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1 HW7

1.1 Problem 5.6.1 (a)

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) £$ + (A —z%)¢ = 0 with 32(0) = 0 and ¢(1) = 0
(b) £ + (A= z)¢ =0 with 92(0) = 0 and 92(1) +24(1) = 0
*(c) 44+ A¢ =0 with $(0) = 0 and 32(1)+ ¢(1) = 0 (See Exercise 5.8.10.)

111 part (a)

2
27(5 +(A-x2)p =0
¢'(0)=0
¢1)=0
Putting the equation in the form
2
ddT(f -x2p =-A¢
And comparing it to the standard Sturm-Liouville form
2
PZTQ; +P’i—f +q¢p =-Aog
Shows that
=1
q=-x
=1

Now the Rayleigh quotient is
(po). + [ p (o) - agPax

f op?dx
Substituting known values, and since ¢’ (0) = 0, ¢ (1) = 0 the above simplifies to
Ll (qb’)z + x2¢p2dx
A= T
L p2dx
Now we can say that
Ll (qb’)z + x2p?dx
Amin = A < 1 1)
£ p2dx

We now need a trial solution ¢, to use in the above, which needs only to satisfy boundary
conditions to use to estimate lowest A,;,. The simplest such function will do. The boundary
conditions are ¢’ (0) = 0,¢» (1) = 0. We see for example that ¢, (x) = x> ~1 works, since ¢/, (x) = 2x,



and ¢/, (0) = 0 and ¢y (1) =1 -1 = 0. So will use this in (1)
£1 (2x)* + 22 (x2 - 1)2 dx
Ll (x2 - 1)2 dx

f 2x)* + 22 (x4 - 2% + 1) dx

f (x4 —2x2 + 1) dx

f 4x% + x® - 2x* + x2dx
- K (x4—2x2+1)dx

f 3x2 + x0dx

1
J; x4 —2x2 + 1dx

3,17 ! 1
o+ )o 1+3)
= 1 =
(1x5—gx3+x) (1—E+1)
5
0
15
7
= 21429
Hence
A £2.1429

1.2 Problem 5.6.2

5.6.2. Consider the eigenvalue problem

g+(z\—x2)¢=0

A #0).

subject to 5%(0) =0 and %5(1) = 0. Show that A > 0 (be sure to show that

2
%’ +(A-22)p=0
¢'(0)=0
¢'1)=0
Putting the equation in the form
2
ZT(S - x%p = -\
And comparing it to the standard Sturm-Liouville form
2
p% +p’2—f +q¢ =-Ao
Shows that
p=1
q=-x
o=1

Now the Rayleigh quotient is
(po0’). + [ p (o) - agPax
[ oo




Substituting known values, and since ¢’ (0) = 0, ¢ (1) = 0 the above simplifies to
f ((p’)z + x2¢2dx
f P2dx
Since eigenfunction ¢ can not be identically zero, the denominator in the above expression can

only be positive, since the integrand is positive. So we need now to consider the numerator term

only:

A=

1 o 1
f (q)') dx + f x2p2dx
0 0
For the second term, again, this can only be positive since ¢ can not be zero. For the first term,
there are two cases. If ¢’ zero or not. If it is not zero, then the term is positive and we are done.

2
This means A > 0. if ¢’ = 0 then f (¢’) dx =0 and also conclude A > 0 thanks to the second term

f x2¢? being positive. So we conclude that A can only be positive.

1.3 Problem 5.6.4
Problem

Consider eigenvalue problem dir(ril—q:) = -Ar¢,0 < r <1 subject to B.C. |qb(0)| < oo (you may also

assume Z—f bounded). And Zi; (1) = 0. (a) prove that A > 0. (b) Solve the boundary value problem.
You may assume eigenfunctions are known. Derive coefficients using orthogonality.

Notice: Correction was made to problem per class email. Book said to show that A > 0 which is
error changed to A > 0.

1.3.1 Part (a)
From the problem we see that p =r,4 = 0,0 = r. The Rayleigh quotient is
(poo"). + [ p (o) - qoer
f op?dr
(rp), + [ r (@) dr
f r¢?dr

1)

The term — (nj)(p’); expands to
-(Wo@¢' M) - (0)$(0) ¢’ (0))

Since ¢’ (1) = 0, the above is zero and Equation(1) reduces to
K 7 (cz)’)z dr
f r¢?dr

The denominator above can only be positive, as an eigenfunction ¢ can not be identically zero. For
the numerator, we have to consider two cases.

A=

case 1 If ¢’ # 0 then we are done. The numerator is positive and we conclude that A > 0.

case 2 If ¢’ = 0 then ¢ is constant and this means A = 0 is possible hence A > 0. Now we need to
show ¢ being constant is also possible. Since ¢’ (1) = 0, then for ¢’ = 0 to be true everywhere, it
should also be ¢’ (0) = 0 which means ¢ (0) is some constant. We are told that |q§ (0)| < oo, Hence
means ¢ (0) is constant is possible value (since bounded). Hence ¢’ = 0 is possible.

Therefore A > 0. QED.

1.3.2 Part (b)
The ODE is

¢ +¢" +Arg=0 O0<r<l1 1)
[¢(©)] < 00
¢’ (1) =0



In standard form the ODE is ¢” + %q‘)’ + A¢ = 0. This shows that » = 0 is a regular singular point.
Therefore we try

qb (r) = Z a1t
n=0

Hence
¢’ (r) = ), (n+a) a,ret
n=0
¢ (r) = i (n+a)(n+a-1)a,r"+*?2
n=0

Substituting back into the ODE gives

[ [o0] [
r Z (n+a)(n+a-1)a," %2+ Z (n+a)a, /el + Ar Z a,r"+* =0

n=0 n=0 n=0

(o) (o) (o]
2 n+a)y(n+a-1)a, 1 + 2 (n+a)a, "+ A E a, et =0
n=0 n=0 n=0

To make all powers of r the same, we subtract 2 from the power of last term, and add 2 to the index,
resulting in

(o) (o) o0
2 m+a)(n+a-1) anrn+a—l + Z (n+ ) anrn+a—1 +A E an—27n+a_1 =0
n=0 n=0 n=2

For n = 0 we obtain
(@) (@ =1)agr*! + (@) agr*1 =0
(@) (a@=1)ag +(@)ag =0
110(042—0(+a) =0
aga® =0

But ay # 0 (we always enforce this condition in power series solution), which implies

a=0

Now we look at n =1, which gives
@O @ -1 ayr™* T+ 1) a1t =0
a =0
For n > 2, now all terms join in, and we get a recursive relation
(n)y(n-1)a, "' + @) a, "+ Aa,_,r" =0

myn-1)a,+m)a, +Aa,_, =0

_ —/\ﬂn—z
W e-)+n
-A

= Fan—Z

For example, for n = 2, we get
-A
a2 = 25
All odd powers of n result in 4, = 0. For n = 4
-A -A (-2 A?
U pnT e (?”0) " @)@

And forn =6
A=A A2 ~ -A3
PTet T e )W) @) @) (@)

And so on. The series is
G ()=, apr"
n=0
=ag+0+ayr® +0+ag* +0+agr®+ -
Ar? A2t A30
20T @)" @@ )"

N N )

=ay|l- + - + - (2)

z @)@ @E)E)

=ag -




From tables, Bessel function of first kind of order zero, has series expansion given by

Le= % ()

2 (ny® \2
- () () - s )
2/ @2 \2] (@) \2
z2 1 1
_ 4 6
=l t gt Tt t
2 4 6
e 3)

22 T ppe T
By comparing (2),(3) we see a match between J, (z) and ¢ (r), if we let z = VAr we conclude that

$1(r) = aolo (‘//_\”)

We can now normalized the above eigenfunction so that g, = 1 as mentioned in class. But it is
not needed. The above is the first solution. We now need second solution. For repeated roots, the
second solution will be

G2 (r) = 1 (NI (r) + 719 D] byr”
n=0
But @ = 0, hence
G2 (r) =1 (N In(r) + E b,r"
n=0

Hence the solution is

P (r) = c1p1 (r) + 202 (1)
Since ¢ (0) is bounded, then ¢, = 0 (since In (0) not bounded at zero), and the solution becomes
(where a, is now absorbed with the constant ¢;)

¢ (1) =11 (1)
=cJp (\/Xr)

The boundedness condition has eliminated the second solution altogether. Now we apply the second
boundary conditions ¢’ (1) = 0 to find allowed eigenvalues. Since

@' (r) = —=c)y (‘/XT’)
Then ¢’ (1) = 0 implies
0=-c/; (\//_\)

The zeros of this are the values of VA. Using the computer, these are the first few such values.

VA, =3.8317

A, = 7.01559
A3 =10.1735
or
Ay =14.682
Ay = 49.219
A3 =103.5
Hence
b (1) = culo (VA7) (4)

o) =3 6,0
n=1
= Z o (‘//\_nr)
n=1

To find c,,, we use orthogonality. Per class discussion, we can now assume this problem was part of
initial value problem, and that at f = 0 we had initial condition of f (r), therefore, we now write



£ =Yoo (VA7)
n=1

Multiplying both sides by J (\M r) o and integrating gives (where o =)

o ]
fo 3 £ o (Vi) rdr = 3] fo calo (V) Jo (VA1) rdr
n=1 n=1
= fl Cm](% (\/A_mr) rdr
0
= [ 13 (V) rr
0

=c,,Q
Where Q is some constant. Therefore

[ 52 £ o (VAur) rdr

Q

Cyp =

And ¢ (1)

2%]0 (\/A—nr)

With the eigenvalues given as above, which have to be computed for each # using the computer.

1.4 Problem 5.9.1 (b)

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-

functions for 4

dz

if the boundary conditions are

(P(l)%) + [Ao(z) +g(z)]¢p =0

(a) %2(0)=0 and 2(L)=0
*(b) ¢(0)=0 and 42(L)=
(c) #(0) =0 and %2(L)+ho(L) =

From textbook, equation 5.9.8, we are given that for large A

N7 e (F /o(t)
(P (x) = (O‘p) exp [ilﬁ\[{; mdt}
(o) a0 . < o
= (Op) [Cl COS[ A L mdt] + Cp SIn [\/XL mdt}] 1)

Where ¢, ¢, are the two constants of integration since this is second order ODE. For ¢ (0) = 0, the

: ot (0 [ot0, _
integral £ e dt = £ e dt = 0 and the above becomes

0= (0)
= (ap)% (c1 cos (0) + ¢, sin (0))
~aion)?

Hence c¢; = 0 and (1) reduces to

P =cr(op) sm[ﬁf;,/%dt]



Hence

-1 X d X
@' (x) = ca (op) * cos [ﬁfo \/%dt] [Eﬁfo V;T(tt;dt}
=0 (O’p)7T COS [\/Xfx ;T(tt;dt] [ﬁ\!%]
~ ’71 Ao Y o (t)
= ¢, (op) \/;cos (\/Xfo \/Mdf]

0=cp (UP)% \/A??cos[\/x OL 1 /%dt]

Which means, for non-trivial solution, that

Lofo(t), 1
o Ok

Therefore, for large A, (i.e. large n) the estimate is

n_l)
£ a(t
(n—_
£ \/?;dt

(=)

Since ¢’ (L) = 0 then

1.5 Problem 5.9.2

5.9.2. Consider
d*¢

dz2
subject to ¢(0) = 0 and ¢(1) = 0. Roughly sketch the eigenfunctions for A
large. Take into account amplitude and period variations.

+A1+z)p=0

¢ +A1+x)p=0
Comparing the above to Sturm-Liouville form
(po') + a0 = ~109
Shows that
p=1
g=0
o=1+x

Now, from textbook, equation 5.9.8, we are given that for large A

BTN - E0)
¢ (x) = (ap) exp [ilﬁj; mdt}
_ _Il o(t) . o (t)
= (op) [c1 cos [V/\ f(; 1 fmdt] + ¢, 8in [\//\ j; 1 fmdt]]

Where ¢y, ¢, are the two constants of integration since this is second order ODE. For ¢ (0)

1)

=0, the



- S LG P Ly U
integral £ e dt = £ e dt = 0 and the above becomes

0=¢(0)

= (gp)T (c1 cos(0) + ¢, sin (0))
~ci(on)?

Hence c¢; = 0 and (1) reduces to

O (x)=cy (ap) 4 sm[ﬁf \ foggdt]

Applying the second boundary condition ¢ (1) = 0 on the above gives
0=¢@)

=0 (op)iT sin [\/Xj: 1 f}%dt]

Hence for non-trivial solution we want, for large positive integer n

ffﬁdt_
M

L V1 + tdt
But f VI + fdt = 1.21895, hence
= = 25773
Vi = 1.21895 "
A = 6.642472

Therefore, solution for large A is

O (x)=0cp (ap) * sin (\/Xf \ /;Egdt]
- o, (Gp)% sin|2.5773n f R EAC
o \P(®)

-1 X
— ¢, (1+2)7 sin (2.5773n f Vit tdt)
0

-1

=c;(1+x)4 sin (2 5773n (—§ +=(1+x)2 ))

To plot this, let us assume c; =1 (we have no information given to find c,). What value of n to use?
Will use different values of 7 in increasing order. So the following is plot of

p(x)=01+ x) 4 sin (2 5773n (—; + = 2 (1+x)2 ))

For x=0---1 and for n =10, 20, 30, ---, 80.
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Plot of ¢(x) for n =10

0.0 0.2 0.4 0.6 0.8 1.0
X
Plot of ¢(x) for n =30
0.0 0.2 0.4 0.6 0.8 1.0
X
Plot of ¢(x) for n =50
0.0 0.2 04 0.6 0.8 1.0
X
Plot of ¢(x) for n =70
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Plot of ¢(x) for n =20

0.0 0.2 0.4 0.6 0.8 1.0
X
Plot of ¢(x) for n =40
0.0 0.2 0.4 0.6 0.8 1.0
X
Plot of ¢(x) for n =60
0.0 0.2 0.4 0.6 0.8 1.0
X
Plot of ¢(x) for n =80
0.0 0.2 0.4 0.6 0.8 1.0
X
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