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1 HW 4

1.1 Problem 2.5.24

2.5.24. Consider the velocity ug at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

Introduction. The stream velocity # in Cartesian coordinates is

o =ul+vj
oV W
=3y T )

Where VW is the stream function which satisfies Laplace PDE in 2D V2W = 0. In Polar coordinates
the above becomes
i=uf+ugb
10¥, IV ,
“vae o’
The solution to V2W = 0 was found under the following conditions

(2)

1. When r very large, or in other words, when too far away from the cylinder or the wing, the

flow lines are horizontal only. This means at » = co the y component of # in (1) is zero. This

IV (x,
means (Y y)

— = 0. Therefore ¥ (x, y) = uyy where 1 is some constant. In polar coordinates this
implies W (r, 0) = uyrsin 0, since y = rsin 6.

2. The second condition is that radial component of # is zero. In other words, %(Z—\; = 0 when
r = a, where a is the radius of the cylinder.

3. In addition to the above two main condition, there is a condition that W' =0 at r =0

Using the above three conditions, the solution to V2W = 0 was derived in lecture Sept. 30, 2016, to

be
r a?
\If(r,6)=c1ln(5)+uo r-— sin 6

Using the above solution, the velocity # can now be found using the definition in (2) as follows

19¥ 1 ( az)
-— = -uy|r— —|cos6
T r

rdo
v ¢ az\
W:%+uo(1+r—2)sm6

Hence, in polar coordinates

ﬂ:(luo(r—é)cose)?—(%+u0(1+z—§)sin9)é (3)




Now the question posed can be answered. The circulation is given by

Tt
F:fz ugrdo
0

2
But from (3) ug = - (CTI + ug (1 + j—z) sin 9), therefore the above becomes
27 2
r= f —(C—l +u0(1+ a—z)sine)rde
0 r T

At r = a the above simplifies to
271 1
sz —(—+2uosin6)ad6
0 a
27T
= f —c1 — 2aug sin 6d6
0

27T 27
=- f €1d6 — 2auy f sin 646
0 0

But Kﬂ sin 6d6 = 0, hence

27T
r= —clf d0
0

=-20iT

Since I' < 0, then ¢; > 0. Now that c; is known to be positive, then the velocity is calculated at 6 = _2—77

and then at 0 = % to see which is larger. Since this is calculated at r = g, then the radial velocity is
zero and only uy needs to be evaluated in (3).

=Tt
AtQZT
Uy = —(C—l +ug (1 + a—j)sm(;))
2 r r
1 a? i
= - 7—u0 1+r_2 SIH(E)
c 1+a2
g ——u J—
ro 0 2
Atr=a
=-(5 -2
Hy =7 2
=—C—1+2u0 (4)
a
Ato ="
2



Atr=a
(3o
S C I D
=2 2y 5)
a

Comparing (4),(5), and since c; > 0, then the magnitude of u, at g is larger than the magnitude of

ug at ;—n Which implies the stream flows faster above the cylinder than below it.

1.2 Problem 3.2.2 (b,d)

3.2.2. For the following functions, sketch the Fourier series of f(z) (on the interval
—L < z £ L) and determine the Fourier coefficients:
*(a) flx)=z= (b) f(x) =e"*
= sin *% _J 0O z<0
* (c) f(:c)-—smL (d) f(a:)-{x 50
_J 1 |gl<L/2 _J 0 z<o0
© f@={4 EH31 (0 s@={} 255
1 z<o0
© 1@={; 15
121 Partb
The following is sketch of periodic extension of e from x = —L---L (for L = 1) for illustration. The
function will converge to e™ between x = —L--- L and between x = -3L --- — L and between x = L ---3L
and so on. But at the jump discontinuities which occurs at x = ---,-3L,-L,L,3L, --- it will converge to

the average shown as small circles in the sketch.




By definitions,

1 T/2
Gy = 7 —T/Zf (x) dx
1 T/2
” T_/2 T/zf(x) cos (n (—)x) dx

b, = TL/Z _i//zzf(x) sin (n (ZTT[)x) dx

The period here is T = 2L, therefore the above becomes
1 L
% =57 f F(x)dx

= [ ocos(uls

T
L
T
b, Lf f(x)sm( Z ) b
These are now evaluated for f (x) =™

1 L 1 (e*\" -1 el —et
- Xy = — | — — " (pX —L _ oL} =
0oL f_Le ) (—1 )_L L@ =gt -e)=—5p

Now a,, is found

1 L
a, = ZfLe‘x cos (n%x) dx

This can be done using integration by parts. fudv =uv - fvdu. Let

L
I= f e cos (nzx) dx
L L

T _ nm o . T _
and u = cos (nzx),dv =e¥, —>du= - sin (nzx),v = —¢*, therefore
L L
I= [uv]_L —f vdu
-L
L

L
= [—e*x cos (n%x) ]_L - nfn . e*sin (n%x) dx

n T nm (L T
= [—e‘L cos (nZL) + el cos (nz (—L))] -1 f_L e *sin (nzx) dx
nm

= [— cos (nm) + e* cos (nn)] T f: e *sin (n%x) dx

Applying integration by parts again to f e ¥sin (n%x) dx where now u = sin (n%x) Jdv=e™ > du =



nm Tt _
I cos (nzx) ,v =—e ¥, hence the above becomes

I= [—e‘L cos (nm) + e* cos (nn)] -~ nfn (uv - fvdu)

0

L L
= [—e‘L cos (nm) + e cos (nn)] - % [—e"‘ sin (n%x) ]_L + % . e~* cos (n%x) dx

_ nw (nm b T
= [—e L cos (nm) + e cos (nn)]— — (— J:Le cos (nzx) dx)

L\L
_[_ L cos (n7) + eb cos (1 )]_(n_n)sz —x (nz )d
= |-e " cos (nm) + e cos (nm T e cos(nrx)dx

-L
L
But fL e ¥ cos (n%x) dx = I and the above becomes

2
I = —eLcos (nm) + et cos (nm) - (nfn) I

Simplifying and solving for I

I+ (nfn)zl = cos (nm) (eL - e‘L)

I(l + (n%)z) = cos (nmn) (eL - e*L)
; (Lz + n?m?

Tz ) = cos (nm) (eL - e‘L)

I= (L—z) cos (nm) (eL - e‘L)

12 + 22

Hence a, becomes

1 2
_ L_ L
a”_f(L2+n2n2)COS(nn)(e —e )

But cos (nmt) = —1" hence

" L .
0=V e )

1 (L
b, = I [L e¥sin (n%x) dx

This can be done using integration by parts. f udv = uv — f vdu. Let

L
I= f e ¥sin (nzx) dx
L L

Similarly for b,



. T _ nrt T _
and u = sin (nzx) ,dv=e¢"*,—> du = I cos (nzx) ,v = —e™*, therefore

L
I= [uv]EL - vadu

0

) n\1 am L i
= [—e‘x sin (n—x)] + — e7¥ cos (n—x) dx
L L L

L

nm (r T
=— e cos (n—x) dx
L L

. . . . —x n _ n p— _
i&pplymg integration by parts again to f e~ cos (n Lx) dx where now u = cos (n Lx) ,dv=¢* - du =
2 sin (nzx) ,v = —e*, hence the above becomes

L L
I=— il (uv fvdu)
L L
Tn ( e *cos|n— x)] . - % e™¥sin (n%x) dx)
I Lcos n L + ek cos (nEL) I fL e ¥sin (nzx) dx
L L LJ;, L
”(

L
cos (nn) el —e L) - Ef e¥sin (n%x) dx)
-L

=

=

T L

But fL e* cos (nzx) dx = I and the above becomes
L L
_nn L\ hm
I=— T (cos(nn)(e —-e )— TI)
Simplifying and solving for I

< it
(7))
)7

(L2+n

— cos (nn)( —e

— cos (nn)( —e

— cos (nmn) ( —e

12 nm ~
(—) T cos (nm) (eL —e L)

12 + n?m?

Hence b, becomes

b, = ! (L—Z) % cos (nm) (eL - e‘L)

L\L? + n?’n?
nrt
= () cos m (e =)

But cos (nmt) = -1" hence

b, =(-1)" (—l’lT( ) (eL - e‘L)

L2 + n?m?



Summary

L ~-L

e

- -L
- (n2n2+L2) -¢ )

=1 (L2 + nznz) - e_L)
fx)=ag+ nz::lan cos (n (%)x) + b, sin (n (ZTn)x)

- U U
x~ay+ —x) + b, si ( - )
ag nglancos(an) nSin(nrx
The following shows the approximation f (x) for increasing number of terms. Notice the Gibbs
phenomena at the jump discontinuity.

—-e

ap

Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1
25 jl LA L I A | W LA R B I A B li

f(x)

N
N
W,

Fourier series approximation, number of terms 10
Showing 3 periods extenstion of —-L..L, with L=1
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Fourier series approximation, number of terms 50
Showing 3 periods extenstion of -L..L, with L=1
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The following is sketch of periodic extension of f (x) from x = —L---L (for L = 1) for illustration. The
function will converge to f (x) between x = —L --- L and between x = 3L ---—L and between x = L --- 3L
and so on. But at the jump discontinuities which occurs at x = ---,-3L,-L,L, 3L, --- it will converge to

the average % shown as small circles in the sketch.

, 1.0

| | 0.8 | |
| | 0.6 | |
° ° 0.4 ° °
| | 0.2 | |
| | | 1
-3 -2 -1 ) 1 2 3

Showing 3 periods extenstion of f(x) between -L..L, with L=1

By definitions,

1 T/2
ag = T . f(x)dx
1 T/2 p
a, T_/2 T/zf(x) cos (n (—) x) x

The period here is T = 2L, therefore the above becomes

1 L
- d
=31 f_Lf(x) *

an=%jif(x)cos(n
bn=%fLLf(x)sin(n

(=

x) dx

=l =

x) dx



These are now evaluated for given f (x)

1 L
aozif_Lf(x)dx
1 0 L
:i(f_Lf(x)dx+j; f(x)dx)
1 L
L(O+f0 xdx)

L

)

e R R

Now a,, is found

a, = %fLLf(x) cos (n%x) dx
= % (jif(x) Cos (n%x) dx + fOLf(x) cos (n%x) dx)

AR
=— | xcos|n—x|dx
LJ, L
Integration by parts. Let u = x,du =1,dv = cos (n%x) ,U= Sm(nnzx), hence the above becomes
n
L
0
1 L L sin (n—x)
a,=— (—xsin (n—x)) - ——dx
L o Jo n-

n2m?
L s
T 22 [COS (nfL) _1]
L
= oy 17 1]

10



11

Now b, is found

b, = %jif(x) sin (n%x) dx
1

=7 (fo f(x)sin (n%x) dx + fo(x) sin (n%x) dx)
-L 0
= %fosin(n%x)dx
0
—COS(HEX)

Integration by parts. Let u = x,du =1,dv = sin (n%x) ,0 = ~L hence the above becomes

—_—
L
1] 12 . L sin(n%x)
= |- e | —
L| nn nm n—
L 0
L
= ()
L
= (-1 n+1
(-1) -
Summary
L
110—4
L
= g 11

L
_ (_1\yt1
by =1 —

< 2 2
fx)=ag+ E a, cos ( (—n)x) + b, sin (n (—n)x)
= T T
= g+ E a, cos (nzx) + b, sin (nzx)
= L L
The following shows the approximation f (x) for increasing number of terms. Notice the Gibbs
phenomena at the jump discontinuity.



Fourier series approximation, number of terms 3
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Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms 50
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Showing 3 periods extenstion of -L..L, with L=1
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1.3 Problem 3.2.4

3.2.4. Suppose that f(z) is piecewise smooth. What value does the Fourier series
of f(z) converge to at the endpoint z = —L? at z = L?

It will converge to the average value of the function at the end points after making periodic extensions
of the function. Specifically, at x = ~L the Fourier series will converge to

1

5 (FED+F M)
And at x = L it will converge to

1

5 (FO+f (1)

Notice that if f (L) has same value as f (-L), then there will not be a jump discontinuity when periodic
extension are made, and the above formula simply gives the value of the function at either end, since
it is the same value.

1.4 Problem 3.3.2 (d)

3.3.2. For the following functions, sketch the Fourier sine series of f(x) and deter-
mine its Fourier coefficients.

1 z<L/6
f(z) =cosmz/L
(a) [Verify form:la (3.3.13).] (b) f(z)= { g :[c’/>6 If/; <L/2
© f@={7 130 v s@={ ) TS

(x) = 1 x<%
fe = 0 X

The first step is to sketch f (x) over 0--- L. This is the result for L =1 as an example.
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Original f(x) function defined for 0..L

1.0
0.8
0.6
0.4+

0.2

-3 -2 -1 1 2 3

The second step is to make an odd extension of f(x) over —L--- L. This is the result.

odd extension of f(x) defined for -L..L

1.0 te—

0.5

-0.5¢

=10

The third step is to extend the above as periodic function with period 2L (as normally would be
done) and mark the average value at the jump discontinuities. This is the result

— 1 0|— —
I I
0 osf o 0
| |
3 ¥ 1 1 7 3
I I I I I
o | o -0 o |
j |
I I I 3 I I
Showing 3 periods extenstion of f(x) between -L..L, with L=1

Now the Fourier sin series is found for the above function. Since the function f (x) is odd, then only

b, will exist
ad . 21
fx) = ,1;1 b, sin (n (Z) x)

i 4
= b, sin (n—x)
Zibwsin{ng

b, = %jif(x)sin(n(i—?)x)dx: %Iif(X)Sin(n%X)dx

Where
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Since f (x)sin (n%x) is even, then the above becomes

b, = %fOLf(x) sin (n%x) dx

2 L/2
=—( 1><sin(nzx)dx+
L\J, L

2 bz n)d
_Lj(; sm(an X

L2
0 x sin (n zx) dx)
0 L

:Z nz
L 0

27 T\ 12
= —|cos (nzx)]o

-2 nL 1
= —|cos|n—=]|-
nm | L2

=27
= — COS(E)—l]
| 2

oo

Therefore

- 2
fx) = ngl pr (1 - Cos (%)) sin (n%x)
The following shows the approximation f (x) for increasing number of terms. Notice the Gibbs
phenomena at the jump discontinuity.

Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1

10 : :
05 f

X 0.0F —
~05; |
1.0 |
S0 -05 00 05 10
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Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1

100 ;
05

= 0.0 A _—
~05/ :
10/ ]
1.0 05 0.0 05 1.0

Fourier series approximation, number of terms 50
Showing 3 periods extenstion of -L..L, with L=1

1.0f h@'v—-‘
0.5f

X 00 e —
-1.0F
1.0 ~05 0.0 05 1.0

1.5 Problem 3.3.3 (b)

3.3.3. For the following functions, sketch the Fourier sine series of f(z). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier sine series:

(a) f(z) = cosmz/L [Use formula (3.3.13).]

& s@={ 5 2310

(c) f(x) =z [Use formula (3.3.12).]

This is the same problem as 3.3.2 part (d). But it asks to plot for n =1 and n = 2 in the sum. The
sketch of the Fourier sin series was done above in solving 3.3.2 part(d) and will not be repeated



again. From above, it was found that
fx) = 2 B, sin (n%x)
n=1

Where B, = % [1 - Ccos (%)] The following is the plot for n =1---10.

17
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f(x)

f(x)
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f(x)

Fourier series approximation, number of terms
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms 2
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms 4
Showing 3 periods extenstion of -L..L, with L=1
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g o0
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0.0

X
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Fourier series approximation, number of terms 6
Showing 3 periods extenstion of -L..L, with L=1
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g 0 aA oo
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X

Fourier series approximation, number of terms 8
Showing 3 periods extenstion of -L..L, with L=1

1.0
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g o0o0
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-1.0
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Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1
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-10  -05 0.0 05 1.0
X
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1.6 Problem 3.3.8

the formula for the even part of f(z).
(c) Calculate and sketch the four functions of parts (a) and (b) if

f(:c)={ z z>0

z¢ z<0.

larly, add the even and odd extensions. What occurs then?

3.3.8. (a) Determine formulas for the even extension of any f(z). Compare to

(b) Do the same for the odd extension of f(z) and the odd part of f(z).

Graphically add the even and odd parts of f(x). What occurs? Simi-

1.6.1 Part (a)

The even extension of f (x) is

f(x) x>0
f(=x) x<0

But the even part of f (x) is

S (F+ £ ()

1.6.2 Part (b)

The odd extension of f (x) is

f(x) x>0
—f(=x) x<0

While the odd part of f(x) is

1
> (f0-f ()

1.6.3 Part (c)

First a plot of f (x) is given

X x>0
f(x)_{xz x<0

19



Plot of f(x)

1.0f 1

0.8¢ ]

_. 0.6} .
X

T 04f ]

0.2¢ 1

0.0L, ‘ ‘ J

-1.0 -0.5 0.0 0.5 1.0

X

A plot of even extension and the even part for f(x) Is given below

Plot of even extension

Plot of even part

1.0 1.0
0.8 0.8
0.6 0.6
E g
0.4 0.4
0.2 0.2
0.0}, ) ) 0.0f, )
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
A plot of odd extension and the odd part is given below
Plot of odd extension Plot of odd part of f(x)
1.0 ' '
0.10F
05 0.05F
c c
S 2
S 0.0 S 0.00
c c
2 2
-0.05F
-0.5
-0.10f
-1.0}; ) )
-1.0 -05 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Adding the even part and the odd part gives back the original function

20



Plot of (odd +even parts of f(x))

1.0p

08r

function

04+

02+

-1.0 -0.5 0.0 0.5 1.0

Plot of adding the even extension and the odd extension is below

Plot of (even extension+odd extension of f(x))

2.0

1.5F

1.0r

function

0.5

0.07\ L L L
-1.0 -0.5 0.0 0.5 1.0

1.7 Problem 3.4.3

3.4.3. Suppose that f(z) is continuous [except for a jump discontinuity at = o,
f(zg) = a and f(zg) = B] and df /dz is piecewise smooth.

*(a) Determine the Fourier sine series of df /dz in terms of the Fourier cosine
series coefficients of f(z).

(b) Determine the Fourier cosine series of df/dz in terms of the Fourier
sine series coefficients of f(z).

1.7.1 Part (a)

Fourier sin series of f’ (x) is given by, assuming period is =L --- L

f(x) ~ gbn sin (n%x)

21
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Where

= 2 fo’ () sin (nzx) dx

Applying integration by parts. Let f’ (x) = dv,u = sin (n x) then v = f(x),du = T cos( T ) Since
v = f(x) has has jump discontinuity at x; as descrlbed and assuming x, > 0, then, and using
sin(n%x) =0atx=L

b, = %LL udv
_ %[([uv]? + [uv]ia) - jj vdu]
= %([sin (ﬂ%x)f(x)]za + [sin (n%x)f(x)] - f f(x) cos (—x) x]

L
= % (sin (n%xﬁ)f(xﬁ) —sin (Tl%ng (xg)) - nfn L f(X) COS (nfnx) dx) (1)
In the above, sin (n%x) =0 and at x = L was used. But
flx)=a
f(x5) =#

And since sin is continuous, then sin (n on) = sin (n on) = sin (n xo) Equation (1) simplifies to

b, = % ((a ﬁ) sin (n xo) f f(x)cos (—x) dx) (2)

On the other hand, the Fourier cosine series for f (x) is given by

fx)~ag+ gan cos (n%x)

Where
1 L
w= 7 fo F () dx
L
= Ef f(x)cos (nzx) dx
Therefore L f(x)cos (n x) dx = -a,. Substituting this into (2) gives
2 . i nm (L
b, = I (((x - ﬁ) sin (nzxo) -1 (Ea”))
= 2 (a-p)sin(n7x) - 1 7S
=plap t) (2™
Hence

b, = % sin (n%xo) (a - ﬁ) - %an (3)

Summary the Fourier sin series of f’ (x) is

f(x) ~ Eb sm(n x)
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With b, given by (3). The above is in terms of a,,, which is the Fourier cosine series of f (x), which is
what required to show. In addition, the cos series of f (x) can also be written in terms of sin series of
£’ (x). From (3), solving for a,

L 2 . e
a, = Ebn - sin (nfxo) (ac - [3)

~1/(L 2 . T nm
fx)~ag+ ,122:1 - (;bn - -sin (nzxo) (oc - ﬁ)) cos (Tx)
This shows more clearly that the Fourier series of f (x) has order of convergence in 4, as % as expected.

1.7.2 Part (b)

Fourier cos series of f’ (x) is given by, assuming period is =L --- L

[Se]

f(x) ~ Vgan cos (n%x)

Where
1 L
ag = Efo £ (x)dx

_ %(j(‘)xﬂf,(x)dx+f:f’(x)dx]

= %([f @]+ (x)];)

=+ (e~ FO]+[rw-5)

_@-p)  fo+fw
L L

And forn >0
2 L
a, = Zj(; f' (x)cos (n%x) dx
n

Applying integration by parts. Let f’ (x) = dv,u = cos (n%x), then v = f (x),du = _nTn sin( Ln x). Since
v = f (x) has has jump discontinuity at x, as described, then

a, = %LL udv
= % [([uv]ga + [uv]ia) - fOL vdu]
= % ([cos (n%x)f(x)]f + [cos (n%x)f(x)]ia + nfn fOLf(x) sin(nfnx) dx]
% (cos (n%xa)f(xa) - £(0) + cos (nmn) f (L) — cos (n%xar)f(xg) + % fOLf(x) sin (%x) dx) (1)

But
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. . . T _ s Tt
And since cos is continuous, then cos (nzxo) = oS (nzxg) = COS (nzxo), therefore (1) becomes

2 T nrt (L . (nm
o =7 (cos (nm) f (L) = f (0) + cos (nfxo) (GY - ﬁ) T j(; f (x)sin (Tx) dx) )
On the other hand, the Fourier sin series for f (x) is given by
) ) e
fx)~ ngo b, sin (nzx)

Where

2 L
b, = Zj; f(x)sin (n%x) dx
Therefore £L f (x)sin (n%x) dx = %bn. Substituting this into (2) gives

a, = % (COS (nm) f (L) = £ (0) + cos (n%xo) (a-p)+ 7%%bn)
- 10100+ o)
(( 1) fL)-FO)+ 2 cos (1T %) (2= ) + “,
Hence
= H(EM W= FO) + Feos (nFx0) (x =) + 0, ®

Summary the Fourier cos series of f” (x) is
~ i
f(x) ~ Zﬁ a, cos (nzx)

(@=f)  fO+f@)
L L
= 2 (O~ fO) + 2 cos (nTx) (2= ) +

The above is in terms of b, Wthh is the Fourier sin series of f (x), which is what required to show.

ag =



1.8 Problem 3.4.9

*3.49 Consider the heat equation with a known source g(z, t):
2
% = k% +q(z,t) with u(0,t) =0 and u(L,t)=0.
Assume that g(z,t) (for each t > 0) is a piecewise smooth function of z.
Also assume that u and du/dz are continuous functions of z (for ¢t > 0) and
0%u/0z? and Bu/0t are piecewise smooth. Thus,
= nnx

u(x,t) = 7{2 bn(t) sin A
What ordinary differential equation does b,(t) satisfy? Do not solve this
differential equation.

The PDE is

du  d%u
E = kﬁ +q (X, t)
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1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution can be written

down as

u(x,t) = ;::1 b, () sin (n%x)

Since the solution is assumed to be continuous with continuous derivative, then term by term
differentiation is allowed w.r.t. x

ou 3 7 T
5= nglnzbn (t) cos (nzx)

2%u & (T2 ) T
5 =~ 2T ) tsin(n]

n=1

. . du .
Also using assumption that 8—1; is smooth, then

du _ db, () . (7w
5= 2 g sn(n

n=1

Substituting (2,3) into (1) gives

2 db;lt(t) sin (n%x) =—k 2 (nfn)z b, (f) sin (n%x) +q(x, 1)

Expanding g (x,t) as Fourier sin series in x. Hence

& nm
(x, 1) = n (8)sin | —
q(x nz::lq sm(Lx)

Where now g, (t) are time dependent given by (by orthogonality)

g, (t) = %foLq(x, t) sin(nTnx)

2)

()

(4)
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Hence (4) becomes

— db,, (t s 2 -~
;:]1 :lt( ) sin (n%x) = - ;::1 k (nfn) b, (t)sin (n%x) + ;::1 q(#), sin (%x)
Applying orthogonality the above reduces to one term only
db, (t) . T nr\2 ) T o nm
o sin (nzx) =—k (T) b, () sin (nzx) +¢(t),sin (Tx)
Dividing by sin (n%x) #0

db, () . (nm\?
28 = k() b0+ 40
db,, (t) nm\? B
2 k() By =00 5)

The above is the ODE that needs to be solved for b, (t). It is first order inhomogeneous ODE. The
question asks to stop here.

1.9 Problem 3.4.11

3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

ou o%u
5{ = kb-.’ta + g(:r).

Solve this equation with the initial condition
u(z,0) = f(z)
and the boundary conditions
u(0,t) =0 and u(L,t) =0.

Assume that a continuous solution exists (with continuous derivatives).
[Hints: Expand the solution as a Fourier sine series (i.e., use the method
of eigenfunction expansion). Expand g(z) as a Fourier sine series. Solve
for the Fourier sine series of the solution. Justify all differentiations with
respect to z.|

The PDE is
—_— = 1
k . +g(x) 1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution can be written
down as

u(x,t) = gbn (t) sin (n%x)

Since the solution is assumed to be continuous with continuous derivative, then term by term
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differentiation is allowed w.r.t. x

— = inzbn (t) cos (n%x)
%:—E(’T) b, (t)sm(an) (2)

. . du .
Also using assumption that a_bt[ is smooth, then

du_ by (®) ( n

7t TR ”zx) (3)

n=1
Substituting (2,3) into (1) gives

db, () . (™ & (T2 o m

E - E — — 4

L 0 sin (an) kn:1( T ) b, (t)sm(an) +9(x) (4)

Using hint given in the problem, which is to expand g (x) as Fourier sin series. Hence

g = f}lg sin (2]

2 L . (nm
=2 [ stosn 15

Where

Hence (4) becomes

2 db;t(t) sin (n%x) =- gk (”Ln) b, (t)sin (n x) Zgn sin (%x)

Applying orthogonality the above reduces to one term only
db, (t) B nm? (T . (NI
pn sin (nz ) =-k (T) b, (t)sin (nzx) + g sin (Tx)
Dividing by sin (n%x) #0

D) (Y b4,
dbdt(f) k(T ) b (8) = & i

This is of the form v’ + ay = g,,, where a = k (”Ln ) This is solved using an integration factor u = %,

where — (e y) = e"¢,, giving the solution

1 c
H=- ndt + —
Y yflug u

Hence the solution to (5) is
2

nrm 2 nrt
by () = [T g e c

nm\2
nmy2 Lzek(f)t
b (t)e( )t:Wgn'l'C
12 nmy2
o Zgn+cek(L)

by () =



Where ¢ above is constant of integration. Hence the solution becomes

1 () = f} b, (t)sin (n%x)

n=1
& L2 (P (T
= D —r=— L j—
,1;1 (knznzg” + ce sin (n T x)
At t=0, u(x,0) = f (x), therefore
ad 12 ) e

fx) = ,12::1 (Wg” + c) sin (nzx)
Therefore

LZ

2 L . T
angn+c— Zj(; f(x)sm(nzx)dx

Solving for ¢ gives
2

2 L ) T L
C:Zj; f(x)sm(nzx)dx—mgn

This completes the solution. Everything is now known. Summary

u(x,t) = g b, (t) sin (n%x)

2

_2 " (x) si (nnx)
2 L 1?
c=7 . f (x)sin (n%x) dx PR
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