HW6, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1 HW 6

MIT Part @] « - v oo e e e e e e
L2 Part (B)] « - « o o oo e e e e e e
TI3 Part (O)] « « v v oo e e e e e e e

3T Part (@) - - - o v e oe e e e e e e

1.3.2 Part(b)|. . . . . . . e e e

T3.3 Part(). - « o o o oo oo e e e e
34 Part ()] - - oo e e e e e

1.3. Part(e)|. . . . . . e e
1.4 Problem 5.5.1 (b,d,2)|. . . . . . . . .. ...

1.4.1 Part(b)|. . . . . . . e e e e
[1.4.2 Part (d)| . ... ... . .

TEZ Part(@)] - - -+« « o v ov et et e e e

© 0000 XJIJIODNCU kW NDNDNDNN

6T Part (@) - - - o v e oe e e e e e 10
6.2 Part (B)] « « - o v e e e e e e e e e 11




1 HWE®G

1.1 Problem 5.3.2

5.3.2. Consider
9_2.3 = T; & + + ﬂiu.
Potz = 0pz T T PGt

(a) Give a brief physical interpretation. What signs must a and £ have to
be physical?

(b) Allow p,, 3 to be functions of z. Show that separation of variables
works only if 8 = cp, where c is a constant.

(c) If B = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

1.1.1 Part (a)
Pu T 9%u Cans du
T T LT
The PDE equation represents the vertical displacement u (x,t) of the string as a function of time

and horizontal position. This is 1D wave equation. The term ﬁ% represents the damping force (can
be due to motion of the string in air or fluid). The damping coefficient § must be negative to make

ﬁa—bt‘ opposite to direction of motion. Damping force is proportional to velocity and acts opposite
to direction of motion.

The term au represents the stiffness in the system. This is a restoring force, and acts also opposite
to direction of motion and is proportional to current displacement from equilibrium position.
Hence a < 0 also.

1.1.2 Part (b)

Let u = X (x) T (#). Substituting this into the above PDE gives
pT"X =ToX"T + aXT + pT'X
Dividing by XT # 0
Tl/ B T X// + + T/
P =Tog vathg
T/l Tl B T Xl/ +
PP =Tog +e

To make each side depends on one variable only, we move p (x),f (x) to the right side since these
depends on x. Then dividing by p (x) gives

T// T/ X//
T BT _ X" a

=Ty—+—
T pT pX p

c is constant, then we see the equations have now been separated, since 9 4o not depend

&) _
It B p(x)

p(x)
on x any more and the above becomes
T T B X a (X)

T T %" o)

Now we can say that both side is equal to some constant —A giving the two ODE’s

T// T/ A
—— C_ fr—
T T
XII
T, a__
pxX p

T —cT"+ AT =0

o p
X"+ X|— — | =
+ (T0+ATO) 0

1.1.3 Part (c)

From above, the spatial ODE is



Y AN
X +X(TO+ATO) 0 1)

Comparing to regular Sturm Liouville (RSL) form, which is

%(pX’) +gX + AoX =0

pX" +p'X" + (q + AU) X=0 (2)
Comparing (1) and (2) we see that
p=1
_ e
_ P
o= T

To solve the time ODE T” —c¢T’ + AT = 0, since this is second order linear with constant coefficients,
then the characteristic equation is

r—cr+A=0
B2 —4AC
2A
2 —47
2

—B+
r=—=
A

+

NIl N

Hence the two solutions are

Ve2-4) )
+ t

2

NIo

T, (t) = e(

r=di )

The general solution is linear combination of the above two solution, therefore final solution is
L V24 V241 ) ;

T = cle(% ) + cze(g_

Where ¢, c, are arbitrary constants of integration.

1.2 Problem 5.3.3

*5.3.3. Consider the non-Sturm-Liouville differential equation

d*¢ d¢

T+ al@) 3 + M) + (@) = 0.

+ a(x)

Multiply this equation by H(z). Determine H(z) such that the equation
may be reduced to the standard Sturm-Liouville form:

2 [P 5] + bo@ + a@ie =0

Given a(z), 8(z), and y(z), what are p(z),o(z), and ¢(z)?

2 d
ﬁ+a(x)d—f+(/lﬁ(x)+y(x))¢:0

Multiplying by H (x) gives
H(x) " (x) + H(x)  (x) ¢ (x) + H(x) (AB(x) + 7 (x)) ¢ = 0 (1)
Comparing (1) to Sturm Liouville form, which is
% (p¢>’) +qp+Aop =0
PG () +p )¢ () +(7+A0) P (x) =0 2)
Then we need to satisfy

H(x) =P (x)
H(x)a(x) =P (x)



Therefore, by combining the above, we obtain one ODE equation to solve for H (x)
H' (x) = H(x) a(x)
This is first order separable ODE. HE’ =aorln|H| = focdx +c or
H = ApJ adx
Where A is some constant. By comparing (1),(2) again, we see that
q+Ac=AB(x)H(x)+y(x)H ()

Summary of solution

0 (x) =g (x)H(x)

q(x) =y (x) H (x)

P(x) =H(x)

H (x) = AeJ atix
QED

1.3 Problem 5.3.9

5.3.9. Consider the eigenvalue problem

zzﬁ +:z:‘~iis +Ap=0 with ¢(1)=0, and ¢(b)=0. (5.3.10)
dz? dz ’ B
(a) Show that multiplying by 1/z puts this in the Sturm-Liouville
form. (This multiplicative factor is derived in Exercise 5.3.3.)
(b) Show that A > 0.

*(c) Since (5.3.10) is an equidimensional equation, determine all posi-
tive eigenvalues. Is A = 0 an eigenvalue? Show that there is an
infinite number of eigenvalues with a smallest, but no largest.

(d) The eigenfunctions are orthogonal with what weight according to
Sturm-Liouville theory? Verify the orthogonality using propertics
of integrals.

(e) Show that the nth eigenfunction has n — 1 zeros.

2" +x¢p’ +Ap=0 1)
$1)=0
() =0

1.3.1 Part (a)

Multiplying (1) by i where x # 0 gives

A
XQ” 4§+ 29 =0 @)
Comparing (2) to Sturm-Liouville form
pe” +p' ¢ +(q+10)§ =0 3)
Then
p=x
q=0
1
o=-
X

And since the given boundary conditions also satisfy the Sturm-Liouville boundary conditions,
then (2) is a regular Sturm-Liouville ODE.



1.3.2 Part(b)

Using equation 5.3.8 in page 160 of text (called Raleigh quotient), which applies to regular Sturm-
Liouville ODE, which relates the eigenvalues to the eigenfunctions

lpod' [~ + [ (o) - a9
x=1

b (5.3.8)
{ p?adx
-pOe®e O -pon e ©)]+ [ p(¢) -
jb p?adx
Usingp=x,4=0,0 = % and using ¢ (1) = 0, ¢ (b) = 0, then the above simplifies to
b 2
~ —I p(qb’) dx
f %de

The integrands in the numerator and denominator can not be negative, since they are squared
quantities, and also since x > 0 as the domain starts from x = 1, then RHS above can not be
negative. This means the eigenvalue A can not be negative. It can only be A > 0. QED.

1.3.3 Part(c)

The possible values of A > 0 are determined by trying to solve the ODE and seeing which A
produces non-trivial solutions given the boundary conditions. The ODE to solve is (1) above. Here

it is again
xX2¢" +x¢" +Ap =0 (1)
We know A > 0, so we do not need to check for negative A.
Case A =0.
Equation (1) becomes
x2¢" +x¢’ =0
xp" + ¢’ =0
d ’
7 (x9) =0
Hence x¢" = c; where c; is constant. Therefore %(1) = % or
1
=0 f ;dx +Cy
=c Inlx] + ¢

Atx =1, (1) =0, hence
0=c;In(1) +cp
But In (1) = 0, therefore e =0. The solution now becomes
¢=cylnlx|
At the right end, x = b, ¢ (b) = 0, therefore
0=cyInb

But since b > 1 the above implies that ¢; = 0. This gives trivial solution. Therefore A = 0 is not an eigenvalue.

Case A >0

x2¢Q" + x¢’ + Adp =0
This is non-constant coefficients, linear, second order ODE. Let ¢ (x) = x”. Equation (1) becomes
x%p (p - 1) xP72 + xpxPL + AxP = 0
p(p—l)xp +px + AxP =0
Dividing by x¥ # 0 gives the characteristic equation
p(p—1)+p+/\ =0
PP-p+p+A=0
pr=-A



Since A > 0 then p is complex. Therefore the roots are
p= +iVA
Therefore the two solutions (eigenfunctions) are
1 (x) = xVA
by () = x7VA

To more easily use standard form of solution, the standard trick is to rewrite these solution in
exponential form

¢1(x) = PVAInx
¢r (x) = o~iVAlnx
The general solution to (1) is linear combination of these two solutions, therefore
¢ (x) = Cleiﬁlnx " Cze—i\mnx (2)
Since A > 0 then the above can be written using trig functions as
¢ (x) = cq cos (\/Z In x) + ¢y sin (\/Xln x)
We are now ready to check for allowed values of A by applying B.C’s. The first B.C. gives

0 = cq cos (\/Xlnl) + ¢y sin (\/Xlnl)

= ¢y cos (0) + ¢, sin (0)

=0
Hence the solution now simplifies to

¢ (x) = ¢y sin (\/Xln x)
Applying the second B.C. gives
0 =cpsin (\/Xln b)
For non-trivial solution we want
\/Xlnb=n7z n=1,273,

\/—:nn

Inb
nm \?
A”:(ln_b) n=1,23-
Therefore, there are infinite numbers of eigenvalues. The smallest is when n =1 given by
77 \2
b= ()

1.3.4 Part (d)

From Equation 5.3.6, page 159 in textbook, the eigenfunction are orthogonal with weight function
o (x)

[ 0,00, @o@ax=0  nzm

In this problem, the weight o = % and the solution (eigenfuctions) were found above to be

¢, (x) = sin (\//\_nln x)

Now we can verify the orthogonality

flh Oy (%) Py (x) 0 (x) dx = j::h sin (1’;—7-; In x) sin (% In x) %dx

Using the substitution z = Inx, then % = % When x =1,z =In1 =0 and when x = b,z = Inb, then
the above integral becomes

| z=Inb (nn ) . (mn )dzd
= S —Z]S —2Z| —dax
o M) ™M b dx

[l 2
= N|{——zZ|Ss1N| —
o MMM )

But sin (11—722) and sin (%Z) are orthogonal functions (now with weight 1). Hence the above gives 0
when n # m using standard orthogonality of the sin functions we used before many times. QED.



1.3.5 Part(e)

The n'" eigenfunction is
¢, (x) = sin (% lnx)

Here, the zeros are inside the interval, not counting the end points x =1 and x = b.

(”—”m) —(ﬂo)—o
* o1 \Inb /)

Inb
And
nrt nrt
Ty ) -y
(lnb | I
=NnTm

Hence for n =1, The domain of ¢; (x) is 0--- 7. And there are no zeros inside this for sin function
not counting the end points. For n = 2, the domain is 0--- 27 and sin has one zero inside this (at
), not counting end points. And for n = 3, the domain is 0--- 37 and sin has two zeros inside this
(at 71,27), not counting end points. And so on. Hence ¢, (x) has n -1 zeros not counting the end
points.

1.4 Problem 5.5.1 (b,d,g)

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

RN
P\"ez " Vdz

since then f: [uL(v) — vL(u)] dz = O for any two functions u and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) ¢(0) =0 and ¢(L) =0

(b) 92(0) =0 and (L) =0

(c) $2(0) — ho(0) =0and 42(L) =0

(d) ¢(a) = ¢(b) and p(a)$2(a) = p(b) £ (b)

(e) ¢(a) = ¢(b) and $2(a) = 2(b) [self-adjoint only if p(a) = p(b))

(f) ¢(L) = 0 and [in the situation in which p(0) = 0] ¢(0) bounded and
lim, o p(z) 3 = 0

b
=0

*(g) Under what conditions is the following self-adjoint (if p is constant)?
$(L) +ad(0) + B52(0) = ©
B(L)+19(0)+62(0) = 0

The Sturm-Liouville ODE is

d

—(p9) + a0 = -Ao¢
Or in operator form, defining L = % (p%) + g, becomes

L[¢]=-Aoe

The operator L is self adjoined when

fbuL[v]dx:fva[u]dx

a a

For the above to work out, we need to show that
b
p(uv' — vu’)| =0
a

And this is what we will do now.



1.4.1 Part(b)

Here a=0and b = L.
L

dov du
dx Z)dx

p (uv’ —vu’)|z = p(u— -v—

0
d d d d
- [p © (u OEGELIOES (L)) ~p(0) (u O 0-00 = «»)]

Substituting u (L) = v(L) = 0 and Z—Z(O) = z—Z(O) = 0 into the above (since there are the B.C. given)
gives

d d
p e/ —ow)| = [p(L)(Oxd—Z(L)—Oxd—Z(L))—p(O)(u(O)xO—v(O)XO)]

=[0-0]
=0
1.4.2 Part (d)
p(uv’ — vu’)|b =p (u@ - vd—u)
a dx dx b
= [P @ @V @) -0 @ @) ~pO) (1 B) ' B) ~0 O’ )]
=p@u@v@-p@ov@u @-pGu®v b)) +pb)od)u (b) 1)

We are given that u (a) = u(b) and v (a) = v(b) and p (a) ' (a) = p (b) u’ (b) and p (a) v’ (a) = p (b) v’ ().
We start by replacing u (a) by u (a) and replacing v (a) by v (b) in (1), this gives
pe’ —ow)| =p@u®)v @) -p@o®)u @ -p®)ub)o ©)+pE)o®)w ()
= u® (p @V @-p B ®) +0®) (pO)W ) -p @ (@)
Now using p (a) u’ (a) = p (b) u’ (b) and p (a) v’ (a) = p (b) v’ (b) in the above gives
pwe’ —ow)[ =u®) (PO ©) - p O ) +00) (pO) ' ©) - p ) ®)

=1u(b)(0) +2 () (0)
=0-0
=0
1.4.3 Part (g)
p is constant. Hence
puv' — Uu’)|g =p (u% - U;l_z) L
0
=pl@)v' (L) -ov(@L)u (L)) - ()2 (0) - v(0)u' (0))] 1)
We are given that
u(L)+au(0)+pu’(0)=0 (2)
u (L) +yu(0) + 6u’ (0) =0 3)
And
v(L)+av(0)+ v (0) =0 (4)
v (L) +yv(0)+ 00 (0) =0 (5)
From (2),
u (L) = —au (0) - pu’ (0)
From (3)
u (L) = —yu(0) — 6u’ (0)
From (4)
v(L) = —av(0) - v’ (0)
From (5)

v’ (L) = —yv(0) — 6v’ (0)



Using these 4 relations in equation (1) gives (where p is removed out, since it is constant, to simplify

the equations)
(uv’ — vu’)lé =u(L)yv (L)y—v(L)u' (L)—u0)7’ (0)+v(0)u’ (0)
= (~au (0) - ' () (~yv (0) - 6v' (0))
~ (=0 (0) - pv’ (0)) (—yu (0) - 6w’ (0))
—u(0)v’' (0) + v (0)u’ (0)
Simplifying
(uv’ - vu’)lé = au (0) yv (0) + au (0) 6v’ (0) + Bu’ (0) yv (0) + pu’ (0) 6v’ (0)
- (av (0) yu (0) + awv (0) 6u’ (0) + Bv’ (0) yu (0) + v’ (0) 6’ (0))
—u(0)v’ (0) +v(0)u’ (0)
= au (0) yv (0) + au (0) 6v’ (0) + Bu’ (0) yv (0) + Bu’ (0) 6v (0)

—av (0) yu (0) — av (0) 6w’ (0) — B’ (0) yu (0) — Bv’ (0) 6u’ (0) — u (0) v’ (0) + v (0) u’ (0)

Collecting
(uv’ — o)y = ad (u(0) v’ (0) - v (0) u’ (0))
+po (' (0)v' (0) - " (0) ' (0))
+ay (u(0)v(0) - v (0)u(0))
+ By (' (0)v (0) — v (0) u (0))
—u(0)v' (0) + v (0)u’ (0)

= ad (u(0)2" (0) = v (0)u’ (0)) + By (' (0) v (0) = " (0) u (0)) = (1 (0) v’ (0) — v (0) u” (0))
= ad (u(0)2" (0) = v (0)u’ (0)) = By (@' (0) u (0) - u’ (0) v (0)) = (u (0) 2" (0) = v (0) u’ (0))

Let u (0)v' (0) —v (0)u’ (0) = A then we see that the above is just
v’ —ouw)[s = ad (A) - By (A) - (A)
= A(ad-py-1)
Hence, for (uv’ — vu’)lé =0, we need

ad-Py-1=0

1.5 Problem 5.5.3

5.5.3. Consider the eigenvalue problem L(¢) = —Ao(z)¢, subject to a given set of
homogeneous boundary conditions. Suppose that

/b [uL(v) —vL(u)] dz =0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).

We are given that
b
f uL[v] —oL[u]dx =0
a

But
L[v] =-A,0(x)v
Llul=-A,0(x)u

1)

2)
)

Where 0 (x) is the weight function of the corresponding Sturm-Liouville ODE that u, v are its solution

eigenfunctions. Substituting (2,3) into (1) gives

f (Ao (1)) ~ 0 (A0 (1) ) dx = 0

a

b
f Ao (x)uv+ Ao (x)uvdx =0
a

A, - A,) fba(x) wodx = 0



10

Since u, v are different eigenfunctions, then the A, — A, # 0 as these are different eigenvalues. (There
is one eigenfunction corresponding to each eigenvalue). Therefore the above says that

fba(x)u(x)v(x)dx:O

Hence different eigenfunctions u (x),v (x) are orthogonal to each others. The weight is o (x).

1.6 Problem 5.5.8

5.5.8. Consider a fourth-order linear differential operator,

d*
(a) Show that uL(v) — vL(u) is an exact differential.
(b) Evaluate fol [uL(v) — vL(u)] dz in terms of the boundary data for any
functions u and v.

(c) Show that fol [uL(v) — vL(u)] dz =0 if u and v are any two functions
satisfying the boundary conditions

$0) = 0 (1) 0
20) = 0 21 = o

(d) Give another example of boundary conditions such that

[ k@ - vi) dz =o
0

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

di¢

a—; + X" =0,
show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

d4
it
1.6.1 Part (a)
4 4
uL [v] —oL[u] = uZ—XZ - UZTZ
= uo® — py®

We want to obtain expression of form % () such that it comes out to be uv® —vu®. If we can do

this, then it is exact differential. Now, since

- (MU/” _ M’TJ”) - v + MU(4) —u’'v" —u'v" (1)
dx

And
d
- (Z)M”’ _ U,M”) =o'u + UM(4) —o"u —o'u (2)
dx

Then (1)-(2) gives

d d
d_ (MU/N _ u/v//) _ d_ (vu/// _ U,M”) — (u/v/// + uv(4) —u'v" — ulvlll> _ (v/u/// + UM(4) —o'u’ - U,M”,)
X X

1 N 1Y 715,17 Yy

=uw'v" +uvo® — v —uw” - —ou® + 0" +v'u

= yo@® — @

Hence we found that

i (uv/// — v =o' + Z)/u//) — MU(4) _ UM(4)

dx
= uL [v] — oL [u]
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Therefore ul [v] — vL [u] is exact differential.

1.6.2 Part (b)

b
I= f uL [v] — oL [u] dx
a
b d
— _ (M'U”’ —u'v —ou' + U,M”) dx
. dx

— uvl{l _ ulvll _ ,Uulll

+ v’u”lh
a

=u )" (b)—u' (b)v” (b) —v(b)u” (b) + ' (b)u” (b)
—(u(@)v"” (a) —uw' (a) 0" (a) —v (@) " (a) + 0" (a) u” (a))
Or
I=u®)v"” (b)-u' (b)v” (b)—v(b)u” (b)+v (b)u” (b)—u(a)v”’ (a)+u’ (a)v” (a)+v (a)u”’ (a)—70" (a) u” (a)

1.6.3 Part (c)
From part(b),
1
I= f uL [v] — oL [u]dx = uv”" —u'v"” —ou’"’ + v’u”l(l) 1)
0

Since we are given that

¢(0)=0

¢ (0)=0

(1) =0

" (1) =0

The above will give

u(0)=0v0)=0
u (0)=v"(0)=0
u(l)=v(1)=0

w1)=v"(1)=0

Substituting these into (1) gives

fl uL[v]—oL[uldx=u@)v"” 1) -’ W)v”" ) -ov@Q)u’”" Q)+ Q) u” (1)
0
—u(0)v"” (0) + v’ (0)v”” (0) + v (0) " (0) — v’ (0) u”” (0)

Therefore

fl uL[v] —oL[u]ldx=0x2"” 1)-0-0xu"”"1)+0-(0x2"(0))+0+(0xu"(0))-0
0

=0

1.6.4 Part (d)

Any boundary conditions which makes uv"”" —u'v"” - ou”’ + v’u”l(l) = 0 will do. For example,
¢0)=0
¢'(0)=0
¢(1)=0

¢ (1)=0
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The above will give

u(0)=0v0)=0
W 0)=0v'0)=0
u(l)=v1)=0

w@l)=v"1)=0

Substituting these into (1) gives

f L [0] - oL [u]dx = u (V) 0" (1) — ' (1) 1) v Q) w” (1) + o’ ) u” (1)
0

—u(0)v”” (0)+ v’ (0)v” (0) + v (0) u”” (0) — v’ (0) u” (0)
=(0xv”1)-0Oxv”"@1)-Oxu” 1)+ (0xu"(@1))
—(0xv"”(0)+ (0xv"(0))+ (0xu" (0) —(0xu"(0))

=0
1.6.5 Part (e)
Given
4
@qb + Ae¥p =0
Therefore
L[¢]=-Ae%¢
Therefore, for eigenfunctions u,v we have
Llu]l =-A,efu
L[v] = -A,ev

Where A, A, are the eigenvalues associated with eigenfunctions #,v and they are not the same.
Hence now we can write

1
0=f ul [v] — oL [u] dx

0
1

=f u (=A,e*v) — v (—A,e%u) dx
0
1

= f —Aeuv + A, e uvdx
0
1

- f (A, - A,) (o) dx
0

1
=(A, - /\U)f (e*uv) dx
0
Since A, — A, # 0 then
1
f (Euv)ydx =0
0

Hence u,v are orthogonal to each others with weight function e*.

1.7 Problem 5.5.10

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

1.7.1 Part(a)

Equation 5.5.22 is
p ($1% — p29p1) = constant (5.5.22)

Looking at boundary conditions at one end, say at x = a (left end), and let the boundary conditions
there be

P16 (a) + 29’ (a) = 0
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Therefore for eigenfunctions ¢, ¢, we obtain

P1¢1 (a) + oy (@) =0 1)
P12 (a) + By (a) = 0 (2)
From (1),
’ _ ‘Bl
$1(a) = -1 (a) (3)
B2
From (2)
%@h—&%w) (4)
B2

Substituting (3,4) into ¢1¢; — Prp] gives, at end point a, the following
01005 0) - 0094 0 =91 0502 0) - 0 (-EL01 0)
P p

= —ﬁ_zﬁbz (@) 1 (a) + ﬁ_l‘PZ (@) 1 (a)

=0

In the above, we evaluated ¢,¢5 — ¢, at one end point, and found it to be zero. But ¢1¢5 — o]
is the Wronskian W (x). It is known that if W (x) = 0 at just one point, then it is zero at all points in
the range. Hence we conclude that

P193 = P21 = 0
For all x. This also means the eigenfunctions ¢, ¢, are linearly dependent. This gives equation
5.56.23. QED.

1.7.2 Part(b)

Equation 5.5.22 is
p ($1695 — p2¢p7) = constant (5.5.22)

At one end, say end x = g, is where the singularity exist. This means p (a) = 0. Now to show that
p (qbqu)é - qf)qui) = 0 at x = 4, we just need to show that ¢1¢; — ¢,¢] is bounded. Since in that case,
we will have 0 x A = 0, where A is some value which is ¢,¢; — ¢,¢]. But boundary conditions at
x =1 must be ¢ (1) < o0 and also ¢’ (1) < co. This is always the case at the end where p = 0.

Then let ¢ (a) = c; and ¢’ (a) = c,, where ¢y, ¢, are some constants. Then we write

$1(a) =
P1(a) =
$2(a) = ¢y
¢ (@) =3

Hence it follows immediately that

P15 — Pap] = c1Cp — €201
=0

Hence we showed that ¢,¢; — ¢,¢] is bounded. Then p (¢1qb§ - qbqui) =0. QED.
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