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0.1 Problem 1
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Problem 1

Download the ANSYS input file “/DOF _spring mass-problem_18p1.txt” from Canvas and step
through the ANSYS tutorial “Intro to ANSYS modal analysis” that is also posted to Canvas.
Using the parameters defined in the text file, analytically determine the natural frequency of the
1 degree of freedom system. Show your work for this calculation and then compare the
analytical and finite element results. And then answer the following questions:

a) Does ANSYS provide the frequency (f) or the circular frequency (@)?

b) Can we verify the amplitude of displacement shown on Slide 10 of the “Intro to

ANSYS modal analysis” slides? Why or why not?

The input file to ANSYS is given to us in plain text file as the following

/filnam, 1DOF_spring_mass

/title, 1 Degree of freedom spring mass example

/prep7

!element type

et,1,mass21 !element type no.l is mass21

et,2,combinl4 lelement type no.2 is combination 14 (this is a spring el
! model parameters

mass = 10 ! mass of mass element

k =10 ! spring stiffness

initial 1 = 2 ! initial spring length (equilibrium length)

n_modes = 1 ! number of modes wanted

!real constants

r,1,mass ! real constant set 1 is for the point mass
r,2,k,,,,,initial_1 ! real constant set 2 is for the spring

!create nodes

n,1,0,0,0 ! Node 1 is at x=0, y=0, z=0

n,2,initial_1,0,0 ! Node 2 is at x=initial_ 1, y=0, z=0

!create elements

type,2 ! specify element type of subsequently defined elements
real,?2 ! specify real constant set of subsequently defined elen
e,1,2 ! define element to start at node 1 and end at node 2
type,1 ! specify element type of subsequently defined elements
real,l ! specify real constant set of subsequently defined elen
e,2 ! define element to be created at node 2

!displacement boundary conditions

nsel,s,loc,x,0 !select node at x = 0

d,all,ux,0 'displacement of selected node in x-dir is O
d,all,uy,0 'displacement of selected node in y-dir is O
d,all,uz,0 !displacement of selected node in z-dir is O
nsel,s,loc,x,initial_1 !select node at x = initial_1l

d,all,uy,0 !displacement of selected node in y-dir is O
d,all,uz,0 'displacement of selected node in z-dir is O

allsel

finish

/solu !'select static load solution

antype,modal

modopt,lanb,n_modes

solve

lement)

nents

nents
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finish
/post1l

011 Part (1)

For a mass-spring system the equation of motion is
¥+ w2x =0

Where w, = \/g = % = 1 rad/sec. Since w, = 2nf,, hence f, = ;U—; = i = 0.1592 Hz.

Therefore the frequency given by ANSYS is in Hz and not the circular frequency rad/sec.

0.1.2 Part (2)

Unable to verify this result. At first I thought ANSYS uses gravity and the spring is verti-

cally connected, therefore the static displacement would be

W
Xst = m
Where W is the weight attached to end of spring. But this gives x; = — = s g. And

k 10
depending on units used (ANSYS do not use units and assumes that the input is using

correct units), then value shown which is 0.316228 should be numerical value of g. But this
would not be valid number using any units. Unable to find out how ANSYS came up with
this value.

0.2 Problem 2

Problem 2

Derive the equation of motion and find the steady-state response {{7)} of the system shown
below for rotational motion about the hinge O for the following data: k; = k, = 5000 N/m, a =
025m,5=0.5m,/=1m, M=50kg, m=10kg, F,=500 N and @= 1000 rpm. Give the steady-
state response in the simplest form possible.

/ F(t) = Fysin ot
Uniform rigid bar, mass m k, l
Let—-——+-2 = - M
o L ]
ky
AANNN
S——

The free body diagram and the inertial diagram are given below. It is assumed that motion
is measured from equilibrium position with the mass already in attached to springs. Hence
the weight of the beam do not show up in the FBD.

Ibea'mé = %mLQH

-~ k2b0

ML20

s

Inertial
Fj sin(wt)



Taking moments around hinge at point o and using anti-clockwise as positive gives (assum-
ing small angle 0)

1
kl (ﬂ@) a+ k2 (b@) b- FO sin (a)t) L=- (gmLz + MLZ) 0

1 )
(gmLZ + MLZ) 0 + 6 (kya? + kyb?) = Fosin (o)L

In standard form, the above becomes

MegO + kog® = Fosin wt

Where
k
Mg
_ k]ﬂz + kzbz
L2 (%m + M)

This model is single degree of freedom system, undamped, with forced input. Hence we
know its solution is given by

0(t) =0,t)+06,()
Where 0, (t) is particular solution and 0, (t) is homogenous solution. We know that
0}, (t) = ¢1 cos w,t + ¢y sin w,,t

And assuming 0, (f) = Xsinwt. Now we need to check if w # w, so to decide on which
solution to pick. Using the numerical values given

keq = klllz + kzbz

= (5000) (0.25)* + (5000) (0.5)

=1562.5 N/m
And
_ 21
Meq =L gm +M
2 ((1
=) ((5) (10) + 50)
= 53.333 kg
Hence

keq 1562.5
_ | = 5.413rad/
“n=\M,, ~ V53333 racmee

But the forcing frequency is given as
27\ (min

271
w =1000 — || ——] =1000( — | = 104.72 rad/sec
rev 60 60

. [
Hence w # w,,. We also see w > w,, which means » > 1 where r = —, 80 we also expect that

particular solution displacement maximum displacement to be negative. Now we use the
standard solution, which is

0, (t) = Xsinwt



Where
F
X = 0
Keg = Mg
_F 1
meq 1 2
Meq
_F 1
B Mgy W7 — W?
_F 1
- Mogw?3 w )2
()
Fo 1

T

Calling :7} = r, which is the standard notation and since kF—O = x4 the static deflection, then

eq
the above becomes
Xt

1-72

We notice again, since r > 1 in this problem, then X is negative. It is out of phase with the

forcing function. The particular solution can now be written as
0, (t) = Xsinwt

Xt .
sin wt

Tl
And the total solution is

articular
homogeneous ,p_,—

B X .
O (t) = c1 cos wyt + ¢y sin w, t + 1—St 5 sinwt
r

Assuming initial conditions are 0 (0) = 6, 0 (0) = Oy, then (1) at ¢t = 0 becomes

O =1

Hence solution becomes

. xst .
0 (t) = 6y cos w,t + cp sin w,t + 125 wt
r

Taking derivative

) X
0’ (t) = w,,0p sin w,t + w,cy cos w,t + wl—Stz cos wt
—r
At t =0 the above becomes
xst

1-1r2

60 = wy,C +w

Hence
90 W Xgt

G=——-—

w, w,1-712
_90 r X
= X

w, 1-r27°

Therefore the solution now becomes (again, this is for v # w,)

homogeneous

particular
. P S
o) =0 pe(L T i t+( Xt ) t
= COS w — - —=X S1n @ S1n @
0 " \w, 1-127 " 1-12

1)

(2)

The problem now asks for steady state solution. It is not clear to me what is this meant to
be, since there is no damping in the system, and hence the full solution remain for all time.
Therefore, will show the full solution (using zero initial conditions) and will also show the

particular solution.

This is a plot of the full solution, assuming that all initial conditions are zero. Therefore,

this is a plot of this solution

: (Fo
sinwy,t + | —

F
o) =~ keg 112

0 r
keg1-12

)sina)t



Obtained from (2) by setting 6y = 0,0, = 0

500 3.5744 ) 500 1 .
5625 (1 .57 4)2) sin (5.413t) + (1562.5 (1 G 4)2 )) sin (104.72¢)
— 0.09713 sin (5.413¢) — 0.0272 sin (104.72f)

o) =-

Here is a plot of the full solution for the first 1 second

5= x[t_] :=0.09713Sin[29.297 t] - ©.0272Sin[104.72 t];
p = Plot[x[t], {t, @, 1}, Frame -» True,
FrameLabel - { {"solution", None}, {"t (sec)", "Full solution for zero initial conditions"}},
BaseStyle -» 12, GridLines - Automatic, GridLinesStyle - LightGray]

Full solution for zero initial conditions
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The particular solution (steady state?) is

X
6, (1) = ] Strz sin wt

= 0.0272 sin (104.72f)

Here is a plot of the particular solution for the first 0.25 second

61= xX[t_] :=-0.0272Sin[104.72 t] ;
p = Plot[x[t], {t, @, .25}, Frame - True,
FrameLabel » { {"solution"”, None}, {"t (sec)", "Steady state solution"}}, BaseStyle -» 12,
GridLines - Automatic, GridLinesStyle - LightGray]

Steady state solution
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0.3 Problem 3

Problem 3

A spring-mass system with m = 10 kg and £ = 5000 N/m is subjected to a harmonic force of
amplitude 250 N and frequency . If the maximum amplitude of the mass is observed to be 100
mm, find the value of @.



The equation of motion (assuming sin (wt) for the force) i

mX + kx = Fy sin (wt)

Where k = 5000 N/m, m =10 kg, Fy = 250 N. We know the solution to the above is given
by (but we here have to assume that v # w,)

homogeneous particular

—
r . Xst .

- mxst Sin wnt + 1 > sin wt

X
x (t) = xg cos w,t + (—0

n

Looking now at only the steady state solution (in this case, it is the particular solution)
then we see that

X
Xos (1) = (1 _Strz) sin wt

Hence maximum is
xst

1-12

F
we are told that x,,,, = 0.1 meter, and . But r = = and x, = 70 Therefore the above

Un

Xmax (t) =

becomes

Xmax = 5 ————5
T
Wn

In the above equation everything is known except for w. Solving for w gives
) -5
1-[=| =
wl’l kxmax
2 -5
—| =1-
a)l"l kxmax

Fo
=11- 2
( kxmax) a)n

But w, = \/g, hence

_ [k, _Fo
YN KXo

/500
10 (5000) (0. 1))

= 22.361V0.

=15.812 rad/sec

Substituting numerical values

1The general solution changes depending on if the forcing function is sin or cos. But the particular
solution is the same.
ODE ‘ solution

mX + kx = Fycos wt x(t)—(xo—ﬁ)coswt+—smw”t+ rzcosa)t

miX + kx = Fgsinwt | x(f) = xy cosw,t + (—) - ﬁ%t) sin w,t + # sin wt
Wy ~ -
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