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1 HW 6

1.1 Problem 5.3.2

168 Chapter 5. Sturm-Liouville Eigenvalue Problems

EXERCISES 5.3

*5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be
put into Sturm-Liouville form.

5.3.2. Consider
02U 1012u 8u

=To 8x2
+au+/3 .

(a) Give a brief physical interpretation. What signs must a and 'o have to
be physical?

(b) Allow p, a, /3 to be functions of x. Show that separation of variables
works only if Q = cp, where c is a constant.

(c) If 0 = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

*5.3.3. Consider the non-Sturm-Liouville differential equation

dx + a(x) dx + [AQ(x) + -Y(x)lo = 0.

Multiply this equation by H(x). Determine H(x) such that the equation
may be reduced to the standard Sturm-Liouville form:

d
dx [p(x) d-J + [Ao,(x) + q(x)1 q5 = 0.

Given a(x), 3(x), and -y(x), what are p(x), a(x), and q(x)?

5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

19U 02U
49U

cat ka 2 - VoOx

(a) Show that the spatial ordinary differential equation obtained by sepa-
ration of variables is not in Sturm-Liouville form.

*(b) Sore the initial boundary value problem

u(0,t) = 0
u(L, t) = 0
u(x, 0) = f (x).

(c) Solve the initial boundary value problem

(O,t) = 0
TX_

(L, t) = 0Tz-
u(x,0) = f(x).

1.1.1 Part (a)

𝜌
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑡2

+ 𝛼𝑢 + 𝛽
𝜕𝑢
𝜕𝑡

The PDE equation represents the vertical displacement 𝑢 (𝑥, 𝑡) of the string as a function of time

and horizontal position. This is 1D wave equation. The term 𝛽𝜕𝑢𝜕𝑡 represents the damping force (can
be due to motion of the string in air or fluid). The damping coe�cient 𝛽 must be negative to make

𝛽𝜕𝑢𝜕𝑡 opposite to direction of motion. Damping force is proportional to velocity and acts opposite to
direction of motion.

The term 𝛼𝑢 represents the sti�ness in the system. This is a restoring force, and acts also oppo-
site to direction of motion and is proportional to current displacement from equilibrium position.
Hence 𝛼 < 0 also.

1.1.2 Part (b)

Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting this into the above PDE gives

𝜌𝑇′′𝑋 = 𝑇0𝑋′′𝑇 + 𝛼𝑋𝑇 + 𝛽𝑇′𝑋

Dividing by 𝑋𝑇 ≠ 0

𝜌
𝑇′′

𝑇
= 𝑇0

𝑋′′

𝑋
+ 𝛼 + 𝛽

𝑇′

𝑇

𝜌
𝑇′′

𝑇
− 𝛽

𝑇′

𝑇
= 𝑇0

𝑋′′

𝑋
+ 𝛼

To make each side depends on one variable only, we move 𝜌 (𝑥) , 𝛽 (𝑥) to the right side since these
depends on 𝑥. Then dividing by 𝜌 (𝑥) gives

𝑇′′

𝑇
−
𝛽
𝜌
𝑇′

𝑇
= 𝑇0

𝑋′′

𝜌𝑋
+
𝛼
𝜌



3

If
𝛽(𝑥)
𝜌(𝑥) = 𝑐 is constant, then we see the equations have now been separated, since

𝛽(𝑥)
𝜌(𝑥) do not depend

on 𝑥 any more and the above becomes

𝑇′′

𝑇
− 𝑐

𝑇′

𝑇
= 𝑇0

𝑋′′

𝜌𝑋
+
𝛼 (𝑥)
𝜌 (𝑥)

Now we can say that both side is equal to some constant −𝜆 giving the two ODE’s

𝑇′′

𝑇
− 𝑐

𝑇′

𝑇
= −𝜆

𝑇0
𝑋′′

𝜌𝑋
+
𝛼
𝜌
= −𝜆

Or

𝑇′′ − 𝑐𝑇′ + 𝜆𝑇 = 0

𝑋′′ + 𝑋�
𝛼
𝑇0

+ 𝜆
𝜌
𝑇0
� = 0

1.1.3 Part (c)

From above, the spatial ODE is

𝑋′′ + 𝑋�
𝛼
𝑇0

+ 𝜆
𝜌
𝑇0
� = 0 (1)

Comparing to regular Sturm Liouville (RSL) form, which is

𝑑
𝑑𝑥
�𝑝𝑋′� + 𝑞𝑋 + 𝜆𝜎𝑋 = 0

𝑝𝑋′′ + 𝑝′𝑋′ + �𝑞 + 𝜆𝜎�𝑋 = 0 (2)

Comparing (1) and (2) we see that

𝑝 = 1

𝑞 =
𝛼
𝑇0

𝜎 =
𝜌
𝑇0

To solve the time ODE 𝑇′′ − 𝑐𝑇′ + 𝜆𝑇 = 0, since this is second order linear with constant coe�cients,
then the characteristic equation is

𝑟2 − 𝑐𝑟 + 𝜆 = 0

𝑟 =
−𝐵
2𝐴

± √𝐵2 − 4𝐴𝐶
2𝐴

=
𝑐
2
± √𝑐2 − 4𝜆

2
Hence the two solutions are

𝑇1 (𝑡) = 𝑒
�
𝑐
2+

�𝑐2−4𝜆
2 �𝑡

𝑇2 (𝑡) = 𝑒
�
𝑐
2−

�𝑐2−4𝜆
2 �𝑡
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The general solution is linear combination of the above two solution, therefore final solution is

𝑇 (𝑡) = 𝑐1𝑒
�
𝑐
2+

�𝑐2−4𝜆
2 �𝑡

+ 𝑐2𝑒
�
𝑐
2−

�𝑐2−4𝜆
2 �𝑡

Where 𝑐1, 𝑐2 are arbitrary constants of integration.

1.2 Problem 5.3.3

168 Chapter 5. Sturm-Liouville Eigenvalue Problems

EXERCISES 5.3

*5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be
put into Sturm-Liouville form.

5.3.2. Consider
02U 1012u 8u

=To 8x2
+au+/3 .

(a) Give a brief physical interpretation. What signs must a and 'o have to
be physical?

(b) Allow p, a, /3 to be functions of x. Show that separation of variables
works only if Q = cp, where c is a constant.

(c) If 0 = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

*5.3.3. Consider the non-Sturm-Liouville differential equation

dx + a(x) dx + [AQ(x) + -Y(x)lo = 0.

Multiply this equation by H(x). Determine H(x) such that the equation
may be reduced to the standard Sturm-Liouville form:

d
dx [p(x) d-J + [Ao,(x) + q(x)1 q5 = 0.

Given a(x), 3(x), and -y(x), what are p(x), a(x), and q(x)?

5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

19U 02U
49U

cat ka 2 - VoOx

(a) Show that the spatial ordinary differential equation obtained by sepa-
ration of variables is not in Sturm-Liouville form.

*(b) Sore the initial boundary value problem

u(0,t) = 0
u(L, t) = 0
u(x, 0) = f (x).

(c) Solve the initial boundary value problem

(O,t) = 0
TX_

(L, t) = 0Tz-
u(x,0) = f(x).

𝑑2𝜙
𝑑𝑥2

+ 𝛼 (𝑥)
𝑑𝜙
𝑑𝑥

+ �𝜆𝛽 (𝑥) + 𝛾 (𝑥)� 𝜙 = 0

Multiplying by 𝐻 (𝑥) gives

𝐻 (𝑥) 𝜙′′ (𝑥) + 𝐻 (𝑥) 𝛼 (𝑥) 𝜙′ (𝑥) + 𝐻 (𝑥) �𝜆𝛽 (𝑥) + 𝛾 (𝑥)� 𝜙 = 0 (1)

Comparing (1) to Sturm Liouville form, which is

𝑑
𝑑𝑥
�𝑝𝜙′� + 𝑞𝜙 + 𝜆𝜎𝜙 = 0

𝑝 (𝑥) 𝜙′′ (𝑥) + 𝑝′ (𝑥) 𝜙′ (𝑥) + �𝑞 + 𝜆𝜎�𝜙 (𝑥) = 0 (2)

Then we need to satisfy

𝐻 (𝑥) = 𝑃 (𝑥)
𝐻 (𝑥) 𝛼 (𝑥) = 𝑃′ (𝑥)

Therefore, by combining the above, we obtain one ODE equation to solve for 𝐻 (𝑥)

𝐻′ (𝑥) = 𝐻 (𝑥) 𝛼 (𝑥)

This is first order separable ODE. 𝐻′

𝐻 = 𝛼 or ln |𝐻| = ∫𝛼𝑑𝑥 + 𝑐 or

𝐻 = 𝐴𝑒∫𝛼(𝑥)𝑑𝑥

Where 𝐴 is some constant. By comparing (1),(2) again, we see that

𝑞 + 𝜆𝜎 = 𝜆𝛽 (𝑥)𝐻 (𝑥) + 𝛾 (𝑥)𝐻 (𝑥)
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Summary of solution

𝜎 (𝑥) = 𝛽 (𝑥)𝐻 (𝑥)
𝑞 (𝑥) = 𝛾 (𝑥)𝐻 (𝑥)
𝑃 (𝑥) = 𝐻 (𝑥)

𝐻 (𝑥) = 𝐴𝑒∫𝛼(𝑥)𝑑𝑥

QED

1.3 Problem 5.3.9

5.3. Sturm-Liouville Eigenvalue Problems 169

5.3.5. For the Sturm-Liouville eigenvalue problem,

x + AO = 0 with

dx

(0) = 0 and

dx

(L) = 0,

verify the following general properties:
(a) There is an infinite number of eigenvalues with a smallest but no

largest.
(b) The nth eigenfunction has n - 1 zeros.
(c) The eigenfunctions are complete and orthogonal.
(d) What does the Rayleigh quotient say concerning negative and zero

eigenvalues?

5.3.6. Redo Exercise 5.3.5 for the Sturm-Liouville eigenvalue problem

dx2 + A = 0 with (0) = 0 and ¢(L) = 0.

5.3.7. Which of statements 1-5 of the theorems of this section are valid for
the following eigenvalue problem?

I + AO = 0 with
O(L)d(-L) = d (L)

5.3.8. Show that A > 0 for the eigenvalue problem
2

d2 + (a - x2)0 = 0 with (0) = 0, (1) = 0.

Is A = 0 an eigenvalue?
5.3.9. Consider the eigenvalue problem

2

x2dx2 + x + AO = 0 with 0(1)=O, and 0(b)=O. (5.3.10)

(a) Show that multiplying by 1/x puts this in the Sturm-Liouville
form. (This multiplicative factor is derived in Exercise 5.3.3.)

(b) Show that A > 0.
*(c) Since (5.3.10) is an equidimensional equation, determine all posi-

tive eigenvalues. Is A = 0 an eigenvalue? Show that there is an
infinite number of eigenvalues with a smallest, but no largest.

(d) The eigenfunctions are orthogonal with what weight according to
Sturm-Liouville theory? Verify the orthogonality using properties
of integrals.

(e) Show that the nth eigenfunction has n - 1 zeros.
5.3.10. Reconsider Exercise 5.3.9 with the boundary conditions

dx (1) = 0 and (b) = 0.
𝑥2𝜙′′ + 𝑥𝜙′ + 𝜆𝜙 = 0 (1)

𝜙 (1) = 0
𝜙 (𝑏) = 0

1.3.1 Part (a)

Multiplying (1) by 1
𝑥 where 𝑥 ≠ 0 gives

𝑥𝜙′′ + 𝜙′ +
𝜆
𝑥
𝜙 = 0 (2)

Comparing (2) to Sturm-Liouville form

𝑝𝜙′′ + 𝑝′𝜙′ + �𝑞 + 𝜆𝜎�𝜙 = 0 (3)

Then

𝑝 = 𝑥
𝑞 = 0

𝜎 =
1
𝑥
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And since the given boundary conditions also satisfy the Sturm-Liouville boundary conditions, then
(2) is a regular Sturm-Liouville ODE.

1.3.2 Part(b)

Using equation 5.3.8 in page 160 of text (called Raleigh quotient), which applies to regular Sturm-
Liouville ODE, which relates the eigenvalues to the eigenfunctions

𝜆 =
− �𝑝𝜙𝜙′�

𝑥=𝑏

𝑥=1
+ ∫

𝑏

1
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫𝑏

1
𝜙2𝜎𝑑𝑥

(5.3.8)

=
− �𝑝 (𝑏) 𝜙 (𝑏) 𝜙′ (𝑏) − 𝑝 (1) 𝜙 (1) 𝜙′ (𝑏)� + ∫

𝑏

1
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫𝑏

1
𝜙2𝜎𝑑𝑥

Using 𝑝 = 𝑥, 𝑞 = 0, 𝜎 = 1
𝑥 and using 𝜙 (1) = 0, 𝜙 (𝑏) = 0, then the above simplifies to

𝜆 =
−∫

𝑏

1
𝑝 �𝜙′�

2
𝑑𝑥

∫𝑏

1
𝜙2

𝑥 𝑑𝑥

The integrands in the numerator and denominator can not be negative, since they are squared
quantities, and also since 𝑥 > 0 as the domain starts from 𝑥 = 1, then RHS above can not be negative.
This means the eigenvalue 𝜆 can not be negative. It can only be 𝜆 ≥ 0. QED.

1.3.3 Part(c)

The possible values of 𝜆 > 0 are determined by trying to solve the ODE and seeing which 𝜆 produces
non-trivial solutions given the boundary conditions. The ODE to solve is (1) above. Here it is again

𝑥2𝜙′′ + 𝑥𝜙′ + 𝜆𝜙 = 0 (1)

We know 𝜆 ≥ 0, so we do not need to check for negative 𝜆.

Case 𝜆 = 0.

Equation (1) becomes

𝑥2𝜙′′ + 𝑥𝜙′ = 0
𝑥𝜙′′ + 𝜙′ = 0
𝑑
𝑑𝑥
�𝑥𝜙′� = 0

Hence 𝑥𝜙′ = 𝑐1 where 𝑐1 is constant. Therefore
𝑑
𝑑𝑥𝜙 =

𝑐1
𝑥 or

𝜙 = 𝑐1�
1
𝑥
𝑑𝑥 + 𝑐2

= 𝑐1 ln |𝑥| + 𝑐2
At 𝑥 = 1, 𝜙 (1) = 0, hence

0 = 𝑐1 ln (1) + 𝑐2
But ln (1) = 0, therefore 𝑐2 = 0. The solution now becomes

𝜙 = 𝑐1 ln |𝑥|
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At the right end, 𝑥 = 𝑏, 𝜙 (𝑏) = 0, therefore

0 = 𝑐1 ln 𝑏
But since 𝑏 > 1 the above implies that 𝑐1 = 0. This gives trivial solution. Therefore 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

𝑥2𝜙′′ + 𝑥𝜙′ + 𝜆𝜙 = 0

This is non-constant coe�cients, linear, second order ODE. Let 𝜙 (𝑥) = 𝑥𝑝. Equation (1) becomes

𝑥2𝑝 �𝑝 − 1� 𝑥𝑝−2 + 𝑥𝑝𝑥𝑝−1 + 𝜆𝑥𝑝 = 0

𝑝 �𝑝 − 1� 𝑥𝑝 + 𝑝𝑥𝑝 + 𝜆𝑥𝑝 = 0

Dividing by 𝑥𝑝 ≠ 0 gives the characteristic equation

𝑝 �𝑝 − 1� + 𝑝 + 𝜆 = 0

𝑝2 − 𝑝 + 𝑝 + 𝜆 = 0
𝑝2 = −𝜆

Since 𝜆 ≥ 0 then 𝑝 is complex. Therefore the roots are

𝑝 = ±𝑖√𝜆

Therefore the two solutions (eigenfunctions) are

𝜙1 (𝑥) = 𝑥𝑖√𝜆

𝜙2 (𝑥) = 𝑥−𝑖√𝜆

To more easily use standard form of solution, the standard trick is to rewrite these solution in
exponential form

𝜙1 (𝑥) = 𝑒𝑖√𝜆 ln 𝑥

𝜙2 (𝑥) = 𝑒−𝑖√𝜆 ln 𝑥

The general solution to (1) is linear combination of these two solutions, therefore

𝜙 (𝑥) = 𝑐1𝑒𝑖√𝜆 ln 𝑥 + 𝑐2𝑒−𝑖√𝜆 ln 𝑥 (2)

Since 𝜆 > 0 then the above can be written using trig functions as

𝜙 (𝑥) = 𝑐1 cos �√𝜆 ln 𝑥� + 𝑐2 sin �√𝜆 ln 𝑥�

We are now ready to check for allowed values of 𝜆 by applying B.C’s. The first B.C. gives

0 = 𝑐1 cos �√𝜆 ln 1� + 𝑐2 sin �√𝜆 ln 1�

= 𝑐1 cos (0) + 𝑐2 sin (0)
= 𝑐1

Hence the solution now simplifies to

𝜙 (𝑥) = 𝑐2 sin �√𝜆 ln 𝑥�
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Applying the second B.C. gives

0 = 𝑐2 sin �√𝜆 ln 𝑏�

For non-trivial solution we want

√𝜆 ln 𝑏 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

√𝜆 =
𝑛𝜋
ln 𝑏

𝜆𝑛 = �
𝑛𝜋
ln 𝑏

�
2

𝑛 = 1, 2, 3,⋯

Therefore, there are infinite numbers of eigenvalues. The smallest is when 𝑛 = 1 given by

𝜆1 = �
𝜋

ln 𝑏
�
2

1.3.4 Part (d)

From Equation 5.3.6, page 159 in textbook, the eigenfunction are orthogonal with weight function
𝜎 (𝑥)

�
𝑏

𝑎
𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝜎 (𝑥) 𝑑𝑥 = 0 𝑛 ≠ 𝑚

In this problem, the weight 𝜎 = 1
𝑥 and the solution (eigenfuctions) were found above to be

𝜙𝑛 (𝑥) = sin ��𝜆𝑛 ln 𝑥�

Now we can verify the orthogonality

�
𝑏

1
𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝜎 (𝑥) 𝑑𝑥 = �

𝑥=𝑏

𝑥=1
sin � 𝑛𝜋ln 𝑏 ln 𝑥� sin �𝑚𝜋ln 𝑏 ln 𝑥� 1

𝑥
𝑑𝑥

Using the substitution 𝑧 = ln 𝑥, then 𝑑𝑧
𝑑𝑥 =

1
𝑥 . When 𝑥 = 1, 𝑧 = ln 1 = 0 and when 𝑥 = 𝑏, 𝑧 = ln 𝑏, then the

above integral becomes

𝐼 = �
𝑧=ln 𝑏

𝑧=0
sin � 𝑛𝜋ln 𝑏𝑧

� sin �𝑚𝜋ln 𝑏𝑧
�
𝑑𝑧
𝑑𝑥
𝑑𝑥

= �
ln 𝑏

0
sin � 𝑛𝜋ln 𝑏𝑧

� sin �𝑚𝜋ln 𝑏𝑧
� 𝑑𝑧

But sin � 𝑛𝜋
ln 𝑏𝑧� and sin � 𝑚𝜋ln 𝑏𝑧� are orthogonal functions (now with weight 1). Hence the above gives 0

when 𝑛 ≠ 𝑚 using standard orthogonality of the sin functions we used before many times. QED.

1.3.5 Part(e)

The 𝑛𝑡ℎ eigenfunction is

𝜙𝑛 (𝑥) = sin � 𝑛𝜋ln 𝑏 ln 𝑥�

Here, the zeros are inside the interval, not counting the end points 𝑥 = 1 and 𝑥 = 𝑏.

�
𝑛𝜋
ln 𝑏 ln 𝑥��

𝑥=1
= �

𝑛𝜋
ln 𝑏0

� = 0
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And

�
𝑛𝜋
ln 𝑏 ln 𝑥��

𝑥=𝑏
=
𝑛𝜋
ln 𝑏 ln 𝑏

= 𝑛𝜋

Hence for 𝑛 = 1, The domain of 𝜙1 (𝑥) is 0⋯𝜋. And there are no zeros inside this for sin function
not counting the end points. For 𝑛 = 2, the domain is 0⋯2𝜋 and sin has one zero inside this (at 𝜋),
not counting end points. And for 𝑛 = 3, the domain is 0⋯3𝜋 and sin has two zeros inside this (at
𝜋, 2𝜋), not counting end points. And so on. Hence 𝜙𝑛 (𝑥) has 𝑛 − 1 zeros not counting the end points.

1.4 Problem 5.5.1 (b,d,g)5.5. Self-Adjoint Operators 181

EXERCISES 5.5

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

du
p (udv

dx - vdx
b

=0
a

since then fQ [uL(v) - vL(u)] dx = 0 for any two functions u and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) 0(0) = O and O(L) = 0
(b) V. (0) = 0 and O(L) = 0

(c) a (0) - hq5(0) = 0 and
d

(L) = 0

(d) t(a) = 0(b) and p(a) 10 (a) = p(b) -2 (b)

(e) 0(a) = 0(b) and lk(a) _ (b) [self-adjoint only if p(a) = p(b)]

(f) q(L) = 0 and [in the situation in which p(0) = 0] 0(0) bounded and
lim;r .o p(x)- = 0

*(g) Under what conditions is the following self-adjoint (if p is constant)?

¢(L) + a0(0) + Qd (0) = 0

d
!k(L)+-r,0(0)+&-2(0) 0

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the
following eigenvalue problem) are orthogonal:

dx [p(x) d_] + 4(x)¢ + Ao(x)¢ = 0

with the boundary conditions

0(1) = 0
.0(2) - 2 (2) = 0.

What is the weighting function?

5.5.3. Consider the eigenvalue problem L(¢) = -av(x)46, subject to a given set of
homogeneous boundary conditions. Suppose that

jb

[uL(v) - vL(u)] dx = 0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).

The Sturm-Liouville ODE is
𝑑
𝑑𝑥
�𝑝𝜙′� + 𝑞𝜙 = −𝜆𝜎𝜙

Or in operator form, defining 𝐿 ≡ 𝑑
𝑑𝑥
�𝑝 𝑑

𝑑𝑥
� + 𝑞, becomes

𝐿 �𝜙� = −𝜆𝜎𝜙

The operator 𝐿 is self adjoined when

�
𝑏

𝑎
𝑢𝐿 [𝑣] 𝑑𝑥 = �

𝑏

𝑎
𝑣𝐿 [𝑢] 𝑑𝑥
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For the above to work out, we need to show that

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 0

And this is what we will do now.

1.4.1 Part(b)

Here 𝑎 = 0 and 𝑏 = 𝐿.

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑝 �𝑢

𝑑𝑣
𝑑𝑥

− 𝑣
𝑑𝑢
𝑑𝑥 �

�
𝐿

0

= �𝑝 (𝐿) �𝑢 (𝐿)
𝑑𝑣
𝑑𝑥
(𝐿) − 𝑣 (𝐿)

𝑑𝑢
𝑑𝑥
(𝐿)� − 𝑝 (0) �𝑢 (0)

𝑑𝑣
𝑑𝑥
(0) − 𝑣 (0)

𝑑𝑢
𝑑𝑥
(0)��

Substituting 𝑢 (𝐿) = 𝑣 (𝐿) = 0 and 𝑑𝑣
𝑑𝑥
(0) = 𝑑𝑢

𝑑𝑥
(0) = 0 into the above (since there are the B.C. given)

gives

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= �𝑝 (𝐿) �0 ×

𝑑𝑣
𝑑𝑥
(𝐿) − 0 ×

𝑑𝑢
𝑑𝑥
(𝐿)� − 𝑝 (0) (𝑢 (0) × 0 − 𝑣 (0) × 0)�

= [0 − 0]
= 0

1.4.2 Part (d)

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑝 �𝑢

𝑑𝑣
𝑑𝑥

− 𝑣
𝑑𝑢
𝑑𝑥 �

�
𝑎

𝑏

= �𝑝 (𝑎) (𝑢 (𝑎) 𝑣′ (𝑎) − 𝑣 (𝑎) 𝑢′ (𝑎)) − 𝑝 (𝑏) (𝑢 (𝑏) 𝑣′ (𝑏) − 𝑣 (𝑏) 𝑢′ (𝑏))�

= 𝑝 (𝑎) 𝑢 (𝑎) 𝑣′ (𝑎) − 𝑝 (𝑎) 𝑣 (𝑎) 𝑢′ (𝑎) − 𝑝 (𝑏) 𝑢 (𝑏) 𝑣′ (𝑏) + 𝑝 (𝑏) 𝑣 (𝑏) 𝑢′ (𝑏) (1)

We are given that 𝑢 (𝑎) = 𝑢 (𝑏) and 𝑣 (𝑎) = 𝑣 (𝑏) and 𝑝 (𝑎) 𝑢′ (𝑎) = 𝑝 (𝑏) 𝑢′ (𝑏) and 𝑝 (𝑎) 𝑣′ (𝑎) = 𝑝 (𝑏) 𝑣′ (𝑏).

We start by replacing 𝑢 (𝑎) by 𝑢 (𝑎) and replacing 𝑣 (𝑎) by 𝑣 (𝑏) in (1), this gives

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑝 (𝑎) 𝑢 (𝑏) 𝑣′ (𝑎) − 𝑝 (𝑎) 𝑣 (𝑏) 𝑢′ (𝑎) − 𝑝 (𝑏) 𝑢 (𝑏) 𝑣′ (𝑏) + 𝑝 (𝑏) 𝑣 (𝑏) 𝑢′ (𝑏)

= 𝑢 (𝑏) �𝑝 (𝑎) 𝑣′ (𝑎) − 𝑝 (𝑏) 𝑣′ (𝑏)� + 𝑣 (𝑏) �𝑝 (𝑏) 𝑢′ (𝑏) − 𝑝 (𝑎) 𝑢′ (𝑎)�

Now using 𝑝 (𝑎) 𝑢′ (𝑎) = 𝑝 (𝑏) 𝑢′ (𝑏) and 𝑝 (𝑎) 𝑣′ (𝑎) = 𝑝 (𝑏) 𝑣′ (𝑏) in the above gives

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑢 (𝑏) �𝑝 (𝑏) 𝑣′ (𝑏) − 𝑝 (𝑏) 𝑣′ (𝑏)� + 𝑣 (𝑏) �𝑝 (𝑏) 𝑢′ (𝑏) − 𝑝 (𝑏) 𝑢′ (𝑏)�

= 𝑢 (𝑏) (0) + 𝑣 (𝑏) (0)
= 0 − 0
= 0



11

1.4.3 Part (g)

𝑝 is constant. Hence

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝐿
0
= 𝑝 �𝑢

𝑑𝑣
𝑑𝑥

− 𝑣
𝑑𝑢
𝑑𝑥 �

�
𝐿

0

= 𝑝 [(𝑢 (𝐿) 𝑣′ (𝐿) − 𝑣 (𝐿) 𝑢′ (𝐿)) − (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0))] (1)

We are given that

𝑢 (𝐿) + 𝛼𝑢 (0) + 𝛽𝑢′ (0) = 0 (2)

𝑢′ (𝐿) + 𝛾𝑢 (0) + 𝛿𝑢′ (0) = 0 (3)

And

𝑣 (𝐿) + 𝛼𝑣 (0) + 𝛽𝑣′ (0) = 0 (4)

𝑣′ (𝐿) + 𝛾𝑣 (0) + 𝛿𝑣′ (0) = 0 (5)

From (2),

𝑢 (𝐿) = −𝛼𝑢 (0) − 𝛽𝑢′ (0)

From (3)

𝑢′ (𝐿) = −𝛾𝑢 (0) − 𝛿𝑢′ (0)

From (4)

𝑣 (𝐿) = −𝛼𝑣 (0) − 𝛽𝑣′ (0)

From (5)

𝑣′ (𝐿) = −𝛾𝑣 (0) − 𝛿𝑣′ (0)

Using these 4 relations in equation (1) gives (where 𝑝 is removed out, since it is constant, to simplify
the equations)

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝑢 (𝐿) 𝑣
′ (𝐿) − 𝑣 (𝐿) 𝑢′ (𝐿) − 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)

= �−𝛼𝑢 (0) − 𝛽𝑢′ (0)� �−𝛾𝑣 (0) − 𝛿𝑣′ (0)�

− �−𝛼𝑣 (0) − 𝛽𝑣′ (0)� �−𝛾𝑢 (0) − 𝛿𝑢′ (0)�

− 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)

Simplifying

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝛼𝑢 (0) 𝛾𝑣 (0) + 𝛼𝑢 (0) 𝛿𝑣
′ (0) + 𝛽𝑢′ (0) 𝛾𝑣 (0) + 𝛽𝑢′ (0) 𝛿𝑣′ (0)

− �𝛼𝑣 (0) 𝛾𝑢 (0) + 𝛼𝑣 (0) 𝛿𝑢′ (0) + 𝛽𝑣′ (0) 𝛾𝑢 (0) + 𝛽𝑣′ (0) 𝛿𝑢′ (0)�

− 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)
= 𝛼𝑢 (0) 𝛾𝑣 (0) + 𝛼𝑢 (0) 𝛿𝑣′ (0) + 𝛽𝑢′ (0) 𝛾𝑣 (0) + 𝛽𝑢′ (0) 𝛿𝑣′ (0)
− 𝛼𝑣 (0) 𝛾𝑢 (0) − 𝛼𝑣 (0) 𝛿𝑢′ (0) − 𝛽𝑣′ (0) 𝛾𝑢 (0) − 𝛽𝑣′ (0) 𝛿𝑢′ (0) − 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)
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Collecting

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝛼𝛿 (𝑢 (0) 𝑣
′ (0) − 𝑣 (0) 𝑢′ (0))

+ 𝛽𝛿 (𝑢′ (0) 𝑣′ (0) − 𝑣′ (0) 𝑢′ (0))
+ 𝛼𝛾 (𝑢 (0) 𝑣 (0) − 𝑣 (0) 𝑢 (0))
+ 𝛽𝛾 (𝑢′ (0) 𝑣 (0) − 𝑣′ (0) 𝑢 (0))
− 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)
= 𝛼𝛿 (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0)) + 𝛽𝛾 (𝑢′ (0) 𝑣 (0) − 𝑣′ (0) 𝑢 (0)) − (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0))
= 𝛼𝛿 (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0)) − 𝛽𝛾 (𝑣′ (0) 𝑢 (0) − 𝑢′ (0) 𝑣 (0)) − (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0))

Let 𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0) = Δ then we see that the above is just

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝛼𝛿 (Δ) − 𝛽𝛾 (Δ) − (Δ)

= Δ �𝛼𝛿 − 𝛽𝛾 − 1�

Hence, for (𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 0, we need

𝛼𝛿 − 𝛽𝛾 − 1 = 0

1.5 Problem 5.5.3

5.5. Self-Adjoint Operators 181

EXERCISES 5.5

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

du
p (udv

dx - vdx
b

=0
a

since then fQ [uL(v) - vL(u)] dx = 0 for any two functions u and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) 0(0) = O and O(L) = 0
(b) V. (0) = 0 and O(L) = 0

(c) a (0) - hq5(0) = 0 and
d

(L) = 0

(d) t(a) = 0(b) and p(a) 10 (a) = p(b) -2 (b)

(e) 0(a) = 0(b) and lk(a) _ (b) [self-adjoint only if p(a) = p(b)]

(f) q(L) = 0 and [in the situation in which p(0) = 0] 0(0) bounded and
lim;r .o p(x)- = 0

*(g) Under what conditions is the following self-adjoint (if p is constant)?

¢(L) + a0(0) + Qd (0) = 0

d
!k(L)+-r,0(0)+&-2(0) 0

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the
following eigenvalue problem) are orthogonal:

dx [p(x) d_] + 4(x)¢ + Ao(x)¢ = 0

with the boundary conditions

0(1) = 0
.0(2) - 2 (2) = 0.

What is the weighting function?

5.5.3. Consider the eigenvalue problem L(¢) = -av(x)46, subject to a given set of
homogeneous boundary conditions. Suppose that

jb

[uL(v) - vL(u)] dx = 0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).

We are given that

�
𝑏

𝑎
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 0 (1)

But

𝐿 [𝑣] = −𝜆𝑣𝜎 (𝑥) 𝑣 (2)

𝐿 [𝑢] = −𝜆𝑢𝜎 (𝑥) 𝑢 (3)

Where 𝜎 (𝑥) is the weight function of the corresponding Sturm-Liouville ODE that 𝑢, 𝑣 are its solution
eigenfunctions. Substituting (2,3) into (1) gives

�
𝑏

𝑎
𝑢 (−𝜆𝑣𝜎 (𝑥) 𝑣) − 𝑣 (−𝜆𝑢𝜎 (𝑥) 𝑢) 𝑑𝑥 = 0

�
𝑏

𝑎
−𝜆𝑣𝜎 (𝑥) 𝑢𝑣 + 𝜆𝑢𝜎 (𝑥) 𝑢𝑣𝑑𝑥 = 0

(𝜆𝑢 − 𝜆𝑣)�
𝑏

𝑎
𝜎 (𝑥) 𝑢𝑣𝑑𝑥 = 0
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Since 𝑢, 𝑣 are di�erent eigenfunctions, then the 𝜆𝑢 − 𝜆𝑣 ≠ 0 as these are di�erent eigenvalues. (There
is one eigenfunction corresponding to each eigenvalue). Therefore the above says that

�
𝑏

𝑎
𝜎 (𝑥) 𝑢 (𝑥) 𝑣 (𝑥) 𝑑𝑥 = 0

Hence di�erent eigenfunctions 𝑢 (𝑥) , 𝑣 (𝑥) are orthogonal to each others. The weight is 𝜎 (𝑥).

1.6 Problem 5.5.8

182 Chapter 5. Sturm-Liouville Eigenvalue Problems

5.5.4. Give an example of an eigenvalue problem with more than one eigenfunction
corresponding to an eigenvalue.

5.5.5. Consider

L= d +6d +9.
dx2

(a) Show that L(e'-'y) = (r + 3)2e''s

(b) Use part (a) to obtain solutions of L(y) = 0 (a second-order constant-
coefficient differential equation).

(c) If z depends on x and a parameter r, show that

arL(z)=L(50
-

(d) Using part (c), evaluate L(8z/8r) if z = e''x.
(e) Obtain a second solution of L(y) = 0, using part (d).

5.5.6. Prove that if x is a root of a sixth-order polynomial with real coefficients,
then a is also a root.

5.5.7. For

L=d (pd
)

+ 9

with p and q real, carefully show that

L(0) = L(¢)

5.5.8. Consider a fourth-order linear differential operator,

=dL

(a) Show that vL(v) - vL(u) is an exact differential.

(b) Evaluate fo [uL(v) - vL(u)] dx in terms of the boundary data for any
functions u and v.

(c) Show that fo [uL(v) - vL(u)] dx = 0 if u and v are any two functions
satisfying the boundary conditions

46(0) = 0 0(1) = 0
d(0) = 0 d (1) = 0.

(d) Give another example of boundary conditions such that

f 1 [uL(v) - vL(u)] dx = 0.

5.5. Self-Adjoint Operators 183

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d44
+ aez ¢ = 0

dx4
,

show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

*5.5.9. For the eigenvalue problem

dx + Aexb = 0

subject to the boundary conditions

0(0) = 0 O(1) = 0
(0) = 0 (1) = 0,ad -,

show that the eigenvalues are less than or equal to zero (A < 0). (Don't
worry; in a physical context that is exactly what is expected.) Is A = 0 an
eigenvalue?

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

5.5.11. *(a) Suppose that

Consider

L = p(x)
2 + r(x) + q(x).

b

1 vL(u) dx.
a

By repeated integration by parts, determine the adjoint operator L'
such that

b

1 [uL'(v) - vL(u)j dx = H(x)
a

b

0

What is H(x)? Under what conditions does L = L', the self-adjoint
case? [Hint: Show that

\ \ 1
L' d2

2

p
d ( Pdr JJ=pdx + TX dx dx 4

(b) If
u(0) = 0 and (L) + u(L) = 0,

what boundary conditions should v(x) satisfy for H(x)ILa = 0, called
the adjoint boundary conditions?

𝐿 =
𝑑4

𝑑𝑥4

1.6.1 Part (a)

𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] = 𝑢
𝑑4𝑣
𝑑𝑥4

− 𝑣
𝑑4𝑢
𝑑𝑥4

= 𝑢𝑣(4) − 𝑣𝑢(4)

We want to obtain expression of form 𝑑
𝑑𝑥
() such that it comes out to be 𝑢𝑣(4) − 𝑣𝑢(4). If we can do this,



14

then it is exact di�erential. Now, since
𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′) = 𝑢′𝑣′′′ + 𝑢𝑣(4) − 𝑢′′𝑣′′ − 𝑢′𝑣′′′ (1)

And
𝑑
𝑑𝑥
(𝑣𝑢′′′ − 𝑣′𝑢′′) = 𝑣′𝑢′′′ + 𝑣𝑢(4) − 𝑣′′𝑢′′ − 𝑣′𝑢′′′ (2)

Then (1)-(2) gives

𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′) −

𝑑
𝑑𝑥
(𝑣𝑢′′′ − 𝑣′𝑢′′) = �𝑢′𝑣′′′ + 𝑢𝑣(4) − 𝑢′′𝑣′′ − 𝑢′𝑣′′′� − �𝑣′𝑢′′′ + 𝑣𝑢(4) − 𝑣′′𝑢′′ − 𝑣′𝑢′′′�

= 𝑢′𝑣′′′ + 𝑢𝑣(4) − 𝑢′′𝑣′′ − 𝑢′𝑣′′′ − 𝑣′𝑢′′′ − 𝑣𝑢(4) + 𝑣′′𝑢′′ + 𝑣′𝑢′′′

= 𝑢𝑣(4) − 𝑣𝑢(4)

Hence we found that
𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′) = 𝑢𝑣(4) − 𝑣𝑢(4)

= 𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢]

Therefore 𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] is exact di�erential.

1.6.2 Part (b)

𝐼 = �
𝑏

𝑎
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥

= �
𝑏

𝑎

𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′) 𝑑𝑥

= 𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′|𝑏𝑎
= 𝑢 (𝑏) 𝑣′′′ (𝑏) − 𝑢′ (𝑏) 𝑣′′ (𝑏) − 𝑣 (𝑏) 𝑢′′′ (𝑏) + 𝑣′ (𝑏) 𝑢′′ (𝑏)
− (𝑢 (𝑎) 𝑣′′′ (𝑎) − 𝑢′ (𝑎) 𝑣′′ (𝑎) − 𝑣 (𝑎) 𝑢′′′ (𝑎) + 𝑣′ (𝑎) 𝑢′′ (𝑎))

Or

𝐼 = 𝑢 (𝑏) 𝑣′′′ (𝑏)−𝑢′ (𝑏) 𝑣′′ (𝑏)−𝑣 (𝑏) 𝑢′′′ (𝑏)+𝑣′ (𝑏) 𝑢′′ (𝑏)−𝑢 (𝑎) 𝑣′′′ (𝑎)+𝑢′ (𝑎) 𝑣′′ (𝑎)+𝑣 (𝑎) 𝑢′′′ (𝑎)−𝑣′ (𝑎) 𝑢′′ (𝑎)

1.6.3 Part (c)

From part(b),

𝐼 = �
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′|10 (1)

Since we are given that

𝜙 (0) = 0
𝜙′ (0) = 0
𝜙 (1) = 0
𝜙′′ (1) = 0
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The above will give

𝑢 (0) = 𝑣 (0) = 0
𝑢′ (0) = 𝑣′ (0) = 0
𝑢 (1) = 𝑣 (1) = 0
𝑢′′ (1) = 𝑣′′ (1) = 0

Substituting these into (1) gives

�
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 𝑢 (1) 𝑣′′′ (1) − 𝑢′ (1) 𝑣′′ (1) − 𝑣 (1) 𝑢′′′ (1) + 𝑣′ (1) 𝑢′′ (1)

− 𝑢 (0) 𝑣′′′ (0) + 𝑢′ (0) 𝑣′′ (0) + 𝑣 (0) 𝑢′′′ (0) − 𝑣′ (0) 𝑢′′ (0)

Therefore

�
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = (0 × 𝑣′′′ (1)) − 0 − (0 × 𝑢′′′ (1)) + 0 − (0 × 𝑣′′′ (0)) + 0 + (0 × 𝑢′′′ (0)) − 0

= 0

1.6.4 Part (d)

Any boundary conditions which makes 𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′|10 = 0 will do. For example,

𝜙 (0) = 0
𝜙′ (0) = 0
𝜙 (1) = 0
𝜙′ (1) = 0

The above will give

𝑢 (0) = 𝑣 (0) = 0
𝑢′ (0) = 𝑣′ (0) = 0
𝑢 (1) = 𝑣 (1) = 0
𝑢′ (1) = 𝑣′ (1) = 0

Substituting these into (1) gives

�
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 𝑢 (1) 𝑣′′′ (1) − 𝑢′ (1) 𝑣′′ (1) − 𝑣 (1) 𝑢′′′ (1) + 𝑣′ (1) 𝑢′′ (1)

− 𝑢 (0) 𝑣′′′ (0) + 𝑢′ (0) 𝑣′′ (0) + 𝑣 (0) 𝑢′′′ (0) − 𝑣′ (0) 𝑢′′ (0)
= (0 × 𝑣′′′ (1)) − (0 × 𝑣′′ (1)) − (0 × 𝑢′′′ (1)) + (0 × 𝑢′′ (1))
− (0 × 𝑣′′′ (0)) + (0 × 𝑣′′ (0)) + (0 × 𝑢′′′ (0)) − (0 × 𝑢′′ (0))
= 0
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1.6.5 Part (e)

Given
𝑑4

𝑑𝑥4
𝜙 + 𝜆𝑒𝑥𝜙 = 0

Therefore

𝐿 �𝜙� = −𝜆𝑒𝑥𝜙

Therefore, for eigenfunctions 𝑢, 𝑣 we have

𝐿 [𝑢] = −𝜆𝑢𝑒𝑥𝑢
𝐿 [𝑣] = −𝜆𝑣𝑒𝑥𝑣

Where 𝜆𝑢, 𝜆𝑣 are the eigenvalues associated with eigenfunctions 𝑢, 𝑣 and they are not the same. Hence
now we can write

0 = �
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥

= �
1

0
𝑢 (−𝜆𝑣𝑒𝑥𝑣) − 𝑣 (−𝜆𝑢𝑒𝑥𝑢) 𝑑𝑥

= �
1

0
−𝜆𝑣𝑒𝑥𝑢𝑣 + 𝜆𝑢𝑒𝑥𝑢𝑣𝑑𝑥

= �
1

0
(𝜆𝑢 − 𝜆𝑣) (𝑒𝑥𝑢𝑣) 𝑑𝑥

= (𝜆𝑢 − 𝜆𝑣)�
1

0
(𝑒𝑥𝑢𝑣) 𝑑𝑥

Since 𝜆𝑢 − 𝜆𝑣 ≠ 0 then

�
1

0
(𝑒𝑥𝑢𝑣) 𝑑𝑥 = 0

Hence 𝑢, 𝑣 are orthogonal to each others with weight function 𝑒𝑥.

1.7 Problem 5.5.10

5.5. Self-Adjoint Operators 183

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d44
+ aez ¢ = 0

dx4
,

show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

*5.5.9. For the eigenvalue problem

dx + Aexb = 0

subject to the boundary conditions

0(0) = 0 O(1) = 0
(0) = 0 (1) = 0,ad -,

show that the eigenvalues are less than or equal to zero (A < 0). (Don't
worry; in a physical context that is exactly what is expected.) Is A = 0 an
eigenvalue?

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

5.5.11. *(a) Suppose that

Consider

L = p(x)
2 + r(x) + q(x).

b

1 vL(u) dx.
a

By repeated integration by parts, determine the adjoint operator L'
such that

b

1 [uL'(v) - vL(u)j dx = H(x)
a

b

0

What is H(x)? Under what conditions does L = L', the self-adjoint
case? [Hint: Show that

\ \ 1
L' d2

2

p
d ( Pdr JJ=pdx + TX dx dx 4

(b) If
u(0) = 0 and (L) + u(L) = 0,

what boundary conditions should v(x) satisfy for H(x)ILa = 0, called
the adjoint boundary conditions?

1.7.1 Part(a)

Equation 5.5.22 is

𝑝 �𝜙1𝜙′
2 − 𝜙2𝜙′

1� = constant (5.5.22)

Looking at boundary conditions at one end, say at 𝑥 = 𝑎 (left end), and let the boundary conditions
there be

𝛽1𝜙 (𝑎) + 𝛽2𝜙′ (𝑎) = 0
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Therefore for eigenfunctions 𝜙1, 𝜙2 we obtain

𝛽1𝜙1 (𝑎) + 𝛽2𝜙′
1 (𝑎) = 0 (1)

𝛽1𝜙2 (𝑎) + 𝛽2𝜙′
2 (𝑎) = 0 (2)

From (1),

𝜙′
1 (𝑎) = −

𝛽1
𝛽2
𝜙1 (𝑎) (3)

From (2)

𝜙′
2 (𝑎) = −

𝛽1
𝛽2
𝜙2 (𝑎) (4)

Substituting (3,4) into 𝜙1𝜙′
2 − 𝜙2𝜙′

1 gives, at end point 𝑎, the following

𝜙1 (𝑎) 𝜙′
2 (𝑎) − 𝜙2 (𝑎) 𝜙′

1 (𝑎) = 𝜙1 (𝑎) �−
𝛽1
𝛽2
𝜙2 (𝑎)� − 𝜙2 (𝑎) �−

𝛽1
𝛽2
𝜙1 (𝑎)�

= −
𝛽1
𝛽2
𝜙2 (𝑎) 𝜙1 (𝑎) +

𝛽1
𝛽2
𝜙2 (𝑎) 𝜙1 (𝑎)

= 0

In the above, we evaluated 𝜙1𝜙′
2 − 𝜙2𝜙′

1 at one end point, and found it to be zero. But 𝜙1𝜙′
2 − 𝜙2𝜙′

1 is
the Wronskian 𝑊(𝑥). It is known that if 𝑊(𝑥) = 0 at just one point, then it is zero at all points in the
range. Hence we conclude that

𝜙1𝜙′
2 − 𝜙2𝜙′

1 = 0

For all 𝑥. This also means the eigenfunctions 𝜙1, 𝜙2 are linearly dependent. This gives equation 5.5.23.
QED.

1.7.2 Part(b)

Equation 5.5.22 is

𝑝 �𝜙1𝜙′
2 − 𝜙2𝜙′

1� = constant (5.5.22)

At one end, say end 𝑥 = 𝑎, is where the singularity exist. This means 𝑝 (𝑎) = 0. Now to show that
𝑝 �𝜙1𝜙′

2 − 𝜙2𝜙′
1� = 0 at 𝑥 = 𝑎, we just need to show that 𝜙1𝜙′

2 −𝜙2𝜙′
1 is bounded. Since in that case, we

will have 0 × 𝐴 = 0, where 𝐴 is some value which is 𝜙1𝜙′
2 − 𝜙2𝜙′

1. But boundary conditions at 𝑥 = 1
must be 𝜙 (𝑎) < ∞ and also 𝜙′ (𝑎) < ∞. This is always the case at the end where 𝑝 = 0.

Then let 𝜙 (𝑎) = 𝑐1 and 𝜙′ (𝑎) = 𝑐2, where 𝑐1, 𝑐2 are some constants. Then we write

𝜙1 (𝑎) = 𝑐1
𝜙′
1 (𝑎) = 𝑐2
𝜙2 (𝑎) = 𝑐1
𝜙′
2 (𝑎) = 𝑐2

Hence it follows immediately that

𝜙1𝜙′
2 − 𝜙2𝜙′

1 = 𝑐1𝑐2 − 𝑐2𝑐1
= 0

Hence we showed that 𝜙1𝜙′
2 − 𝜙2𝜙′

1 is bounded. Then 𝑝 �𝜙1𝜙′
2 − 𝜙2𝜙′

1� = 0. QED.
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