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0.1 Problem 1

The before and after impact diagram is
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v+By
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v0 sinβ

v0 cosβ

Along the 𝑦 direction

𝑚𝐴𝑣0 cos 𝛽 = 𝑚𝐴𝑣+𝐴𝑦
+ 𝑚𝐵𝑣+𝐵𝑦

−𝑒 = −1 =
𝑣+𝐴𝑦

− 𝑣+𝐵𝑦
𝑣−𝐴𝑦

− 𝑣−𝐵𝑦
=

𝑣+𝐴𝑦
− 𝑣+𝐵𝑦

𝑣0 cos 𝛽

These are 2 equations with 2 unknowns 𝑣+𝐴𝑦
, 𝑣+𝐵𝑦. From the second equation

−𝑣0 cos 𝛽 = 𝑣+𝐴𝑦
− 𝑣+𝐵𝑦 (1)

1

mailto:nma@12000.org


2

Substituting this in the first equation (and canceling the mass since they are the same),
gives

−𝑣+𝐴𝑦
+ 𝑣+𝐵𝑦 = 𝑣+𝐴𝑦

+ 𝑣+𝐵𝑦
𝑣+𝐴𝑦

= 0

Therefore from (1)

𝑣+𝐵𝑦 = 𝑣0 cos 𝛽

= 9 cos �45 � 𝜋
180

��

= 6.364 m/s

Along the 𝑥 direction, since this is perpendicular to the line of impact then we know that

𝑣+𝐴𝑥
= 𝑣−𝐴𝑥

= 𝑣0 sin 𝛽 = 9 sin �45 �
𝜋
180

�� = 6.364 m/s

𝑣+𝐵𝑥 = 𝑣−𝐵𝑥 = 0

Hence velocity of 𝐵 is

𝑣̄𝐵 = 0 ̂𝚤 + 6.364 ̂𝚥

And velocity of 𝐴 is

𝑣̄𝐴 = 6.364 ̂𝚤 + 0 ̂𝚥

0.2 Problem 2

The before and after impact diagram is
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Along the 𝑥 axis, the conservation of linear momentum gives

𝑚𝐴𝑣−𝐴 cos𝛼 − 𝑚𝐵𝑣−𝐵 cos 𝛽 = 𝑚𝐴𝑣+𝐴𝑥
+ 𝑚𝐵𝑣+𝐵𝑥

(1.48) (26.7) cos �45 � 𝜋
180

�� − (2.75) (22.6) cos �15 � 𝜋
180

�� = (1.48) 𝑣+𝐴𝑥
+ (2.75) 𝑣+𝐵𝑥

−32.09 = (1.48) 𝑣+𝐴𝑥
+ (2.75) 𝑣+𝐵𝑥 (1)

And

−𝑒 =
𝑣+𝐴𝑥

− 𝑣+𝐵𝑥
𝑣−𝐴𝑥

− 𝑣−𝐵𝑥

−0.58 =
𝑣+𝐴𝑥

− 𝑣+𝐵𝑥
𝑣−𝐴 cos𝛼 + 𝑣−𝐵 cos 𝛽

−0.58 =
𝑣+𝐴𝑥

− 𝑣+𝐵𝑥
(26.7) cos �45 � 𝜋

180
�� + (22.6) cos �15 � 𝜋

180
��

−0.58 =
𝑣+𝐴𝑥

− 𝑣+𝐵𝑥
40.71

−23.612 = 𝑣+𝐴𝑥
− 𝑣+𝐵𝑥 (2)

Now 𝑣+𝐴𝑥
, 𝑣+𝐵𝑥 is solved for using (1),(2). From (2) 𝑣+𝐴𝑥

= −23.612 + 𝑣+𝐵𝑥, substituting this in
(1) gives

−32.09 = (1.48) �−23.612 + 𝑣+𝐵𝑥� + (2.75) 𝑣+𝐵𝑥
−32.09 = −34.945 + 4.23𝑣+𝐵𝑥

𝑣+𝐵𝑥 =
−32.09 + 34.945

4.23
= 0.675 m/s

From (2)

𝑣+𝐴𝑥
= −23.612 + 0.675
= −22.937 m/s

Now we do the same for the 𝑦 direction. But along this direction we know that

𝑣+𝐴𝑦
= 𝑣−𝐴𝑦

= 𝑣−𝐴 sin𝛼

= (26.7) sin �45 �
𝜋
180

��

= 18.88 m/s

And

𝑣+𝐵𝑦 = 𝑣−𝐵𝑦
= −𝑣−𝐵 sin 𝛽

= (−22.6) sin �15 �
𝜋
180

��

= −5.849 m/s

Therefore, after impact

𝑣̄𝐴 = −22.938 ̂𝚤 + 18.879 ̂𝚥
𝑣̄𝐵 = 0.675 ̂𝚤 − 5.849 ̂𝚥
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0.3 Problem 3

Using

𝜏 = 4𝐼𝜃̈

Where 𝜏 is applied torque and 𝐼 is mass moment of inertia around the spin axis of one

blade (we have 4). But 𝐼 = 𝑚 �𝐿
2
�
2
= 𝑚𝐿2

4 , since blade is modeled as point mass. Therefore

𝜃̈ =
𝜏

4𝑚𝐿2

4

=
𝛽𝑡
𝑚𝐿2

But 𝜃̈ = 𝑑
𝑑𝑡 𝜃̇, then the above becomes

𝑑
𝑑𝑡
𝜃̇ =

𝛽𝑡
𝑚𝐿2

𝑑𝜃̇ =
𝛽𝑡
𝑚𝐿2

𝑑𝑡

�
𝜃̇𝑓

0
𝑑𝜃̇ =

𝛽𝑡
𝑚𝐿2 �

10

0
𝑡𝑑𝑡

𝜃̇𝑓 =
𝛽

𝑚𝐿2 �
𝑡2

2 �
10

0

=
𝛽

2𝑚𝐿2
100

=
(63)

2 (89) (4.5)2
100

= 1.748 rad/sec
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0.4 Problem 4

The angular momentum ℎ̄ is the moment of the linear momentum. The linear momentum
is 𝑚𝑣̄. Using radial and tangential coordinates, then

𝑚𝑣̄ = 𝑚 �𝐿𝜃̇𝑢̂𝜃 + 0𝑢̂𝑟�

Therefore

ℎ̄ = 𝑟̄ × 𝑚𝑣̄
= 𝐿𝑢̂𝑟 × 𝑚𝐿𝜃̇𝑢̂𝜃

=
�

�

𝑢̂𝑟 𝑢̂𝜃 𝑘̂
𝐿 0 0
0 𝑚𝐿𝜃̇ 0

�

�

= 𝑘̂𝑚𝐿2𝜃̇ (1)

The above is what we want. But we need to find 𝜃̇. Taking time derivative of ℎ̄ gives
𝑑
𝑑𝑡
ℎ̄ = 𝑘̂𝑚𝐿2𝜃̈

But 𝑑
𝑑𝑡 ℎ̄ is the torque 𝜏, which we can see to be

𝜏 = −𝑚𝑔𝐿 sin𝜃

The minus sign, since clockwise. Using the above 2 equations, then we write

−𝑚𝑔𝐿 sin𝜃 = 𝑚𝐿2𝜃̈

𝜃̈ = −
𝑔
𝐿

sin𝜃 (2)

To integrate this, we need a trick. Since

𝜃̈ =
𝑑
𝑑𝑡
𝜃̇

= �
𝑑
𝑑𝜃

𝑑𝜃
𝑑𝑡 �

𝜃̇

= �
𝑑
𝑑𝜃

𝜃̇� 𝜃̇

= 𝜃̇
𝑑𝜃̇
𝑑𝜃

Then (2) becomes

𝜃̇
𝑑𝜃̇
𝑑𝜃

= −
𝑔
𝐿

sin𝜃
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Now it is separable.

𝜃̇𝑑𝜃̇ = −
𝑔
𝐿

sin𝜃𝑑𝜃

�
𝜃̇

0
𝜃̇𝑑𝜃̇ = −

𝑔
𝐿 �

𝜃

330
sin𝜃𝑑𝜃

𝜃̇2

2
= −

𝑔
𝐿
(− cos𝜃)𝜃330

𝜃̇2

2
=

𝑔
𝐿
�cos𝜃 − cos 330�

𝜃̇ = ±
�

2𝑔
𝐿

�cos𝜃 − cos 330�

All this work was to find 𝜃̇. Now we go back to (1) and find the angular momentum

ℎ̄ = 𝑘̂𝑚𝐿2𝜃̇

= ±𝑘̂
�

2𝑔
𝐿

�cos𝜃 − cos 330�𝑚𝐿2

= ±𝑘̂�2𝑔𝐿3 �cos𝜃 − cos 330�𝑚

= ±𝑘̂
�

2𝐿3

𝑔
�cos𝜃 − cos 330�𝑊

Substituting numerical values

ℎ̄ = ±𝑘̂1.8
�

2 (5.3)3

(32.2)
�cos𝜃 − cos �33 � 𝜋

180
���

= ±𝑘̂1.8�9.247 (cos𝜃 − 0.839)

= ±𝑘̂1.8√9.247�(cos𝜃 − 0.839)

= ±5.474�(cos𝜃 − 0.839)𝑘̂

0.5 Problem 5
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There is no external torque, hence angular momentum is conserved. Let ℎ̄1 be the angular
momentum initially and let ℎ̄2 be angular momentum be at some instance of time later on.
Therefore

ℎ̄1 = 𝑟̄1 × 𝑚𝑣̄1
= 𝑟0𝑢̂𝑟 × 𝑚 (𝑟0𝜔0𝑢̂𝜃)

=
�

�

𝑢̂𝑟 𝑢̂𝜃 𝑘̂
𝑟0 0 0
0 𝑚𝑟0𝜔0 0

�

�

= 𝑚𝑟20𝜔0𝑘̂

And at some later instance

ℎ̄2 = 𝑟̄2 × 𝑚𝑣̄2
= 𝑟𝑢̂𝑟 × 𝑚 (𝑟̇𝑢̂𝑟 + 𝑟𝜔𝑢̂𝜃)

=
�

�

𝑢̂𝑟 𝑢̂𝜃 𝑘̂
𝑟 0 0
𝑚𝑟̇ 𝑚𝑟𝜔 0

�

�

= 𝑚𝑟2𝜔𝑘̂

Equating the last two results gives

𝑚𝑟20𝜔0 = 𝑚𝑟2𝜔

𝜔 = �
𝑟0
𝑟
�
2
𝜔0 (1)

Now the equation of motion in radial direction is 𝐹 = 𝑚𝑎𝑟, but 𝐹 = 0, since there is no force
on the collar. Therefore

𝑚𝑎𝑟 = 0

𝑚 �𝑟̈ − 𝑟𝜔2� = 0
𝑟̈ = 𝑟𝜔2

Using (1) in the above

𝑟̈ = 𝑟 ��
𝑟0
𝑟
�
2
�
2

𝜔2
0

𝑟̈ =
𝑟40
𝑟3
𝜔2
0

But 𝑟̈ = 𝑟̇𝑑𝑟̇𝑑𝑟 , hence the above becomes

𝑟̇𝑑𝑟̇ =
𝑟40
𝑟3
𝜔2
0𝑑𝑟

Now we can integrate

�
𝑟̇

0
𝑟̇𝑑𝑟̇ = �

𝑟

𝑟0

𝑟40
𝑟3
𝜔2
0𝑑𝑟

𝑟̇2

2
=

1
2
𝜔2
0𝑟40 �

−1
𝑟2 �

𝑟

𝑟0

=
1
2
𝜔2
0𝑟40 �

1
𝑟20

−
1
𝑟2 �

Therefore

𝑟̇ = 𝜔0𝑟20
�
�
1
𝑟20

−
1
𝑟2 �

To find 𝑟̇ when it hits the end, we just need to replace 𝑟 by 𝑟0 + 𝑑 in the above

𝑟̇𝑒𝑛𝑑 = 𝜔0𝑟20
�

1
𝑟20

−
1

(𝑟0 + 𝑑)2
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Numerically the above is

𝑟̇𝑒𝑛𝑑 = (1.6) (0.5)2

�
�

1
(0.5)2

−
1

(0.5 + 1.9)2
�

= 0.782 m/s

0.6 Problem 6

Using

ℎ̄1 +�
𝑡

0
𝜏𝑑𝑡 = ℎ̄2

Where ℎ̄1 is initial angular momentum which is zero, and ℎ̄2 is final angular momentum
which is 𝐼𝜔𝑓 where 𝐼 = 2𝑀𝑅2 where 𝑀 is mass of large ball and 𝐼 is the mass moment of
inertial of the large ball about the spin axis.

But torque 𝜏 = 𝐼2𝜃̈ where 𝐼2 = 2 �𝑚𝑟2� where 𝑚 is mass of each small ball and 𝐼2 is the mass
moment of inertial of the small ball about the spin axis. Hence the above becomes

�
𝑡

0
𝜏𝑑𝑡 = ℎ̄2

2 �𝑚𝑟2� 𝜃̈�
𝑡

0
𝑑𝑡 = ℎ̄2

Since 𝜃̈ is constant. Hence

2 �𝑚𝑟2� 𝜃̈𝑡 = 2𝑀𝑅2𝜔𝑓
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Solving for final angular velocity

𝜔𝑓 =
2 �𝑚𝑟2� 𝜃̈𝑡
2𝑀𝑅2

=
2 � 4.3

32.2
� (0.75)2 (4.7) (12)

2 � 172
32.2

� (3.7)2

= 0.05793 rad/sec
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