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1 HWI

1.1 Problem 8.2.1 (a,b)

8.2.1.

Solve the heat equation with time-independent sources and boundary con-
ditions
Ou 0%u
o = Fam TO0)
u(z,0) = f(z)

if an equilibrium solution exists. Analyzc the limits as t — oc. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous
boundary conditions (but do not solve). Assume

x(a) Q(z)=0, u(0,t) = A, gu(L,t)=B
(b) Q(z) =0, gu(0,t) =0, Su(L,t)=B+#0
() Q(z)=0, guo,t)=A#0, Z(Lt)=4
x(d) Q(z) =k, u(0,t) = A, u(L,t) = B
(e) Q(z) =k, gu(0,t) =0, Su(L,t)=0
(f) Q(z) = sin %=, gu(0,t) =0, Su(L,t)=0

1.1.1 Part (a)

Let

u(x,t) =ov(x,t)+ ug(x)

(1)

Since Q (x) in this problem is zero, we can look for ug (x) which is the steady state solution
that satisfies the non-homogenous boundary conditions. (If Q was present, and if it also was
time dependent, then we replace ug (x) by r(x,t) which becomes a reference function that
only needs to satisfy the non-homogenous boundary conditions and not the PDE itself at
steady state. In (1) v (x,t) satisfies the PDE itself but with homogenous boundary conditions.
The first step is to find ug (x). We use the equilibrium solution in this case. At equilibrium

Jug(x,t)
ot

. .. d?
= 0 and hence the solution is given WMZE =0 or

ug (x) =c1x + ¢y

At x =0,up (x) = A, Hence

And solution becomes ur (x) =cix+ A. at x =1L,

Cy = A
Jup(x)
ox

¢; = B, Therefore

up(x)=Bx+ A




Now we plug-in (1) into the original PDE, this gives

dv(x,t) 0 %0 (x, 1) 82uE (x)
o ax ax

up(x)

But ™

=0, hence we need to solve

dv(x,t) ké’zv (x,1)
o ax

dou(L,t)

- = 0 and

for v (x,t) = u(x,t) — ug (x) with homogenous boundary conditions v (0,t) = 0,
initial conditions
v(x,0) = u(x,0) - ug (x)
=f(x)-(Bx+ A)

This PDE we already solved before in earlier HW’s and we know that it has the following
solution

4 (X, t) = i bn sin (\/A_nx) e_kAnt

n=1,35,--

2
nrt
A, = (Z) n=1,35,- )

With b, found from orthogonality using initial conditions v (x,0) = f (x) — (Bx + A)

v(x,0) = i bn sin (\/A_nx)

n=1,35,
L oo
f (f (x)— (Bx + A)) sin \/ x f bn sin (\/A_nx) sin (\me) dx
0 »n=1,35,
f (f (x)— (Bx + A)) sin (\//\mx) dx = bm—
0 2
Hence
2 L
b= [ (F)=Bx+ A)sin(YAx)dx  n=1,3,5,- 3)
LJy
Therefore, from (1) the solution is
ug(x)
s —N—
u(@, )= Y, b,sin (\//\_nx) e Ml 4 Bx+ A
n=135, -
With b, given by (3) and eigenvalues A, given by (2).
1.1.2 Part (b)
Let
u(x,t) =v(xt)+rx) 1)

Since Q (x) in this problem is zero, we can look for r (x), since unique equilibrium solution
is not possible due to both boundary conditions being insulated. The idea is that, if we can
find up then we use that, else we switch to reference function r (x) which only needs to satisfy



Jug(L)

—— = 0 but does not have to satisfy equilibrium

the non-homogenous boundary condition ——
solution. Let

r(x) = c1x + cpx?

or +2
— =1 +20x
9 2
At x = 0, second equation above reduces to
0= C1

a .. B
Hence 7 (x) = c,x%. Now é =2cyx. At x = L, this gives 2c,L =B or ¢, = TR therefore

_P o
r(x) 2Lx

The above satisfies the non-homogenous B.C. at the right, and also satisfies the homogenous
B.C. at the left. Now we plug-in (1) into the original PDE, this gives

v (x, 1) _ k(&zv (x, 1) 82uE (x))

Jat ax ox
du(x,t) r v (x t)
at T\ ax L
2%v (x, 1)
k—8x k—

Hence
Jdu(x,t) k820(x, t)
ot dx L

B . . .
We now treat k- as forcing function. So the above can be written as

dv(x,t)  9*v(x,1)
o o e @

The above is now solved using eigenfunction expansion, since no steady state equilibrium
solution exist. Let

v (x, 1) = 3 a, () dp (¥) (3)
n=0
Where the index starts from zero, since there is a zero eigenvalue, due to B.C. being Neumann.
du(x,t) 92 v(x 1)

=k with

¢, (x) are the eigenfunctions of the corresponding homogenous PDE —

homogenous BC av(c: A = =0, av;ﬁ’t) = 0. This we solved before. The eigenfunctions are
¢, (x) = cos (Ex)
L
With eigenvalues
n?m?
Ay = —— n=0,12



Notice that Ay = 0. Substituting (3) into (2) gives
N N Py (x)
3, () b (x) = (kzana) il )+Q
n=0 n=0 dx

Term by term differentiation is justified, since v (x,t) and ¢, (x) both solve the same homoge-
dz‘i’n(x)
dx?

nous B.C. problem. Since = -A,¢, (x) the above equation reduces to

PIACEHGE (—k D, () Ay (x)) +Q
n=0 n=0

Now we expand Q, which gives

E ay (£) (Pn (x) = -k E a, (t) /\ncpn () + E l]n(]bn (%)
n=0 n=0 n=0
By orthogonality
ay (t) + ka, (H) A, =q,

casen =0

ag (£) + kag (£) Ao = qo
But A; =0
ag (£) = qo
But si _ kB, hen & = v olies that <& = B _q
ut since Q = — is constant, then — = 2,—0 dn®n (x) implies that - = oo (x). But ¢ (x) =
for this problem. Hence g, = kL—B and the ODE becomes

kB
’ t -
ao( ) I
Hence
kB
ag (t) = ft +C
casen >0

ay () + ka, () Ay = g,
Since all g, = 0 for n > 0 the above becomes
a,(t)+ka,(t)A, =0
Integrating factor is y = ¢!, Hence % (an (t) ek/\"t) =0or
a, (t) = et
Therefore the solution from (3) becomes

v(x,t) = ]%t +01+ 0y Y et cos (\//\_nx) (4)

n=1



Now we find the initial conditions on v (x,t). Since u (x,0) = v (x,0) + 7 (x) then
B
_ _ 2
v(x,0) = f(x) 2Lx
Hence equation (4) at t = 0 becomes

f(x) - x —C1+C22COS(\/_X)

We now find ¢y, c; by orthogonality.

casen =0
L B ) L
fo(f(x)—ix)cos(\/}t_ox)dx:j; clcos(\/}t_ox)dx
But Ag =0
L
f(f(x)——x)dx=j(;c1dx
f (f(x)——x)dx:clL
Lf ( (x)——x)dx
case n > (

j(;L (f (x) - %xz) cos (\/Ex) dx = j: Cy 2 cos (\/A_nx) Cos (\/Ex) dx

L
:czE

L
) = %fo (f (x) - %xZ) cos (\//\—nx) dx

Therefore the solution for v (x, t) is now complete from (4). Hence

u(x,t)=ov(xt)+r(x)
kB — B
= ft +op+ (02 nz::l e~ Mt cos (\//\nx)) + Z—sz

Where cy, ¢, are given by above result. This completes the solution.



1.2 Problem 8.2.2 (a,d)

8.2.2.

Consider the heat equation with time-dependent sources and boundary con-
ditions:

2
?9_1: = kg—x—z + Q(z,t)
u(z,0) = f(z).

Reduce the problem to one with homogeneous boundary conditions if
x(a) 8%(0,t) = A(t) and gu(L,t) = B(t)

(b) u(0,t) = A(t) and %(L,t) = B(t)
*(c) $2(0,t) = A(t) and  u(L,t) = B(t)

(d) ut0,t) =0 and Qu(L,t)+ h(u(L,t) — B(t)) =0

(e) %(0,t)=0 and gu(L,t) + h(u(L,t) - B(t)) =0

1.2.1 Part (a)

Let

u(lx,t)=ov(xt)+r(xt)

(1)

Since the problem has time dependent source function Q (x, t) then r (x, ) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and v (x, t) has homogenous boundary conditions. The first step
is to find r(x, f). Let

Then
Atx=0
Andatx =1L

r(x,t) = cq () x + ¢, (F) x?

T _ 420, B
ox

A(t) =c1 ()

B(t) = cq (F) + 2c, () L

B() —c1 ()

c(t) = o7

Solving for ¢, ¢, gives

r(x,t) :A(i,‘)x+(w)x2

2L

(2)



Replacing (1) into the original PDE u; = ku,, + Q (x, t) gives
d 9?
5 @) —r(x 1) =k5- (0, £) —r(x, 1) + Qx, 1)
dt dx

Jdv  or 0%y 0%y
or 7 kom ke Tl

But j—i; = B(t)_A(t), hence the above reduces to
dv 9% B(H)-A(t) ar
E—ka—xz-i'Q(x,t)—kf-Fa—t (3)
Let

QW@=Q@D+%—£@;£@

L
then (3) becomes
Jv v
T k@ +Q(x, 1)
The above PDE now has homogenous boundary conditions
& (01 t) =0
(o (L, t) = 0

And initial condition is

v(x,0) = u(x,0)—r(x,0)
= f @)~ (A O+ (—B 02 (O)) x2)

The problem does not ask us to solve it. So will stop here.

1.2.2 Part (d)
Let
u(x,t)=ov(xt)+r(xt) 1)

Since the problem has time dependent source function Q (x, t) then r (x, ) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and v (x, t) has homogenous boundary conditions. The boundary
condition r(x, t) need to satisfy is

ﬁ (L) +hr(L,t)-hB(@®#) =0
ox
r(0,0) =0 (2)
Let
r(x,t)=ci(t)x+cy(t)



Since 7(0,t) = 0 then ¢, = 0. Now we use the right side non-homogenous B.C. to solve for c;.
Plugging the above into the right side B.C. gives

C1 +hC1L—hB (t) =0

_ hB (t)
I
Hence
h
r(of) = 220y (3)
The rest is very similar to what we did in part (a). Replacing (1) into the original PDE
du(x,t) k¢92u(x,t) f) oi
o Sk Q(x,t) gives
J 92
— @) -rxt) =k— (@t -rt)+Qx1t)
ot ox
Ju OJr 9% 3%r
5t "t g kga e
But Z—Z = 0 hence the above reduces to
dv . J*v ar
&_t_ka"—xZ+Q(x't)+&_t (4)
Let

~ ar
Qx,t)=Qx )+~
Then (4) becomes

dv 2% =
5 kﬁ + Q (x, t)

The above PDE now has homogeneous boundary conditions

v(0,t)=0
Jdu(L,t)
ETRR

And initial condition is
v(xlo) =u (X,O) - V(X,O)

B hB (0)
aEA A W
The problem does not ask us to solve it. So will stop here.
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1.3 Problem 8.2.5

4 msswmay e vasw sssssav s v T e

8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a
circle (of radius a) with time-independent boundary conditions:

Bu

3 = kV2u
u(a,8,t) = g(8)
u(r,0,0) = f(r,0).

du(r,6,t) u 1du 1 d%u
———— =kt -—+5=—
at arr rdr r? 892)
[u(0,6,t)] < oo
u(a,0,t)=g(0)
u(r,—m,t)=u(r,mnt)
u
20
With initial conditions u (r, 6,0) = f (v, 0). Since the boundary conditions are not homogenous,
and since there are no time dependent sources, then in this case we look for u (r, 0) which is
solution at steady state which needs to satisfy the nonhomogeneous B.C., where u (r, 0,t) =
v(r,0,t) + ug (r,0) and v(r, 0,t) solves the PDE but with homogenous B.C. Therefore, we
need to find equilibrium solution for Laplace PDE on disk, that only needs to satisfy the
nonhomogeneous B.C.

u
(1’, -, t) - % (rl T, t)

VZME =0
92 140 1 92
Ug 42 Ug 4= Ug -0
ar:  r dr 1?2 00?

With boundary condition
lug (0,0) < 6
UE (al 6) =8 (6)
UE (rl _T() = Ug (7’, TT)
&ME
20
But this PDE we have already solved before. But to practice, will solve it again. Let

(1’, —7'() = % (7", 77)

ug (r,0) = R(r)©(6)

Where R (r) is the solution in radial dimension and © (0) is solution in angular dimension.
Substituting ug (v, 0) in the PDE gives

1 1
R"®+-R'O®+-0"R=0
r r
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Dividing by R (r) ® (0)
R' 1R 10"
R rR 70O

Hence each side is equal to constant, say A and we obtain

21{// RI
r—+r—=A
R R

@//
=A
®

?R"” +rR" = AR =0 1)
®”"+A0 =0 (2)
We start with @ ODE. The boundary conditions on (3) are
O (-n) =0 (n)
2 (0= 22
case A =0 The solution is ® = ¢;0 + c,. Hence we obtain, from first initial conditions
—TiC1 + Cp = TICy + ¢y
c1=0

Second boundary conditions just says that ¢, = ¢,, so any constant will do. Hence A =0 is
an eigenvalue with constant being eigenfunction.

case A > 0 The solution is

© (0) = cq cos VA6 + Cy sin Ve

The first boundary conditions gives

1 COS (—\/Xn) + ¢, sin (—\/Xn) = ¢y COS (\/Xn) + ¢, sin (\/Xn)
C1 COS (\/Xn) —Cp sin (\/Kn) = 1 COS (\ﬁn) + ¢y sin (\/XT()
2¢, sin (\/XT() =0 (3)

From second boundary conditions we obtain

CHECIE —\/Xcl sin VAO + cz\/x cos VA0
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Therefore

—\/Xcl sin (—\/Zn) + cz\/i Cos (—\/Kn) = —\/Xcl sin (\/Xn) + czx/z cos (\ﬁn)

2¢; sin (VA ) =0 (4)

ViqsmEVKn;:—VKQSm(VKn)
(Vi

Therefore
A0
®, (0) = Ay + Y, A, cos (n6) + B, sin (n6) (5)
n=1
I put tilde on top of these constants, so not confuse them with constants used for v(r, 6, t)
found later below. Now we go back to the R ODE (2) given by r?R” +rR’ = A,R = 0 and solve
it. This is Euler PDE whose solution is found by substituting R (r) = r*. The solution comes
out to be (Lecture 9)

Ry()=co+ Y cur (©)

n=1
Combining (5,6) we now find u as

ug, (r,0) = R, (r) ©, (6)

ug (r,0) = Ay + E A, cos (n0) r" + B, sin (n0) r"
n=1
= Y, A, cos (n0)r" + Y, B, sin (n0) r" (7)
n=0 n=1
Where ¢y was combined with Aj. Now the above equilibrium solution needs to satisfy the
non-homogenous B.C. ug (2, 0) = g (0). Using orthogonality on (7) to find A, B, gives

g(0) = E A, cos (nb)a" + E B, sin (n0) a"
n=0 n=1
271 271

271
f g(0)cos(n'0)do = f E A, cos (n0) cos (n’6) a"d6 + f Z B, sin (n60) cos (n’0) a*dO
0 0 n=0 0 n=1

0

o 27T 00 27T
= 2 f A, cos (n0) cos (n’6) a"d6 + E f B, sin (n0) cos (n’0) a"do
n=0"v0 n=0 v 0

_ 27T
=A, cos? (n'0) a*do
0
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Forn=0
27T _ 27T
f g(@)dQ:Aof d6

0 0
I
A:—f 0)do
0= 27 J, g(0)
Forn>0

271 270
f 2(6) cos (n6)d6 = A, f cos? (n0) a"d6
0 0

_ 1 P
A, = —f g (0)cos (nO)do
o
Similarly, we apply orthogonality to find B, which gives (for n > 0 only)

_ 1 271
B, =~ f 2(6) sin (n6) d6
TTJo

Therefore, we have found u (r, 6) completely now. It is given by

ug (r,0) = Ay + Y, A, cos (n0) r" + B, sin (n0) 1"

n=1

_ 1 27T
Ay = Efo 2(6)d6

_ 1 27T
A, =— g(0)cos(n0)do
T

_ 1 27T
B, =~ f 2 (6) sin (n6) d6
TTJo

The above satisfies the non-homogenous B.C. ug (2, 0) = g(0). Now, since u (r,0,t) = v (r, 0, 1)+
ug (r, 0), then we need to solve now for v (r, 0, t) specified by

dvu(r,0,t) ?v 1dv 1 d%v
ot Mozt trie

(8)

at
[v(0,6,t)] <6
v(a,0,t)=0

% (7", -TT, t) =0 (T/ T, t)

v v
70 (r,-m,t) = 0 (r,m, t)
Let v(r,0,t) = R(r)© (0) T (t). Substituting into (8) gives
1 1
T'RO =k (R”T@ +-R'TO + —ZG)”RT
r r

Dividing by R (r)® (6) T (t) # 0 gives
1T _R”+1R’+ 10”
kT R rR @O
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Let first separation constant be —A, hence the above becomes

1T
kT
RII+1R/+1®//_ A
R rR r0e
Or
T"+AkT =0
RII RI @/I
22 4 2) =
R + 'R +7r°A 6
We now separate the second equation above using p giving
R// R/
P—+r—+r’A=yp
R R
@/I 3
® =4
Or
1
R”+—R’+R(A—ﬂ2):0 9)
r r
0" +u®=0 (10)

Equation (9) is Sturm-Liouville ODE with boundary conditions R (2) = 0 and bounded at
r =0 and (10) has periodic boundary conditions as was solved above. The solution to (10)
is given in (5) above, no change for this part.
=0
Q,(0) = Zl?) + E A, cos (n6) + B,, sin (n6)

n=1

= Y A, cos (16) + 3 B, sin (n0) (11)

n=0 n=1
Therefore (9) becomes R” + %R’ +R (A - ':—22) =0withn=0,1,2,---. We found the solution to
this Sturm-Liouville before, it is given by
Ry ) =Jy(VAgmr)  7=0,1,2,-,m=1,2,3,-- (12)
Where VA, = Zni where 4 is the radius of the disk and z,, is the m" zero of the Bessel

function of order n. This is found numerically. We now just need to find the time solution
from T’ + A,,,,kT = 0. This has solution

T (1) = e~ VKAt (13)
Now we combine (11,12,13) to find solution for v (7, 0, f)
On (1, 0, 1) = O, (0) Ry (1) Ty ()
v(r,0,t) = i i A, cos (n@)]n( Anmr) e~ VRt 4 i i B, sin (n@)]n( Anmr) e~ VRt

n=0m=1 n=1m=1

(14)

We now need to find A,, B,,, which is found from initial conditions on v (r, 6,0) which is given
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by
v(r,0,0)=u(r,0,0)—ug(r,0)
= f(l’, Q) —Ug (7", 6)
Hence from (14), at t =0
f(r,0)—ug(r,0) = i i A, cos(no)J, ( /\nmr) + i i B, sin (n0) ], ( /\nmr) (15)

n=0m=1 n=1m=1
For each n, inside the m sum, cos (n0) and sin (n0) will be constant. So we need to apply or-
thogonality twice in order to remove both sums. Multiplying (15) by cos (n’0) and integrating
gives

fﬂ (f (r,0) - ug (r, 0)) cos (w6) d6 = fﬂ i( 3 A Anmr))cos(ne)cos(n’a)de
. :

—Ttn=0 \m=

+ fﬂ i( 001 Bn]n( /\nmr)) sin (n6) cos (n’6)

Tt n=1 \m=
The second sum in the RHS above goes to zero due to fn sin (n6) cos (n’0) d6 and we end
=T
up with

i f(r,0) - ug (r,0)) cos (n0)d6 = A, i cos? (n6) 3 Ju (VA ) 4O
-7 -7 m=1

We now apply orthogonality again, but on Bessel functions and remember to add the weight
r. The above becomes

fa fn (f (r, 0) — ug (r, 6)) cos (n6)], (\//\nm/r) rdOdr = A, fa fn cos? (n6) i I ( /\nmr) I (\Mnm/r) rdOdr
0 -7t 0 -7t m=1
_ 2 2 )
= Anfo f_n cos” (n0)J; (\//\nm r) rd6dr

Hence

A = [ [ (F0,0) = ug (r,0)) cos (n6) ], (VAyr) rdOcdr =0,1,2 =123
n= £a£:COSZ(n6)]%( /\nmr)rdadr n=4u,l1l,z, ym=1,2,95,

We will repeat the same thing to find B,. The only difference now is to use sinn0. repeating
these steps gives

. [ [T (£ 0,0 - ug (,0)) sin (1) J, (V) rd6dr
. [ sin? 10) J2 (VAr) rd0d

This complete the solution.

n=012,--,m=1,273,-

Summary of solution
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u(r,0,t) =v(r,0,t) + ug(r,0)
= E E A, cos (n0)], ( Anmr) e~ VkAumt 4

n=0m=1
) D Bysin(n0)], ( Anmr) e VKbt 4y (v, 0)
n=1m=1
Where
ug (r,0) = Ay + E A, cos (n0) r" + B, sin (n0) 1"
-1
_ 1 n2n
Ay= — f 6) 4o
0 27 0 g( )
_ 1 271
A, =— g (0)cos (n0)do
TTJo
_ 1 271
B, = — f 2(6)sin (n6) d6
TJdo
And

A, = K f_z (f 0,0) - ug (r,0)) cos (n0) J,, (VAyur) rdOdr =0,1,2 =123
0= Laizcosz(ne)]%( /\nmr)rdedr n=0,1,2--,m=1,23,--

And

B, = [ L (F0,0) = u r,0)) sin (n0) J,y (Vnr) rdOdr =0,1,2 =123
n = £a£:Sin2(n6)]%( /\nmr)rdedr n=012,--,m=1,2,3,--

Where /A,,, = — where a is the radius of the disk and z,, is the m™ zero of the Bessel

Znm

function of order n.

1.4 Problem 8.3.3

Problem Solve the initial value problem

du o du
Par =52 (KO8_x) +qu+ f(x,t) (1)
Where ¢, p, Ky, g are functions of x only, subject to conditions u(0,f) = 0,u (L,f) = 0,u (x,0) =
g (x). Assume that eigenfunctions are know. Hint: let L = % (KO%) +q

solution

Because this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion. In
this method, we first need to find the eigenfunctions ¢, (x) of the associated PDE without
the source being present. Then use these ¢, (x) to expand the source f (x,t) as generalized
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Fourier series. We now switch to the associated homogenous PDE in order to find the
eigenfunctions. This the same as above, but without the source term.

8u_1i(K8u)+qu ©

FTale e LCh v R
u(,t)=0
u(L,t)=0

u(x,0) =g (x)

We are told to assume the eigenfunctions ¢, (x) are known. But it is better to do this explicitly,
also needed to find the weight. Let u = X (x) T (t). Then (2) becomes

1 1
T'X = —K\X'T + —KoX"'T + L XT
cp cp cp

Dividing by XT gives

T 1 X 1 X' ¢

T cp 0x " @ X cp
As the right side depends on x only, and the left side depends on ¢ only, we can now separate
them. Using —A as separation constant gives

T"+AT =0
And for the x part

—Ki—=+ —Ky—+— =
cp "X cp X cp
KoX" + KoX” +gX = —AcpX (2A)
(KoX")' +gX = —AcpX

We now see this is Sturm-Liouville ODE, with

1 _ X 1 _ X’
K 9

p =Ko

q9=4

og=cp
And

L[X] = i (KO—X) +gX
dx dx
L= i (K d—X) +

dx \ "0 dx 1

Where

L[X] = -AcpX

The solution to S-L, with homogeneous B.C. is given as

X(x) = Y] a5 (%)
n=1
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When we plug-in this back into (2), and incorporate the time solution from T’ + A, T = 0, we
end up with solution for (2) as

(e, ) = Y a, (1) y (1) (3)
n=1

Where now the Fourier coefficients became time dependent. We now substitute this back
into the original PDE (1) with the source present (the nonhomogeneous PDE) and obtain

cp D3 (B Py (¥) = D an (O L @y ()] + f (x,8) (4)
n=1 n=1

We now expand f (x, t) using same eigenfunctions found from the homogeneous PDE solution
(we can do this, since eigenfunctions found from Sturm-Liouville can be used to expand any
piecewise continuous function). Let

f@) =Y fu® Py (5)
n=1
Hence (4) becomes
cp D4, (1) Py () = Y a, (O Loy 0]+ D fu (B) by () (6)
n=1 n=1 n=1

But from above, we know that L [CPn (x)] = -A,cp¢, (x), hence (6) becomes
cp E a;’l (t) (Pn (x) =—cp Z Anan (t) ﬂbn (x) + E fn (t) (Pn (X)
n=1 n=1 n=1
D cpay (8) Py (x) + cpAyay (B @ (1) = D fu (8) Py ()
n=1 n=1

25 @, (1) + A, () oy (X) = D3 fr (1) Py (%)
n=1

n=1

By orthogonality, (weight is cp) then from the above we obtain
ay (£) + Apay () = £, (£)

The solution to the above is
¢
a, (t) = e‘Antf f(s)eMsds + ce™ Mt
0

To find constant of integration c in the above, we use initial conditions. At t =0
C=ay (0)

Hence the solution becomes

t
0, (f) = et f o (8)eMds + a, (0) et
0

t
= et (un ©0) + f £ 5) eAnSds)
0
To find a,, (0), from (3), putting t = 0 gives

§@) = D]a,(0) ¢, (x)
n=1
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Applying orthogonality
L L
fo () b, (¥)dx = a, (0) fo 92 (¥) cpdx

[ 8@, (x)dx

£L ¢ (x) cpdx
And finally, to find f, (t), which is the generalized Fourier coefficient of the expansion of the
source in (5) above, we also use orthogonality

L L
[ @00, @dx=fu0) [ 93 cps
0 0

[ F o0, () dx
[ @ cpdx

a, 0

fn(t):

Summary of solution

The solution to cp% = % (KOZ—Z) +qu + f (x,t) is given by

u (x/ t) = z ay (t) ¢n (x)
n=1
Where a,, (t) is the solution to
tl; (t) + Anan (t) = fn (t)

Given by
Ancpt : A d
n = e~ nP n 0 n nps
a, () = e (a ()+f0f(s)e s)
Where
[ F 000 () dx
fn (t) = I
L 3 (x) cpdx
And
[ 3¢ dx
a, (0)

] [ 0% () cpdx
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1.5 Problem 8.3.5

*8.3.5. Solve 8
a" =kV3u + f(r,t)

inside the circle (r < a) with u = 0 at 7 = a and initially u = 0.

Since this problem has homogeneous B.C. but has time dependent source (i.e. non-homogenous
in the PDE itself), then we will use the method of eigenfunction expansion. In this method,
we first find the eigenfunctions ¢, (x) of the associated homogenous PDE without the source
being present. Then use these ¢, (x) to expand the source f (x,t) as generalized Fourier se-
ries. We now switch to the associated homogenous PDE in order to find the eigenfunctions.
u =u(r,t). There is no 6. Hence

du(r,t) _ (c?zu 18u)

T VT M
u(a,t)=0
[t (0,1)] < o0

u(r,0)=0

We need to solve the above in order to find the eigenfunctions ¢, (r). Let u = R(r) T (¢).
Substituting this back into (1) gives

1
T'R=k (R”T + —R’T)
r

Dividing by RT
17" R” 1R
- = — 4 ——
kT R rR
Let separation constant be —A. We obtain
T" + kAT =0
And
RI/ 1 R/
—+-—=-1
R rR

1
R” + -R’ = -AR
r
rR” + R+ ArR=0

This is a singular Sturm-Liouville ODE. Standard form is
(rR’) = -ArR
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Hence

We solved R” + %R’ + AR = 0 before. The solution is

Rn (1’) = ]O (\//\_nl’)

Where /4, is found by solving J, (\/A_na) = 0. Now that we know what the eigenfunctions
are, then we write

u(r,t) =Y a, (O Jo (VA7) 2)
n=1

Where g, (t) is function of time since it includes the time solution in it. Now we use the
above in the original PDE with the source in it

du(r,t)
Jdt
Where V2u = —Au. Substituting (2) into (3), and using f (r,t) = X", f, () ]o (\/A_nr) gives

35 0o (Viar) =~k 3 At (0o (V) + 33 £ 0 (VA
n=1 n=1 n=1

3 (@ (6) + kA, () Jo (NAr) = 35 fu (0o (VA7)

n=1 n=1

Applying orthogonality, the above simplifies to
ay () + kAya, (8) = f, ()

= kV2u+ £ (r,1) (3)

The solution is
t
a, () = eFnt f fr (5)Mnsds + ceFnt
0

To find constant of integration c in the above, we use initial conditions. At t =0
c=ay,(0)

Hence the solution becomes

t
a, (t) = e~ *t f f (s)éMsds + a,, (0) e FAnt
0

t
= ekt (an ©0) + f £ 9) e“ﬂsds)
0
To find a,, (0), from (2), putting t = 0 gives

0= Y4, @ Jo (i)
n=1

Hence a,, (0) = 0. Therefore a4, (f) becomes.

¢
a, (t) = e *nt f fu(s)enids
0
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And finally, to find f, (t), which is the generalized Fourier coefficient of the expansion of the
source in (3) above, we also use orthogonality

j:f(r, HJo (\//l—nr) rdr = f, (t) f: J3 (\/A_nr) rdr
~ Kf (r,t) o (\/A_nr) rdr

n (t) - a
O TR (VA
Summary of solution
2
The solution to au;:'t) =k ((;—rz + %%) + f (r,t) is given by

u(r,t) =30, (O Jo (VA7)
n=1
Where g, (t) is the solution to
ay () + kAya, (1) = £, ()
Given by
t
() = et (s) Fnsd
a,(t)=e fo fu(s)e s
Where
[0t (VA rdr
RV rr

n

1.6 Problem 8.3.6

8.3.6. Solve
6—u = 62_u +sindz e~
ot  0Ox2
subject to u(0,t) = 1, u(m,t) =0, and u(z,0) = 0.

2t

This problem has nonhomogeneous B.C. and non-homogenous in the PDE itself (source
present). First step is to use reference function to remove the nonhomogeneous B.C. then
use the method of eigenfunction expansion on the resulting problem.

Let
r(x) =cix+cy

Atx=0,r(x)=1,hencel =c, and at x =7,7(x) =0, hence 0 =¢c;t+1 or¢; = —%, hence

r(x):l—f
i
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Therefore
u(x, t)=v(x,t)+rx)

Where v (x,t) solution for the given PDE but with homogeneous B.C., therefore

dv(x,t)  d%v(x, t)

TR 2t sin 5x (1)
v(0,t)=0
v(m,t)=0
v (x,0) :u(x,O)—r(x)=0—(1—f) = f—1
T T

We now solve (1). This is homogeneous in the PDE itself. To solve, we first solve the
nonhomogeneous PDE in order to find the eigenfunctions. Hence we need to solve
dv(x,t) _ d%v(x,t)
ot o2

This has solution
v(x, 1) = D, a, () ¢y () (2)
n=1

With
gbn(x)zsin(\//l_nx) n=123:-
A, =n? n=1,2,3---

Plug-in (2) back into (1) gives

[e¢]

Yy (1) ¢, (x) = i a, (t) ¢, (x) + e~ sin 5x

092

2 (t) dx 2¢n (x) + e~% sin 5x
ut ;—;Gbn (x) = =1, ¢, = —n¢,, hence the above becomes

i a, (t) ¢, (x) + na, (t) ¢, (x) = e sin 5x
n=1

[s¢]

E (a,’1 (t) + na, (t)) sin (nx) = e~% sin 5x
n=1

Therefore, since Fourier series expansion is unique, we can compare coefficients and obtain
2t p=5

e
a, (t) + na, (t) =
® ® { 0 n+b5
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For the case n =5

at (t) + 25a5 (t) = e
d
il (a5 () 625t) — 23t

dt
as () et = f Bt + ¢
23t

=—+4
23 "¢

Hence
o2t
as (t) = E + ce~t
Att=0,a5(0) = % + ¢, hence

1
C:a5(0)—§

And the solution becomes

1 1
as (t) = gE_Zt + (El5 (0) - %) 6_25t

For the case n #5

a, (t) +n%a, (t) =0

% (an (t) e”Zt) =0
a, ()™ =c
a, (t) = ce™
Att=0,a,(0)=c, hence
ay, (t) = a, (0)e™
Therefore
o) = { %e‘% + (a5 (0) - 21—3) e®  n=5
e a, (0) et n+5

To find a, (0) we use orthogonality. Since u(x,t) = v (x,t) + r(x), then

u(x, ) = (2 a, (B)sin (nx)) + (1 - f)
n=1 Tt
And at t = 0 the above becomes

0= (f} a, (0) sin (nx)) + (1 - %)

n=1

% -1= gan (0) sin (nx)



Applying orthogonality
TC TC
f (f - 1) sin (n’x)dx = a,, (O)f sin? (n’x) dx
0 \Tt 0

Therefore
" (£ -1) sin (nx) d
an(O):£ (n ):m nx) dx
2
= 2 (f - 1) sin (nx) dx
TTJdo TC
:% —fnsm(nx)dx+ L fnxsm(nx)dx]
2 —cos (nx) 1 (sin (nx) x cos (nx)\"
2| () ()
_ 2 |[cos(nm) 1 1 s1n(nn) 7t cos (1) sin (0)  0cos(0)
][ ) [ et (a0 o)
C2[(-1n 1 (- 1)
2|5 -5
_2[EDt 1 (= )
| n n
_—2
E
Therefore a5 (0) = —. Hence
1 2 1) _
an(t): 5€2t+(§—£)€25t n=>5
%e‘”zt n#5
Where

u(x,t)=v(xt)+r(x)

= (g a, (t)sin (nx)) + (1 - %)
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8.4.1. In these exercises, do not make a reduction to homogeneous boundary con-
ditions. Solve the initial value problem for the heat equation with time-
dependent sources

du 62
5 = k3 +Qa)

u(z,0) = f(z)

subject to the following boundary conditions:

(a) u(0,t) = A(t), BI(L t) = B(t)
x(b) 24(0,t) = A(2), gu(L,t) = B(t)

Let
w(x,8) ~ D b, () Py (x)
n=0

(1)

Where in this problem ¢, (x) are the eigenfunctions of the corresponding homogenous PDE,

which due to having both sides insulated, we know they are given by ¢, (x) = cos ("Ln

) where

now n = 0,1,2,--- and A, ( T ) That is why the sum above starts from zero and not
one. We now substitute (1) back into the given PDE, but remember not to do term-by-term

differentiation on the spatial terms.

9%x
2 b, (t) b, (x) = k— +Q(x, 1)

n=0
But Q (x,1) ~ X2, 4n (£) ¢, (%) so the above becomes

Eb' () pu () = & - Eqn () (@)
Multiplying both sides by gbm (x) and 1ntegrat1ng

fozb' (t)q)n(x)cpm(x)dx—f Kt e+ [ 30,000, (99, ()

n=0 0 n=0
Applying orthogonality

L L 52 L
0 [ 93 dr= [ k3Z0uwdrea, 0 [ ghed

Dividing both sides by £L ®2 (x) dx gives

L 92y

k > Pn (X)d
b, (t)— £ dx qj x
£ 2 (x) dx

+q, (£)

(1A)
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92
We now use Green’s formula to simplify £ — Zgbn (x)dx. We rewrite —u = L[u] and let

¢, (x) = v, then
L 92y L
f 5 qun(x)dx—J; oL [u] dx

But we know from Green’s formula that
L
f (oL [u] — uL [v])dx = (U— -Uu—
0 X

In this problem p =1, so we solve for £L oL [u] dx (which is really all what we want) from the
above and obtain

L L
f oL [u]dx - f ul [v]dx = (Ud_u - ud—v)
0 0 dx dx

L L
f oL [u]dx = (vd—u - ud—v) f uL [v] dx
0 dx dx 0 0

Since we said ¢, (x) = v, then we replace these back into the above to make it more explicit

L o2 d dp,, (x)
j(; a_xqun (x)dx = (an( )_u - ('bdxx )0 j(; ul [an (X)]

But L [CPn (x)] = -A,¢, (x) and above becomes

L 9%y du  do, ()" L
3 2<z>n<x>dx—(<z>n< )= - %)O—Anfo gy, (x) dx @

We are now ready to substitute boundary conditions. In this problem we know that

du
o (L,t) = B(t)

dp,(L,t) d (nn ) _onm (nn ) ~0
T T 3. C0s Lxx:L— [ sin Lxx:L—
O (L,8) = cos(“Tx) = cos () = (-1
x=L
dp,(0,t) d (”77 ) _
Fraa e W B

¢y (0,£) = cos (nfnx) -1
x=0

d
—0,n=A0
dx
Now we have all the information to evaluate (2)

tu dy (L)
[ o= (0,0 5 0 -uw 22!

d d
- (00 % 0-u0 L)

_A, f e, (x) dx
0
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Which becomes
L 92y L
S Gt @y = (1 BO-0)~(A® -0~ A, [ up, ()ax

L
= (-1)'B()-A(H)- A, fo ugpy (x) dx 3)

Now we need to sort out the £L u¢,, (x)dx term above, since u (x, t) is unknown, so we can’t
L
n(x)d.
£Lu¢> x)dx b
[ phitodx
orthogonality. Hence £L u¢, (x)dx = b, (t) £L ¢2 (x)dx. Using this in (3), we finally found the

result for£ Z‘Z‘cpn( ) dx

L(92

leave the above as is. But we know from u (x,t) ~ EZOZO b, (t) ¢, (x) that b, (t) =

TS = (U BO- A0 -1, ) [ G0

But l;L ¢2 (x)dx = 1; cos? (Tnx) dx = = hence

L )2y
f e 2<z>n(x)dx—( 1)"B(t)— A(t) - A,b, (t) (4)

Substituting the above in (1A) gives

KB @ - A0 - Ab, )
b, (t) = T + 4, ()
2
2 L
b =7 ((—1)“ B(H) = A(H) = Auby (B 5) + 4, ()
2
= Tk ()" B(5) = A(®) ~kAuby (t) + 4, ()

B () + Kby (0= 0,0 + Tk (1) BO) - AW)

Now that we found the differential equation for b, (f) we solve it. The integrating factor is
= ekt hence the solution is

d 2
= (10 (D) = 1, () + uzk ()" B (1) - A1)
Integrating
2
by () = [ pau®dt+ [ uTk(1)"BO - A®)dt+c
Or
b, (t) = et f efntq, (t)dt + f ekﬂnf%k((—l)”B(t)—A(t))dt+ce-W

The constant of integration c is b, (0), therefore

b, (£) = ekt f ity (b) dt + f e“wt%k (41" B(®) = A(®) dt + b, (0) et
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The above could also be written as
t t 2
b, (f) = et f ekhisg (s)ds + f Mk (A1) B() ~ A©) ds + by 0) e
0 0

Now that we found b, (t), the last step is to determine b, (0). This is done from initial
conditions

1(x,0) ~ b, (0) ¢y, (%)
n=0

By orthogonality

L
f)Q,(x)dx o L
b, (0) = £ £L pev. = Zj(; f (x) cos (nfnx) dx

This complete the solution. Summary of result

The solution is

w(x,8) ~ Dby () y (1)
n=0
Where
b, () = et fo t ensq,, (s) ds + fo t e“ﬂs%k((—l)"B(s) — A(s))ds + b, (0) et
Where
2 rt nm
b, (0) = — s|—x)d
0) Lfo f(X)COb(Lx) X
And
2 L nm
g, (1) = Zj; Q(x,t) cos (Tx) dx
And

2
A,,:(T) n=0,1,23,-
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1.8 Problem 8.4.3

8.4.3. Consider B 5 Bu
c()o(a) 35 = 55 Ko@) 52| + 4@ + sz,

u(z,0) = g(z) u(0,t) = oft)
u(L,t) = B(¢)
Assume that the eigenfunctions ¢, (z) of the related homogeneous problem

are known.

(a) Solve without reducing to a problem with homogeneous boundary con-
ditions.

(b) Solve by first reducing to a problem with homogeneous boundary con-
ditions.

1.8.1 Part (a)

From problem 8.3.3, we found the eigenfunctions ¢, (x) from the Sturm-Liouville to have
weight

o=cp

Let
u (x/ t) ~ 2 bn (t) (Pn (X)
n=1
Substituting the above in the PDE gives

o Y, b (1) ¢y (x) = L[ul + f (x, 1)
i=1

Where L = a% (Koa%) + ¢. Following same procedure using Green’s formula on page 35, we

obtain
VA (a () - (1) B (1)
LL 2 (x) odx

PO kb )= £ 04

1)
Where
fo D= fn() e, (x)
n=1

[ F 000 by () 0
ﬁ 2 (x) adx

fn(t):
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The solution to (1) is found using integrating factor.

k

~VA (@) - (-1)"B®)
ﬁ 2 (x) odx

db, (1)
dt

Ay 1
+ (?) bn (t) - Efn (t) +

An
—t .
Hence y = e and the solution becomes

k
(1 e - An A
b,(=e o'|= eatfn(t)dt+ﬂ‘—feat(a(t)—(—l)”ﬁ(t))dt +ce o
o £ @2 (x) odx
Where ¢ is found from
b, (0) =c

And b,, (0) is found from initial conditions
g(x) =Y b,(0) ¢, (x)
n=1

£L g (x) @, (x) odx
b, (0) = I
£ P2 (x) odx

This complete the solution. Summary

Solution is

u(x,0) ~ b, () 6y ()
n=1
Where
k
T L o () — (1) L
by () = e 0]}Pj%®db+fwﬁwﬁﬁxj} (@)= (1) p®)dt|+b, (O)e

[ 8 by () 0
b, (0) = I
£ @3 (x) odx

o=cp

1.8.2 Part (b)

The first step is to obtain a reference function r(x,t) where u(x,t) = v(x,t) + r(x,t). The
reference function only needs to satisfy the nonhomogeneous B.C.

We see that
B -alt)

rix,t)=al(t)+ I



32

does the job. Now we solve the following PDE

Juv d Jv
cpﬁ = > (Koﬁ_x) +gX) v+ f(x,t)
v(0,£)=0
v(m, ) =0

ﬁmwa@a
L

v(x,0) = g(x) - (06(0) +
Using Green’s formula, starting with
v(x,t) = Y, by (8) Py (%)
i=1

Where we used = instead of ~ above now, since both v (x, t) and ¢, (x) satisfy the homogenous
B.C., and where b, (t) satisfies the ODE

db db, (t)

L= Ay () = £ () ®

Where 0 = cp and
JECDEDIHMOLME)
n=1

ﬁ £, 1) b, (x) oddx
f 2 (x) adx

fn(t):

An
The solution to (1) is found using integrating factor u = e ', hence

Ayl g
b,(t)=¢ < —feo £ (O dt+b, O)e
And b,, (0) is found from initial conditions v (x, 0)

POZ0:) - 536, 0000
i=1

[ 8@~ (0 + 220, (0)
L 3 (x) odx

g§() —(a(0)+

by (0) =

This complete the solution. Summary

Solution is given by
u(x,t) = (i b, (t) ¢, (x)) +r(x, 1)
=1

(2 b, (t) (x)) +al)+ Mx

Where
_A_"tl Mt —A—”t
b, (t) = ¢ o Efea Fo(Bdt+b, (0)e
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And
[ 20~ (2@ + 2220, () odx
b, (0) =
£ P2 (x) odx
And
[ F ¢, () ox
f n(t) = I
£ @3 (x) odx
Where 0 = cp

1.9 Problem 8.5.2

8.5.2. Consider a vibrating string with time-dependent forcing:

0%u 0%u
a7 = Cz&:—g*’Q(z,t)

ot
u(0,t) =0 u(z,0) = f(x)
u(L,t)=0 %(3,0) =0.

(a) Solve the initial value problem.

*(b) Solve the initial value problem if Q(z,t) = g(z) coswt. For what values
of w does resonance occur?

1.9.1 Part (a)
Let

w(x, ) = Y, Ay () @y (x)
n=1

Where we used = instead of ~ above, since the PDE given has homogeneous B.C. We know

. 2
that ¢, (x) = sin (\/A_nx) forn =1,2,3,--- where A, = (T) . Substituting the above in the
given PDE gives

2¢n( )
2 AL (8) y (x) = 2 Z Ay () +Q(x, 1)
But Q(x,t) = Z:’Zl g, () ¢, (x), hence the above becomes
3 AL (0 60 () = ¢ ZA Lo, Zgn (16 ()
n=1
But dzz:';x) = -1,¢, (x), hence

2 AL (D) dy () = = Z An Ay (8) ¢y (x) + Zgn (t) Py (x)

n=1
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Multiplying both sides by ¢,, (x) and integrating gives
L J, oo [ oo

[ X4 00n@ o @dx=-2 [ N A4, 0 0n @0 @dx+ [T 800060 )y () dx
0 n=1 0 n=1 0 n=1

A0 [ @@ de=-20,A,0 [ 6 0dreg, 0 [ 6@
Hence : 0 0
AL () + 1A (B = 8 (D)
Now we solve the above ODE. Let solution be
A (B) = AL () + A (1)
Which is the sum of the homogenous and particular solutions. The homogenous solution is
Al () = c1,, COS (c\//\_nt) +¢p, Sin (C\//\_ni')

And the particular solution depends on g, (t). Once we find g, (t), we plug-in everything back
into u (x,t) = 220:1 A, (t) ¢, (x) and then use initial conditions to find ¢; ,c, , the two constant
of integrations. We will do this in the second part.

1.9.2 Part (b)

Now we are given that Q(x,t) = g (x) cos (wt). Hence

£LQ(x, t) o, (x) dx ~ cos (wt) £L g (x) ¢, (x) dx

() = LL 2 () l;L 2 (0 dx = cos (wt) y,
Where
[ e@e,ax
[ 0% () dx
is constant that depends on n. Now we use the above in result found in part (a)
A (1) + PNy Ay (1) = 7y cos (i) (1)

We know the homogenous solution from part (a).

Al () = c1, COS (cx//l_nt) + ¢y, Sin (C\//\—nt)

We now need to find the particular solution. Will solve using method of undetermined
coeflicients.

Case 1 w # cyA, (no resonance)

We can now guess

Al (H) = z; cos (wt) + zy sin (wt)
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Plugging this back into (1) gives
(z1 cos (wt) + zp sin (wt))” + ®A,, (z; cos (wt) + z, sin (wt)) = y,, cos (wt)
(~wzy sin (wt) + wz, cos (wt)) + c?A,, (21 cos (wt) + z; sin (wt)) = ¥, cos (wt)
—w?z; cos (wt) — w?z, sin (wt) + c?A,, (21 cos (wt) + z; sin (wt)) = ¥, cos (wt)
Collecting terms
cos (wt) (—w221 + cz/lnzl) + sin (wt) (—a)zzz + czAnzz) =y, cos (wt)
Therefore we obtain two equations in two unknowns
—w?zy + Az =V,
—~w?zy + A2y = 0

From the second equation, z; = 0 and from the first equation

z (czAn - a)z) = Vn

_ Vn
= A, — w?
Hence
Al (1) = z; cos (wt) + zy sin (wf)
_ Vn
= CZA,,I——Q)Z COS (a) t)
Therefore

A (1) = AL (1) + AL (1)
= ¢y, COS (c\//t_nt) + 0y, sin (c\/A_nt) + csz—na)z cos (wt)
-

Now we need to find ¢; ,c, . Since

u (1) = 3 A (H) §n ()
n=1
- g (Cln cos (C‘/A_nt) +Cp, SIn (C\//\_nt) + czﬂtjj—ia)z cos (a)t)) sin (nfnx)

At t = 0 the above becomes
ad . (nm
fx) =3 (cln + —Cz/\:i a)z) sin (Tx)

n=1
o (o]
. (N7 Vn . (nT
= Z c1, sin (—x) + E -5 Sin (—x)
b | L —oed -w L

Applying orthogonality
L o (mm L & o (nm\ . (mT L & y o (nm\ . (mT
fo f (x)sin (Tx) dx = fo ,12::1 ¢y, sin (Tx) sin (Tx) dx + j; E cz)ln—ia)z sin (Tx) sin (Tx) dx

n=1

L . (mn L (nn Vi L, (nm
fof(x)sm(Tx)dx:clnfo sin (Tx)dx+cz/\n—_w2f0 sin (Tx)dx
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Rearranging

L L
f f(x) sm( )dx - cz/l _n " f sin® (nfnx) dx =cq, f sin® (nfnx) dx
- 0 0

LLf (x)sin (%x) dx ) Y
LL sin® (%x) dx Ay — w?

-2 [ ()i

We now need to find ¢, . For this we need to differentiate the solution once.

C]n =

o (x L Z ( c\/_cl sin (C\/—t) + c\/_cz oS (c\/_t) -5 wsin (a)t)) sin (nfnx)
. . ey .. du(x,0) .
Applying initial conditions —— =0 gives

- nm
= Ay sin [ —
0 nz::lcx/_nczn sm( T x)
Hence
Cy = 0
Therefore the final solution is
- _In
Ay (t) = cq, cos (c\/A_nt) + 21 a7 cos (wt)
And
— . (nm
u(x,t) = ,;1 A, (t)sin (Tx)
Where
2
c1, ff(x)sm( )dx cz/lj/—ia)z

Case 2 w = cyA, Resonance case. Now we can’t guess Al (H) = z1 cos (wt) + z, sin (wt) so we
have to use

Al (1) = 21t cos (wt) + zyt sin (wt)
Substituting this in A}/ (t) + ¢2A, A, (t) = y,, cos (wt) gives
(z1t cos (wt) + zpt sin (wt))” + ®A,, (z1t cos (wt) + zyt sin (wt)) = y,, cos (wt) (2)
But
(z1t cos (wt) + zpt sin (wt))” = (z1 cos (wt) — zywt sin (wt) + zy sin (wt) + zywt cos (wt))
= —zqwsin (wt) - (zla) sin (wt) + z;w?t cos (a)t))
+ zyw cos (wt) + (zza) cos (wt) — zyw?t sin (w t))

= -2z, w sin (wt) — zyw?t cos (wt) + 2z,w cos (wt) — zyw?t sin (wt)
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Hence (2) becomes
271w sin (wt) -z w2t cos (wt)+2zpw cos (wt)~zpw?t sin (wt)+c%A,, (21t cos (wt) + zpt sin (wt)) = v, cos (wt)

Comparing coefficients we see that 2z,w =y, or

_In
2= 2w
And z; = 0. Therefore
Ab (@) = tsm (wt)
Therefore

Ay () = A (B) + AL (1)
=y, cos( \/—t) + 0y, Sin (c\/_t)

We now can find ¢; ,c, from initial conditions.

tsin (wt)

\/_n

u(x,t) = 2 A, (1) d, (%)
= z_: ( oS (cx/_t) + ¢y, sin (c\/_t)

. . (Nt
\//\_nt sin (w t)) sin (Tx) (4)

Att=0

f(x)= chn sin (nTnx)
C1p = %fOLf(x) sin (%x) dx

Taking time derivative of (4) and setting it to zero will give c,,. Since initial speed is zero
then ¢, = 0. Hence

A, () = ¢y, cos (c\//\_nt) +

This completes the solution.

tsin (wt)

Vn
2cyA,

Summary of solution

The solution is given by
w(x,t) = D Ay (1) P (¥)
n=1
Case w # c\A,

- Y _Yn
A, () = cq, cos (c Ant) + Ey " cos (wt)
And

2 L . (mT n
Cln:zfo f “’Sln(?f)d"‘cm:—_wz



And
[ wax
[ oW

Vn

And A, = (1%)2,71 =1,2,3,

Case w = cy/A,, (resonance)

A, (t) = ¢y, cos (c\//\_nt) + Y _tsin (wt)

2cyA,
And

€1, = %fo(x) sin (nTnx) dx

0

1.10 Problem 8.5.5 (b)

8.5.5. Solve the initial value problem for a mermbrane with time-dependent forcing
and fixed boundaries (u = 0),

2
Oy = V7 + Qe 1),

6u
u(z,y,0) = f(x’y)v 5{(:’3’1},0) =0,
if the membrane is
(a) arectangle (0 <z < L,0<y<H)
(b) a circle (r < a)
*(c) a semicircle (0 < 8§ < 7,7 < a)
(d) a circular annulus (a < r < b)

The solution to the corresponding homogeneous PDE

% = 2V?2
Is
u(r,6,t) = 2 E a, (t)]n( Anmr) cos (n0) + E E a, (t)]n( Anmr) sin (n0)

n=0m=1 n=1m=1
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Where A,,, are found by solving roots of ]n( /\nma) = 0. To make things simpler, we will
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write

u(r,0,0) =Y, a; (t) D (r, 0)

Where the above means the double sum of all eigenvalues A;. So ®; (r, 0) represents J,, ( Anmr) {cos (n0),sin (6
combined. So double sum is implied everywhere. Given this, we now expand the source
term

Q(r,0,1) = 3 q: ()Y ®i (1, 0)
And the original PDE becomes
Yo O () = X a; () V2 (@; 1, 0) + 345 (8) D, 1, 6) M)

But
V2(®; (r, 0)) = =1, ®; (1, )
Hence (1) becomes

D () D (r, 0) + 2Aa; (1) @i (r, 0) = Y, q; (1) D; (1, 0)

(a7 0+ Phia; (1) @, (,6) = X4, () i (7, 6)

1

Applying orthogonality gives
ay’ () + 2 Aa; (1) = g; (1)
Where
[ [Qw,0,0®,0)rdrdo
[ [ o2, 0)rdrdo
The solution to the homogenous ODE is
a? (t) = A, cos (C\//\_it) + B; sin (C\//\—it)

And the particular solution is found if we know what Q (r, 6,t) and hence g; (t). For now, lets
call the particular solution as af (t). Hence the solution for g, (t) is

a; (f) = A; cos (c\/ﬂt) + B, sin (c\/z't) + af ()
Plugging the above into the u (r, 6,t) = X a; (t) ®; (r, 0), gives
u(r,0,t) = 2 (Al- cos (C\/Z-t) + B; sin (C\/Z-t) + af (t)) @, (r,0) (2)

We now find A;, B; from initial conditions. At t =0
£, 0=, (A +4d] 0) ®i (r,6)

1

q; (t) =



Applying orthogonality
a TC a TC
[ [ reovwomao= [ [ 3 (4+d )00 0 mdde
0 Y-n 0 vY-n

a AT " o | b P ) , ;
J;f_nf(rﬁ)(l)](ré)rdre (A]+a](0))j(;f_n®] (r,0) rdrdO

"™ f(r,0)D; (r,0) rdrdo
(Ai+af(0)):£f‘7;f7(: ) D, (r, 0) rdr
L[ @ (r,0)rdrdo

Taking time derivative of (2)

p
du (;,tQ, t) _ zll (—AiC\/Z' sin (c\/Z-t) + c\/xiBl- cos (c\/Z-t) + da;i_t(t)) D (r,0)

Att=0

p
0=Y (c\/Z.Bi 4 9 (0))@ (r, )

dt

Hence B; = 0. Therefore the final solution is

u(r,0,t) = E (Ai cos (C\/Zt) + a? (t)) d; (r,0)

1

Where
(A p (0)) f f_: f(r,0);(r, 0) rdrd0
it i = ——
a l; f_n Z (r, 0) rdrd6

This complete the solution.
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