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0.1 Problem1

The disk D, which has weight F¥" , mass center G coinciding with the disk's geometric center,

and radius of gyrationk ¢, is at rest on an incline when the constant moment M is applied to

it. The disk is attached at its center to a wall by a linear elastic spring of constait The spring

is unstretched when the system is at rest. Assuming that the disk rolls without slipping and

that it has not yet come to a stop, determine the angular velocity of the disk after its cent&
has moved a distanced down the incline. After doing so, using k =4 1b/ft, R = 1.4 ft, B =10
Ib, and# = 28°, determine the value of the moment M for the disk to stop after rollingd; =4

ft down the incline.
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Free body diagram is


mailto:nma@12000.org

Method one, using work-energy

Applying work energy
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But T; = 0 and U; = 0 (using initial position as datum).
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Where d is distance travelled (since no slip, we use d = RO).
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Hence choice B. Plug-in numerical values gives k = 4,R =14,W =10,0 = 280, and since
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Liisk = %mR2 = mk% then k2 = R? = % = 0.98, then (2) becomes for v =0
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0 = 1.047V5.714 M — 26.442

Solving for moment M gives

M =4.627 ftlb
Method two, using Newton methods

Y. F, gives (where positive x is as shown in diagram, going down the slope).

Wsin 0 — kx — F = mx = mRO (1)
Taking moment about CG of disk. But note that now anti-clock wise is negative and not
positive, due to right-hand rule)
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From (2) we solve for F and use (1) to find 6. From (2)
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The above shows that 0 is not constant. To find @ we need to integrate both sides. Since
dw dw dx dw

O=—=—== —Rw then the above can be written as
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Compare (4) to (2) in first method, we see they are the same.

0.2 Problem 2

The uniform thin pin—connected bars 4B, BC, and CD have masses m 4 g = 2.2 Kg,
mpc =3.4 kg, and m - p = 5.2 kg, respectively. Letting R =0.76 m. L = 1.2 m, and

H =1.54 m, and knowing that bar 4B rotates at a constant angular velocity
® 4 g = 3 rad/s, compute the angular momentum of bar 4B about 4, of bar BC about A4,

and barCD about D at the instant shown.
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=2.119 kg m%/s

For bar BC, it has zero wgpc at this instance. Therefore the only angular momentum comes
from translation. WHich is

hpc = mBCvch

But v, for bar BC is Rwp, hence



hpc = mpcR2w 3
= (3.4) (0.76)* (5)
=9.819 kg m/s

Finally, for bar DC, since it point C moves with speed v = Rw 45, then
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=10.143 kg m%/s

0.3 Problem 3

A rotor, B, with center of mass G, weight ¥ = 3,400 Ib, and radius of gyration k=151 ft
is spinning with an angular speed ofo g = 1,150 rpm when a braking system is applied to it,
providing a time—dependent torqueM = M (1 + ct). with My =3.400 ft-Ib and

¢ =0.012 s_l. If G is also the geometric center of the rotor and is a fixed point, determine the

time, 7, that it takes to bring the rotor to a stop.
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Hence
2m 3400 0.012
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120.428 = 0.141 (£, + 0.00612)
Solving

t; = 302.763 seconds

Another way to solve this is to use conservation of angular momentum.
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Which is the same as (1).

0.4 Problem 4

83 BB 88 88 38 §3 B8 38 :L

i3 A8 99 8% 48 17 HE 84

A crate, 4, with weight # 4 = 325 1b is hanging from a rope wound around a uniform drum,
D, of radius » = 1.2 ft, weight Fp =117 Ib, and center C. The systems is initially at rest

when the restraining system holding the drum stationary fails, thus causing the drum to
rotate, the rope to unwind, and, consequently, the crate to fall. Assuming that the rope does
not stretch or slip relative to the drum and neglecting the inertia of the rope, determine the

speed of the crate2.5 s after the system starts to move.

It is easier to solve this using conservation of angular and linear momentum. There are
two bodies in this problem. One has angular momentum and the second (cart) has linear
momentum. So we need to apply
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Where p = mv, the linear momentum. The above is applied to the cart. And also apply

t
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Where h = lw, the angular momentum, and this is applied to the drum. Using the above
two equations we will find final velocity of cart. We break the system to 2 bodies, using

free body diagram. Let tension in cable be T. And since in state (1), v4 = 0, then equation
(1) becomes
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In the above, K (T — Wy)dt is the impulse, and v, is the final speed we want to find. We
do not know the tension T.

Equation (2) becomes (h; = 0, since drum is not spining then)

t
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Where T7 is the torque, caused by the tension T in cable. But v4 = —rwp, where the minus
sign since it is moving downwards. Hence the above becomes
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= —68.22 ft/sec



0.5 Problem 5
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A toy helicopter consists of a rotor, .4, with diameter 4 = 11.7 in. and weight
W = 0.090 x llIl_3 o0z, a thin body, B, of length / = 14.3 in. and weight
Wp=0.139 x 1{]_3 oz, and a small ballast, C, placed at the front end of the body with weight

W= 0.0683 x 10_3 oz. The ballast's weight is such that the axis of rotation of the rotor goes
through G, which is the center of mass of the body and ballast. While holding the body (and
ballast) fixed, the rotor is spun as shown witlw g = 170 rpm. Neglecting aerodyvnamic effects,
the weights of the rotor's shaft and the body's tail, and assuming there is friction between the
helicopter's body and the rotor's shaft, determine the angular velocity of the body once the toy
is released and the angular velocity of the rotor decreases td45 rpm. Model the body as a
uniform thin rod and the ballast as a particle. Assume that the rotor and the body remain

horizontal after release.
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