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1 HW11

Math 322 Homework 11

Due Wednesday Dec. 14, 2016
1. (a) Use the method of images to solve
Vu(x) = f(x) (la)

in a semi-infinite 2D domain with boundary condition u(x,0) = h(z).

(b) Use the method of images to solve

Viu(x) = f(x) (10)
in a semi-infinite 2D domain with boundary condition du(z,0)/dy = h(zx).

(c) (a) Use the method of images to solve

Viu(x) = f(x) (1c)
in a semi-infinite 3D domain with boundary condition du(x, 0, z) /0y = h(z, z).

2. Using the method of images, solve

Viu(x) = f(x) (2)
in the 2D domain z > 0, y > 0 with boundary conditions u(0,y) = ¢g(y) and u(z,0) = h(z).

The following are the general steps used in all the problems below :

1. Image points were placed to satisfy homogenous boundary conditions for Green function using
the solution for infinite domain.

2. The Green formula was applied to determine the particular solution and the boundary terms.
3. Derivative of Green function was found and used in the result found above.
4. The role of Xy, X was reversed in the final expression to express the final result as u (Tc’) instead
of u (750).
11 Problem 1
1.1.1 Part (a)

Green function on infinite domain, which is the solution to

V2G (2,%) = 6 (¥ - %)



Is given by

Geo (%,%) = 21_71 In (r)
1

= 57 In (%)

= 21_71 In [\/(x —xp)* + (y - yo)z]

= ﬁ In ((x - x0)2 + (y - yo)z)

By placing a negative impulse at location X = (xo, —yo), the Green function for semi-infinite domain
is obtained

A
Region where solution exist @ (0,v0)
>
© (20, ~%0)
1 1
G2 %) ==In(r) - = In(rp)
2n 2n

1 1
= oI ([ = %) - o In (|7 - %)

_ % (1n ((x CxP+ (y _ yo)z) —In ((x —xo) + (y + VO)Z))

1,5 X0’ + (y-vo)°
4m

= 1)
2

(x - xp)° + (3/ + ]/0)
The following is 3D plot of the above Green function, showing the image impulse and showing that
G =0 at the line y = 0 (marked as red)



Out[24]=

The Green function in (1) is now used to solve V?u (Fc’)
Green formula for 2D

ff 2G x xo (x ?ZO)VZu(Fc’)dA:§ u

ffu(?c‘)é(?c’,?c‘o)dA—ffG(?,?c’O)f(Fc’)dA:f(G ,

—00

Since ffu (?c’) (x xo) dA = u( 0) the above reduces to

xo ffoxO

u (%) ffc dA+T{G(",

And since G (55, ?c’o) =0 at y = 0, therefore

= | (G (20 2y 5

L %o 3y —u(?f) 3y 0 dx
y=
du (X G (%X, %
%,%) ”;S‘) u (%) S; xo)] dx
y=0
d
dy ]y=0 *
du (¥ 2G (X%
7) 20 g 220 )) e
, 9G (%%
(x) 7y ] dx



And since u( ) h(x) at y = 0, then

r 9G (%, %
u(®) = [[6@E%)f(F) dA—fh(x)[%] dx 3)
% o

dG H,H . . . - = . .
( (x xo)) is now evaluated to complete the solution. Using G (x, xo) in equation (1), therefore

M _ ii In ((x xo)* + (y yo) )— In ((x —xo)* + (y +y0)2))

)

(x— xo) + y yO) (x— xo)2 + (y + yo)

Evaluating the above at y = 0 gives
aG (75, 750) 1 [ -2y B 2yo )
dy ~ (x—x)* + 13 (x—x0)* + 1>

y=0

_ (L)

- -+ 13

Replacing the above into (3) gives

foxO dA+y0f Lx)dx
(x = x0)* + 3

Using the expression for G (55,350) from (1), the above result becomes

~—

M Xo

h (%)

1 ¢ . - xo) +(y yo) Yo r
JYo) = — 1 dyd _
1 (o, o) I f f n(x—xo) +(y+y0)2f(x y) dydx + f(x R

dx

And finally, order of %, is reversed giving
2 o
h (xo)

u(x,y) _1 ]2 f n (g —x)° + (yo—.'/) f(xo,}/o)dyodxo 4 zf— N
7-(xo—“"’y (x - x)2 + (yO +y ’ T(—oo (xo - x)Z + yz

1.1.2 Part (b)
This is similar to part (a), and the image is placed on the same location as shown above, but now

the boundary conditions are different. Starting from equation (2) in part (a)

xo f G X, xo dA + f G(},?ZO) &L(;ix) —u (75) %);xo) dx (1)
—00 y=0




IG(2%)
Iy
impulse and not negative as in part (a). Therefore G (?5,550) becomes the following

But now

=0aty=0and not G (Y,YO) =0 as in part (a). This means the image is a positive

G2 %) = oo In() + —In(ry)

1 AN 1 o
= Eln(|x—x0|)+ﬁln(x—x0

)

= i (ln ((x - xo)2 + (y - yo)z) +In ((x - xo)2 + (y + yo)z)) (2)

IG(X X
The following is 3D plot of the above Green function, showing that showing that Glt)

=0aty=0

(marked as red)

Green function, semi-infinite 2D, x@ at (1,1) and image at (1,-1) part(b)

=0 at y =0 then (1) becomes

w(i)= [ ) f(@ans [

—c0 y=0

ouls
But ) =h(x) at y = 0, hence the above reduces to

dy
u(@m)= [[o(Em)f[F)da+ [G(E%) he) dx 3)

Evaluating G (75, 350) at y = 0 gives

G (?c’, ﬁo)y():o = i (ln ((x —x0)* + (y - yo)z) +1In ((x —x0)* + (y + yo)z))

= o (0P +28) + I (P 4 47)

_ ﬁ In (((x —xg)? + yg)z)

= % In ((x - xo) + y%)

y=0



Substituting the above in RHS of (3) gives

f fG xxo (x y)dydx+—fln (x - xo)° +y0)h(x) dx

X=—0oy= 0

Reversing the role of Xy, ¥ gives

[Se]

u(?) f fG X, %o f(xo yo) dyodxg + —fln (x9 — x)* +y )h(xo) dxg

Xo==oyp=0

1.1.3 Part (c)

In infinite 3D domain, the Green function for Poisson PDE is given by

Where r is given by

r:\/(x—x0)2+(y—y0)2+(z—zo)2

9 o .
%% =0, then the same sign impulse is located at

X = (xo, Yo, zo) is the location of the impulse. Since 5

Xy = (xo, —yo,zo), and the Green function becomes
-1 1

1 1 1
- - 1)
an [ \/(x —x0)* + (y - yo)z +(z—z) \/(x —x)* + (y + y0)2 +(z— 20)2]

Using Green formula in 3D gives

[[[#@) V26 E3) -6 (7%) vauR)av = [[ (1) V6 (%) -G (7 30) Vu (7)) - dudz
= [[ (4«(®)v6 (E70) - 6 (2.%) Vu (3)) - (1) dxdz
= [[ (6(E%) Vu(®)-u @) VG (3%)) -} dudz

But V2G (55,560) =0 (55,550) and V2u (75) =f (?Z) and the above becomes

[T+ Ga)ar- [[Totms@ae- [ [{okm)
But fff x xo dV =u (xo) hence
5 fffc w=] [otm 5w ) s

—u (%) 3y, ]_ dxdz




Rearranging
Cr(LL L u®) | 9G(R %)
xO ff G X, xo +ff(G (x,xo) Jy —u(x)T dxdz (2)
00—00 ]/:0
Ju() ] IG(2%)
But 3 = h(x,z) and we impose 2 = 0, therefore the above becomes
y=0 y=0

xo ff G X, xo dV + j?j?G (x xo)y h(x,z) dxdz (3)

Evaluating G (?5, 550) . gives
y:

1 1 1
cER) =L -
y=0 A \/(x —xp)? + (y - y0)2 + (z - z0)? \/(x —x0)* + (y + yo)z + (z — z0)? 1o
_ i -1 B 1
A \/(x - x0)’ + ¥ + (2 20)° \/(x —xo)’ + Y5 + (z— 20)°
1

2n\/(x - x0)2 + y% +(z - zo)2
Using the above in (3) results in
1
u (%) = ff G (% %) f ( dv-—ff h(x,2) dxdz
Zo0—00 \/(x —x0)* + v5+(z ~z)°
And finally reversing the role of X, X gives the final answer

1
ff G x xo XO dVO ff h(XO,Zo) dXOdZO
2

“o0-c0 \/(xo—x)2+y2+(zo—z)

1.2 Problem 2
Green function in 2D on infinite domain, which is the solution to
VZG (?C),?C)()) = 6 (?C) - 5&0)
Is given by
1
Geo (2,%9) = -

A negative impulse is placed x| = (xo, —yo) and another negative impulse at X, = (—xo,yo) and positive

one at X3 = (—xp, —1/p). The following is a diagram showing the placement of images.
Y g g g P &



2/
Region where solution exist
@ (*Io,yo) @ (1’07?!0)
>
@ (=0, —¥o0) @ (20, —Yo0)

The resulting Green function becomes
Loy 1 1 1
G2 %) = S In() = —In () = —In(r) + —In(rs)

G (Fc’, xo) = ﬁ In ((x - xo)2 + (y - yo)z) - ﬁ In ((x - xo)2 + (y + y0)2)

1 2 2 1 2 2
- Eln((x+x0) + (y—yo) )+ Eln((x+x0) +(y+y0) )
The following is 3D plot of the above Green function, showing the image impulse and showing that
G =0 at the line y = 0 and also at line x = 0. (Lines marked as red and blue)

1)

ds

=

Now that the Green function is found, it is used to solve VZ2u (75) =f (75), with u (x,0) = h (x), u (0 y) =
g (y) Starting with Green formula for 2D

[ v () V26 (%) - 6 (2 %) vau(F) aa = § (u 7))

+§ () Ve (53) -6 (5 5) Va)

—

X)VG(2%) - G(%%) Vu

ds

>

To simplify the notation, from now on, G is used of G (75,550), and also u instead of u (55) The line s,



10

in the above is the line x > 0,y = 0 and s, is the line x = 0,y > 0. Therefore the above becomes

[[uv26-cviuia=§ wvG-cvw-(+) ds+§ @vG-Gvu- (- ds

ffuvzch ffGVzudA f( o _ ac) dx+f(G&—u—u&—G) dy
y=0 . dx dx o

But V2G (x, xo) =0 (5(’,550) and V2u (x) =f (x), hence the above reduces to

ffu(f)é(ifo) dA—ffo(Y) = I(G% _ug_j)yw dx+f(c§—z _ui)_f)x— N

But f f x xO dA =u (xo) therefore

S S F(.9u  9G ((.9u  9G
u(xo)—f Gf(x) dA:!(GQ_;_uQ_y)yZO dx+f(G8—Z—uZ) ) dy

0
Since G (Y,?EO) =0aty=0,and G (Y,YO) =0 at x = 0, the above becomes
)

u(®)= [[cf @ dA—f(ug—j) ) dx—f(uo;—f)xzo dy

y=
Smceu() h(x)aty= Oandu() g(y)atx:Othen

xo,yo ffo dA fh (x)( ) dx - fg (y) (8_x) dy (2)
=0 0 x=0
dG aG . . - . . .
(@)y:O and (E)x:o are now evaluated to complete the solution. Using G (x, xo) in equation (1) gives
G 1 2(y-wo) 1 2(y+ o)
T Arn 2| an 2
% An (x - xp)° + (}/ - 3/0) an (x = xp) + (3/ + 3/0)

Caf2lvmw) | 1 2(v+w)
T (x+x0)2+(y—y0)2 4n (x+x0)2+(y+y0)2

Evaluating the above at y = 0 results in

5], wlemrm) w i)
Wy A\x-x® +1f) 41\(x-x0)"+ 13

s (i) L [&]
47\ (x + x)* + y3) A\ (x+ xo) + 3

CR e ——
% y=0 (x"'xo)z"'y(z) (X—Xo)z"'}/%




s 1. G .
Finding —= gives

B_G:L 2 (x — xg) 1 2 (x - x)
ox 47 (x _ xO)z + (y _ yO)z 41t

(x - xo)* + (y + yo)z

1 2 (x + xg) +i 2 (x + xq)
T G+ x)” + (y _.‘/o)2 an

Evaluating the above at x = 0 results in

(0—)_G) _ i —ZXO B L —ZXO
dax o Am e (y—yo)z 4m 2+ (]/ +y0)2
1 [ 2XO ] 1 [ 2.7(0 ]
T 2| i 2 2
xo"’(V‘?/o) xo"‘(y"‘yo)

() “if o)1
9% =0 x%+(}/+yo)2 n x(2J+(y_yO)2

:E[ 1 B 1 ]
T x%"‘(y"‘yo)z x%+(y_y0)2

Substituting (3,4) into (2) gives the final answer

xo, yo f f G X, xo dxdy
yo 1 1
_;fh x)( 5 > 2] dx
] (x+x0)" +y; (x—x09) +y5

_Ewg(y)[ 11 ]dy
2 2
[ x%+(y+yo) x3+(]/—yo)

Reversing the role of X, % gives

Or

x y :ffG X xo xo,yo) dxodyo
00

[ee]

L [ ( L )dxo
(x0+x) +y? (- +12

0
1
-— | &wo - dyo
f [xz+ y0+y) x2+(y0—y)2J

Where G (?Z,?ZO) is given by equation (1). This complete the solution.

:1|<

(x +x0)” + (]/ + }/0)2

11

(4)

The following is 3D plot of the solution (for small area is first quadrant) generated using Mathematica



12

using

£ = 200675

g (y) =10sin (Sy)
h(x) = 5cos (2x)

20

10
outf194]= Z

This is a contour plot of the above solution

10

Out[186]=
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