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1 HWS

1.1 Problem 5.10.1

5.10.1. Consider the Fourier sine series for f(z) = 1 on the interval 0 < z < L.
How many terms in the series should be kept so that the mean-square error
is 1% of fo f?0 dz?

The Fourier sin series of f(x) =1 on 0 < x <L is given by
] . (nTm
fx)~ Z:{ b, sin (Tx) 1)
Where

—cos(nn)] - — [cos (nm) - 1])

,and b, odd for n =1,3,5,--- so we can simplify the above to be

1
b, = 7 (— 1-(-1]- E [-1 —1])

1(L

=7 (E (2] - o [—2])

1(4L

e

B 4

T onn

Equation (1) becomes
il 4
fw~ Y — sin(%x) )

mean-square error is, from textbook, page 213, is given by equation 5.10.11

E= fo ' F2 (00 @) dx - a f ¢20 (x) dx (5.10.11)

n= 135



nm

In this problem, ¢, = sin( x) and a,, = a, = %. The above equation becomes

L
L 0 4\ (L
E:f F2(x)0 (x)dx — 2 (—) f sin® (n—nx)a(x)dx
0 =135\t Jo L
L &, 16 L nn
= 2 (x) odx — —— sin? (—x) odx
fo f n=1§,5,-~- n2n2 J, L
For 0 =1 we know that
L L
f sin? (Ex) odx = —
0 L 2
Hence E becomes
L had 16 L
E= f 2 dx — _—
. £2(x) odx nzl% =
But £L f?(x) odx for o =1 is just £L 12dx = L, and the above becomes
L16 o 1
E=L--= Y, =
2% 5%, 1’
8L i 1
us n=135,- n?
We need to find N so that E = 0.01L. The above becomes
8L & 1
O OlL = L - —2 —2
n=135, "t
We need now to solve for N in the above
8L N 1
O OlL - = ——2 E —2
T =135, 1
2 N 1
099L|— | = —
(SL) n:];ru. nz
N1
12214= ), —
n=135,- "t

A small Mathematica program written which prints the RHS sum for each 7, and was visually checked
when it reached 1.2214, here is the result



data = Table[{i, Sum[1/n"~2, {n, 1, i, 2}]}, {i, 1, 50, 2}] // N;
Grid[Join[{{"n", "sum"}}, data], Frame -» All]

n sum
1. 1.

3. 11.11111
5. |1.15111
7. 11.17152
9. 11.18386
11.]1.19213
13.]1.19805
15. ]1.20249
17.11.20595
19. |1.20872
21.11.21099
23.]11.21288
25.11.21448
27.11.21585
29.]1.21704
31.11.21808
33.] 1.219
35.11.21982
37.11.22055
39.11.2212
41.1 1.2218
43.(1.22234
45.11.22283
47.11.22329
49. 1 1.2237

Counting the number of terms needed to reach 1.2214, we see there are 21 terms (21 rows in the
table, since only odd entries are counted, the table above skips the even n values in the sum since
these are all zero).

1.2 Problem 5.10.2 (b)

5.10.2. Obtain a formula for an infinite series using Parseval’s equality applied to
the
(a) Fourier sine series of f(z) =1 on the interval 0 < z < L
*(b) Fourier cosine series of f(z) = z on the interval 0 < z < L

(c) Fourier sine series of f(z) = z on the interval 0 <z < L




Parseval’s equality is given by equation 5.10.14, page 214 in textbook

b 0 b
f Frodx=Ya? f $2odx (5.10.14)
a n=1 a

The books uses «,, instead of a,,, but it is the same, these are the coefficients in the Fourier series for
f (x). We now need to find the cosine Fourier series for f (x) = x. This is given by

fx)=a9+ i a, cos (nfnx)

n=1

Where
1 L nm
an—Zf_Lf(x)cos(Tx)dx
L nm L nm
[ oo oo
L[j:L(x)cos(Lx) X+ O(+x)cos Lx x]
LS reos (T [ xcos ()
I _Lxcos T X . cos | —x
But
0 nm -1+(-1)" ,
j:Lxcos(Tx)dx:_WL
L _1 _171
f xcos(gx)dx=—+2(2) 12
0 L neTr
Hence

-1+(-1)" ,
T ¢

=
e~

Therefore, we can write a,, as



And

1 L
a0=Zf_Lf(x)dx
=21—L>£0L(—x)dx+fL(+x)dx]

1 x20+x2
T 2L 2
| —L 0

ﬂ

2
S-S
2L | 2|2
12 12
Iz 3]
L
=2

Hence the Fourier series is

f(x)=£+ i icos(ﬂx)

2,2
2 i35 TN L

We now go back to equation 5.10.14 (but need to add gy to it, since there is this extra term with
cosine Fourier series

)
b b ) b
f fzodx=a%f 12dx + Eaﬁf pZodx
a a n=1 a
L LV (L o (-4l L nm
24 _ | = 2 ("
fo x“dx = (2) fo dx + Z (nznz) j(; cos ( T x)dx

n=135,

B (12 © 16l2 (L nm
[—] :(—)L+ E ﬂf cosz(—x)dx
3 b 4 n=135,.. 1 Jo L

. L nmn L
Since £ cos? (Tx) dx = 5 the above becomes

L3 L2 S 1612 L
St § 251
n

3 4 5t mnt2
L3 L2 —~ 8L3
3" (z)L + Y g

=135, ¢ 1
3 13 813 & 1
Xy Y I
T =135, 1
Simplifying
1 1 8 —~ 1
371 L
=135,
i": 1 (1 1) U

=135, .. nt \3 4) 8

i 1 n
- n*t 9



Hence

7T4—1+1+1+1+
9 3% 5t 74

Which agrees with the book solution given in back of book.

1.3 Problem 5.10.6

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f=zan¢n and Q=Zﬂn¢ny

then for normalized eigenfunctions

b oo
/ fgo dx = Z anBn,
a n=1

a generalization of Parseval’s equality.

b b [ ©© oo
f feodx = f (Z ancl)n) (Z /J’nqbn) odx
a a4 \n=1 n=1
b
= f ((xlqbl +ary + ) (ﬁlqjl + Bopy + ) odx (1)

a

But

(11 + aapy + ) (Bip1 + Pacpo + ) = 1Prd? + rPocp1 b + a1 Baprps + -+
+ PrPaPr + WPods + rBaprps + -
+ a3BrPar + A3BoPapn + AzPadi + -

Which means when expanding the product of the two series, only the terms on the diagonal (the
terms with a;f;¢;¢; with i = j) will survive. This due to orthogonality. To show this more clearly, we
put the above expansion back into the integral (1) and break up the integral into sum of integrals

b b b b

f ngdxzf “151¢%0dx+f a152¢1¢20dx+f a1B3¢p1Pz0dx + -+
b b b

+f a2ﬁ1¢2¢10dx+f a2ﬁ2¢§adx+f xBap1p30dx + -+

a a a

b b b
+f a3ﬁ1¢3¢10dx+f a352¢3q520dx+f azBsplodx + -+

a a a



The above simplifies to

b b b b b
f fgadx:f alﬁlcj)%adx+f a2ﬁ2¢%adx+f a3ﬁ3¢§adx+---f a,Bupiodx + -+

a a a a

Since all other terms vanish due to orthogonality of eigenfunctions. The above simplifies to

b o b
];fgadx:%:lj; anﬁnf%adx
=§(anﬁn / ¢%adx)

b
Because the eigenfunctions are normalized, then f ¢20dx = 1 and the above reduces to the result
a

needed

b o
f fgo dx = E By
a n=1

1.4 Problem 7.3.4

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < z <
L, 0<y<H)
ot 0z2  9y?
subject to the initial conditions
Su
u(z,y,0) =0 and E(I» ¥,0) = f(z,y).
Solve the initial value problem if
(a) u(0,y,t)=0, u(L,y,t)=0, %f-;(z,o, t) =0, g%(x,H, t)=0

*(b) %(Ov:%t):()’ %(L):%t):ov %E(I.O,t)=0, gl;'(x’H)t)=0

1.41 part(a)

Let u = X (x) Y(y) T (t). Substituting this back into the PDE gives
T"XY =c2(X"YT + Y"'XT)

Dividing by XYT # 0 gives

1 T// B Xll + ‘Yll

2T X Y
Since left side depends on f only and right side depends on (x, y) only, then both must be equal to
some constant, say —A

1 Tl/ B X/l Y// B

[ — + —
2T X Y A



We obtain the following

T” + AT =0
XN : /\ Y/l
X Y

Again, looking at the second ODE above, we see that the left side depends on x only, and the right
side on y only. Then they must be equal to some constant, say —p and we obtain

X’/_ A Y// B
X y |T7H

Which results in two ODE’s. The first is

X" +uX=0
X(@0)=0
X({@L)=0
And the second is
A+ Y =
v =
Y =Yu-AY
Y’ +Y(A-p)=0
With B.C.
Y (0)=0
Y’ (H)=0

Starting with the X ODE since it is simpler, the solution is

X =y cos (\/ﬁx) + ¢y sin (\/ﬁx)
Applying X (0) = 0 gives
0= Cq

Hence solution is

X = ¢y 8in (\/ﬁx)
Applying X (L) = 0 gives

0 =cysin (\/[._IL)

For non-trivial solution
And the eigenfunctions are

We now solve the Y ODE.



10

Assuming that (/\ - y) > 0 for all A, u, (we know this is the only case, since only positive A — u,, will
be possible when B.C. are homogeneous Dirichlet). Then, for (A - y) > 0, the solution is

Y(y) = ¢; COS (\M - yny) + ¢z 8in (V/\ - #ny)
= —c1\/A - g, sin (\//\ - lln]/) + 52\//1——/1”(105 ( VA = #ﬂy)

Applying B.C. Y’ (0) = 0 the above becomes

0=cvA—uy,

Hence ¢, = 0 and the solution becomes

Y = ¢; cos (\//\ - yny)

Y’ = —c;yA =y sin (VA - )
Applying second B.C. Y’ (H) = 0 gives

0=-c1\VA -y, sin( A- ynH)

For non-trivial solution we want

sin (yA - u,H) = 0

s
Ay yn—mH

7.(2
nm yn_( ITI)

\2
/\nm=(mﬁ) + Uy m=0,1,2,---
Hence the eigenfunctions are
Ynm:cos(m%y) m=0,1,2,---,n=1,2,3,---
For each n,m, we find solution of T” + c?A,,,,T = 0.The solution is

T () = A,y COS (c Anmt) + B, sin (c Anmt)
Putting all these results together gives

u (X, Yy, t) = i io: T () X () Yo ( )

n=1m=1
(o) (o)

2[ COS(C A t)+B sm(c A t)]sm(rzx)cos( zy)
nm n,m nm n,m L H

1m=1

i:: nm COS (c nmt) sin (nfx) cos (mﬁy)
+ E i B, sin (c nmt) sin (nfnx) Ccos (m%y)

n=1m=1

Il
N

n

8 ||t“48

We now apply initial conditions to find A, B, Att=0

u (x,y, ) =
= 2 2 A,y Sin ( ) cos (m%y)

n=1m=0

Hence

Ay =0
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And the solution becomes

u (x, Y, t) = i i B, sin (c /lnmt) sin (%x) cos (m%y)

n=1m=0

Taking derivative of the solution w.r.t. time ¢ gives

(x Y, ) E Z cVA B cos (c /\nmt) sin (%x) cos (m%y)

n=1m=0

At t = 0 the above becomes
a (x, y) = Z E VA B sin (nfnx) cos (m%y)
n=1m=0

Multiplying both sides by sin (% ) mZ ) and integrating gives
T

f f XY sm(—x) cos( y) dxdy =c ntnmnElmzof f sin (—x) cos ( Hy) dxdy

— a2 (2 2 (=

=c Antnmj; j(; sin ( T x) cos (mHy) dxdy
L\(H

= VA umBum (_) (_)
2/\2

B —LfoHa(x )sin(n—nx)cos(mE )dxd
nm_LHC\//W 0o Yo Y L Hy Y

Hence

Summary of solution

. (nm
Xn(x)=sm(fx) n=1,23,--

nrm

2
[un:(f) n=1273,

Tt
Y = ( —) =012,
nm(y) cos {my m
i 2
Anm—yn:(mﬁ) m=0,1,2,---,n=1,2,3, -
Ty (£) = By sin (C Anmt)

u (x, v, t) = i i B, sin (c /\nmt) sin (%x) cos (m%y)

n=1m= 0
B f f X, sm(n—nx) cos (m )dxd

1.4.2 Part (b)
In this case we have
X" +uX=0
X' 0=0
X' (L)=0
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And the second spatial ODE is

At — =

Y
Y =Yu-AY
Y’ +Y(A-p)=0
With B.C.
Y (0)=0
Y (H) =0

Starting with the X ODE. The solution is

X = ¢y cos (\/ﬁx) + ¢p sin (\/ﬁx)

X" = —c14/pisin (\/ﬁx) + co/t cos (\/ﬁx)
First B.C. gives

0=C2\/ﬁ

Hence ¢, = 0 and the solution becomes
X =¢; cos (\/ﬁx)

X' = =14/t sin (\/ﬁx)
Second B.C. gives

0 = —c14/usin (\/ﬁL)

Hence

\uL = nn
nm\?
y=(f) n=0,1,2,-
Now for the Y solution. This is the same as part (a).

Ym (y) = cos (m%y)

2
TC
A= = (5

\2
Anm = (ﬂ’lﬁ) + Uy
=(mz)2+("—”)2 m=0,1,2-,n=0,1,2,
H L
For each n,m, we find solution of T” + ¢?A,,,,T = 0.When n = 0,m =0, A,,,, = 0 and the ODE becomes
T =0

With solution
T=At+B
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And total solution is
10 (%,,1) = Ty () Xogs () Yo (1)

= Too (£) Xoo (x) Yoo (]/)

= (At +B)
Since Xy (x) =1 and Yy (y) =1. Applying initial conditions gives

u(x,y,O) =0=8B
Therefore the solution is u (x, Y, t) = At. Applying second initial conditions gives
A=a (x, y)

Hence the time solution for n = m =0 is

Ty = ta (x, y)
For each n,m, other than n = m = 0, the time solution of T + c?A,,,,T = 0 is

T () = A,y COS (c Anmt) + B, sin (c Anmt)

Putting all these results together, we obtain

0508 = 3 2 T (0 X (09 Yo (9)

n=0m=0

[
DM
Mg

[Anm cos (c Anmt) + B, sin (c Anmt)] cos (nfnx) cos (m%y)

E E A, COS (c /lnmt) cos (%x) cos (m%y)

n=0 m=0

+ i i By, sin (c /\nmt) cos (%x) cos (m%y)

n=0m=0

g5
o

The difference in part(b) from part(a), is that the space solutions eigenfunctions are now all cosine in-
stead of cosine and sine. When the eigenfunction is cos the sum starts from zero. When eigenfunction
is sin the sum starts from 1. Now initial conditions are applied as in part (a).

u(x,y,) 0= ZzAnmCOS(%x)COS(m y)

n=0m=0
Hence A,,, = 0. And the solution becomes

u (x, Y, t) = ;:;) mz::() B, sin (c )\nmt) cos (nfnx) Cos (m%y)
Taking derivative of the solution w.r.t. time

(x Y ) E 2 N AumBym cos (C Anmt) COoS (%x) cos (m%y)

n=0m=0
At t = 0 the above becomes

@ (x’ y) = io: i VA By cos (HTRX) (o] (m%y)

n=0m=0



Multiplying both sides by cos (@x) cos (mzy) and integrating gives

f f xy cos(—x)cos( Hy)dxdy—c ntan Zf f oS (—x)cos (m y)dxdy

n=0m=0
L\(H
= VA Bum E E

nrt

By = LHcmf f X, y oS (Tx) cos (m y)dxdy

Hence

Summary of solution

7\2
/\nm—yn:(mﬁ) m=0,1,2,---,n=0,1,2,---
T, () = ta(x,y) n=m=0
e B, sin (C\M,,mt) otherwise
u(x t)— taz(x,y) n=m=0
)= Z:’ L2 By sin (c /\nmt) cos (%x) cos (mzy) otherwise
nm
B f f X,Y)cos (—x) cos (m ) dxd
nm LHc \/— y I oY Y
1.4.3 Part (c)

Same problem, but using the following boundary conditions

u(O,y,t) =0
u(L,y,t) =0
u(x,0,t)=0
u(x,H,t)=0

Since the boundary conditions are homogeneous Dirichlet then the X (x) ODE solution is
S
n = sin|x

—(””)2 ~12.3
U= I n=1,2y.,

14



And Y(y) ODE solution is

n\¢ (nm)\?
= (m—) + (—) m=1,2,
H L

And the time solution is

Ty (t) = A, cos (c Anmt) + B,,, sin (c Anmt)

Hence the total solution is

w550 = 33 T 0 X 0 Y

3
Il
—_
3
—_

[
NgE

1

=
1l
—_
I

1
[ee)

2 Jm SIIL (c nmt) sin

1m=1

+

NgE

=
Il

Att=0

n=1m=1

Hence A,,, = 0 and the solution becomes

u (x, Y, t) = i i B, sin (c /\nmt) sin (%x) sin (

n=1m=1

Taking derivative

3,---,n=1,

m=1,2,3,---

)

2,3,

E Ay, €OS (c nmt) sin (nfnx) sin (%y)

(o )

0= 2 2 A sm( )sin(%y)

)
P84

;t (x L ) i i BN Ay cOS (C Anmt) Sin(nfnx) sin (%y)

n=1m=1

Att=0

a (x’ ]/) = i io: BmcN Ay sin (TLTRX) sin (%y)

n=1m=1

Therefore, using orthogonality in 2D, we find

4 L ~H L (nm )\ . (mm
B, = mﬁ j(; a(x,y)sm(fx)sm(?y)dxdy

N :1/2131“'

15



Summary of solution

X, (x):sin(%x) n=12,3,--
nm

2
i :(T) n=1,23

T
Y,m (y) = cos (mﬁy) m=1,2,3,--
7T\2
Anm—yn=(mﬁ) m=1,2,3,---,n=1,2,3,---

Ty (£) = By sin (cy/At)

u (x, v, t) = i i B, sin (c /\nmt) sin (nfnx) sin (m%y)

n=1m=1

B 4 foH ( ) i (nnx)sin(m7Z )dxd
= ——— alx,y)sin|— —

1.5 Problem 7.3.6

7.3.6. Consider Laplace’s equation

u  %*u %

22 Vo Y52 =0

Vi =
in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is 2 = H and the bottom is z = 0. Assume that

0
f(z,y)

L u(z,y.0)
u(z,y, H)

and u = 0 on the “lateral” sides.

(a) Separate the z-variable in general.

*(b) Solve for u(z,y, z) if the region is a rectangular box, 0 < r < L,0 <
y<Wo0<z<H.

NJJL Figure 7.3.3

16
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1.5.1 Part (a)

2u  %u  J%u B

2 =0

V=52t o

Let u = XYZ where X = X (x),Y = Y(y) ,Z = Z (z). Substituting this back in the above gives
X'"YZ+Y'XZ+Z"XY =0
Dividing by XYZ # 0 gives

Xl/ + YII + ZII B O

X Y zZ
Xll + Yl/ 3 Zl/
X Y @z

Since the left side depends on x,y only and the right side depends on z only and they are equal, they
must both be the same constant. Say —A, and we write

X// ‘Y/l
s =22 1
<ty 1)
Z// : A
= =
The problem asks to separate the z variable, then the ODE for this variable is
Z'-AZ=0 (2)
With boundary conditions
Z'(0)=0
Z(H) = f (x,y)

1.5.2 Part(b)

We will continue separation from part(a). From (1) in part (a)

Xl/ Y//

X + 7 =-A
We now need to separate X, Y. Therefore

X// 3 Y’/

x -y

As the left side depends on x only and right side depends on y only and both are equal, then they
are equal to some constant, say —u

X
x - H
oY
y ~H
The x ODE becomes
X" +uX=0 1)
X@0)=0

X(L)=0
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And the y ODE becomes

Y’ +(A-pu)Y=0 (2)
With B.C.
Y(0)=0
Y(W)=0
Now that we have the three ODE’s we start solving them. Starting with the x ODE (1). The solution

is
=gin|(—=x
" L

2
yz(ﬂ) n=1,23,

For each n there is solution for the y ODE

. (mmn
s

mr\2
Anm—ynz(w) m=1,2,3,--
Or
A =(@)z+(n—n)2 n=1,2,3,m=1,23
nm W I 12,3, /2,3,
And for each n and for each m there is a solution for the z ODE we found in part (a), which is
Z" = AmZ =0
Z'0)=0

The solution is, since A, > 0 is
Z = cq cosh ( Anmz) + ¢y sinh ( /lnmz)

7 = clmsinh ( /\nmz) + ch/ﬁ cosh ( Anmz)
Applying B.C. Z’ (0) = 0 gives
0 = cavVAum
Hence ¢, = 0 and the solution becomes
Z = Cyp cosh( /\an)
Putting all these solutions together, we obtain
U (x, v, z) = g mi;l Cpm SN (nfnx) sin (m—vz;y) cosh ( Anmz)

Only now we apply the last boundary condition u (x, Y, H) =f (x, y) to find c,,,,,.

[ee]

-5

. (AT . (mT
] Cpm SIN (Tx) sin (Wy) cosh ( Aan)



Applying 2D orthogonality gives
T LW mmn
f f x, y sin (—x) sm( W y) dxdy = ¢, cosh j(; fo sin ( )sm (Wy) dxdy
= Cym cosh (L)(w)
2/\2

££ fxy )sm( y)dxdy
cosh(mH)( )( )

LWcosh _an f f X,y sm(fx) sm( y) dxdy

Hence

1’!

Summary of solution

-
n = sin| —x
Ynm:sm(@y)
mm\2  (nm\?
A”’”:(W) +(T) n=1,2,3,m=123,
7Y = i T i AT h /\
u(xyz) nz::lmz::lcnmsm(Lx)sm(wy)cos ( nmz)

4

st e s

Cnm

1.6 Problem 7.4.2

~ ~ v

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

Equation 7.4.7 is
Vip+Ap =0
¢(0.y)=0
¢ (Ly)=0
¢ (6,0)=0
¢ (x,H)=0
And 7.4.6 is

—9§¢v¢.ﬁds+ff Vo[ dxdy
R
fRf(pzdxdy

A=




20

fﬁ ¢V - nids = 0 as we are told ¢ = 0 on the boundary and this integration is for the boundary only.

[ vof axiy
A=__
{fcpzdxdy

2
The numerator can not be negative, since the integrand |V(p| is not negative. Similarly, the denomi-
nator has positive integrand, because ¢ can not be identically zero, as it is an eigenfunction. Hence
we conclude that A > 0.

Hence A simplifies to

1.7 Problem 7.4.3

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that [f(uVZv — vV2u)dz dy = §(uVv — vVu) - 7 ds.
(b) From part (a), derive (7.4.5).

1.71 part (a)
V- wVo)=uV?v+Vu-Vo (1)
V- (@Vu)=ovV2u+Vo-Vu (2)
Equation (1)-(2) leads to
V- -uVo)-V - -@Vu) = (quv +Vu- Vv) - (szu +Vo- Vu)
V- -wVo-oVu) =uV?v-ovV2u+Vu-Vo-Vo-Vu
But Vu-Vov=Vuo-Vu so the above reduces to
V- WVo—-oVu) =uV3v-oVau
Therefore
ff (quv - UVZu) dxdy = ffV - (uVo—ovVu)dxdy (3)
But the RHS of the above is of the form f f (V - A)dxdy where A = (uVv —ovVu) here. Which we can

apply divergence theorem on it and obtain § (A -)ds. Therefore, using divergence theorem on the
RHS of (3), then (3) can be written as

ff (uvzv—vv2u)dxdy = 56 uVo-ovVu)-nds

Which is what is required to show.
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1.7.2 Part(b)

Equation 7.4.5 is

f f G Ordxdy =0 if Ay # A (7.4.5)
R
From part (a), we found
ff (quv—vvzu) dxdy = 56 uVo-oVu)-nds 1)

But we know that, since both u, v satisfy the multidimensional eigenvalue problem on same domain,
then

VZu+A,0=0 (2)
Bro+p(Vo-71) =0 (3)
And similarly
V2u+A,u=0 (4)
pru+pp(Vu-)=0 ()

Now we will use (2,3,4,5) into (1) to obtain 7.4.5. From (2), we see that V?v = -1, and from (4)

V2u = -A,u and from (3) Vo7 = —%v and from (b) Vu-7 = —?u. Substituting all of these back into
(1) gives

ff (1 (~A,0) — 0 (<A, 1) dxdy:SEu(w-ﬁ)—v(w-ﬁ)ds
L (B (B
ff (A uv + A, ou) dxdy—fﬁu( ﬁzv) v( ﬁZu)ds

ff (A, = Ay) uo dxdy = \(ﬁ% [~uv + uv]ds

A, - A,) f f wo dxdy = 0 (6)

We now use (6) the above to show that 7.4.5 is correct. In (6), if we replace u = ¢, ,v = ¢4; and
A, = Ay, A, = Ay then (6) becomes

(A= Ap) ff ((PM(pM) dxdy =0

We see now that for A; # A,, then ff (@Al(PAl) dxdy = 0. Which is what we asked to show.
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