0}, {0, 0, 1.2}}]1},
Text [Style["x", Red, FontSize -> Scaled[0.07]1]1, {1.4, 0, 0}],
Text [Style["y", Red, FontSize -> Scaled[0.07]], {0, 1.4, 0}],
Text [Style["z", Red, FontSize -> Scaled[0.07]], {0, O, 1.4}],
If[fixed, Sequence @@ {}, arrow]
}, mat
1,
If[fixed, arrow, Sequence @@ {}]
}’
Boxed -> False,
Axes -> None,
ViewPoint -> {3, 1.5, 1.5},
SphericalRegion -> True,
ImageSize -> 250, ImageMargins -> O, ImagePadding -> 0, PlotRangePadding -> None],
axes[1.6, 1.6, 1.5, 0.1, 0.04]1];

show[mat_] := Show[Graphics3D[
{
GeometricTransformation [{
{Opacity[0.7], obj},
{Red, Arrow[{{0, 0, 0}, {1.2, 0, 0}}1},
{Red, Arrow[{{0, 0, 0}, {0, 1.2, 0}}1},
{Red, Arrow[{{0, 0, 0}, {0, 0, 1.2}}1},
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Text [Style["x", Red, FontSize -> Scaled[0.07]], {1.4, 0, 0}],
Text[Style["y", Red, FontSize -> Scaled[0.07]], {0, 1.4, 0}],
Text[Style["z", Red, FontSize -> Scaled[0.07]], {0, 0, 1.4}]
}, mat
]
}’
Boxed -> False,
Axes -> Nonme,
ViewPoint -> {3, 1.5, 1.5},
SphericalRegion -> True,
ImageSize -> 200, ImageMargins -> O, ImagePadding -> O, PlotRangePadding -> Nome],
axes[1.6, 1.6, 1.5, 0.1, 0.04]];

pl = Grid[{

{Style["+45 around fixed z", Bold, 14], Style["after rotation ", Bold, 14], Style["Final rotation m

{
show[rotZ[0], makeCurvedArrow[.5, "z", 1], Truel,
show[rotZ[45 Degreel],
MatrixForm[N@rotZ[45 Degree]]
}
}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray
]

p2 = Grid[{

{Style["30 around current x", Bold, 14], Style["after rotation ", Bold, 14],
Style["Final rotation matrix", Bold, 14]},

{
show[rotZ[45 Degree] , makeCurvedArrow[.5, "x", 1], Falsel,
show[rotZ[45 Degree] .rotX[30 Degreel],
MatrixForm[N@rotZ[45 Degree] .rotX[30 Degree]]
}}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray

]

p3 = Grid[{

{Style["-45 around fixed z", Bold, 14], Style["after rotation ", Bold, 14],
Style["Final rotation matrix", Bold, 141},

{
show[rotZ[45 Degree] .rotX[30 Degreel, makeCurvedArrow[.5, "z", -1], Truel,
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degreel],
MatrixForm[NOrotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree]]
}}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray

]

p4 = Grid[{

{Style["+90 around current y", Bold, 14], Style["after rotation ", Bold, 14], Style["E
{
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree], makeCurvedArrow[.5, "y", 1], E
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degreell,
MatrixForm[N@rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degree]]
}}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray

]

p5 = Grid[{
{Style["-30 around fixed x", Bold, 14], Style["after rotation ", Bold, 14],

inal rotation

alse],
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Style["Final rotation matrix", Bold, 14]},
{

show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degree], makeCurvedArrow[.5, "x", -1
show[rotX[-30 Degree] .rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degreel],
MatrixForm[Chop [N@rotX[-30 Degreel] .rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degreel .rotY[90 Degree
}
}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray]
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