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1 HWI

1.1 Problem 8.2.1 (a,b)

8.2.1. Solve the heat equation with time-independent sources and boundary con-

ditions .
Ou 8u
m = kE;E + Q(z)
u(z,0) = f(z)

if an equilibrium solution exists. Analyze the limits as ¢ — oc. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous
boundary conditions (but do not solve). Assume

*(a) Q(x) =0, u(0,t) = A, gu(L,ty=B
(b) Q(z) =0, gu(0,t) =0, Su(L,t)=B#0
() Q(z)=0, Su0,t)=A#0, (Lt)=4
*(d) Q(z) =k, u(0,t) = A, u(L,t) =B
(e) Q(z) =k, gu(0,t) =0, Su(L,t)=0
(f) Q(z) = sin 3=, gu(0,t) =0, Su(L,t)=0

1.1.1 Part (a)

Let
u(x,t)=ov(x,t) +ug(x) 1)

Since Q (x) in this problem is zero, we can look for ug (x) which is the steady state solution
that satisfies the non-homogenous boundary conditions. (If Q was present, and if it also
was time dependent, then we replace ug (x) by 7 (x, f) which becomes a reference function
that only needs to satisfy the non-homogenous boundary conditions and not the PDE
itself at steady state. In (1) v (x,t) satisfies the PDE itself but with homogenous boundary

conditions. The first step is to find ug (x). We use the equilibrium solution in this case. At
Jug(x,t)
at

2
= 0 and hence the solution is given up _ 0 or

equilibrium 53

up (x) =c1x + ¢

At x =0,up (x) = A, Hence

Cy = A

And solution becomes ur (x) =cix+ A. at x =1L, au;ix) = ¢; = B, Therefore

up(x)=Bx+ A
Now we plug-in (1) into the original PDE, this gives

dv(x,t) L %0 (x, 1) . A%ug (x)
ot ax ax
22ug(x)
But = 0, hence we need to solve
dv(x,t) kBZU (x,1)

at dx

for v (x,t) = u(x,t) — ug (x) with homogenous boundary conditions v (0,t) = 0, aU;Lt’t) =0 and

initial conditions
v(x,0) = u(x,0) - ug (x)
=f(x)—-(Bx+ A)



This PDE we already solved before in earlier HW’s and we know that it has the following
solution

4 (X, t) = i bn sin (\/A_nx) e_kAHt

=135,

2
nrt
A, = (Z) n=1,35,- )

With b, found from orthogonality using initial conditions v (x,0) = f (x) — (Bx + A)

v(x,0) = i bn sin (\/A_nx)

n=1,35,
f (f (x) - (Bx + A)) sin \/ x f bn sin (\/A_nx) sin (\me) dx
0 n=1,35,
f (f () - (Bx + A)) sin (y/A,x) dx = bmE
0
Hence
2 oL
bn:—f (f(x)—(Bx+A))Sin(\/A_nx)dx n=1,3,5,--- (3)
LJy
Therefore, from (1) the solution is
HE(X)
u(x, t) = Z b, sm(\/_x) kA t+Bx+A
n=1,3,5,
With b, given by (3) and eigenvalues /\n given by (2).
1.1.2 Part (b)
Let
u(x,t) =v(x,t)+rx) 1)

Since Q (x) in this problem is zero, we can look for 7 (x), since unique equilibrium solution
is not possible due to both boundary conditions being insulated. The idea is that, if we

can find ur then we use that, else we switch to reference function r (x) which only needs

to satisfy the non-homogenous boundary condition E( )

equilibrium solution. Let

= 0 but does not have to satisfy

r(x) = c1x + cpx?

r
—— =01 +20x
9 2
At x =0, second equation above reduces to
0= Cq

P . B
Hence 7 (x) = c,x%. Now é = 2¢px. At x = L, this gives 2c,LL=B or ¢, = TR therefore

r(x) = —

The above satisfies the non-homogenous B.C. at the right, and also satisfies the homogenous
B.C. at the left. Now we plug-in (1) into the original PDE, this gives

du(x,t) k(&% (x, 1) BzuE (x))

Jt ox ox
dv(x,t) L v (x, t) B
ot ax L
827) (x, 1)
ox k_

Hence

dv(x,t)  d*v(x,t) kB
oy T



We now treat kg as forcing function. So the above can be written as

dv(x,t)  d*v(x,1)
FTERL PR @)

The above is now solved using eigenfunction expansion, since no steady state equilibrium
solution exist. Let

0 t) = D a, (1) Py (%) (3)
n=0

Where the index starts from zero, since there is a zero eigenvalue, due to B.C. being
. . . Jo(x,
Neumann. ¢, (x) are the eigenfunctions of the corresponding homogenous PDE ned) _

ot
2
o) avf;:’t) =0, av{;ﬁ’t) = 0. This we solved before. The eigenfunctions
are

with homogenous BC

¢, (x) = cos (%x)
With eigenvalues
2.2

nem
="
Notice that Ag = 0. Substituting (3) into (2) gives
S S G
5,6 00,0 = (k5 0 252) 4 0
n=0

n=0

n=0,1,2,--

Term by term differentiation is justified, since v (x,t) and ¢, (x) both solve the same ho-

2
mogenous B.C. problem. Since djl)T”z(x) = -A,¢, (x) the above equation reduces to

Z al/’l (t) (Pn (x) = (_k E ay (t) Anan (x)) + Q
n=0 n=0

Now we expand Q, which gives

E 61;1 (t) ¢n (X) =-k E ay (t) Ancpn (X) + Z qnq)n (X)
n=0 n=0 n=0
By orthogonality
ay (£) +kay () Ay = qn

case n =0

ag () + kag (t) Ag = g
But AO =0
ag () = qo
. kB . kB o0 . kB
But since Q = — is constant, then - = 20 TnPn (x) implies that - = Jodo (x). But ¢ (x) =1

for this problem. Hence qq = % and the ODE becomes

kB
4 t -
ay (t) L
Hence
kB
ag (t) = ft +Cq
casen >0

ay () + ka, () Ay = gy
Since all g, = 0 for n > 0 the above becomes

o (8) +ka, (A, = 0
Integrating factor is u = ¢!, Hence % (an (t) ekA"t) =0 or

a, (t) = cpe™ Mt



Therefore the solution from (3) becomes

v(x, t)—lét+cl+c223 cos(\//\_nx)

n=1
Now we find the initial conditions on v (x, t). Since u (x,0) = v (x,0) + r (x) then

B
v(x,0) = f(x)- ixZ

Hence equation (4) at t = 0 becomes

f(x)—%x —c1+c2§:cos(\/_x)

We now find ¢y, ¢, by orthogonality.

casen =10
L B L
L(f(x)—ixz)cos(JTOx)dx:j; clcos(\/A_ox)dx
ButAO:O
L
f (f(x)——x)dx:focldx
f (f(x)——x)dx:clL
Lf (f(x)——x)
case n >0

j;L (f (x) - %g@) cos (\/Ex) dx = jj ) g cos (\/A_nx) cos (mx) dx

L
—CZ

Lf (f(x)——x)cos(\/_x)

Therefore the solution for v (x, t) is now complete from (4). Hence

u(lx,t)=ov(x,t)+r(x)

:kTBt+c1+(c22e cos(\/—x))

n=1
Where cy, ¢, are given by above result. This completes the solution.

1.2 Problem 8.2.2 (a,d)

8.2.2. Consider the heat equation with time-dependent sources and boundary con-

ditions: .
u &%u
5t = ke tQ=1)
u(z,0) = f(z).
Reduce the problem to one with homogeneous boundary conditions if
*(a) 82(0,t) = A(t) and gu(L,t) = B(t)
(b) u(0,t) = A(t) and %(L, t) = B(t)
* (c) gg(o, t)y = A(t) and u(L,t) = B(t)
(d) u0,t) =0 and Su(L,t)+ h(u(L,t) — B(t)) =0

() 2%(0,t)=0 and Se(L,t) + h(u(L.t) - B(t)) =0

(4)



1.2.1 Part (a)

Let
u(x,t)=ov(xt)+r(xt) (1)

Since the problem has time dependent source function Q (x, ) then 7 (x, t) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and v (x, f) has homogenous boundary conditions. The first step
is to find r(x, t). Let

r(x,t) = cq () x + ¢y () x?

Then
or(x,t
Tl 0420, ()
dx
Atx=0
A(t) =cq(t)
And atx=L

B(t) = c; () +2¢, () L

& () = B(t) 2—LC1 (t)

Solving for ¢, ¢, gives

r(x, t) =A(if)x+(w)x2

2L
Replacing (1) into the original PDE u; = ku,, + Q (x,t) gives

J P
5; @) = (1) =k— (@ 1) = (x, 1) + Q(x, 1)

J J 92 92
v Jdr v I, 01
dx?

(2)

at  dt ox2
2, _
But % = 50 LA(t), hence the above reduces to
dv  d% B(t)—A(t) or
— =k— ) —k———+ — 3
ot =Ko TR L o )
Let

Qx, 1 =Q(x,t)+g—:—kw

L
then (3) becomes
Jdv %
— =k=— t
The above PDE now has homogenous boundary conditions
[ (0, t) =0
[ (L, t) =0

And initial condition is

v(x,0) =u(x,0)—r(x,0)
=f(x)- (A 0)x + (—B (O)Z_LA (O)) x2)

The problem does not ask us to solve it. So will stop here.

1.2.2 Part (d)

Let
ulx,t)=v(xt)+r(xt) (1)

Since the problem has time dependent source function Q (x,t) then 7 (x, t) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and v (x, f) has homogenous boundary conditions. The boundary



condition r (x, t) need to satisfy is
ﬁ (L,t)+hr(L,t)-hB(t) =0
dx
r(0,£)=0 (2)
Let
r(x,t)=c () x+c(t)

Since 7(0,t) = 0 then ¢, = 0. Now we use the right side non-homogenous B.C. to solve for
c1. Plugging the above into the right side B.C. gives

C1 +hC1L—I’1B (t) =0
_ hB(®)
I

Hence

hB
r(x,t) = T;fL)x (3)

The rest is very similar to what we did in part (a). Replacing (1) into the original PDE

du(xt) %u(x,f) .
T k -+ Q (x,t) gives
J 92
5, (U (x/t) - 7"(x/ t)) = k_ (U (x/t) - 7"(x/ t)) + Q(x/t)
ot dx
dv dr % %
ot "o Ko Tkga TRl
But j—i; = 0 hence the above reduces to
v 9% ar
E—kﬁ'%Q(xlf)'i'E (4)
Let

~ ar
Q(xlt) = Q(x/t) + E
Then (4) becomes

dJv % ~
H_t = kﬁ + Q(X, t)

The above PDE now has homogeneous boundary conditions

v(0,)=0
Jo (L,
ot =0

And initial condition is
v(x,0) =u(x,0)—r(x,0)

hB(0)
=f0- 1+hL
The problem does not ask us to solve it. So will stop here.

X

1.3 Problem 8.2.5

4msstmay v vaan assssav s IRV VN

8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a
circle (of radius a) with time-independent boundary conditions:

% = kVZu
u(a,6,t) = g(8)
u(r,6,0) = f(r,0).




o Moz tiatage

[ (0,0,1)| < o0
u(a,0,t)=g(0)
u(r,-m,t)=u(r,m,t)

u(r,0,t)  (d*u 1du 1&’2u)

du du
% (1’, -, t) - % (1’, T, t)
With initial conditions u (r,8,0) = f (r, 0). Since the boundary conditions are not homoge-
nous, and since there are no time dependent sources, then in this case we look for ug (r, 0)
which is solution at steady state which needs to satisfy the nonhomogeneous B.C., where
u(r,0,t) =v(r,0,t)+ug(r,0) and v (r, 6,t) solves the PDE but with homogenous B.C. There-
fore, we need to find equilibrium solution for Laplace PDE on disk, that only needs to
satisfy the nonhomogeneous B.C.
VZME =0
&ZME 1 &ME 1 821/!]5
o7 "o TEge 7P
With boundary condition
lug (0,0) < 6
Ug (a, 6) =8 (6)
ug (r,—m) = ug (r, )

314}5
% (rl —7'() - % (7’, 77)
But this PDE we have already solved before. But to practice, will solve it again. Let

ug (r,0) = R(r)©(6)

Where R (r) is the solution in radial dimension and ® (0) is solution in angular dimension.
Substituting ug (r, 0) in the PDE gives

1 1
R"® + -R'O + —2®”R =0
T T
Dividing by R (r) @ (0)
R// + 1 RI + 1 @I/ 3 O
R rR PO
ZR// RI @//

7’?4'7’?:—@

Hence each side is equal to constant, say A and we obtain

”R” +rR' = AR =0 (1)
®"+10=0 (2)
We start with @ ODE. The boundary conditions on (3) are
O(-n) =0 (n)
2 0= 22
case A = 0 The solution is ® = ¢;6 + ¢,. Hence we obtain, from first initial conditions
—TIC] + Cp = TIC1 + Cp
c;1=0

Second boundary conditions just says that c, = ¢;, so any constant will do. Hence A =0 is
an eigenvalue with constant being eigenfunction.



case A > 0 The solution is

© (0) = cq cos VA6 + o sin vae

The first boundary conditions gives

c1 COS (—\ﬁn) + ¢y sin (—\/Xn) = (1 COS (\/Xn) + ¢y sin (\/Xn)
c1 COS (\/Xn) —Cp sin (\/Xn) = 1 COS (\/Zn) + ¢y sin (\/Xn)
2c5 sin (\/Xn) =0 (3)

From second boundary conditions we obtain

®’©O) = —\/Xcl sin VAO + cz\/x cos VA6

Therefore

Ve, sin(—ﬁn)+c2\ﬁcos( Vi n): Ve, sm(\/Xn)Jrczx/Xcos(\/Xn)
VAcy sin (ﬁn) + VA cos (\/Xn) —VAe, sin (\/Xn) + VA cos («/Xn)
ey s (V) = ey in (V)
20, sin(\/in)

0 (4)
Both (3) and (4) are satisfied if

Therefore

0, (0) = ;I:) + Y, A, cos (n6) + B, sin (n6) (5)
n=1
I put tilde on top of these constants, so not confuse them with constants used for v (r, 6, t)
found later below. Now we go back to the R ODE (2) given by ?R” + rR’ - 1,R = 0 and
solve it. This is Euler PDE whose solution is found by substituting R (r) = r*. The solution
comes out to be (Lecture 9)

Ry()=co+ Y e (6)

n=1
Combining (5,6) we now find uf as

ug, (r,0) = R, (r) ©, (6)

ug (r,0) = Ay + E A, cos (n0) r" + B, sin (n0) r"
n=1

(o)

= 2 An cos (n0) r'* + i B, sin (n0) 1" (7)

n=0 n=1
Where ¢y was combined with Aj;. Now the above equilibrium solution needs to satisfy the
non-homogenous B.C. ug (2, 0) = g(0). Using orthogonality on (7) to find A,, B, gives

g(0) = E A, cos(nb)a" + E B, sin (n0) a"
n=0 n=1
271 271

f g(0)cos(n'0)do = f EA cos (n6) cos (n’ 6)a”d6+f ZB sin (n0) cos (n’'6) a"do

0

271

= Zf A, cos (n6) cos (n’ 9)a”d6+2 f B, sin (n0) cos (n’0) a"do

_ 27T
=A, cos? (n'0) a*do
0



10

Forn=0
270 _ 27T
f g(@)dQ:Aof d6

0 0
1 en
A:—f 0)do
0 o . g()

Forn >0

271 271
f g(0)cos (n0)do = A, f cos? (n6) a"do
0 0

_ 1 P
A, = —f g (0)cos(nO)do
TTJo

Similarly, we apply orthogonality to find B, which gives (for n > 0 only)

_ 1 271
B, =~ f 2(6) sin (n6) d6
TTJo

Therefore, we have found u (r, 6) completely now. It is given by

ug (r,0) = Ay + Y, A, cos (n0) r" + B, sin (n0) 1"
=
_ 1 nZn
A= — f 6) 4o
0 27 0 g( )

~ 1 27T
A, =— g(0)cos (n0)do
T

_ 1 271
B, =~ f 2(6) sin (n6) d6
TJo

The above satisfies the non-homogenous B.C. ug(a,0) = g(0). Now, since u(r,0,t) =
v(r,0,t) + ug (r, 0), then we need to solve now for v (r, 0, t) specified by

du(r,0,t) ?v 1dv 1 d%v

—ar _k(ﬁ+?§+r_2ﬁ ®
0(0,0,t) < 6

v(a,0,t)=0

% (7", -, t) =0 (T/ T, t)
dv dv
a_g (7’, Y t) - 8_6 (7’, T, t)
Let v(r,0,t) = R(r)© (0) T (t). Substituting into (8) gives
1 1
T'RO® =k (R”T@ +-R'TO® + -O"”RT
r r

Dividing by R (r)® (6) T (t) # 0 gives
I _RrR” IR 107
kT R rR 20O
Let first separation constant be —A, hence the above becomes

1T
kT
RII+1R/+1®//_ /\
R rR 20
Or
T"+AkT =0
RI/ RI @ll
2— tr—+r2A=-
"RTRT e
We now separate the second equation above using p giving
/7 R/
2 tr—+1r2A =
rR TRt A=u
@//

o *
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R”+1R’+R(A “) 0 9)
®"+u®=0 (10)
Equation (9) is Sturm-Liouville ODE with boundary conditions R (a) = 0 and bounded at
r =0 and (10) has periodic boundary conditions as was solved above. The solution to (10)
is given in (5) above, no change for this part.
A=0 00

©,(0) = Ay + Y, A, cos (n0) + B, sin (n0)
n=1

= i A, cos (n0) + i B, sin (n0) (11)
n=0 n=1

2
Therefore (9) becomes R” + %R’ + R (/\ - 7:—2) =0withn=0,1,2,---. We found the solution

to this Sturm-Liouville before, it is given by
Ry (1) = Ty (VA ) n=0,1,2,---,m=1,2,3,- (12)
Where +/A,,, = — where a is the radius of the disk and z,, is the m'" zero of the Bessel

function of order n. This is found numerically. We now just need to find the time solution
from T’ + A,,,kT = 0. This has solution

Ty (£) = & VFlunt (13)
Now we combine (11,12,13) to find solution for v (7, 6, f)
O (1,0, £) = ©, () Rypyy () Ty (1)
v(r,0,t) = i i A, cos (n0)], ( Anmr) e~ VkAumt 4 i i B, sin (n0)], ( Anmr) e~ VkAumt

n=0m=1 n=1m=1
(14)

We now need to find A,, B,,, which is found from initial conditions on v (r, 6,0) which is
given by
v(r,0,0)=u(r,0,0)—ug(r,0)
= f(rl 9) —Ur (7’, 9)
Hence from (14), at t =0
fr,0) -up(r,0)= Y, Y A, cos (10) ], (VAumr) + D) D) Bysin (20) ], (VAumr) (15)
n=0m=1 n=1m=1
For each n, inside the m sum, cos(n60) and sin (n0) will be constant. So we need to ap-

ply orthogonality twice in order to remove both sums. Multiplying (15) by cos (n’6) and
integrating gives

f(f(r@) uE(rG))cos(nQ)dQ fz

ﬂn 0

>

—Ttn=1

(Z Al ( nmr)) cos (n6) cos (n’0) do

(Z Bn]n nmr)) sin (n6) cos (n’0)
The second sum in the RHS above goes to zero due to f_ sin (n6) cos (n’0) d6 and we end
up with
f (f (r,0) —ug (r, 6)) cos (n6)do = Anf cos? (n6) E I, ( /lnmr) a6
- -m m=1

We now apply orthogonality again, but on Bessel functions and remember to add the
weight 7. The above becomes

fﬂ fﬂ (f (r, 0) — ug (r, 9)) cos (n0)]J, (\//lnm,r) rdOdr = A, fﬂ fﬂ cos? (n0) i ]n( Anmr) I (\/)\nm/r) rdOdr
0 vY-n

=A, ff cos (n@)]2 nmm)rd@dr

Hence
K f_z (f (r,0) — ug (r, 9)) cos (n0)J, ( Anmr) +dOdr
[ [ cos? (10) 13 (VAr) rd0dr

A, = n=0,1,2,-,m=1,23,--
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We will repeat the same thing to find B,,. The only difference now is to use sin n0. repeating
these steps gives

F L6600 1e,0) i 00y (V)
"= [ 7 siv? (10) ]2 (VAgur) rd6cr

This complete the solution.

n=012,--,m=1,23, -

Summary of solution

u(r,0,t) =v(r,0,t) +ug(r,0)
=Y, D, Ay cos(nd) ], ( Anmr) e VkAumt

n=0m=1
Z Z B, sin (n0)], ( Anmr) e~ Vklmmt 4y (1, 0)
n=1m=1
Where
ug (r,0) = Ay + E A, cos (n0)r" + B, sin (n0) r"
=1
_ 1 n2n
Ay= — f
0= 5 . g(0)do
_ 1 27T
A, =— g (0) cos (n0)do
TJo
_ 1 271
B, =~ f 2 (6) sin (n6) d6
TJdo
And
K fn (f (r,0) — ug (r, 6)) cos (n6)], ( Anmr) rdOdr
A== n=0,1,2-,m=1,23,
£ f_ cos? (n0) J2 ( /\nmr) rdOdr
And

B, = [ (F0,0) = up r,0)) sin (n0) J,y (VAur) rdOdr =0,1,2 =123
A T R Vo e

Where vA1,,, = — where 4 is the radius of the disk and z,,, is the m'" zero of the Bessel

Znm

function of order n.

1.4 Problem 8.3.3

Problem Solve the initial value problem

du o du
Cpa_t = a(KOa—x)'Fqu-i'f(X,t) (1)

Where ¢, p, Ky, q are functions of x only, subject to conditions u (0,) = 0,u(L,t) = 0,u(x,0) =
g (x). Assume that eigenfunctions are know. Hint: let L = % (KO%) +q

solution

Because this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion.
In this method, we first need to find the eigenfunctions ¢,, (x) of the associated PDE without
the source being present. Then use these ¢, (x) to expand the source f (x,t) as generalized
Fourier series. We now switch to the associated homogenous PDE in order to find the
eigenfunctions. This the same as above, but without the source term.
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Ju 1 &(K&u)_'_qu ©

FTiarrd Lk re e
u(0,1)=0
u(L,t)=0
u(x,0) = g(x)
We are told to assume the eigenfunctions ¢, (x) are known. But it is better to do this
explicitly, also needed to find the weight. Let u = X (x) T (t). Then (2) becomes

1 1
T'X = —K\X'T + —KoX"'T + -LXT
cp cp cp
Dividing by XT gives
T 1. X 1_X' g
— = K= + —Ky= + —
T c¢ "X ¢ X c¢p
As the right side depends on x only, and the left side depends on ¢ only, we can now
separate them. Using —A as separation constant gives

T"+AT =0

And for the x part
1 X 1 X" ¢
5 0% + QKOY + 5 =
KX + KoX” 4+ gX = =AcpX (2A)
(KoX') +gX = —AcpX

We now see this is Sturm-Liouville ODE, with

p =Ky

qg=q

o=cp
And

L[X] = 4 (KO—X) +gX
dx dx
L= i (K d—X) +

dx \" 0 dx 1

Where

L[X] = -AcpX
The solution to S-L, with homogeneous B.C. is given as

X () = Y} 4y ()
n=1

When we plug-in this back into (2), and incorporate the time solution from T’ + A, T =0,
we end up with solution for (2) as

u(x,t) = D a, () Py (0) (3)
n=1

Where now the Fourier coefficients became time dependent. We now substitute this back
into the original PDE (1) with the source present (the nonhomogeneous PDE) and obtain

cp Yy ()P (¥) = D4, (O L[y )]+ £ (x,8) (4)
n=1 n=1

We now expand f (x,t) using same eigenfunctions found from the homogeneous PDE
solution (we can do this, since eigenfunctions found from Sturm-Liouville can be used to
expand any piecewise continuous function). Let

Fet) =] fu )y (x) (5)
n=1
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Hence (4) becomes
cp Yy () Py () = D a, (DL [, )]+ Y fu () Py () (6)
n=1 n=1 n=1

But from above, we know that L [cpn (x)] = -A,cp¢, (x), hence (6) becomes
cp 23 () Pu (¥) = =cp D3 Aty () Py () + D3 f (8) P ()
n=1 n=1 n=1
D cpay (8) Py (x) + cpAuay () @y (1) = D fu (8) Py ()
n=1 n=1

25 @ () + Ay (D) cpy (1) = 3 fu (B) i ()
n=1 n=1
By orthogonality, (weight is cp) then from the above we obtain
ay (£) + Apay () = £, (£)

The solution to the above is
¢
a, (t) = e‘Antf f(s)eMsds + ce™Mnt
0

To find constant of integration ¢ in the above, we use initial conditions. At t =0
¢ =a,(0)

Hence the solution becomes

t
0, (f) = et f o (8)€Mds + a, (0) et
0

t
— o~ Ant ; 0 i Ans g
e (u()+f0f(s)e s)
To find a, (0), from (3), putting t = 0 gives
§() = 34,(0) ¢, (x)
n=1
Applying orthogonality
L L
[ 5@ 0dx =a,0) [ 90 cpdn
0 0
[[e@e, @

LL @3 (x) cpdx
And finally, to find f,, (), which is the generalized Fourier coefficient of the expansion of
the source in (5) above, we also use orthogonality

L L
[ renenac=£,0 [ ¢4 @epix
0 0

[ F 0006y () dx
[ 93 () cpdx

ap

fn(t):

Summary of solution

The solution to cp% =2 (KO%) +qu + f (x,t) is given by

X

w(x,t) = D5 a, (t) Py (v)
n=1

Where a,, (t) is the solution to
ap (t) + Any (t) = fn (t)
Given by

t
a, (t) = e~ et (an (0) + f f () eA”CPsds)
0
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Where
[ F D¢, @dx
f n(t) = I
£ ¢ (x) cpdx
And
[ 86y () dx
a, (0) = I
[ 9% () cpdx
1.5 Problem 8.3.5
*8.3.5. Solve ou

5= kV2u + f(r,t)

inside the circle (r < a) with u = 0 at r = a and initially u = 0.

Since this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion.
In this method, we first find the eigenfunctions ¢, (x) of the associated homogenous PDE
without the source being present. Then use these ¢, (x) to expand the source f (x,t) as
generalized Fourier series. We now switch to the associated homogenous PDE in order to
find the eigenfunctions. u = u (r,t). There is no 6. Hence

du(r,t) _k(&zu 18u) 1

ot arr " ror
u(a,t)=0
[ (0,1t)] < o

u(r,0)=0

We need to solve the above in order to find the eigenfunctions ¢, (r). Let u = R(r) T (¢).
Substituting this back into (1) gives

1
T'R=k (R"T + ;R’T)
Dividing by RT
1T R” 1R
- = — 4 ——
kT R rR
Let separation constant be —A. We obtain

T+ kAT =0
And

R IR )

R rR

R”+}R’:—)\R

rR” +R"+ ArR =0
This is a singular Sturm-Liouville ODE. Standard form is
(rR’) = -ArR

Hence

We solved R” + %R’ + AR = 0 before. The solution is

R, (r) = Jo (Vaur)
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Where /A, is found by solving J, (\//\_na) = 0. Now that we know what the eigenfunctions
are, then we write

u(r,t) =Y a, (O Jo (VA7) 2)
n=1

Where a, (f) is function of time since it includes the time solution in it. Now we use the
above in the original PDE with the source in it

du(r,t)
dt
Where V2u = —Au. Substituting (2) into (3), and using f (r,t) = 2:;1 fa®]o (\/A_nr) gives

a0 (V) =~k 33 A 0o (VA7) + 3 £ 00 (VA7)
n=1 n=1 n=1

3 (@ (6) + kA, () Jo (NAr) = 35 fu (0o (VA7)

n=1 n=1

Applying orthogonality, the above simplifies to
ay () + kAya, (t) = f, (£)

=kV2u + f(r,1) (3)

The solution is
t
a, () = eFnt f f (s)éMnsds + ce*Aut
0

To find constant of integration c in the above, we use initial conditions. At t =0
c=a,(0)

Hence the solution becomes

t
a, (t) = et f f(s)Mnsds + a, (0) e *Ant
0

= ekt (an 0) + f 6 ekAnSds)
To find a,, (0), from (2), putting t = 0 gives O
0=a,0J (VAur)
Hence a,, (0) = 0. Therefore a, (f) beco;;_;s.
a, (t) = et j: fu(s)enids

And finally, to find f, (), which is the generalized Fourier coefficient of the expansion of
the source in (3) above, we also use orthogonality

fo £ 0,010 (VAar) rdr = £, () fo 13 (VAr)
l;u fr bt (\/A_nr) rdr
fn (t) = a
1; ](2) (\/A_nr) rdr

Summary of solution

> k\5z + ;5) + f (r,t) is given by

2
The solution to utrt) _ (‘9 u Lo

u(r,t) =, a, (6 Jo (VAr)
n=1
Where a,, (t) is the solution to

a;fz (t) + kAnan (t) = fn (t)
Given by

t
a, (f) = oKt f Fo () Misds
0
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Where
e Kf(r, ) Jo (\/A_nr) rdr
fult)= l;a ]% (\/A_nr) rdr

1.6 Problem 8.3.6

8.3.6. Solve

2,
%‘ g 2 +sin5z e~ %

subject to u(0,t) = 1, u(w,t) =0, and u(z,0) = 0.

This problem has nonhomogeneous B.C. and non-homogenous in the PDE itself (source
present). First step is to use reference function to remove the nonhomogeneous B.C. then
use the method of eigenfunction expansion on the resulting problem.

Let
r(x) =cix+cy
Atx=0,7r(x)=1,hencel =¢cy and at x = 7,7 (x) =0, hence 0 = ¢yt +1 or ¢; = —%, hence
r(x)y=1- d
Tt
Therefore
u(x,t)=ov(x,t)+r(x)

Where v (x,t) solution for the given PDE but with homogeneous B.C., therefore
v (x, H _ %0 (x, 1)

5 2 + 7% sin 5x (1)
v(0,)=0
v(m,t)=0
v (x,0) :u(x,O)—r(x):O—(l—f) = f—1
T T

We now solve (1). This is homogeneous in the PDE itself. To solve, we first solve the
nonhomogeneous PDE in order to find the eigenfunctions. Hence we need to solve
dv(x,t)  d*v(x,t)
at  Ix?

This has solution
v(x,t) = D, a, (1) ¢y () )
n=1
With
an(x):Sin(\//\_nx) n=1,2,3--
An:nz n=12,3---
Plug—in (2) back into (1) gives

i a, (t) ¢, (x) = i a, (t) ¢, (x) + e sin 5x
n=1

92

ij: (t)& 2gbn(x)+e fsin 5x

But —gbn (x) = =A,¢, = —n¢,, hence the above becomes

o]

E a, (t) ¢, (x) + na, (t) ¢, (x) = e sin 5x

NgE

(11,’1 (t) + n?a, (t)) sin (nx) = 7% sin 5x

n=1
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Therefore, since Fourier series expansion is unique, we can compare coefficients and obtain

e?t  n=5

a,@(t)+n2an(t):{ 0 i

For the casen =5

as () + 25a5 (t) = 72
i (a5 () 6251‘) — 23t

dt
as (t) e? = femdt +c

023t
=—+4c¢
23
Hence
—2t

e
as (t) = g + Ce_z

5t

Att=0,a5(0) = 2—13 + ¢, hence

1
C:ﬂ5(0)—£

And the solution becomes

1 1
as (t) = ge‘z’f + (a5 (0) - ﬁ) g2t

For the case n #5

a, (t) +n®a, (t) =0

% (an (t) e"zt) =0
a, (et =c
a, (f) = ce*t
Att=0,a,(0)=c, hence
a, (t) = a, (0)e™
Therefore
o) = { %e‘Zt + (a5 ) - %) e®  n=5
a, (0) et n#5

To find a, (0) we use orthogonality. Since u(x,t) = v (x,t) + r(x), then

0 . X
u(x,t) = (nz:]l a, (t)sin (nx)) + (1 - g)
And at t = 0 the above becomes

0= (i a, (0) sin (”x)) + (1 - %)

n=1

X 1= Z a, (0) sin (nx)
Tt n=1
Applying orthogonality
f (f - 1) sin (n’x)dx = a,; (0) f sin? (n’x)dx
0 \Tt 0
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Therefore
KT (% - 1) sin (nx) dx

T
2

= %ﬁn (%—1)sin(nx)dx

ap 0) =

2 Tt 1 7
= — —f sin(nx)dx+—f xsin(nx)dx]
Tl Yo TTJp
2 [ (—cos (nx))n+ 1 (sin (nx) xcos (nx))j
= [-|—= - S~
| n 0 7 n n 0
3 E [ ( cos (nm) _ 1 N l sin (nm) _ TLCOS (nm) B sin (0) _ 0 cos (0)
|\ n n) m n? n n? n
2[(-1" 1 1 -1
Sy s
nif\n n) =n n
_2[Ent 1 ("
| on n n
_2
onm
Therefore a5 (0) = % Hence
L2t 4 (—_2 _ i)e—ZSt n=-5
a,(H)={ _25n 223
Ee_”t n+5

Where

u(x,t) =v(x,t)+r(x)

= (g a, (t)sin (nx)) + (1 - %)

1.7 Problem 8.4.1 (b)

8.4.1. In these exercises, do not make a reduction to homogeneous boundary con-
ditions. Solve the initial value problem for the heat equation with time-
dependent sources

o 0?
5 = k3 +Qa
u(z,0) = f(z)
subject to the following boundary conditions:
(a) u(0,t) = A(2), %%(L, t) = B(t)
*(b) 8%(0,t) = A(t), gu(L,t) = B(t)
Let
w(x,t) ~ Dby (8) Py (1) 1)
n=0

Where in this problem ¢, (x) are the eigenfunctions of the corresponding homogenous PDE,

which due to having both sides insulated, we know they are given by ¢, (x) = cos (%x)

2
wherenown =0,1,2,---and A, = (%) . That is why the sum above starts from zero and not
one. We now substitute (1) back into the given PDE, but remember not to do term-by-term
differentiation on the spatial terms.

00 0’)2
Y b (09, () = k3 +Q(x, D)

n=0



20

But Q(x,t) ~ ZZO gn (t) ¢, (x) so the above becomes
92u

Zb/ () b (x) = k=5 + Eqn (£) P (%)
Multiplying both sides by (jom (x) and integrating

L L 821/[ [ >
J, oo @on@dr = [ kzon@adr+ [ 3au 00, 00w W
Applying orthogonality
o) [ @2 @dx= [ ke, dr+g00) [ 02 0d
10 Ghedr= [ k550, +g,0 [ R @

Dividing both sides by l;L ¢2 (x) dx gives

L 92y

b (t) = k‘g;”‘qu” ik
[ 0% o dx

I 92 2
We now use Green’s formula to simplify £ %qﬁn (x)dx. We rewrite ZTZ = L[u] and let

¢, (x) = v, then
L 92y L
fo SO (@) dx = fo oL [u] dx

But we know from Green’s formula that
du do L
f (vL[u] —uL[v])dx =p v—x—u—
0

In this problem p =1, so we solve for l; oL [u]dx (which is really all what we want) from

+ 0, () (1A)

the above and obtain

L L d do\*
f vL[u]dx—f uL[]dx—(v—u—u—v)
0 0 dx dx 0

Since we said ¢, (x) = v, then we replace these back into the above to make it more explicit

L 92y du  do, (x) k L
fo &_xz% (x)dx = (<Pn (X)E —u— )0 +f(; uL [(Pn (x)]dx

But L [cpn (x)] = -1,¢, (x) and above becomes

L )2 d d L L
j(; &_xqun (x)dx = ((Z)n () % —-u ¢£x(x)) -A, f ug, (x)dx (2)
0

0

We are now ready to substitute boundary conditions. In this problem we know that

du
o (L, t) =B(t)

do, (L,t) d nm nm . (nNm
= — cos (—x) = ——sin (—x) =0
dx dx L ). L L /..
O (L,0) = cos(“Tx) = cos () = (-1
x=L
do, (0,t d
x=0
¢, (0,t) = cos (Ex) =1
L x=0

du
= 0,t) = A(b)
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Now we have all the information to evaluate (2)

L )2y
[ o= (0,0 % -0 2 - (6,05 0 - u0 0]

_A, f e, (x) dx
0
Which becomes

L 92y ; L
j{; 8_xz¢n (x)dx = ((_1) B(t) - 0) -(A)-0) -4, f(; up, (x) dx

L
= ('BO-AO Ay [ up,@)dx 3)
0
Now we need to sort out the LL u¢, (x) dx term above, since u (x,t) is unknown, so we can’t
o ng Uy, (x)dx
leave the above as is. But we know from u (x, t) ~ Zn—O b, (t) ¢, (x) that b, (t) = ﬁz— by
- o7 (x)dx

orthogonality. Hence £L ue, (x)dx = b, (t) £L ®2 (x)dx. Using this in (3), we finally found
the result for I;L %(j)n (x)dx

L (92 ; .
J. G2ty =" BO-A0-Ab,® [ 0f @ dx
But I;L P3 (x)dx = l; cosz( ; )dx — L hence

L (92
f e 2<z>n(x)dx—( 1)"B(t) - A(t) - Aub, (t) (4)
Substituting the above in (1A) gives
k((—l)”B(t) —~ A(t) - Auby, (t) g)

by, (t) = L + (t)
2
2 L
b =7 ((—1)“ B(t) = A(H) = Ayby (1) 5) + 4 (1)
2
= Tk ()" B(5) = A(®) ~kAuby (1) + 4, ()

b )+ Kb (0= 0, )+ 2K ()" BO) - AW)

Now that we found the differential equation for b, (t) we solve it. The integrating factor is
p = ekt hence the solution is

d 2
= (10 () = g, () + uzk ()" B (1) - A )
Integrating

by @)= [[pg, Ot + [ 12k (1) BO - A®)dt+c

2
b, (f) = et f it () dt + f M (A1) B () - A () dt + ce e

The constant of integration c is b, (0), therefore

b, (f) = ekt f hilg, (1) dt + f e“ﬂt%k (21" B(t) = A(®)) dt + b, (0) et
The above could also be written as
t t 2
b, () = ekt f ekhisg (s)ds + f Mk (A1) B(S) ~ A©) ds + by 0) e
0 0

Now that we found b, (t), the last step is to determine b, (0). This is done from initial
conditions

1(x,0) ~ Y, b, (0) y, (%)
n=0
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By orthogonality

L
f (x) (Pn (x) dx 2 L
b, (0) = l; £L o = Zfo f (x) cos (%x) dx

This complete the solution. Summary of result

The solution is

u (x/ t) ~ 2 bn (t) (Pn (X)
n=0

Where
t t 2
by (t) = et f g, (s) ds + f e 2k (1) B () = A(s)) ds + b, (0) et
0 0
Where
2 L nmn
b (0)= fo f(x)cos(Tx)dx
And
2 (L nm
NOE —f Q(x,t)cos (—x) dx
1 LJ, i
And

2
An:(ﬂ) n=0,1,23,

1.8 Problem 8.4.3

8.4.3. Consider 5y 8 ou
c()o(a) 35 = 3= [ Kole) 5] + alau + (a0

u(z,0) = g(z) u(0) = aff)
w(L,t) = p(t)

Assume that the eigenfunctions ¢, (z) of the related homogeneous problem
are known.

(a) Solve without reducing to a problem with homogeneous boundary con-
ditions.

(b) Solve by first reducing to a problem with homogeneous boundary con-
ditions.

1.8.1 Part (a)

From problem 8.3.3, we found the eigenfunctions ¢,, (x) from the Sturm-Liouville to have
weight

o=cp
Let
(6, 8) ~ Dby (1) ()
n=1
Substituting the above in the PDE gives

o Db (B Py (1) = L[ul + f (x, 1)
i=1
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Where L = 8% (Koa%) + g. Following same procedure using Green’s formula on page 35, we

obtain

O o = e VA, (a () - (-1)" B (1)

1
dr f 2 (x) adx W

Where
fo D= (), )
n=1

[ F 000 by () 0
ﬁ ¢ (x) odx
The solution to (1) is found using integrating factor.
k n
db, VA (a(t) = (1) B (1)
Dl () o= 04 2 e )
L @3 (x) odx

fn(t):

Ay

Hence u = eCp and the solution becomes
k
o | An - An _Mn
b,(H)=e o'|= tfn(t)dt+ —feo a®) = ()" p®)dt|+ce o
a £ 2 (x) odx
Where ¢ is found from
b,(0)=c

And b,, (0) is found from initial conditions
g = E b, (0) @, (x)

£ 8 (%) ¢, (x) oddx
£ @3 (x) odx

b, (0) =

This complete the solution. Summary

Solution is

U, t) ~ D3 by () py (1)

n=1
Where

by ()= %f e+ | e () - (1) () dt | + b, (0) "

k
ﬁ 2 (x) adx
l;L g (x) P, (x) odx

b, (0) = I
£ 2 (x) odx

o=cp

1.8.2 Part (b)

The first step is to obtain a reference function r(x, ) where u (x,t) = v(x,t) + r(x,t). The
reference function only needs to satisfy the nonhomogeneous B.C.

We see that
Bt -a(t)

rix,t)y=a()+ T
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does the job. Now we solve the following PDE

Juv d Jv
cpﬁ = > (Koﬁ_x) +gX) v+ f(x,t)
v(0,t)=0
v(m, ) =0

ﬁmwa@a

v(x,O):g(x)—(a(0)+ I

Using Green’s formula, starting with
v(x,t) = Y, by (8) Py (%)
i=1

Where we used = instead of ~ above now, since both v (x, t) and ¢, (x) satisfy the homoge-
nous B.C., and where b, (f) satisfies the ODE

db
Tl s Mbu) = £, 0 )
Where 0 = cp and

JEAEDIWMGIMEY
n=1

ﬁ £, 1) b, (x) 0ddx
f 2 (x) odx

fn(t):

An
The solution to (1) is found using integrating factor u = e ', hence

Myl iy
b,(t)=¢ < —feo £ (O dt+b, O)e
And b,, (0) is found from initial conditions v (x, 0)

POZ0) - 536, 0000
i=1

[ 8@~ (0 + 220, (0)
L 3 (x) odx

() —(a(0)+

by (0) =

This complete the solution. Summary

Solution is given by

u(x,t) = (i b, (t) ¢, (x)) +r(x, 1)
i=1
(2 (t)an(x))+a(t)+5(t)£a(t)x
Where
— —A;"tl %t —%”t
b, (t) = e Gfe Fo(Bdt+b, (0)e
And
[ 50~ (@ + H250) 9, (0)
bn (0) =
£ 03 (x) odx
And

1)‘ £, 1) ¢y (x) oddx
£ ¢ (x) odx

fu(t) =

Where 0 = cp
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1.9 Problem 8.5.2

8.5.2. Consider a vibrating string with time-dependent forcing:

8? 8?
37 = “gztQ@
u(0,t) =0 u(z,0) = f(z)

u(L,t)=0 ?—;:(:c,O) =0

(a) Solve the initial value problem.

*(b) Solve the initial value problem if Q(z,t) = g(z) coswt. For what values
of w does resonance occur?

1.9.1 Part (a)
Let
w(x,t) = DA, (O Py (x)
n=1

Where we used = instead of ~ above, since the PDE given has homogeneous B.C. We know

n\2
that ¢, (x) = sin (\/A_nx) forn =1,2,3,--- where A, = (Tn) . Substituting the above in the
given PDE gives

2
2A”<t>¢n<x>—c2§]A<t> T Qe

n=1
But Q(x,t) = Z:’ 19n (t) ¢y, (x), hence the above becomes
ZA" (69 (x) = ZA CRALIGN Zgn 69 ()

But i (P”(x) = -A,¢, (x), hence

47 06,0 =~ 3 A (06,0 + 28, (06,
n=1 n=1 n=1
Multiplying both sides by ¢,, (x) and integrating gives

L & [, o [, oo
[ B4 060 @ e @dx == [ N AA O 6@ 0y Wdx+ [T 80060 06y () dx
0 p=1 0 pn=1 0 n=1

L L L
a0 [ G @dx=-ha,0 [ FE@dr+g 0 [ 6 0dx
0 0 0
Hence
A (1) + 2N, A, (B = g, (1)
Now we solve the above ODE. Let solution be
Ay (t) = Al () + AL ()

Which is the sum of the homogenous and particular solutions. The homogenous solution

is
Al () = c1, COS (c\//\_nt) + ¢y, Sin (c\//\—nt)

And the particular solution depends on g, (). Once we find g, (), we plug-in everything
back into u (x,t) = Z:;l A, (t) ¢, (x) and then use initial conditions to find ¢; ,c; , the two
constant of integrations. We will do this in the second part.

1.9.2 Part (b)

Now we are given that Q(x,t) = g (x) cos (wt). Hence
£ QB gy (W dx  cos(wh) L 8 () ¢y, (x) dx
[ #@ax [ wax

8n (t) = COs (w t) Vn
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Where
~ £Lg(x) ¢y, (x) dx
) LL ¢3 (x) dx
is constant that depends on n. Now we use the above in result found in part (a)
AL (1) + A Ay (B) = 7y cos (wt) (1)

We know the homogenous solution from part (a).

Al () = c1,, COS (c\//\—nt) + o, Sin (C\//\—ni')

We now need to find the particular solution. Will solve using method of undetermined
coefficients.

Case 1 @ # cy/A,, (no resonance)
We can now guess
Al () = z; cos (wh) + z, sin (wt)
Plugging this back into (1) gives
(z1 cos (wt) + zp sin (wt))” + c®A,, (z; cos (wt) + z, sin (wt)) = y,, cos (wt)
(~wzy sin (wt) + wz, cos (wt)) + c?A, (21 cos (wt) + z; sin (wt)) = ¥, cos (wt)
—w?z; cos (wt) — w2z, sin (wt) + c?A,, (21 cos (wt) + z; sin (wt)) = ¥, cos (wt)
Collecting terms
cos (wt) (—a)221 + cz/lnzl) + sin (wt) (—a)zzz + czAnzz) =y, cos (wt)
Therefore we obtain two equations in two unknowns
~w?zy + PAyzi =V,
—~w?zy + PN ,zy = 0

From the second equation, z; = 0 and from the first equation

z (czAn - a)z) =V

_ Vn
= A, — w?
Hence
Al () = z; cos (wt) + zy sin (wt)
_ Vn
= CZAn——a)Z COS (a) t)
Therefore

Ay (1) = Al (8) + Al (1)
=0, cos( \/_t) + ¢y, Sin (c\/_t) — 2 ——— Ccos (wt)

Now we need to find ¢; ,c, . Since

(1) = D Ay () oy (1)

n=1

= Z (cln cos (c\/A_nt) + 0y, sin (c\//\_nt) + zy—iz cos (a)t)) sin (Ex)
n=1 c An w L

At t = 0 the above becomes
. (N7
—a)z SIH(TX)

f@ =
( )*gd—fa)zsm(%ﬂﬂ

Applying orthogonality
L mmn L & nm mmn L & y nm mmn
n ()= [ B, s (Tox)sin () e 73 b sin () sin ()
j;f(x)sm(Lx) X onz::lCl"Sln Lx sin Lx X+ O,ECZM—CUZSIH Lx sin Lx X
L L L
f f (x)sin (%x) dx = Clnf sin® (nfnx) dx + cz/ly—nzf sin® (nTnx) dx
0 0 n— @ Jy
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Rearranging
it [y () ae=a, [ ()
ff(x)sm( )dx cz/l — 2 Osm Lx dx =cq, Osm Lx dx
L .
Lf(x)sm(%x)dx_ Y
LL sin? (%x) dx Gy w?

Lyf f(x)an( )dx EZE?%TZE

We now need to find ¢, . For this we need to differentiate the solution once.

M S (o)l el i)

du(x,0)
ot

C]n =

Applying initial conditions

=0 gives

ad nr
0= cyA,Cp sin (—x)
nzzll n“2, L
Hence

Cy =0

n

Therefore the final solution is

- _In

Ay (t) = cq, cos (c\/A_nt) + Ey R cos (wt)
And
— . (nm
u(x,t) = ,;1 A, (t)sin (Tx)

Where

_2 Y

c1, ff(x)sm( )dx %—iwz

Case 2 w = cy/A, Resonance case. Now we can’t guess Ab () = z1 €os (wt) + z, sin (wt) so we
have to use

Al (1) = 21t cos (wt) + z,t sin (wt)
Substituting this in A}/ (t) + ¢2A, A, (t) = y,, cos (wt) gives
(z1t cos (wt) + zpt sin (wt))” + ®A,, (z1t cos (wt) + zyt sin (wt)) = y,, cos (wt) (2)
But
(z1t cos (wt) + zpt sin (wt))” = (z1 cos (wt) — zywt sin (wt) + zy sin (wt) + zywt cos (wt))
= —zqwsin (wt) - (zla) sin (wt) + z;w?t cos (a)t))
+ zyw cos (wt) + (zza) cos (wt) — zyw?t sin (w t))
= -2z w sin (wt) — zyw?t cos (wt) + 2z,w cos (wt) — zyw?t sin (wt)
Hence (2) becomes
=271 sin (wt) -z w2t cos (wt)+2zyw cos (wt)—zpw?t sin (wt)+c%A,, (21t cos (wt) + zpt sin (wt)) = y,, cos (wt)

Comparing coefficients we see that 2z,w =y, or

Vu

2= 2w

And z; = 0. Therefore
Ab @) = tsm (wt)
Therefore
Ay () = A (B) + AL (1)

=y, COS (C\//\_nt) + 0y, Sin (c\/A_nt) +

tsin (wt)

Vn
2¢y/A,
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We now can find ¢; ,c; from initial conditions.

u(x,t) = DAy (8 Py (0)
n=1

= g}l (cln coS (c\/A_nt) + ¢y, Sin (c\/A_nt) + 2;:/”/\_”1‘ sin (a)t)) sin (nTnx) (4)

Att=0
fx) = 2 c1, 8in (%x)
n=1
2 L . (N7
C1y = ZJ(; f(x)sin (Tx) dx

Taking time derivative of (4) and setting it to zero will give c,,. Since initial speed is zero
then c, = 0. Hence

Vn .
A, (t) =cq coslcyAt) + tsin (wt
1’1( ) 171 ( n ) ZC\/A_H ( )

This completes the solution.

Summary of solution

The solution is given by
u (x/ t) = Z An (t) (;bn (x)
n=1

Case w # cV/A,

_ Vn
A, (t) = €1, COS (C\/A_nt) + m cos (wt)

And
2 L
C, =7 fo f (x)sin (%x) dx — —cz/\ji "
And
[ 8@ ¢ () dx
Vn = I
[ 0% (0 dx

And A, = (%), n=1,2,3,

Case w = cy/A,, (resonance)

Ay, () = ¢y, cos (c\//\_nt) + Ltsin (wt)

2c\/A,

2 L
€1, = Zfo f (x)sin (nTnx) dx

And
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1.10 Problem 8.5.5 (b)

8.5.5. Solve the initial value problem for a membrane with time-dependent forcing
and fixed boundaries (u = 0),

2
% = c*V2u + Q(z,y,t),

ou
u(x,y,o) =f(:x:,y), 5{(3’%0) =0,
if the membrane is

(a) arectangle (0 <z < L,0<y < H)
(b) a circle (r < a)
*(c) a semicircle (0 < 0 < w,7 < a)

(d) a circular annulus (a < r < b)

The solution to the corresponding homogeneous PDE

2%u

_ 2\72
W_CV
Is

u(r,0,t) = i i a, ()], ( Anmr) cos (n0) + i i a, ()], ( Anmr) sin (n0)

n=0m=1 n=1m=1

Where A, are found by solving roots of J, ( /\nmu) = 0. To make things simpler, we will
write

u(r,0,0) =Y, a;(t) D (r,0)

Where the above means the double sum of all eigenvalues A;. So ®;(r,0) represents
]n( Anmr) {cos (n0),sin (0)} combined. So double sum is implied everywhere. Given this,
we now expand the source term

Q (1’, 6/ t) = E qi (t) cDi (7’, 6)
And the original PDE becomes
20 (@A) = Y ai(t) V(R (r,0)) + Y 4; (1) D (1, 0) (1)

But
V2(®;(r,0)) = —A;®; (r, 0)
Hence (1) becomes

Ml ()i (r, 0) + 2Aa; (1) D; (r, 0) = D, q; (1) D; (r, 0)

X (a7 () + 220 (1) D (r,0) = Y4, () D (7, 6)

Applying orthogonality gi\l/es
ay’ (t) + A (1) = q; (¢)
Where
f [ Z Q(r,0,t) ®; (r, 0) rdrd0
La f_ Z 2 (r, 0) rdrd0

g; (t) =

The solution to the homogenous ODE is

aﬁ’ (t) = A, cos (c\//\—it) + B; sin (c\//\—it)

And the particular solution is found if we know what Q(r, 6,t) and hence g; (). For now,
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lets call the particular solution as af (t). Hence the solution for g; (t) is

a; (t) = A, cos (c\/Z.t) + B, sin (C\/Zt) + af ()
Plugging the above into the u (r,0,t) = Zi a; (t) D; (r, 0), gives

u(r,0,t) = E (Ai cos (c\/z't) + B; sin (c\/xit) + af (t)) @, (r,0) (2)

We now find A, B; from initial conditions. At t =0
£(r,0) = (A+4d] 0) ©i (r,6)

1

Applying orthogonality
f f £ (r,0)®; (1, 0) rdrd0 = f f 3 (A; + (0) s (r, 6) D, (7, 6) rdrd6
0 vY-n 0 v-m

J: j’_if(?’, 0) D; (r, 0) rdrd6 = (Aj + a;? (0)) j: jjz q)].Z (r, 0) rdrd@

a ,m 0)®,(r, 0 o
Mﬁﬂm»:£2f3> (r, 6) rdr
[ [[ @2 (,0)rardo

Taking time derivative of (2)

p
PO _ 3 (e T TH) s ey cos () + 440

) q)i (7’, 6)

Att=0
P
0= Z (C\//\iBi + da;—t(())) q)i (7", 9)

Hence B; = 0. Therefore the final solution is

u(r,0,t) = Y, (A;cos (cyAit) + af (1) @i (r, 0)

1

Where
(A p (0)) K j:z f (r,0) D; (r, 0) rdrd6
-+ 4 —

o [ [ @ (r,0)rdrde

This complete the solution.
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