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1 HW7

1.1 Problem 5.6.1 (a)

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) £4 + (A - z2)¢ = 0 with 92(0) = 0 and ¢(1) = 0

(b) &% + (A= z)¢ = 0 with 32(0) = 0 and 52(1) +2¢(1) =
*(c) %4+ A¢ =0 with $(0) = 0 and 32(1)+¢(1) = 0 (See Exercise 5.8.10.)

111 part (a)

2
T+ (1-2)p=0
¢'(0)=0
¢) =
Putting the equation in the form
2
.
And comparing it to the standard Sturm-Liouville form
P2
pdx(f +p di) +q¢ = -Aog
Shows that
p=1
q=-x
o=1

Now the Rayleigh quotient is
~(poe), + [ p (') -2

f op?dx
Substituting known values, and since ¢’ (0) = 0,¢ (1) = 0 the above simplifies to
[Ho) + 2
' f P2dx
Now we can say that
Ll ((p’)z + x2p?dx
Amin = A1 < 1)

f P?dx



We now need a trial solution ¢y, to use in the above, which needs only to satisfy boundary conditions
to use to estimate lowest A,;,. The simplest such function will do. The boundary conditions are
¢’ (0) = 0,¢ (1) = 0. We see for example that ¢, (x) = x> —1 works, since @i (X) = 2x, and ¢}, (0) =0
and ¢y, (1) =1 -1 =0. So will use this in (1)

[M@0?+22 (2 -1) dx
T @
[0 +22 (-2 +1)dx
f (¥ - 222 +1) dx
f 4% + %6 — 2x* + x%dx
[ (-2 +1)dx

f 3x2 + x0dx

f x% —2x2 4+ 1dx

3 171 1
X+ -x 1
_ ( 7 )0 _ (1+7)

1 1 2
(%x5 - §x3 + x)o (g -3t 1)
15

7
=2.1429

Hence

Ay < 21429

1.2 Problem 5.6.2

5.6.2. Consider the eigenvalue problem

g+(,\-xz)¢=o

subject to 55(0) =0 and %%(1) = 0. Show that A > 0 (be sure to show that
A#0).

dz
d—$+(/1—x2)q5=0

¢ (0)=0
¢ 1)=0



Putting the equation in the form

A2
a2 V=M
And comparing it to the standard Sturm-Liouville form
d¢ dp
Pz YV g Hae =20
Shows that
p=1
q=-x*
o=1

Now the Rayleigh quotient is
(po’). + [ p(¢7) - agPax

[ oo
Substituting known values, and since ¢’ (0) =0, ¢ (1) = 0 the above simplifies to
K (qb’)z + x2p?dx
' 1;1 P?dx

Since eigenfunction ¢ can not be identically zero, the denominator in the above expression can only
be positive, since the integrand is positive. So we need now to consider the numerator term only:

1 o 1
f (q)') dx + f x2p2dx
0 0
For the second term, again, this can only be positive since ¢ can not be zero. For the first term, there

are two cases. If ¢’ zero or not. If it is not zero, then the term is positive and we are done. This
1 2 1
means A > 0. if ¢’ = 0 then L ((1)’) dx = 0 and also conclude A > 0 thanks to the second term L x2¢p?

being positive. So we conclude that A can only be positive.

1.3 Problem 5.6.4
Problem

. . d(.d .
Consider eigenvalue problem — (rd—(f) = -Ar¢,0 < r < 1 subject to B.C. |$(0)| < o (you may also

assume % bounded). And Z—f (1) = 0. (a) prove that A > 0. (b) Solve the boundary value problem.
You may assume eigenfunctions are known. Derive coefficients using orthogonality.

Notice: Correction was made to problem per class email. Book said to show that A > 0 which is error
changed to A > 0.



1.3.1 Part (a)
From the problem we see that p = r,q = 0,0 = r. The Rayleigh quotient is
(po0). + [ p (o) - qoer
f op?dr
(np(p’); s [r(@) ar
f r¢?dr

1)

The term — (rcp(p’); expands to
-(We@) ¢ 1)- ()¢ (0)¢ (0)

Since ¢’ (1) = 0, the above is zero and Equation(1) reduces to
2
f 7 (qb’) dr
f rop?dr

The denominator above can only be positive, as an eigenfunction ¢ can not be identically zero. For
the numerator, we have to consider two cases.

A=

case 1 If " # 0 then we are done. The numerator is positive and we conclude that A > 0.

case 2 If ¢’ = 0 then ¢ is constant and this means A = 0 is possible hence A > 0. Now we need to
show ¢ being constant is also possible. Since ¢’ (1) = 0, then for ¢’ = 0 to be true everywhere, it
should also be ¢’ (0) = 0 which means ¢ (0) is some constant. We are told that |q§(0)| < o0, Hence
means ¢ (0) is constant is possible value (since bounded). Hence ¢’ = 0 is possible.

Therefore A > 0. QED.

1.3.2 Part (b)
The ODE is

r¢" +¢" +Arpp =0 0<r<i1 (1)
6O <o
¢'(1)=0

In standard form the ODE is ¢” + lqb’ + A¢ = 0. This shows that r = 0 is a regular singular point.
r
Therefore we try

¢ (1) = Y a,r"
n=0
Hence

¢ (r) = i (n + a) et

n=0

" (r) = i n+a)(n+a-1)a,"+*?
n=0



Substituting back into the ODE gives

[ 0 0
r E (n+a)(n+a-1)a," %2+ E (n+a)a, "+ Ar Z a1t =0

n=0 n=0 n=0

&) (o) (o]
E m+a)(n+a-1)a,r 1+ 2 (n+a)a, 1+ A Z a,rtetl = 0
n=0 n=0 n=0

To make all powers of r the same, we subtract 2 from the power of last term, and add 2 to the index,
resulting in

[s] (o) (o]
M m+a)n+a-1)a, 0+ Y (n+a)a,r L+ A Y a, =0
n=0 n=0 n=2

For n = 0 we obtain
(@) (@-1Dagr* !+ (@)agr* ! =0
(@) (a=1)ag +(@)ag =0
ao(az—a+a) =0
aga® =0

But ay # 0 (we always enforce this condition in power series solution), which implies

a=0

Now we look at n =1, which gives
@) @ -1 agr™* 1+ (1) agr et =0
a =0
For n > 2, now all terms join in, and we get a recursive relation
(n)y(n-1)a, "' + @) a, "+ Aa,_,r" =0

ny(n-1)a,+m)a,+Aa,_, =0

_/\an—Z
Ay = ——F————
" m)y(n-1)+n
-A
= Fan—Z
For example, for n = 2, we get
-A
a, = 2—2510
All odd powers of n result in 2, = 0. For n = 4
A =A(=A A2
And forn =6
-A -1 A2 -A3
g6 = —0y = — =

FTEEE @ EE)”



And so on. The series is
O ()= Y apr"
n=0
=ag+0+ayr® +0+ag* +0+agr®+ -

A—rza + At ag — A ag +
27 @)@)° @) @)

2 4 6
N O N )

z @)@ @E)E)

From tables, Bessel function of first kind of order zero, has series expansion given by

o =355 (3)

n=0 (n!)Z
2/ @*\2) (@@ \2
z2 1 1
_ 4 6
=lom T apt Tyt
2 A z®
Sl et eE wpet )

By comparing (2),(3) we see a match between ], (z) and ¢ (r), if we let z = VAr we conclude that

b1 () = agly (VAr)

We can now normalized the above eigenfunction so that 4y =1 as mentioned in class. But it is not
needed. The above is the first solution. We now need second solution. For repeated roots, the second
solution will be

Qa(r) =1 (r)In(r) +1* E b,r"

n=0
But « = 0, hence

b2 (1) = Py (NI (1) + Y] by
n=0

Hence the solution is

¢ (r) = c11 (r) + c2¢p2 ()
Since ¢ (0) is bounded, then ¢, = 0 (since In (0) not bounded at zero), and the solution becomes
(where ay is now absorbed with the constant ¢;)

P (r) = c1p1 (1)
-

The boundedness condition has eliminated the second solution altogether. Now we apply the second
boundary conditions ¢’ (1) = 0 to find allowed eigenvalues. Since

@' (1) = -l (Var)



Then ¢’ (1) = 0 implies
0= —Ch (\/X)

The zeros of this are the values of VA. Using the computer, these are the first few such values.

VA, =3.8317

A, = 7.01559
A3 =10.1735
or
Ay =14.682
Ay =49.219
A3 =103.5
Hence
bn (r) = culo (VA7) (4)

‘P (1’) = i ¢n (1’)
n=1
= ¥ culo (VAur)
n=1

To find c,, we use orthogonality. Per class discussion, we can now assume this problem was part of
initial value problem, and that at f = 0 we had initial condition of f (r), therefore, we now write

£ =3 eado (Vi)
n=1

Multiplying both sides by J (\//\ r) o and integrating gives (where o =)

j(; Zlf(r)fo \/_7 rdr—zf culo ( \/_r ]0(\/_7)7‘17
=f0 cmlo(\/_)rdr
=c, j:]g (\/ﬂr) rdr

=c,,Q
Where Q is some constant. Therefore

[ 52 £ o (V) rdr

Q

Cy, =

And ¢ (r)

icnfo (\/A_nr)

With the eigenvalues given as above, which have to be computed for each 7 using the computer.



1.4 Problem 5.9.1 (b)

functions for
2 (p2)%2) + o) + a@le =0

if the boundary conditions are
(a) 20)=0 and 2(L)=0
*(b) #(0)=0 and d,x(L) =0
(c) #(0) =0 and %(L)+ho(L)=0

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-

From textbook, equation 5.9.8, we are given that for large A

T . * / a(t)
(P (.X') = (UP) exp (ilﬁj; Mdt]
(T s o : * /o(t)
= (op) [01 cos[ A ]: Mdt] + ¢y sin [\/Xj; Mdt

|

Where ¢y, c; are the two constants of integration since this is second order ODE. For ¢ (0)

integral Lx \ /%dt = LO \ /%dt = 0 and the above becomes

0=¢(0)

= (ap)% (c1 cos (0) + ¢, sin (0))

-1

=0 (ap)Z

Hence ¢; =0 and (1) reduces to

2=l 451n(ﬁ [ J
0

Hence

Since ¢’ (L) = 0 then

1)

=0, the



10

Which means, for non-trivial solution, that

Lfot), 1
o Ok

Therefore, for large A, (i.e. large n) the estimate is

T
)
)dt

Fi
(-3)

(-3)
(t
(t
1

P 72
L [o(t)
£ . /Wdt
1.5 Problem 5.9.2
5.9.2. Consider P
g‘f +2M1+2)p=0

subject to ¢(0) = 0 and ¢(1) = 0. Roughly sketch the eigenfunctions for A
large. Take into account amplitude and period variations.

Q" +A1+x)p=0

Comparing the above to Sturm-Liouville form

Shows that

(p9) + 490 = Ao

p=1
q=0
oc=1+x

Now, from textbook, equation 5.9.8, we are given that for large A

(T i [F[e®

¢ (X) ~ (GP) exp (il\/z‘[(; mdt]
= (o) [ercos| VA [ 7Dt 4 ysim[ v 7[00
= (Op) [C1 COS[ A\f(‘) mdtJ + Cp sSIn [\/Xfo p (t) dt

} 1)

Where ¢y, c; are the two constants of integration since this is second order ODE. For ¢ (0) = 0, the



: ot 0 [o0, _
integral £ e dt = £ e dt = 0 and the above becomes

0=¢(0)
= (gp)% (c1 cos (0) + ¢, sin (0))

=1 (op)"

Hence c¢; = 0 and (1) reduces to

0w =cr(op) * sin[ﬁfox, /%dt]

Applying the second boundary condition ¢ (1) = 0 on the above gives
0=0¢(@)

=0 (op)iT sin [\/Xj: 1 f}%dt]

Hence for non-trivial solution we want, for large positive integer n

\/_f\/fdt—n
M

L V1 + tdt
But f VI + fdt = 1.21895, hence
= = 25773
Vi = 1.21895 "
A = 6.642472

Therefore, solution for large A is

¢ () =z (op) * Sin(ﬁ /. | /;T(gdt]
e x / *)
=0c (Gp) s1n{2.5773n j(; ;fmdt]

-1 X
— ¢, (1+2)7 sin (2.5773n f Vit tdt)
0

-1

=c;(1+x)4 sin (2 5773n (—§ +=(1+x)2 ))

11

To plot this, let us assume ¢, =1 (we have no information given to find c,). What value of n to use?

Will use different values of 7 in increasing order. So the following is plot of

p(x)=(1 +x)4 51n(25773n(_§+2(1+x) ))



For x=0---1 and for n =10, 20, 30, ---, 80.

B(x)

#(x)

B(x)

#(x)

Plot of ¢(x) for n =10

05+
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X

Plot of ¢(x) for n =30
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Plot of ¢(x) for n =50
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Plot of ¢(x) for n =70
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Plot of ¢(x) for n =20
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X
Plot of ¢(x) for n =40
0.0 0.2 0.4 0.6 0.8 1.0
b3
Plot of ¢(x) for n =60
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Plot of ¢(x) for n =80
0.0 0.2 0.4 0.6 0.8 1.0
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