
HW7, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1 HW 7 2
1.1 Problem 5.6.1 (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem 5.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem 5.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Problem 5.9.1 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Problem 5.9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



2

1 HW 7

1.1 Problem 5.6.1 (a)

194 Chapter 5. Sturm-Liouville Eigenvalue Problems

We thus have a minimization theorem for the lowest eigenvalue A1. We can
ask if there are corresponding theorems for the higher eigenvalues. Interesting
generalizations immediately follow from (5.6.13). If we insist that al = 0, then

F O O_ 2 anAn f6 0 2 a dx
RQ[u] =

2
b°

n (5.6.15)
En=2 an fn 'Vna dx

This means that in addition we are restricting our function u to be orthogonal to
461, since a1 = f, uOla dx/ fa 0la dx. We now proceed in a similar way. Since
1\2 < An for n > 2, it follows that

RQ[u] > A2,

and furthermore the equality holds only if an = 0 for n > 2 [i.e., u = a202(x)J
since al = 0 already. We have just proved the following theorem: The minimum
value for all continuous functions u(x) that are orthogonal to the lowest eigenfunc-
tion and satisfy the boundary conditions is the next-to-lowest eigenvalue. Further
generalizations also follow directly from (5.6.13).

EXERCISES 5.6

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) + ( - x2) = 0 with 2(0) = 0 and ¢(1) = 0

(b) d +(a=x)4=0with d (0)=0and (1)+2-0(1)=0

*(c) St +A.0 = 0 with -0(0) = 0 and a!tt(l) = 0 (See Exercise 5.8.10.)

5.6.2. Consider the eigenvalue problem

subject to (0) = 0 and 2(1) = 0. Show that A > 0 (be sure to show that
A 0).

5.6.3. Prove that (5.6.10) is valid in the following way. Assume L(u)/a is piecewise
smooth so that

L(u)
_ E bn0n(x)

n=1

Determine bn. [Hint: Using Green's formula (5.5.5), show that bn = -anan
if u and du/dx are continuous and if u satisfies the same homogeneous
boundary conditions as the eigenfunctions On(x).]

1.1.1 part (a)

𝑑2𝜙
𝑑𝑥2

+ �𝜆 − 𝑥2� 𝜙 = 0

𝜙′ (0) = 0
𝜙 (1) = 0

Putting the equation in the form

𝑑2𝜙
𝑑𝑥2

− 𝑥2𝜙 = −𝜆𝜙

And comparing it to the standard Sturm-Liouville form

𝑝
𝑑2𝜙
𝑑𝑥2

+ 𝑝′
𝑑𝜙
𝑑𝑥

+ 𝑞𝜙 = −𝜆𝜎𝜙

Shows that

𝑝 = 1
𝑞 = −𝑥2

𝜎 = 1

Now the Rayleigh quotient is

𝜆 =
− �𝑝𝜙𝜙′�

1

0
+ ∫

1

0
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫1

0
𝜎𝜙2𝑑𝑥

Substituting known values, and since 𝜙′ (0) = 0, 𝜙 (1) = 0 the above simplifies to

𝜆 =
∫1

0
�𝜙′�

2
+ 𝑥2𝜙2𝑑𝑥

∫1

0
𝜙2𝑑𝑥

Now we can say that

𝜆min = 𝜆1 ≤
∫1

0
�𝜙′�

2
+ 𝑥2𝜙2𝑑𝑥

∫1

0
𝜙2𝑑𝑥

(1)
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We now need a trial solution 𝜙𝑡𝑟𝑖𝑎𝑙 to use in the above, which needs only to satisfy boundary conditions
to use to estimate lowest 𝜆min. The simplest such function will do. The boundary conditions are
𝜙′ (0) = 0,𝜙 (1) = 0.We see for example that 𝜙𝑡𝑟𝑖𝑎𝑙 (𝑥) = 𝑥2−1 works, since 𝜙′

𝑡𝑟𝑖𝑎𝑙 (𝑥) = 2𝑥, and 𝜙′
𝑡𝑟𝑖𝑎𝑙 (0) = 0

and 𝜙𝑡𝑟𝑖𝑎𝑙 (1) = 1 − 1 = 0. So will use this in (1)

𝜆min = 𝜆1 ≤
∫1

0
(2𝑥)2 + 𝑥2 �𝑥2 − 1�

2
𝑑𝑥

∫1

0
�𝑥2 − 1�

2
𝑑𝑥

=
∫1

0
(2𝑥)2 + 𝑥2 �𝑥4 − 2𝑥2 + 1� 𝑑𝑥

∫1

0
�𝑥4 − 2𝑥2 + 1� 𝑑𝑥

=
∫1

0
4𝑥2 + 𝑥6 − 2𝑥4 + 𝑥2𝑑𝑥

∫1

0
�𝑥4 − 2𝑥2 + 1� 𝑑𝑥

=
∫1

0
3𝑥2 + 𝑥6𝑑𝑥

∫1

0
𝑥4 − 2𝑥2 + 1𝑑𝑥

=
�𝑥3 + 1

7𝑥
7�

1

0

� 1
5𝑥

5 − 2
3𝑥

3 + 𝑥�
1

0

=
�1 + 1

7
�

� 1
5 −

2
3 + 1�

=
15
7

= 2.1429

Hence

𝜆1 ≤ 2.1429

1.2 Problem 5.6.2

194 Chapter 5. Sturm-Liouville Eigenvalue Problems

We thus have a minimization theorem for the lowest eigenvalue A1. We can
ask if there are corresponding theorems for the higher eigenvalues. Interesting
generalizations immediately follow from (5.6.13). If we insist that al = 0, then

F O O_ 2 anAn f6 0 2 a dx
RQ[u] =

2
b°

n (5.6.15)
En=2 an fn 'Vna dx

This means that in addition we are restricting our function u to be orthogonal to
461, since a1 = f, uOla dx/ fa 0la dx. We now proceed in a similar way. Since
1\2 < An for n > 2, it follows that

RQ[u] > A2,

and furthermore the equality holds only if an = 0 for n > 2 [i.e., u = a202(x)J
since al = 0 already. We have just proved the following theorem: The minimum
value for all continuous functions u(x) that are orthogonal to the lowest eigenfunc-
tion and satisfy the boundary conditions is the next-to-lowest eigenvalue. Further
generalizations also follow directly from (5.6.13).

EXERCISES 5.6

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) + ( - x2) = 0 with 2(0) = 0 and ¢(1) = 0

(b) d +(a=x)4=0with d (0)=0and (1)+2-0(1)=0

*(c) St +A.0 = 0 with -0(0) = 0 and a!tt(l) = 0 (See Exercise 5.8.10.)

5.6.2. Consider the eigenvalue problem

subject to (0) = 0 and 2(1) = 0. Show that A > 0 (be sure to show that
A 0).

5.6.3. Prove that (5.6.10) is valid in the following way. Assume L(u)/a is piecewise
smooth so that

L(u)
_ E bn0n(x)

n=1

Determine bn. [Hint: Using Green's formula (5.5.5), show that bn = -anan
if u and du/dx are continuous and if u satisfies the same homogeneous
boundary conditions as the eigenfunctions On(x).]

𝑑2𝜙
𝑑𝑥2

+ �𝜆 − 𝑥2� 𝜙 = 0

𝜙′ (0) = 0
𝜙′ (1) = 0
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Putting the equation in the form

𝑑2𝜙
𝑑𝑥2

− 𝑥2𝜙 = −𝜆𝜙

And comparing it to the standard Sturm-Liouville form

𝑝
𝑑2𝜙
𝑑𝑥2

+ 𝑝′
𝑑𝜙
𝑑𝑥

+ 𝑞𝜙 = −𝜆𝜎𝜙

Shows that

𝑝 = 1
𝑞 = −𝑥2

𝜎 = 1

Now the Rayleigh quotient is

𝜆 =
− �𝑝𝜙𝜙′�

1

0
+ ∫

1

0
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫1

0
𝜎𝜙2𝑑𝑥

Substituting known values, and since 𝜙′ (0) = 0, 𝜙 (1) = 0 the above simplifies to

𝜆 =
∫1

0
�𝜙′�

2
+ 𝑥2𝜙2𝑑𝑥

∫1

0
𝜙2𝑑𝑥

Since eigenfunction 𝜙 can not be identically zero, the denominator in the above expression can only
be positive, since the integrand is positive. So we need now to consider the numerator term only:

�
1

0
�𝜙′�

2
𝑑𝑥 +�

1

0
𝑥2𝜙2𝑑𝑥

For the second term, again, this can only be positive since 𝜙 can not be zero. For the first term, there
are two cases. If 𝜙′ zero or not. If it is not zero, then the term is positive and we are done. This

means 𝜆 > 0. if 𝜙′ = 0 then ∫
1

0
�𝜙′�

2
𝑑𝑥 = 0 and also conclude 𝜆 > 0 thanks to the second term ∫1

0
𝑥2𝜙2

being positive. So we conclude that 𝜆 can only be positive.

1.3 Problem 5.6.4

Problem

Consider eigenvalue problem 𝑑
𝑑𝑟
�𝑟 𝑑𝜙𝑑𝑟 � = −𝜆𝑟𝜙, 0 < 𝑟 < 1 subject to B.C. �𝜙 (0)� < ∞ (you may also

assume
𝑑𝜙
𝑑𝑟 bounded). And

𝑑𝜙
𝑑𝑟
(1) = 0. (a) prove that 𝜆 ≥ 0. (b) Solve the boundary value problem.

You may assume eigenfunctions are known. Derive coe�cients using orthogonality.

Notice: Correction was made to problem per class email. Book said to show that 𝜆 > 0 which is error
changed to 𝜆 ≥ 0.
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1.3.1 Part (a)

From the problem we see that 𝑝 = 𝑟, 𝑞 = 0, 𝜎 = 𝑟. The Rayleigh quotient is

𝜆 =
− �𝑝𝜙𝜙′�

1

0
+ ∫

1

0
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑟

∫1

0
𝜎𝜙2𝑑𝑟

=
− �𝑟𝜙𝜙′�

1

0
+ ∫

1

0
𝑟 �𝜙′�

2
𝑑𝑟

∫1

0
𝑟𝜙2𝑑𝑟

(1)

The term − �𝑟𝜙𝜙′�
1

0
expands to

− �(1) 𝜙 (1) 𝜙′ (1) − (0) 𝜙 (0) 𝜙′ (0)�

Since 𝜙′ (1) = 0, the above is zero and Equation(1) reduces to

𝜆 =
∫1

0
𝑟 �𝜙′�

2
𝑑𝑟

∫1

0
𝑟𝜙2𝑑𝑟

The denominator above can only be positive, as an eigenfunction 𝜙 can not be identically zero. For
the numerator, we have to consider two cases.

case 1 If 𝜙′ ≠ 0 then we are done. The numerator is positive and we conclude that 𝜆 > 0.

case 2 If 𝜙′ = 0 then 𝜙 is constant and this means 𝜆 = 0 is possible hence 𝜆 ≥ 0. Now we need to
show 𝜙 being constant is also possible. Since 𝜙′ (1) = 0, then for 𝜙′ = 0 to be true everywhere, it
should also be 𝜙′ (0) = 0 which means 𝜙 (0) is some constant. We are told that �𝜙 (0)� < ∞. Hence
means 𝜙 (0) is constant is possible value (since bounded). Hence 𝜙′ = 0 is possible.

Therefore 𝜆 ≥ 0. QED.

1.3.2 Part (b)

The ODE is

𝑟𝜙′′ + 𝜙′ + 𝜆𝑟𝜙 = 0 0 < 𝑟 < 1 (1)

�𝜙 (0)� < ∞
𝜙′ (1) = 0

In standard form the ODE is 𝜙′′ + 1
𝑟𝜙

′ + 𝜆𝜙 = 0. This shows that 𝑟 = 0 is a regular singular point.
Therefore we try

𝜙 (𝑟) =
∞
�
𝑛=0

𝑎𝑛𝑟𝑛+𝛼

Hence

𝜙′ (𝑟) =
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1

𝜙′′ (𝑟) =
∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−2
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Substituting back into the ODE gives

𝑟
∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−2 +
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1 + 𝜆𝑟
∞
�
𝑛=0

𝑎𝑛𝑟𝑛+𝛼 = 0

∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−1 +
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1 + 𝜆
∞
�
𝑛=0

𝑎𝑛𝑟𝑛+𝛼+1 = 0

To make all powers of 𝑟 the same, we subtract 2 from the power of last term, and add 2 to the index,
resulting in

∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−1 +
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1 + 𝜆
∞
�
𝑛=2

𝑎𝑛−2𝑟𝑛+𝛼−1 = 0

For 𝑛 = 0 we obtain

(𝛼) (𝛼 − 1) 𝑎0𝑟𝛼−1 + (𝛼) 𝑎0𝑟𝛼−1 = 0
(𝛼) (𝛼 − 1) 𝑎0 + (𝛼) 𝑎0 = 0

𝑎0 �𝛼2 − 𝛼 + 𝛼� = 0

𝑎0𝛼2 = 0

But 𝑎0 ≠ 0 (we always enforce this condition in power series solution), which implies

𝛼 = 0

Now we look at 𝑛 = 1, which gives

(1) (1 − 1) 𝑎1𝑟𝑛+𝛼−1 + (1) 𝑎1𝑟𝑛+𝛼−1 = 0
𝑎1 = 0

For 𝑛 ≥ 2, now all terms join in, and we get a recursive relation

(𝑛) (𝑛 − 1) 𝑎𝑛𝑟𝑛−1 + (𝑛) 𝑎𝑛𝑟𝑛−1 + 𝜆𝑎𝑛−2𝑟𝑛−1 = 0
(𝑛) (𝑛 − 1) 𝑎𝑛 + (𝑛) 𝑎𝑛 + 𝜆𝑎𝑛−2 = 0

𝑎𝑛 =
−𝜆𝑎𝑛−2

(𝑛) (𝑛 − 1) + 𝑛

=
−𝜆
𝑛2
𝑎𝑛−2

For example, for 𝑛 = 2, we get

𝑎2 =
−𝜆
22
𝑎0

All odd powers of 𝑛 result in 𝑎𝑛 = 0. For 𝑛 = 4

𝑎4 =
−𝜆
42
𝑎2 =

−𝜆
42 �

−𝜆
22
𝑎0� =

𝜆2

�22� �42�
𝑎0

And for 𝑛 = 6

𝑎6 =
−𝜆
62
𝑎4 =

−𝜆
62

𝜆2

�22� �42�
𝑎0 =

−𝜆3

�22� �42� �62�
𝑎0
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And so on. The series is

𝜙 (𝑟) =
∞
�
𝑛=0

𝑎𝑛𝑟𝑛

= 𝑎0 + 0 + 𝑎2𝑟2 + 0 + 𝑎4𝑟4 + 0 + 𝑎6𝑟6 +⋯

= 𝑎0 −
𝜆𝑟2

22
𝑎0 +

𝜆2𝑟4

�22� �42�
𝑎0 −

𝜆3𝑟6

�22� �42� �62�
𝑎0 +⋯

= 𝑎0

⎛
⎜⎜⎜⎜⎜⎜⎝1 −

�√𝜆𝑟�
2

22
+
�√𝜆𝑟�

4

�22� �42�
−

�√𝜆𝑟�
6

�22� �42� �62�
+⋯

⎞
⎟⎟⎟⎟⎟⎟⎠ (2)

From tables, Bessel function of first kind of order zero, has series expansion given by

𝐽𝑜 (𝑧) =
∞
�
𝑛=0

(−1)𝑛

(𝑛!)2
�
𝑧
2
�
2𝑛

= 1 − �
𝑧
2
�
2
+

1
(2)2

�
𝑧
2
�
4
−

1
((2) (3))2

�
𝑧
2
�
6
+⋯

= 1 −
𝑧2

22
+

1
2242

𝑧4 −
1

223226
𝑧6 +⋯

= 1 −
𝑧2

22
+

𝑧4

2242
−

𝑧6

224262
+⋯ (3)

By comparing (2),(3) we see a match between 𝐽𝑜 (𝑧) and 𝜙 (𝑟), if we let 𝑧 = √𝜆𝑟 we conclude that

𝜙1 (𝑟) = 𝑎0𝐽0 �√𝜆𝑟�

We can now normalized the above eigenfunction so that 𝑎0 = 1 as mentioned in class. But it is not
needed. The above is the first solution. We now need second solution. For repeated roots, the second
solution will be

𝜙2 (𝑟) = 𝜙1 (𝑟) ln (𝑟) + 𝑟𝛼
∞
�
𝑛=0

𝑏𝑛𝑟𝑛

But 𝛼 = 0, hence

𝜙2 (𝑟) = 𝜙1 (𝑟) ln (𝑟) +
∞
�
𝑛=0

𝑏𝑛𝑟𝑛

Hence the solution is

𝜙 (𝑟) = 𝑐1𝜙1 (𝑟) + 𝑐2𝜙2 (𝑟)

Since 𝜙 (0) is bounded, then 𝑐2 = 0 (since ln (0) not bounded at zero), and the solution becomes
(where 𝑎0 is now absorbed with the constant 𝑐1)

𝜙 (𝑟) = 𝑐1𝜙1 (𝑟)

= 𝑐𝐽0 �√𝜆𝑟�

The boundedness condition has eliminated the second solution altogether. Now we apply the second
boundary conditions 𝜙′ (1) = 0 to find allowed eigenvalues. Since

𝜙′ (𝑟) = −𝑐𝐽1 �√𝜆𝑟�
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Then 𝜙′ (1) = 0 implies

0 = −𝑐𝐽1 �√𝜆�

The zeros of this are the values of √𝜆. Using the computer, these are the first few such values.

�𝜆1 = 3.8317

�𝜆2 = 7.01559

�𝜆3 = 10.1735
⋮

or

𝜆1 = 14.682
𝜆2 = 49.219
𝜆3 = 103.5
⋮

Hence

𝜙𝑛 (𝑟) = 𝑐𝑛𝐽0 ��𝜆𝑛𝑟� (4)

𝜙 (𝑟) =
∞
�
𝑛=1

𝜙𝑛 (𝑟)

=
∞
�
𝑛=1

𝑐𝑛𝐽0 ��𝜆𝑛𝑟�

To find 𝑐𝑛, we use orthogonality. Per class discussion, we can now assume this problem was part of
initial value problem, and that at 𝑡 = 0 we had initial condition of 𝑓 (𝑟), therefore, we now write

𝑓 (𝑟) =
∞
�
𝑛=1

𝑐𝑛𝐽0 ��𝜆𝑛𝑟�

Multiplying both sides by 𝐽0 �√𝜆𝑚𝑟� 𝜎 and integrating gives (where 𝜎 = 𝑟)

�
1

0

∞
�
𝑛=1

𝑓 (𝑟) 𝐽0 ��𝜆𝑚𝑟� 𝑟𝑑𝑟 =
∞
�
𝑛=1

�
1

0
𝑐𝑛𝐽0 ��𝜆𝑚𝑟� 𝐽0 ��𝜆𝑛𝑟� 𝑟𝑑𝑟

= �
1

0
𝑐𝑚𝐽20 ��𝜆𝑚𝑟� 𝑟𝑑𝑟

= 𝑐𝑚�
1

0
𝐽20 ��𝜆𝑚𝑟� 𝑟𝑑𝑟

= 𝑐𝑚Ω

Where Ω is some constant. Therefore

𝑐𝑛 =
∫1

0
∑∞

𝑛=1 𝑓 (𝑟) 𝐽0 �√𝜆𝑚𝑟� 𝑟𝑑𝑟

Ω
And 𝜙 (𝑟)

∞
�
𝑛=1

𝑐𝑛𝐽0 ��𝜆𝑛𝑟�

With the eigenvalues given as above, which have to be computed for each 𝑛 using the computer.
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1.4 Problem 5.9.1 (b)

5.9. Large Eigenvalues (Asymptotic Behavior) 215

Here p(x) = 1, a(x) = 1 + x, q(x) = 0, L = 1. Our asymptotic formula (5.9.10) for
the eigenvalues is

2
n7r n27r2 n2ir2

A... _ l - / (5.9.11)
JO (1 + xo)112 dx0

L3
(1 + xo)3/2I112 (23/2 _ 1)2

L 0

In Table 5.9.1 we compare numerical results (using an accurate numerical scheme on
the computer) with the asymptotic formula. Equation (5.9.11) is even a reasonable
approximation if n = 1. The percent or relative error of the asymptotic formula
improves as n increases. However, the error stays about the same (though small).
There are improvements to (5.9.10) that account for the approximately constant
error.

Table 5.9.2: Eigenvalues \n

n
Numerical answer*
(assumed accurate)

Asymptotic formula
(5.9.11) Error

1 6.548395 6.642429 0.094034
2 26.464937 26.569718 0.104781
3 59.674174 59.781865 0.107691
4 106.170023 106.278872 0.108849
5 165.951321 166.060737 0.109416
6 239.0177275 239.1274615 0.109734
7 325.369115 325.479045 0.109930

*Courtesy of E. C. Gartland, Jr.

EXERCISES 5.9

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for

(pcx) + [,\v(x) + q(x))q = 0

if the boundary conditions are

(a) 4 (0) = 0 and (L) = 0

*(b) -0(0) = 0 and
d

(L) = 0

(c) 0(0) = 0 and (L) + hcb(L) = 0

5.9.2. Consider

dxj + A(1 + x)o = 0

subject to 0(0) = 0 and 46(1) = 0. Roughly sketch the eigenfunctions for A

large. Take into account amplitude and period variations.

From textbook, equation 5.9.8, we are given that for large 𝜆

𝜙 (𝑥) ≈ �𝜎𝑝�
−1
4 exp

⎛
⎜⎜⎜⎜⎜⎝±𝑖√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= �𝜎𝑝�
−1
4

⎛
⎜⎜⎜⎜⎜⎝𝑐1 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ + 𝑐2 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ (1)

Where 𝑐1, 𝑐2 are the two constants of integration since this is second order ODE. For 𝜙 (0) = 0, the

integral ∫
𝑥

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = ∫

0

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = 0 and the above becomes

0 = 𝜙 (0)

= �𝜎𝑝�
−1
4 (𝑐1 cos (0) + 𝑐2 sin (0))

= 𝑐1 �𝜎𝑝�
−1
4

Hence 𝑐1 = 0 and (1) reduces to

𝜙 (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Hence

𝜙′ (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑑
𝑑𝑥√

𝜆�
𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 �𝜎𝑝�
−1
4 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝√𝜆

�

𝜎 (𝑥)
𝑝 (𝑥)

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 �𝜎𝑝�
−1
4

�

𝜆𝜎
𝑝

cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Since 𝜙′ (𝐿) = 0 then

0 = 𝑐2 �𝜎𝑝�
−1
4

�

𝜆𝜎
𝑝

cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝐿

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠
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Which means, for non-trivial solution, that

�𝜆𝑛�
𝐿

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡 = �𝑛 −
1
2�
𝜋

Therefore, for large 𝜆, (i.e. large 𝑛) the estimate is

�𝜆𝑛 =
�𝑛 − 1

2
� 𝜋

∫𝐿

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡

𝜆𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�𝑛 − 1
2
� 𝜋

∫𝐿

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

1.5 Problem 5.9.2

5.9. Large Eigenvalues (Asymptotic Behavior) 215

Here p(x) = 1, a(x) = 1 + x, q(x) = 0, L = 1. Our asymptotic formula (5.9.10) for
the eigenvalues is

2
n7r n27r2 n2ir2

A... _ l - / (5.9.11)
JO (1 + xo)112 dx0

L3
(1 + xo)3/2I112 (23/2 _ 1)2

L 0

In Table 5.9.1 we compare numerical results (using an accurate numerical scheme on
the computer) with the asymptotic formula. Equation (5.9.11) is even a reasonable
approximation if n = 1. The percent or relative error of the asymptotic formula
improves as n increases. However, the error stays about the same (though small).
There are improvements to (5.9.10) that account for the approximately constant
error.

Table 5.9.2: Eigenvalues \n

n
Numerical answer*
(assumed accurate)

Asymptotic formula
(5.9.11) Error

1 6.548395 6.642429 0.094034
2 26.464937 26.569718 0.104781
3 59.674174 59.781865 0.107691
4 106.170023 106.278872 0.108849
5 165.951321 166.060737 0.109416
6 239.0177275 239.1274615 0.109734
7 325.369115 325.479045 0.109930

*Courtesy of E. C. Gartland, Jr.

EXERCISES 5.9

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for

(pcx) + [,\v(x) + q(x))q = 0

if the boundary conditions are

(a) 4 (0) = 0 and (L) = 0

*(b) -0(0) = 0 and
d

(L) = 0

(c) 0(0) = 0 and (L) + hcb(L) = 0

5.9.2. Consider

dxj + A(1 + x)o = 0

subject to 0(0) = 0 and 46(1) = 0. Roughly sketch the eigenfunctions for A

large. Take into account amplitude and period variations.

𝜙′′ + 𝜆 (1 + 𝑥) 𝜙 = 0

Comparing the above to Sturm-Liouville form

�𝑝𝜙′�
′
+ 𝑞𝜙 = −𝜆𝜎𝜙

Shows that

𝑝 = 1
𝑞 = 0
𝜎 = 1 + 𝑥

Now, from textbook, equation 5.9.8, we are given that for large 𝜆

𝜙 (𝑥) ≈ �𝜎𝑝�
−1
4 exp

⎛
⎜⎜⎜⎜⎜⎝±𝑖√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= �𝜎𝑝�
−1
4

⎛
⎜⎜⎜⎜⎜⎝𝑐1 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ + 𝑐2 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ (1)

Where 𝑐1, 𝑐2 are the two constants of integration since this is second order ODE. For 𝜙 (0) = 0, the
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integral ∫
𝑥

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = ∫

0

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = 0 and the above becomes

0 = 𝜙 (0)

= �𝜎𝑝�
−1
4 (𝑐1 cos (0) + 𝑐2 sin (0))

= 𝑐1 �𝜎𝑝�
−1
4

Hence 𝑐1 = 0 and (1) reduces to

𝜙 (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Applying the second boundary condition 𝜙 (1) = 0 on the above gives

0 = 𝜙 (1)

= 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

1

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Hence for non-trivial solution we want, for large positive integer 𝑛

√𝜆�
1

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡 = 𝑛𝜋

√𝜆 =
𝑛𝜋

∫1

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡

=
𝑛𝜋

∫1

0
√1 + 𝑡𝑑𝑡

But ∫
1

0
√1 + 𝑡𝑑𝑡 = 1.21895, hence

√𝜆 =
𝑛𝜋

1.21895
= 2.5773𝑛

𝜆 = 6.6424𝑛2

Therefore, solution for large 𝜆 is

𝜙 (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝2.5773𝑛�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 (1 + 𝑥)
−1
4 sin �2.5773𝑛�

𝑥

0
√1 + 𝑡𝑑𝑡�

= 𝑐2 (1 + 𝑥)
−1
4 sin �2.5773𝑛 �−

2
3
+
2
3
(1 + 𝑥)

3
2 ��

To plot this, let us assume 𝑐2 = 1 (we have no information given to find 𝑐2). What value of 𝑛 to use?
Will use di�erent values of 𝑛 in increasing order. So the following is plot of

𝜙 (𝑥) = (1 + 𝑥)
−1
4 sin �2.5773𝑛 �−

2
3
+
2
3
(1 + 𝑥)

3
2 ��
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For 𝑥 = 0⋯1 and for 𝑛 = 10, 20, 30,⋯ , 80.
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Plot of ϕ(x) for n =10
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Plot of ϕ(x) for n =20
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Plot of ϕ(x) for n =30
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Plot of ϕ(x) for n =40
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Plot of ϕ(x) for n =50
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Plot of ϕ(x) for n =60
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Plot of ϕ(x) for n =70
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Plot of ϕ(x) for n =80
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