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HW 5, ME 440 Intermediate Vibration, Fall 2017

Nasser M. Abbasil

December 30, 2019

Problem 1

The stepped cylinder is connected to a spring of stiffness k> and an inextensible cable. The other end of the
inextensible cable is attached to mass m;. The stepped cylinder rolls without slip on the fixed surface. The
mass m; rolls on 2 massless cylinders. Assume the system will be limited to small displacements. The total
mass of the stepped cylinder is m, and it’s mass moment of inertia about point O is /.

a) In preparation for using Newton’s Second Law, sketch the free-body diagram(s) and inertial diagram for this
system.

b) Using Newton’s Laws exclusively, determine the differential equation of motion for small angular
oscillations of the mass m; (in terms of the generalized coordinate x).

Problem 2

Repeat Problem 1 but use 7, = U, to find the natural frequency of the system.

0.1 Problem 1

0.1.1 Part (A)

We start by assuming motion to the right, such that the small disk m, rotates clockwise as
shown below. So the k, spring is stretched by amount a6 which come due to pure rotation,
and it also stretch by r0 due to disk translation to the right at same time, therefore the
spring k; will stretch by amount (a + r) 6 and the k; spring will be compressed by amount
x.

Therefore total extension of
spring ko is the sum of these
/' two extensions, which is
this part of spring extension (a+r)0
comes from disk pure
rotation
a
this part of spring extension
U comes from disk translation
to the right
spring

H
k1

m A
OO

stretched spring

compresse
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Based on the above, the following is the free body diagram for m, and m; and the cor-
responding kinematic diagrams. This assumes small angle 0 and that springs remain
straight.

ka(a+71)0 %

T kix
FBD <+ mi 417 FBD
C )/T i (@]
Ny m1g
mi
mi —
Inertia

Inertia

0.1.2 Part (B)

Since cable is inextensible, then the constraint is that x = r@. Starting from the FBD for m,

Z F, =mX
=T — kix = myX
mx +kyx=-T (1)
We do not need to resolve forces in vertical direction, since no motion is in that direction.
To find T, which is the tension in cable, we go back to m, and find T.

We can do this part in two ways, either by taking moments around the instantaneous center
of zero velocity which is point D at bottom of the small cylinder shown in the diagram, or
we can take moments around the C.M. of the disk and then use another equation to solve
for the friction F. We will show both methods, and that they give the same result.

Method one, using instantaneous center of zero velocity

Take moments around point D as shown in figure in order to not have to account for the
friction force F and the N, force on m;, and using positive as anti-clockwise gives

EMD = —IDé

parallel axes
———

kz(a+r)6(a+r)—Tr:—(Io+m2r2)6
. ky (a+r)26+(10+m2r2)9

r

But due to constraint, then 6 = ;, 0 = J—; Hence the above can be written as

kzj—; (a+77°+ (Io + mzrz)

¥
7

;
_ xky(a+ r)? . (Io + m2r2) X

72 72

(2)
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Substituting (2) into (1) gives
. xky (a + r)2 I, + mpr?) &
m1x+k1x:—( 2,,2 +( " )
L+ myr?) & k (2 + 1)
mx + —( 2 rzz ) + kyx + Xalevn 2(1:2 N =0
I+ m,r? ko (2 + 1)?
r r
(i + (Io + 771272) kir? + ko (a + 1)
X > +x > =0
r r
Hence
X (m1r2 + (IO + mzrz)) +x (klr2 +ky(a+ r)z) =0
In standard form
ki + ko (a + 1) B )
r2(my +my) +1,
Or
¥+ w2x=0
Where

Pk tk @)
2 (my +my) + 1,

2
n

Method two, moments around center of mass

Using this method. We start by taking moments around the center of mass of the disk m,
and using positive as anti-clockwise gives

MM, =-1,0
(ky (a+71)0)a—Fr=-1,0

F= % (1,0 + (ky (a + 1) 0) ) (4)
Now resolving forces in the x direction for m,, gives (with positive to the right)
D Fy =myrb
T—-ky(a+1r)0—F =myr0 (5)

Plugging (4) into (5) gives T

T—kz(a+r)9—%(Ioé+(k2(u+r)9)a) = m,rf
Solving for T gives

T = mzré+%(109+(k2(a+r)9)a) +ky(a+71)0

We now use the constraint that x = r0 to write everything in x. Hence 0 = %, 0= ; and the
above now becomes

. 1 s
T:mzrf+—(IOE+(kz(a+r)f)a)+k2(a+r)f
r r r T r
1
:m2x+r—2(10x+(kz(a+r)x)a)+k2(a+r)§

Now that we found T, we go back to the equation of motion for m; in (1) and substitute
the above into it, the result becomes

mlbt + klx =-T

:—(m25€+:—Z(Iojé+(k2(a+r)x)a)+k2(a+r)§)
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Collecting terms

I 1
x(ml+m2+—g)+k1x+—2((k2(a+r)x)a)+kz(a+r)f:o
T T r

I 1
X(ml+m2+r—g)+x(k1+r—2(k2(a+r)a)+k2(a+r)— =0

Or
X (r2 (my + my) + 10) +x (rzkl +ky(a+ r)z) =0

Pk +ky(a+1)°
r2(my +my) +1,

Which is the same equation of motion found in the first method.

0.2 Problem 2

In Rayleigh energy method, we ignore any friction, and assume motion is simple harmonic
motion (which is valid, since there is no damping).

The Kinetic energy T of the system is (since disk rolls with no slip)

disk cart

1 .
T = 51092 + Emzvgg + Emljcz
But v, = 10, hence the above becomes
1. ., 1 N2 1
T= 51082 + En’lz (1’9) + Emlxz
But due to constraint, then 6 = ;, then 6 = % and the above becomes
1oy 1 i\ 1
T=2I, (—) + —my (r—) + —myi?
2 7 \r 2 r 2
1.2 1, 1
= 5107—2 + EH’ZZX + Emlx
1 I
2|2+ my+m 1
> (r2 2 + 1M @)

The potential energy is

1 1
U= ky((a+7) 0)* + Eklxz

1 x\? 1
= Ekz ((ﬂ + 1’) ;) + Eklxz

1 ¥ 1
= Ekz (ﬂ + 7")2 r—z + Ek]xz (2)

To find T« and U,,,y, we now assume m; undergoes simple harmonic motion given by
x (t) = Xppax Sin (w,,t). Hence x = X, @, cos w,t. Therefore
¥max = Xmax@n

xmax = Xmax
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Therefore using these into (1) and (2) gives

1 LI
Tmax = E (xmax) (1’_; +my + ml)

1 X2 1
umax = EkZ (El + r)Z mza + Eklxmax
Or
1 I
Tmax E (Xmaxc‘)n)2 (7’_; +my + ml)
1 ky (a + r)2
Umax = 7 Iznax( 1’2 + kl
Hence

Tmax = umax

1 o1 1 ky (a + 1)
5 (Ximax®n) (r_; + My + m1) = EXIZnaX (r—z +kq
I ko (a + 1) + 1%k
w,%(r—;+m2+m1): 2( r)z 1
Solving for w?
,  ka(a+1*+7k
"L+ 12 (my + my)
Therefore the equation of motion for m; is
¥+wix=0

ky(a+r)+r%k
L +12(my+my)

Comparing this to the solution found in first problem, we see they are the same. The
Rayleigh energy method was much simpler in this case. But we have to ignore any friction,
and assume motion is harmonic, which is reasonable, since this is single degree of freedom
system.
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