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0.1 Problem 2.5.1(e) (problem 1)

2.5. Laplace's Equation 85

for a one-dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate
V2u = 0 over the entire two-dimensional region

0 = if V2u dx dy = if V.(Vu) dx dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise
1.5.8)

0 = i Vu-ft ds. (2.5.61)

Since is proportional to the heat flow through the boundary, (2.5.61) implies
that the net heat flow through the boundary must be zero in order for a steady
state to exist. This is clear physically, because otherwise there would be a change
(in time) of the thermal energy inside, violating the steady-state assumption. Equa-
tion (2.5.61) is called the solvability condition or compatibility condition for
Laplace's equation.

EXERCISES 2.5

2.5.1. Solve Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with the
following boundary conditions:

(0,y) = 0, (L,y) = 0,*(a) ax- Tx-

(b) (O, y) = 9(y), (L, y) = 0,Tx- TX-

*(c) "'(0,y) = 0, u(L,y) = 9(y),

(d) u(O,y) = 9(y), u(L,y) = 0,

*(e) u(0,y) = 0, u(L,y) = 0,

(f) u(O, y) = f (y), u(L, y) = 0,

(0, y) = 0, (L, y) = 0,(g) TX- YX-

2.5.2.

u(x,0) = 0,

u(x,0) = 0,

u(x,0) = 0,

(x,0) = 0,Fy-

u(x,0) - (x,0) = 0,

(x,0) = 0,
TV-

u(x 0) = /0

u(x, H) = f (x)

u(x, H) = 0

u(x, H) = 0

u(x, H) = 0

u(x, H) = f (x)

"u (x, H) = 0

x > L/2 au ( H)x < L/2' yy- x, = 0

Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x <
L, 0 < y < H) subject to the boundary conditions

(0,y) = 0
Yx-

(L,y)=0

(b)

Ou (x,0) = 0

(x, H) = f (x).

Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.
Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 (𝑥). Substituting this into the PDE 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 = 0 and simplifying gives

𝑋′′

𝑋
= −

𝑌′′

𝑌
Each side depends on di�erent independent variable and they are equal, therefore they must be
equal to same constant.

𝑋′′

𝑋
= −

𝑌′′

𝑌
= ±𝜆

Since the boundary conditions along the 𝑥 direction are the homogeneous ones, −𝜆 is selected in
the above. Two ODE’s (1,2) are obtained as follows

𝑋′′ + 𝜆𝑋 = 0 (1)

With the boundary conditions

𝑋 (0) = 0
𝑋 (𝐿) = 0

And

𝑌′′ − 𝜆𝑌 = 0 (2)

With the boundary conditions

𝑌 (0) = 𝑌′ (0)
𝑌 (𝐻) = 𝑓 (𝑥)

In all these cases 𝜆 will turn out to be positive. This is shown for this problem only and not be
repeated again. The solution to (1) is

𝑋 = 𝐴𝑒√𝜆𝑥 + 𝐵𝑒−√𝜆𝑥

Case 𝜆 < 0

𝑋 = 𝐴 cosh �√𝜆𝑥� + 𝐵 sinh �√𝜆𝑥�

At 𝑥 = 0, the above gives 0 = 𝐴. Hence 𝑋 = 𝐵 sinh �√𝜆𝑥�. At 𝑥 = 𝐿 this gives 𝑋 = 𝐵 sinh �√𝜆𝐿�. But
sinh �√𝜆𝐿� = 0 only at 0 and √𝜆𝐿 ≠ 0, therefore 𝐵 = 0 and this leads to trivial solution. Hence 𝜆 < 0
is not an eigenvalue.

Case 𝜆 = 0

𝑋 = 𝐴𝑥 + 𝐵

Hence at 𝑥 = 0 this gives 0 = 𝐵 and the solution becomes 𝑋 = 𝐵. At 𝑥 = 𝐿, 𝐵 = 0. Hence the trivial
solution. 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

Solution is

𝑋 = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�
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At 𝑥 = 0 this gives 0 = 𝐴 and the solution becomes 𝑋 = 𝐵 sin �√𝜆𝑥�. At 𝑥 = 𝐿

0 = 𝐵 sin �√𝜆𝐿�

For non-trivial solution sin �√𝜆𝐿� = 0 or √𝜆𝐿 = 𝑛𝜋 where 𝑛 = 1, 2, 3,⋯, therefore

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Eigenfunctions are

𝑋𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯ (3)

For the 𝑌 ODE, the solution is

𝑌𝑛 = 𝐶𝑛 cosh �𝑛𝜋
𝐿
𝑦� + 𝐷𝑛 sinh �𝑛𝜋

𝐿
𝑦�

𝑌′
𝑛 = 𝐶𝑛

𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝑦� + 𝐷𝑛

𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦�

Applying B.C. at 𝑦 = 0 gives

𝑌 (0) = 𝑌′ (0)

𝐶𝑛 cosh (0) = 𝐷𝑛
𝑛𝜋
𝐿

cosh (0)

𝐶𝑛 = 𝐷𝑛
𝑛𝜋
𝐿

The eigenfunctions 𝑌𝑛 are

𝑌𝑛 = 𝐷𝑛
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + 𝐷𝑛 sinh �𝑛𝜋

𝐿
𝑦�

= 𝐷𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦��

Now the complete solution is produced

𝑢𝑛 �𝑥, 𝑦� = 𝑌𝑛𝑋𝑛

= 𝐷𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� 𝐵𝑛 sin �𝑛𝜋

𝐿
𝑥�

Let 𝐷𝑛𝐵𝑛 = 𝐵𝑛 since a constant. (no need to make up a new symbol).

𝑢𝑛 �𝑥, 𝑦� = 𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� sin �𝑛𝜋

𝐿
𝑥�

Sum of eigenfunctions is the solution, hence

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� sin �𝑛𝜋

𝐿
𝑥�

The nonhomogeneous boundary condition is now resolved. At 𝑦 = 𝐻

𝑢 (𝑥,𝐻) = 𝑓 (𝑥)

Therefore

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝐻� + sinh �𝑛𝜋

𝐿
𝐻�� sin �𝑛𝜋

𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
sin �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝐻� + sinh �𝑛𝜋

𝐿
𝐻�� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝐻� + sinh �𝑛𝜋

𝐿
𝐻���

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

= 𝐵𝑚 �
𝑚𝜋
𝐿

cosh �𝑚𝜋
𝐿
𝐻� + sinh �𝑚𝜋

𝐿
𝐻��

𝐿
2

Hence

𝐵𝑛 =
2
𝐿

∫𝐿

0
𝑓 (𝑥) sin �𝑛𝜋𝐿 𝑥� 𝑑𝑥

�𝑛𝜋
𝐿 cosh �𝑛𝜋𝐿 𝐻� + sinh �𝑛𝜋𝐿 𝐻��

(4)

This completes the solution. In summary

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� sin �𝑛𝜋

𝐿
𝑥�

With 𝐵𝑛 given by (4). The following are some plots of the solution above for di�erent 𝑓 (𝑥).
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Figure 1: Solution using 𝑓(𝑥) = 𝑥, 𝐿 = 1,𝐻 = 1

Figure 2: Solution using 𝑓(𝑥) = sin(12𝑥), 𝐿 = 1,𝐻 = 1

Figure 3: Solution using 𝑓(𝑥) = cos(4𝑥), 𝐿 = 1,𝐻 = 1

Figure 4: Solution using 𝑓(𝑥) = sin(3𝑥) cos(2𝑥), 𝐿 = 5,𝐻 = 1
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0.2 Problem 2.5.2 (problem 2)

2.5. Laplace's Equation 85

for a one-dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate
V2u = 0 over the entire two-dimensional region

0 = if V2u dx dy = if V.(Vu) dx dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise
1.5.8)

0 = i Vu-ft ds. (2.5.61)

Since is proportional to the heat flow through the boundary, (2.5.61) implies
that the net heat flow through the boundary must be zero in order for a steady
state to exist. This is clear physically, because otherwise there would be a change
(in time) of the thermal energy inside, violating the steady-state assumption. Equa-
tion (2.5.61) is called the solvability condition or compatibility condition for
Laplace's equation.

EXERCISES 2.5

2.5.1. Solve Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with the
following boundary conditions:

(0,y) = 0, (L,y) = 0,*(a) ax- Tx-

(b) (O, y) = 9(y), (L, y) = 0,Tx- TX-

*(c) "'(0,y) = 0, u(L,y) = 9(y),

(d) u(O,y) = 9(y), u(L,y) = 0,

*(e) u(0,y) = 0, u(L,y) = 0,

(f) u(O, y) = f (y), u(L, y) = 0,

(0, y) = 0, (L, y) = 0,(g) TX- YX-

2.5.2.

u(x,0) = 0,

u(x,0) = 0,

u(x,0) = 0,

(x,0) = 0,Fy-

u(x,0) - (x,0) = 0,

(x,0) = 0,
TV-

u(x 0) = /0

u(x, H) = f (x)

u(x, H) = 0

u(x, H) = 0

u(x, H) = 0

u(x, H) = f (x)

"u (x, H) = 0

x > L/2 au ( H)x < L/2' yy- x, = 0

Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x <
L, 0 < y < H) subject to the boundary conditions

(0,y) = 0
Yx-

(L,y)=0

(b)

Ou (x,0) = 0

(x, H) = f (x).

Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.
Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).

86 Chapter 2. Method of Separation of Variables

(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(x,y,0) = g(x,y)

*2.5.3. Solve Laplace's equation outside a circular disk (r > a) subject to the
boundary condition

(a) u(a, 9) = In 2 + 4 cos 39

(b) u(a,9) = f(9)

You may assume that u(r, 9) remains finite as r - oo.

*2.5.4. For Laplace's equation inside a circular disk (r < a), using (2.5.45) and
(2.5.47), show that

00

u(r,9)= f(6) 2+E(a)ncosn(9-8)1 dB.
a L n_0

Using cos z = Re [ei=], sum the resulting geometric series to obtain Poisson's
integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 (0 < 0 <-
7r/2, 0 < r < 1) subject to the boundary conditions

* (a) (r, 0) = 0, u (r, 2) = 0, u(1,0) = f (O)

(b) Ou (r, 0) = 0, 6u (r, z) = 0, u(1, 0) = f (0)

* (c) u(r, 0) = 0, u (r, z) = 0, Ou (1, 9) = f (O)

(d) (r, o) = o, (r, 2) = o, (1, e) = g(e)

Show that the solution [part (d)] exists only if fo 2 g(9) d9 = 0. Explain
this condition physically.

2.5.6. Solve Laplace's equation inside a semicircle of radius a(0 < r < a, 0 < 9 <
a) subject to the boundary conditions

*(a) u = 0 on the diameter and u(a, 9) = g(9)
(b) the diameter is insulated and u(a, 0) = g(9)

2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the bound-
ary conditions

(a) u(r, 0) = 0, u (r, a) = 0, u(a, 9) = f (0)

* (b) (r, 0) = 0, (r, 3 ) = 0, u(a, 9) = f (0)

0.2.1 part (a)

At steady state, there will be no heat energy flowing across the boundaries. Which implies the flux
is zero. Three of the boundaries are already insulated and hence the flux is zero at those boundaries
as given. Therefore, the flux should also be zero at the top boundary at steady state.

By definition, the flux is 𝜙̄ = −𝑘∇̄𝑢 ⋅ 𝑛̂. (Direction of flux vector is from hot to cold). At the top
boundary, this becomes

𝜙 = −𝑘
𝜕𝑢
𝜕𝑦

(𝑥,𝐻) (1)

Therefore, For the condition of a solution, total flux on the boundary is zero, or

�
𝐿

0
𝜙𝑑𝑥 = 0

Using (1) in the above gives

−𝑘�
𝐿

0

𝜕𝑢
𝜕𝑦

(𝑥,𝐻) 𝑑𝑥 = 0

�
𝐿

0

𝜕𝑢
𝜕𝑦

(𝑥,𝐻) 𝑑𝑥 = 0

But 𝜕𝑢
𝜕𝑦
(𝑥,𝐻) = 𝑓 (𝑥) and the above becomes

∫𝐿

0
𝑓 (𝑥) 𝑑𝑥 = 0

0.2.2 Part (b)

Using separation of variables results in the following two ODE’s

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
𝑋′ (𝐿) = 0

And

𝑌′′ − 𝜆𝑌 = 0
𝑌′ (0) = 0
𝑌′ (𝐿) = 𝑓 (𝑥)

The solution to the 𝑋 (𝑥) ODE has been obtained before as

𝑋𝑛 = 𝐴0 + 𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑛 = 1, 2, 3,⋯

𝑋𝑛 = 𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑛 = 0, 1, 2, 3,⋯ (1)
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Where 𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
. In this ODE 𝜆 = 0 is applicable as well as 𝜆 > 0. (As found in last HW).

Now the 𝑌 �𝑦� ODE is solved (for same set of eigenvalues). For 𝜆 = 0 the ODE becomes 𝑌′′ = 0 and
solution is 𝑌 = 𝐶𝑦 +𝐷. Hence 𝑌′ = 𝐶 and since 𝑌′ (0) = 0 then 𝐶 = 0. Hence the solution is 𝑌 = 𝐶0,
where 𝐶0 is some new constant. For 𝜆 > 0, the solution is

𝑌𝑛 = 𝐶𝑛 cosh ��𝜆𝑛𝑦� + 𝐷𝑛 sinh ��𝜆𝑛𝑦� 𝑛 = 1, 2, 3,⋯

𝑌′
𝑛 = 𝐶𝑛�𝜆𝑛 sinh ��𝜆𝑛𝑦� + 𝐷𝑛�𝜆𝑛 cosh ��𝜆𝑛𝑦�

At 𝑦 = 0

0 = 𝑌′
𝑛 (0)

= 𝐷𝑛�𝜆𝑛 𝑛 = 1, 2, 3,⋯

Since 𝜆𝑛 > 0 for 𝑛 = 1, 2, 3,⋯ then 𝐷𝑛 = 0 and the 𝑌 �𝑦� solution becomes

𝑌𝑛 = 𝐶0 + 𝐶𝑛 cosh ��𝜆𝑛𝑦� 𝑛 = 1, 2, 3,⋯

𝑌𝑛 = 𝐶𝑛 cosh ��𝜆𝑛𝑦� 𝑛 = 0, 1, 2, 3,⋯ (2)

Combining (1) and (2) gives

𝑢𝑛 �𝑥, 𝑦� = 𝑋𝑛𝑌𝑛

= 𝐴𝑛 cos ��𝜆𝑛𝑥�𝐶𝑛 cosh ��𝜆𝑛𝑦� 𝑛 = 0, 1, 2, 3,⋯

= 𝐴𝑛 cos ��𝜆𝑛𝑥� cosh ��𝜆𝑛𝑦� 𝑛 = 0, 1, 2, 3,⋯

Where 𝐴𝑛𝐶𝑛 above was combined and renamed to 𝐴𝑛 (No need to add new symbol). Hence by
superposition the solution becomes

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=0

𝐴𝑛 cos ��𝜆𝑛𝑥� cosh ��𝜆𝑛𝑦�

Since 𝜆0 = 0 and cos �√𝜆0𝑥� cosh �√𝜆0𝑦� = 1, the above can be also be written as

𝑢 �𝑥, 𝑦� = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� (3)

At 𝑦 = 𝐻, it is given that 𝜕𝑢
𝜕𝑦
(𝑥,𝐻) = 𝑓 (𝑥). But

𝜕𝑢
𝜕𝑦

=
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝑦�

At 𝑦 = 𝐻 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝐻� (4)

To verify part (a) by integrating both sides

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝐻� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝐻��

𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0, hence

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = 0

The verification is completed. Now back to (4) and multiplying by cos �𝑚𝜋𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥��𝜆𝑛 sinh �𝑛𝜋

𝐿
𝐻� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛 sinh �𝑛𝜋
𝐿
𝐻��

𝐿

0
cos �𝑛𝜋

𝐿
𝑥��𝜆𝑛𝑑𝑥

= 𝐴𝑚 sinh �𝑚𝜋
𝐿
𝐻�

𝐿
2

Hence

𝐴𝑛 =
2
𝐿

∫𝐿

0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

sinh �𝑛𝜋𝐿 𝐻�
𝑛 = 1, 2, 3,⋯
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Therefore the solution now becomes (from (3))

𝑢 �𝑥, 𝑦� = 𝐴0 +
∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎜⎜⎝
2
𝐿

∫𝐿

0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

sinh �𝑛𝜋𝐿 𝐻�

⎞
⎟⎟⎟⎟⎟⎟⎠ cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦�

Only 𝐴0 remains to be found. This is done in next part.

0.2.3 Part (c)

Since at steady state, total energy is the same as initial energy. Initial temperature is given as 𝑔 �𝑥, 𝑦�,
therefore initial thermal energy is found by integrating over the whole domain. This is 2D, therefore

��𝜌𝑐𝑔 �𝑥, 𝑦� 𝑑𝐴 = 𝜌𝑐�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥

Setting the above to 𝜌𝑐∫
𝐿

0
∫𝐻

0
𝑢 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 found in last part, gives one equation with one unknown,

which is 𝐴0 to solve for. Hence

𝜌𝑐�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = 𝜌𝑐�

𝐿

0
�

𝐻

0
𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥

�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = �

𝐿

0
�

𝐻

0
𝐴0𝑑𝑦𝑑𝑥 +�

𝐿

0
�

𝐻

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥

�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = 𝐴0𝐻𝐿 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
�

𝐻

0
cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥 (5)

But

�
𝐿

0
�

𝐻

0
cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥 = �

𝐻

0
cosh �𝑛𝜋

𝐿
𝑦� ��

𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� 𝑑𝑦

Where ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0. Hence the whole sum vanish. Therefore (5) reduces to

�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = 𝐴0𝐻𝐿

𝐴0 =
1
𝐻𝐿 �

𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥

Summary The complete solution is

𝑢 �𝑥, 𝑦� = �
1
𝐻𝐿 �

𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥� +

∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎜⎜⎝
2
𝐿

∫𝐿

0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

sinh �𝑛𝜋𝐿 𝐻�

⎞
⎟⎟⎟⎟⎟⎟⎠ cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦�

The following are some plots of the solution.

Figure 5: Solution using 𝑔(𝑥, 𝑦) = 𝑥𝑦, 𝑓(𝑥) = sin(3𝑥), 𝐿 = 5,𝐻 = 1
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Figure 6: Solution using 𝑔(𝑥, 𝑦) = sin(𝑦) cos(𝑥𝑦), 𝑓(𝑥) = 𝑥, 𝐿 = 5,𝐻 = 1

Figure 7: Solution using 𝑔(𝑥, 𝑦) = 𝑦 sin(𝑦) cos(𝑥𝑦), 𝑓(𝑥) = sin(10𝑥), 𝐿 = 1,𝐻 = 1

0.3 Problem 2.5.5(c,d) (problem 3)

86 Chapter 2. Method of Separation of Variables

(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(x,y,0) = g(x,y)

*2.5.3. Solve Laplace's equation outside a circular disk (r > a) subject to the
boundary condition

(a) u(a, 9) = In 2 + 4 cos 39

(b) u(a,9) = f(9)

You may assume that u(r, 9) remains finite as r - oo.

*2.5.4. For Laplace's equation inside a circular disk (r < a), using (2.5.45) and
(2.5.47), show that

00

u(r,9)= f(6) 2+E(a)ncosn(9-8)1 dB.
a L n_0

Using cos z = Re [ei=], sum the resulting geometric series to obtain Poisson's
integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 (0 < 0 <-
7r/2, 0 < r < 1) subject to the boundary conditions

* (a) (r, 0) = 0, u (r, 2) = 0, u(1,0) = f (O)

(b) Ou (r, 0) = 0, 6u (r, z) = 0, u(1, 0) = f (0)

* (c) u(r, 0) = 0, u (r, z) = 0, Ou (1, 9) = f (O)

(d) (r, o) = o, (r, 2) = o, (1, e) = g(e)

Show that the solution [part (d)] exists only if fo 2 g(9) d9 = 0. Explain
this condition physically.

2.5.6. Solve Laplace's equation inside a semicircle of radius a(0 < r < a, 0 < 9 <
a) subject to the boundary conditions

*(a) u = 0 on the diameter and u(a, 9) = g(9)
(b) the diameter is insulated and u(a, 0) = g(9)

2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the bound-
ary conditions

(a) u(r, 0) = 0, u (r, a) = 0, u(a, 9) = f (0)

* (b) (r, 0) = 0, (r, 3 ) = 0, u(a, 9) = f (0)

0.3.1 Part c

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (A)

With boundary conditions

𝑢 (𝑟, 0) = 0

𝑢 �𝑟,
𝜋
2
� = 0 (B)

𝑢 (1, 𝜃) = 𝑓 (𝜃)

Assuming the solution can be written as

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

And substituting this assumed solution back into the (A) gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0
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Dividing the above by 𝑅Θ ≠ 0 gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must be equal
to same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to
each ODE. This gives

Θ ′′ + 𝜆Θ = 0
Θ (0) = 0 (1)

Θ�
𝜋
2
� = 0

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

|𝑅 (0)| < ∞

Starting with (1). Consider the Case 𝜆 < 0. The solution in this case will be

Θ = 𝐴 cosh �√𝜆𝜃� + 𝐵 sinh �√𝜆𝜃�

Applying first B.C. gives 𝐴 = 0. The solution becomes Θ = 𝐵 sinh �√𝜆𝜃�. Applying second B.C.
gives

0 = 𝐵 sinh �√𝜆
𝜋
2
�

But sinh is zero only when √𝜆
𝜋
2 = 0 which is not the case here. Therefore 𝐵 = 0 and hence trivial

solution. Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The ODE becomes Θ ′′ = 0 with solution Θ = 𝐴𝜃 + 𝐵. First B.C. gives 0 = 𝐵. The
solution becomes Θ = 𝐴𝜃. Second B.C. gives 0 = 𝐴𝜋

2 , hence 𝐴 = 0 and trivial solution. Therefore
𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0 The ODE becomes Θ ′′ + 𝜆Θ = 0 with solution

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

The first B.C. gives 0 = 𝐴. The solution becomes

Θ = 𝐵 sin �√𝜆𝜃�

And the second B.C. gives

0 = 𝐵 sin �√𝜆
𝜋
2
�

For non-trivial solution sin �√𝜆𝜋
2
� = 0 or √𝜆

𝜋
2 = 𝑛𝜋 for 𝑛 = 1, 2, 3,⋯. Hence the eigenvalues are

�𝜆𝑛 = 2𝑛
𝜆𝑛 = 4𝑛2 𝑛 = 1, 2, 3,⋯

And the eigenfunctions are

Θ𝑛 (𝜃) = 𝐵𝑛 sin (2𝑛𝜃) 𝑛 = 1, 2, 3,⋯ (3)

Now the 𝑅 ODE is solved. There is one case to consider, which is 𝜆 > 0 based on the above. The
ODE is

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑛𝑅 = 0
𝑟2𝑅′′ + 𝑟𝑅′ − 4𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯
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This is Euler ODE. Let 𝑅 (𝑟) = 𝑟𝑝. Then 𝑅′ = 𝑝𝑟𝑝−1 and 𝑅′′ = 𝑝 �𝑝 − 1� 𝑟𝑝−2. This gives

𝑟2 �𝑝 �𝑝 − 1� 𝑟𝑝−2� + 𝑟 �𝑝𝑟𝑝−1� − 4𝑛2𝑟𝑝 = 0

��𝑝2 − 𝑝� 𝑟𝑝� + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0

𝑟𝑝𝑝2 − 𝑝𝑟𝑝 + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0
𝑝2 − 4𝑛2 = 0

𝑝 = ±2𝑛

Hence the solution is

𝑅 (𝑟) = 𝐶𝑟2𝑛 + 𝐷
1
𝑟2𝑛

Applying the condition that |𝑅 (0)| < ∞ implies 𝐷 = 0, and the solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑛𝑟2𝑛 𝑛 = 1, 2, 3,⋯ (4)

Using (3,4) the solution 𝑢𝑛 (𝑟, 𝜃) is

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

= 𝐶𝑛𝑟2𝑛𝐵𝑛 sin (2𝑛𝜃)
= 𝐵𝑛𝑟2𝑛 sin (2𝑛𝜃)

Where 𝐶𝑛𝐵𝑛 was combined into one constant 𝐵𝑛. (No need to introduce new symbol). The final
solution is

𝑢 (𝑟, 𝜃) =
∞
�
𝑛=1

𝑢𝑛 (𝑟, 𝜃)

=
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 sin (2𝑛𝜃)

Now the nonhomogeneous condition is applied to find 𝐵𝑛.
𝜕
𝜕𝑟
𝑢 (𝑟, 𝜃) =

∞
�
𝑛=1

𝐵𝑛 (2𝑛) 𝑟2𝑛−1 sin (2𝑛𝜃)

Hence 𝜕
𝜕𝑟𝑢 (1, 𝜃) = 𝑓 (𝜃) becomes

𝑓 (𝜃) =
∞
�
𝑛=1

2𝐵𝑛𝑛 sin (2𝑛𝜃)

Multiplying by sin (2𝑚𝜃) and integrating gives

�
𝜋
2

0
𝑓 (𝜃) sin (2𝑚𝜃) 𝑑𝜃 = �

𝜋
2

0
sin (2𝑚𝜃)

∞
�
𝑛=1

2𝐵𝑛𝑛 sin (2𝑛𝜃) 𝑑𝜃

=
∞
�
𝑛=1

2𝑛𝐵𝑛�
𝜋
2

0
sin (2𝑚𝜃) sin (2𝑛𝜃) 𝑑𝜃 (5)

When 𝑛 = 𝑚 then

�
𝜋
2

0
sin (2𝑚𝜃) sin (2𝑛𝜃) 𝑑𝜃 = �

𝜋
2

0
sin2 (2𝑛𝜃) 𝑑𝜃

= �
𝜋
2

0
�
1
2
−
1
2

cos 4𝑛𝜃� 𝑑𝜃

=
1
2
[𝜃]

𝜋
2
0 −

1
2 �

sin 4𝑛𝜃
4𝑛 �

𝜋
2

0

=
𝜋
4
− �

1
8𝑛 �

sin 4𝑛
2
𝜋� − sin (0)�

And since 𝑛 is integer, then sin 4𝑛
2 𝜋 = sin 2𝑛𝜋 = 0 and the above becomes 𝜋

4 .
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Now for the case when 𝑛 ≠ 𝑚 using sin𝐴 sin𝐵 = 1
2
(cos (𝐴 − 𝐵) − cos (𝐴 + 𝐵)) then

�
𝜋
2

0
sin (2𝑚𝜃) sin (2𝑛𝜃) 𝑑𝜃 = �

𝜋
2

0

1
2
(cos (2𝑚𝜃 − 2𝑛𝜃) − cos (2𝑚𝜃 + 2𝑛𝜃)) 𝑑𝜃

=
1
2 �

𝜋
2

0
cos (2𝑚𝜃 − 2𝑛𝜃) 𝑑𝜃 − 1

2 �
𝜋
2

0
cos (2𝑚𝜃 + 2𝑛𝜃) 𝑑𝜃

=
1
2 �

𝜋
2

0
cos ((2𝑚 − 2𝑛) 𝜃) 𝑑𝜃 − 1

2 �
𝜋
2

0
cos ((2𝑚 + 2𝑛) 𝜃) 𝑑𝜃

=
1
2 �

sin ((2𝑚 − 2𝑛) 𝜃)
(2𝑚 − 2𝑛) �

𝜋
2

0
−
1
2 �

sin ((2𝑚 + 2𝑛) 𝜃)
(2𝑚 + 2𝑛) �

𝜋
2

0

=
1

4 (𝑚 − 𝑛)
[sin ((2𝑚 − 2𝑛) 𝜃)]

𝜋
2
0 −

1
4 (𝑚 + 𝑛)

[sin ((2𝑚 + 2𝑛) 𝜃)]
𝜋
2
0

=
1

4 (𝑚 − 𝑛) �
sin �(2𝑚 − 2𝑛) 𝜋

2
� − 0� −

1
4 (𝑚 + 𝑛) �

sin �(2𝑚 + 2𝑛) 𝜋
2
� − 0�

Since 2𝑚 − 2𝑛𝜋
2 = 𝜋 (𝑚 − 𝑛) which is integer multiple of 𝜋 and also (2𝑚 + 2𝑛) 𝜋2 is integer multiple of

𝜋 then the whole term above becomes zero. Therefore (5) becomes

�
𝜋
2

0
𝑓 (𝜃) sin (2𝑚𝜃) 𝑑𝜃 = 2𝑚𝐵𝑚

𝜋
4

Hence

𝐵𝑛 =
2
𝜋𝑛
∫

𝜋
2

0
𝑓 (𝜃) sin (2𝑛𝜃) 𝑑𝜃

Summary: the final solution is

𝑢 (𝑟, 𝜃) =
∞
�
𝑛=1

𝐵𝑛 �𝑟2𝑛 sin (2𝑛𝜃)�

𝐵𝑛 =
2
𝜋𝑛 �

𝜋
2

0
𝑓 (𝜃) sin (2𝑛𝜃) 𝑑𝜃

The following are some plots of the solution

Figure 8: Solution using 𝑓(𝜃) = 𝜃 sin(3𝜃)

Figure 9: Solution using 𝑓(𝜃) = 𝜃
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0.3.2 Part (d)

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0

With boundary conditions

𝑢 (𝑟, 0) = 0

𝑢 �𝑟,
𝜋
2
� = 0

𝑢 (1, 𝜃) = 𝑓 (𝜃)

Assuming the solution is

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

Substituting this back into the PDE gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0

Dividing by 𝑅Θ ≠ 0 gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must be equal
to same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in two ODE’s with the following boundary conditions

Θ ′′ + 𝜆Θ = 0
Θ ′ (0) = 0 (1)

Θ ′ �
𝜋
2
� = 0

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

|𝑅 (0)| < ∞

Starting with (1). Consider Case 𝜆 < 0 The solution will be

Θ = 𝐴 cosh �√𝜆𝜃� + 𝐵 sinh �√𝜆𝜃�

And

Θ ′ = 𝐴√𝜆 sinh �√𝜆𝜃� + 𝐵√𝜆 cosh �√𝜆𝜃�

Applying first B.C. gives 0 = 𝐵√𝜆, therefore 𝐵 = 0 and the solution becomes 𝐴 cosh �√𝜆𝜃� and
Θ ′ = 𝐴√𝜆 sinh �√𝜆𝜃�. Applying second B.C. gives 0 = 𝐴√𝜆 sinh �√𝜆𝜋

2
�. But sinh �√𝜆𝜋

2
� ≠ 0 since

𝜆 ≠ 0, therefore 𝐴 = 0 and the trivial solution results. Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The ODE becomes

Θ ′′ = 0

With solution

Θ = 𝐴𝜃 + 𝐵

And Θ ′ = 𝐴. First B.C. gives 0 = 𝐴. Hence Θ = 𝐵. Second B.C. produces no result and the solution
is constant. Hence

Θ = 𝐶0

Where 𝐶0 is constant. Therefore 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0 The ODE becomes Θ ′′ + 𝜆Θ = 0 with solution

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� + 𝐵√𝜆 cos �√𝜆𝜃�
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The first B.C. gives 0 = 𝐵√𝜆 or 𝐵 = 0. The solution becomes

Θ = 𝐴 cos �√𝜆𝜃�

And Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� . The second B.C. gives

0 = −𝐴√𝜆 sin �√𝜆
𝜋
2
�

For non-trivial solution sin �√𝜆𝜋
2
� = 0 or √𝜆

𝜋
2 = 𝑛𝜋 for 𝑛 = 1, 2, 3,⋯. Hence the eigenvalues are

�𝜆𝑛 = 2𝑛
𝜆𝑛 = 4𝑛2 𝑛 = 1, 2, 3,⋯

And the eigenfunction is

Θ𝑛 (𝜃) = 𝐴𝑛 cos (2𝑛𝜃) 𝑛 = 1, 2, 3,⋯ (3)

Now the 𝑅 ODE is solved. The ODE is

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0

Case 𝜆 = 0

The ODE becomes 𝑟2𝑅′′ + 𝑟𝑅′ = 0. Let 𝑣 (𝑟) = 𝑅′ (𝑟) and the ODE becomes

𝑟2𝑣′ + 𝑟𝑣 = 0

Dividing by 𝑟 ≠ 0

𝑣′ (𝑟) +
1
𝑟
𝑣 (𝑟) = 0

Using integrating factor 𝑒∫
1
𝑟 𝑑𝑟 = 𝑒ln 𝑟 = 𝑟. Hence

𝑑
𝑑𝑟
(𝑟𝑣) = 0

Hence

𝑟𝑣 = 𝐴

𝑣 (𝑟) =
𝐴
𝑟

But since 𝑣 (𝑟) = 𝑅′ (𝑟) then 𝑅′ = 𝑐1
𝑟 . The solution to this ODE Is

𝑅 (𝑟) = �
𝐴
𝑟
𝑑𝑟 + 𝐵

Therefore, for 𝜆 = 0 the solution is

𝑅 (𝑟) = 𝐴 ln |𝑟| + 𝐵 𝑟 ≠ 0

Since

lim
𝑟→0

|𝑅 (𝑟)| < ∞

Then 𝐴 = 0 and the solution is just a constant

𝑅 (𝑟) = 𝐵0
Case 𝜆 > 0 The ODE is

𝑟2𝑅′′ + 𝑟𝑅′ − 4𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯

The Let 𝑅 (𝑟) = 𝑟𝑝. Then 𝑅′ = 𝑝𝑟𝑝−1 and 𝑅′′ = 𝑝 �𝑝 − 1� 𝑟𝑝−2. This gives

𝑟2 �𝑝 �𝑝 − 1� 𝑟𝑝−2� + 𝑟 �𝑝𝑟𝑝−1� − 4𝑛2𝑟𝑝 = 0

��𝑝2 − 𝑝� 𝑟𝑝� + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0

𝑟𝑝𝑝2 − 𝑝𝑟𝑝 + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0
𝑝2 − 4𝑛2 = 0

𝑝 = ±2𝑛

Hence the solution is

𝑅 (𝑟) = 𝐶𝑟2𝑛 + 𝐷
1
𝑟2𝑛

The condition that

lim
𝑟→0

|𝑅 (𝑟)| < ∞
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Implies 𝐷 = 0, Hence the solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑛𝑟2𝑛 𝑛 = 1, 2, 3,⋯ (4)

Now the solutions are combined. For 𝜆 = 0 the solution is

𝑢0 (𝑟, 𝜃) = 𝐶0𝐵0
Which can be combined to one constant 𝐵0. Hence

𝑢0 = 𝐵0 (5)

And for 𝜆 > 0 the solution is

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

= 𝐶𝑛𝑟2𝑛 (𝐴𝑛 cos (2𝑛𝜃))
= 𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃)

Where 𝐶𝑛𝐴𝑛 are combined into one constant 𝐵𝑛. Hence

𝑢𝑛 (𝑟, 𝜃) =
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃) (6)

Equation (5) and (6) can be combined into one this now includes eigenfunctions for both 𝜆 = 0
and 𝜆 > 0

𝑢 (𝑟, 𝜃) = 𝐵0 +
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃) (7)

Where 𝐵0 represent the products of the eigenfunctions for 𝑅 and Θ for 𝜆 = 0. Now the nonhomoge-
neous condition is applied to find 𝐵𝑛.

𝜕
𝜕𝑟
𝑢 (𝑟, 𝜃) =

∞
�
𝑛=1

𝐵𝑛 (2𝑛) 𝑟2𝑛−1 cos (2𝑛𝜃)

Hence 𝜕
𝜕𝑟𝑢 (1, 𝜃) = 𝑔 (𝜃) becomes

𝑔 (𝜃) =
∞
�
𝑛=1

2𝐵𝑛𝑛 cos (2𝑛𝜃) (8)

Multiplying by cos (2𝑚𝜃) and integrating gives

�
𝜋
2

0
𝑔 (𝜃) cos (2𝑚𝜃) 𝑑𝜃 = �

𝜋
2

0
cos (2𝑚𝜃)

∞
�
𝑛=1

2𝐵𝑛𝑛 cos (2𝑛𝜃) 𝑑𝜃

=
∞
�
𝑛=1

2𝑛𝐵𝑛�
𝜋
2

0
cos (2𝑚𝜃) cos (2𝑛𝜃) 𝑑𝜃 (9)

As in the last part, the integral on right gives 𝜋
4 when 𝑛 = 𝑚 and zero otherwise, hence

�
𝜋
2

0
𝑔 (𝜃) cos (2𝑛𝜃) 𝑑𝜃 = 2𝑛𝐵𝑛

𝜋
4

𝐵𝑛 =
2
𝜋𝑛 �

𝜋
2

0
𝑔 (𝜃) cos (2𝑛𝜃) 𝑑𝜃 𝑛 = 1, 2, 3,⋯

Therefore the final solution is from (7) and (9)

𝑢 (𝑟, 𝜃) = 𝐵0 +
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃)

= 𝐵0 +
∞
�
𝑛=1

⎛
⎜⎜⎜⎝
2
𝜋𝑛 �

𝜋
2

0
𝑔 (𝜃) cos (2𝑚𝜃) 𝑑𝜃

⎞
⎟⎟⎟⎠ 𝑟2𝑛 cos (2𝑛𝜃)

The unknown constant 𝐵0 can be found if given the initial temperature as was done in problem
2.5.2 part (c). To answer the last part. Using (8) and integrating

�
𝜋
2

0
𝑔 (𝜃) 𝑑𝜃 = �

𝜋
2

0

∞
�
𝑛=1

2𝑛𝐵𝑛 cos (2𝑛𝜃) 𝑑𝜃

=
∞
�
𝑛=1

2𝑛𝐵𝑛�
𝜋
2

0
cos (2𝑛𝜃) 𝑑𝜃
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But

�
𝜋
2

0
cos (2𝑛𝜃) 𝑑𝜃 = �

sin (2𝑛𝜃)
2𝑛 �

𝜋
2

0

=
1
2𝑛 �

sin 2𝑛
2
𝜋 − 0�

=
1
2𝑛

(sin 𝑛𝜋 − 0)

= 0

Since 𝑛 is an integer. This condition physically means the same as in part (b) problem 2.5.2. Which
is, since at steady state the flux must be zero on all boundaries, and 𝑔 (𝜃) represents the flux over
the surface of the quarter circle, then the integral of the flux must be zero. This means there is no
thermal energy flowing across the boundary.

0.4 Problem 2.5.8(b) (problem 4)

2.5. Laplace's Equation 87

2.5.8. Solve Laplace's equation inside a circular annulus (a < r < b) subject to
the boundary conditions

* (a) u(a, 9) = f (O), u(b, 9) = g(9)

(b) 67 (a,0) = 0, u(b,0) = g(9)

(c) (a,0) =Wr- f(0), (b,0) = g(0)3T

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus (a < r <
b, 0 < 0 < ir/2) subject to the boundary conditions

(a) u(r, 0) = 0, u(r, it/2) = 0, u(a, 9) = 0, u(b, 0) = f (0)

(b) u(r,0) = 0, u(r,ir/2) = f(r), u(a,0) = 0, u(b,9) = 0

2.5.10. Using the maximum principles for Laplace's equation, prove that the so-
lution of Poisson's equation, V2u = g(x), subject to u = f (x) on the
boundary, is unique.

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
ffu02udxdydz.

(b) Using part (a), prove that the solution of Laplace's equation V2u = 0
(with u given on the boundary) is unique.

(c) Modify part (b) if 0 on the boundary.
(d) Modify part (b) if 0 on the boundary. Show that Newton's

law of cooling corresponds to h < 0.

2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its
minimum in the interior.

2.5.14. Show that the "backward" heat equation

au 02u
at = -k 8x2 ,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f (x), is not well posed. (Hint:
Show that if the data are changed an arbitrarily small amount, for example,

1
srn _f (x) -' f (x) + n

for large n, then the solution u(x, t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip (0 < x < oo, 0 < y < H)
subject to the boundary conditions

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (A)

With
𝜕𝑢
𝜕𝑟

(𝑎, 𝜃) = 0

𝑢 (𝑏, 𝜃) = 𝑔 (𝜃) (B)

Assuming the solution can be written as

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

And substituting this assumed solution back into the (A) gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0

Dividing the above by 𝑅Θ gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must be equal
to same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to
each ODE. This results in

Θ ′′ + 𝜆Θ = 0 (1)

Θ(−𝜋) = Θ (𝜋)
Θ ′ (−𝜋) = Θ ′ (𝜋)

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

𝑅′ (𝑎) = 0
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Starting with (1) Case 𝜆 < 0 The solution is

Θ(𝜃) = 𝐴 cosh �√𝜆𝜃� + 𝐵 sinh �√𝜆𝜃�

First B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cosh �−√𝜆𝜋� + 𝐵 sinh �−√𝜆𝜋� = 𝐴 cosh �√𝜆𝜋� + 𝐵 sinh �√𝜆𝜋�

𝐴 cosh �√𝜆𝜋� − 𝐵 sinh �√𝜆𝜋� = 𝐴 cosh �√𝜆𝜋� + 𝐵 sinh �√𝜆𝜋�

2𝐵 sinh �√𝜆𝜋� = 0

But sinh �√𝜆𝜋� = 0 only at zero and 𝜆 ≠ 0, hence 𝐵 = 0 and the solution becomes

Θ(𝜃) = 𝐴 cosh �√𝜆𝜃�

Θ ′ (𝜃) = 𝐴√𝜆 cosh �√𝜆𝜃�

Applying the second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

𝐴√𝜆 cosh �−√𝜆𝜋� = 𝐴√𝜆 cosh �√𝜆𝜋�

𝐴√𝜆 cosh �√𝜆𝜋� = 𝐴√𝜆 cosh �√𝜆𝜋�

2𝐴√𝜆 cosh �√𝜆𝜋� = 0

But cosh �√𝜆𝜋� ≠ 0 hence 𝐴 = 0. Therefore trivial solution and 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The solution is Θ = 𝐴𝜃 + 𝐵. Applying the first B.C. gives

Θ(−𝜋) = Θ (𝜋)
−𝐴𝜋 + 𝐵 = 𝜋𝐴 + 𝐵

2𝜋𝐴 = 0
𝐴 = 0

And the solution becomes Θ = 𝐵0. A constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0

The solution becomes

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� + 𝐵√𝜆 cos �√𝜆𝜃�

Applying first B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cos �−√𝜆𝜋� + 𝐵 sin �−√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

𝐴 cos �√𝜆𝜋� − 𝐵 sin �√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

2𝐵 sin �√𝜆𝜋� = 0 (3)

Applying second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

−𝐴√𝜆 sin �−√𝜆𝜋� + 𝐵√𝜆 cos �−√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋�

2𝐴 sin �√𝜆𝜋� = 0 (4)

Equations (3,4) can be both zero only if 𝐴 = 𝐵 = 0 which gives trivial solution, or when sin �√𝜆𝜋� = 0.
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Therefore taking sin �√𝜆𝜋� = 0 gives a non-trivial solution. Hence

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the solution for Θ is

Θ = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃) (5)

Now the 𝑅 equation is solved

The case for 𝜆 = 0 gives

𝑟2𝑅′′ + 𝑟𝑅′ = 0

𝑅′′ +
1
𝑟
𝑅′ = 0 𝑟 ≠ 0

As was done in last problem, the solution to this is

𝑅 (𝑟) = 𝐴 ln |𝑟| + 𝐶
Since 𝑟 > 0 no need to keep worrying about |𝑟| and is removed for simplicity. Applying the B.C.
gives

𝑅′ = 𝐴
1
𝑟

Evaluating at 𝑟 = 𝑎 gives

0 = 𝐴
1
𝑎

Hence 𝐴 = 0, and the solution becomes

𝑅 (𝑟) = 𝐶0

Which is a constant.

Case 𝜆 > 0 The ODE in this case is

𝑟2𝑅′′ + 𝑟𝑅′ − 𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯

Let 𝑅 = 𝑟𝑝, the above becomes

𝑟2𝑝 �𝑝 − 1� 𝑟𝑝−2 + 𝑟𝑝𝑟𝑝−1 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� 𝑟𝑝 + 𝑝𝑟𝑝 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� + 𝑝 − 𝑛2 = 0

𝑝2 = 𝑛2

𝑝 = ±𝑛

Hence the solution is

𝑅𝑛 (𝑟) = 𝐶𝑟𝑛 + 𝐷
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

Applying the boundary condition 𝑅′ (𝑎) = 0 gives

𝑅′
𝑛 (𝑟) = 𝑛𝐶𝑛𝑟𝑛−1 − 𝑛𝐷𝑛

1
𝑟𝑛+1

0 = 𝑅′
𝑛 (𝑎)

= 𝑛𝐶𝑛𝑎𝑛−1 − 𝑛𝐷𝑛
1
𝑎𝑛+1

= 𝑛𝐶𝑛𝑎2𝑛 − 𝑛𝐷𝑛

= 𝐶𝑛𝑎2𝑛 − 𝐷𝑛

𝐷𝑛 = 𝐶𝑛𝑎2𝑛

The solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑛𝑟𝑛 + 𝐶𝑛𝑎2𝑛
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

= 𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �

Hence the complete solution for 𝑅 (𝑟) is

𝑅 (𝑟) = 𝐶0 +
∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
(6)



18

Using (5),(6) gives

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

𝑢 (𝑟, 𝜃) = �𝐶0 +
∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �� �
𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)�

= 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃)𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
+

∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝜃)𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �

Where 𝐷0 = 𝐶0𝐴0. To simplify more, 𝐴𝑛𝐶𝑛 is combined to 𝐴𝑛 and 𝐵𝑛𝐶𝑛 is combined to 𝐵𝑛. The full
solution is

𝑢 (𝑟, 𝜃) = 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
cos (𝑛𝜃) +

∞
�
𝑛=1

𝐵𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
sin (𝑛𝜃)

The final nonhomogeneous B.C. is applied.

𝑢 (𝑏, 𝜃) = 𝑔 (𝜃)

𝑔 (𝜃) = 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
cos (𝑛𝜃) +

∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
sin (𝑛𝜃)

For 𝑛 = 0, integrating both sides give

�
𝜋

−𝜋
𝑔 (𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0𝑑𝜃

𝐷0 =
1
2𝜋 �

𝜋

−𝜋
𝑔 (𝜃) 𝑑𝜃

For 𝑛 > 0, multiplying both sides by cos (𝑚𝜃) and integrating gives

�
𝜋

−𝜋
𝑔 (𝜃) cos (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 cos (𝑚𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
cos (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃

Hence

�
𝜋

−𝜋
𝑔 (𝜃) cos (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 cos (𝑚𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
cos (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 (7)

But

�
𝜋

−𝜋
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃 = 𝜋 𝑛 = 𝑚 ≠ 0

�
𝜋

−𝜋
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃 = 0 𝑛 ≠ 𝑚

And

�
𝜋

−𝜋
cos (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 = 0

And

�
𝜋

−𝜋
𝐷0 cos (𝑚𝜃) 𝑑𝜃 = 0

Then (7) becomes

�
𝜋

−𝜋
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃 = 𝜋𝐴𝑛 �𝑏𝑛 +

𝑎2𝑛

𝑏𝑛 �

𝐴𝑛 =
1
𝜋

∫𝜋

−𝜋
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

(8)
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Again, multiplying both sides by sin (𝑚𝜃) and integrating gives

�
𝜋

−𝜋
𝑔 (𝜃) sin (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 sin (𝑚𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
sin (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃

Hence

�
𝜋

−𝜋
𝑔 (𝜃) sin (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 sin (𝑚𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
sin (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 (9)

But

�
𝜋

−𝜋
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 = 𝜋 𝑛 = 𝑚 ≠ 0

�
𝜋

−𝜋
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 = 0 𝑛 ≠ 𝑚

And

�
𝜋

−𝜋
sin (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃 = 0

And

�
𝜋

−𝜋
𝐷0 sin (𝑚𝜃) 𝑑𝜃 = 0

Then (9) becomes

�
𝜋

−𝜋
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃 = 𝜋𝐵𝑛 �𝑏𝑛 +

𝑎2𝑛

𝑏𝑛 �

𝐵𝑛 =
1
𝜋

∫𝜋

−𝜋
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

This complete the solution. Summary

𝑢 (𝑟, 𝜃) = 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
cos (𝑛𝜃) +

∞
�
𝑛=1

𝐵𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
sin (𝑛𝜃)

𝐷0 =
1
2𝜋 �

𝜋

−𝜋
𝑔 (𝜃) 𝑑𝜃

𝐴𝑛 =
1
𝜋

∫𝜋

−𝜋
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

𝐵𝑛 =
1
𝜋

∫𝜋

−𝜋
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

The following are some plots of the solution.
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Figure 10: Solution using 𝑓(𝜃) = sin(3𝜃2), 𝑎 = 0.3, 𝑏 = 0.5

Figure 11: Solution using 𝑓(𝜃) = 3𝜃, 𝑎 = 0.3, 𝑏 = 0.6

Figure 12: Solution using 𝑓(𝜃) = 100𝜃, 𝑎 = 0.1, 𝑏 = 0.4
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0.5 Problem 2.5.14 (problem 5)

2.5. Laplace's Equation 87

2.5.8. Solve Laplace's equation inside a circular annulus (a < r < b) subject to
the boundary conditions

* (a) u(a, 9) = f (O), u(b, 9) = g(9)

(b) 67 (a,0) = 0, u(b,0) = g(9)

(c) (a,0) =Wr- f(0), (b,0) = g(0)3T

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus (a < r <
b, 0 < 0 < ir/2) subject to the boundary conditions

(a) u(r, 0) = 0, u(r, it/2) = 0, u(a, 9) = 0, u(b, 0) = f (0)

(b) u(r,0) = 0, u(r,ir/2) = f(r), u(a,0) = 0, u(b,9) = 0

2.5.10. Using the maximum principles for Laplace's equation, prove that the so-
lution of Poisson's equation, V2u = g(x), subject to u = f (x) on the
boundary, is unique.

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
ffu02udxdydz.

(b) Using part (a), prove that the solution of Laplace's equation V2u = 0
(with u given on the boundary) is unique.

(c) Modify part (b) if 0 on the boundary.
(d) Modify part (b) if 0 on the boundary. Show that Newton's

law of cooling corresponds to h < 0.

2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its
minimum in the interior.

2.5.14. Show that the "backward" heat equation

au 02u
at = -k 8x2 ,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f (x), is not well posed. (Hint:
Show that if the data are changed an arbitrarily small amount, for example,

1
srn _f (x) -' f (x) + n

for large n, then the solution u(x, t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip (0 < x < oo, 0 < y < H)
subject to the boundary conditions

−1
𝑘
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

𝑢 (0, 𝑡) = 0
𝑢 (𝐿, 𝑡) = 0
𝑢 (𝑥, 0) = 𝑓 (𝑥)

Assume 𝑢 (𝑥, 𝑡) = 𝑋𝑇. Hence the PDE becomes

−
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇

−
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
Hence, for𝜆 real

−
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The space ODE was solved before. Only positive eigenvalues exist. The solution is

𝑋 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin ��𝜆𝑛𝑥�

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

The time ODE becomes

𝑇′
𝑛 = 𝜆𝑛𝑇𝑛

𝑇′
𝑛 − 𝜆𝑛𝑇𝑛 = 0

With solution

𝑇𝑛 (𝑡) = 𝐴𝑛𝑒𝜆𝑛𝑡

𝑇 (𝑡) =
∞
�
𝑛=1

𝐴𝑛𝑒𝜆𝑛𝑡

For the same eigenvalues. Therefore the full solution is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 (1)

Where 𝐶𝑛 = 𝐴𝑛𝐵𝑛. Applying initial conditions gives

𝑓 (𝑥) =
∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥�

Multiplying by sin �𝑚𝜋𝐿 𝑥� and integrating results in

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
sin �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑑𝑥

=
∞
�
𝑛=1

𝐶𝑛�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

= 𝐶𝑚
𝐿
2

Therefore

𝐶𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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The solution (1) becomes

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�
𝑛=1

��
𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� �sin �

𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡� (2)

Assuming initial data is changed to 𝑓 (𝑥) + 1
𝑛 sin �𝑛𝜋𝐿 𝑥� then

𝑓 (𝑥) +
1
𝑚

sin �𝑚𝜋
𝐿
𝑥� =

∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑚 �

𝐿

0
sin2 �

𝑚𝜋
𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
sin �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥�

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑚
𝐿
2
= 𝐶𝑚

𝐿
2

𝐶𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑛

Therefore, the new solution is

𝑢̃ (𝑥, 𝑡) =
∞
�
𝑛=1

�
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑛�

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

=
∞
�
𝑛=1

2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 +

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

=
∞
�
𝑛=1

2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 +

∞
�
𝑛=1

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

But ∑∞
𝑛=1

2
𝐿
∫𝐿

0
𝑓 (𝑥) sin �𝑚𝜋𝐿 𝑥� 𝑑𝑥 sin �𝑛𝜋𝐿 𝑥� 𝑒

� 𝑛𝜋𝐿 �
2
𝑡 = 𝑢 (𝑥, 𝑡), therefore the above can be written as

𝑢̃ (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) +
∞
�
𝑛=1

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

For large 𝑛, the di�erence between initial data 𝑓 (𝑥) and 𝑓 (𝑥) + 1
𝑛 sin �𝑛𝜋𝐿 𝑥� is very small, since 1

𝑛 → 0.

However, the e�ect in the solution above, due to the presence of 𝑒�
𝑛𝜋
𝐿 �

2
𝑡 is that 1

𝑛 𝑒
� 𝑛𝜋𝐿 �

2
𝑡 increases

now for large 𝑛, since the exponential is to the positive power, and it grows at a faster rate than
1
𝑛 grows small as 𝑛 increases, with the net e�ect that the produce blow up for large 𝑛. This is
because the power of the exponential is positive and not negative is normally would be the case.

Also by looking at the series of 𝑒�
𝑛𝜋
𝐿 �

2
𝑡 which is 1 + �𝑛𝜋𝐿 �

4 𝑡2

2 + �
𝑛𝜋
𝐿
�
6 𝑡3

3! +⋯, then 1
𝑛 𝑒

� 𝑛𝜋𝐿 �
2
𝑡 expands to

1
𝑛 +

1
𝑛
�𝑛𝜋
𝐿
�
4 𝑡2

2 +
1
𝑛
�𝑛𝜋
𝐿
�
6 𝑡3

3! +⋯ which becomes very large for large 𝑛.

In the normal PDE case, the above solution would have instead been the following

𝑢̃ (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) +
∞
�
𝑛=1

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒−�

𝑛𝜋
𝐿 �

2
𝑡

And now as 𝑛 → ∞ then ∑∞
𝑛=1

1
𝑛 sin �𝑛𝜋𝐿 𝑥� 𝑒

−� 𝑛𝜋𝐿 �
2
𝑡 → 0 as well. Notice that sin �𝑛𝜋𝐿 𝑥� term is not

important for this analysis, as its value oscillates between −1 and +1.

0.6 Problem 2.5.22 (problem 6)

88

(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with
the boundary conditions

8u
au

8u
&"

8x(0,
y) = 0, 8x(L, y) = g(y),

8y(x, 0)
= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?
(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].
(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +
[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-
servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show
that

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-
2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum and
minimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulation
does a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (for
what values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlines
are circles. Graph the streamlines.

The force exerted by the fluid on the cylinder is given by equation 2.5.56, page 77 of the text as

𝐹̄ = −�
2𝜋

0
𝑝 ⟨cos𝜃, sin𝜃⟩ 𝑎𝑑𝜃

Where 𝑎 is the cylinder radius, 𝑝 is the fluid pressure. This vector has 2 components. The 𝑥
component is the drag force and the 𝑦 component is the left force as illustrated by this diagram.
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θ
r

radius = a
Fx = −

∫ 2π

0
p cos(θ)a dθ

Fy = −
∫ 2π

0
p sin(θ)a dθ

Lift force (y direction)

Drag force (x direction)

Therefore the drag force (per unit length) is

𝐹𝑥 = −�
2𝜋

0
𝑝 cos𝜃𝑎𝑑𝜃 (1)

Now the pressure 𝑝 needs to be determined in order to compute the above. The fluid pressure 𝑝 is
related to fluid flow velocity by the Bernoulli condition

𝑝 +
1
2
𝜌 |𝑢̄|2 = 𝐶 (2)

Where 𝐶 is some constant and 𝜌 is fluid density and 𝑢̄ is the flow velocity vector. Hence in order
to find 𝑝, the fluid velocity is needed. But the fluid velocity is given by

𝑢̄ = 𝑢𝑟𝑟̂ + 𝑢𝜃𝜃̂

=
1
𝑟
𝜕Ψ
𝜕𝜃

𝑟̂ −
𝜕Ψ
𝜕𝑟

𝜃̂

Since the radial component of the fluid velocity is zero at the surface if the cylinder (This is one of
the boundary conditions used to derive the solution), then only the tangential component comes

into play. Hence |𝑢̄| = �−𝜕Ψ
𝜕𝑟 � but

Ψ(𝑟, 𝜃) = 𝑐1 ln � 𝑟
𝑎
� + 𝑢0 �𝑟 −

𝑎2

𝑟 �
sin𝜃

Therefore
𝜕Ψ
𝜕𝑟

=
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃

And hence

|𝑢̄| = �−
𝜕Ψ
𝜕𝑟

�

= �−
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃�

At the surface 𝑟 = 𝑎, hence

|𝑢̄| = �−
𝑐1
𝑎
+ 2𝑢0 sin𝜃�

Substituting this into (2) in order to solve for pressure 𝑝 gives

𝑝 +
1
2
𝜌 �−

𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
= 𝐶

𝑝 = 𝐶 −
1
2
𝜌 �−

𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2

Substituting the above into (1) in order to solve for the drag gives

𝐹𝑥 = −�
2𝜋

0
�𝐶 −

1
2
𝜌 �−

𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
� cos𝜃𝑎𝑑𝜃

The above is the quantity that needs to be shown to be zero.

𝐹𝑥 = −𝑎𝐶�
2𝜋

0
cos𝜃𝑑𝜃 − 𝑎

2
𝜌�

2𝜋

0
�−
𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
cos𝜃𝑑𝜃
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But ∫
2𝜋

0
cos𝜃𝑑𝜃 = 0 hence the above simplifies to

𝐹𝑥 = −
𝑎
2
𝜌�

2𝜋

0
�−
𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
cos𝜃𝑑𝜃

= −
𝑎
2
𝜌�

2𝜋

0

𝑐21
𝑎2

cos𝜃 + 4𝑢20 sin2 𝜃 cos𝜃 − 4𝑐1
𝑎
𝑢0 sin𝜃 cos𝜃𝑑𝜃

= −
𝑎
2
𝜌 �
𝑐21
𝑎2 �

2𝜋

0
cos𝜃𝑑𝜃 + 4𝑢20�

2𝜋

0
sin2 𝜃 cos𝜃𝑑𝜃 − 4𝑐1

𝑎
𝑢0�

2𝜋

0
sin𝜃 cos𝜃𝑑𝜃�

But ∫
2𝜋

0
cos𝜃𝑑𝜃 = 0 and ∫2𝜋

0
sin𝜃 cos𝜃𝑑𝜃 = 0 hence the above reduces to

𝐹𝑥 = −4𝑎𝜌𝑢20�
2𝜋

0
sin2 𝜃 cos𝜃𝑑𝜃

But sin2 𝜃 = 1
2 −

1
2 cos (2𝜃) and the above becomes

𝐹𝑥 = −4𝑎𝜌𝑢20�
2𝜋

0
�
1
2
−
1
2

cos (2𝜃)� cos𝜃𝑑𝜃

= −4𝑎𝜌𝑢20 �
1
2 �

2𝜋

0
cos𝜃𝑑𝜃 − 1

2 �
2𝜋

0
cos (2𝜃) cos𝜃𝑑𝜃�

But ∫
2𝜋

0
cos𝜃𝑑𝜃 = 0 and by orthogonality of cos function ∫2𝜋

0
cos (2𝜃) cos (𝜃) 𝑑𝜃 = 0 as well. Therefore

the above reduces to

𝐹𝑥 = 0

The drag force (𝑥 component of the force exerted by fluid on the cylinder) is zero just outside the
surface of the surface of the cylinder. Which is what the question asks to show.

0.7 Problem 2.5.24 (problem 7)

88

(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with
the boundary conditions

8u
au

8u
&"

8x(0,
y) = 0, 8x(L, y) = g(y),

8y(x, 0)
= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?
(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].
(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +
[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-
servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show
that

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-
2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum and
minimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulation
does a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (for
what values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlines
are circles. Graph the streamlines.

Introduction. The stream velocity 𝑢̄ in Cartesian coordinates is

𝑢̄ = 𝑢 ̂𝚤 + 𝑣 ̂𝚥

=
𝜕Ψ
𝜕𝑦

̂𝚤 −
𝜕Ψ
𝜕𝑥

̂𝚥 (1)

Where Ψ is the stream function which satisfies Laplace PDE in 2D ∇ 2Ψ = 0. In Polar coordinates
the above becomes

𝑢̄ = 𝑢𝑟𝑟̂ + 𝑢𝜃𝜃̂

=
1
𝑟
𝜕Ψ
𝜕𝜃

𝑟̂ −
𝜕Ψ
𝜕𝑟

𝜃̂ (2)

The solution to ∇ 2Ψ = 0 was found under the following conditions

1. When 𝑟 very large, or in other words, when too far away from the cylinder or the wing, the
flow lines are horizontal only. This means at 𝑟 = ∞ the 𝑦 component of 𝑢̄ in (1) is zero. This

means
𝜕Ψ�𝑥,𝑦�

𝜕𝑥 = 0. Therefore Ψ�𝑥, 𝑦� = 𝑢0𝑦 where 𝑢0 is some constant. In polar coordinates
this implies Ψ(𝑟, 𝜃) = 𝑢0𝑟 sin𝜃, since 𝑦 = 𝑟 sin𝜃.

2. The second condition is that radial component of 𝑢̄ is zero. In other words, 1
𝑟
𝜕Ψ
𝜕𝜃 = 0 when

𝑟 = 𝑎, where 𝑎 is the radius of the cylinder.

3. In addition to the above two main condition, there is a condition that Ψ = 0 at 𝑟 = 0

Using the above three conditions, the solution to ∇ 2Ψ = 0 was derived in lecture Sept. 30, 2016, to
be

Ψ(𝑟, 𝜃) = 𝑐1 ln � 𝑟
𝑎
� + 𝑢0 �𝑟 −

𝑎2

𝑟 �
sin𝜃
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Using the above solution, the velocity 𝑢̄ can now be found using the definition in (2) as follows

1
𝑟
𝜕Ψ
𝜕𝜃

=
1
𝑟
𝑢0 �𝑟 −

𝑎2

𝑟 �
cos𝜃

𝜕Ψ
𝜕𝑟

=
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃

Hence, in polar coordinates

𝑢̄ = � 1𝑟𝑢0 �𝑟 −
𝑎2

𝑟
� cos𝜃� 𝑟̂ − � 𝑐1𝑟 + 𝑢0 �1 +

𝑎2

𝑟2
� sin𝜃� 𝜃̂ (3)

Now the question posed can be answered. The circulation is given by

Γ = �
2𝜋

0
𝑢𝜃𝑟𝑑𝜃

But from (3) 𝑢𝜃 = − �
𝑐1
𝑟 + 𝑢0 �1 +

𝑎2

𝑟2
� sin𝜃�, therefore the above becomes

Γ = �
2𝜋

0
− �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃� 𝑟𝑑𝜃

At 𝑟 = 𝑎 the above simplifies to

Γ = �
2𝜋

0
− �
𝑐1
𝑎
+ 2𝑢0 sin𝜃� 𝑎𝑑𝜃

= �
2𝜋

0
−𝑐1 − 2𝑎𝑢0 sin𝜃𝑑𝜃

= −�
2𝜋

0
𝑐1𝑑𝜃 − 2𝑎𝑢0�

2𝜋

0
sin𝜃𝑑𝜃

But ∫
2𝜋

0
sin𝜃𝑑𝜃 = 0, hence

Γ = −𝑐1�
2𝜋

0
𝑑𝜃

= −2𝑐1𝜋

Since Γ < 0, then 𝑐1 > 0. Now that 𝑐1 is known to be positive, then the velocity is calculated at

𝜃 = −𝜋
2 and then at 𝜃 = +𝜋

2 to see which is larger. Since this is calculated at 𝑟 = 𝑎, then the radial
velocity is zero and only 𝑢𝜃 needs to be evaluated in (3).

At 𝜃 = −𝜋
2

𝑢� −𝜋2 � = − �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin �−𝜋

2
��

= − �
𝑐1
𝑟
− 𝑢0 �1 +

𝑎2

𝑟2 �
sin �𝜋

2
��

= − �
𝑐1
𝑟
− 𝑢0 �1 +

𝑎2

𝑟2 ��

At 𝑟 = 𝑎

𝑢� −𝜋2 � = − �
𝑐1
𝑎
− 2𝑢0�

= −
𝑐1
𝑎
+ 2𝑢0 (4)

At 𝜃 = +𝜋
2

𝑢�+𝜋2 � = − �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin �𝜋

2
��

= − �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 ��

At 𝑟 = 𝑎

𝑢� −𝜋2 � = − �
𝑐1
𝑎
+ 2𝑢0�

= −
𝑐1
𝑎
− 2𝑢0 (5)

Comparing (4),(5), and since 𝑐1 > 0, then the magnitude of 𝑢𝜃 at 𝜋
2 is larger than the magnitude of

𝑢𝜃 at −𝜋
2 . Which implies the stream flows faster above the cylinder than below it.
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